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Abstract. We revisit the following question: what are the minimal assumptions
needed to construct statistically-hiding commitment schemes? Naor et al. show how
to construct such schemes based on any one-way permutation. We improve upon this
by showing a construction based on any approximable preimage-size one-way func-
tion. These are one-way functions for which it is possible to efficiently approximate
the number of pre-images of a given output. A special case is the class of regular one-
way functions where all points in the image of the function have the same (known)
number of pre-images.

We also prove two additional results related to statistically-hiding commitment.
First, we prove a (folklore) parallel composition theorem showing, roughly speaking,
that the statistical hiding property of any such commitment scheme is amplified ex-
ponentially when multiple independent parallel executions of the scheme are carried
out. Second, we show a compiler which transforms any commitment scheme which is
statistically hiding against an honest-but-curious receiver into one which is statistically
hiding even against a malicious receiver.
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1. Introduction

A central focus of modern cryptography has been to investigate the weakest possi-
ble assumptions under which various cryptographic primitives exist. This direction
of research has been quite fruitful, and minimal assumptions are known for a wide
variety of primitives: e.g., it has been shown that one-way functions imply (and are
implied by) pseudorandom generators, pseudorandom functions, symmetric-key en-
cryption/message authentication, statistically-binding commitment, and digital signa-
tures [18,19,29,30,33,34,40]. In other cases, black-box separation results exist which
indicate the difficulty of constructing “strong” cryptographic protocols (say, key-
exchange) from “weak” building blocks (say, one-way permutations; see [31]).

In this work, we focus on constructing statistically-hiding commitment schemes. In-
formally, a commitment scheme defines a two-phase interactive protocol between a
sender S and a receiver R; after the commitment phase, S is uniquely bound to (at
most) one value which is not yet revealed to R, and in the decommitment phase R fi-
nally learns this value. The two security properties hinted at in this informal description
are known as binding (namely, that S is bound to at most one value after the commit-
ment phase) and hiding (namely, that R does not learn the value to which S commits
before the decommitment phase). In a statistically-hiding commitment scheme the hid-
ing property holds even against all-powerful receivers (i.e., hiding holds information-
theoretically), while the binding property is required to hold only for computationally-
bounded (say, polynomial-time) senders.

Statistically-hiding commitment schemes have been used as a building block in
constructions of statistical zero-knowledge arguments [7,35] and coin-tossing proto-
cols [32]. They are also advantageous when used within protocols in which certain
commitments are never revealed; in this case, one can argue that computational bind-
ing suffices since it need only be infeasible to violate the binding property during the
period of time the protocol is run, whereas statistical hiding has the advantage of en-
suring that committed values remain hidden forever (i.e., regardless of how much time
the receiver invests after completion of the protocol). Indeed, this is part of the motiva-
tion for statistical zero-knowledge as well. For further discussion, the reader is referred
to [35,37,38].

Perfectly-hiding1 commitment schemes were first shown to exist based on specific
number-theoretic assumptions [6,7] or, more generally, based on any collection of claw-
free permutations [10,24] with an efficiently-recognizable index set [16] (see [16] for a
weaker variant of statistically-hiding commitment which suffices for some applications
and for which an efficiently-recognizable index set is not needed). Naor et al. [35], build-
ing on Ostrovsky et al. [37,38], showed a construction of a perfectly-hiding commitment
scheme based on any one-way permutation. Statistically-hiding commitment schemes
can also be constructed from collision-resistant hash functions [11,28,34]; see [41] for
assumptions implying the existence of the latter.

1 Very informally, in a statistically-hiding commitment scheme the receiver learns at most a negligible
amount of information about the sender’s committed value, whereas in a perfectly-hiding commitment scheme
the receiver learns nothing. Note that any perfectly-hiding scheme is also statistically-hiding.
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1.1. Our Results

1.1.1. Main Result

We show how to construct a statistically-hiding commitment scheme given any ap-
proximable pre-image-size one-way function. Informally, this is a one-way function
f satisfying the additional property that, given any y in the image of f , the value
|{x : f (x) = y}| (i.e., the number of pre-images of y) can be efficiently estimated. An
interesting special case is an approximately-regular one-way function for which every
point in the image of f has roughly the same number of pre-images. (We still require
that it be feasible to approximate the number of pre-images.) A variety of conjectured
one-way functions are in fact regular; we refer the reader to [23] for examples.

Our result may be viewed as an example of the paradigm in which a sequence of
works constructs a given primitive from ever-weaker assumptions; e.g., in the cases of
pseudorandom generators and universal one-way hash functions/signature schemes (see
[14, Chap. 2] and [15, Chap. 6]), constructions were first based on specific, number-
theoretic assumptions [5,24], and then the minimal assumptions were gradually re-
duced to trapdoor permutations [2], one-way permutations [5,17,34,42], regular one-
way functions [12,23], and (finally) one-way functions [29,40]. This work has similarly
served as a step toward resolving the question of the minimal assumptions required for
statistically-hiding commitment; see Section 1.3.

1.1.2. Additional Results

We also provide two additional results of independent interest that may be useful
for future constructions of statistically-hiding commitment schemes. Before describing
these results, we review the standard definition of statistical hiding. Say a commitment
scheme (S, R) is ρ-hiding against R∗ if the distribution over the view of the (mali-
cious) receiver R∗ when the sender S commits to ‘0’ is within statistical difference ρ

from the distribution over the view of R∗ when S commits to ‘1’. The standard defin-
ition of statistical hiding requires that for all (even all-powerful) R∗, the commitment
scheme should be ε-hiding against R∗ for some negligible function ε. One way of relax-
ing this is to require only that the scheme be (1 − 1

poly )-hiding (for all R∗). An alternate
relaxation is to require only that the scheme be ε-hiding against the honest receiver R
(this corresponds to the classical cryptographic notion of an honest-but-curious adver-
sarial entity). In all cases, we require binding to hold with all but negligible probability
for any polynomial-time sender.

We show that a scheme satisfying either of the relaxations above suffices to construct
a scheme secure in the standard sense, with minimal increase in the round complexity.
Specifically:

1. We prove a parallel repetition theorem for statistically-hiding commitment. Given
commitment scheme (S, R), consider the scheme (S q, Rq) in which commit-
ment to a bit b is done as follows: S q chooses random bits b1, . . . , bq subject to
the constraint

⊕
i bi = b, and then runs q parallel executions of S using input

bit bi in the ith execution. We show that if the initial scheme (S, R) is ρ-hiding,
then the derived scheme (S q, Rq) is ρq -hiding. A corollary is that the existence
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of a (1 − 1
poly )-hiding scheme implies the existence of a statistically-hiding com-

mitment scheme using the same number of rounds.
Parallel repetition fails in many settings (e.g., [3,39]), and so the above result

should not be taken for granted. The result is trivial to prove for the case of an
honest-but-curious receiver, but (as when analyzing the effect of parallel repetition
on the soundness of interactive proofs [13, Appendix C]) is more difficult to prove
for the case when a malicious receiver may correlate its actions in the different
parallel executions.

2. We show a general compiler that converts any commitment scheme that is
statistically-hiding for an honest-but-curious receiver into one that is statistically-
hiding for a malicious receiver. If the initial scheme is ρ-hiding for an honest-but-
curious receiver, we can obtain a scheme that is (ρ + 1

poly )-hiding (for any given
polynomial poly) using only a constant number of additional rounds. (Applying
the previous result, we can then obtain a scheme that is ε-hiding—for a malicious
receiver—without any further increase in the round complexity.) Our compiler re-
quires only the existence of one-way functions, which are implied anyway by the
commitment scheme we start with.

1.2. Overview of Our Techniques

Our construction is based on the protocol of Naor et al. [35], which is shown by those au-
thors to be perfectly hiding (and computationally binding) when based on any one-way
permutation. It is natural to ask what happens when their protocol is instantiated with
some other function f : {0,1}n → {0,1}�. Our first observation, that can also be derived
from subsequent work in this area [25,36], is that it is implicit in the main proof of [35]
that their protocol is computationally binding as long as f cannot be efficiently inverted
with respect to the uniform distribution U� over its range (formally, we mean that no
efficient algorithm can find an x such that f (x) = y, for uniformly-chosen y, with non-
negligible probability; see Definition 2.8). We call a function with this property one-way
over its range. We stress that a function with this property is not necessarily one-way
in the standard sense: the constant function f (x) = 0� is not one-way, but is trivially
one-way over its range since the probability that a uniformly-selected y ∈ {0,1}� lies in
the image of f (that is, the probability that y = 0�) is negligible.

As our first main technical result, we show that the protocol of Naor et al. is “weakly
hiding” when based on a function f : {0,1}n → {0,1}� that is balanced; i.e., for which
the probability that f (Un) = y is “close” to 2−� for “most” elements y ∈ {0,1}�. (In the
formal definition we allow some elements to have probability outside this range as long
as both the number of such elements and their total weight are small; see Definition 3.1.)

