
J. Cryptol. (2010) 23: 344–371
DOI: 10.1007/s00145-008-9032-z

How Should We Solve Search Problems Privately?∗

Amos Beimel
Dept. of Computer Science, Ben-Gurion University,Be’er Sheva, Israel

beimel@cs.bgu.ac.il

Tal Malkin†

Dept. of Computer Science, Columbia University, New York, NY, USA
tal@cs.columbia.edu

Kobbi Nissim‡

Dept. of Computer Science, Ben-Gurion University, Be’er Sheva, Israel
kobbi@cs.bgu.ac.il

Enav Weinreb
CWI, Amsterdam, The Netherlands

e.n.weinreb@cwi.nl

Communicated by Matthew Franklin

Received 7 December 2007 and revised 2 October 2008
Online publication 6 November 2008

Abstract. Secure multiparty computation allows a group of distrusting parties to
jointly compute a (possibly randomized) function of their inputs. However, it is often
the case that the parties executing a computation try to solve a search problem, where
one input may have a multitude of correct answers—such as when the parties compute
a shortest path in a graph or find a solution of a set of linear equations.

The algorithm for arbitrarily picking one output from the solution set has significant
implications on the privacy of the computation. A minimal privacy requirement was
put forward by Beimel et al. [STOC 2006] with focus on proving impossibility results.
Their definition, however, guarantees a very weak notion of privacy, which is probably
insufficient for most applications.

In this work we aim for stronger definitions of privacy for search problems that pro-
vide reasonable privacy. We give two alternative definitions and discuss their privacy
guarantees. We also supply algorithmic machinery for designing such protocols for a
broad selection of search problems.

Key words. Secure computation, Search problems, Privacy, Resemblance

∗ A preliminary version of this work appeared in A. Menezes, editor, Advances in Cryptology—CRYPTO
2007, Lecture Notes in Computer Science, vol. 4622, pp. 31–49. Springer, 2007.

† Research partially supported by the NSF (grant No. CCF-0347839).
‡ Research partially supported by the Israel Science Foundation (grant No. 860/06).

© International Association for Cryptologic Research 2008

mailto:beimel@cs.bgu.ac.il
mailto:tal@cs.columbia.edu
mailto:kobbi@cs.bgu.ac.il
mailto:e.n.weinreb@cwi.nl

How Should We Solve Search Problems Privately? 345

1. Introduction

Secure multiparty computation addresses a setting where several distrusting parties want
to jointly compute a function f (x1, . . . , xn) of their private inputs x1, . . . , xn while
maintaining the privacy of their inputs. One of the most fundamental, and by now well
known, achievements in cryptography (initiated by [3,9,15,21], and continued by a long
line of research) shows that, for any feasible function f , there exist secure multiparty
protocols for f in a variety of settings.

However, in many cases, what the parties wish to compute is not a function with
just a single possible output for each input, and not even a randomized function with a
well-defined output distribution. Rather, in many cases the parties are solving a prob-
lem where several correct answers (or solutions) may exist for a single joint input. For
example, the parties may jointly hold a graph and wish to compute a shortest path be-
tween two of its vertices or to find a minimal vertex cover in it.1 Such problems are
called search problems.

When one tries to apply the known results of secure multiparty computation to search
problems, one has first to decide upon a polynomial-time computable function that
solves the search problem. That is, one should present a specific algorithm that assigns a
single output, or a well-defined distribution on the output space, to every possible input.

An approach often taken by designers of secure multiparty protocols for such appli-
cations is to arbitrarily choose one of the existing algorithms/heuristics for the search
problem and implement a secure protocol for it. This indeed amounts to choosing an
arbitrary (possibly randomized) function that provides a solution and implementing it
securely. The privacy implications of such choices have not been analyzed. It is usually
easy to come up with “bad” algorithms that encode in their output choices crucial in-
formation about one or more of their inputs, and it may be that algorithms accidentally
leak such information even if not maliciously designed. It is clear that if the computed
function leaks information on the parties’ private inputs, any protocol realizing it, no
matter how secure, will also leak this information. Thus, some privacy requirements
should be imposed on the chosen input-output functionality.

To illustrate the necessity of a rigid discussion of secure computation of search prob-
lems, consider the following setting. A server holds a database with valuable informa-
tion, and a client makes queries to this database such that there may be many different
answers to a single query. The server is interested in choosing the answers to the client’s
queries in a way that reveals the “least information possible about the database.”

The answering strategy the server chooses influences the revealed information. For
example, consider a case where the client queries for the name of a person whose de-
tails are in the database and satisfy some condition. If the server answers such queries
with the details of the appropriate person whose name is the lexicographically first in
the database, then it reveals the fact that every person prior to that person in the lexico-
graphic order does not satisfy the given condition.

1 Another example is when the parties compute an approximation of a function f () as in [11,17,18].
Again, there is potentially more than one correct answer for an instance.

346 A. Beimel et al.

1.1. This Work

In this paper we study some of the privacy implications of how the output is chosen
for search problems, we propose two privacy requirements and provide constructions
achieving them for several problems. Our work generalizes the approach taken in [1],
where the problem of private search was introduced in the context of approximation
algorithms. Finally, we give examples for problems that admit private search algorithms
of certain kinds and do not admit other.

Our work is closest in spirit to that of Beimel et al. [1]. They have put forward what
seems to be a minimal requirement of privacy.2 Informally:

Private Search: If two instances x, y have an identical set of possible
solutions, their outputs should not be distinguished.

That is, in order for an algorithm to be private, on any input instance its output must
only depend on the solution set for that input—not on the specific input. In the context
of private approximations of functions [11] (and, similarly, for those instances of search
problems for which a unique solution exists), this turns out to be a significant privacy
guarantee—it implies that the approximation algorithm does not leak any information
beyond the exact f (x). However, in the context of search problems the implication is
potentially much weaker—no information beyond the entire solution set of x is leaked.
Arguably, for many applications requiring privacy, leaking information up to the entire
solution set does not provide a sufficient privacy guarantee. We note that this weak
definition was reasonable in the context of [1] because they provide mostly negative
results (so a weaker definition corresponds to stronger infeasibility results).

