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Abstract. The standard class of adversaries considered in cryptography is that of
strict polynomial-time probabilistic machines. However, expected polynomial-time
machines are often also considered. For example, there are many zero-knowledge pro-
tocols for which the only known simulation techniques run in expected (and not strict)
polynomial time. In addition, it has been shown that expected polynomial-time simu-
lation is essential for achieving constant-round black-box zero-knowledge protocols.
This reliance on expected polynomial-time simulation introduces a number of concep-
tual and technical difficulties. In this paper, we develop techniques for dealing with
expected polynomial-time adversaries in simulation-based security proofs.
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1. Introduction

1.1. Background

Informally speaking, the simulation paradigm (introduced in [17]) states that a proto-
col is secure if the view of any adversary in a real protocol execution can be generated
solely from the information the adversary legitimately possesses (i.e., its input and out-
put). This is demonstrated by presenting a simulator that is given only the input and
output of the adversarial (or “corrupted”) party or parties, and generates a view that is
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indistinguishable from the view of the adversary in a real protocol execution. The im-
plication is that the adversary learns nothing from the protocol execution, since it could
anyway generate everything that it sees in such an execution by itself.

The simulation paradigm can be instantiated in a number of different ways, where
the differences that we refer to here relate to the complexity of the adversary and the
complexity of the simulator. The most straightforward way of instantiating this para-
digm is to require that for every (strict) polynomial-time adversary there exists a (strict)
polynomial-time simulator that generates the required view. However, in many cases it
is not known how to construct such simulators. Often, it is shown instead that for every
strict polynomial-time adversary there exists an expected polynomial-time simulator
that generates the required view. In certain contexts a relaxation of this sort is actually
necessary (see below); unfortunately, this reliance on expected polynomial-time simu-
lation is problematic for the following reasons:

1. Conceptual considerations: The intuition behind the simulation paradigm is that
anything an adversary can learn from its interaction in a real protocol execution, it could
also learn given only its input and output. This (seemingly) follows because the adver-
sary can run the simulator itself and thus obtain a view that is indistinguishable from its
view in a real execution. However, if an adversary runs in strict polynomial time while
the simulator runs in expected polynomial time, then the adversary cannot run the sim-
ulator. One immediate solution to this problem is to consider adversaries running in
expected polynomial time as well. However, as we will see in Section 1.2, doing so is
problematic for other reasons. The fact that the adversary and simulator are of different
complexities is somewhat disturbing and contrary to the philosophy of the simulation
paradigm. However, this discrepancy also has technical ramifications beyond the mere
conceptual ones that we have mentioned. We describe a major one next.

2. Technical considerations (composition): Consider the case where a protocol π calls
a sub-routine to compute some function f , and is proven secure in a setting where a
trusted entity is used by the parties to compute f .1 Let ρ be a protocol that securely
computes f . We would like to claim that the composed protocol πρ (i.e., in which f

is computed within π by having the parties run protocol ρ) is also secure. The typical
way of proving that πρ is secure [5] is to incorporate the simulator that is guaranteed to
exist for ρ into an adversary that attacks π (in the setting where a trusted party is used
to compute f ). The security of π can then be invoked, and the overall security of πρ is
thus obtained. The important point to notice here is that this approach to proving security
fails when security of π and ρ is proven by demonstrating the existence of an expected
polynomial-time simulator for every strict polynomial-time adversary. The reason for
this failure is that π is proven secure only for strict polynomial-time adversaries, while
the adversary (attacking π ) obtained by incorporating the simulator for ρ will run in
expected polynomial time.

We remark that—seemingly due, at least in part, to this difficulty—all previous
simulation-based composition theorems of which we are aware (e.g., [5,6,13]) deal only
with the case of protocols proven secure via strict polynomial-time simulation. We also

1 More formally, and using more technical terminology, here we consider a protocol π that has been proven
secure in the f -hybrid model [5,6]. See Section 4.1 for formal definitions.
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remark that, as with the aforementioned conceptual considerations, this problem would
be solved if all protocols were proven secure relative to adversaries that run in expected
polynomial time. As we have mentioned, this results in other difficulties, and anyway
may not be necessary for obtaining the desired composition.

1.2. Potential Ways of Resolving the Difficulties

There are at least two possible ways of dealing with the difficulties raised above:

1. Require simulators to be “no more powerful” than adversaries: One way of re-
solving the above difficulties is to require simulators and adversaries to lie in the same
complexity class. This approach addresses not only the conceptual difficulty raised
above, but also the issue of composition. (This is due to the fact that once the simulator
lies in the same class as the adversary, the general strategy for proving secure composi-
tion, as sketched above, is applicable.) Here, there are two natural choices: (a) require
both the adversary and the simulator to run in STRICT polynomial time, or (b) allow
both the adversary and the simulator to run in EXPECTED polynomial-time.

Some limitations of the first choice (requiring STRICT polynomial time for both the
adversary and the simulator) were demonstrated in [3], where it was shown that there do
not exist constant-round zero-knowledge protocols2 with black-box simulators running
in strict polynomial time. Constant-round zero-knowledge protocols with non black-
box simulation strategies running in strict polynomial time are, however, known to exist
[1–3].

Before considering the second choice, where both simulators and adversaries run in
EXPECTED polynomial time, we briefly address the issue of how to define expected
polynomial-time adversaries for interactive settings (this is treated more formally in
Section 2). Loosely speaking, Feige [8] defined that an adversary A attacking a proto-
col π runs in expected polynomial time if it runs in expected polynomial time when
interacting with the honest parties running π . (We refer to this notion as expected poly-
nomial time with respect to the protocol π .) Under this definition, A may possibly run for
a much longer amount of time when interacting with other machines.3 The justification
for this definition is that the goal of an adversary is to attack honest parties; therefore,
any strategy that is “efficient” when interacting with honest parties should be consid-
ered “feasible.” A more stringent definition, advocated by Goldreich [10], requires the
adversary to run in expected polynomial time when interacting with any interactive ma-
chine. (We call this notion expected polynomial time in any interaction.) Clearly, any
machine that is expected polynomial time in any interaction is also expected polyno-
mial time with respect to any protocol π ; it is also not hard to see that the converse is
not true. Thus, the second notion defines a strictly smaller class of adversaries than the
first. The justification for this latter definition is that it seems more intuitively appealing
as a “complexity class” of machines.

2 In this paper, whenever we refer to zero-knowledge protocols we mean those having negligible soundness
error.

3 As a “silly” example to illustrate what we mean: assume protocol π requires parties to preface their mes-
sages with a “1,” and consider an adversary that runs in polynomial time when receiving messages beginning
with “1” but runs in exponential time when receiving messages beginning with “0.” Under Feige’s definition,
such an adversary is considered to run in expected polynomial time.
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Table 1. Prior state of affairs regarding the existence of computational zero-knowledge proofs/arguments
for expected polynomial-time verifiers.

Type of verifier ZK proofs ZK arguments

Expected poly-time in any interaction Unknown Achieved by [9]
Expected poly-time w.r.t. the honest prover Unknown Unknown

We now discuss the implementation of the simulation paradigm in which both the
adversary and the simulator run in EXPECTED polynomial time. Feige [8] showed that
known simulators for computational zero-knowledge protocols fail when considering
adversaries that run in expected polynomial time with respect to the honest prover. In
contrast, it was shown in [19, Appendix A.1] that the Feige-Shamir zero-knowledge ar-
gument4 system [8,9] remains both zero-knowledge and an argument of knowledge even
when the adversarial party runs in expected polynomial time in any interaction. (We
stress that this positive result of [19] does not hold for adversaries that run in expected
polynomial time with respect to the honest prover.) It was further demonstrated in [19,
Appendix A.2] that the known simulator for the Goldreich-Kahan zero-knowledge proof
system [12] does not work for adversaries running in expected polynomial time in any
interaction, and so likewise for expected polynomial time with respect to the protocol
(for the sake of self containment, we duplicate this negative result of [19] in Appen-
dix A). In fact, prior to our results (see Section 1.3), there was no known proof system
for NP that was proven zero-knowledge for adversaries that run in expected polyno-
mial time (even under the restricted definition of [10]). We conclude that allowing the
adversary to run in EXPECTED polynomial time is problematic because, prior to our
results, in many cases it was simply not known how to construct simulators for such ad-
versaries. (This is in contrast to the case where both the adversary and the simulator run
in strict polynomial time which, as we have mentioned, suffers from certain inherent
limitations.)

The situation for zero-knowledge protocols (prior to our results) is summarized in
Table 1. We stress that this refers only to computational zero-knowledge; perfect zero-
knowledge proofs and arguments appear to remain zero-knowledge even when the ver-
ifier runs in expected polynomial time (see [8, Sections 3.3, 3.4]). A brief explanation
for this is given in Section 1.3.

2. Prove a direct composition theorem for expected polynomial-time simula-
tion: A second and incomparable approach for dealing with the problem of expected
polynomial-time simulation addresses the technical issue of protocol composition, but
does not deal with the above-mentioned conceptual considerations. In this approach, the
aim is to show that if two protocols π and ρ are proven secure in the sense of admit-
ting expected polynomial-time simulation for strict polynomial-time adversaries, then
the composed protocol πρ is also secure in the same sense (i.e., that there exists an
expected polynomial-time simulator for every strict polynomial-time adversary attack-
ing πρ ).5 Note that in our earlier discussion regarding “technical considerations” we

4 Recall that in a proof system soundness holds even for all-powerful provers, whereas in an argument
system it is required to hold only for polynomial-time provers.

5 More precisely (cf. Section 4.1 for formal definitions), say we take as our notion of protocol security the
existence of an appropriate expected polynomial-time simulator for every strict polynomial-time adversary.
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showed that the current proof technique for proving composition fails. This still leaves
open the possibility of finding a different proof technique that can be used to show that
πρ is secure.

An advantage of this approach is that many existing efficient protocols have already
been proven secure using expected polynomial-time simulation for strict polynomial-
time adversaries. A composition theorem as described above means we can use these
protocols as building blocks without reproving their security.

1.3. Our Results

The main focus of this paper is to develop techniques for working with expected
polynomial-time adversaries and simulation. We take first steps in this direction and
present two incomparable results, corresponding to the two approaches discussed in the
previous section.

1. Simulation for expected polynomial-time adversaries: Our first result focuses on
achieving expected polynomial-time simulation for expected polynomial-time adver-
saries. Before describing the result, we illustrate by way of example the central techni-
cal problem that arises when attempting to simulate an expected polynomial-time ad-
versary. Consider the abstract case of an execution of a polynomial-time oracle machine
A with an expected polynomial-time oracle B (in our eventual application, the oracle
machine A will be a black-box simulator and the oracle B will be an adversary), where
A and B act as follows:

1. Upon input 1k , oracle machine A queries its oracle with the message 1k and re-
ceives back a message x. Next, A queries its oracle with x and halts.

2. Machine B receives an input q . If q equals the first k bits of its random tape,
denoted r , then B runs for 2k steps and halts. Otherwise, it replies with r and
halts.

Machine A runs in strict polynomial time. Machine B runs in expected polynomial
time because, for any input q of length k, the probability (over the choice of its random
tape r) that r is equal to q is 2−k (and thus B runs for 2k steps with probability 2−k).
We may therefore expect that the overall expected number of steps made by both A

and B in an execution of AB(1k) would also be polynomial. However, the number
of steps made by both A and B in an execution of AB(1k) is actually always more
than 2k . This is due to the fact that in the execution of AB(1k), machine A’s second
query to B is always the first k bits of B’s random tape. We therefore conclude that
the “composition” of a polynomial-time oracle machine with an expected polynomial-
time oracle does not necessarily yield an expected polynomial-time computation (when
counting the steps of both the oracle machine and its oracle). More technically, we call
this type of composition of two machines A and B oracle composition. Furthermore,
say a class of machines C is closed under oracle composition if for any oracle machine
A ∈ C and any machine B ∈ C, the composed machine AB is also in C.6 This property

Then we would like to claim that if π securely computes some functionality g in the f -hybrid model, and ρ

securely computes f , then πρ securely computes g.
6 In measuring the time complexity of an oracle machine A, calls to its oracle are counted as a single step.

However, when we measure the complexity of the composed machine AB , the running time includes the steps
of both A and B . See Section 2.
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of closure under oracle composition is important for black-box simulations (where A is
the simulator and B is the adversary), and holds for the class of strict polynomial-time
machines. However, the above example shows that the class of expected polynomial-
time machines is not closed under oracle composition.

In the setting we consider in this paper, the oracle machine A is a black-box simu-
lator, and the machine B is a real adversary (whose view A is simulating). The central
difficulty that arises is due to the fact that the distribution of messages that the adversary
sees in a simulated execution may be very far from the distribution of messages that it
sees when interacting in a real execution with any real machine. If the adversary “no-
tices” this difference, it can have a much higher complexity during simulation than in a
real execution. Due to this, the adversary may run in expected polynomial time in real
interactions, but in expected superpolynomial time in simulated interactions. This is the
main problem we encounter. For example, when the above-described B interacts with a
real machine, it almost never receives q such that q = r . In contrast, when it interacts
with the simulator A this always happens. Thus, B’s execution time under “simulation”
is much longer than its execution time in a real interaction. We stress that this problem
is not just hypothetical. Rather, as we have mentioned earlier, many concrete protocols
and expected polynomial-time simulators suffer from this exact problem. A good ex-
ample of this phenomenon (for the protocol of [12], and not a contrived protocol) is
demonstrated in Appendix A; there, an expected polynomial-time verifier is described
that tries to “detect” that it is in a simulated execution and not a real one. In case it does
detect this, it runs for a very long time. The simulator of the zero-knowledge protocol
of [12] fails for this verifier because the overall expected running time of the simulation
is superpolynomial. Simple solutions to this problem (such as truncating the execution
after some polynomial number of steps) do not work; see [3] for some discussion on
this.

Ideally, we would like to present conditions under which closure under oracle com-
position can be achieved for expected polynomial-time machines. If we can then also
construct an expected polynomial-time simulator fulfilling these conditions, we would
then achieve simulation even when the adversary runs in expected polynomial time. To-
ward this goal, we prove a theorem that shows how to automatically modify a class of
black-box simulators (characterized by a certain property) so that the resulting simula-
tion remains expected polynomial time even if the adversary runs in expected polyno-
mial time. Before describing this property, note that if we have a black-box simulator
with the property that its oracle queries are always distributed identically to the mes-
sages sent in a real protocol (let us call this as a perfect simulator), then there would
be no problem dealing with expected polynomial-time adversaries. This is because in
such a case, if the adversary runs for a very long time in the simulation it would also
have to run for a very long time in a real execution (and so it would not run in expected
polynomial time). For this reason, known simulators for perfect zero-knowledge proofs
and arguments seem not to have any difficulty dealing with expected polynomial-time
verifiers.

We are now ready to describe a special property of a black-box simulator that will en-
able us to claim that simulation still runs in expected polynomial time even if the verifier
runs in expected polynomial time. The property is a relaxation of a perfect simulator:
instead of requiring that every oracle query is distributed identically to messages sent
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in a real execution, we require that every oracle query is indistinguishable from mes-
sages sent in a real execution – where indistinguishability must hold even for slightly
superpolynomial distinguishers. More precisely, let S be a black-box simulator with the
following strong indistinguishability property:

For all A, every oracle query that S makes to its oracle A is “strongly
indistinguishable” from some partial transcript (i.e., truncated transcript
of the appropriate length) of a real protocol execution involving A. By
“strongly indistinguishable”, we mean computationally indistinguishable
even for machines running in some superpolynomial time α(k) = kω(1).

