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Nenad Dedić, Gene Itkis, Leonid Reyzin, and Scott Russell
Department of Computer Science, Boston University, 111 Cummington Street, Boston, MA 02215, USA

nenad@cs.bu.edu

Received 1 January 2008 and revised 1 January 2008
Online publication 8 April 2008

Abstract. We study the limitations of steganography when the sender is not using
any properties of the underlying channel beyond its entropy and the ability to sample
from it. On the negative side, we show that the number of samples the sender must ob-
tain from the channel is exponential in the rate of the stegosystem. On the positive side,
we present the first secret-key stegosystem that essentially matches this lower bound
regardless of the entropy of the underlying channel. Furthermore, for high-entropy
channels, we present the first secret-key stegosystem that matches this lower bound
statelessly (i.e., without requiring synchronized state between sender and receiver).

Key words. Steganography, Covert communication, Rejection sampling, Lower
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1. Introduction

Steganography’s goal is to conceal the presence of a secret message within an
innocuous-looking communication. In other words, steganography consists of hiding
a secret hiddentext message within a public covertext to obtain a stegotext in such a
way that an unauthorized observer is unable to distinguish between a covertext with a
hiddentext and one without.

The first rigorous complexity-theoretic formulation of secret-key steganography was
provided by Hopper, Langford, and von Ahn [11]. In this formulation, steganographic
secrecy of a stegosystem is defined as the inability of a polynomial-time adversary to
distinguish between observed distributions of unaltered covertexts and stegotexts. (This
is in contrast with many previous works, which tended to be information-theoretic in
perspective; see, e.g., [4] and other references in [4,11].)

1.1. Model

In steganography, the very presence of a message must be hidden from the adversary,
who must be given no reason for suspecting that anything is unusual. This is the main
difference from encryption, which does not prevent the adversary from suspecting that

* Preliminary version appears in TCC 2005 [5].
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a secret message is being sent, but only from decoding the message. To formalize “un-
usual,” some notion of usual communication must exist.

We adopt the model of [11] with minor changes. In it, sender sends data to receiver.
The usual (nonsteganographic) communication comes from the channel, which is a dis-
tribution of possible documents sent from sender to receiver based on past communi-
cation. The channel models the sender’s decision process about what to say next in
ordinary communication; thus, the sender is given access to the channel via a sampling
oracle that takes the past communication as input and returns the next document from
the appropriate probability distribution. Sender and receiver share a secret key (public-
key steganography is addressed in [1,18]).

The adversary is assumed to also have some information about the usual communica-
tion, and thus about the channel. It listens to the communication and tries to distinguish
the case where the sender and receiver are just carrying on the usual conversation (equiv-
alently, sender is honestly sampling from the oracle) from the case where the sender is
transmitting a hiddentext message m ∈ {0,1}∗ (the message may even be chosen by the
adversary). A stegosystem is secure if the adversary’s suspicion is not aroused—i.e., if
the two cases cannot be distinguished.

1.2. Desirable Characteristics of a Stegosystem

Black-Box In order to obtain a stegosystem of broad applicability, one would like to
make as few assumptions as possible about the understanding of the underlying chan-
nel. As Hopper et al. [11] point out, the channel may be very complex and not easily
described. For example, if the parties are using photographs of city scenes as covertexts,
it is reasonable to assume that the sender can obtain such photographs, but unreason-
able to expect the sender and the receiver to know a polynomial-time algorithm that can
construct such photographs from uniformly distributed random strings. We therefore
concentrate on black-box steganography, in which the knowledge about the channel is
limited to the sender’s ability to query the sampling oracle and a bound on the channel’s
min-entropy available to sender and receiver. In particular, the receiver is not assumed
to be able to sample from the channel. The adversary, of course, may know more about
the channel.

Efficient (in Terms of Running Time, Number of Samples, Rate, Reliability) The run-
ning times of sender’s and receiver’s algorithms should be minimized. Affairs are
slightly complicated by the sender’s algorithm, which involves two kinds of funda-
mentally different operations: computation and channel sampling. Because obtaining
a channel sample could conceivably be of much higher cost than performing a compu-
tation step, the two should be separately accounted for.

Transmission rate of a stegosystem is the number of hiddentext bits transmitted per
single stegotext document sent. Transmission rate is tied to reliability, which is the
probability of successful decoding of an encoded message (and unreliability, which
is one minus reliability). The goal is to construct stegosystems that are reliable and
transmit at a high rate (it is easier to transmit at a high rate if reliability is low and so
the receiver will not understand much of what is transmitted).

Even if a stegosystem is black-box, its efficiency may depend on the channel distrib-
ution. We will be interested in the dependence on the channel min-entropy h. Ideally, a
stegosystem would work well even for low-min-entropy channels.
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Secure Insecurity is defined as the adversary’s advantage in distinguishing stegotext
from regular channel communication (and security as one minus insecurity). Note that
security, like efficiency, may depend on the channel min-entropy. We are interested in
stegosystems with insecurity as close to 0 as possible, ideally even for low-min-entropy
channels.

Stateless It is desirable to construct stateless stegosystems, so that the sender and the
receiver need not maintain synchronized state in order to communicate long messages.
Indeed, the need for synchrony may present a particular problem in steganography in
case messages between sender and receiver are dropped or arrive out of order. Unlike
in counter-mode symmetric encryption, where the counter value can be sent along with
the ciphertext in the clear, here this is not possible: the counter itself would also have to
be steganographically encoded to avoid detection, which brings us back to the original
problem of steganographically encoding multibit messages.

1.3. Our Contributions

We study the optimal efficiency achievable by black-box steganography and present
secret-key stegosystems that are nearly optimal. Specifically, we demonstrate the fol-
lowing results:

• A lower bound, which states that a secure and reliable black-box stegosystem with
rate of w bits per document sent requires the encoder to take at least c2w samples
from the channel per w bits sent, for some constant c. The value of c depends on
security and reliability and tends to 1/(2e) as security and reliability approach 1.
This lower bound applies to secret-key as well as public-key stegosystems.

• A stateful black-box secret-key stegosystem STF that transmits w bits per docu-
ment sent takes 2w samples per w bits and has unreliability of 2−h+w per document
(recall that h is the channel entropy) and negligible insecurity, which is indepen-
dent of the channel. (A very similar construction was independently discovered by
Hopper [12, Construction 6.10].)

• A stateless black-box secret-key stegosystem STL that transmits w bits per docu-
ment sent takes 2w samples per w bits and has unreliability 2−Θ(2h) and insecurity
negligibly close to l22−h+2w for lw bits sent.

Note that for both stegosystems, the rate vs. number of samples tradeoff is very close to
the lower bound—in fact, for channels with sufficient entropy, the optimal rate allowed
by the lower bound and the achieved rate differ by log2 2e < 2.5 bits (and some of that
seems due to slack in the bound). Thus, our bound is quite tight, and our stegosystems
quite efficient. The proof of the lower bound involves a surprising application of the
huge random objects of [8], specifically of the truthful implementation of a boolean
function with interval-sum queries. The lower bound demonstrates that significant im-
provements in stegosystem performance must come from assumptions about the chan-
nel.

The stateless stegosystem STL can be used whenever the underlying channel distrib-
ution has sufficient min-entropy h for the insecurity l22−h+2w to be acceptably low. It is
extremely simple, requiring just evaluations of a pseudorandom function for encoding
and decoding, and very reliable.
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If the underlying channel does not have sufficient min-entropy, then the stateful
stegosystem STF can be used, because its insecurity is independent of the channel.
While it requires shared synchronized state between sender and receiver, the state infor-
mation is only a counter of the number of documents sent so far. If min-entropy of the
channel is so low that unreliability of 2−h+w per document is too high for the applica-
tion, reliability of this stegosystem can be improved through the use of error-correcting
codes over the 2w-ary alphabet (applied to the hiddentext before stegoencoding), be-
cause failure to decode correctly is independent for each w-bit block. Error-correcting
codes can increase reliability to be negligibly close to 1 at the expense of reducing the
asymptotic rate from w to w− (h+2)2−h+w . Finally, of course, the min-entropy of any
channel can be improved from h to nh by viewing n consecutive samples as a single
draw from the channel; if h is extremely small to begin with, this will be more effi-
cient than using error-correcting codes (this improvement requires both parties to be
synchronized modulo n, which is not a problem in the stateful case).

This stateful stegosystem STF also admits a few variants. First, the logarithmic
amount of shared state can be eliminated at the expense of adding a linear amount of
private state to the sender and reducing reliability slightly (as further described in 4.1),
thus removing the need for synchronization between the sender and the receiver. Sec-
ond, under additional assumptions about the channel (e.g., if each document includes
time sent, or has a sequence number), STF can be made completely stateless. The re-
marks of this paragraph and the previous one can be equally applied to [12, Construction
6.10].

1.4. Related Work

The bibliography on the subject of steganography is extensive; we do not review it all
here, but rather recommend references in [11].

Constructions In addition to introducing the complexity-theoretic model for steganog-
raphy, [11] proposed two constructions of black-box1 secret-key stegosystems, called
Construction 1 and Construction 2.