Note that even with the minimal definition of privacy of [1], the notion of private
search has so far proved to be very problematic. Search versions of many NP-complete
problems do not admit even much weakened notions of private approximation algo-
rithms, and private search is infeasible even for some problems that do admit (non-
private) polynomial time search algorithms [1,2].

We are thus faced with a double challenge: first, strengthen the privacy definition,
imposing further requirements on the function in order to provide reasonable privacy
guarantees. Second, provide protocols implementing the stronger definitions for as wide
as possible a class of search problems. This is the goal we tackle in this work.

Which further requirements should be imposed on the outcome of private search al-
gorithms? While the answer to this question may be application dependent, we identify
two (incomparable) requirements and study which problems admit those requirements
and which techniques can be used to achieve them.

Before elaborating on this, let us start with two naïve proposals—to demonstrate
essential privacy considerations arising for search problems and to facilitate our actual
proposed definitions and algorithms. In the following informal discussion, we call two
instances of a search problem equivalent if they have the same sets of solutions.

1.1.1. Deterministic vs. Randomized Private Algorithms

Consider first requiring any private algorithm A to be deterministic. As such, for each
input, it consistently selects one of the solutions, and hence subsequent applications

2 This requirement was first coined in the context of private approximation of functions [11] and later
extended to search problems.

How Should We Solve Search Problems Privately? 347

of the algorithm on the same (or equivalent) inputs do not reveal further information.
A possible choice is to output the lexicographically first solution. This choice is compu-
tationally feasible for several polynomially solvable search problems such as the prob-
lem of finding a solution for a linear system, and stable marriage (using the stable mar-
riage with restrictions algorithm [10]).3

Deterministic private search algorithms, however, leak definite information, which
(depending on the application) may turn out to be crucial. Consider, for example, a data-
base of computer science papers and their authors that on a query—a paper’s title—
returns one of the paper’s authors’ names. Whenever the deterministic private search
algorithm answers differently on two instances—papers x and y—this serves as a def-
inite indication that the author lists for x and y are not identical, even if the author
lists are similar. If, furthermore, the deterministic private search algorithm returns the
lexicographically first solution, it rules out all solutions that are ordered below it. For
example, the answer to the query instance “How Should We Solve Search Problems
Privately?” reveals that none of its authors’ names starts with an “A”.

Next, consider a randomized algorithm A which on input x selects an answer from
the set of solutions according to a specific distribution (this distribution does not depend
on the specific instance but may depend on the solution set). A natural choice here is to
pick a solution uniformly at random. Randomized private algorithms may be advanta-
geous to deterministic private algorithms, since the information they leak is potentially
“blurred.” In our database example, if papers x, y have similar author lists, then the re-
sulting output distributions would be close. On the other hand, when applied repeatedly
on the same instance, there is a potential for an increased leakage (this clearly is the case
with our database example, since repeated querying yields a learning of all the authors
of a paper in a coupon collecting manner). Another example, where the solution space
is exponential and can be completely learned using a polynomial number of repeated
evaluations of a randomized private search algorithm, is the problem of finding a solu-
tion for a linear system of equations; the number of revealed solutions grows roughly
exponentially in the number of invocations, until the entire solution space is revealed.

We note that the benefits and disadvantages of deterministic and randomized algo-
rithms are generally incomparable. Moreover, there exist problems for which an algo-
rithm outputting uniformly selected solutions exists, but no deterministic private algo-
rithm exists (under standard assumptions), and vice versa (see Sect. 5).

1.1.2. Framework: Seeded Algorithms

In the following, we restrict our attention to what we call seeded algorithms. The idea
of seeded algorithms is not new—these are deterministic algorithms that get as input a
“random” seed s and an instance x. If the seed s is selected at random the first time the
seeded algorithm is invoked, subsequent invocations on the same input may be answered
consistently. A seeded algorithm allows selecting a random solution for each instance
(separately), while preventing abuse of repeated queries. Arguably, seeded algorithms

3 The recent protocols of [12,16] also output a deterministic solution—the outcome of the Gale–Shapley
algorithm [13]. However, the Gale–Shapley algorithm is not a private search algorithm.

348 A. Beimel et al.

are less desirable than algorithms that do not need to maintain any state information.4

However, we note that the state information of seeded algorithms is rather easy to main-
tain, since the parties do not need to keep a log of previously answered queries, and
hence their state does not grow with the number of queries. In that, the usage of seeded
algorithms is similar to that of pseudorandom functions.

1.1.3. Our Results

To focus on the choice of a function for solving a search problem, we abstract out the
implementation details of the underlying secure multiparty setting (similarly to [1,2,
11,17]). Our results directly apply to a client–server setup, where the server is willing
to let the client learn a solution to a specific search problem applied to its input. They
similarly apply to the setup of a distributed multiparty computation where the parties
share an instance x using a secret sharing scheme, as it can be reduced to a client–
server setup using secure function evaluation protocols [3,9,15,21]. In the general setup
of distributed multiparty computation, however, one may also consider definitions that
allow revealing information to a party implied by its individual input.

Equivalence-ProtectingAlgorithms Equivalence-protecting algorithms are seeded al-
gorithms that choose a uniformly random answer for each class of equivalent instances.
Given the seed, the output is deterministic and respects equivalence of instances—an
access to an equivalence-protecting algorithm A P for a problem P simulates an access
to a random oracle for P that answers consistently on inputs with the same solutions.5

To some extent, equivalence-protecting algorithms enjoy benefits of both the naïve
privacy notions discussed above, deterministic and randomized private algorithms: (i)
there is a potential for not giving “definite” information; and (ii) leakage is not accu-
mulated with repeated queries. However, equivalence-protecting algorithms do allow
distinguishing instances even when their solution sets are very close.

Recalling our database example, we note that equivalence protection may give better
privacy guarantees than the examples of private search discussed in Sect. 1.1.1. The fol-
lowing toy “covert channel” problem is another example that demonstrates how equiv-
alence protection can give better privacy guarantees than private search. An instance of
the problem consists of a graph G = (V ,E), and a solution for an instance G consists
of a matching M in G and a string C (whose content is not restricted). An equivalence-
protecting algorithm should return a (pseudo) random string in C, rendering it useless
for an attacker. On the other hand, a private search algorithm may put in C any function
of the entire set of matchings for G, and hence the outcome string C may inadvertently
turn into a channel leaking information about G. For instance, it may be that the private
algorithm reveals one matching of G in M and another one in C. Of course, in real
applications the covert channel may not be as visible as in this toy problem.