Let now A be an expected polynomial-time adversary and let S be a simulator that
fulfills the above property. We show that by truncating SA at O(α(k)) steps, we ob-
tain a “good” simulator that runs in expected polynomial time. The basic idea is that
in α(k) steps the adversary A does not have time to detect that it is receiving simulated
messages instead of real messages. Therefore, its running time in a simulation cannot
be much longer than in a real execution (similar to the case of a perfect simulator as
discussed above). We thus obtain a restricted form of closure under oracle composition
that suffices for our application.

The above result holds even for the stronger class of adversaries running in expected
polynomial time with respect to the protocol under consideration. We remark that, as-
suming α(k) hardness assumptions, all “natural” simulators of which we are aware can
be converted in a straightforward way into simulators satisfying the above property (the
conversion essentially works by replacing primitives having “standard” polynomial se-
curity with primitives that are secure even against adversaries running in time α(k)).

Coming back to our initial example with A and B , one can see that the “simula-
tor”/oracle machine A does not satisfy the above property if things are cast appropri-
ately. In particular, say that the “protocol” calls for sending a random message q (of
length k) to the “adversary” B . Now consider the deterministic adversary B̂ that does
the following: upon receiving message q , if q = 0k then run for 2k steps and halt; oth-
erwise, output 0k . Adversary B̂ runs in expected polynomial time w.r.t. the protocol
(since the input message q it receives is randomly chosen). On the other hand, A does
not satisfy the above indistinguishability property (even in the usual sense) relative to B̂

since the second message sent by A to B̂ is always 0k (whereas such a message is sent
only with probability 2−k in a real execution with B̂).

The restricted form of closure under oracle composition that we have stated above
allows us to prove the following very informally-stated theorem:

(Informally stated) Theorem 1.1 (Closure theorem). Let π be a protocol that se-
curely computes some functionality f for strict polynomial-time adversaries, in the
sense that for any such adversary there exists an appropriate black-box simulator that
runs in expected polynomial time and furthermore satisfies the above strong indistin-
guishability property. Then, π also securely computes f for adversaries that run in
expected polynomial time (with respect to the protocol).

An important corollary of our result is that, under a suitable superpolynomial hardness
assumption, there exist computational zero-knowledge proofs for all of NP that remain
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zero-knowledge (with respect to expected polynomial-time simulation) even if the ad-
versarial verifier runs in expected polynomial time. With reference to Table 1, that is,
we show the existence of all types of proofs/arguments for expected polynomial-time
verifiers that were previously unknown. We note the following caveat: our simulator for
the zero-knowledge proof system is guaranteed to run in expected polynomial time only
when given a statement x that is in the language L; see Section 3.3 for more details.7

2. A composition theorem for expected polynomial-time simulation: The above re-
sult achieves security against adversaries running in expected polynomial time, but only
for protocols proven secure using simulators satisfying a particular technical property.
Our second result shows a composition theorem for protocols proven secure using ar-
bitrary black-box simulation, but guarantees security against strict polynomial-time ad-
versaries only. Specifically, under a superpolynomial hardness assumption, we prove
an analogue of the modular (sequential) composition theorem of Canetti [5] for pro-
tocols that are proven secure for strict polynomial-time adversaries using expected
polynomial-time simulation. Loosely speaking, the composition theorem of [5] states
that if a secure protocol π contains sequential ideal calls to some functionalities, then
it remains secure even when these ideal calls are replaced by sequential executions of
sub-protocols that securely realize these functionalities. The original result of [5] was
previously known to hold only for protocols proven secure via strict polynomial-time
simulation (in fact, in Appendix B we show that the proof of [5] fails in general for pro-
tocols proven secure via expected polynomial-time simulation). In contrast, we prove
that under superpolynomial hardness assumptions the theorem of [5] holds even if the
component protocols are proven secure using expected polynomial-time simulation. We
pay a price, however, for achieving our stronger result: our proof requires hardness
assumptions, in contrast to the unconditional proof of [5]. We remark that we use super-
polynomial hardness assumptions only when constructing and analyzing our simulator;
we do not modify the underlying protocols and do not require that they be secure for
superpolynomial adversaries. In summary, we have the following theorem:

(Informally stated) Theorem 1.2 (Composition for expected polynomial-time simula-
tion). Let π be a protocol utilizing “sequential ideal calls” to a functionality f . Say
π securely computes a functionality g in the sense that there exists an appropriate ex-
pected polynomial-time simulator for every strict polynomial-time adversary. Say ρ is a
protocol that securely computes functionality f in the same sense. Then, under the as-
sumption that there exist families of functions that are pseudorandom to all adversaries
running in (mildly) superpolynomial time, the composed protocol πρ securely computes
the functionality g in the same sense.

7 Standard definitions of zero knowledge require the simulator to generate a distribution that is indis-
tinguishable from the view of the verifier only when it receives a statement x ∈ L. The question of what
complexity a simulator should be when it is invoked on x /∈ L has not been considered. The straightforward
approach is to require the simulator to maintain its complexity even when invoked on inputs x /∈ L. As we
describe in Section 3.3, this also has significant advantages regarding applications of zero knowledge. Unfor-
tunately, our simulators are only guaranteed to run in expected polynomial-time for inputs x ∈ L. (We remark
that when the simulator runs in strict polynomial time on inputs x ∈ L, then its execution can be safely trun-
cated at some fixed polynomial number of steps and so we may simply assume that it runs in strict polynomial
time even on inputs x /∈ L.)
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A caveat regarding Theorem 1.2 is that our proof holds only if the simulator for ρ runs
in expected polynomial time in any interaction. (Note that a simulator in the setting of
secure computation interacts with a trusted party. It is therefore an interactive machine,
and so the different notions of expected polynomial time for interactive machines apply
to it as well.)

1.4. Techniques

In this section, we describe our techniques at a high level. Our aim is to provide an
intuitive explanation as to how we deal with the problem of expected polynomial-time
adversarial behavior. Some of this intuition has been described briefly above; we present
it in more detail here.

Superpolynomial truncation. As we have mentioned, a problem we encounter with
proving Theorem 1.1 is that an expected polynomial-time adversary may sometimes
have very long executions. This causes a problem when the probability of obtaining
such a long execution is higher during simulation than during a real execution (thereby
causing the expected running time of the simulation to be superpolynomial). A first at-
tempt at solving this problem is to simply truncate the execution of the adversary if it
exceeds its expected running time by “too much.” One can thus obtain an adversary
running in strict polynomial time and then standard simulation techniques can be ap-
plied. The problem with this strategy is that it is unclear when to truncate. There are two
natural possibilities:

1. Truncate when the adversary exceeds p(k) times its expected running time, where
p(·) is some polynomial and k is the security parameter: In this case, the trun-
cated adversary clearly runs in strict polynomial time. However, the distribution
generated by the truncated adversary may be noticeably far (i.e., distance 1/p(k))
from the distribution generated by the original adversary. Therefore, the simula-
tion (applied to the truncated adversary) will no longer be indistinguishable from
a real execution of the original adversary.

2. Truncate when the adversary has run a superpolynomial number of steps: In this
case, the resulting distribution of the truncated adversary will be indistinguishable
from the original one. This is due to the fact that if the adversary runs in expected
polynomial time, it can only run a superpolynomial number of steps with negligi-
ble probability. However, this strategy is problematic because, as described above,
the adversary may still run for a “long” time during simulation much more often
than it does in a real execution. Therefore, we may still obtain an overall expected
superpolynomial running time when simulating for this adversary.

Our solution is to adopt the strategy of superpolynomial truncation, but to ensure that
the probability that the adversary runs for a very long time during the simulation is
close to the probability that it does so in a real execution. Loosely speaking, we achieve
this as follows. Let α(k) be any superpolynomial function, and assume that circuits
of size α(k) can distinguish a simulator-generated message from a real message with
probability at most 1/α(k) (this is a reformulation of the strong indistinguishability
property introduced in the previous section). Now, in a real execution an adversary can
exceed α(k) steps only with probability at most poly(k)/α(k); otherwise, it would not
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run in expected polynomial time. Because of the strong indistinguishability property we
may now claim that the same must hold during simulation, or else a distinguisher of size
α(k) would be able to distinguish simulator messages from real ones (with probability
at least 1/α(k)) by monitoring the running time of the adversary. The reason we need
a superpolynomial bound α(k) is to make sure that the truncation does not noticeably
affect the output distribution. This in turn implies that the distinguisher must be allowed
to run α(k) steps (since this is when differences in the adversary’s running time might
be manifested), and so α(k)-hardness assumptions are needed.

Stated less technically than above, we show that if the simulator satisfies the strong
indistinguishability property then a real adversary running in expected polynomial time
does not have time to “detect” any difference between real and simulated executions.
Therefore, its expected running time must be approximately the same in both cases. This
can then be used to show that the simulated execution also runs in expected polynomial
time.

Pseudo-independent oracle invocations. Our starting point for the proof of Theo-
rem 1.2 is a different one. Recalling the discussion of oracle composition (where an
oracle machine A makes calls to a machine B) from the previous section, we can see
that one difficulty that arises is that A calls B multiple times, and in each call B uses
dependent random coins. (Specifically, it uses identical random coins in the counterex-
ample we gave.) Conversely, if A were to make a strict polynomial number of calls to
an expected polynomial-time machine B , and in each invocation B used fresh random
coins, then (by linearity of expectation) the total expected running time of AB would
be polynomial. (In fact, this holds even if A makes an expected polynomial number of
calls to B [4, Problem 22.9].) Unfortunately, if A represents a simulator and B repre-
sents an expected polynomial-time adversary then A may not produce the appropriate
output distribution if it invokes B using fresh random coins each time (in fact, all known
black-box simulators would completely fail if forced to work this way).

We describe at a high level the strategy we use to resolve the above issue. The basic
idea is to consider the modified algorithm B ′ that proceeds as follows: given random
tape s and input q , algorithm B ′ computes r = Fs(q) and then runs B using random
tape r and input q . If F is a pseudorandom function, then the distributions on the output
of B and B ′ are indistinguishable. So, intuitively, running the simulator A with access
to B ′ should produce output that is “just as good” as running A with access to B . The
key point is that even though the random tape of B ′ is fixed, the random tape used by B

(when called by B ′) is (pseudo)independently and (pseudo)uniformly distributed each
time B is invoked. (Without loss of generality, we may assume that A does not query
its oracle on the same input twice.) Thus, even though the random coins of A’s oracle
B ′ remain fixed, the “effective” coins used by B are freshly generated each time it is
invoked. (Our technique is somewhat reminiscent of similar ideas used in [7].)

Unfortunately, the above explanation is overly simplistic. A problem that may arise
when constructing B ′ from B is that B ′ may no longer run in expected polynomial time
(since B ′ runs B using pseudorandom coins rather than random ones). Indeed, the issue
here is exactly analogous to the issue that arose with respect to non-perfect simulators
(as discussed earlier). In order to prevent this from happening, we must use a func-
tion F that is pseudorandom even against adversaries running in some superpolynomial
time α(k). We also use the superpolynomial truncation technique described previously
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in order to ensure that B ′ runs in expected polynomial time yet its behavior is not no-
ticeably different.

1.5. Open Questions

In this paper, we present the first techniques for dealing with some difficulties that arise
due to the use of expected polynomial-time simulation strategies. We view our results
as first steps in solving these problems, and not as final solutions. The main weaknesses
of our results are:

1. In both results, we rely on superpolynomial hardness assumptions rather than stan-
dard ones.

2. In order to prove the closure theorem (Theorem 1.1), we need to assume a black-
box simulator with the “strong indistinguishability property.”

3. In order to prove the sequential composition theorem (Theorem 1.2), we need
to assume that the simulator for the sub-protocol ρ runs in expected polynomial
time in any interaction. This result is therefore highly sensitive to the definition of
expected polynomial time.

Thus, we still do not have truly satisfactory solutions to the problems that arise due to
expected polynomial-time simulation.

2. Defining the Running Time of Probabilistic Machines

The security parameter is denoted by k; for conciseness, we equate the security pa-
rameter with the input length. (We therefore consider security for “sufficiently-long
inputs.”) We denote by A(x, z, r) the output of machine A on input x, auxiliary input
z, and random coins r . The running time of A is measured in terms of the length of
its input x (where |x| = k), and the exact running time of the deterministic computa-
tion A(x, z, r) is denoted by timeA(A(x, z, r)). Machine A runs in strict polynomial
time if there exists a polynomial p(·) such that for all x, z, and all r , it holds that
timeA(A(x, z, r)) ≤ p(|x|). A runs in expected polynomial time if there exists a poly-
nomial p(·) such that for all x and z, it holds that Expr [timeA(A(x, z, r))] ≤ p(|x|).
A technical issue. A technical problem that arises when considering expected polyno-
mial-time algorithms is that the expected running time is not machine independent. As
an example, consider an algorithm which, in some model of computation, runs for 2k

steps with probability 2−k , and runs for 1 step otherwise. In this model, the algorithm
runs in expected polynomial time. However, if this algorithm is implemented in a second
model of computation which, for sake of argument, has quadratic overhead with respect
to the first model, we end up with an algorithm that runs for 22k steps with probability
2−k and therefore no longer runs in expected polynomial time (this example is due
to [10]). To avoid these difficulties, we implicitly fix a model of computation throughout
our discussion.

Running time for interactive machines. If A is an interactive Turing machine (ITM),
we let A(x, z, r; ·) denote the “next message function” of A on inputs x, z, and random
coins r . The ITM A runs in strict polynomial time if there exists a polynomial p(·) such
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that for all x, z, r , and any sequence of messages m, it holds that timeA(A(x, z, r;m)) ≤
p(|x|). That is, A replies to any message within p(|x|) steps.

Defining expected polynomial-time ITMs is more complicated, and at least two such
definitions have been considered. We first present the definition of Feige [8]. As men-
tioned in the Introduction, the idea behind this definition is that any adversarial strategy
that is efficient when run against the specified target (i.e., the honest parties running the
protocol) should be considered feasible. Thus, the running time of an adversary when
interacting with an arbitrary ITM (that is not the honest party under attack) is irrelevant.
Informally, an ITM A is said to run in expected polynomial time with respect to a par-
ticular protocol π if there exists a polynomial p(·) such that for all inputs, the expected
running time of A when interacting with honest parties running π is at most p(|x|).
(The expectation here is taken over the random coins of both A and the honest parties.)
More formally, let timeA(〈A(x, zA, r),B(y, zB, s)〉) denote the exact running time of A

with input x, auxiliary input zA, and random coins r , when interacting with B holding
input y, auxiliary input zB , and random coins s. Then:

Definition 1. An ITM A runs in expected polynomial time with respect to an ITM B

if there exists a polynomial p(·) such that for all x, y with |x| = |y| and all auxiliary
inputs zA, zB ∈ {0,1}∗, the following holds:

Expr,s[timeA(〈A(x, zA, r),B(y, zB, s)〉)] ≤ p(|x|).
Let π = (P1,P2) be a two-party protocol. Then an adversary A corrupting P1 (resp., P2)
runs in expected polynomial time with respect to π if it runs in expected polynomial time
with respect to P2 (resp., P1). If f is a (probabilistic) function, then A runs in expected
polynomial time with respect to f if it runs in expected polynomial time with respect to
any ITM computing f .