Taken together, the above show that statistically-hiding commitment is implied by
the existence of a function f that is both balanced and one-way over its range.2 We
then show how to construct such functions based on any approximately-regular one-
way function. Inspired by [29,40], we use pairwise-independent hashing to achieve
this goal. Restricting our attention here to functions f that are regular, we define

2 The “almost-everywhere one-to-one” one-way functions of [21] are not balanced (since their image is
a negligible fraction of their range) and thus do not suffice for our purposes. The same also holds for the
functions constructed in [29] and [14, Section 3.5].
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f ′(h, x) = (h,h(f (x))) where h is selected from a family of pairwise-wise indepen-
dent hash functions. Intuitively, if the output length of h is “small enough” (relative
to the regularity parameter3 of f ) then f ′ will be sufficiently balanced, while if the
output length of h is “large enough” then f ′ will be one-way over its range. We show
that it is possible to set the output length “in the middle” and obtain a function that
is one-way over its range and is somewhat balanced. Such a function translates into a
bit-commitment protocol that is only somewhat hiding, but the hiding property can then
be amplified by repetition. We stress that our construction requires that the regularity
parameter of f is known.

The same construction works also if f is only approximately regular. It is also fairly
easy to show how to convert any approximable pre-image-size one-way function into a
one-way function that is approximately regular.

1.3. Subsequent Work

Subsequent to the initial publication of this paper, Nguyen et al. [36] showed how to
construct statistical zero-knowledge arguments for N P based on any one-way func-
tion; as mentioned in their paper, some of the intuition for their construction builds
on the work described here. Recall that statistical zero-knowledge arguments are one
of the primary applications of statistically-hiding commitment schemes; interestingly,
Nguyen et al. construct the former without using the latter. Haitner and Reingold [26],
using tools developed in [36], gave a construction of a statistically-hiding commitment
scheme from any one-way function. This settles the question of the minimal assump-
tions needed to construct such commitment schemes.

Other work of Haitner and Reingold [25] (done subsequent to the present paper)
provides a new analysis of the protocol from [35], from which they derive our main
result more directly (cf. [25, Theorem A.10]).

1.4. Outline of the Paper

We begin by reviewing some preliminaries and establishing some notation in Section 2.
In that section, we also note that any approximable pre-image size one-way function
can be converted into an approximately-regular one-way function. In Section 3, we
formally define the notion of “balanced” functions described informally earlier, and
show that any balanced function that is one-way over its range can be used to construct
a statistically-hiding commitment scheme. Our task is thus reduced to constructing such
a function starting from any approximately-regular one-way function, and we tackle this
in Section 4. This completes the proof of our main result.

In Section 5 we prove a parallel composition theorem for statistically-hiding com-
mitment, and in Section 6 we show a compiler converting any commitment scheme
statistically-hiding for an honest-but-curious receiver into one that is statistically-hiding
for a malicious receiver.

3 That is, the number of pre-images of each value in the image of f .
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2. Preliminaries

Throughout this paper, we let k denote the security parameter. We use ‘log’ to denote
logarithms base 2, and ‘ln’ to denote the natural logarithm. For a function f : {0,1}n →
{0,1}�, we define image(f )

def= {f (x) | x ∈ {0,1}n}.

2.1. Probability Distributions and Entropy

If X is a distribution over a finite set X , the support of X (denoted supp(X)) consists of
those elements having non-zero probability under X. The min-entropy of X is defined
as:

H∞(X)
def= min

x∈supp(X)
log

(
1

PrX[x]
)

.

The collision probability of X is defined as:

CP(X)
def=

∑

x∈supp(X)

(Pr
X

[x])2.

It is convenient to think of collision probability as a notion of entropy and for this
purpose we normalize it as follows: The 2-entropy of X is defined as:

H2(X)
def= log

1

CP(X)
.

If X1 and X2 are two distributions over a finite set X , their statistical difference,
written SD(X1,X2), is defined as:

SD(X1,X2)
def= 1

2

∑

x∈X
|PrX1[x] − PrX2[x]|.

Two distribution ensembles X1 = {X1(k)}k∈N and X2 = {X2(k)}k∈N have statistical dif-
ference ρ (for ρ a function of k) if SD(X1(k),X2(k)) ≤ ρ(k) for all k large enough. If
ρ is negligible, we say the ensembles are statistically indistinguishable.

We let Un denote the uniform distribution over {0,1}n. For a function f : {0,1}n →
{0,1}�, we let f (Un) denote the distribution over {0,1}� induced by choosing x uni-
formly and outputting f (x).

2.2. Commitment Schemes

An interactive bit commitment scheme is defined via a triple of PPT algorithms
(S, R, V ). Looking ahead, S and R will interact during what is called a commitment
phase, while V will be used during the (non-interactive) decommitment phase. For-
mally:

• S (the sender) is an interactive Turing machine (ITM) which receives as initial
input the security parameter 1k and a bit b. Following its interaction, it outputs
some information decom (the decommitment).
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• R (the receiver) is an ITM which receives the security parameter 1k as initial input.
Following its interaction, it outputs some state information com.

• V (acting as a receiver, in the decommitment phase) is a deterministic algorithm
which receives as input state information com and a decommitment decom; it out-
puts either a bit b or the distinguished value ⊥.

Denote by (decom | com) ← 〈S(1k, b), R(1k)〉 the experiment in which S and R in-
teract (using the given inputs and uniformly random coins), and then S outputs decom
while R outputs com. It is required that for all k, all b, and every pair (decom | com)

that may be output by 〈S(1k, b), R(1k)〉, it is the case that V (com,decom) = b.
The security of a commitment scheme can be defined in two complementary ways,

protecting against either an all-powerful sender or an all-powerful receiver. Since we
are interested in the case of statistically-hiding commitment (i.e., the latter case), we
only provide the definition for this case.

Definition 2.1. Commitment scheme (S, R, V ) is ρ-hiding (for ρ a function of k)
if the following holds: Given a deterministic ITM R∗, let view〈S (b),R∗〉(k) denote the
distribution on the view of R∗ when interacting with S(1k, b) (this view simply consists
of the sequence of messages it receives from S ), where this distribution is taken over the
random coins of S . Then we require that for any (even all-powerful) R∗ the ensembles
{view〈S(0),R∗〉(k)} and {view〈S(1),R∗〉(k)} have statistical difference at most ρ(k).

A commitment scheme is statistically hiding if it is ρ-hiding for negligible ρ. A 0-
hiding scheme is called perfectly hiding.

Assuming R∗ to be deterministic is without loss of generality since R∗ may be all-
powerful.

Definition 2.2. Commitment scheme (S, R, V ) is computationally-binding if the fol-
lowing is negligible for all PPT S ∗:

Pr

[

((decom,decom′) | com) ← 〈S ∗(1k), R(1k)〉 : V (com,decom), V (com,decom′) ∈ {0,1}∧
V (com,decom) 
= V (com,decom′)

]

,

where the probability is taken over the random coins of both S ∗ and R.

Given the above, we now define a statistically-hiding commitment scheme:

Definition 2.3. Commitment scheme (S, R, V ) is ρ-secure (resp., statistically secure,
perfectly secure) if it is computationally binding and ρ-hiding (resp., statistically hiding,
perfectly hiding).

2.3. One-Way Function Families and Variants

All function families F = {fk : {0,1}n(k) → {0,1}�(k)}k∈N in this paper will have n, � =
poly(k), and n,fk computable in time polynomial in k. We say F is one-way if, for all
PPT algorithms A, the following is negligible (in k):

Pr[x ← {0,1}n(k);y = fk(x);x′ ← A(1k, y) : fk(x
′) = y].
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We also consider some additional properties of function families:

• F is r(k)-regular if for every k and every x ∈ {0,1}n(k) we have

∣
∣{x′ ∈ {0,1}n(k) : fk(x

′) = fk(x)}∣∣ = 2r(k).

F is r(k)-known regular if, in addition, r(k) is computable in time polynomial
in k.

• F is (r(k),p(k))-approximately-regular if for every k and every x ∈ {0,1}n(k)

we have

1

p(k)
· 2r(k) ≤ ∣

∣{x′ ∈ {0,1}n(k) : fk(x
′) = fk(x)}∣∣ ≤ p(k) · 2r(k),

and r(k),p(k) are computable in time polynomial in k. We will be interested in
the case where p(k) is upper-bounded by a polynomial in k.

Note that if f is (r,p)-approximately-regular, then the min-entropy of D =
f (Un) satisfies

n − r − logp ≤ H∞(D) ≤ n − r + logp.

• F is p(k)-approximable pre-image-size if for every k and every x ∈ {0,1}n(k) we
have

1

p(k)
· 2D(fk(x)) ≤ ∣

∣{x′ ∈ {0,1}n(k) : fk(x
′) = fk(x)}∣∣ ≤ p(k) · 2D(fk(x)),

and p, D are computable in time polynomial in k. As in the approximately-regular
case, we will be interested in the case where p(k) is upper-bounded by a polyno-
mial in k.