In Sect. 3 we reduce the problem of designing an equivalence-protecting algorithm
for a search problem to that of (i) designing a deterministic algorithm for finding a

4 In secure multiparty computation, the parties should jointly generate a random seed and then work with
this shared seed in subsequent executions of the algorithm. In a client-server setup, the server should generate
the seed the first time it is invoked and use it in future invocations.

5 Such a random oracle can be thought of as an ideal model solution to the problem, which the equivalence-
protecting algorithm is required to emulate.

How Should We Solve Search Problems Privately? 349

canonical representative of the equivalence class; (ii) designing a randomized private
algorithm returning a uniformly chosen solution; and (iii) the existence of pseudoran-
dom functions. We then show how to use this to construct an equivalence-protecting
algorithm for what we call “monotone search problems,” a wide class of functions in-
cluding perfect matching in bipartite graphs and shortest path in directed graphs. We
further demonstrate the power of our general construction by showing an equivalence-
protecting algorithm for solving a system of linear equations over a finite field.

Resemblance-Preserving Algorithms Our second strengthening of the requirements
on a private search algorithm addresses the problem of distinguishing nonequivalent
instances with similar solution sets. Similarly to equivalence-protecting algorithms,
resemblance-preserving algorithms choose a random solution for each set of equiva-
lence instances. However, here the choices of the output for nonequivalent instances
are highly correlated so that pairs of instances that have close output sets are answered
identically with high probability.

In Sect. 4 we present a generic construction of resemblance-preserving algorithms
for any search problem whose output space admits a pairwise independent family of
permutations where the minimum of a permuted solution set can be computed effi-
ciently. Examples of such search problems include finding roots or non-roots of a poly-
nomial, solving a system of linear equations over a finite field, finding a point in a
union of rectangles in a fixed dimensional space, and finding a satisfying assignment
for a DNF formula. It is interesting to note that for the last problem, finding an efficient
equivalence-protecting algorithm implies RP = NP.

Summary We present two definitions that try to answer the particular concerns raised
in Sect. 1.1.1 above and (at least intuitively) seem suitable for different applications. We
provide technical tools to achieve these definitions and identify generic classes, as well
as specific examples, of search problems where our tools can be used to yield private
search algorithms with the desired properties.

It is interesting to note that the definition of equivalence-protecting algorithms is
more “cryptographic,” whereas the definition of resemblance-preserving algorithms is
more “combinatorial.” Equivalence-protecting is defined via using the ideal world vs.
real world paradigm, and for many problems (including all our examples), the existence
of an equivalence-protecting algorithm implies computational hardness—the existence
of pseudorandom functions. The definition of resemblance-preserving algorithms does
not use the ideal world vs. real world paradigm, and most of our examples only make
use of combinatorial tools.

The main conceptual contribution of this work is in putting forward the need to study
private computation of search problems (where a non-private solution is known). We
also initiate a study of which privacy requirements are tractable for specific problems.
Our main technical contributions are in the tools and algorithms presented in Sect. 4 for
resemblance-preserving algorithms.

Other variants of private search have been researched in previous work. A variant
where privacy is preserved w.r.t. instances that share the same set of approximate so-
lutions was presented in [2,18], and a variant where the approximation algorithm is
allowed to leak a well-quantified amount of information was presented in [1,17]. We

350 A. Beimel et al.

note that unlike these two variants, which are relaxations of private search, the notions
we examine in this work are strictly stronger than private search.

1.2. Organization

We start in Sect. 2 with definitions of search problems and the minimal privacy require-
ment of [1]. We define equivalence-protecting algorithms and resemblance-preserving
algorithms and show the basic techniques for constructing them in Sect. 3 and in Sect. 4,
respectively. We discuss the relationships between the classes of private algorithms in
Sect. 5 and conclude in Sect. 6.

2. Definitions

We define a search problem as a function assigning to an instance x ∈ {0,1}n a solution
set Pn(x). Two instances of a search problem are equivalent if they have exactly the
same solution set. More formally:

Definition 2.1 (Search Problems). A search problem is an ensemble P = {Pn}n∈N

such that

Pn : {0,1}n → 2{0,1}q(n)

for some positive polynomial q(n).

Definition 2.2 (Instance Equivalence). For a search problem P , the equivalence rela-
tion ≡P includes all pairs of instances x, y ∈ {0,1}n such that Pn(x) = Pn(y).

We now recall the minimal definition of private search algorithms from [1]. All
our privacy definitions will be stronger—an algorithm that satisfies one of Defini-
tions 2.4, 2.5, 3.2, or 4.2 trivially satisfies Definition 2.3.

Definition 2.3 (Private Search Algorithms [1]). A probabilistic polynomial time algo-
rithm AP is a private search algorithm for P if

1. A P (x) ∈ Pn(x) for all x ∈ {0,1}n, n ∈ N (that is, the algorithm always returns a
valid solution); and

2. For every probabilistic polynomial-time algorithm D and for every positive poly-
nomial q(·), there exists some n0 ∈ N such that, for every x, y ∈ {0,1}∗ satisfying
x ≡P y and |x| = |y| ≥ n0,

∣
∣Pr[D(A P (x), x, y) = 1] − Pr[D(A P (y), x, y) = 1]∣∣ ≤ 1

q(|x|) .

That is, when x ≡P y, no probabilistic polynomial time algorithm D can distin-
guish whether the input of A P is x or y.

Two natural special cases are of deterministic private algorithms and output-sampling
algorithms:

How Should We Solve Search Problems Privately? 351

Definition 2.4 (Deterministic Private Algorithms). Let P = {Pn}n∈N be a search prob-
lem. A deterministic algorithm A is called a deterministic private algorithm for P if (i)
A P (x) ∈ Pn(x) for all x ∈ {0,1}n, n ∈ N; and (ii) A(x) = A(y) for every x, y ∈ {0,1}∗
such that x ≡P y.