The above definition relates to two-party protocols. The extension to the multiparty case
is straightforward.

A definition of the above sort makes sense in a cryptographic context, but is arguably
a strange way of defining a “complexity class” since, as we have mentioned earlier, the
fact that an adversary A runs in expected polynomial time with respect to a protocol
π implies nothing about its running time when it interacts with other machines. An
alternative approach advocated by Goldreich [10] therefore states that an ITM runs in
expected polynomial time if there exists a polynomial p(·) such that for all inputs, the
expected running time of A when interacting with any (even all powerful) ITM B is at
most p(|x|). Here, the expectation is taken over the random coins of A only, because
we can assume without loss of generality that B is deterministic. In such a case, we say
that A runs in expected polynomial time in any interaction. More formally:

Definition 2. An ITM A runs in expected polynomial time in any interaction if for
every ITM B it holds that A runs in expected polynomial time with respect to B (as
defined in Definition 1).

It is immediate that if an ITM A runs in expected polynomial time in any interaction,
then A also runs in expected polynomial time with respect to any protocol π . Further-
more, it is not difficult to show a protocol π for which the class of adversaries running
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in expected polynomial time with respect to π is strictly larger than the class of adver-
saries running in expected polynomial time in any interaction.

Running time for oracle machines. The running time of an oracle machine A (whether
interactive or not) is defined along the lines of what has already been discussed. How-
ever, we will distinguish between the running time of A itself (counting A’s calls to its
oracle as a single step) and the running time of the composed machine AB for some
particular machine B . In more detail, let A be an oracle machine with oracle access
to an ITM B . It will always be the case, and we will henceforth implicitly require,
that A and B hold inputs of the same length (i.e., it is always the case that A and
B use the same value for the security parameter k). In the execution of A with B ,
denoted by AB(y,zB,s;·)(x, zA, r), machine A receives input x, auxiliary-input zA, and
random tape r , and provides queries of the form m to its oracle which are answered as
B(y, zB, s;m). We distinguish between two notions of running time for the composed
machine AB :

1. timeA(AB(y,zB ,s;·)(x, zA, r)) denotes the exact running time of A on input x,
auxiliary-input zA, and random tape r when interacting with the oracle
B(y, zB, s; ·), counting calls to B as a single step (i.e., we only “count” the steps
taken by A).

2. timeA+B(AB(y,zB ,s;·)(x, zA, r)) denotes the exact running time of both A and B

in the analogous execution. Here, the steps taken by B to answer A’s queries are
also counted.

Given the above, we can define expected polynomial-time oracle machines. (We pro-
vide definitions for the case that AB is a stand-alone machine, but the definitions can
be extended exactly as discussed earlier when AB is an ITM.) We say that the ora-
cle machine A runs in expected polynomial time if there exists a polynomial p(·) such
that for every (even all powerful) machine B , all inputs x, and every auxiliary input z,
Expr [timeA(AB(x, z, r))] ≤ p(|x|). On the other hand, the composed machine AB runs
in expected polynomial time if8 there exists a polynomial p(·) such that for all inputs x

and y with |x| = |y|, and all auxiliary inputs zA and zB , it holds that

Expr,s[timeA+B(AB(y,zB,s;·)(x, zA, r))] ≤ p(|x|).
For any strict polynomial-time B , if A runs in expected polynomial time then so does the
composed machine AB . (This assumes that A and B use the same value of the security
parameter k, as we indeed require.) We stress, however, that this does not necessar-
ily hold when B runs in expected polynomial time (under either definition considered
earlier).

3. Simulation for Expected Polynomial-Time Adversaries

In this section, we show how protocols proven secure against strict polynomial-time
adversaries using a certain class of black-box simulation can in fact be proven secure

8 Since AB is just a regular Turing machine, this definition is exactly the one given earlier (note that r, s

are exactly the random coins of the composed machine AB ). We repeat the definition for convenience.
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against expected polynomial-time adversaries as well. That is, assuming that the original
simulator for the protocol runs in expected polynomial time for any strict polynomial-
time adversary, we obtain a simulator that runs in expected polynomial time even for
adversaries running in expected polynomial time. The results of this section hold for
the stronger class of adversaries running in expected polynomial time with respect to
the protocol, but we obtain a simulator guaranteed to run in expected polynomial time
only with respect to the ideal functionality9 in question (even if the adversary runs in
expected polynomial time in any interaction).

3.1. Preliminaries

As we have mentioned in the Introduction, the results of this section hold for a certain
class of black-box simulators. We begin with a high-level review of secure computa-
tion, and then define the class of simulators we consider. For the sake of simplicity, we
present the results here for the case of two-party protocols. The natural extension to the
multiparty case also holds.

Secure two-party computation. We provide a very brief and informal overview of
the definition of security for two-party computation; for more details, see [5,11]. In
the setting of two-party computation, two parties wish to jointly compute a (possibly
probabilistic) functionality f : {0,1}∗ ×{0,1}∗ → {0,1}∗ ×{0,1}∗, where f = (f1, f2).
That is, upon respective inputs x and y, the parties wish to compute f (x, y) so that
party P1 receives f1(x, y) and party P2 receives f2(x, y). Furthermore, the parties wish
to ensure that nothing more than the output is revealed and that the function is correctly
computed, even if one of the parties behaves adversarially. These requirements (and
others) are formalized by comparing a real protocol execution to an ideal execution
involving a trusted party (an “ideal functionality”). In an ideal execution with f , the
parties send their inputs x and y to a trusted party who computes f (x, y) and sends
f1(x, y) to P1 and f2(x, y) to P2. The adversary who controls one of the parties can
choose to send any input it wishes to the trusted party, while the honest party always
sends its specified input.10 In a real execution of a protocol π , the parties P1 and P2
run π , where one of the parties may be corrupted and thus be under the complete control
of the adversary A. (We always assume the adversary statically corrupts one of the
two parties.) Informally, a protocol π is secure if for every real-model adversary A
interacting with an honest party running π , there exists an ideal-model adversary Sim
interacting with the trusted party computing f , such that the output of A and the honest
party in the real model is computationally indistinguishable from the output of Sim and
the honest party in the ideal model.

Notation. Let π = (P1,P2) be a two-party protocol and let f be a two-input function-
ality. We denote by REALπ,A(z)(x, y) the output of a real execution of π , where party

9 The simulator for a secure protocol is both an oracle machine as well as an interactive Turing machine
that interacts with a trusted party computing an ideal functionality (see the following section). Thus, we must
also explicitly state whether the simulator runs in expected polynomial time in any interaction, or only with
respect to the ideal functionality under consideration.

10 The adversary also has control over the delivery of the output from the trusted party to the honest party.
Therefore, fairness and output delivery are not guaranteed.
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P1 has input x, party P2 has input y, and the adversary A has input z in addition to the
input of the corrupted party (i.e., x if P1 is corrupted and y if P2 is corrupted). The out-
put of an execution is defined to be the output of the honest party (which is simply the
output dictated by the protocol) along with the output of the adversary (which, without
loss of generality, is its view). Likewise, we denote by IDEALf,Sim(z)(x, y) the output of
an ideal execution with f where the respective inputs are as noted.

When considering black-box simulation, the ideal-world adversary Sim will take the
form SA where S is called the “black-box simulator.” Here, Sim chooses a random
tape r for A and then runs SA(z,r). The black-box simulator S is given the input of
the corrupted party and oracle access to A(z, r), but is not given the auxiliary input z

nor the randomness r used by A. For visual convenience, we explicitly provide S with
input 1k (recall |x| = |y| = k, and running times of all parties are measured in terms
of k). The black-box simulator S is both an oracle machine as well as an ITM (since
it interacts with the trusted party computing the functionality f in the ideal model). In
the previous section we have already defined what it means for S to run in expected
polynomial time. To be explicit, however, we repeat some of that discussion here.

• We denote by timeS(IDEALf (rf ),SA(z)(1k,s)(x, y)) the running time of S (not count-
ing the steps of A) when S has random tape s and the trusted party computing f

uses random tape rf . For the sake of clarity, we will use shorthand and denote
the expected running time of S in this case by Exps,rf

[timeS(IDEAL)]. (Following
our conventions for oracle machines, we require that S runs in expected polyno-
mial time even when A is computationally unbounded. Therefore, we do not make
the random coins of A explicit when defining the running time in this case, and
the expectation of S’s running time is not taken over A’s coins r .) The fact that
we include f ’s coins rf is due to the fact that we consider simulators S that may
run in expected polynomial time with respect to f . (Note, however, that even when
f is a deterministic functionality it may still be the case that S runs in expected
polynomial time with respect to f , but does not run in expected polynomial time
in any interaction. This can occur if, for example, it runs for a very long time when
it receives a value that is not in the range of f .)

• We denote by timeS+A(IDEALf (rf ),SA(z,r)(1k,s)(x, y)) the running time of the com-

posed machine SA (i.e., including A’s steps) when the inputs are as indicated. As
above, for the sake of clarity, we write Expr,s,rf

[timeS+A(IDEAL)] as shorthand
for the expectation of this running time. (Note that here the coins r of A are in-
cluded.)

Since SA is the ideal-world adversary whose existence provides the intuitive
security guarantee we are after, we will require in our definition of security (below)
that the composed machine SA run in expected polynomial time (i.e., it is not
enough that S runs in expected polynomial time). Of course, when A runs in strict
polynomial time the two requirements are equivalent.

We are now ready to present the definition of security.

Definition 3. Let f and π be as above. Protocol π is said to securely compute f

for strict polynomial-time adversaries with a black-box simulator that runs in expected
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polynomial time with respect to f if there exists an interactive oracle machine (black-
box simulator) S that runs in expected polynomial time with respect to f , such that for
every strict polynomial-time real-model adversary A, every non-uniform polynomial-
time distinguisher D, every polynomial p(·), all sufficiently-long inputs x and y such
that |x| = |y|, and all z ∈ {0,1}∗,

|Pr[D(IDEALf,SA(z)(1k)(x, y)) = 1] − Pr[D(REALπ,A(z)(x, y)) = 1]| < 1

p(|x|) .

Protocol π is said to securely compute f for expected polynomial-time adversaries with
a black-box simulator that runs in expected polynomial time with respect to f if the above
holds even for A which run in expected polynomial time with respect to π and, further-
more, if the composed machine SA runs in expected polynomial time with respect to f

even for such A.

Of course, one could modify the second part of the definition for the case of adver-
saries/simulators running in expected polynomial time in any interaction.

Strong black-box simulation. We now define a stronger notion of simulation which,
informally, requires not only that the final output of IDEALf,SA be indistinguishable
from REALπ,A, but also that each partial (truncated) transcript generated during the
simulation is indistinguishable from a partial transcript of the same length in a real exe-
cution of the protocol. Furthermore, we require indistinguishability to hold in a “strong”
sense even against algorithms running in some slightly superpolynomial time.

All protocols from the literature (proven secure for strict polynomial-time adversaries
in the sense of the above definition) of which we are aware seem naturally to satisfy the
notion of strong black-box simulation under an appropriate superpolynomial hardness
assumption. On the other hand, it is easy to construct “unnatural” counterexamples that
fail to satisfy this notion.

Let π be a protocol that securely computes some functionality f for strict polyno-
mial-time adversaries in the sense of the above definition. Let S be a black-box simula-
tor for π (as required by the above definition), and let A be an adversary. If A sends its
messages in the odd rounds (i.e., A sends the first message of the protocol), then each
query query made by S to A has the form query = (m1, . . . ,mj ), where mi represents
a (2i)th-round message sent by the uncorrupted party to A (we do not include the re-
sponses of A in query since these are redundant given A and its inputs [including its
random coins]). In this case we say j is the number of messages in query. We also allow
the possibility that query = ε (i.e., j = 0), in which case query represents S’s query for
the initial message sent by A. The case when A sends its messages in even rounds (i.e.,
the uncorrupted party sends the first message of the protocol) is handled in an analogous
manner.

Define the following distributions:

1. SIMf,SA(x, y, z, r, i) is defined by the following experiment: choose random tapes
s, rf and run IDEALf (rf ),SA(z,r)(1k,s)(x, y). Let queryi be the ith oracle query
made by S to A; if no such query is made (i.e., if S makes fewer than i queries),
set queryi = ⊥. Output queryi .
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2. REALπ,A(x, y, z, r, i) is defined by the following experiment: choose random s′
and then run REALπ,A(z)(x, y) with the honest party using random tape s′ and A
using random tape r . Let T be the vector of messages sent by the honest party to
A in this execution, and let T j denote the first j messages in T .

Next, run the experiment SIMf,SA(x, y, z, r, i) above (choosing fresh coins
s, rf ) and obtain queryi . If queryi = ⊥, then output ⊥. Otherwise, let j denote
the number of messages in queryi , and output T j .

The SIM experiment is run in the second case in order to decide the length of the partial
transcript to output. That is, we wish to compare the distribution of queryi to a partial
transcript (of a real execution) of the same length. This length is obtained from the invo-
cation of SIM. Note that Pr[queryi 
=⊥] is exactly the same in both the SIM and REAL ex-
periments, since the event is due in each case to the outcome of the SIMf,SA(x, y, z, r, i)

experiment. Furthermore, this probability is exactly the probability that the output of
the experiment is not ⊥ (because the output of each experiment is ⊥ if and only if
queryi =⊥).

For any distinguisher D, define �D(x,y, z, r, i) as follows: If Pr[queryi 
=⊥] 
= 0,
then:

�D(x,y, z, r, i)
def= |Pr[D(SIMf,SA(x, y, z, r, i)) = 1 | queryi 
=⊥]

− Pr[D(REALπ,A(x, y, z, r, i)) = 1 | queryi 
=⊥]| (1)

and if Pr[queryi 
=⊥] = 0, then �D(x,y, z, r, i) = 0. (If Pr[queryi 
=⊥] = 0, then
both SIM and REAL always output ⊥. We define �D as we do because when
Pr[queryi 
=⊥] = 0, the conditional probability in Eq. (1) is undefined.)

We are now ready to present the definition of strong simulation. Informally, the def-
inition requires that when queryi 
=⊥, it holds that the ith query in the SIM experiment
is strongly indistinguishable from a partial transcript of the same length in a real execu-
tion.

Definition 4 (α-strong black-box simulation). Let π be a two-party protocol that se-
curely computes some functionality f in the sense of Definition 3, and let S be a black-
box simulator for π (as required by that definition). We say that S is an α-strong black-
box simulator for π (and say that π securely computes f under α-strong black-box
simulation) if for every adversary running in time at most α(k), every non-uniform al-
gorithm D running in time at most α(k), all sufficiently large x and y, all z, r ∈ {0,1}∗,
and all i ∈ N,

�D(x,y, z, r, i) <
1

α(k)
.