For simplicity, we sometimes drop the explicit dependence on k when clear and write,
e.g., f : {0,1}n → {0,1}� rather than fk : {0,1}n(k) → {0,1}�(k).

By the following lemma, to prove our main result it will be sufficient for us to
construct a statistically-hiding commitment scheme starting from any approximately-
regular one-way function.

Lemma 2.4. Let F = {fk : {0,1}n(k) → {0,1}�(k)}k∈N be a p(k)-approximable pre-
image-size one-way function family. Let F ′ = {f ′

k : {0,1}2n(k) → {0,1}n(k)+�(k)}k∈N,
where

f ′
k(x‖z) def= fk(x) ‖ z[1 . . .D(fk(x))] ‖ 0n−D(fk(x)).

(In the above, “‖” denotes concatenation and z[1 . . . r] denotes the first r bits of z.)
Then F ′ is an (n,p)-approximately-regular one-way function family.

Proof. The one-wayness of F ′ is evident. The number of pre-images of an element
y‖z̄‖0n−D(y) satisfies

|(f ′
k)

−1(y ‖ z̄ ‖ 0n−D(y))| = |f −1
k (y)| · 2n−D(y)
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∈
[

2D(y)

p(k)
· 2n−D(y),p(k) · 2D(y) · 2n−D(y)

]

=
[

2n

p(k)
,p(k) · 2n

]

. �

2.4. Hash Functions and the Leftover Hash Lemma

Let H = {Hk}k∈N be a collection of function families, where each Hk is a family of
functions mapping strings of length �(k) to strings of length v(k). We assume that the
size of each Hk is a power of 2, and that we can identify each binary string of some
appropriate length s(k) with a unique function h ∈ Hk . (In particular, choosing random
h ∈ Hk is identified with choosing a random string of length s(k).) Following [8], we
say that H is an n(k)-universal hash family (i.e., an n(k)-wise independent hash family)
if for each k, any distinct x1, . . . , xn(k) ∈ {0,1}�(k), and any y1, . . . , yn(k) ∈ {0,1}v(k) we
have:

Prh←Hk
[h(x1) = y1 ∧ · · · ∧ h(xn(k)) = yn(k)] = 2−v(k)·n(k).

Put another way, for any fixed, distinct x1, . . . , xn(k), the random variables h(x1), . . . ,

h(xn(k)) (where h is chosen uniformly from Hk) are n-wise independent. Constructions
of n(k)-universal hash families with s(k) = O(n(k) · max(�(k), v(k))) are known [1,9].
Simpler constructions exist for n = 2, and these are sufficient for achieving our results.
We will rely on the following result:

Lemma 2.5 (Leftover hash lemma [29]). Let Y be a distribution over {0,1}� with
H∞(Y ) ≥ q and let ε > 0. Let H be a family of 2s functions mapping strings of length �

to strings of length t ≤ q − 2 log(1/ε) − 2 and assume that H is a 2-universal family of
hash functions. Consider the distribution P obtained by choosing uniformly a function
h from the family H and y according to Y and outputting (h‖h(y)). Then:

1. H2(P ) ≥ s + t − ε2.
2. The statistical distance between P and Us+t is at most ε.

We remark that the first item above implies the second item. In the proof we some-
times need the first item whereas in other cases the weaker conclusion of the second
item suffices.

2.5. Interactive Hashing

Interactive hashing was introduced by Ostrovsky, et al. [37,38], and used by Naor,
et al. [35] to construct a statistically-hiding (actually, perfectly-hiding) commitment
scheme based on any one-way permutation family. We review interactive hashing, as
well as the resulting commitment scheme, below. In what follows, we let x · y denote∑�

i=1 xiyi mod 2 for x, y ∈ {0,1}�.

Construction 2.6 (Interactive hashing). The protocol is defined by algorithms S and
R, where S begins with an �-bit value y (with � known to R), and proceeds as follows:
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1. The parties interact in � − 1 stages. In stage i (for i = 1, . . . , � − 1), R chooses
ri ∈ {0,1}�−i uniformly at random and sends the “query” qi = 0i−11ri to S (in
case R aborts, S simply takes qi to be some default value); in response, S sends
ci = qi · y.

2. At the conclusion of the above, there are exactly two strings y0, y1 ∈ {0,1}� such
that qi · yb = ci for 1 ≤ i ≤ � − 1; let y0 denote the lexicographically smaller of
the two. Both parties compute (y0, y1), and S sets v such that y = yv .

The output of the protocol is defined to be (y0, y1, v) for S and (y0, y1) for R. We denote
by IH(y) an execution of the interactive hashing protocol, where S begins with input y.

The above was used in [35] to construct a perfectly-secure commitment scheme based
on one-way permutations via the following approach:

Construction 2.7. Let F = {fk : {0,1}n(k) → {0,1}�(k)} be a function family. The
commitment scheme (S, R, V ) is defined as follows: S(1k, b) chooses x ∈ {0,1}n(k) uni-
formly at random, computes y = fk(x), and then executes IH(y) with R; this protocol
results in output (y0, y1, v) for S and (y0, y1) for R. The commitment phase concludes
by having S send v̂ = v ⊕ b to R. Finally, S outputs decom = x while R outputs state
com = (y0, y1, v̂).

In the decommitment phase, V ((y0, y1, v̂), x) proceeds as follows: if fk(x) = y0, out-
put v̂; if fk(x) = y1, output v̂ ⊕ 1; otherwise, output ⊥.

It is relatively easy to observe that the above protocol is perfectly hiding if � = n and
F is a permutation family (regardless of whether F is one-way). The main result of [35]
was to prove that the above is computationally binding when F is a one-way permu-
tation family. In fact, careful examination of their proof shows the above commitment
scheme is computationally binding under a weaker condition on F ; it suffices for F to
be one-way over its range, defined as follows:

Definition 2.8. Let F = {fk : {0,1}n(k) → {0,1}�(k)}k∈N be a function family. We say
F is one-way over its range if, for all PPT A, the following is negligible (in k):

Pr[y ← {0,1}�(k);x ← A(1k, y) : fk(x) = y].
We stress that, in contrast to the definition in the case of a (standard) one-way function,
here y is chosen uniformly in the range of fk rather than according to f (Un).

The following result was implicit in [35], and a proof can be easily derived from [36,
Theorem 4.4] or [25, Theorem 4.2]:

Theorem 2.9. If F is one-way over its range, then Construction 2.7 is computationally
binding.

Proof. Let W be a binary relation and let S ∗ be a polynomial-time algorithm that,
after playing the role of S in Construction 2.6, outputs with probability ε two elements
x0 and x1 for which (x0, y0) and (x1, y1) are in W . By [25, Theorem 4.2], there exists
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an efficient oracle algorithm AS ∗
such that Pry←{0,1}� [(AS ∗

(y), y) ∈ W ] = �(poly(ε)).
Taking W = {(x, f (x)) : x ∈ {0,1}n(k)}, it follows that Construction 2.7 is computation-
ally binding if f is one-way over its range. �

3. Statistical Hiding from Balanced Functions

In this section we define a notion of “balance” and show that if a function family F is
sufficiently balanced then Construction 2.7 yields a protocol that is “somewhat hiding.”
Roughly speaking, a distribution D on {0,1}� is balanced if D is “close” to uniform
“most” of the time. A function f : {0,1}n → {0,1}� is then defined to be balanced if the
distribution f (Un) is balanced. Formally:

Definition 3.1. Distribution D on {0,1}� is (α, δ)-balanced if there is a set Bad ⊂
{0,1}� such that:

1. |Bad| ≤ α · 2�.
2. Pry←D[y ∈ Bad] ≤ α.
3. For every y0 /∈ Bad, |Pry←D[y = y0] − 1

2� | ≤ δ
2� (we will always have δ < 1).

Function f : {0,1}n → {0,1}� is (α, δ)-balanced if the distribution f (Un) is (α, δ)-
balanced. Function family F = {fk : {0,1}n(k) → {0,1}�(k)} is (α, δ)-balanced if, for all
k large enough, fk is (α(k), δ(k))-balanced.

Our main result of this section is the following:

Theorem 3.2. If F = {fk : {0,1}n(k) → {0,1}�(k)} is an (α, δ)-balanced function fam-
ily, then Construction 2.7 is ρ-hiding for ρ = 2α + δ + αδ.

Proof. Fix k large enough so that fk is (α(k), δ(k))-balanced; from now on we sim-
ply write f,α, δ, ρ without explicitly indicating their dependence on k. For a given
execution of the scheme, let τ denote the initial transcript resulting from the interactive
hashing sub-protocol; thus, the view of R∗ consists of τ and the bit v̂ sent in the final
round. Given a particular (deterministic) R∗, we write Exp(b) to denote the experiment
in which S chooses a uniform random tape and then executes the protocol with R∗
using this random tape and the bit b, resulting in view (τ, v̂) for R∗. Note that the dis-
tribution on τ is identical in Exp(0) and Exp(1), since the first phase of the commitment
scheme is independent of b.