Definition 2.5 (Output-Sampling Algorithms). Let P = {Pn}n∈N be a search prob-
lem. A randomized algorithm A is called an output-sampling algorithm for P if for
every x ∈ {0,1}n, the distribution A(x, r) is computationally indistinguishable from
UnifP (x), the uniform distribution on the possible outputs on x. That is, for every fam-
ily of polynomial-size circuits with oracle access {Cn}n∈N, every polynomial p(·), and
all sufficiently large n’s,

∣
∣Pr

[

CA(x,r)
n

(

1n
) = 1

] − Pr
[

C
UnifP (x)
n (1n) = 1

]∣
∣ <

1

p(n)
.

We proceed to the standard definition of (nonuniformly) pseudorandom functions
from binary strings of size n to binary strings of size �(n), where �(·) is some fixed
polynomial.

Definition 2.6 (Pseudorandom Functions [14]). Let �(·) be some fixed polynomial
and F = {Fn}n∈N be a function ensemble, where Fn is a set of functions from {0,1}n
to {0,1}�(n) for every n. The function ensemble F is called pseudorandom if for every
family of polynomial-size circuits with oracle access {Cn}n∈N, every polynomial p(·),
and all sufficiently large n’s,

∣
∣Pr

[

CFn
n

(

1n
) = 1

] − Pr
[

CHn
n

(

1n
) = 1

]∣
∣ <

1

p(n)
,

where H = {Hn}n∈N is the uniform function ensemble over the functions from {0,1}n
to {0,1}�(n).

Finally, we define seeded algorithms, which are central to our constructions.

Definition 2.7 (Seeded Algorithms). A seeded algorithm A is a deterministic poly-
nomial time algorithm taking two inputs x and sn where |x| = n and |sn| = p(n) for
some polynomial p(). The distribution induced by a seeded algorithm on an input x is
the distribution on outcomes A(x, sn), where sn is chosen uniformly at random from
{0,1}p(|x|).

Informally, a seeded algorithm is private if it is a deterministic private algorithm with
high probability over the choices of the seed sn, i.e., A(x, sn) = A(y, sn) for all but a
negligible fraction of the seeds sn ∈ {0,1}p(|x|) whenever x ≡P y.

3. Equivalence-Protecting Algorithms

In this section we suggest a definition of private algorithm for a search problem and
supply efficient algorithms satisfying this definition for a broad class of problems. The

352 A. Beimel et al.

privacy guarantee we introduce enjoys some of the advantages of both deterministic and
random algorithms. Based on the existence of pseudorandom functions, it provides solu-
tions that look random but do not leak further information while executed repeatedly on
inputs that are equivalent. In order to suggest appropriate privacy definitions for secure
computation of a search problem, we need to picture how such a computation would
take place in an ideal world. The following two definitions capture random sampling of
an answer that depends only on the solution set (and not on the specific input).

Definition 3.1 (Private Oracles). Let P = {Pn}n∈N be a search problem and q be the
polynomial such that Pn : {0,1}n → 2{0,1}q(n)

. We say that for a given n ∈ N, an oracle
On : {0,1}n → {0,1}q(n) is private with respect to Pn if

1. For every x ∈ {0,1}n, it holds that On(x) ∈ Pn(x). That is, On returns correct
answers.

2. For every x, x′ ∈ {0,1}n, it holds that x ≡P x′ implies On(x) = On(x
′). That is,

On satisfies the privacy requirement of Definition 2.3.

An oracle that is private with respect to P represents one possible functionality that
solves the search problem and protects the equivalence relation. We define an algorithm
to be equivalence-protecting if it cannot be efficiently distinguished from a random
oracle that is private with respect to P .

Definition 3.2 (Equivalence-Protecting Algorithms). Let P = {Pn}n∈N be a search
problem. An algorithm A(·, ·) is equivalence protecting with respect to ≡P if for every
family {Dn}n∈N of polynomial size distinguisher circuits with oracle access, for every
polynomial p, and for all sufficiently large n’s,

∣
∣Pr

[

DOn
n

(

1n
) = 1

] − Pr
[

D A(·,sn)
n

(

1n
) = 1

]∣
∣ <

1

p(n)
,

where the first probability is over the uniform distribution over oracles On that are
private with respect to P ; the second probability is over the uniform distribution over
the choices of the seed sn for the algorithm A.

In the above definition we arbitrarily choose the uniform distribution over private
oracles. This choice is partly because using the uniform distribution is common in many
sampling algorithms, see, e.g., [19]. However, for some applications, other distributions
might be preferred; Definition 3.2 can be adjusted to such scenarios by requiring an
appropriate distribution over the private oracles On.

3.1. Canonical Representatives

The following definition identifies a class of algorithms that will be helpful in construct-
ing equivalence-protecting algorithms for various search problems. These algorithms
return a representative element for every equivalence class of the search problem P .

Definition 3.3 (Canonical Representative Algorithms). Let P = {Pn}n∈N be a search
problem. An algorithm A is a canonical representative algorithm for P if (i) x ≡P A(x)

How Should We Solve Search Problems Privately? 353

Algorithm General Equivalence-Protecting

INPUT: An instance x ∈ {0,1}n and a seed sn for a family of pseudorandom functions F =
{Fn}n∈N.
OUTPUT: A solution sol ∈ Pn(x).

1. Compute y = Arep(x).
2. Compute r = fsn(y).
3. Output sol = Asample(y, r).

Fig. 1. Algorithm General Equivalence-Protecting.

for every x ∈ {0,1}n; and (ii) for every x, y ∈ {0,1}n, it holds that A(x) = A(y) iff
x ≡P y.

We reduce the problem of designing an equivalence-protecting algorithm for a search
problem into designing a canonical representative algorithm and an output-sampling
algorithm for the problem. The construction is based on the existence of pseudorandom
functions. Let F = {Fn}n∈N be an ensemble of pseudorandom functions from {0,1}n to
{0,1}�(n), where �(·) is a polynomial that bounds the number of random bits used by
the output-sampling algorithm. We denote by fsn(x) the output of the function indexed
by sn on an input x ∈ {0,1}n.