Construction 1 is stateful and, like our stateful construction STF, boasts negligible
insecurity regardless of the channel. However, it can transmit only 1 bit per document,
and its reliability is limited by 1/2 + 1/4(1 − 2−h) per document sent, which means
that, regardless of the channel, each hiddentext bit has probability at least 1/4 of arriv-
ing incorrectly (thus, to achieve high reliability, error-correcting codes with expansion
factor of at least 1/(1 − H2(1/4)) ≈ 5 are needed). In contrast, STF has reliability that
is exponentially (in the min-entropy) close to 1, and thus works well for any channel
with sufficient entropy. Furthermore, it can transmit at rate w for any w < h, provided
that the encoder has sufficient time for the 2w samples required. It can be seen as a
generalization of Construction 1.

Construction 2 of [11] is stateless. Like the security of our stateless construction
STL, its security depends on the min-entropy of the underlying channel. While no ex-
act analysis is provided in [11], the insecurity of Construction 2 seems to be roughly

1 Construction 2, which, strictly speaking, is not presented as a black-box construction in [11], can be made
black-box through the use of extractors (such as universal hash functions) in place of unbiased functions, as
shown in [18].
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√
l2(−h+w)/2 (due to the fact that the adversary sees l samples either from C or from a

known distribution with bias roughly 2(−h+w)/2 caused by a public extractor; see Ap-
pendix A), which is higher than the insecurity of STL (unless l and w are so high that
h < 3w + 3 log l, in which case both constructions are essentially insecure, because in-
security is higher than the inverse of the encoder’s running time l2w). Reliability of
Construction 2, while not analyzed in [11], seems close to the reliability of STL. The
rate of Construction 2 is lower (if other parameters are kept the same), due to the need
for randomized encryption of the hiddentext, which necessarily expands the number of
bits sent.

It is important to note that the novelty of STL is not the construction itself, but rather
its analysis. Specifically, its stateful variant appeared as Construction 1 in the Extended
Abstract of [11], but the analysis of the Extended Abstract was later found to be flawed
by [13]. Thus, the full version of [11] included a different Construction 1. We simply
revive this old construction, make it stateless, generalize it to w bits per document, and,
most importantly, provide a new analysis for it.

In addition to the two constructions of [11] described above, and independently of
our work, Hopper [12] proposed two more constructions: Constructions 6.10 (“Multi-
Block”) and 3.15 (“NoState”). As already mentioned, MultiBlock is essentially
the same as our STF. NoState is an interesting variation of Construction 1 of [11] that
addresses the problem of maintaining shared state at the expense of lowering the rate
even further.

Bounds on the Rate and Efficiency Hopper [12, Sect. 6.2] establishes a bound on the
rate vs. efficiency tradeoff. Though quantitatively similar to ours (in fact, tighter by the
constant of 2e), this bound applies only to a restricted class of black-box stegosystems:
essentially, stegosystems that encode and decode one block at a time and sample a fixed
number of documents per block. The bound presented in this paper applies to any black-
box stegosystem, as long as it works for a certain reasonable class of channels, and thus
can be seen as a generalization of the bound of [12]. Our proof techniques are quite
different from those of [12], and we hope they may be of independent interest. We refer
the reader to Sect. 3.4 for an elaboration. Finally, it should be noted that non-black-box
stegosystems can be much more efficient—see [11,14,15,18].

2. Definitions

2.1. Steganography

The definitions here are essentially those of [11]. We modify them in three ways. First,
we view the channel as producing documents (symbols in some, possibly very large,
alphabet) rather than bits. This simplifies notation and makes min-entropy of the chan-
nel more explicit. Second, we consider stegosystem reliability as a parameter rather
than a fixed value. Third, we make the length of the adversary’s description (and the
adversary’s dependence on the channel) explicit in the definition.

The Channel Let Σ be an alphabet; we call the elements of Σ documents. A channel
C is a map that takes a history H ∈ Σ∗ as input and produces a probability distribution
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DH ∈ Σ . A history H = s1s2 . . . sn is legal if each subsequent symbol is obtainable
given the previous ones, i.e., PrDs1s2 ...si−1

[si] > 0. Min-entropy of a distribution D is
defined as H∞(D) = mins∈D{− log2 PrD[s]}. Min-entropy of C is the minH H∞(DH),
where the minimum is taken over legal histories H.

Our stegosystems will make use of a channel sampling oracle M , which, on input H,
outputs a symbol s according to DH. A stegosystem may be designed for a particular
Σ and min-entropy of C .

Definition 1. A black-box secret-key stegosystem for the alphabet Σ is a pair of proba-
bilistic polynomial time algorithms ST = (SE,SD) such that, for a security parameter κ ,

1. SE has access to a channel sampling oracle M for a channel C on Σ and takes
as input a randomly chosen key K ∈ {0,1}κ , a string m ∈ {0,1}∗ (called the hid-
dentext), and the channel history H. It returns a string of symbols s1s2 . . . sl ∈ Σ∗
(called the stegotext)

2. SD takes as input a key K ∈ {0,1}κ , a stegotext s1s2 . . . sl ∈ Σ∗, and a channel
history H and returns a hiddentext m ∈ {0,1}∗.

We further assume that the length l of the stegotext output by SE depends only on the
length of hiddentext m but not on its contents.

Stegosystem Reliability The reliability of a stegosystem ST with security parameter κ

for a channel C and messages of length μ is defined as

RelST(κ),C,μ = min
m∈{0,1}μ,H

{
Pr

K∈{0,1}κ
[
SD

(
K,SEM(K,m, H), H

) = m
]}

.

Unreliability is defined as UnRelST(κ),C,μ = 1 − RelST(κ),C,μ.

The Adversary We consider only passive adversaries who mount a chosen hiddentext
attack on ST (stronger adversarial models for steganography have also been considered,
see, e.g., [1,11,18]). The goal of such an adversary is to distinguish whether it is seeing
encodings of the hiddentext it supplied to the encoder or simply random draws from
the channel. To this end, define an oracle O(·, H) that produces random draws from the
channel starting with history H as follows: on input m ∈ {0,1}∗, O computes the length
l of the stegotext that SEM(K,m) would have output and outputs s1s2 . . . sl where each
si is drawn according to DH◦s1s2...si−1 .

Definition 2. W is a (t, d, q,λ) passive adversary for stegosystem ST if

1. W runs in expected time t (including the running time needed by the stegoen-
coder to answer its queries) and has description of length d (in some canonical
language).

2. W has access to C via the sampling oracle M(·).
3. W can make an expected number of q queries of combined length λ bits to an

oracle which is either SEM(K, ·, ·) or O(·, ·).
4. W outputs a bit indicating whether it was interacting with SE or with O .



Upper and Lower Bounds on Black-Box Steganography 371

Stegosystem Security The advantage AdvSS (here SS stands for “Steganographic Se-
crecy”) of W against ST with security parameter κ for a channel C is defined as

AdvSS
ST(κ),C (W) =

∣∣∣ Pr
K←{0,1}κ

[
WM,SEM(K,·,·) = 1

] − Pr
[
WM,O(·,·) = 1

]∣∣∣.

For a given (t, d, q,λ), the insecurity of a stegosystem ST with respect to channel C is
defined as

InSecSS
ST(κ),C (t, d, q,λ) = max

(t,d,q,λ) adversary W

{
AdvSS

ST(κ),C (W)
}
,

and security Sec as 1 − InSec.
Note that the adversary’s algorithm can depend on the channel C , subject to the re-

striction on the algorithm’s total length d . In other words, the adversary can possess
some description of the channel in addition to the black-box access provided by the
channel oracle. This is a meaningful strengthening of the adversary: indeed, it seems
imprudent to assume that the adversary’s knowledge of the channel is limited to what-
ever is obtainable by black-box queries (for instance, the adversary has some idea of a
reasonable email message or photograph should look like). It does not contradict our
focus on black-box steganography: it is prudent for the honest parties to avoid relying
on particular properties of the channel, while it is perfectly sensible for the adversary,
in trying to break the stegosystem, to take advantage of whatever information about the
channel is available.

2.2. Pseudorandom Functions

We use pseudorandom functions [7] as a tool. Because the adversary in our setting has
access to the channel, any cryptographic tool used must be secure even given the infor-
mation provided by the channel. Thus, the underlying assumption for our constructions
is the existence of pseudorandom functions that are secure given the channel oracle,
which is equivalent [9] to the existence of one-way functions that are secure given the
channel oracle. This is the minimal assumption needed for steganography [11].

Let F = {Fseed}seed∈{0,1}∗ be a family of functions, all with the same domain and
range. For a probabilistic adversary A, and channel C with sampling oracle M , the
PRF-advantage of A over F is defined as

AdvPRF
F (n),C (A) =

∣∣∣ Pr
seed←{0,1}n

[
AM,Fseed(·) = 1

] − Pr
g

[
AM,g(·) = 1

]∣∣∣,

where g is a random function with the same domain and range. For a given (t, d, q), the
insecurity of a pseudorandom function family F with respect to channel C is defined as

InSecPRF
F (n),C (t, d, q) = max

(t,d,q) adversary A

{
AdvSS

F (n),C (A)
}
,

where the maximum is taken over all adversaries that run in expected time t , whose
description size is at most d , and that make an expected number of q queries to their
oracles.
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The existence of pseudorandom functions is also the underlying assumption for our
lower bound; however, for the lower bound, we do not need to give the adversary ac-
cess to a channel oracle (because we construct the channel). To distinguish this weaker
assumption, we will omit the subscript C from InSec.