Below, we define a “good” set of initial transcripts Good, and show that:

Claim 3.3. PrExp(0)[τ ∈ Good] = PrExp(1)[τ ∈ Good] ≥ 1 − α(2 + δ). Since this prob-
ability is independent of the bit b being committed to, we simply write PrExp[τ ∈ Good]
for this probability.

Claim 3.4. The following holds for all τ ∗ ∈ Good and v̂∗ ∈ {0,1}:
∣
∣
∣ Pr
Exp(0)

[v̂ = v̂∗ | τ = τ ∗] − Pr
Exp(1)

[v̂ = v̂∗ | τ = τ ∗]
∣
∣
∣ ≤ δ.
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These claims suffice to prove the theorem, since the statistical difference between the
view of R∗ when the sender commits to 0 (i.e., b = 0) and the view of R∗ when the
sender commits to 1 (i.e., b = 1) may be bounded as:

1

2

∑

τ∗,v̂∗

∣
∣
∣ Pr
Exp(0)

[(τ, v̂) = (τ ∗, v̂∗)] − Pr
Exp(1)

[(τ, v̂) = (τ ∗, v̂∗)]
∣
∣
∣

= 1

2

∑

τ∗,v̂∗

∣
∣
∣ Pr
Exp(0)

[τ = τ ∗] Pr
Exp(0)

[v̂ = v̂∗|τ = τ ∗]

− Pr
Exp(1)

[τ = τ ∗] Pr
Exp(1)

[v̂ = v̂∗|τ = τ ∗]
∣
∣
∣

≤ Pr
Exp

[τ /∈ Good] + 1

2

∑

τ∗∈Good,v̂∗
Pr
Exp

[τ = τ ∗]

×
∣
∣
∣ Pr
Exp(0)

[v̂ = v̂∗|τ = τ ∗] − Pr
Exp(1)

[v̂ = v̂∗|τ = τ ∗]
∣
∣
∣

≤ α(2 + δ) + 1

2

∑

τ∗∈Good;v̂∗
Pr[τ = τ ∗] · δ ≤ α(2 + δ) + δ.

We now prove the two stated claims. Let Bad ⊂ {0,1}� be a subset whose existence
is guaranteed by Definition 3.1 (using the fact that f is balanced). Recall that the initial
transcript τ defines two strings yτ

0 , yτ
1 ∈ {0,1}� (cf. Construction 2.6). We say τ ∈ Good

if and only if yτ
0 , yτ

1 /∈ Bad.
We first bound the probability that yv = y is in Bad (recall that yv is the value that the

sender starts with; cf. Construction 2.6). Since f is (α, δ)-balanced and y is distributed
according to f (Un) (cf. Construction 2.7), it follows immediately that yv ∈ Bad with
probability at most α.

Next, we bound the probability that yv 
∈ Bad but yv̄ ∈ Bad. Since R∗ is determinis-
tic, we have that yv̄ is uniquely determined by yv . Let φ be the function mapping the
sender’s chosen value yv to the second value yv̄ resulting from the interactive hashing

protocol. Let MapToBad
def= φ−1(Bad). Observe that if φ(y) = y′ then φ(y′) = y; this

is because, for either of these choices, the sender responds with the exact same answer
to each of the receiver’s queries during the interactive hashing sub-protocol. It follows
that φ is a permutation and |MapToBad| = |Bad|. We have:

Pr[yv /∈ Bad ∧ yv̄ ∈ Bad] = Pr[yv ∈ MapToBad \ Bad]
=

∑

y∗∈MapToBad\Bad

Pr[yv = y∗]

≤
∑

y∗∈MapToBad\Bad

1 + δ

2�
,
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using condition 3 of Definition 3.1 and the fact that y∗ /∈ Bad. Continuing:

∑

y∗∈MapToBad\Bad

1 + δ

2�
= |MapToBad \ Bad| · 1 + δ

2�

≤ |MapToBad| · 1 + δ

2�

= |Bad| · 1 + δ

2�
≤ α · (1 + δ), (1)

using condition 1 of Definition 3.1. It follows that τ /∈ Good with probability at most
α · (2 + δ), completing the proof of the first claim.

We proceed to prove the second claim. Let P(ỹ)
def= Prx∈{0,1}n [f (x) = ỹ]. For any τ ∗

and any v̂∗ ∈ {0,1} we have

Pr
Exp(b)

[v̂ = v̂∗ | τ = τ ∗] = Pr
Exp(b)

[v = v̂∗ ⊕ b | τ = τ ∗]

= Pr
Exp(b)

[y = yτ∗
v̂∗⊕b

| τ = τ ∗]

= P(yτ∗
v̂∗⊕b

)

P (yτ∗
0 ) + P(yτ∗

1 )
.

If τ ∗ ∈ Good, then yτ∗
0 , yτ∗

1 /∈ Bad and so P(yτ∗
0 ),P (yτ∗

1 ) lie in the range [(1 − δ)2−�,

(1 + δ)2−�]. It follows that when τ ∗ ∈ Good the following holds for any v̂∗ ∈ {0,1}:
∣
∣
∣ Pr
Exp(0)

[v̂ = v̂∗ | τ = τ ∗] − Pr
Exp(1)

[v̂ = v̂∗ | τ = τ ∗]
∣
∣
∣ = |P(yτ∗

0 ) − P(yτ∗
1 )|

P(yτ∗
0 ) + P(yτ∗

1 )
≤ δ.

(The last inequality follows from the fact that the second-to-last expression is maxi-
mized by taking P(yτ∗

0 ) = (1 + δ)2−� and P(yτ∗
1 ) = (1 − δ)2−�.) This proves the claim

and completes the proof of Theorem 3.2. �

Combining the above and Theorem 2.9 we obtain:

Corollary 3.5. If F is (α, δ)-balanced function family and one-way over its range,
then Construction 2.7 is a (2α + δ + αδ)-secure commitment scheme.

We see that if 2α + δ + αδ ≤ 1 − 1
poly(k)

, then we obtain a “weakly hiding” commit-
ment scheme. This statistical difference can be amplified to give a statistically-hiding
scheme (i.e., an ε-hiding scheme for negligible ε) using polynomially-many sequential
repetitions (an appropriate sequential composition theorem is easy to prove). In Sec-
tion 5 we prove a parallel composition theorem which also enables amplification of the
statistical hiding property using polynomially-many repetitions but without increasing
the round complexity.
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In the following section, we show how to construct an F with the required properties
starting from any F which is one-way and approximately regular. Applying the obser-
vation at the end of Section 2.3, we thus obtain a construction of a statistically-hiding
commitment scheme from any approximable pre-image-size one-way function.

4. Starting from Approximately-Regular One-Way Functions

As discussed at the very end of the previous section, we show here that given an
(r(k),poly(k))-approximately-regular one-way function family F it is possible to con-
struct a (1/k,1/k)-balanced function family F ′ that is also one-way over its range. The
construction is as follows:

Construction 4.1. Let F = {fk : {0,1}n(k) → {0,1}�(k)}k∈N be a family of functions,
and let H = {Hk} be a 2-universal hash family where each h ∈ Hk maps strings of
length �(k) to strings of length t (k), and each such h can be described using s(k) bits.
Define

F ′ = {
f ′

k : {0,1}s(k)+n(k) → {0,1}s(k)+t (k)
}
k∈N

via f ′
k(h, x) = (h,h(fk(x))).

The main result of this section is the following.

Theorem 4.2. Let F be an (r(k),p(k))-approximately-regular one-way function fam-
ily with p(k) = kO(1), let F ′ be as in Construction 4.1 for t (k) = n(k) − r(k) −
logp(k) − 8 logk. Then, for all sufficiently-large k F ′ is (1/k,1/k)-balanced and one-
way over its range.

Note that applying Theorems 2.9 and 3.2 we immediately obtain a bit-commitment
scheme that is computationally binding and ρ-hiding for ρ = O(1/k). The hiding prop-
erty of such a scheme can be amplified to give a statistically-hiding scheme (one with
negligible ρ) by repetition. In particular, we show in Section 5 that this can be achieved
by parallel repetition. The main theorem of this paper immediately follows:

Theorem 4.3. If there exists an approximately-regular one-way function family then
there exists a statistically-hiding commitment scheme.

We remark that by changing the choice of t (k) in Theorem 4.2 we could get a function
that is more balanced. More specifically, for any constant d > 0 we can get a function
that is one-way over its range and (1/kd,1/kd)-balanced by replacing the constant 8 in
the choice of t (k) with the constant 8d . However, once d becomes super constant, this
choice of t (k) does not seem to give a function that is one-way over its range. Therefore
to avoid adding additional parameters, we restrict our attention to d = 1.