A consequence. As we have mentioned, Pr[queryi 
= ⊥] is the same in both the SIM

and REAL experiments. Assuming the above definition holds, it therefore follows that:

|Pr[D(SIMf,SA(x, y, z, r, i)) = 1 ∧ queryi 
=⊥]
− Pr[D(REALπ,A(x, y, z, r, i)) = 1 ∧ queryi 
=⊥]|
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= Pr[queryi 
= ⊥] · �D(x,y, z, r, i) <
Pr[queryi 
=⊥]

α(k)

for large enough x, y. (The above holds even if Pr[queryi 
=⊥] = 0.) This consequence
of Definition 4 will be used in our proof below.

Extended black-box simulation. Finally, we introduce a generalization of black-box
simulation in which the black-box simulator S is allowed to truncate its oracle A if
A exceeds some (poly-time computable) number of steps α. Formally, we can define
each oracle query to be a pair (α, q); if A responds to q within α steps then S is given
the response, otherwise S is given ⊥. (We will ignore this formalism from here on.)
We call such a simulator extended black-box. Note that standard black-box simulators
cannot perform such truncation since they are oblivious to how many steps their oracle
uses in response to a query. However, requiring α to be polynomial-time computable
ensures that any extended black-box simulator can be implemented by a non black-box
simulator. We remark that when computing timeS(SA), oracle calls are still considered
a single step (even if S truncates A after some number of steps). The definition of
timeS+A(SA) remains unchanged.

3.2. Simulation for Expected Polynomial-Time Adversaries

We are now ready to show how (and under what assumptions) it is possible to convert a
simulation strategy that works for strict polynomial-time adversaries into a simulation
strategy that works for expected polynomial-time adversaries.

Theorem 5. Let α(k) = kω(1) be a superpolynomial function that is polynomial-time
computable, and let π be a protocol that securely computes some functionality f for
strict polynomial-time adversaries with an α-strong (extended) black-box simulator
that runs in expected polynomial time with respect to f . Then π securely computes
f for adversaries that run in expected polynomial time with respect to the protocol.
Furthermore, π has an α-strong extended black-box simulator that runs in expected
polynomial time with respect to f .

Proof. The idea behind the proof of this theorem is as follows. Let S be an α-strong
(extended) black-box simulator for π which outputs a “good” simulation for strict
polynomial-time adversaries, and let A be an expected polynomial-time adversary. We
first truncate A at O(α(k)) steps to obtain an adversary Â which performs “essentially”
the same as A. Now, since each query made by the α-strong simulator S to Â is indis-
tinguishable from a partial real transcript even for non-uniform algorithms running in
time α(k), it follows that Â cannot behave noticeably different when receiving an ora-
cle query from S than when it receives a real partial transcript. In particular, Â cannot
run “much” longer when it receives an oracle query than it would run when interacting
in a real protocol execution, and we know that Â runs in expected polynomial time in

the latter case. We use this to argue that the composed machine SÂ runs in expected
polynomial time, and that the resulting transcript is close to the one generated by SA.
We proceed with a formal description of the above steps.
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Throughout the proof, we let |x| = |y| = k. We assume without loss of generality that
α(k) = O(2k). Let S be an α-strong black-box simulator for π (for strict polynomial-
time adversaries) that is assumed to exist, and define Â as the algorithm that behaves
exactly as A except that it outputs ⊥ if it ever exceeds α(k)/2 steps. By definition,
S runs in expected polynomial time with respect to f , and A runs in expected polyno-
mial time with respect to π .

We construct an extended black-box simulator Ŝ that receives oracle access to A and
emulates an execution of SÂ. That is, Ŝ chooses a random tape s ∈ {0,1}∗ and invokes
S with random tape s. Then, all oracle queries from S are forwarded by Ŝ to its own
oracle A and the oracle replies are returned to S unless A exceeds α(k)/2 steps while
answering the query, in which case the current execution of A is aborted and Ŝ re-
turns ⊥. Furthermore, all communication between S and the trusted party computing f

is forwarded unmodified by Ŝ . Note that Ŝ is an extended black-box simulator because
it truncates its oracle. (It makes no difference whether S is an extended black-box sim-
ulator or not. The only technicality is that if S is an extended black-box simulator, then

if S requests to truncate a query at some point, so does Ŝ .) Notice that ŜA = SÂ.
Our goal is to show that Ŝ satisfies the second part of Definition 3. We first show that

ŜA runs in expected polynomial time with respect to f even when A runs in expected
polynomial time with respect to π (and thus also if A runs in expected polynomial time
in any interaction).

Claim 6. If A runs in expected polynomial time with respect to π and oracle machine
S runs in expected polynomial time with respect to f , then the composed machine ŜA

defined above runs in expected polynomial time with respect to f .

Proof. In the proof below, we assume without loss of generality that Ŝ is given in-
put x; i.e., A corrupts the first party P1. We show that for any expected polynomial-time
adversary A there exists a polynomial p such that for all sufficiently long x, y, and all z:

Expr,s,rf
[timeŜ+A(ŜA(z,r)(x, s))] ≤ p(k).

To prove the claim, first recall that ŜA is exactly the same as SÂ. Now, the running

time of SÂ consists of two components: the steps taken by S and the steps taken by Â
in answering the oracle queries of S . Using linearity of expectation, it suffices to show
that the expectation of each of these components is polynomial. Since S is an expected
polynomial-time oracle machine, its expected running time is polynomial when inter-
acting with any oracle. It therefore remains only to bound the total number of steps taken
by Â. This is equal to Expr,s,rf

[∑τ
i=1 simtimeÂ(z,r)

(i)], where τ is a random variable

denoting the number of oracle queries made by S to Â and simtimeÂ(z,r)
(i) is a random

variable denoting the running time of Â(z, r) in answering the ith query from S . (These
random variables may depend on r, s, rf and the inputs x, y.) We first write

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]
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=
∞∑

j=1

Pr
r,s,rf

[τ = j ] · Expr,s,rf

[
j∑

i=1

simtimeÂ(z,r)
(i)

∣
∣
∣ τ = j

]

=
∞∑

j=1

Pr
r,s,rf

[τ = j ]
j∑

i=1

Expr,s,rf
[simtimeÂ(z,r)

(i) | τ = j ]

=
∞∑

j=1

Expr,s,rf
[simtimeÂ(z,r)

(j) | τ ≥ j ] · Pr
r,s,rf

[τ ≥ j ], (2)

where the second equality uses the linearity of expectation, and the third follows by
rearranging the probabilities (the full derivation appears in Appendix C). Continuing,
and using the fact that Â runs for at most α(k)/2 steps, we have:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]

=
∞∑

j=1

Expr,s,rf
[simtimeÂ(z,r)

(j) | τ ≥ j ] · Pr
r,s,rf

[τ ≥ j ]

=
∞∑

j=1

∞∑

t=1

t · Prr,s,rf [simtimeÂ(z,r)
(j) = t | τ ≥ j ] · Pr

r,s,rf
[τ ≥ j ]

=
∞∑

j=1

α(k)/2∑

t=1

Prr,s,rf [simtimeÂ(z,r)
(j) ≥ t | τ ≥ j ] · Pr

r,s,rf
[τ ≥ j ]

=
∞∑

j=1

α(k)/2∑

t=1

Prr,s,rf [simtimeÂ(z,r)
(j) ≥ t ∧ τ ≥ j ]. (3)

For any fixed r , the distribution on the message sequence input to Â when defining
simtimeÂ(z,r)

(j) (namely, the j th query from S) is exactly that given by

SIM
f,SÂ(x, y, z, r, j). Let realtimeÂ(z,r)

(j) be a random variable denoting the run-

ning time of Â(z, r) when run on input distributed according to REAL
π,Â(x, y, z, r, j).

(Recall that when queryj 
= ⊥ this is a message that Â receives in a real execution.) We
claim that for large enough x and y, for any z, r, j , and any t ≤ α(k)/2,

|Prs′,s,rf [realtimeÂ(z,r)
(j) ≥ t ∧ τ ≥ j ] − Prs,rf [simtimeÂ(z,r)

(j) ≥ t ∧ τ ≥ j ]|

<
Prs,rf [τ ≥ j ]

α(k)
. (4)

(Recall that in REAL
π,Â(x, y, z, r, j), the random tape s′ is that belonging to the honest

party running protocol π , while s, rf are used to run SIM and thereby determine whether
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to output ⊥.) Noticing that the event “τ ≥ j” is exactly the event “queryj 
= ⊥,” the
bound in (4) holds because otherwise we obtain a non-uniform distinguisher that dis-
tinguishes between REAL and SIM, in contradiction to the fact that S is an α-strong
black-box simulator (by the consequence of Definition 4 as discussed immediately
following that definition). The distinguisher works by counting how long Â runs for,
using this to distinguish the SIM and REAL distributions. In more detail, given an
auxiliary input z′ = (z, r, t) with t ≤ α(k)/2, and the result O of either experiment
SIM

f,SÂ(x, y, z, r, j) or REAL
π,Â(x, y, z, r, j), proceed as follows: if O is ⊥, output 1.

Otherwise, O is a sequence of i messages T i . In that case, run Â(z, r) on message
sequence T i , and output 1 if and only if Â runs for at least t steps. For large enough
k, the total running time of this distinguishing algorithm (including the overhead for
maintaining a counter and running Â) is at most α(k). Therefore, by the discussion
following Definition 4, it follows that (4) holds. We remark that the non-uniformity of
Definition 4 is essential here. We also note that this argument is the main conceptual
point in the proof of this claim.

Continuing, from (4) it follows that:

α(k)/2∑

t=1

Pr
r,s,rf

[simtimeÂ(z,r)
(j) ≥ t ∧ τ ≥ j ]

<

α(k)/2∑

t=1

(

Pr
r,s′,s,rf

[realtimeÂ(z,r)
(j) ≥ t ∧ τ ≥ j ] + Prr,s,rf [τ ≥ j ]

α(k)

)

= Prr,s,rf [τ ≥ j ]
2

+
α(k)/2∑

t=1

Pr
r,s′,s,rf

[realtimeÂ(z,r)
(j) ≥ t ∧ τ ≥ j ]. (5)

Using the simple observations that:

1. realtimeÂ(z,r)
(j) ≤ realtimeÂ(z,r)

(where the latter expression refers to the total

running time of Â(z, r) in a real execution), and
2. realtimeÂ(z,r)

≤ realtimeA(z,r) (because Â is truncated whereas A is not),

and combining (3) and (5), we obtain the following:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]

<

∞∑

j=1

(
Prr,s,rf [τ ≥ j ]

2
+

α(k)/2∑

t=1

Pr
r,s′,s,rf

[realtimeA(z,r) ≥ t ∧ τ ≥ j ]
)

.

We bound each of the two terms above by a polynomial. First, recall that S is an ex-
pected polynomial-time oracle machine, and thus runs in expected polynomial time for
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any r . Therefore, the expected value of τ is polynomial (for any r), and we have

∞∑

j=1

Prr,s,rf [τ ≥ j ]
2

= Expr,s,rf
[τ ]

2
= q(k)

2
,

for some polynomial q(·). Next,

∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′,s,rf

[realtimeA(z,r) ≥ t ∧ τ ≥ j ]

=
∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′[realtimeA(z,r) ≥ t] · Pr

r,s′,s,rf
[τ ≥ j | realtimeA(z,r) ≥ t]

=
α(k)/2∑

t=1

Pr
r,s′[realtimeA(z,r) ≥ t] ·

∞∑

j=1

Pr
r,s′,s,rf

[τ ≥ j | realtimeA(z,r) ≥ t]. (6)

Fix t , and consider the expression

∞∑

j=1

Pr
r,s′,s,rf

[τ ≥ j | realtimeA(z,r) ≥ t] = Expr,s′,s,rf [τ | realtimeA(z,r) ≥ t].

Recall again that S is an expected polynomial-time oracle machine and thus runs
in expected polynomial time for any r . In particular, it runs in expected polynomial
time even when r and s′ (the random coins of A and the honest party) are such that
realtimeA(z,r) ≥ t . This implies that

∞∑

j=1

Pr
r,s′,s,rf

[τ ≥ j | realtimeA(z,r) ≥ t] = Expr,s′,s,rf [τ | realtimeA(z,r) ≥ t] ≤ q(k).

(7)

Combining (6) and (7) we obtain:

∞∑

j=1

α(k)/2∑

t=1

Pr
r,s′,s,rf

[realtimeA(z,r) ≥ t ∧ τ ≥ j ]

=
α(k)/2∑

t=1

Pr
r,s′[realtimeA(z,r) ≥ t] ·

∞∑

j=1

Pr
r,s′,s,rf

[τ ≥ j | realtimeA(z,r) ≥ t]

≤
α(k)/2∑

t=1

Pr
r,s′[realtimeA(z,r) ≥ t] · q(k) ≤ q(k) · Expr,s′ [realtimeA(z,r)],

which is polynomial because A runs in expected polynomial time with respect to π .
This completes the proof of Claim 6. �
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We have shown that the composed machine ŜA runs in expected polynomial time with
respect to f . It remains to show that it is an α-strong (extended black-box) simula-
tor for expected polynomial-time adversaries. We first show that it provides a “good”
simulation; namely:

Claim 7. For any A running in expected polynomial time with respect to π , every
non-uniform polynomial-time distinguisher D, every polynomial p(·), all sufficiently-
long inputs x and y such that |x| = |y|, and all z ∈ {0,1}∗,

|Pr[D(IDEAL
f,ŜA(z)(1k)

(x, y)) = 1] − Pr[D(REALπ,A(z)(x, y)) = 1]| < 1

p(|x|) .

Proof. Assume the claim does not hold. Then there exists a non-uniform polynomial-
time distinguisher D, an infinite sequence {(xi, yi, zi)}i∈N (with |xk| = |yk| = k), and a
constant c > 0 such that for infinitely-many values of k:

|Pr[D(IDEAL
f,SÂ(zk )(1k)

(xk, yk)) = 1] − Pr[D(REALπ,A(zk)(xk, yk)) = 1]| ≥ 1

kc
. (8)

(We drop the subscripts on x, y, z from now on.) Recall that ŜA is identical to SÂ, and

thus (8) is the negation of the claim (even though the actual claim relates to SÂ and not
to ŜA). Let m(k) be the maximum of the expected running times of A (when interacting

with π ) and SÂ; since both run in expected polynomial time, m(k) is polynomial as
well. Define Ã to be identical to A except that it halts immediately (with output ⊥) if it
ever exceeds 4m(k)kc steps; note that Ã runs in strict polynomial time. We have that the
statistical difference between REALπ,A(z)(x, y) and REAL

π,Ã(z)
(x, y) is at most k−c/4

for large enough k, and similarly for IDEAL
f,SÂ(z)(1k)

(x, y) and IDEAL
f,SÃ(z)(1k)

(x, y).
We conclude that

|Pr[D(IDEAL
f,SÃ(z)(1k)

(x, y)) = 1] − Pr[REAL
π,Ã(z)

(x, y)) = 1]| ≥ 1

kc/2
.