3. The Lower Bound

Recall that we define the rate of a stegosystem as the average number of hiddentext bits
per document sent (this should not be confused with the average number of hiddentext
bits per bit sent; note also that this is the sender’s rate, not the rate of information
actually decoded by the receiver, which is lower due to unreliability). We set out to
prove that a reliable stegosystem with black-box access to the channel with rate w must
make roughly l2w queries to the channel to send a message of length lw. Intuitively,
this should be true because each document carries w bits of information on average, but
since the encoder knows nothing about the channel, it must keep on sampling until it
gets the encoding of those w bits, which amounts to 2w samples on average.

In particular, for the purposes of this lower bound, it suffices to consider a restricted
class of channels: the distribution of the sample depends only on the length of the his-
tory (not on its contents). We will write D1,D2, . . . ,Di, . . ., instead of DH, where i is
the length of the history H. Furthermore, it will suffice for us to consider only distrib-
utions Di that are uniform on a subset of Σ . We will use the notation Di both for the
distribution and for the subset (as is often done for uniform distributions).

Let H denote the number of elements of Di (note that H = |Di | = 2h), and let S =
|Σ |. Because the encoder knows the min-entropy h of the channel, if H = S, then the
encoder knows the channel completely (it is simply uniform on Σ ). Therefore, if H = S,
then there is no meaningful lower bound on the number of queries made by the encoder
to the channel oracle, because it does not need to make any queries in order to sample
from the channel. Thus, we require that H < S (our bounds will depend slightly on the
ratio of S to S − H ).

Our proof proceeds in two parts. First, we consider a stegoencoder SE that does not
output anything that it did not receive as a response from the channel-sampling oracle
(intuitively, every good stegoencoder should work this way, because otherwise it may
output something that is not in the channel and thus be detected). To be reliable—that
is, to find a set of documents that decode to the desired message—such an encoder
has to make many queries, as shown in Lemma 1. Second, we formalize the intuition
that a good stegoencoder should output only documents it received from the channel-
sampling oracle: we show that to be secure (i.e., not output something easily detectable
by the adversary), a black-box SE cannot output anything it did not receive from the
oracle: if it does, it has an 1 − H/S chance of being detected.

The second half of the proof is somewhat complicated by the fact that we want to
assume security only against bounded adversaries: namely, ones whose description size
and running time are polynomial in the description size and running time of the en-
coder (in particular, polynomial in logS rather than S). Thus, the adversary cannot be
detecting a bad stegoencoder by simply carrying a list of all the entries in Di for each i

and checking if the ith document sent by the stegoencoder is in Di , because that would
make the adversary’s description too long.
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This requires us to come up with pseudorandom subsets Di of Σ that have con-
cise descriptions and high min-entropy and whose membership is impossible for the
stegoencoder to predict. In order to do that, we utilize techniques from the truthful
implementation of a boolean function with interval-sum queries of [8] (truthfulness is
important, because min-entropy has to be high unconditionally).

3.1. Lower Bound When Only Query Results Are Output

If D1,D2, . . . are subsets of Σ , then we write 	D = D1 ×D2 ×· · · to denote the channel
that, on history length i, outputs a uniformly random element of Di . If |D1| = |D2| =
· · · = 2h then we say that 	D is a flat h-channel. We will consider flat h-channels.

Normally, one would think of the channel sampling oracle for 	D as making a fresh
random choice from Di when queried on history length i. However, from the point of
view of the stegoencoder, it does not matter if the choice was made by the oracle in
response to the query or before the query was even made. It will be easier for us to think
of the oracle as having already made and written down countably many samples from
each Di . We will denote the j th sample from Di by si,j . Thus, suppose that the oracle
has already chosen

s1,1, s1,2, . . . , s1,j , . . . from D1,

s2,1, s2,2, . . . , s2,j , . . . from D2,

. . . ,

si,1, si,2, . . . , si,j , . . . from Di,

. . . .

We will denote the string containing all these samples by S and refer to it as a draw
sequence from the channel. We will give our stegoencoder access to an oracle (also
denoted by S ) that, each time it is queried with i, returns the next symbol from the se-
quence si,1, si,2, . . . , si,j , . . .. Choosing S at random and giving the stegoencoder access
to it is equivalent to giving the encoder access to the usual channel-sampling oracle M

for our channel 	D.
Denote the stegoencoder’s output by SES (K,m, H) = t = t1t2 . . . tl , where ti ∈ Σ .

Because we assume in this section that the stegoencoder outputs only documents it
got from the channel oracle, ti is an element of the sequence si,1, si,2, . . . , si,j , . . .. If
ti is the j th element of this sequence, then it took j queries to produce it. We will
denote by weight of t with respect to S the number of queries it took to produce t :
W(t, S) = ∑l

i=1 min{j | si,j = ti}. In the next lemma, we prove (by looking at the
decoder) that, for any S , most messages have high weight, i.e., must take many queries
to encode.

Lemma 1. Let F : Σ∗ → {0,1}∗ be an arbitrary (possibly unbounded) deterministic
stegodecoder that takes a sequence t ∈ Σl and outputs a message m of length lw bits.

Then the probability that a random lw-bit message has an encoding of weight signif-
icantly less than (1/e)l2w is small. More precisely, for any S ∈ Σ∗∗ and any N ∈ N:

Pr
m∈{0,1}lw

[(∃t ∈ Σl
)(

F(t) = m ∧ W(t, S) ≤ N
)] ≤

(
N
l

)

2lw
<

(
Ne

l2w

)l

.
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Proof. Simple combinatorics show that the number of different sequences t that have
weight at most N (and hence the number of messages that have encodings of weight
at most N ) is at most

(
N
l

)
: indeed, it is simply the number of positive integer solutions

to j1 + · · · + jl ≤ N , which is the number of ways to put l bars among N − l stars
(the number of stars to the right of the ith bar corresponds to ji − 1), or, equivalently,
the number of ways choose l positions out of N . The total number of messages is 2lw .
The last inequality follows from

(
N
l

)
< (Ne

l
)l (which is a standard combinatorics fact

and follows from k! ≥ (k/e)k , which in turn follows by induction on k from e > (1 +
1/k)k). �

Our lower bound applies when a stegosystem is used to encode messages drawn uni-
formly from bit strings of equal length. It can easily be extended to messages drawn
from a uniform distribution on any set. If the messages are not drawn from a uniform
distribution, then, in principle, they can be compressed before transmission, thus re-
quiring less work on the part of the stegoencoder. We do not provide a lower bound in
such a case, because any such lower bound would depend on the compressibility of the
message source.

3.2. Secure Stegosystems Almost Always Output Query Answers

The next step is to prove that the encoder of a secure black-box stegosystem must output
only what it gets from the oracle, or else it has a high probability of outputting something
not in the channel. Assume that 	D is a flat h-channel chosen uniformly at random. For
t = t1 . . . tl ∈ Σ∗, let t ∈ 	D denote that ti is in Di for each i. In the following lemma, we
demonstrate that, if the encoder’s output t contains a document that it did not receive as
a response to a query, the chances that t ∈ 	D are at most H/S.

Before stating the lemma, we define the set E of all possible flat h-channels and draw
sequences consistent with them: E = {( 	D, S) | si,j ∈ Di}. We will be taking probabili-
ties over E. Strictly speaking, E is an infinite set, because we defined 	D to be countable
and S to have countably many samples from each Di . For clarity, it may be easiest to
think of truncating these countable sequences to a sufficiently large value beyond which
no stegoencoder will ever go, thus making E finite, and then use the uniform distribution
on E. Formally, E can be defined as a product of countably many discrete probability
spaces (see, e.g., [6, Sect. 9.6]), with uniform distribution on each.

Lemma 2. Consider any deterministic procedure A that is given oracle access to a
random flat h-channel 	D and outputs t = t1t2 . . . tl ∈ Σ∗ (think of A as the stegoencoder
running on some input key, message, channel history, and fixed randomness). Provided
that h is sufficiently smaller than logS, if A outputs something it did not get from the
oracle, then the probability t ∈ 	D is low.

More precisely, let Qi be the set of responses A received to its queries from the ith
channel Di . Define the following two events:

• nonqueried: Nq = {( 	D, S) ∈ E | (∃i)ti /∈ Qi}
• in support: Ins = {( 	D, S) ∈ E | t ∈ 	D}
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Then:

Pr
( 	D,S)∈E

[Ins ∧ Nq] ≤ H

S
.

Proof. If A were always outputting just a single value (l = 1), the proof would be
trivial: seeing some samples from a random D1 does not help A come up with another
value from D1, and D1 makes up only an H/S fraction of all possible outputs of A.
The proof below is a generalization of this argument for l ≥ 1, with care to avoid simply
taking the union bound, which would get us lH/S instead of H/S.