In the remainder of this section We prove Theorem 4.2. In Section 4.1 we show that
F ′ is (1/k,1/k)-balanced, and in Section 4.2 we prove that it is one-way over its range.
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To avoid visual clutter we will omit the dependence on k in the notation and write
f,n, �, r,p instead of fk,n(k), �(k), r(k),p(k). We first observe that the almost regu-
larity of f implies that f (Un) has high min-entropy. Specifically:

H∞(f (Un)) ≥ n − r − logp. (2)

Note that Construction 2.6 applies the leftover hash lemma to the distribution
Y = f (Un) and therefore (using the fact that t ≤ (n − r − logp) − 8 logk) we have
that the conditions of Lemma 2.5 are satisfied. We can thus conclude that:

1. f ′(Un+s) has statistical distance at most 1/k3 from Ut+s .
2. H2(f

′(Un+s)) ≥ t + s − 1/k ≥ t + s − 1.

We will use the first item to show that f ′ is balanced and the second item to show
that f ′ is one-way over its range.

4.1. Showing that F ′ is Balanced

We begin by showing that F ′ is (1/k,1/k)-balanced. We start by observing that if a
distribution is close to uniform then it is somewhat balanced.

Lemma 4.4. Let D be a distribution over strings of length v such that SD(D,Uv) ≤ ε.
Then for every 0 < δ < 1, distribution D is ( 3ε

δ
, δ)-balanced.

Proof. We define the following two sets:

Bad+ =
{
y0 ∈ {0,1}v : Pr

y←D
[y = y0] ≥ (1 + δ)2−v

}
,

Bad− =
{
y0 ∈ {0,1}v : Pr

y←D
[y = y0] ≤ (1 − δ)2−v

}
.

Let Bad = Bad+ ∪ Bad−. Note that by construction we have that Bad satisfies the third
item in Definition 3.1. It remains to show that Bad is small and has low probability with
respect to D. We will do this for each of Bad+ and Bad− separately. As the argument is
similar in both cases we will only do it for Bad+.

By the definition of Bad+ we have that:

Pr
y←D

[y ∈ Bad+] − Pr
y←Uv

[y ∈ Bad+] ≥ |Bad+| · δ2−v.

As SD(D,Uv) ≤ ε we have that |Bad+| · δ2−v ≤ ε which implies that |Bad+| ≤ ( ε
δ
) ·

2v . The same bound can be derived on Bad− which gives that |Bad| ≤ ( 2ε
δ

) · 2v . This
concludes the proof of the first item in Definition 3.1. For the second item we recall
once more that SD(D,Uv) ≤ ε and thus:

Pr
y←D

[y ∈ Bad+] ≤ Pr
y←Uv

[y ∈ Bad+] + ε ≤ 2ε/δ + ε ≤ 3ε/δ ,

where the first inequality follows from the estimate on the size of Bad and the second
follows because δ < 1. This concludes the proof of the second item. �
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We have that f ′(Un+s) has statistical distance 1/k3 from Us+t . Using Lemma 4.4
and setting δ = 1/k we conclude that f ′(Un+s) is (α, δ)-balanced for α = 3k/k3 ≤ 1/k

as required.

Using hash functions with higher independence: While we can show that f ′ is (α, δ)-
balanced for α = δ = 1/k we are not able to achieve α and δ that are negligible in
k (which would allow us to construct a statistically-hiding commitment scheme di-
rectly, without repetition). Had we chosen t = n − r − logp − ω(logk) we could have
achieved this goal. However, for this choice of t we cannot show that f ′ is one-way
over its range. We can show that if the family of hash functions is 3k-universal then
f ′ is (α = 2−k, δ = k−�(1))-balanced. However, we do not know how to also achieve
negligible δ in this case.

4.2. Showing that F ′ is One-Way Over Its Range

We now show that F ′ is one-way over its range (assuming F is one-way in the standard
sense). Before giving the proof let us explain why this does not follow directly from
the fact that f ′(Un+s) is statistically close to the uniform distribution. The reader may
safely skip the following paragraph and go directly to the formal proof if he wishes.

Observe that if the output length t is “too small” compared to the min-entropy of
Y = f (Un), then f ′ may not be one-way over its range. More precisely, as the min-
entropy of Y is n − r − logp we have to choose t ≥ (n − r − logp) − c logk for some
constant c. On the other hand, once c is fixed the distribution f ′(Un+s) may only be
of distance ≈ k−c/2 from uniform. (Note that this distance is not negligible.) Therefore
we cannot handle an adversary that inverts f ′ with probability, say, k−2c . To overcome
this difficulty we use the stronger property that f ′(Un+s) has high 2-entropy. As we see
below this characterization will in some sense allow us to handle events of probability
smaller than k−c .

We now proceed with the proof. We start by proving a technical lemma that shows
that a distribution with high 2-entropy cannot have too many elements that have very
high weight.

Lemma 4.5. Let D be a distribution such that H2(D) ≥ q . Then for every ε > 0 there
exists a set Bad such that:

1. Pry←D[y ∈ Bad] ≤ ε.
2. For any y0 
∈ Bad, Pry←D[y = y0] ≤ 2−(q−log(1/ε)).

Proof. Consider the random variable R(y) = PrD[y] (that is the random variable
given by the probability distribution itself). Note that

CP(D) =
∑

y∈Supp(D)

Pr
D

[y]2 =
∑

y∈Supp(D)

Pr
D

[y] · R(y) = ED[R].

By Markov’s inequality we have that PrD[R ≥ ED(R)/ε] ≤ ε. Let Bad
def= {y : R(y) ≥

ED(R)/ε}. We have that Pry←D[y ∈ Bad] ≤ ε. For y0 /∈ Bad we have that

Pr
y←D

[y = y0] ≤ CP(D)/ε = 2−(q−log(1/ε)),

completing the proof. �
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We now show that f ′ is one-way (in the standard sense). We will later use this to
argue that f ′ is one-way over its range.

Lemma 4.6. Function F ′ is one-way.

Before giving the formal proof let us give a high level overview. The reader can safely
skip the next paragraph and go directly to the formal proof if he wishes.

Suppose that an adversary A inverts f ′ (on the distribution f ′(Un+s)) with probabil-
ity k−d . We now try to invert f (when given y from the distribution f (Un)) by choosing
h uniformly at random, computing h‖h(y), and then running A. With noticeable prob-
ability, the adversary A will return a pair (h′, x′) with h′ = h and h(f (x′)) = h(y).
However, this does not necessarily mean that f (x′) = y, as it could be the case that
f (x′) = y′ such that y′ 
= y yet h(y′) = h(y). In this case we will not succeed on y but
we will succeed when given y′. For simplicity let us assume that f is regular. Thus all y

in the image of f have the same weight under f (Un). In this case, for the strategy above
to succeed with noticeable probability we require that, for “most” y, only a polynomial
number of y′ satisfy h(y) = h(y′). This is where we utilize Lemma 4.5, which says that
most outputs of f ′ do not have too many pre-images under h. The formal argument
follows.

Proof of Lemma 4.6. Assume toward a contradiction that there exists a PPT A′ that
achieves noticeable advantage in inverting F ′. That is, there exists a constant d such
that for infinitely many k:

Pr[h ← Hk;x ← {0,1}n(k); z = h(fk(x));x′ ← A′(1k, h, z) : h(fk(x
′)) = z] ≥ k−d .

(3)
(The above implicitly assumes that A′(1k, h, z) would never output (h′, x′) with h′ 
= h;
this is without loss of generality since A′ can always be modified accordingly without
decreasing its advantage.) Fix an arbitrary (large enough) k for which A′ achieves such
an advantage. To avoid visual clutter, we write f and H in place of fk,Hk from now
on. Construct a PPT adversary A (attempting to invert F ) as follows:

A(1k, y)

Choose h ∈ H at random, and set z = h(y)

Run A′(1k, h, z) and obtain output x′
Output x′

We will show that A inverts fk with noticeable probability, contradicting the one-
wayness of F . Note that the distribution over the inputs of A′ in the above experiment
is identical to the distribution over the inputs of A′ in (3). To simplify the notation in the
remainder of this proof all probabilities refer to the probability space where x is chosen
uniformly from {0,1}n, the hash function h is chosen uniformly from H , and uniform
random coins are chosen for A′. By a standard averaging argument, there is a set G1 of
pairs (h0, z0) such that:

1. Pr[f ′(h, x) ∈ G1] ≥ 1/2kd .
2. For any (h0, z0) ∈ G1, Pr[h0(f (A′(1k, h0, z0))) = z0] ≥ 1/2kd . Note that here the

probability is only over the coin tosses of A′ (as h0 and z0 are constants).
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Recall that we have that H2(f
′(Un+s)) ≥ s + t − 1. Set ε = 1/4kd and apply