Since Ã runs in strict polynomial time, however, the above contradicts the assumed
security of π against strict polynomial-time adversaries. �

It remains to show that Ŝ is in fact an α-strong simulator. This follows quite easily from

the facts that for any A we have ŜA = SÂ (where Â is the truncation of A at α(k)/2
steps), and the assumption that S is an α-strong simulator. This completes the proof of
the theorem. �

3.3. Zero-Knowledge Proofs: A Corollary

Consider the zero-knowledge functionality for a language L ∈NP . This function is de-
fined by f (x, x) = (λ,χL(x)), where χL(x) = 1 if and only if x ∈ L (here λ denotes the
empty string). A zero-knowledge protocol π securely realizes f for strict polynomial-
time adversaries. Now, for the sake of concreteness, consider the zero-knowledge proto-
col of Goldreich, Micali, and Wigderson [16]. Assuming the existence of commitment
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schemes that are hiding for non-uniform algorithms running in time α(k), it is easy to
verify that the black-box simulator provided by [16] is α-strong. Applying Theorem 5,
we obtain that the protocol of [16] is also secure for adversaries that run in expected
polynomial time with respect to the protocol. We thereby obtain the first computational
zero-knowledge proof system that remains zero-knowledge for expected polynomial-
time adversaries (with respect to either of the definitions in Section 2).11 Thus, as a
corollary of Theorem 5, we partially resolve the open questions from [8,19] discussed
in the Introduction. The result is only “partial” because we need superpolynomial hard-
ness assumptions. In addition, there is an important caveat regarding this result, which
we describe now.

Zero-knowledge simulation and inputs x /∈ L. In order to describe the caveat regard-
ing the above corollary, we need to discuss a subtle issue regarding zero-knowledge
simulation. The issue that we refer to relates to the behavior of the simulator when run
on an input x /∈ L. On the one hand, the definition of zero-knowledge requires nothing
of the output distribution of the simulator in this case (since a real prover will never
execute the protocol when x /∈ L); indistinguishability from a real execution is only re-
quired if x ∈ L. On the other hand, since the simulator is assumed to be an expected
(or strict) polynomial-time machine, its running time should be preserved even when
run on an input x /∈ L. This implicit requirement regarding the running time is not just
for the sake of aesthetics. In many proofs of security, the zero-knowledge simulator is
actually run on an input x /∈ L. For example, consider a “commit-and-prove” protocol
where a party commits to a value and then proves some property of that value in zero-
knowledge (this is exactly what happens in the proof of [15]). The proof of security
(stating that the committed value is not learned) typically works by first replacing the
zero-knowledge proof with a simulated one. Next, the commitment is replaced with a
commitment to garbage. Since the zero-knowledge proof is already simulated, and so
does not relate to the actual committed value, the indistinguishability of this last step
follows from the hiding property of the commitment. It is therefore possible to derive
that the real protocol is indistinguishable from one where garbage is first committed to,
and then a simulated zero-knowledge proof is provided.

The important point to notice here is that when the commitment is “real,” the simula-
tor is run on an input x ∈ L. However, when the commitment is “garbage,” the simulator
is run on an input x /∈ L. Now, if the simulator does not run in expected polynomial time
in the event that it is given input x /∈ L, the above proof of security fails. Specifically,
the hiding property of commitments no longer guarantees anything because the distin-
guisher (who runs the zero-knowledge simulator) may exceed a polynomial number of
steps. We conclude that the scenario of running a simulator on an input x /∈ L arises
in many contexts, and so it is important that a simulator remains (expected or strict)
polynomial time in such a case.

Our simulator is not guaranteed to run in expected polynomial time in case it receives
an input x /∈ L. The reason for this, informally, is that α-strongness may no longer hold

11 These are also the first computational zero-knowledge arguments for adversaries that run in expected
polynomial time with respect to the protocol. Previously, these were known only for adversaries that run in
expected polynomial time in any interaction; see Table 1.
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in this case; in particular, a distinguisher D may be able to distinguish “real” from “sim-
ulated” transcripts just by checking if the statement is in the language. (This is easiest
to see for the case when L is an “easy” language; say L ∈ P .) On the positive side, if
the language L is such that inputs x ∈ L cannot be distinguished from inputs x /∈ L by
non-uniform machines running in time α(k) with probability better than 1/α(k), then
the α-strong simulation property once again holds and so the simulator is guaranteed to
run in expected polynomial time. We conclude that the “commit and prove” subproto-
col described above can be used, as long as the commitment scheme is hiding (to within
probability 1/α(k)) even for non-uniform machines running in time α(k).

3.4. Protocol Composition and Other Scenarios

Our result above has been stated for the stand-alone setting of secure computation. How-
ever, it actually holds for any setting, as long as the black-box simulator is α-strong
for that setting. In particular, the result holds also for the setting of protocol composi-
tion where many protocol executions are run (and thus the simulator interacts with the
trusted party many times).

4. Modular Sequential Composition

Our goal in this section is to prove a modular sequential composition theorem for secure
multi-party computation that is analogous to the result of Canetti [5], but which holds
even for protocols that have been proven secure using a simulation strategy that runs
in expected polynomial time (for strict polynomial-time adversaries). The sequential
composition theorem of [5] can be informally described as follows. Let π be a multi-
party protocol computing a function g, designed in an idealized model in which the
parties have access to a trusted party who evaluates functions f1, . . . , fm; furthermore,
assume that at most one ideal function call is made during any round of π . This model
is called the (f1, . . . , fm)-hybrid model, denoted HYBRIDf1,...,fm , because parties send
real messages as part of the protocol π and also interact with a trusted party computing
functions f1, . . . , fm. Let ρ1, . . . , ρm be multi-party protocols such that ρi computes
fi , and let πρ1,...,ρm denote the “composed protocol” in which each ideal call to fi

is replaced by an invocation of ρi (we stress that each executed protocol ρi is run to
completion before continuing the execution of π ). The modular sequential composition
theorem then states that if π securely computes g in the (f1, . . . , fm)-hybrid model,
and if each ρi securely computes fi , then the composed real protocol πρ1,...,ρm securely
computes g. The work of [5] only considers the case where π , as well each of the
component protocols ρi , is proven secure via strict polynomial-time simulation (for
strict polynomial-time adversaries). In fact, the proof of [5] fails for the case when
one (or more) of the ρi subprotocols is proven secure via expected polynomial-time
simulation; a specific counterexample is shown in Appendix B.

In this section, we show that a suitable modification of the approach of [5] can be
used to prove an analogous modular composition theorem even when π and each of the
component protocols ρi is proven secure via expected polynomial-time simulation for
strict polynomial-time adversaries. With this change, the composition theorem we prove
is analogous to the one shown in [5] for the case of protocols proven secure using strict



328 J. Katz and Y. Lindell

polynomial-time simulation. Our proof holds only when π is proven secure using a
black-box simulator, and each ρi is proven secure using a simulator that runs in expected
polynomial time in any interaction. We also require the existence of pseudorandom
functions that are secure even for adversaries running in time α(k) for some α(k) =
kω(1). In contrast, the result of [5] holds regardless of the type of simulation used to
prove π and the ρi secure, and is unconditional.

4.1. Preliminaries

Since we deal here explicitly with n-party protocols, and because of the need to intro-
duce additional notation, some of the discussion here overlaps with that of Section 3.1.
Due to the high-level similarity of our proof to the proof of [5], wherever possible we
make our notation consistent with that of [5].

A distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ is an infinite sequence of prob-
ability distributions, where a distribution X(k, a) is associated with each value of k

and a. Two distribution ensembles X,Y are computationally indistinguishable, de-

noted X
c≡ Y , if there exists a negligible function μ such that for every non-uniform

polynomial-time algorithm D, all a, and all auxiliary information z we have

|Pr[D(1k, a, z,X(k, a)) = 1] − Pr[D(1k, a, z,Y (k, a)) = 1]| ≤ μ(k).

We present a definition of security for n-party protocols computing a (probabilistic)
function f in the presence of a non-adaptive adversary. We will work exclusively in the
computational (rather than information-theoretic) setting, and therefore do not assume
private channels but instead allow the adversary to monitor all communication in the
network.

The real-world model. We assume a set of parties P1, . . . ,Pn, where party Pi begins
with input (1k, xi) and random tape ri . An adversary A begins with an input containing
the security parameter 1k , the identities of the corrupted parties I , the inputs of the
corrupted parties, and their random tapes. In addition, A has an auxiliary input z and a
random tape rA (since we are allowing non-uniform adversaries, we could assume that
A is deterministic; however, we find it conceptually easier to let A be probabilistic).

Computation proceeds in rounds, in the standard way. At the end of the computation,
all parties locally generate their outputs. Honest parties output what is specified by the
protocol, while corrupted parties output a special symbol ⊥. Denote the output of party
Pi by vi , and let �v = (v1, . . . , vn). In addition, the adversary outputs an arbitrary func-
tion of its view of the computation, where the view consists of the corrupted parties’
inputs, the adversary’s auxiliary input, and all messages sent and received throughout
the computation. It is stressed that the outputs �v are a function of the protocol π , the ad-
versary A, the set of corrupted parties I , and the values (k, �x, z, �r), where �x is the vector
of all parties’ inputs and �r consists of all the parties’ random tapes, including the random
tape rA of the adversary. Thus, formally, �v is denoted as a function �vπ,A,I (k, �x, z, �r).
Likewise, we denote by OUTπ,A,I (k, �x, z, �r) the output of A, with auxiliary input z and
controlling the parties in I , when running an execution of π with parties having input �x
and random tapes �r , and with security parameter k. Finally, define:

REALπ,A,I (k, �x, z, �r) def= OUTπ,A,I (k, �x, z, �r) ◦ �vπ,A,I (k, �x, z, �r).
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Let REALπ,A,I (k, �x, z) denote the probability distribution of REALπ,A,I (k, �x, z, �r)
when �r is randomly chosen, and let REALπ,A,I denote the distribution ensemble
{REALπ,A,I (k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

The ideal process. An adversary S in the ideal world again begins with input that
includes a security parameter, identities and inputs of the corrupted parties, auxiliary
input, and a random tape rS . The adversary interacts with a trusted party (computing an
ideal functionality) in the standard way and, in particular, obtains an output value from
the trusted party for each of the corrupted parties. Honest parties output the value given
to them by the trusted party, and corrupted parties output ⊥. Denote the output of party
Pi by vi and let �v = (v1, . . . , vn). As above, �v is a function of f , S , I and the values
(k, �x, z, �r). However, here �r consists only of the random tape of the adversary and of
the trusted party. The adversary outputs an arbitrary function of its view, and we denote
this by OUTf,S,I (k, �x, z, �r). Define

IDEALf,S,I (k, �x, z, �r) def= OUTf,S,I (k, �x, z, �r) ◦ �vf,S,I (k, �x, z, �r).
Let IDEALf,S,I (k, �x, z) denote the probability distribution of IDEALf,S,I (k, �x, z, �r)
when �r is randomly chosen, and let IDEALf,S,I denote the distribution ensemble
{IDEALf,S,I (k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

We now define security of a protocol. We stress that the following definition does not
require black-box simulation.

Definition 8. Let f be an n-input functionality and let π be an n-party protocol. We
say that π t -securely computes f for strict polynomial-time adversaries and with a sim-
ulator that runs in expected polynomial time with respect to f if for every strict polyno-
mial time real-world adversary A there exists an ideal-process adversary S that runs in
expected polynomial time with respect to f , such that for every I ⊆ [n] with |I | ≤ t , it
holds that

IDEALf,S,I
c≡ REALπ,A,I .

We refer to such an S as a simulator for A.

The definition can be modified in the natural way to allow ideal-world simulators that
run in expected polynomial time in any interaction. We stress that we allow the ideal-
world adversary/simulator S to run in expected polynomial time (with respect to f ),
unlike [5] where a strict polynomial-time adversary/simulator is required.

Black-box simulation. A more restricted notion of security requires the existence of a
black-box simulator. The definition below is the same as Definition 3, rephrased using
the present notation for convenience.

Definition 9. Let f and π be as above. Protocol π is said to t -securely compute
f for strict polynomial-time adversaries with a black-box simulator that runs in expected
polynomial time with respect to f if there exists an oracle machine (black-box simulator)
S that runs in expected polynomial time with respect to f , such that for every strict
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polynomial-time real-world adversary A and every I ⊆ [n] with |I | ≤ t , it holds that

IDEALf,SA,I

c≡ REALπ,A,I .

The hybrid model and modular composition. We start by specifying the (f1, . . . , fm)-
hybrid model in which a protocol evaluating g is run with the assistance of a trusted
party who evaluates functions f1, . . . , fm. This trusted party will be invoked at special
rounds determined by the protocol, and we require (as in [5]) that at most one function
call is made at any round. (As in [5], we assume that the number m of functions to be
evaluated, the rounds in which these functions are called, and the functions themselves
are fixed for any particular value of the security parameter.12) Upon termination of
the protocol each honest party outputs the value prescribed by the protocol while each
corrupted party outputs ⊥; denote the output of party Pi by vi and let �v = (v1, . . . , vn).
The hybrid-model adversary, controlling parties I , outputs an arbitrary function of its
view, denoted OUT

f1,...,fm

π,A,I
(k, �x, z, �r) (note that �r now includes the random tapes of the

honest parties, the adversary, and the trusted party). Define:

HYBRID
f1,...,fm

π,A,I
(k, �x, z, �r) def= OUT

f1,...,fm

π,A,I
(k, �x, z, �r) ◦ �vf1,...,fm

π,A,I
(k, �x, z, �r).

Let HYBRID
f1,...,fm

π,A,I
(k, �x, z) denote the distribution of HYBRID

f1,...,fm

π,A,I
(k, �x, z, �r)

when �r is chosen at random, and let HYBRID
f1,...,fm

π,A,I
denote the ensemble

{HYBRID
f1,...,fm

π,A,I
(k, �x, z)}k∈N,〈�x,z〉∈{0,1}∗ .

We define security in the hybrid model in a way similar to before:

Definition 10. Let f1, . . . , fm and g be n-party functions, and let π be a protocol in the
(f1, . . . , fm)-hybrid model. Then π is said to t -securely compute g in the (f1, . . . , fm)-
hybrid model for strict polynomial-time adversaries with a simulator that runs in expected
polynomial time with respect to g if for any strict polynomial-time (f1, . . . , fm)-hybrid-
model adversary A there exists an ideal-process adversary/simulator S that runs in ex-
pected polynomial time with respect to g, and such that for every subset I ⊆ [n] with
|I | ≤ t we have

IDEALg,S,I
c≡ HYBRID

f1,...,fm

π,A,I
.

The notion of π t-securely evaluating g with a black-box simulator is defined in the
same way as in Definition 9.

In a real-world execution, calls to a trusted party evaluating the fi are replaced by an
execution of a protocol ρi . This is done in the natural way, as described in [5]. We let
πρ1,...,ρm denote the real-world protocol that results from replacing each fi with ρi .

Families of α-pseudorandom functions (α-PRFs). Our proof of the modular sequen-
tial composition theorem for the case of expected polynomial-time simulation relies on

12 As pointed out in [5], any protocol not fulfilling these assumptions can be easily converted into a pro-
tocol that does fulfill the assumptions. However, we stress that our composition theorem, like the theorem
of [5], only refers to protocols that indeed fulfill the assumptions.



Handling Expected Polynomial-Time Strategies in Simulation-Based Security Proofs 331

the existence of function ensembles that are pseudorandom for adversaries running in
time α(k), where α(k) = kω(1) is some superpolynomial function. We formally define
this notion now.