Theorem 3.4. If a search problem P has an efficient output-sampling algorithm
and an efficient canonical representative algorithm, then the seeded algorithm Gen-
eral Equivalence-Protecting presented in Fig. 1 is an efficient equivalence-
protecting algorithm for P .

Proof. Let A(·, ·) be the algorithm in Fig. 1. We show that given a family of distin-
guisher circuits {Dn}n∈N such that for infinitely many n,

∣
∣Pr

[

DOn
n

(

1n
) = 1

] − Pr
[

D A(·,s)
n

(

1n
) = 1

]∣
∣

is noticeable (where On is a uniformly chosen private oracle with respect to P), we can
construct a family of circuits {Cn}n∈N that distinguishes executions with oracle access
to a pseudorandom function fsn(·) from executions with oracle access to a truly random
function Hn(·).

The description of Cn is simple: Cn follows Dn. Whenever Dn is making an ora-
cle call on an input x, Cn simulates it as follows: (i) it computes y = Arep(x); (ii) it
computes the answer z of the oracle call on y (i.e., z is either an answer of a random
function, namely, Hn(y), or an answer of a pseudorandom function, namely, fsn(y));
(iii) it computes Asample(y, z).

Note that C
Fn
n behaves identically to D A(·,s)

n . We next show that the difference

∣
∣Pr

[

DOn
n

(

1n
) = 1

] − Pr
[

CHn
n

(

1n
) = 1

]∣
∣

354 A. Beimel et al.

is negligible. Note that every call of Dn to On(x) results in a random element in P (x).
Since Cn applies Asample(y,Hn(y)), where y ≡P x and Hn is a randomly chosen func-
tion, by the properties of the output-sampling algorithm Asample, the output is indistin-
guishable from a random element in P (x). Hence, the distance

∣
∣Pr

[

C
Fsn
n

(

1n
) = 1

] − Pr
[

CHn
n

(

1n
) = 1

]∣
∣

must be noticeable for infinitely many n, in a contradiction to the fact that F is an
ensemble of pseudorandom functions. �

3.2. Equivalence-Protecting Algorithms for Monotone Search Problems

In view of Theorem 3.4, the construction of an equivalence-protecting algorithm for a
given search problem is reduced to finding a canonical representative algorithm and an
output-sampling algorithm for the problem. We focus on search problems in which an
output is a subset of the input satisfying some property (e.g., the input is a graph, and the
output is any subgraph satisfying some property). We reduce the design of a canonical
representative algorithm into deciding whether an input element is contained in some
possible output.

Definition 3.5 (Monotone Search Problems). Let P be a search problem and view the
inputs to Pn as subsets of [n]. We say that P is a monotone search problem if there
exists a set S ⊆ 2[n] such that Pn(X) = 2X ∩ S for every input X ⊆ [n]. That is, there
is a global set S of solutions, and the solutions for X are the solutions in S that are
contained in X.

For example, the problem of finding a perfect matching in a bipartite graph is
monotone. The global set of solutions S consists of all the graphs whose edges form
exactly a perfect matching. For every bipartite graph G, the set of solutions on G is the
set of graphs in S (i.e., perfect matching graphs) that are subgraphs of G.

Definition 3.6 (Relevant Elements). Let P be a monotone search problem and X ⊆ [n]
be an input to Pn. We say that i∈X is relevant to X if there is an output Y ∈ Pn(X)

such that i ∈ Y . We denote by R(X) the set of elements relevant to X.

In the perfect matching example, an edge is relevant if it appears in some perfect
matching of the graph. The following claim shows that computing R(X) efficiently
from X is sufficient to get a canonical representative algorithm.

Claim 3.7. Let P be a monotone search problem and X,Y ⊆ [n] be inputs of Pn. Then
(i) X ≡P R(X); and (ii) X ≡P Y if and only if R(X) = R(Y).

Proof. (i) We show that X and R(X) have the same sets of solutions. Let Y be a
solution to X. Every i ∈ Y is relevant to X and thus i ∈ R(X). Hence Y ⊆ R(X), and
therefore Y is a solution to R(X). For the other direction, let Y be a solution to R(X).
Obviously R(X) ⊆ X, and thus Y ⊆ X; therefore Y is a solution to X. (ii) Assume
X ≡P Y and let i ∈ R(X). Then i ∈ Z, where Z is a solution to X. Since X ≡P Y , we

How Should We Solve Search Problems Privately? 355

get that Z is also a solution to Y , and thus i ∈ R(Y). The other direction is immediate
from (i) and the transitivity of ≡P . �

3.3. Applications of the Construction

We next introduce equivalence-protecting algorithms for some well-known search prob-
lems.

Example 3.8 (Perfect Matching in Bipartite Graphs). Consider the problem of finding
a perfect matching in a bipartite graph G = 〈G,E〉. To decide whether an input edge
〈u,v〉 is relevant we do the following: (i) Denote by G′ the graph that results from
deleting u,v and all the edges adjacent to them from G. (ii) Check whether there is a
perfect matching in G′. Evidently, 〈u,v〉 is relevant to G if and only if G′ has a perfect
matching. Hence, perfect matching has an efficient canonical representative algorithm.

As an output-sampling algorithm, we use the algorithm of Jerrum et al. [19]. The
algorithm samples a perfect matching of a bipartite graph from a distribution that is
statistically close to uniform. Therefore, we have both a canonical representative and
output-sampling algorithm for perfect matching, and thus by Theorem 3.4, we get that
perfect matching has an efficient equivalence-protecting algorithm.

It is natural to ask whether the reliance on pseudorandom functions is inherent for this
problem. This is indeed true, since the existence of a equivalence-protecting algorithm
implies the existence of pseudorandom functions. We next show how to construct an en-
semble of pseudorandom functions F = {Fn}, where Fn = {fs : {0,1}n → {0,1}m(n)},
from an equivalence-protecting algorithm A(·, s). To apply fs() on x ∈ {0,1}n, con-
struct a bipartite graph G consisting of two disjoint subgraphs: (i) a bipartite subgraph
containing a perfect matching uniquely encoding x (i.e., no two of the constructed
graphs share an equivalence class); and (ii) a bipartite subgraph consisting of m(n)

copies of the complete bipartite graph K2,2 (note that in a perfect matching, there are
exactly two matching possibilities for each copy of K2,2). Apply A(·, s) to G and output
the m(n) bits corresponding to the chosen matchings of the copies of K2,2.