Lemma 4.5. We conclude that there is a set Bad such that:

1. Pr[f ′(h, x) ∈ Bad] ≤ 1/4kd .
2. For every (h0, z0) /∈ Bad, Pr[f ′(h, x) = (h0, z0)] ≤ 2−(s+t−d log k−O(1)).

By the fact that f is (r,p)-almost regular we have that for every y0 ∈ image(f ),
Pr[f (x) = y0] ≥ 2−(n−r+logp). We now argue that, since each such y0 has “large”
weight, then for (h0, z0) /∈ Bad there cannot be too many y0’s such that h0(y0) = z0.
More precisely, for every (h0, z0) /∈ Bad and every y0 ∈ image(f ) such that h0(y0) = z0,

Weighth0,y0
(y)

def= Pr[f (x) = y0|h(f (x)) = z0 ∧ h = h0]

= Pr[f (x) = y0 ∧ h(f (x)) = z0 ∧ h = h0]
Pr[h(f (x)) = z0 ∧ h = h0]

= Pr[f (x) = y0 ∧ h = h0]
Pr[h(f (x)) = z0 ∧ h = h0]

= Pr[f (x) = y0] · Pr[h = h0]
Pr[h(f (x)) = z0 ∧ h = h0]

≥ 2−(n−r+logp) · 2−s

2−(s+t−d log k−O(1))

≥ 2−(2 logp+8 log k+d log k+O(1)) ≥ k−O(1).

We now show that A has noticeable probability of inverting f . Set G = G1 \ Bad.
Note that:

Pr[f ′(h, x) ∈ G] ≥ 1/2kd − 1/4kd = 1/4kd .

For every (h0, z0) ∈ G, we have that (h0, z0) ∈ G1 and therefore:

Pr[h0(f (A′(1k, h0, z0))) = z0|h = h0 ∧ h(f (x)) = z0]
= Pr[h0(f (A′(1k, h0, z0))) = z0] ≥ 1/2kd .

In words, for every (h0, z0) ∈ G a 1/2kd fraction of coin tosses of A′ results in A′ out-
putting a string x′ such that h0(f (x′)) = z0. For each such set of coins coins0, the string

x′ is fixed (as a function of h0, z0, coins0) and we define y0
def= f (x′). As (h0, z0) /∈ Bad

it follows that:

Pr[f (x) = y0|h(f (x)) = z0 ∧ h = h0] = Weighth0,y0
(y) ≥ k−O(1).

Thus, with noticeable probability all the following events happen simultaneously:

1. f ′(h, x) ∈ G.
2. A′ select a coin toss on which its output x′ satisfies h(f (x′)) = h(f (x)).
3. f (x) = f (x′).
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When all these events happen then A(1k, f (x)) indeed outputs a string x′ such that
f (x′) = f (x); i.e., A inverts f . Thus, we obtain a contradiction. �

We now complete the proof and show that f ′ is one-way over its range.

Lemma 4.7. Function F ′ is one-way over its range.

Proof. For every output (h0, z0) of f ′ there must be a y0 ∈ image(f ) such that
h0(y0) = z0. We have that F is (r(k),p(k))-approximately-regular and therefore y0
has at least 2r(k)/p(k) preimages under f . It follows that (h0, z0) have at least that
many preimages under f ′. Furthermore, for a different pair (h1, z1) 
= (h0, z0) the set
of preimages of (h0, z0) under f ′ does not intersect the preimages of (h0, z0). It follows

that for every set S ⊆ image(f ′), |f ′−1
(S)| ≥ 2r(k)·|S|

p(k)
. Therefore,

Pr[h ← H ;x ← {0,1}n(k) : f ′(h, x) ∈ S]

≥
2r(k)·|S|

p(k)

2n(k)+s(k)
≥ 1

22 logp(k)+8 log k
· |S|

2t (k)+s(k)

= 1

p(k)2 · k8
· Pr[h ← H ; z ← {0,1}t (k) : (h, z) ∈ S],

where in the last inequality we used the fact that t (k) = n(k)− r(k)− logp(k)−8 log k.
Consider any PPT algorithm A′′ inverting F ′ “over its range” with non-negligible proba-
bility ε(k). By a straightforward averaging argument, there exists a set S ⊆ image(f ′) of
relative size at least ε(k)/2 and such that, for any y ∈ S, Pr[A′′(y) ∈ f ′−1

(y)] ≥ ε(k)/2.

Thus, by (4), A′′ inverts f ′ (in the usual sense) with probability at least ε(k)2

poly(k)
, con-

tradicting the one-wayness of F ′. This completes the proof that F ′ is one-way over its
range. �

5. Parallel Repetition of Commitments

In this section, we prove a parallel repetition theorem for the case of statistically-hiding
commitment. We first define formally the notion of parallel repetition we consider:

Construction 5.1 (Parallel Repetition). Let (S, R, V ) be a commitment scheme and
q = poly(k). Construct commitment scheme (Sq , Rq , Vq) as follows.

• On input a bit b, Sq chooses q bits b1, . . . , bq uniformly at random subject to
b = ⊕q

i=1 bi . It then runs (in parallel) q instances of S , where the ith instance
commits to bi . The output of Sq is decom = (decom1, . . . ,decomq), where decomi

is the output of the ith instance of S .
• Rq runs (in parallel) q instances of R. The output of Rq is com = (com1, . . . ,

comq), where comi is the output of the ith instance of R.
• Vq , on input com = (com1, . . . , comq) and decom = (decom1, . . . ,decomq), com-

putes bi = V (comi ,decomi ) for all i. If bi =⊥ for any i, Vq outputs ⊥; otherwise,
it outputs

⊕q

i=1 bi .
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We are now ready to state the result.

Theorem 5.2. Let (S, R, V ) and (Sq, Rq, Vq) be as in Construction 5.1. If (S, R, V )

is a ρ-secure commitment scheme, then (Sq, Rq, Vq) is a ρq -secure commitment
scheme.

We stress that the initial scheme (S, R, V ) is computationally binding in the sense of
Definition 2.2; that is, a cheating polynomial-time sender has only negligible probability
of correctly opening a commitment to two different messages. In other words, we use
parallel repetition here only to strengthen the hiding property (and not to strengthen
the binding property). Nevertheless, a straightforward hybrid argument (omitted here)
shows that binding is not affected: i.e., if (S, R, V ) is computationally binding then
so is (Sq, Rq, Vq). The interesting part of the theorem is that if (S, R, V ) is ρ-hiding
then (Sq, Rq, Vq) is ρq -hiding. Although seemingly obvious, it is not easy to prove: the
difficulty is that the views of the receiver in the different instances of the basic scheme
(S, R, V ) are not necessarily independent, since a malicious receiver can correlate its
messages in each of these executions.4

In our proof, we rely on the ideas used to prove an analogous parallel repetition the-
orem for reducing the soundness error in interactive proof systems [13, Appendix C].
Our result does not appear to follow directly from that result; rather, we use similar
techniques. (Note that in both settings the adversary—i.e., the verifier in the case of
interactive proofs, and the receiver here—is all-powerful.) Theorem 5.2 follows imme-
diately from the following lemma.

Lemma 5.3. Let Com1 = (S1, R1, V1) and Com2 = (S2, R2, V2) be two commitment
schemes, and construct Com = (S, R, V ) by parallel composition of these schemes (in
the obvious way, as in Construction 5.1). If Com1 is ρ1-hiding and Com2 is ρ2-hiding,
then Com is (ρ1ρ2)-hiding.

Proof. Assume each of the component commitment schemes has an r-round commit-
ment phase (this can always be ensured by sending “dummy messages” as needed), and
assume without loss of generality that S1 (resp., S2) sends the first and last message.
Inspired by the proof of [13, Lemma C.1], we employ the notion of a game tree T ,
defined for any commitment scheme as follows:

• The root of T is a node at level 0 denoted ε. This corresponds to the beginning of
an execution of the scheme.

• Each node v at an even level � corresponds to a point when the honest sender makes
a move. This node has children at level � + 1 corresponding to all possible (legal)
messages of the sender (i.e., for all possible random coins and either possible input
bit).

• Each node v at an odd level � < r corresponds to a point when the malicious
receiver makes a move. This node has children at level � + 1 corresponding to all
possible messages of the receiver.

4 This difficulty goes away if either (1) we use sequential repetition; or (2) the receiver is honest-but-
curious. In either of these cases, a parallel composition theorem is easy to prove.
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We identify a node v with the partial view of the receiver up to that point. As a spe-
cial case, if v is a leaf then v corresponds to a possible view of the receiver when the
commitment scheme is run to completion. For a node v, we let ch(v) denote the set of
children of v.

Let T1, T2, T denote the game trees for Com1,Com2,Com, respectively. Let C1 de-
note the size of the space of random coins for S1 (i.e., if S1 uses s1 random coins,
then C1 = 2s1 ), and define C2, C analogously. For a partial transcript v1 of an execution
of Com1, let C1(v1;b) denote the size of the set of random coins for S1 consistent with
input bit b and v1; C2(v2;b) and C(v;b) are defined analogously.