Definition 11. Let F� = {Fs : {0,1}�(|s|) → {0,1}}s∈{0,1}∗ be a set of functions such
that Fs is computable in time polynomial in |s|, and where each Fs has domain
{0,1}�(|s|) and range {0,1}. We denote by H�,k the space of all functions with domain
{0,1}�(k) and range {0,1}. We say that F� is a family of α-secure pseudorandom func-
tions with input length � if for any distinguisher D running in time at most α(k), any
auxiliary input z, and all sufficiently-large k, we have:

∣
∣
∣
∣ Pr
s←{0,1}k

[
DFs(·)(1k, z) = 1

] − Pr
f ←H�,k

[
Df (·)(1k, z)

]
∣
∣
∣
∣ <

1

α(k)
.

If there exists a one-way function f such that for some superpolynomial function
α′(k) = kω(1), no adversary running in time α′(k) can invert f with probability greater
than 1/α′(k), then there exist α-secure pseudorandom functions for every polynomial �,
for some α(k) = kω(1). This is obtained by using a superpolynomially hard one-way
function in order to construct superpolynomially hard pseudorandom generators [18],
which are then in turn used to construct superpolynomially hard pseudorandom func-
tions [14].

4.2. Proving the Modular Composition Theorem

We now state and prove our main theorem of this section.

Theorem 12. Assume that for every polynomial �, there exists a superpolynomial
function α(k) = kω(1) and a family of α-secure pseudorandom functions with input
length �. Let f1, . . . , fm and g be n-party functions, let π be an n-party protocol that
t-securely computes g in the (f1, . . . , fm)-hybrid model (for strict polynomial-time ad-
versaries and with a black-box simulator that runs in expected polynomial time with
respect to g) and in which no more than one ideal evaluation call is made at each
round, and let ρ1, . . . , ρm be n-party protocols such that each ρi t-securely computes
fi (for strict polynomial-time adversaries and with a simulator13 that runs in expected
polynomial time in any interaction). Then protocol πρ1,...,ρm t-securely computes g (for
strict polynomial-time adversaries and with a simulator that runs in expected polyno-
mial time with respect to g).

We require the stronger property that the simulator for each ρi runs in expected polyno-
mial time in any interaction, while the resulting simulator for πρ1,...,ρm “only” runs in
expected polynomial time with respect to g. However, it is sufficient that the simulator
for π runs in expected polynomial time with respect to g. We also do not know how to
extend the theorem to show that the stronger assumption that the simulator for π runs
in expected polynomial time in any interaction yields the stronger consequence that the

13 We stress that the simulator for each of the ρi need not be a black-box simulator.
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resulting simulator for πρ1,...,ρm runs in expected polynomial time in any interaction.
Resolving the issue in either of these directions would be an interesting result.

Proof. We begin by describing the high-level structure of the proof and the motivation
for our strategy. We follow the structure and notation of the proofs of [5, Theorems 5,
15] and [5, Corollaries 7, 17] as closely as possible. We focus on the case m = 1; the
general case follows using the techniques described here. We begin with an informal,
high-level overview of our proof, stressing where it diverges from [5]: Let f = f1 be an
n-party functionality, π a protocol in the f -hybrid model, ρ a protocol that t-securely
computes f , and πρ the composed protocol. Given a strict polynomial-time adversary
A in the real world (who interacts with parties running πρ ), our goal is to construct an
ideal-world adversary S (interacting with a trusted party who evaluates g) that runs in
expected polynomial time with respect to g and such that for every I ⊆ [n] with |I | ≤ t ,

it holds that IDEALg,S,I
c≡ REALπρ,A,I . (In the remainder of the proof, we omit I as a

subscript in an attempt to reduce visual clutter.) We proceed in the following steps:

• As in [5], we first construct from A the (natural) real-world adversary Aρ who
interacts with parties running ρ as a stand-alone protocol (see Fig. 1). Adver-
sary Aρ runs in strict polynomial time, and so the security of ρ implies the ex-
istence of a simulator Sρ , who interacts with a trusted party evaluating f , such

that IDEALf,Sρ

c≡ REALρ,Aρ
. Simulator Sρ runs in expected polynomial time in

any interaction.
• As in [5], using A and Sρ we construct an adversary Aπ interacting with parties

running π in the f -hybrid model and satisfying HYBRID
f

π,Aπ

c≡ REALπρ,A. Since
Aπ runs Sρ as a sub-routine, and the latter runs in expected polynomial time,
we cannot at this point claim the existence of an expected polynomial-time ideal-

world adversary S such that IDEALg,S
c≡ HYBRID

f

π,Aπ
(such a claim, if true, would

complete the proof as in [5]).
• Instead, we first construct from Aπ a modified adversary A′

π (still interacting
with parties running π in the f -hybrid model) that runs in expected polynomial

time with respect to π in the f -hybrid model, and for which HYBRID
f

π,A′
π

c≡
HYBRID

f

π,Aπ
under the assumption that α-secure pseudorandom functions exist.

(See Claims 13 and 14.) This is the crux of our proof, and further details are given
below.

• Let Sπ denote a black-box simulator for π (as required by Definition 9). We con-
struct an ideal-world adversary S that runs a slightly modified version of Sπ with
oracle access to A′

π . We then prove that (1) S runs in expected polynomial time
with respect to g (even when taking the running time of A′

π into account); and

(2) IDEALg,S
c≡ HYBRID

f

π,A′
π

. (See Claims 15 and 16.)

See Table 2 for a high-level summary of the above.

Motivation for the proof. Before continuing with the details, we provide an informal
overview of the key idea behind the proof of the theorem. Let Sπ be the black-box
simulator for π , and recall that Aπ invokes Sρ as a sub-routine. Naïvely following

the approach of [5], one runs into the problem that the expected running time of SAπ
π ,
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Adversary Aρ , interacting with parties P1, . . . ,Pn running protocol ρ, begins
with the following inputs: security parameter 1k , identities I of corrupted par-
ties along with their inputs �xI , auxiliary input z, and random tape rA. Do:

1. Let �ρ be the round in which πρ calls protocol ρ. Interpret z as an internal
state of A, controlling the parties in I , at round �ρ − 1.

2. Run A from internal state z. Messages sent by uncorrupted parties in
the real world (running ρ) are forwarded to A. Messages sent by A on
behalf of corrupted parties are forwarded to the appropriate real-world
recipients.

3. Once execution of ρ is done, Aρ outputs the current internal state of A.

Fig. 1. The description of adversary Aρ .

Table 2. Informal summary of adversaries/simulators used in the proof.

Adversary Attack setting Running time Comments

A πρ (real world) Strict poly-time Original adversary
Aρ ρ (real world) Strict poly-time Constructed by ignoring

π -messages of A
Sρ f (ideal world) Expected poly-time in any

interaction
Constructed from Aρ

using security of ρ

Aπ π (f -hybrid model) Expected poly-time in any
interaction

Constructed from A
and Sρ

A′
π π (f -hybrid model) Expected poly-time w.r.t. π

(in f -hybrid model)
Modification of Aπ

(see text)
S g (ideal world) Expected poly-time w.r.t. g Constructed using A′

π and
black-box simulator Sπ

for π

counting steps of both machines, may not be polynomial (in any sense). In particular,
if Sπ “rewinds” Aπ , then it also (effectively) “rewinds” Sρ . In this case, an expected
polynomial-time machine Sρ is invoked multiple times with the same random tape. This
introduces a dependency between the executions, and we can no longer claim that the
total running time of Aπ (including the running time of Sρ ) is polynomial. An example
of why this is problematic was described in the Introduction, regarding the composition
of two expected polynomial-time machines A and B . We also provide a counterexample
for the specific case of modular sequential composition in Appendix B.

A first solution that comes to mind is to have Sπ choose an independent random tape
for Aπ every time it invokes Aπ (with the consequence that Sρ will be called using
a fresh random tape each time). The problem with this approach is that Definition 9
places no limitations on how Sπ sets the random tape of Aπ . In particular, the resulting
simulation output by Sπ may no longer be “good” if Sπ is forced to invoke Aπ with
a new random tape in each oracle call. This concern is not only definitional. Rather,
typical “rewinding” simulation strategies rely heavily on the fact that the random tape
of the adversary is fixed throughout.
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Instead, our solution is to modify Aπ (resulting in A′
π as described above) so that it

invokes Sρ with a random tape that is determined by applying a pseudorandom function
to the auxiliary input provided to Sρ (this is reminiscent of a similar technique used
in [7]). This has the effect that even when A′

π is run with a fixed random tape (that
includes the key for the pseudorandom function), Sρ is effectively invoked with a fresh
random tape each time. That is, even when A′

π is “rewound” during simulation the
random tape used by Sρ upon each “rewinding” will be computationally independent
from all past random tapes. (This holds unless A′

π is invoked with a series of incoming
messages that was already sent in the past. However, in this case, since A′

π uses a fixed
random tape, the exact same response will be given as previously. We could also assume
without loss of generality that Sπ never repeats a query to A′

π .) The technical portion
of the proof then comes down to showing that if an α-secure pseudorandom function
is used to do this, the resulting simulation is “good.” The intuition as to why this is the
case, and the techniques used in the proof (including superpolynomial truncation of the
adversary’s execution), are similar to those used in the proof of Theorem 5.

Proof details. We now proceed with the proof in detail. The first steps of our proof as de-
scribed in the above outline—namely, the construction of Aρ , Sρ , and Aπ —are exactly
as in [5], but are nevertheless described in Figs. 1 and 2 for convenience. Recall that
we begin with a real-world adversary A interacting with parties running protocol πρ .
As described earlier and shown in Fig. 1, we first construct a real-world adversary Aρ

attacking protocol ρ. Note that Aρ runs in strict polynomial time. Security of ρ thus
implies the existence of an ideal-process adversary Sρ that runs in expected polynomial

Adversary Aπ , interacting with parties P1, . . . ,Pn running protocol π in the
f -hybrid model, begins with the following inputs: security parameter 1k , iden-
tities I of corrupted parties along with their inputs �xI , auxiliary input z, and
random tape rA parsed as r, r∗. Do:

1. Invoke A on 1k, I, �xI , z using random tape r , and follow the instructions
of A up to round lρ − 1.

2. At the onset of round lρ , A expects to interact with parties running ρ (as
a subroutine), whereas parties P1, . . . ,Pn actually call a trusted party to
evaluate f . To continue the run of A, invoke simulator Sρ as follows:
(a) Sρ is given 1k, I , and arbitrary values (say, all 0’s) for the inputs of

the parties in I . The auxiliary input zρ for Sρ is set to the current
internal state of A. The random tape for Sρ is r∗.

(b) When Sρ wishes to send the trusted party the inputs of the corrupted
parties, send these values to the trusted party, and hand the values
returned by the trusted party back to Sρ .

3. The output of Sρ is an internal state of A at the end of the execution of ρ.
Run A using this internal state and resume following A’s instructions
until the completion of π . Then output whatever A outputs and halt.

Fig. 2. The description of adversary Aπ .
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time in any interaction and such that IDEALf,Sρ

c≡ REALρ,Aρ
. We remind the reader

again that we do not assume or require that ρ black-box securely computes f .
Next, we construct the adversary Aπ attacking parties running protocol π in the f -

hybrid model. Loosely speaking, Aπ runs A until the protocol ρ is supposed to begin.
At this point, A expects to run ρ, whereas Aπ should use an ideal call to f . There-
fore, Aπ invokes Sρ using the current internal state zρ of A as its auxiliary input, and
forwarding the messages between Sρ and the trusted party computing f . The output
of Sρ is an internal state of A at the end of the execution of ρ. Adversary Aπ con-
tinues by invoking A from this state and running A until the conclusion of π . This is
described in Fig. 2. In describing Aπ we explicitly have it parse its random tape into
two portions: a portion r used to run A and a portion r∗ used to run Sρ (we will use
this fact later). Exactly as in [5] (and so we do not repeat the proof here), it holds that

HYBRID
f

π,Aπ

c≡ REALπρ,A.

Adversary A′
π , interacting with parties P1, . . . ,Pn running protocol π in the

f -hybrid model, begins with the following inputs: security parameter 1k , iden-
tities I of corrupted parties along with their inputs �xI , auxiliary input z, and
random tape rA parsed as r, s with |s| = k. Do:

1. A′
π keeps track of the total number of steps run below, counting each

invocation of Fs(·) as a single step. If the total number of steps ever ex-
ceeds α(k)/2, halt with output ⊥.

2. Invoke A on 1k, I, �xI , z using random tape r , and follow the instructions
of A up to round lρ − 1.

3. At the onset of round lρ , invoke simulator Sρ as follows:
(a) Sρ is given 1k, I , and arbitrary values (say, all 0’s) for the inputs of

the parties in I . The auxiliary input zρ for Sρ is set to the current in-
ternal state of A. The random tape for Sρ is determined as described
below.

(b) The random tape r∗ for Sρ is generated bit-by-bit, as needed, in the
following way: the ith random bit needed by Sρ is set to Fs(z

ρ‖〈i〉),
where 〈i〉 is the k-bit binary representation of i. (Note that A′

π aborts
anyway if Sρ ever requires more than α(k)/2 random bits. Since k >

log(α(k)/2) for k large enough [recall α(k) = O(2k)], a k-bit counter
is sufficient to run Sρ to completion.)

(c) When Sρ wishes to send the trusted party the inputs of the corrupted
parties, send these values to the trusted party, and hand the values
returned by the trusted party back to Sρ .

4. The output of Sρ is an internal state of A at the end of the execution of
ρ. Run A using this internal state and resume following A’s instructions
until the completion of π . Then output whatever A outputs and halt.

Fig. 3. The description of adversary A′
π .
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Aπ runs in expected polynomial time in any interaction (this is due to the fact that
the only part of Aπ that does not run in strict polynomial time is the invocation of Sρ ,
and the latter is done only once). However, π is only guaranteed to be secure for strict
polynomial-time adversaries. Therefore, we cannot immediately claim the existence of
an appropriate ideal-world simulator corresponding to the hybrid-model adversary Aπ .
Dealing with this issue forms the crux of our proof.

Let α(k) be as in the theorem statement, and assume without loss of generality that
α(k) = O(2k). We modify Aπ to construct an adversary A′

π as described in Fig. 3. Let
F� be an α-secure PRF taking inputs of an appropriate length (namely, k plus the length
of zρ , as described in Fig. 3).14 The random tape of A′

π is now parsed as r, s, where r is
used as before (namely, to run A) while s is used as a key to an α-secure pseudorandom
function. Then A′

π generates the random tape r∗ for Sρ as a pseudorandom function
of zρ (see Fig. 3 for details). In addition, A′

π halts with output ⊥ if it ever exceeds
α(k)/2 steps overall (not including steps used in computing Fs ). Otherwise, A′

π works
in exactly the same way as Aπ . We stress the differences between Aπ and A′

π :

1. A′
π chooses Sρ ’s random tape by invoking a pseudorandom function on the inter-

nal state of A, whereas Aπ chooses it uniformly.
2. A′

π truncates its execution after α(k)/2 steps, whereas Aπ does not.