Let Nqi = {( 	D, S) ∈ E | t1 ∈ Q1, t2 ∈ Q2, . . . , ti−1 ∈ Qi−1, ti /∈ Qi} be the event
ti is the first element of the output that was not returned by the oracle as an answer
to a query. Observe that

⋃
i Nqi = Nq and that Nqi are disjoint events and, therefore,∑

i Pr[Nqi] = 1. Now the probability we are interested in is

Pr[Ins ∧ Nq] =
∑

i

Pr[Ins ∧ Nqi] =
∑

i

Pr[Ins | Nqi]Pr[Nqi].

To bound Pr[Ins | Nqi], fix any

S = s1,1, s1,2, . . . , s1,q1 ,

s2,1, s2,2, . . . , s2,q2 ,

. . . ,

such that AS asks exactly q1 queries from D1, q2 queries from D2, . . . . Note that such
S determines the behavior of A, including its output. Assume that, for this S , the event
Nqi happens. We will take the probability Pr[Ins | Nqi] over a random 	D consistent with
S (i.e., for which s1,1, s1,2, . . . , s1,q1 ∈ D1, s2,1, s2,2, . . . , s2,q2 ∈ D2, . . .). This proba-
bility can be computed simply as follows: if q ′

i is the number of distinct elements in

si,1, si,2, . . . , si,qi
, then there are

(S−q ′
i

H−q ′
i

)
equally likely choices for Di (because q ′

i ele-

ments of Di are already determined). However, for Ins to happen, Di must also con-
tain ti , which is not among si,1, si,2, . . . , si,qi

(because we assumed Nqi happens). The
choices of D1, . . . ,Di−1,Di+1, . . . do not matter. Therefore,

Pr[Ins | Nqi] =
(S−q ′

i−1
H−q ′

i−1

)
(S−q ′

i

H−q ′
i

) = H − q ′
i

S − q ′
i

≤ H

S
.

The above probability is for any fixed S of the right length and randomly chosen 	D
consistent with S . Therefore, it also holds for randomly chosen ( 	D, S) ∈ E, because
the order in which S and 	D are chosen and the values in S beyond what A queries do
not affect the probability. We thus have

Pr
( 	D,S)∈E

[Ins ∧ Nq] =
∑

i

Pr[Ins | Nqi]Pr[Nqi] ≤
∑

i

H

S
Pr[Nqi] = H

S
.

�
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3.3. Lower Bound for Unbounded Adversary

We now want to tie together Lemmas 1 and 2 to come up with a lower bound on the
efficiency of the stegoencoder in terms of rate, reliability, and security. Note that some
work is needed, because even though Lemma 1 is about reliability and Lemma 2 is
about security, neither mentions the parameters Rel and InSec.

Assume, for now, that the adversary can test whether ti is in the support of Di . (This
is not possible if Di is completely random and the adversary’s description is small
compared to S = |Σ |; however, it serves as a useful warm-up for the next section.)
Then, using Lemma 2, it is easily shown that, if the stegoencoder has insecurity ε, then
it cannot output something it did not receive as response to a query with probability
higher than ε/(1 − H/S). This leads to the following theorem.

Theorem 1. Let (SE,SD) be a black-box stegosystem with insecurity ε against an
adversary who has an oracle for testing membership in the support of C , unreliability
ρ and rate w for an alphabet Σ of size S. Then, for any positive integer H < S, there
exists a channel with min-entropy h = log2 H such that the probability that the encoder
makes at most N queries to send a random message of length lw is at most

(
Ne

l2w

)l

+ ρ + εR,

and the expected number of queries per stegotext symbol is therefore at least

2w

e

(
1

2
− ρ − εR

)
,

where R = S/(S − H).

Note that, like Lemma 1, this theorem and Theorem 2 apply when a stegosystem is
used to encode messages drawn uniformly from the distribution of all lw-bit messages
(see remark following the proof of Lemma 1).

Proof. We define the following events, which are all subsets of E×{0,1}∗×{0,1}lw ×
{0,1}∗ (below v denotes the randomness of SE):

• “SE makes few queries to encode m under K”: Few = { 	D, S,K,m,v | SES (K,
m;v) makes at most N queries} (note that this is the event whose probability we
want to bound)

• “SE outputs a correct encoding of m under K”: Corr = { 	D, S,K,m,v | SD(K,
SES (K,m;v)) = m}

• “m has an encoding t under K, and this encoding has low weight”: Low =
{ 	D, S,K,m,v(∃t) | SD(K, t) = m ∧ W(t, S) ≤ N}

• Ins and Nq as in Lemma 2, but as subsets of E × {0,1}∗ × {0,1}lw × {0,1}∗
Suppose that SE outputs a correct encoding of a message m. In that case, the probability
that it made at most N queries to the channel is upper bounded by the probability that:
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(i) there exists an encoding of m of weight at most N , or (ii) SE output something it did
not query. In other words,

Pr[Few | Corr] ≤ Pr[Low | Corr] + Pr[Nq | Corr].
Now we have

Pr[Few] = Pr[Few ∩ Corr] + Pr[Few ∩ Corr]
≤ Pr[Few ∩ Corr] + Pr[Corr]
= Pr[Few | Corr] · Pr[Corr] + Pr[Corr]
≤ (

Pr[Low | Corr] + Pr[Nq | Corr]) · Pr[Corr] + Pr[Corr]
= Pr[Low ∩ Corr] + Pr[Nq ∩ Corr] + Pr[Corr]
≤ Pr[Low] + Pr[Nq] + Pr[Corr] .

Because insecurity is ε, Pr[Ins] ≤ ε. Hence,

Pr[Nq] = Pr[Ins ∩ Nq]
Pr[Ins | Nq] = Pr[Ins]

Pr[Ins | Nq] ≤ ε

1 − H/S
(1)

(the second equality follows from the fact that if the encoder outputs something not in
	D, then it must have not queried it, i.e., Ins ⊆ Nq; the inequality follows from Lemma 2).

By Lemma 1 we have

Pr[Low] ≤
(

Ne

l2w

)l

. (2)

Now by combining (1), (2), and the fact that Pr[Corr] ≤ ρ by reliability, we get that

Pr[Few] ≤
(

Ne

l2w

)l

+ ρ + ε

1 − H/S
.

Note that the probability is taken, in particular, over a random choice of 	D. Therefore,
it holds for at least one flat h-channel.

Let random variable q be equal to the number of queries made by SE to encode m

under K . Then, letting d = l2w/e and c = 1 − ρ − ε
1−H/S

, we get

E[q] =
∑
N≥0

Pr[q > N ] ≥
�d�−1∑
N=0

c −
(

N

d

)l

≥
�d�−1∑
N=0

c − N

d

= c�d� − (�d� − 1)�d�
2d

≥
(

c − 1

2

)
�d�.

The expected number of queries per document sent is (E[q])/ l and so is at least ( 1
2 −

ρ − ε
1−H/S

)(2w/e). �
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3.4. Lower Bound for Computationally Bounded Parties

We now want to establish the same lower bound without making such a strong assump-
tion about the security of the stegosystem. Namely, we do not want to assume that the
insecurity ε is low unless the adversary’s description size and running time are feasible
(“feasible,” when made rigorous, will mean some fixed polynomial in the description
size and running time of the stegoencode and in a security parameter for a function
that is pseudorandom against the stegoencoder). Recall that our definitions allow the
adversary to depend on the channel; thus, our goal is to construct channels that have
short descriptions for the adversary but look like random flat h-channels to the black-
box stegoencoder. In other words, we wish to replace a random flat h-channel with a
pseudorandom one.

We note that the channel is pseudorandom only in the sense that it has a short de-
scription, so as to allow the adversary to be computationally bounded. The min-entropy
guarantee, however, can not be replaced with a “pseudo-guarantee”: else the encoder
is being lied to, and our lower bound is no longer meaningful. Thus, a simpleminded
approach, such as using a pseudorandom predicate with bias H/S applied to each sym-
bol and history length to determine whether the symbol is in the support of the channel,
will not work here: because S is constant, eventually (for some history length) the chan-
nel will have lower than guaranteed min-entropy (moreover, we do not wish to assume
that S is large in order to demonstrate that this is unlikely to happen; our lower bound
should work for any alphabet). Rather, we need the pseudorandom implementation of
the channel to be truthful2 in the sense of [8], and so rely on the techniques developed
therein.

The result is the following theorem, which is similar to Theorem 1, except for a small
term introduced by pseudorandomness of the channel.