Example 3.9 (Linear Algebra). Let n and m be positive integers, F be a finite field,
M be an n × m matrix over F, and v ∈ F

n. Consider the problem of solving the system
My = v. Since this problem is not monotone, we need to design both the canonical rep-
resentative algorithm and the output-sampling algorithm. As a canonical representative
algorithm, simply perform the Gaussian elimination procedure on the system, bringing
it to its reduced row echelon form. An elementary linear algebra argument shows that if
two systems have the same sets of solutions, then they have the same reduced row eche-
lon form. We now show a simple output-sampling algorithm for the problem: Compute
an arbitrary solution y0 ∈ F

m satisfying My0 = v. Compute k = rank(M) and compute
an m × (n − k) matrix K representing the kernel of the matrix M . Randomly pick a
vector r ∈ F

n−k and output w = y0 + Kr . Again, elementary linear algebra argument
shows that w is a random solution to the system My = v.

Example 3.10 (Shortest Path). Consider the problem of finding a shortest path from a
vertex s to a vertex t in a directed graph G. In this case there is no global set of solu-
tions, since a path can be an appropriate solution for one graph, while in another graph

356 A. Beimel et al.

there may be shorter paths. However, there exists a canonical representative algorithm
for the problem; this algorithm on input G outputs a layered graph G′ consisting of the
set of edges that appear in any shortest path from s to t in G (checking whether an edge
is relevant for G can be done, e.g., using breadth-first search). To sample a random solu-
tion, do: (i) Starting from t , compute for every v ∈ V of distance i from t the number of
shortest paths from v to t , by summing the number of shortest paths from v’s neighbors
of distance i − 1 to t . (ii) Starting from s, pick the vertices on the path randomly, where
the probabilities are weighted according to the number of paths computed in (i). Hence,
by Theorem 3.4, a shortest path has an efficient equivalence-protecting algorithm.

Similar ideas are applicable for finding a shortest path in a weighted directed graph
with positive weights. Here, however, we do not apply Theorem 3.4 directly. The
equivalence-protecting algorithm, given a directed graph G = 〈G,E〉, a weight function
w : E → R

+, two vertices s, t , and a seed sn for a family of pseudorandom functions,
does the following: (i) Construct a directed graph G′ = 〈V,E′〉, where E′ is the set of
edges that appear in at least one shortest path from s to t . Note that G′ is a non-weighted
acyclic directed graph; (ii) Compute r = fsn(G

′); (iii) Sample, using r , a random path
from s to t in the acyclic graph G′ with uniform distribution and output this path. Note
that in step (iii) we sample a random path and not a random shortest path. This example
is different in the fact that the canonical input we use in steps (ii) and (iii) is an instance
of a problem that is slightly different than the original problem.

4. Resemblance-Preserving Algorithms

We now strengthen the requirement on private algorithm in an alternative manner to
the definition of equivalence-protecting algorithms presented in Sect. 3. The motivation
for the definition in this section is that the output of the algorithm should not distin-
guish between inputs with similar sets of solutions. While this requirement is met by
a randomized algorithm that outputs a uniform solution, it cannot in general be satis-
fied by a deterministic algorithm for search problems—for all inputs x, y ∈ {0,1}n, the
algorithm would have to output the same “solution” on x and y if there exists inputs
x = z0, z1, . . . , zt = y, all in {0,1}n, such that Pn(zi) ∩ Pn(zi+1)
= ∅; this would, in
many cases, contradict the correctness of the search algorithm. As we want an algorithm
that does not leak more information on repeated executions, we put forward a definition
of resemblance-preserving algorithms, which are seeded algorithms that protect inputs
with similar sets of outputs.

To measure the similarity between the sets of outputs, we use resemblance between
sets (a.k.a. Jaccard index), a notion used in [6–8] and seeming to capture the informal
notion of “roughly the same.” For example, in [6,7] resemblance between documents
was successfully used for clustering documents.

Definition 4.1 (Resemblance). Let U be a set, and let A,B ⊆ U . Then the resem-
blance between A and B is defined to be

r(A,B) = |A ∩ B|
|A ∪ B| .

How Should We Solve Search Problems Privately? 357

Note that 0 ≤ r(A,B) ≤ 1, where r(A,B) = 0 iff A and B are disjoint and r(A,B) =
1 iff A = B . For a search problem P , we will consider the resemblance between solu-
tion sets Pn(x), Pn(y) of x, y ∈ {0,1}n. Informally, a (perfect) resemblance-preserving
algorithm is a seeded algorithm that returns the same output for x and y with probability
of at least the resemblance between Pn(x) and Pn(y).

Definition 4.2 (Resemblance-Preserving Algorithms). An algorithm A(·, ·) is resem-
blance-preserving with respect to P if:

1. For every probabilistic polynomial-time algorithm D and every polynomial p(·),
there exists some n0 ∈ N such that for every x ∈ {0,1}∗ satisfying |x| > n0,

∣
∣Pr

[

D
(

x, A(sn, x)
) = 1

] − Pr
[

D
(

x,Unif
(

Pn(x)
)) = 1

]∣
∣ ≤ 1

p(|x|) .

The probability is taken over the random choice of the seed sn and the randomness
of D. Informally, taking the probability over the seed, the output of AP on x is
indistinguishable from the uniform distribution on Pn(x).

2. There exists a constant c > 0 such that for all x, y ∈ {0,1}∗ satisfying |x| = |y|,
Pr

[

A(sn, x) = A(sn, y)
] ≥ c · r(Pn(x), Pn(y)

)

.

The probability is taken over the random choice of sn. That is, the probability
that A returns the same output on two inputs is at least some constant times the
resemblance between Pn(x) and Pn(y).

3. If x ≡P y, then A(sn, x) = A(sn, y) for all seeds sn. That is, if x and y are equiv-
alent, then A always returns the same output on x and on y.