We now prove that A′
π runs in expected polynomial time with respect to π in the f -

hybrid model, and that HYBRID
f

π,A′
π

c≡ HYBRID
f

π,Aπ
.

Claim 13. If F� is an α-secure pseudorandom function for some α(k) = kω(1), the
original adversary A runs in strict polynomial time, and Sρ runs in expected polynomial
time in any interaction, then A′

π runs in expected polynomial time with respect to π in
the f hybrid model.

Proof. All we need for the proof of this claim is that Sρ runs in expected polynomial
time with respect to f . Nevertheless, since Sρ runs in expected polynomial time in any
interaction anyway, we will rely on this stronger assumption to simplify the proof. (We
will need Sρ to run in expected polynomial time in any interaction in order to prove
Claim 15.)

We will actually prove a slightly stronger result: namely, that for any setting of the
random coins of the other parties (i.e., the honest parties running π as well as the trusted
party computing f ), the expected running time of A′

π —over the random coins used
by A′

π —when interacting with these parties is polynomial. Consider an adversary Âπ

which is identical to Aπ except that it halts with output ⊥ if it ever exceeds α(k)/2 steps.
(In particular, Âπ chooses a truly random tape r∗ for Sρ instead of a pseudorandom
one.) For any fixed set of global values global (which contains the security parameter 1k ,
inputs and random coins for the honest parties and the trusted party computing f , inputs
to Âπ , and the initial portion r of the random tape of Âπ ), let timeX(global) be a random
variable (over choice of coins used to run Sρ ) denoting the running time of the algorithm

14 In the theorem statement we have assumed that α-secure PRFs exist for any polynomial domain length
�(k). Since zρ is the internal state of a strict polynomial-time machine, � is a fixed polynomial (depending
only on A).
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X ∈ {A′
π , Âπ } when interacting with parties running π in the f -hybrid model, counting

calls to Fs(·) as a single step in the case of A′
π . We first claim that

Expr∗ [timeÂπ
(global)] ≤ q(k) (9)

for some polynomial q(·). This is simply due to the facts that Sρ runs in expected poly-
nomial time in any interaction, and that A runs in strict polynomial time. (Therefore,
aside from the call to Sρ , the adversary Aπ runs in strict polynomial time. Furthermore,
the overhead due to the counter maintained by Âπ introduces only a multiplicative
polynomial factor, and this is the only difference between Aπ and Âπ .) We proceed
by showing that replacing the uniform coins r∗ (used by Âπ when running Sρ ) with
α-strong pseudorandom coins (used by A′

π when running Sρ ) does not make a “signif-
icant” difference to the running time of Âπ .

If we can bound Exps[timeA′
π
(global)] by a polynomial it would follow that A′

π

runs in expected polynomial time with respect to π in the f -hybrid model, since the
additional overhead due to computing Fs introduces at most a multiplicative polynomial
factor. The crux of the proof is that for every value of global, all t ≤ α(k)/2, and all large
enough values of k:

∣
∣Prs[timeA′

π
(global) ≥ t] − Prr∗ [timeÂπ

(global) ≥ t]∣∣ <
1

α(k)
. (10)

Intuitively, if this were not the case, then the running time of A′
π could be used to

distinguish F� from a random function. Formally, given (global, t, k) such that (10) does
not hold we can construct a distinguisher D that takes these values as auxiliary input
and runs A′

π (using global to simulate the actions of the honest parties and the trusted
party computing f ) but using its oracle to generate the random tape for Sρ . (Namely,
D generates the ith random bit for Sρ , as needed, by querying zρ‖〈i〉 to its oracle.) If
the running time of A′

π exceeds t steps, then D outputs 1; otherwise, it outputs 0. The
running time of D is strictly bounded by α(k) (for large enough k). We therefore have:

Pr
s←{0,1}k

[
DFs(·)(1k,global, t) = 1

] = Pr
s←{0,1}k

[timeA′
π
(global) ≥ t]

and

Pr
f ←H�,k

[
Df (·)(1k,global, t) = 1

] = Pr
r∗←{0,1}∗[timeÂπ

(global) ≥ t]

(where, recall, H�,k represents the space of all boolean functions with domain �(k)).
Since F� is an α-secure PRF, (10) follows. We conclude that the expected running time
of A′

π for large enough k and all global inputs global is bounded by:

Exps[timeA′
π
(global)] =

∞∑

t=1

t · Prs[timeA′
π
(global) = t]

=
α(k)/2∑

t=1

t · Prs[timeA′
π
(global) = t]
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=
α(k)/2∑

t=1

Prs[timeA′
π
(global) ≥ t]

≤
α(k)/2∑

t=1

(

Prr∗ [timeÂπ
(global) ≥ t] + 1

α(k)

)

= 1

2
+ Expr∗ [timeÂπ

(global)],

where the second equality is due to the fact that A′
π truncates its execution if it ever

exceeds α(k)/2 steps. Using (9), we conclude that A′
π runs in expected polynomial

time with respect to π in the f -hybrid model. �

The reader may wonder why we are unable to show that A′
π runs in expected poly-

nomial time in any interaction. In fact, Âπ does run in expected polynomial time in
any interaction; however, (10) may no longer hold when A′

π interacts with an arbitrary
ITM M . The problem is that, in proving (10), in constructing D, we need to construct a
distinguisher D that can simulate the actions of ITM M in time α(k); however, it is not
clear how to do this for arbitrary M since, in particular, M might be all-powerful.

In the next claim, we show that the behavior of A′
π is “close” to that of Aπ .

Claim 14. If F� is an α-secure pseudorandom function for some α(k) = kω(1), then

HYBRID
f

π,A′
π

c≡ HYBRID
f

π,Aπ
.

Proof. Let Âπ be as in the previous claim. Since Aπ runs in expected polynomial
time (in any interaction), the probability that Aπ exceeds α(k)/2 steps in any execution
is negligible (using Markov’s inequality). Hence HYBRID

f

π,Âπ

and HYBRID
f

π,Aπ
are

statistically close. Now, Âπ is identical to A′
π except that Âπ uses a truly random

tape r∗ for Sρ whereas A′
π uses a pseudorandom tape for Sρ . Since Âπ and A′

π both
run in at most α(k)/2 steps (for the case of A′

π , not counting the time required to

compute Fs ), the assumption that F� is an α-secure PRF implies that HYBRID
f

π,A′
π

is computationally indistinguishable from HYBRID
f

π,Âπ

. In fact, we claim something

stronger: for any value of global (recall, this includes the inputs and randomness used
by all parties except for the random tape used to run Sρ ), any poly-time distinguisher D,
all auxiliary input z, and all large enough values of k:

|Pr[D(1k,global, z, HYBRID
f

π,A′
π
(global)) = 1]

− Pr[D(1k,global, z, HYBRID
f

π,Âπ

(global)) = 1]| < 1

α(k)

(this is stronger both because α(k) is superpolynomial and also because we are fixing
all random coins except those used by Sρ ). If the above does not hold, then we can
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construct a distinguisher D′ for F� in the natural way: given (k,global, z) for which the
above does not hold, D′ takes these values as input, runs A′

π (simulating the actions of
all other parties using global), but uses its oracle to generate the random tape for Sρ . It
runs D on the output of A′

π , and outputs whatever D outputs. It is not hard to see that
D′ runs for at most α(k) steps (for large enough k) and distinguishes F� from a random
boolean function with probability better than 1/α(k), a contradiction. �

Constructing the simulator S . Until now, we have constructed an f -hybrid adversary
A′

π that runs in expected polynomial time with respect to π in the f -hybrid model, and
has the property that the output distribution of an execution of π in the f -hybrid model
with A′

π is computationally indistinguishable from a real execution of the composed
protocol πρ with adversary A. It remains to construct the ideal-model simulator S that
interacts with a trusted party computing g.

Since π black-box securely computes g, there exists an oracle machine Sπ satisfying
the conditions of Definition 9 (with appropriate modifications for consideration of the
f -hybrid model). Our simulator S works by simply invoking Sπ with oracle A′

π , with
the limitation that S halts with output ⊥ if it (i.e., S) ever exceeds α(k)/2 steps (includ-
ing the running time of A′

π but, as always, not including time spent computing Fs ). In
order to prove the theorem, we need to show that

1. S runs in expected polynomial time with respect to g (even when taking the run-
ning time of A′

π into account)

2. HYBRID
f

π,A′
π

c≡ IDEALg,S .

We stress that neither of these claims are immediate since A′
π is an expected

polynomial-time adversary, and the simulator Sπ is only guaranteed to “work” when it
is given a strict polynomial-time oracle. However, as we have discussed in the motiva-
tion to the proof, the fact that A′

π essentially uses a new (pseudo)random tape for every
invocation of Sρ ensures that the expected overall running time is polynomial.

Claim 15. Assuming that F� is an α-secure pseudorandom function for some α(k) =
kω(1), assuming that Sπ is an oracle machine that runs in expected polynomial time with
respect to g, and assuming that Sρ runs in expected polynomial time in any interaction,
the simulator S runs in expected polynomial time with respect to g.

Proof. First imagine a simulator S̃ that differs from S in the following way: whenever
Sρ is called from within A′

π , simulator S̃ monitors the value of zρ at that point. Let z
ρ
i

denote the value of zρ the ith time Sρ is called. Now, in contrast to S , adversary S̃
generates the random tape r∗

i bit-by-bit, as needed, in the following way: if z
ρ
i = z

ρ
j

for some j < i, then set r∗
i = r∗

j . Otherwise, choose r∗
i uniformly at random. We first

show that S̃ runs in expected polynomial time with respect to g, and then show (as in the
proof of Claim 13) that the expected running times of S̃ and S cannot differ “too much.”
Intuitively, S̃ runs in expected polynomial time because it invokes Sρ with fresh random
coins each time. Thus, there is no dependence between the different invocations.

Formally, the running time of S̃ is the sum of three components: timeSπ
, the run-

ning time of black-box simulator Sπ (counting its oracle calls to A′
π as a single step);
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timeA′
π

, the running time of A′
π (when answering oracle calls of Sπ ) but excluding

time spent running Sρ ; and timeSρ
, the total running time of Sρ when called by A′

π

(over all invocations of Sρ ; recall that A′
π invokes Sρ once in each invocation). By lin-

earity of expectations, it suffices to bound the expectation of each of these components
individually. The expected value of timeSπ

is polynomial since oracle machine Sπ runs
in expected polynomial time with respect to g (and, as defined in Section 2, this holds
regardless of the oracle with which Sπ interacts). Furthermore, since A′

π runs in strict
polynomial time when excluding the steps of Sρ , and since Sπ makes an expected poly-
nomial number of calls to A′

π , the expected value of timeA′
π

(excluding Sρ ’s steps) is
polynomial as well.

It remains to analyze timeSρ
. Since Sπ makes at most timeSπ

oracle calls, we have

timeSρ
≤

timeSπ∑

i=1

timeSρ
(i),

where timeSρ
(i) represents the running time of Sρ in its ith execution. We thus have:

Exp[timeSρ
] ≤ Exp

[timeSπ∑

i=1

timeSρ
(i)

]

=
∞∑

�=1

(

Pr[timeSπ
= �] · Exp

[
�∑

i=1

timeSρ
(i) | timeSπ

= �

])

=
∞∑

�=1

(

Pr[timeSπ
= �] ·

�∑

i=1

Exp[timeSρ
(i) | timeSπ

= �]
)

.

Now, recall that Sρ runs in expected polynomial time in any interaction. This means
that for every input x and every auxiliary input z, the expected running time of Sρ

(taken over its own random tape) is polynomial. Now, since S̃ invokes Sρ with a fresh
random tape each time, the only dependence between the execution of Sρ and the ran-
dom variable timeSπ

is due to the auxiliary-input z that Sρ receives. We conclude that
Exp[timeSρ

(i) | timeSπ
= �] is bound by a fixed polynomial pSρ

(·). We stress that Sρ is
invoked by S̃ , who also “plays” the ideal functionality for Sρ . Since we have no control
over the strategy of S̃ (which is derived from Sπ ), it is possible that S̃ does not reply
as the trusted party computing f would reply to Sρ . It is for this reason that we need
that Sρ be expected polynomial time in any interaction (rather than just being expected
polynomial time with respect to f ).

Continuing, we obtain:

Exp[timeSρ
] ≤

∞∑

�=1

(Pr[timeSπ
= �] · � · pSρ

(k))

= pSρ
(k) · Exp[timeSπ

].
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Since the expected running time of Sπ is polynomial, this completes the proof that S̃
runs in expected polynomial time with respect to g.

Exactly as in the proof of Claim 13, we now use the fact that F� is an α-secure
PRF to show that S also runs in expected polynomial time with respect to g. Let timeS
denote the running time of S , counting calls to Fs(·) as a single step (as usual, if the
expectation of timeS is polynomial, then the expectation of the true running time of S—
which includes the time required to compute Fs—is polynomial as well). We first claim
that for all values global (this includes the inputs of all honest parties, the inputs and
auxiliary input given to the simulator, and the random coins used in computing g), all
t ≤ α(k)/2, and all large enough values of k:

|Pr[timeS(global) ≥ t] − Pr[timeS̃(global) ≥ t]| < 1

α(k)
. (11)

Otherwise, we construct a distinguisher D for F�. Specifically, let (k,global, t) be such
that the above does not hold. Then D, on input 1k and auxiliary input global, will run the
strategy of S/S̃ while using its oracle to generate the random tape for Sρ , as needed. Fi-
nally, if the running time exceeds t steps, D outputs 1; otherwise, it outputs 0. Note that
D runs for at most α(k) steps. Furthermore, when D’s oracle is a function from F�, then
it exactly simulates S ; on the other hand, when D’s oracle is a random boolean function,
then it exactly simulates S̃ . Using the fact that F� is an α-secure PRF, (11) follows. We
conclude that the expected running time of S on any set of inputs global is bounded by

α(k)/2∑

t=1

Pr[timeS ≥ t] ≤
α(k)/2∑

t=1

Pr[timeS̃ ≥ t] + 1

α(k)

= Exp[timeS̃ ] + 1

2
.

Since, as we have already shown, the expected running time of timeS̃ is polynomial
with respect to g, it follows that S runs in expected polynomial time with respect to g

as well. �

To complete the proof of the theorem, we prove the following claim:

Claim 16. IDEALg,S
c≡ HYBRID

f

π,A′
π

.

Proof. The proof is similar to the proof of Claim 7. Assume the claim does not hold.
Then there exists a non-uniform polynomial-time distinguisher D, an input (global, z),
and a constant c > 0 such that for infinitely-many values of k:

∣
∣Pr

[
D(1k,global, z, HYBRID

f

π,A′
π
(global)) = 1

]

− Pr
[
D(1k,global, z, IDEALg,S(global)) = 1

]∣
∣ > k−c.