We now define a value val for each node in a game tree. We focus on game tree T

corresponding to Com, but the value val1, val2 of a node in T1, T2 is defined analogously.
The value of a node in T is defined inductively:

• If v is a leaf, then val(v)
def= |C(v;0)−C(v;1)|

2C .

• If v is an even node, then val(v)
def= ∑

w∈ch(v) val(w).

• If v is an odd node, then val(v)
def= maxw∈ch(v) val(w).

If v is a partial transcript and v̂iew is a full transcript, we say that v̂iew is consistent
with v if v is a prefix of v̂iew. It is not hard to see that for any (unbounded) receiver R∗
and every node v:

val(v) ≥ 1

2
·

∑

v̂iew consistent with v

|Pr[view〈S(0),R∗〉 = v̂iew] − Pr[view〈S(1),R∗〉 = v̂iew]|.

Furthermore, there exists an unbounded receiver R∗ for which equality holds. By the
assumption of the lemma, then, we have val1(ε) ≤ ρ1 and val2(ε) ≤ ρ2. Moreover, we
can prove the theorem by showing that val(ε) ≤ ρ1ρ2.

Note that every node (i.e., partial view) v in T corresponds in the natural way to a
tuple (v1, v2) ∈ T1 × T2 (in particular, ε corresponds to (ε, ε)). From now on, we write
val(v1, v2) in place of val(v). The desired bound on val(ε, ε) is immediate from the
following, more general claim

Claim 5.4. For all v1, v2:

val(v1, v2) = val1(v1) · val2(v2).

Proof. We prove this by induction on the level of the tree, starting from the bottom.
The base case occurs when v = (v1, v2) is a leaf in T . By construction of Com, we have
C = 2 · C1 · C2 (the sender S uses an additional random bit to determine the inputs to
S1, S2) and furthermore

C(v;0) = C1(v1;0) · C2(v2;0) + C1(v1;1) · C2(v2;1)

and

C(v;1) = C1(v1;0) · C2(v2;1) + C1(v1;1) · C2(v2;0).
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So:

|C(v;0) − C(v;1)|
2C = |C1(v1;0) − C1(v1;1)| · |C2(v2;0) − C2(v2;1)|

2 · 2 · C1, ·C2

= |C1(v1;0) − C1(v1;1)|
2C1

· |C2(v2;0) − C2(v2;1)|
2C2

= val1(v1) · val2(v2).

Now, assume the claim is true for all nodes at level � + 1 and consider a node v =
(v1, v2) at level �. There are two case. If � is odd, then

val(v) = max
w∈ch(v)

val(w) = max
w1∈ch(v1),w2∈ch(v2)

val(w1,w2)

= max
w1∈ch(v1),w2∈ch(v2)

val1(w1) · val2(w2)

=
(

max
w1∈ch(v1)

val1(w1)

)

·
(

max
w2∈ch(v2)

val2(w2)

)

= val1(v1) · val2(v2).

If, on the other hand, � is even:

val(v) =
∑

w∈ch(v)

val(w) =
∑

w1∈ch(v1),w2∈ch(v2)

val1(w1) · val2(w2)

=
(

∑

w1∈ch(v1)

val1(w1)

)

·
(

∑

w2∈ch(v2)

val2(w2)

)

= val1(v1) · val2(v2).

This completes the proof of the claim, and hence the lemma. �
�

6. Honest-but-Curious vs. Malicious Receivers

In this section, we demonstrate a compiler that converts any commitment scheme that
is statistically-hiding against an honest-but-curious (i.e., semi-honest) receiver into a
commitment scheme that is similarly hiding even against a malicious receiver. More
formally, given a scheme that is ρ-hiding against an honest but-curious receiver (see
Definition 6.2) we obtain a scheme that is (ρ + 1

e(k)
+ negl)-hiding against a malicious

receiver using O(log e(k)/ log k) additional rounds.5 Moreover, if the initial scheme is
computationally binding then so is the derived scheme. The compiler requires only the
existence of one-way functions, and we therefore obtain the following corollary:

Corollary 6.1. The existence of an r(k)-round commitment scheme that is computa-
tionally binding and (1 − 1

poly )-hiding against an honest-but-curious receiver implies
the existence of a statistically-hiding commitment scheme that requires r(k) + O(1)

rounds.

5 In the preliminary version of this work [27], this was only claimed for the particular case of e(k) = kω(1).
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Proof. Say the initial commitment scheme is (1 − 1
p(k)

)-hiding against an honest-but-
curious receiver for some polynomial p. The existence of such a scheme implies the
existence of a one-way function, and we can therefore apply our compiler to obtain a
scheme that is (1 − 1

2p(k)
+ negl)-hiding against a malicious receiver and that requires

r(k) + logp(k)/ log k = r(k) + O(1) rounds. Using parallel repetition and applying
Theorem 5.2 gives the states result. �

We remark that given a constant-round zero-knowledge (ZK) proof system (with neg-
ligible soundness error) for N P , it would be possible to obtain a compiler that trans-
forms a scheme that is ρ-hiding against an honest but-curious receiver to a scheme that
is (ρ + negl)-hiding against a malicious receiver and uses only O(1) additional rounds.
Currently, however, the best known constructions of ZK proof systems with negligi-
ble soundness error based on one-way functions require ω(1) rounds [22]. In particu-
lar, the constant-round construction of [16] requires a statistically-hiding commitment
scheme—the very primitive we are trying to construct!

For completeness, we provide a definition of security against an honest-but-curious
receiver; such a definition follows easily from Definitions 2.1 and 2.3.

Definition 6.2. Commitment scheme (S, R, V ) is ρ-hiding against an honest-but-
curious receiver if the following holds: Let view〈S(b),R〉(k) be the view of an honest
receiver R. Then we require that the ensembles {view〈S(0),R〉(k)} and {view〈S(1),R〉(k)}
have statistical difference at most ρ.

Since we consider the view of the honest receiver R, we must allow R to be probabilis-
tic. The view of R consists of its random coins as well as the messages sent by S .

Our compiler uses a coin-tossing protocol and zero-knowledge proofs (in a way sim-
ilar to [20]) to “force” honest behavior on the part of the receiver. However, we do not
require “simulatable” coin-tossing (as in [4,20,32]) or ZK proofs of correctness fol-
lowing each round (as in [20]); instead, we show that a weaker variant of coin-tossing
along with a single ZK proof at the end suffice. (The latter in particular is essential for
obtaining a round-efficient compiler.)

Informally, our compiler proceeds as follows: the receiver first uses a statistically-
binding commitment scheme (e.g., [33]) to commit to a sufficiently-long string r1, and
the sender responds with a string r2 of the same length. The sender and receiver then
execute the original protocol, with the receiver using r1 ⊕ r2 as its random tape and
the sender committing to a random bit b′. At the conclusion of the original protocol,
the receiver uses a ZK proof (with soundness error 1/e(k)) to show that each of the
messages it sent during the course of the protocol is consistent with the messages sent
by S as well as the random tape r1 ⊕ r2 (we stress that r1 is never revealed to S ). Finally
(assuming S accepts the proof), S concludes the protocol by sending b′ ⊕ b (where b is
the bit that S wants to commit to).

Before giving a formal description and proof of security, some brief remarks are
in order. First, one-way functions are sufficient for both statistically-binding commit-
ment [33] as well as zero-knowledge proofs for all of N P [22,33] with round com-
plexity O(�log e(k)/ log k�). Second, since we have the receiver provide a ZK proof of
correctness only at the conclusion of the protocol we must take into account the fact
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that the receiver may cheat during the course of the protocol, learn some information
about the bit committed to by S , and then abort. To prevent this, we have S commit
to a random bit b′ in the initial phase of the protocol (i.e., before the ZK proof); the
only portion of the transcript that depends on the input bit of S is sent after the receiver
successfully proves correctness of its actions. We now provide a detailed description of
our compiler.

Construction 6.3. Let (S, R, V ) be a commitment scheme, and e(k) a function. Con-
struct commitment scheme (Ŝ, R̂, V̂ ), where the sender Ŝ with input bit b interacts with
the receiver R̂ as follows:

1. Let � = �(k) denote the length of the random tape used by R. Then R̂ uses a (pos-
sibly interactive) statistically-binding commitment scheme to commit to a random
string r1 ∈ {0,1}�. Let com denote the resulting commitment (known to both Ŝ
and R̂) and let decom be the decommitment (known to R̂).

2. Ŝ sends a random string r2 ∈ {0,1}�. This defines a string r
def= r1 ⊕ r2 which is

known to R̂ (but not to Ŝ ).
3. Ŝ chooses a random bit b′, and then Ŝ and R̂ run protocols S(b′) and R, respec-

tively, where the latter is run using random tape r . At the conclusion of this stage,
Ŝ obtains decom′ as output from S , while R̂ obtains com′ as output from R.