If c = 1 in the above Requirement 2, then A(·, ·) is perfect resemblance-preserving with
respect to P .

We note that our choice in Requirement 2 above that the probability should be at least
linear in the resemblance is somewhat arbitrary. A definition of a similar flavor results
by requiring the probability to be lower bounded by some monotone function of the
resemblance. Requirement 3 can be relaxed to all but a negligible fraction of the seeds.

Resemblance-Preserving vs. Equivalence-Protecting We note that the requirements in
Definitions 3.2 and 4.2 are incomparable (we show in Sect. 5.3 that there exist search
problems that admit resemblance-preserving but no equivalence-protecting algorithms,
and vise versa). In particular, we note that unlike Definition 3.2, in the definition of
resemblance-preserving algorithms we do not know how to formulate privacy using
the real world vs. ideal world paradigm. One of the consequences of this difference is
that it is possible to design resemblance-preserving algorithms without needing cryp-
tographic assumptions. In our constructions, for example, we only use pairwise inde-
pendent permutations. Furthermore, Definition 4.2 does not prevent partial disclosure
or even full disclosure of the seed by the algorithm. This should be considered when
using a resemblance-preserving algorithm.

358 A. Beimel et al.

Example 4.3 (Non-Roots of a Polynomial). We give an example demonstrating that
perfect resemblance-preserving algorithms exist. Consider the following problem. The
inputs are univariate polynomials of degree d(n) over F2n , where d : N → N is some
fixed increasing function (e.g., d(n) = n). The set of solutions of a polynomial Q is the
set of all points y which are not roots of Q, that is, {y ∈ F2n : Q(y)
= 0}. This problem
arises, e.g., when we want to find points on which two polynomials disagree.

The seed sn in the algorithm we construct is a random string of length (d(n) + 1) · n
considered as a list of d(n) + 1 elements in F2n . Since Q has at most d(n) roots, there
is an element in the list sn that is not a root of Q. The algorithm on input Q returns the
first element in sn that is not a root of Q. We claim that this algorithm is resemblance-
preserving. First, since the seed is chosen at random, the first element in the list that is
not a root is a random non-root of Q. Second, consider two polynomials Q1 and Q2

with sets of non-roots Y1 and Y2, respectively. The algorithm returns the same non-root
on both Q1 and Q2 if the first element in the list sn from Y1 is also the first element in
the list sn from Y2. In other words, the algorithm returns the same non-root if the first
element in the list sn which is from the set Y1 ∪ Y2 is from Y1 ∩ Y2. The probability of
this event is exactly r(Y1, Y2) = |Y1 ∩ Y2|/|Y1 ∪ Y2|.

4.1. Generic Constructions of Resemblance-Preserving Algorithms

We present our main tool for constructing resemblance-preserving algorithms—min-
wise independent permutations. We will first show a general construction, which (de-
pending on the search problem) may exhibit exponential time complexity. Then, we
will present the main contribution of this section—a polynomial-time resemblance-
preserving algorithm that is applicable for problems for which there is a pairwise in-
dependent family of permutations where we can efficiently compute the minimum on
any set of solutions.

Definition 4.4 (Family of Min-wise Independent Permutations [8]). Let U be a set
and F = {πs}s∈S be a collection of permutations πs : U → U . The collection F is a
collection of min-wise independent permutations if Pr[min(πs(A)) = πs(a)] = 1/|A|
for all A ⊆ U and all a ∈ A. The probability is taken over the choice of the seed s at
uniform from S.

We will use the following observation that relates min-wise permutations and resem-
blance:

Observation 4.5 [8]. Let F be a family of min-wise independent permutations
{πs}s∈S , where πs : U → U . Then Pr[min(πs(A)) = min(πs(B))] = r(A,B) for every
sets A,B ⊆ U . The probability is taken over the choice of the seed s at uniform from S.

In Fig. 2, we describe Algorithm MinwiseP for a search problem P , where Pn :
{0,1}n → {0,1}q(n). Using Observation 4.5, it is easy to see that Algorithm MinwiseP
is perfectly resemblance-preserving.

However, Algorithm MinwiseP may be inefficient in several aspects:

How Should We Solve Search Problems Privately? 359

Algorithm MinwiseP

INPUT: An instance x ∈ {0,1}∗ and a seed s for a family of min-wise independent permutations
{πs}s∈S , where πs : {0,1}q(|x|) → {0,1}q(|x|).
OUTPUT: A solution sol ∈ Pn(x).

1. Let A = Pn(x).
2. Output sol ∈ A such that πs(sol) = minπs(A).

Fig. 2. Algorithm MinwiseP .

1. Algorithm MinwiseP uses a family of min-wise independent permutations. It
was shown in [8] that such families are of size 2�(|U |) = 2�(2q(n)) (where n is
the input length), and hence the seed length |s| = �(2q(n)). However, for most
purposes, the seed length may be reduced to polynomial by using pseudorandom
permutations.6

2. Algorithm MinwiseP needs to compute the minimum element, according to πs ,
in the solution set Pn(x). This is feasible when it is possible to enumerate in poly-
nomial time the elements of Pn(x). However, to make MinwiseP feasible in
cases where, for example, Pn(x) is of super-polynomial size, one needs to care-
fully use the structure of πs and the structure of the underlying solution set space.

Example 4.6 (Roots of a Polynomial). As an example that Algorithm MinwiseP
can be implemented efficiently, we consider the problem of finding roots of a poly-
nomial. As in Example 4.3, the inputs are univariate polynomials of degree d(n) over
F2n , where d : N → N is some fixed increasing function (e.g., d(n) = n). The set of
solutions of a polynomial Q is the set of all points y which are roots of Q, that is,
{y ∈ F2n : Q(y) = 0}. Berlekamp [4] presented an efficient algorithm that finds roots
of a polynomial over F2n . We implement Algorithm MinwiseP , where we use a fam-
ily of pseudorandom permutations from F2n to F2n instead of the family of min-wise
independent permutations.7 Furthermore, since the number of roots of a polynomial of
degree d(n) is at most d(n), we can use Berlekamp’s algorithm to explicitly find all
roots of the polynomial, apply the pseudorandom permutation to each root, and find for
which root πs(y) obtains a minimum. The above algorithm can be generalized to any
search problems whose entire sets of solutions can be generated efficiently.