Theorem 2. There exist polynomials p1,p2 and constants c1, c2 with the follow-
ing property. Let ST(κ) be a black-box stegosystem with security parameter κ , de-
scription size δ, unreliability ρ, rate w, and running time τ for the alphabet Σ =
{0,1, . . . , S − 1}. Assume that there exists a pseudorandom function family F (n) with
insecurity InSecPRF

F (n)(t, d, q). Then, for any positive integer H < S, there exists a chan-
nel C with min-entropy h = log2 H such that the probability that the encoder makes at
most N queries to send a random message of length lw is upper bounded by

(
Ne

l2w

)l

+ ρ + Rε + (R + 1)
(
InSecPRF

F (n)

(
p1(τ, n), δ + c1,p1(τ, n)

) + τ2−n
)
,

and the expected number of queries per stegotext symbol is therefore at least

2w

e

(
1

2
− ρ − Rε − (R + 1)

(
InSecPRF

F (n)

(
p1(τ, n), δ + c1,p1(τ, n)

) + τ2−nt
))

,

where R = S/(S − H) and ε is the insecurity the stegosystem ST on the channel C
against adversaries running in time p2(n, logS,n) of description size n + c2, mak-

2 In this case, truthfulness implies that for each history length, the support of the channel has exactly H

elements.
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ing just one query of length lw to SE or O (i.e., ε = InSecSS
ST(κ),C (p2(n, logS, l), n +

c2,1, lw)).

Proof. The main challenge lies in formulating the analogue of Lemma 2 under com-
putational restrictions. Lemma 2 and its use in Theorem 1 relied on: (i) the inability of
the encoder to predict the behavior of the channel (because the channel is random) and
(ii) the ability of the adversary to test if a given string is in the support of the channel
(which the adversary has because it is unbounded). We need to mimic this in the compu-
tationally bounded case. We do so by constructing a channel whose support (i) appears
random to a bounded encoder, but (ii) has an efficient test of membership that the adver-
sary can perform given only a short advice. As already mentioned, we wish to replace a
random channel with a pseudorandom one and give the short pseudorandom seed to the
adversary, while keeping the min-entropy guarantee truthful.

The next few paragraphs will explain how this is done, using the techniques of huge
random objects from [8]. A reader not familiar with [8] may find it easier to skip to the
paragraph entitled “Properties of the Pseudorandom Flat-h Channels,” where the results
of this—i.e., the properties of the channel that we obtain—are summarized.

Specifying and Implementing the Flat-h Channel For the next few paragraphs, famil-
iarity with [8] will be assumed. Recall that [8] requires a specification of the object that
will be pseudorandomly implemented, in the form of a Turing machine with a countably
infinite random tape. It would be straightforward to specify the channel as a random ob-
ject (random subset D of Σ of size H ) admitting two types of queries: “sample” and
“test membership.” But a pseudorandom implementation of such an object would also
replace random sampling with pseudorandom sampling, whereas in a stegosystem the
encoder is guaranteed a truly random sample from D (indeed, without such a guarantee,
the min-entropy guarantee is no longer meaningful). Therefore, we need to construct a
slightly different random object, implement it pseudorandomly, and add random sam-
pling on top of it. We specify the random object as follows. Recall that S = |Σ |, h is
the min-entropy, and H = 2h.

Definition 3. (Specification of a flat h-channel) Let Mω be a probabilistic Turing
machine with an infinite random tape ω. On input five integers (S,H, i, a, b) (where
0 < H ≤ S, i > 0, 0 ≤ a ≤ b < S), Mω does the following:

• divides ω into consecutive substrings y1, y2, . . . of length S each;
• identifies among them the substrings that have exactly H ones; let y be the ith

such substring (with probability one, there are infinitely many such substrings, of
course);

• returns the number of ones in y between, and including, positions a and b in y

(positions are counted from 0 to S − 1).

In what way does M = Mω specify a flat h-channel? To see that, identify Σ with
{0, . . . , S − 1}, and let Di be the subset of Σ indicated by the ones in y. Then Di has
cardinality H and testing membership in Di can be realized using a single query to M :



380 N. Dedić et al.

insuppM(i, s):
return M(S,H, i, s, s)

Obviously, Di are selected uniformly at random and independently of each other. Thus,
this object specifies the correct channel and allows membership testing.

We now use this object to allow for random sampling of Di . Outputting a random
element of Di can be realized via logS queries to M , using the following procedure
(essentially, binary search):

rndeltM(i):
return random-element-in-rangeM(S,H, i,0, S − 1)

random-element-in-rangeM(S,H, i, a, b):
if a = b then return a and terminate
mid ← �(a + b)/2�
total ← M(S,H, i, a, b)

left ← M(S,H, i, a,mid)

r
R← {1, . . . , total}

if r ≤ left then
random-element-in-rangeM(S,H, i, a,mid)

else
random-element-in-rangeM(S,H, i,mid + 1, b)

We can implement this random object pseudorandomly using the same techniques
as [8] uses for implementing random boolean functions with interval sums (see [8,
Theorem 3.2]). Namely, the authors of [8] give a construction of a truthful pseudo-
implementation of a random object determined by a random boolean function f :
{0, . . . ,2n −1} → {0,1} that accepts queries in the form of two n-bit integers (a, b) and
answers with

∑b
j=a f (j). Roughly, their construction is as follows. Let S = 2n. Imag-

ine a full binary tree of depth n whose leaves contain values f (0), f (1), . . . , f (S − 1).
Any other node in the tree contains the sum of leaves in its subtree. Given access to such
tree, we can compute any sum f (a) + f (a + 1) + · · · + f (b) in time proportional to n.
Moreover, such trees need not be stored fully but can be evaluated dynamically, from
the root down to the leaves, as follows. The value in the root (i.e., the sum of all leaves)
has binomial distribution and can be filled in pseudorandomly. Other nodes have more
complex distributions but can be also filled in pseudorandomly and consistently, so that
they contain the sums of their leaves. The construction uses a pseudorandom function
to come up with the value at each node.

We need to make three modifications. First, we simply fix the value in the root to H ,
so that f (0) + f (1) + · · · + f (S − 1) = H . Second, we allow S to be not a power
of 2. Third, in order to create multiple distributions Di , we add i as an input to the
pseudorandom function, thus getting different (and independent-looking) randomness
for each Di .

Having made these modifications, we obtain a truthful pseudo-implementation of M .
It can be used within insupp and rndelt instead of M , for efficient membership
testing and truly random sampling from our pseudorandom channel.
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Properties of the Pseudorandom Flat h-Channels We thus obtain that, given a short
random seed ω, it is possible to create a flat h-channel that is indistinguishable from ran-
dom and allows for efficient membership testing and truly random sampling given ω. To
emphasize the pseudorandomness of the channel, in our notation we will use DPR insted
of D and keep the seed ω explicit as a supercript. Thus, DPRω

i is a pseudorandom subset

of Σ of size H , and the channel is denoted by −−→DPR
ω = DPRω

1 × DPRω
2 × · · ·. Similarly

to E defined in Sect. 3.2 for truly random channels, define EPRn = {(ω, S) | |ω| =
n, si,j ∈ DPRω

i }.
Because −−→DPR

ω
has the requisite min-entropy, it is valid to expect proper performance

of the stegoencoder on it; because it is pseudorandom, an analog of Lemma 2 will still
hold; and because it has efficient membership testing given a short seed, the adversary
will be able to see if an output of the stegoencoder is not from it.

We are now ready to formally state the claim about the properties of −−→DPR. For this
claim and for the rest of the proof, we assume existence of a family of pseudorandom
functions F with insecurity InSecPRF

F (n)(t, d, q) (recall that InSec is a bound on the dis-
tinguishing advantage of any adversary running in time at most t of description size at
most d making at most q queries). To simplify the notation, we will note that for us d

always will be at most description size of the stegosystem plus some constant c1, and
that q ≤ t . We will then write ιPRF(n, t) instead of InSecPRF

F (n)(t, d, q).

Claim 1. There is a polynomial p and a family of channels −−→DPR
ω

, indexed by a string
ω of length n (as well as values H and S), such that, for any positive integers n, i and
H ≤ S, channel −−→DPR has the following properties:

• is a flat h-channel for h = logH on the alphabet {0, . . . , S − 1};
• allows for sampling and membership testing in time polynomial in n, logS, and

log i given ω, i,H , and S as inputs;
• is pseudorandom in the following sense: for any H , S, and any oracle machine

(distinguisher) A with running time τ ≥ logS,
∣∣∣ Pr
( 	D,S)←E

[
AS,Memb( 	D)() = 1

] − Pr
(ω,S)←EPRn

[
AS,Memb(ω)() = 1

]∣∣∣

< ιPRF
(
n,p(τ,n)

) + τ2−n,

where Memb( 	D) and Memb(ω) denote membership testing oracles for 	D and−−→DPR
ω

, respectively.

The claim follows from the results of [8] with minor modifications, as presented
above. We present no proof here.

Note that the second argument to ιPRF depends on S only to the extent τ does; this
is important, because, even for large alphabets and high-entropy channels, we want to
keep the second argument to ιPRF as low a possible so that ιPRF is as low as possible.

Stegosystems Running with DPR Almost Always Output Query Answers Having built
pseudorandom channels, we now state the analog of Lemma 2 that works for stegosys-
tems secure only against bounded adversaries. Fix some H and S. Let A be the same
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as in Lemma 2, but given access to −−→DPR
ω

instead of 	D, and let t = t1 . . . tl be its output
and Qi be the set of responses A received to its queries of the ith channel DPRi . Anal-
ogously to Nq and Ins, define the following two families of events, indexed by n, the
security parameter for the PRF.