4. R̂ provides a ZK proof (with soundness error 1/e(k)) that it acted correctly
throughout the previous stage. Formally, R̂ proves that there exists (decom, r1)

such that com is a commitment to r1 (with decommitment decom) and all the mes-
sages sent by R̂ in the previous stage are consistent with the messages sent by Ŝ
and the random tape r = r1 ⊕ r2.

5. If Ŝ rejects the proof given by R̂, it aborts. Otherwise, Ŝ sends b̂ = b ⊕ b′ and
outputs decom′; the receiver R̂ outputs (com′, b̂).

In the decommitment phase, V̂ proceeds as follows: it runs V (com′,decom′) to obtain
a bit b′ (if the output of V is ⊥, then V̂ outputs ⊥ as well), and then outputs b̂ ⊕ b′.

Theorem 6.4. If commitment scheme (S, R, V ) is computationally binding and ρ-
hiding against an honest-but-curious receiver, then commitment scheme (Ŝ, R̂, V̂ ) as
generated by the above compiler is computationally binding and (ρ + 1

e(k)
+ negl)-

hiding (even against a malicious receiver).

In proving the theorem, we consider the hiding and binding properties individually.

Claim 6.5. If (S, R, V ) is ρ-hiding against an honest-but-curious receiver, then
(Ŝ, R̂, V̂ ) as in Construction 6.3 is (ρ + 1

e(k)
+ negl)-hiding.

Proof. Let R̂∗ denote an unbounded malicious receiver who interacts with Ŝ , and
assume that R̂∗ is deterministic without loss of generality. We say a transcript of an
execution of Ŝ with R̂∗ is non-aborting if Ŝ sends the final bit in the protocol; i.e., R̂∗
gave a successful ZK proof that it acted correctly. (We say it is aborting otherwise.)
We say a transcript is good if (1) the commitment com in the transcript indeed commits
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R̂∗ to a single value r1; and (2) R̂∗ indeed acted correctly in its execution of the sub-
routine R; that is, each message sent by R̂∗ in this transcript is consistent with r1 ⊕ r2
(note that r1 is uniquely defined by (1), and r2 is explicit in the transcript). (We say that
it is bad otherwise.) Note that the probability of a transcript that is bad and non-aborting
is at most 1/e(k) + negl.

The statistical difference between distributions view〈Ŝ(0),R̂∗〉(k) and view〈Ŝ(1),R̂∗〉(k)

is

SD∗(k)
def= 1

2
·
∑

view

|Pr∗b=0[view] − Pr∗b=1[view]|, (4)

where Pr∗b=0[·] denotes the probability taken over coins of the sender when its input bit
is 0, and the case of b = 1 is defined analogously. When view is aborting, Pr∗b=0[view] =
Pr∗b=1[view] (since only the final message depends on the input bit). On the other hand,
as we have already noted, the probability of obtaining a bad and non-aborting view is at
most 1/e(k) + negl. Defining

SD
∗ def= 1

2
·

∑

view non-aborting
and good

|Pr∗b=0[view] − Pr∗b=1[view]|,

we see that |SD∗(k) − SD
∗| ≤ 1/e(k) + negl.

Any non-aborting view can be parsed as an initial portion view′ and the bit b̂ sent in
the final round. Note

SD
∗
(k) = 1

2
·

∑

view′ non-aborting
and good

∑

b̂∈{0,1}
|Pr∗b=0[view′‖b̂] − Pr∗b=1[view′‖b̂]|

= 1

2
·

∑

view′ non-aborting
and good

|Pr∗
b′=0[view′] − Pr∗

b′=1[view′]|. (5)

(The notions of ‘non-aborting’ and ‘good’ depend only on the initial portion, and so
are meaningfully defined above.) Above, Prb′=0[view′] denotes the probability of view′
conditioned on the random bit b′ of the sender being equal to 0 (with the case b′ = 1
defined analogously). Note that Prb′=0[view′] is independent of the input bit b.

We show the existence of a randomized (but not polynomial-time) procedure ψ , out-
putting either a partial transcript or ⊥, with the following property. Let D(b) be the dis-
tribution defined by ψ(view〈S(b),R〉(k)) (i.e., ψ applied to a randomly-generated view
of R interacting with S(b)), and let PrD(b)[view′] be the probability of view′ with respect
to distribution D(b). Then if view′ is non-aborting and good

PrD(b)[view′] = Prb′=b[view′], (6)

while for any other view′ we have PrD(b)[view′] = 0. That is, any view output by ψ is
good and non-aborting (and is furthermore output with probability as in (6)), and ψ

outputs ⊥ otherwise. The statistical difference between D(0) and D(1) is exactly given
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by (5); on the other hand, since the statistical difference between view〈S(b),R〉(k) and
view〈S(1),R〉(k) is at most ρ (as is guaranteed by the ρ-hiding of (S, R, V ) against an
honest-but-curious receiver), this statistical difference can be at most ρ. We conclude
that SD

∗
(k) ≤ ρ(k), and so SD∗(k) ≤ ρ(k) + 1/e(k) + negl.

It remains to show ψ . Procedure ψ , on input a tuple (m1, . . . ,mi, r) (where
m1, . . . ,mi denote the messages of the sender S and r denotes the random coins used
by honest-but-curious R), proceeds as follows:

1. Begin interacting with R̂∗, simulating an execution of Ŝ .
2. When ψ obtains a commitment com from R̂∗, it computes (in exponential time)

a unique string r1 consistent with this commitment. In case no such r1 exists or
multiple such r1 exist, ψ outputs ⊥. (In the first case, the ZK proof of R̂∗ will
fail except with probability at most 1/e(k); the second case occurs with negligible
probability by statistical binding of the commitment scheme.)

3. ψ sends the string r2 = r ⊕ r1 to R̂∗.
4. ψ interacts with R̂∗ by sending messages m1, . . . ,mr in response to the messages

of R̂∗. If R̂∗ ever sends a message inconsistent with random tape r and these
messages, ψ outputs ⊥.

5. Finally, ψ acts as a verifier in an execution of the ZK proof with R̂∗. If the proof
succeeds, then ψ outputs the entire view view′ to this point. If the proof fails, ψ

outputs ⊥.

It is immediate that ψ never outputs a view′ that is bad or aborting. It is also not
hard to see that for any view′ that is non-aborting and good, the probability that view′ is
output by ψ(view〈S(b),R〉(k)) is exactly Pr∗

b′=b
[view′]. The claim follows. �

We next consider the binding property.

Claim 6.6. If � = (S, R, V ) is computationally binding, then �∗ = (Ŝ, R̂, V̂ ) as in
Construction 6.3 is computationally binding as well.

Proof. Given a PPT sender Ŝ ∗ violating the binding property of �∗ with non-
negligible probability, we construct a PPT sender Ŝ violating the binding property of
� with non-negligible probability. Ŝ is defined as follows:

1. Ŝ interacts with an honest receiver R, and runs a copy of Ŝ ∗ internally. Ŝ begins
by sending a random commitment to the string r1 = 0� to Ŝ ∗, who responds with
a string r2 ∈ {0,1}�.

2. Ŝ then relays messages faithfully between R and Ŝ ∗. At the conclusion of this
phase, no more messages are sent to R.

3. Finally, Ŝ simulates a ZK proof of correct behavior with Ŝ ∗ acting as the
potentially-dishonest verifier. (Ŝ ∗ then sends a final bit, which Ŝ ignores.)

4. If Ŝ ∗ outputs valid decommitments to two different bits, then Ŝ does so as well.

To complete the proof, we argue that the probability that ˆ̂S outputs two valid decom-

mitments in its interaction with Ŝ , above, is negligibly-close to the probability that ˆ̂S
outputs two valid decommitments when interacting with an honest receiver R̂. This is
relatively straightforward to show via a hybrid argument, and we only sketch the proof.
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Consider a sequence of experiments, and let Pri[NoBind] denote the probability that Ŝ ∗
outputs two valid decommitments in experiment i):

Experiment 0. This is the original experiment, where Ŝ ∗ interacts with R̂.

Experiment 1. Here, we have R̂ act exactly as in Experiment 0, except that it sim-
ulates the final ZK proof of correct behavior. By the ZK property of the proof system
(against computationally-bounded verifiers), |Pr0[NoBind]−Pr1[NoBind]| is negligible.

Experiment 2. Now, we have R̂ act as in the previous experiment, except that its ini-
tial commitment is to 0� rather than to a random r1 ∈ {0,1}�. (However, it uses random
tape r1 ⊕ r2 in computing its messages to send.) Computational hiding of the commit-
ment scheme implies that |Pr2[NoBind] − Pr1[NoBind]| is negligible.

Experiment 2 corresponds exactly to an interaction of Ŝ ∗ with Ŝ . �
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