Let q(k) be the maximum, for security parameter k, of the expected running times of
A′

π (with respect to π in the f -hybrid model) and S (with respect to g); since both
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of these expected running times are polynomial, q(k) is polynomial as well. Define
Ã′

π to be identical to A′
π except that it halts immediately (with output ⊥) if it ever

exceeds 4q(k)kc steps. Define S̃ to be identical to S except that whenever S (via Sπ )
makes an oracle call to A′

π , if the running time of A′
π in answering that query exceeds

4q(k)kc steps we simply answer the query with ⊥. (Thus, effectively, we are using Ã′
π

as the oracle rather than A′
π .) Since the statistical difference between HYBRID

f

π,A′
π

and

HYBRID
f

π,Ã′
π

is at most k−c/4 (and similarly for IDEALg,S and IDEAL
g,S̃ ), we have

that for infinitely-many values of k,

∣
∣Pr

[
D(1k,global, z, HYBRID

f

π,Ã′
π

(global)) = 1
]

− Pr
[
D(1k,global, z, IDEAL

g,S̃(global)) = 1
]∣
∣ > k−c/2. (12)

Now, since Ã′
π runs in strict polynomial time, we are guaranteed that

IDEAL
g,SÃ′

π
π

c≡ HYBRID
f

π,Ã′
π

(13)

and furthermore that SÃ′
π

π runs in expected polynomial time with respect to g. Note

that S̃ is identical to SÃ′
π

π except that S̃ halts if its running time ever exceeds α(k)/2

steps. Since SÃ′
π

π runs in expected polynomial time, this implies that IDEAL
g,SÃ′

π
π

and

IDEAL
g,S̃ are statistically close. But this and (13) imply

IDEAL
g,S̃

c≡ HYBRID
f

π,Ã′
π

,

contradicting (12). �

This completes the proof of Theorem 12. �

Appendix A. The Simulator of [12] and Expected Polynomial-Time Verifiers

In this appendix, we repeat the result of [19] showing that the simulator provided for the
zero-knowledge proof system of Goldreich and Kahan [12] does not necessarily remain
expected polynomial time when simulating for an expected polynomial-time verifier.
We stress that we do not claim that it is impossible to construct a different simulator
that will have this property. However, it seems from our analysis below that it would be
difficult to construct such a simulator.

For this section, we assume familiarity with the proof system of [12]. Recall that in
this proof system, the verifier begins by committing to its random query string (using a
perfectly hiding commitment scheme). The parties then continue by running the zero-
knowledge proof for 3-coloring of [16] in parallel, using the verifier’s queries from the
first step. That is, the prover sends (perfectly binding) commitments to randomly per-
muted colorings of the graph. Then, the verifier decommits, revealing its query string.
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Finally, the prover answers according to the revealed queries. The exact soundness of
the system depends on the number of parallel executions and is negligible. We denote
the soundness of the proof system by μ(k) (i.e., the probability that V accepts and the
graph is not 3-colorable is less than μ(k)). We stress that the exact value of μ(k) can be
calculated and this does not depend on any computational assumptions.

Before proceeding, we note that the prover’s commitments (to the colorings) are only
computationally hiding. Therefore, given enough time, it is possible to break them and
extract the committed values (which in this case equals the coloring itself). In particular,
in time 2k (where k is the security parameter), it is possible to break these commitments.

Loosely speaking, we will construct a verifier that with probability 2−k runs for 2k

steps and breaks the prover’s commitments. Then, the verifier checks if these commit-
ments are “real” or “convincing garbage”, where convincing garbage is a commitment
that would convince the verifier, yet does not constitute a legal 3-coloring. Then, if it
finds that it received convincing garbage, it enters a very long loop (and otherwise con-
tinues like the honest verifier). The key point is that although the simulator can generate
convincing garbage, the probability that any (even all-powerful) machine can do the
same is negligible. Therefore, when interacting in a real protocol execution, the verifier
enters the loop with very small probability. On the other hand, the simulator always
generates convincing garbage. By correctly choosing the number of steps run by the
verifier in the loop, we can ensure that its overall expected-time during simulation is
superpolynomial. Note that this verifier strategy is expected polynomial time in any in-
teraction (and thus also with respect to the protocol). We now describe the expected
polynomial-time verifier V ∗ in detail:

The Verifier V ∗:

1. Send the prover a perfectly-hiding commitment to a random query string q , ex-
actly according to the protocol specification.

2. Upon receiving the prover’s commitments (to many 3-colorings) do the following:

• With probability 2−k , break the prover’s commitments and obtain the values.
(This takes time at most 2k .)

If the commitments are such that none of them constitute a valid 3-
coloring, yet they all answer the query string q perfectly,15 then run for
2k/μ(k) steps.

3. Continue in the same way as the honest verifier.

We first claim that V ∗ runs in expected polynomial time in any interaction. This can be
seen as follows. V ∗ attempts to break the commitments with probability 2−k . Therefore,
the 2k time it takes to do this contributes only a single step to its expected running time.
Furthermore, the probability that any machine sends a commitment of the form that
causes V ∗ to run for 2k/μ(k) steps is at most μ(k) (by the soundness of the proof
system). Therefore, V ∗ runs for 2k/μ(k) steps only with probability 2−k ·μ(k) and this

15 A commitment answers the query string perfectly if for every edge in the query string, it turns out that
the committed colors of the vertices specified by the edge are different. Therefore, such a commitment would
convince the honest verifier in the proof.
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also contributes only a single step to its expected running time. That is, the expected
running time of V ∗ is at most:

1

2k
·
(

2k + μ(k) · 2k

μ(k)
+ p(k)

)

+
(

1 − 1

2k

)

· p(k) = poly(k),

where p(k) equals the running time of the honest verifier.
Next, we claim that the expected running time of the simulator of [12] is superpoly-

nomial when simulating for this V ∗. This is because the simulator of [12] always sends
a commitment that causes V ∗ to run in time 2k/μ(k) (in the event that the verifier breaks
open the commitments). Therefore, the expected running time of the simulator of V ∗ is
greater than:

1

2k
·
(

2k + 1 · 2k

μ(k)
+ p(k)

)

+
(

1 − 1

2k

)

· p(k) >
1

μ(k)
.

Since μ(k) is a negligible function, we have that the expected running time of the simu-
lator is superpolynomial. Therefore, the simulator presented by [12] for demonstrating
the zero-knowledge property of their proof system does not necessarily run in expected
polynomial time, if the verifier runs in expected polynomial time.

Appendix B. Counterexample for the Case of Modular Composition

In this section, we show that the proof of Canetti [5] does not necessarily hold when
expected polynomial-time simulation strategies are used for real adversaries that run
in strict polynomial time. We stress that our example does not show that the modular
composition theorem fails to hold in this setting (indeed, we prove such a composi-
tion theorem in Section 4 under reasonable assumptions), but merely indicates that a
different analysis than that appearing in [5] is necessary.

Our counterexample is comprised of an idiotic functionality, an idiotic protocol, and
an idiotic simulation strategy. Nevertheless, this suffices for justifying a different analy-
sis than that used in [5]. Somewhat more natural examples can be presented, although
the more natural examples known to us are still rather artificial. Our example below
consists of an outer protocol π and an inner protocol ρ, where the outer protocol calls
the inner one. We begin by describing the inner protocol.

The inner functionality f , protocol ρ, and simulator Sρ . We consider a two-party
ideal functionality f that receives no input and generates no output. Consider the fol-
lowing protocol ρ that securely computes f :

1. Party P2 chooses a random string r2 ∈ {0,1}k and sends it to party P1.
2. Party P1 receives r2 from P2. It then sends a random string r1 ∈ {0,1}k to P2.

This concludes the protocol. Since f receives no input and generates no output, every
protocol securely computes f and therefore so does ρ. Nevertheless, we will use the
following black-box ideal-model simulator Sρ (we consider only the case where P2 is
corrupted):
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1. Let Ra,Rb denote the first and second k bits of Sρ ’s random tape, respectively.
2. Upon receiving a string r2 from the corrupted P2, simulator Sρ checks if r2 = Ra .

If yes, Sρ runs for 2k steps, hands P2 the string r1 = Rb , and outputs whatever
P2 outputs. Otherwise, §ρ hands P2 the string r1 = Ra and outputs whatever P2
outputs.

Oracle machine Sρ runs in expected polynomial time because the probability that r2 =
Ra is at most 2−k . Furthermore, Sρ provides a statistically-close simulation for ρ.

The outer functionality g, protocol π , and simulator Sπ . The functionality g is the
same as f and does not receive any input or generate any output. However, the outer
protocol π is different, and calls the inner functionality f . The protocol description of
π is as follows:

1. Party P1 chooses a random string s1 ∈ {0,1}k and sends it to party P2.
2. Parties P1 and P2 both call the ideal functionality f .
3. Party P2 chooses a random string s2 ∈ {0,1}k and sends it to P1.

As before, it is clear that π securely computes g (because every protocol does). Nev-
ertheless, we will use the specific black-box simulator Sπ that acts in the following
“strange” way. (Again, we deal only with the case where P2 is corrupted). Sπ executes
π three times:

1. The first time:
(a) Sπ sends a random string s1 ∈ {0,1}k to the corrupted P2.
(b) Sπ “calls” the ideal functionality f . (Note that this call is made by Sπ within

a simulated execution of the protocol π , and is not being made to the external
trusted party computing g.)

(c) Sπ receives s2 from P2.
2. Sπ rewinds the adversary and runs π a second time:

(a) Sπ sends the string s′
1 = s2 to P2 (where s2 is the string that it received from

P2 previously).
(b) Sπ calls the ideal functionality f .
(c) Sπ receives s′

2 from P2.
3. Sπ rewinds the adversary and runs π a third time. This time Sπ behaves exactly as

it did the first time, using a fresh random s′′
1 ∈ {0,1}k . Finally, Sπ outputs whatever

P2 outputs.

Sπ is a good simulator for π because the view of P2 in the third run of π with Sπ is
exactly the same as its view in a real execution with P1. Furthermore, Sπ runs in strict
polynomial time.

Composing π with ρ. We now show that the simulator for the composed protocol πρ

obtained by the proof of [5] does not run in expected polynomial time. This holds even
for a real adversary running in strict polynomial time. Intuitively, the reason for this is
that the outer protocol can be used to “leak” information to the inner protocol.

We begin by describing a real adversary A who controls the corrupted P2 and runs the
composed protocol πρ with the honest P1. Adversary A receives the first message s1 of
π from P1. Then, in the first message of ρ (that is run next), A sends r2 = s1 (where s1
is the message it received from P1). A then receives r1 from P1, concluding the inner
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1. (Running A:) Receive s1 from P1. The state of A is set
to s1.

2. Make an ideal call to f and run SAρ(s1)
ρ (Ra,Rb). In more

detail: (1) receive r2 = s1 from Aρ ; (2) if s1 = Ra , run for
2k steps and give Aρ the message r1 = Rb; otherwise, give
Aρ the message r1 = Ra . Then, (3) Aρ outputs state r1.

3. (Running A using state r1:) Send s2 = r1 to P1.

Fig. B.1. Execution of Aπ using random tape Ra,Rb .

protocol ρ. Finally, A concludes the execution of π by sending P1 the second message
s2 = r1 (where r1 is the message it received from P1 in ρ). Note that A essentially relays
P1’s message from the outer protocol to the inner protocol, and P1’s message from the
inner protocol to the outer one. A runs in strict polynomial time, as required.

Let us now step through the simulation strategy of Canetti [5]. (See the discussion at
the very beginning of the proof of Theorem 12.) First construct the strict polynomial-
time adversary Aρ which, essentially, takes as auxiliary input some state s1; outputs s1
as its first ρ-message r2; receives the second ρ-message r1; and concludes by outputting

final state r1. Next, consider the ideal-world adversary/simulator SAρ
ρ that interacts with

a trusted party computing f . This simulator runs in expected polynomial time.
Then construct the expected polynomial-time adversary Aπ interacting with parties

running π in the f -hybrid model. See Fig. B.1. Finally, the simulator for πρ is obtained
by running SAπ

π using random coins s1, s
′′
1 for the black-box simulator Sπ and random

coins Ra,Rb for the adversary Aπ . (We stress that these coins are fixed throughout the
entire execution.)

Note, however, what happens in an execution of SAπ (Ra,Rb)
π (s1, s

′′
1 ):

1. The first iteration of Sπ :
(a) Sπ sends s1 to Aπ (cf. step 1 of Aπ ).
(b) Sπ calls the ideal functionality f (cf. step 2 of Aπ ). As a consequence, Aρ

outputs state r1 = Ra except with probability 2−k .
(c) Sπ receives s2 = r1 = Ra from Aπ (cf. step 3 of Aπ ).

2. The second iteration of Sπ :
(a) Sπ sends the string s′

1 = s2 = r1 = Ra to Aπ .
(b) Sπ calls the ideal functionality f . As a consequence, Aρ “responds” with

s′
1 = Ra and then Aπ runs for 2k steps (cf. step 2 of Aπ ).

a) The simulation continues. . .

The remainder of the simulation is not important because we have already demonstrated
that the simulation always runs for 2k steps.

Although the above example is truly idiotic, it demonstrates a real issue in simulation
proofs that use rewinding. Specifically, the internal state of the adversary (Aπ in the
above example) is learned during rewinding. If this internal state is used in a detectable
way at a later stage of the simulation, it can cause the overall simulation to run for a
superpolynomial number of steps.
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Appendix C. The Full Derivation of (2)

In the proof of Claim 6, we state that

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]

=
∞∑

j=1

Expr,s,rf

[
simtimeÂ(z,r)

(j) | τ ≥ j
] · Pr

r,s,rf
[τ ≥ j ].

A full derivation of this equality follows:

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]

=
∞∑

j=1

Pr
r,s,rf

[τ = j ] · Expr,s,rf

[
j∑

i=1

simtimeÂ(z,r)
(i)

∣
∣
∣ τ = j

]

=
∞∑

j=1

Pr
r,s,rf

[τ = j ]
j∑

i=1

Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ = j
]

=
∞∑

i=1

∞∑

j=i

Pr
r,s,rf

[τ = j ] · Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ = j
]
,

where the second equality is by the linearity of expectations, and the third is obtained
by simply re-arranging terms. Fix an arbitrary i. Using the definition of expectation and
then making a series of straightforward re-arrangements we obtain:

∞∑

j=i

Pr
r,s,rf

[τ = j ] · Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ = j
]

=
∞∑

j=i

Pr
r,s,rf

[τ = j ] ·
∞∑

t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)

(i) = t | τ = j
]

=
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t=0

t ·
∞∑

j=i

Pr
r,s,rf

[τ = j ] · Pr
r,s,rf

[
simtimeÂ(z,r)

(i) = t | τ = j
]

=
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t=0

t ·
∞∑

j=i

Pr
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[
simtimeÂ(z,r)

(i) = t ∧ τ = j
]

=
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t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)

(i) = t ∧ τ ≥ i
]
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=
∞∑

t=0

t · Pr
r,s,rf

[
simtimeÂ(z,r)

(i) = t | τ ≥ i
] · Pr

r,s,rf
[τ ≥ i]

= Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ ≥ i
] · Pr

r,s,rf
[τ ≥ i].

Since the above holds for arbitrary i, we conclude that

Expr,s,rf

[
τ∑

i=1

simtimeÂ(z,r)
(i)

]

=
∞∑

i=1
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j=i

Pr
r,s,rf

[τ = j ] · Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ = j
]

=
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i=1

Expr,s,rf

[
simtimeÂ(z,r)

(i) | τ ≥ i
] · Pr

r,s,rf
[τ ≥ i]

which is the same as (2) (except that the above has “i” instead of “j”).
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