• nonqueried, pseudorandom version: NqPRn = {(ω, S) ∈ EPRn | (∃i)ti /∈ Qi}
• in support, pseudorandom version: InsPRn = {(ω, S) ∈ EPRn | t ∈ −−→DPR

ω}
We show that high probability of InsPRn implies low probability of NqPRn. Formal

statement of the lemma follows. To simplify the notation, let R = S/(S − H).

Lemma 3. There exists a polynomial p1 such that, for any A running in time τ ≥
logS, if Pr[InsPRn] < ε(n), then

Pr[NqPRn] < Rε(n) + (R + 1)
(
ιPRF

(
n,p1(τ, n)

) + τ2−n
)
.

Proof. Let Ins and Nq be the same as in Lemma 2. Let A′ be a machine that is given
an oracle which tests membership in the channel. Let A′ run A to get t and output 1 if
and only if the membership oracle says that t is in the channel. Applying Claim 1 to A′,
we have that, for some polynomial p′ (namely, the polynomial p(τ + tA′(τ ), n), where
tA′ is the extra time that A′ needs to run after A is finished),

∣∣Pr[InsPRn] − Pr[Ins]∣∣ < ιPRF
(
n,p′(τ, n)

) + τ2−n.

Therefore Pr[Ins] < ε(n) + ιPRF(n,p(τ + p′(τ, n))) + τ2−n. It now follows, by the
same derivation as for (1) in the proof of Theorem 1, that

Pr[Nq] <
ε(n) + ιPRF(n,p′(τ, n)) + τ2−n

1 − H/S
.

Let A′′ be a machine that runs A and outputs 1 if and only if A outputs some-
thing it did not receive as a query response. Applying Claim 1 to A′′, we get that,
for some polynomial p′′ (namely, the polynomial p(τ + tA′′(τ ), n), where tA′′ is the
extra time that A′′ needs to run in addition to A), we get |Pr[NqPRn] − Pr[Nq]| <

ιPRF(n,p′′(τ, n)) + τ2−n. Therefore,

Pr[NqPRn] <
ε(n) + ιPRF(n,p′(τ, n))

1 − H/S
+ ιPRF

(
n,p′′(τ, n)

) + (1 + R)τ2−n.

Now let p1 ≥ max(p′,p′′). �

Completing the Proof We are now ready to prove Theorem 2. We define the same
events as in the proof of Theorem 1, except as subsets of EPRn × {0,1}∗ × {0,1}lw ×
{0,1}∗ rather than E × {0,1}∗ × {0,1}lw × {0,1}∗ (we use the suffix PR to emphasize
that they are for the pseudorandom channel): FewPRn,CorrPRn,LowPRn denote, re-
spectively, that SE made at most N queries, that SD correctly decoded the hiddentext,
and that the hiddentext has a low-weight encoding.
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Just like in the proof of 1, it holds that Pr[FewPRn] ≤ Pr[LowPRn] + Pr[NqPRn] +
Pr[CorrPRn] and that Pr[CorrPRn] < ρ and Pr[LowPRn] < (Ne/l2w)l . It is left to ar-
gue a bound on Pr[NqPRn].

Consider an adversary against our stegosystem that contains ω as part of its descrip-
tion, gives its oracle a random message to encode, and then tests if the output is in−−→DPR

ω
. It can be implemented to run in p2(n, logS, l) steps for some polynomial p2

and has description size n + c2 for some constant c2. Hence, its probability of de-
tecting a stegoencoder output that is not in −−→DPR

ω
cannot be more than the insecurity

ε = InSecSS

ST(κ),
−−→DPR

ω(p2(n, logS, l), n + c2,1, lw). In other words, Pr[InsPRn] ≤ ε,

and, by Lemma 3, we get

Pr[NqPRn] ≤ Rε + (R + 1)
(
ιPRF

(
n,p1(τ, n)

) + τ2−n
)
.

Finally, to compute a bound on the expected value, we apply the same method as in
the proof of Theorem 1. �

Discussion The proof of Theorem 2 relies fundamentally on Theorem 1: specifically,
Lemma 3 relies on Lemma 2. In other words, to prove a lower bound in the computation-
ally bounded setting, we use the corresponding lower bound in the information-theoretic
setting. To do so, we replace an object of an exponentially large size (the channel) with
one that can be succinctly described. This replacement substitutes some information-
theoretic properties with their computational counterparts. However, for a lower bound
to remain “honest” (i.e., not restricted to uninteresting channels), some global properties
must remain information-theoretic. This is where the truthfulness of huge random ob-
jects of [8] comes to the rescue. We hope that other interesting impossibility results can
be proved in a similar fashion by adapting an information-theoretic result using the par-
adigm of [8]. We think truthfulness of the objects will be important in such adaptations
for the same reason it was important here.

Note that the gap in the capabilities of the adversary and encoder/decoder is different
in the two settings: in the information-theoretic case, the adversary is given unrestricted
computational power, while, in the computationally bounded case, it is assumed to run
in polynomial time but is given the secret channel seed. However, in the information-
theoretic case, we may remove the gap altogether by providing both the adversary and
the encoder/decoder with a channel membership oracle and still obtain a lower bound
analogous3 to that of Theorem 2. We see no such opportunity to remove the gap in
the computationally bounded case (e.g., equipping the encoder/decoder with the chan-
nel seed seems to break our proof). Removing this asymmetry in the computationally
bounded case seems challenging and worth pursuing.

3 A lower bound on the number of samples per document sent becomes trivially zero if the encoder is
given as much time as it pleases, in addition to the membership oracle of the flat channel. Yet it should not be
difficult to prove that it must then run for O(2w) steps per document sent.
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4. The Stateful Construction STF

The construction STF relies on a pseudorandom function family F . In addition to the
security parameter κ (the length of the PRF key K), it depends on the rate parameter w.
Because it is stateful, both encoder and decoder take a counter ctr as input.

Our encoder is similar to the rejection-sampler-based encoder of [11] generalized to
w bits: it simply samples elements from the channel until the pseudorandom function
evaluated on the element produces the w-bit symbol being encoded. The crucial differ-
ence of our construction is the following: to avoid introducing bias into the channel, if
the same element is sampled twice, the encoder simply flips a random coin to decide
whether to output that element with probability 2−w . Hopper [12, Construction 6.10] in-
dependently proposes a similar construction, except instead of flipping a fresh random
coin, the encoder evaluates the pseudorandom function on a new counter value (there
is a separate counter associated to each sampled document, indicating how many times
the document has been sampled), thus conserving randomness.

Observe that, assuming F is truly random rather than pseudorandom, each sample
from the channel has probability 2−w of being output, independent of anything else, be-
cause each time fresh randomness is being used. Of course, this introduces unreliability,
which is related to the probability of drawing the same element from DH twice.

Procedure STF.SE(K,w,m, H, ctr):
Let m = m1m2 . . .ml , where |mi | = w

for i ← 1 to l:
j ← 0; f ← 0; ctr ← ctr + 1
repeat:

j ← j + 1
si,j ← M(H)

if ∃j ′ < j s.t. si,j = si,j ′
let c ∈R {0,1}w
if c = mi then f ← 1

else if FK(ctr, si,j ) = mi

then f ← 1
until f = 1
si ← si,j ; H ← H||si

output s = s1s2 . . . sl

Procedure STF.SD(K,w, s, ctr):
Let s = s1 . . . sl , where si ∈ Σ

for i = 1 to l

ctr ← ctr + 1
mi ← FK(ctr, si)

output m = m1m2 . . .ml

Theorem 3. The stegosystem STF has insecurity InSecSS
STF(κ,w)(t, d, l, lw)

= InSecPRF
F (κ)(t + O(1), d + O(1), l2w). For each i, the probability that si is de-

coded incorrectly is 2−h+w + InSecPRF
F (κ)(2

w,O(1),2w), and unreliability is at most

l(2−h+w + InSecPRF
F (κ)(2

w,O(1),2w)).

Proof. Insecurity bound is apparent from the fact that if F were truly random, then
the system would be perfectly secure, because its output is distributed identically to
C (simply because the encoder samples from the channel and independently at random
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decides which sample to output, because the random function is never applied more than
once to the same input). Hence, any adversary for the stegosystem would distinguish F
from random.

The reliability bound per symbol can be demonstrated as follows. Assuming that F is
random, the probability that f becomes 1 after j iterations of the inner loop in STF.SE
(i.e., that si = si,j ) is (1 − 2−w)j−12−w . If that happens, the probability that ∃j ′ < j

such that si,j = si,j ′ is at most (j − 1)2−h. Summing up and using standard formulas
for geometric series, we get

∞∑
j=1

(j − 1)2−h
(
1 − 2−w

)j−12−w

= 2−h−w

∞∑
j=1

((
1 − 2−w

)j

( ∞∑
k=0

(
1 − 2−w

)k

))
< 2w−h.

�

Note that errors are independent for each symbol, and hence error-correcting codes
over alphabet of size 2w can be used to increase reliability: one simply encodes m

before feeding it to SE. Observe that, for a truly random F , if an error occurs in position
i, the symbol decoded is uniformly distributed among all elements of {0,1}w − {mi}.
Therefore, the stegosystem creates a 2w-ary symmetric channel with error probability
2w−h(1 − 2−w) = 2−h(2w − 1) (this comes from more careful summation in the above
proof). Its capacity is w−H [1−2−h(2w −1),2−h,2−h, . . . ,2−h] (where H is Shannon
entropy of a distribution) [16, p. 58]. This is equal to w + (2w − 1)2−h log 2−h + (1 −
2−h(2w −1)) log(1−2−h(2w −1)). Assuming that the error probability 2−h(2w −1) ≤
1/2 and using log(1−x) ≥ −2x for 0 ≤ x ≤ 1/2, we get that the capacity of the channel
created by the encoder is at least w +2−h(2w −1)(−h−2) ≥ w − (h+2)2−h+w . Thus,
as l grows, we can achieve rates close to w − (h + 2)2−h+w with near perfect security
and reliability (independent of h).

4.1. Stateless Variants of STF

Our stegosystem STF is stateful because we need F to take ctr as input to make sure
we never apply the pseudorandom function more than once to the same input. This
will happen automatically, without the need for ctr, if the channel C has the following
property: for any histories H and H′ such that H is the prefix of H′, the supports of DH
and DH′ do not intersect. For instance, when documents have monotonically increasing
sequence numbers or timestamps, no shared state is needed.

To remove the need for shared state for all channels, we can do the following. We
remove ctr as an input to F and instead provide STF.SE with the set Q of all values
received so far as answers from M . We replace the line “if ∃j ′ < j s.t. si,j = si,j ′” with
“if si,j ∈ Q” and add the line “Q ← Q ∪ {si,j }” before the end of the inner loop. Now
shared state is no longer needed for security, because we again get fresh coins on each
draw from the channel, even if it collides with a draw made for a previous hiddentext
symbol. However, reliability suffers, because the larger l is, the more likely a collision
will happen. A careful analysis, omitted here, shows that unreliability is l22−h+w (plus
the insecurity of the PRF).
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Unfortunately, this variant requires the encoder to store the set Q of all the symbols
ever sampled from C . Thus, while it removes shared state, it requires a lot of private
state. This storage can be reduced somewhat by use of Bloom filters [2] at the expense of
introducing potential false collisions and thus further decreasing reliability. An analysis
utilizing the bounds of [3] (omitted here) shows that using a Bloom filter with (h −
w − log l)/ ln 2 bits per entry will increase unreliability by only a factor of 2, while
potentially reducing storage significantly (because the symbols of Σ require at least h

bits to store and possibly more if the DH is sparse).

5. The Stateless Construction STL

The stateless construction STL is simply STF without the counter and collision detec-
tion (and is a generalization to rate w of the construction that appeared in the extended
abstract of [11]). Again, we emphasize that the novelty is not in the construction but in
the analysis. The construction requires a reliability parameter k to make sure that ex-
pected running time of the encoder does not become infinite due a low-probability event
of infinite running time.

Procedure STL.SE(K,w,k,m, H):
Let m = m1 . . .ml , where |mi | = w

for i ← 1 to l:
j ← 0
repeat:

j ← j + 1
si,j ← M(H)

until FK(si,j ) = mi or j = k

si ← si,j ; H ← H||si
output s = s1s2 . . . sl

Procedure STL.SD(K,w, s):
Let s = s1 . . . sl , where si ∈ Σ

for i = 1 to l

mi ← FK(si)

output m = m1m2 . . .ml

Theorem 4. The stegosystem STL has insecurity

InSecSS
STL(κ,w,k),C (t, d, l, lw) ∈ O

(
2−h+2wl2 + le−k/2w)

+ InSecPRF
F (κ)

(
t + O(1), d + O(1), l2w

)
.

More precisely,

InSecSS
STL(κ,w,k),C (t, d, l, lw)

< 2−h
(
l(l + 1)22w − l(l + 3)2w + 2l

) + 2l

(
1 − 1

2w

)k

+ InSecPRF
F (κ)

(
t + 1, d + O(1), l2w

)
.

Proof. The proof of Theorem 4 consists of a hybrid argument. The first step in the
hybrid argument is to replace the stegoencoder SE with SE1, which is the same as SE,
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except that it uses a truly random G instead of pseudorandom F , which accounts for
the term InSecPRF

F (κ)(t + O(1), d + O(1), l2w). Then, rather than consider directly the
statistical difference between C and the output of SE1 on an lw-bit message, we bound
it via a series of steps involving related stegoencoders (these are not encoders in the
sense defined in Sect. 2, as they do not have corresponding decoders; they are simply
related procedures that help in the proof).

The encoders SE2, SE3, and SE4 are specified in Fig. 1. SE2 is the same as SE1,
except that it maintains a set Q of all answers received from M so far. After receiving
an answer si,j ← M(H), it checks if si,j ∈ Q; if so, it aborts and outputs “Fail”; else, it
adds si,j to Q. It also aborts and outputs “Fail” if j ever reaches k during an execution
of the inner loop. SE3 is the same as SE2, except that instead of thinking of random
function G as being fixed before hand, it creates G “on the fly” by repeatedly flipping
coins to decide the w-bit value assigned to si,j . Since, like SE2, it aborts whenever
a collision between strings of covertexts occurs, the function will remain consistent.
Finally, SE4 is the same as SE3, except that it never aborts with failure.

In a sequence of lemmas, we bound the statistical difference between the outputs of
SE1 and SE2; show that it is the same as the statistical difference between the outputs
of SE3 and SE4; and show that the outputs of SE2 and SE3 are distributed identically.
Finally, observe that SE4 does nothing more than sample from the channel and then ran-
domly and obliviously to the sample keep or discard it. Hence, its output is distributed
identically to the channel. The details of the proof follow.

For ease of notation, we will denote 2−h (the upper bound on the probability of
elements of DH) by p and 2w by R for the rest of this proof.

The following proposition serves as a warm-up for the proof of Lemma 4, which
follows it.

Proposition 1. The statistical difference between the output distributions of SE1 and
SE2 for a w-bit hiddentext message m ∈ {0,1}w is at most 2p/(R − 1)2 + 2e−k/R . That
is,

∑
∀s∈Σ

∣∣∣ Pr
G,M

[
SE1(K,w,k,m, H) → s

] − Pr
G,M

[
SE2(K,w,k,m, H) → s

]∣∣∣

< 2p(R − 1)2 + 2e−k/R.

Proof. Consider the probability that SE2 outputs “Fail” while trying to encode some
m ∈ {0,1}w . This happens for one of two reasons. First, if after k attempts to find si,j
such that G(si,j ) = mi , no such si,j has been drawn. Second, if the same value is re-
turned twice by M before SE2 finds a satisfactory si,j ; in other words, if there has been
a collision between two unsuccessful covertext documents.

Let E1 denote the event that one of these two situations has occurred and n1 denote
the value of j at which E1 occurs. Then

Pr[E1] ≤
(

R − 1

R

)2

p +
(

R − 1

R

)3

2p + · · · +
(

R − 1

R

)k−1

(k − 2)p +
(

R − 1

R

)k
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= p

k−1∑
n1=2

(
R − 1

R

)n1

(n1 − 1) +
(

R − 1

R

)k

< p

(
R − 1

R

)2 ∞∑
n1=0

(
R − 1

R

)n1

(n1 + 1) +
(

R − 1

R

)k

= p(R − 1)2 +
(

R − 1

R

)k

< p(R − 1)2 + e−k/R.

Observe that the probability that SE2 outputs a specific document s which is not
“Fail” can be only less than the probability that SE1 outputs the same element. Since
the total decrease over all such s is at most the probability of failure from above, the
total statistical difference is at most 2 Pr[E1]. �

Lemma 4. The statistical difference between the output of SE1 and SE2 when encod-
ing a message m ∈ {0,1}lw is at most

p
(
l(l + 1)R2 − l(l + 3)R + 2l

) + 2l

(
1 − 1

R

)k

.

Proof. Proposition 1 deals with the case l = 1. It remains to extend this line of analysis
to the general case l > 1. As in the proof of Proposition 1, let Ei denote the event that
SE2 outputs “Fail” while attempting to encode the ith block of mi . Note that Ei grows
with i because the set Q grows as more and more blocks are encoded. Also, let ni

denote the number of attempts used by SE2 to encode the ith block. To simplify the
analysis, we initially ignore the boundary case of failure on attempt ni = k and treat
a failure on this attempt like all others. Let E′

i denote these events. Then, we have the
following sequence of probabilities.

Recall that, for E′
1,

Pr[E′
1] < p(R − 1)2.

In the harder case of E′
2,

Pr[E′
2] =

k∑
n1=1

Pr[E′
2|n1 draws for bit 1]Pr[n1 draws for bit 1]

≤ p

R

k∑
n1=1

k∑
n2=1

(
R − 1

R

)n1+n2−1

(n1 + n2 − 1)

= p

R

k∑
n1=1

(
R − 1

R

)n1−1
(

k∑
n2=1

(
R − 1

R

)n2

(n2 − 1) + n1

k∑
n2=1

(
R − 1

R

)n2
)

<
p

R

k∑
n1=1

(
R − 1

R

)n1−1(
Pr[E′

1]/p + n1(R − 1)
)
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<
p

R

(
R Pr[E′

1]/p + R2(R − 1)
)

= p
(
(R − 1)2 + R(R − 1)

)

= p(2R − 1)(R − 1).

Similarly, for E′
3,

Pr[E′
3] ≤ p

R2

k∑
n1=1

k∑
n2=1

k∑
n3=1

(
R − 1

R

)n1+n2+n3−2

(n1 + n2 + n3 − 1)

= p

R2

k∑
n1=1

(
R − 1

R

)n1−1

×
(

R Pr[E′
2]/p + n1

k∑
n2=1

(
R − 1

R

)n2−1 k∑
n3=1

(
R − 1

R

)n3
)

<
p

R2

k∑
n1=1

(
R − 1

R

)n1−1(
R Pr[E′

2]/p + n1R(R − 1)
)

<
p

R2

(
R2 Pr[E′

2]/p + R3(R − 1)
)

= p(3R − 1)(R − 1).

In general, for E′
i , we have the recurrence

Pr[E′
i] ≤ p

Ri−1

k∑
n1=1

(
R − 1

R

)n1−1(
Ri−2 Pr[E′

2]/p + n1R
i−2(R − 1)

)

< Pr[E′
i−1] + pR(R − 1),

which when solved yields

Pr[E′
i] < p(iR − 1)(R − 1).

Now summing up the probability of failure for each of the w-bit blocks of hiddentext
gives

l∑
i=1

Pr[E′
i] < p(R − 1)

l∑
i=1

(iR − 1)

= p(R − 1)

(
R

l∑
i=1

i −
l∑

i=1

1

)

= p(R − 1)

(
Rl(l + 1)

2
− l

)
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= p

((
R2

2

)
(l + 1)l −

(
R

2

)
(l + 3)l + l

)
.

Next, we compute the probability of the event that the encoding of block mi fails be-
cause there were k unsuccessful attempts to find a string of n covertexts which evaluates
to mi under G, given that no collisions occurred so far. Call this event Êi . Then

Pr[Êi] <

(
R − 1

R

)k

:

Pr[Ê1] <

(
R − 1

R

)k

,

Pr[Ê2] <
1

R

k∑
n1=1

(
R − 1

R

)n1+k−1

= Pr[Ê1]
R

k∑
n1=1

(
R − 1

R

)n1−1

< Pr[Ê1],

Pr[Ê3] <
1

R2

k∑
n1=1

k∑
n2=1

(
R − 1

R

)n1+n2+k−2

= 1

R2
Pr[Ê1]

k∑
n1=1

k∑
n1=1

(
R − 1

R

)n1+n2−2

< Pr[Ê1],
and, in general,

Pr[Êi] <
1

Ri−1

k∑
n1=1

k∑
n2=1

· · ·
k∑

ni−1=1

(
R − 1

R

)n1+n2+···+ni−1+k−(i−1)

< Pr[Ê1].

So, the sum of the probabilities of Êi for i from 1 to l is just l Pr[Ê1] = l(R−1
R

)k .
Finally, we compute the total probability of failure which is at most the sum of the

E′
i and Êi events. That is, the probability that SE2 outputs “Fail” while encoding any of

the l w-bit blocks of mi of m is at most

l∑
i=1

Pr[Ei] <

l∑
i=1

Pr[E′
i] + Pr[Êi]

< p

((
R2

2

)
(l + 1)l −

(
R

2

)
(l + 3)l + l

)
+ l

(
R − 1

R

)k

.

The statistical difference is at most just twice this amount. �

Lemma 5. The statistical difference between the output distributions of SE2 and SE3
for a random function G and hiddentext message m ∈ {0,1}lw is zero.

Proof. Both SE2 and SE3 abort and output “Fail” whenever the encoding a block mi

fails. This occurs because either: (1) there are k unsuccessful attempts to find si,j such
that G(si,j ) = mi ; or (2) the same document is drawn twice, i.e., there is a collision
between candidate covertext documents. Hence, SE2 evaluates G at most once on each
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element of Σ . So, although SE3 ignores G and creates its own random function by
flipping coins at each evaluation, since no element of Σ will be re-assigned a new
value, the output distributions of SE2 and SE3 are identical. �

Lemma 6. The statistical difference between the output distributions of SE3 and SE4

is equal to the statistical difference between the output distributions of SE1 and SE2

used to encode the same message.

Proof. As Lemma 4 shows, the probability that SE2 (and consequently SE3 by
Lemma 5) outputs “Fail” is at most

((
R2

2

)
(l + 1)l −

(
R

2

)
(l + 3)l + l

)
+ l

(
R − 1

R

)k

.

Note that SE4 has no such element; the probabilities of each output other that “Fail” can
only increase. Hence, the total statistical difference is twice the probability of “Fail.” �

These three lemmas, put together, conclude the proof of the theorem. We can save
a factor of two in the statistical difference by the following observation. Half of the
statistical difference between the outputs of SE1 and SE2, as well as between the outputs
of SE3 and SE4, is due to the probability of “Fail.” Because neither SE1 nor SE4 output
“Fail,” the statistical difference between the distributions they produce is therefore only
half of the sum of the statistical differences. �

Theorem 5. The stegosystem STL has unreliability

UnRelSS
STL(κ,w,k),C,l ≤ l

(
2w exp

[−2h−2w−1]+ exp
[−2−w−1k

])+ InSecPRF
F (κ)

(
t, d, l2w

)
,

where t and d are the expected running time and description size, respectively, of the
stegoencoder and the stegodecoder combined.

Proof. As usual, we consider unreliability if the encoder is using a truly random G;
then, for a pseudorandom F , the encoder and decoder will act as a distinguisher for F

(because whether something was encoded correctly can be easily tested by the decoder),
which accounts for the InSecPRF term.

The stegoencoder fails to encode properly when it cannot find si,j such that G(si,j ) =
mi after k attempts. We will consider separately the case where G is simply unlikely to
hit mi and where G is reasonably likely to hit mi , but the samples from the channel are
just unlucky for k times in a row.

To bound the probability of failure in the first case, fix some channel history H and
w-bit message m and consider the probability over G that G(DH) is so skewed that
the weight of G−1(m) in DH is less c2−w for some constant c < 1 (note that the
expected weight is 2−w). Formally, consider PrG[Prs←DH [G(s) = m] < c2−w]. Let
Σ = {s1 . . . sn} be the alphabet, and let PrDH [si] = pi . Define the random variable Xi

as Xi = 0 if G(si) = m and Xi = pi otherwise. Then the weight of G−1(m) equals
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Prs←DH [G(s) = m] = 1 − ∑n
i=1 Xi . Note that the expected value, over G, of

∑n
i=1 Xi

is 1 − 2−w . Using Hoeffding’s inequality (Theorem 2 of [10]), we obtain

Pr
G

[
1 −

n∑
i=1

Xi ≤ c2−w

]
≤ exp

[
−2(1 − c)22−2w

/ n∑
i=1

p2
i

]

≤ exp

[
−2(1 − c)22−2w

/
2−h

/ n∑
i=1

pi

]

= exp
[−2(1 − c)22h−2w

]
,

where the second to last step follows from pi ≤ 2−h and the last step follows from∑n
i=1 pi = 1. If we now set c = 1/2 and take the union bound over all messages m ∈

{0,1}w , we get that the probability that G is skewed for at least one message is at most
2w exp[−2h−2w−1].

To bound the probability of failure in the second case, assume that G(DH) is not so
skewed. Then the probability of failure is

(
1 − c2−w

)k ≤ exp
[−c2−wk

]
.

The result follows from setting c = 1/2 and taking the union bound over l. �
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Appendix A. On Using Public ε-Biased Functions

Many stegosystems [1,11,18] (particularly public-key ones) use the following approach:
they encrypt the hiddentext using encryption that is indistinguishable from random and
then use rejection sampling with a public function f : Σ → {0,1}w to stegoencode the
resulting ciphertext.

For security, f should have small bias on DH: i.e., for every c ∈ {0,1}w , Prs∈DH [s ∈
f −1(c)] should be close to 2−w . It is commonly suggested that a universal hash function
with a published seed (e.g., as part of the public key) be used for f .

Assume that the stegosystem has to work with a memoryless channel C , i.e., one for
which the distribution D is the same regardless of history. Let E be the distribution
induced on Σ by the following process: choose a random c ∈ {0,1}w and then keep
choosing s ∈ D until f (s) = c. Note that the statistical difference between D and E is
exactly the bias ε of f . We are interested in the statistical difference between Dl and El .
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For a universal hash function f that maps a distribution of min-entropy h to {0,1}w ,
the bias is roughly ε = 2(−h+w)/2. As shown in [17], if l < 1/ε (which is reasonable to
assume here), statistical difference between Dl and El is roughly at least

√
lε.

Hence, the approach based on public hash functions results in statistical insecurity of
about

√
l2(−h+w)/2.
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