Observation 4.7. If for a search problem P , there is an algorithm that generates the set
of solutions of an input of P whose running time is polynomial in the length of the input
(and, in particular, the number of solutions in polynomial), then Algorithm MinwiseP
can be efficiently implemented for P .

6 We need the family of pseudorandom permutations to be secure against a nonuniform adversary. Thus,
for every long enough inputs x and y, a pseudorandom permutation must be min-wise. We omit further details
as instead of using pseudorandom permutations we replace, in Sect. 4.2, min-wise independent permutations
with pairwise independent permutations.

7 If we do not want to use cryptographic assumptions, we can construct a nonperfect resemblance-
preserving algorithm as in Sect. 4.2.

360 A. Beimel et al.

4.2. Resemblance-Preserving Using Pairwise Independence

To get around the above mentioned problems of implementing MinwiseP for search
problems with a super-polynomial number of solutions, we construct a nonperfect
resemblance-preserving algorithm using pairwise independence permutations instead
of min-wise independence.

Definition 4.8 (Family of Pairwise Independent Permutations). Let U be a set and
F = {πs}s∈S be a collection of permutations πs : U → U . The collection F is a family
of pairwise independent permutations if

Pr
[

πs(a) = c ∧ πs(b) = d
] = 1

|U |(|U | − 1)

for all a, b ∈ U and c, d ∈ U , where a
= b and c
= d . The probability is taken over the
uniform choice of the seed s from S.

Theorem 4.9 [8]. Let F = {πs}s∈S be a family of pairwise independent permutations,
where πs : U → U . Then for every set A ⊆ U and every a ∈ A,

1

2(|A| − 1)
≤ Pr

[

min
(

πs(A)
) = πs(a)

] ≤ 2√|A| − 1 − 1
.

The probability is taken over the uniform choice of the seed s from S.

For completeness, we give the proof of Theorem 4.9 in Appendix A. We get the follow-
ing lemma:

Lemma 4.10. Let F = {πs}s∈S be a family of pairwise independent permutations,
where πs : U → U . Then for all sets A,B ⊆ U ,

Pr
[

min
(

πs(A)
) = min

(

πs(B)
)] ≥ max

(
r(A,B)

2
,1 − 2 · |A�B|√|A ∪ B| − 1 − 1

)

.

The probability is taken over the uniform choice of the seed s from S.

Proof. To see the first bound, note that

Pr
[

min
(

πs(A)
) = min

(

πs(B)
)] = Pr

[

min
(

πs(A ∪ B)
) = min

(

πs(A ∩ B)
)]

=
∑

a∈A∩B

Pr
[

min
(

πs(A ∪ B)
) = π(a)

]

≥ |A ∩ B|
2(|A ∪ B| − 1)

≥ r(A,B)

2
.

The second bound follows from the right inequality of Theorem 4.9:

Pr
[

min
(

πs(A)
) = min

(

πs(B)
)] = 1 − Pr

[

min
(

πs(A ∪ B)
) = min

(

πs(A�B)
)]

≥ 1 − |A�B| 2√|A ∪ B| − 1 − 1
.

How Should We Solve Search Problems Privately? 361

Algorithm PairwiseP

INPUT: An instance x ∈ {0,1}∗ and a seed s for a family of pairwise independent permutations
{πs}s∈S , where πs : {0,1}q(|x|) → {0,1}q(|x|).
OUTPUT: A solution sol ∈ Pn(x).

1. Let A = Pn(x).
2. Output sol ∈ A such that πs(sol) = minπs(A).

Fig. 3. Algorithm PairwiseP .

�

In Fig. 3, we construct an algorithm PairwiseP that is almost identical to
MinwiseP of Fig. 2, where the family of min-wise permutations is replaced with a
family of pairwise independent permutations. The following corollary follows directly
from Lemma 4.10:

Corollary 4.11. Algorithm PairwiseP of Fig. 3 is resemblance-preserving.

4.3. Applications of the Pairwise Independence Construction

We next show how to apply Algorithm PairwiseP to a few search problems. Given
a search problem, we need to choose the family of pairwise independent permutations
such that the solution minimizing πs(A) can be computed efficiently. In our examples
we use the following well-known family of pairwise independent permutations from F

n
q

to F
n
q for some prime-power q:

Lq,n
def= {

Hy + b : H is an invertible n × n matrix over Fq and b ∈ F
n
q

}

.

Claim 4.12. The family Lq,n is a family of pairwise independent permutations.

4.3.1. Linear Algebra

We show how to construct a resemblance-preserving algorithm for finding a solution of
a system of equations (as considered in Example 3.9 for Equivalence-Protecting Algo-
rithms).

Linear Algebra over F2 We assume that the system is over F2. In the next paragraph
we generalize the result to every finite field. That is, the input is an m × n matrix M

over F2 and a vector v ∈ F
m
2 , and a solution is a vector y ∈ F

n
2 such that

My = v. (1)

We apply Algorithm PairwiseP for this problem using the family L2,n. That is, we
choose a permutation at random, specified by H and b, and we need to find the lexico-
graphically first z satisfying

z = Hy + b (2)

362 A. Beimel et al.

for y satisfying My = v. We view My = v and z = Hy + b as a single system of linear
equations with 2n unknowns, namely, y = 〈y1, . . . , yn〉 and z = 〈z1, . . . , zn〉. To find
the value of z1 in the lexicographically first z, we add the equation z1 = 0 to the sys-
tem of equations. If the new system has a solution, we keep the equation z1 = 0 in the
system and continue to find the value of z2. Otherwise, we understand that z1 = 1 in
every solution of the original system of equations, and, in particular, in the lexicograph-
ically first z. In this case, we remove the equation z1 = 0 from the system of equations
and continue to find the value of z2. To conclude, we find the lexicographically first z

iteratively, where in iteration i we have already found the values of z1, . . . , zi−1, and
we compute the value of zi in the lexicographically first z as we found z1. We continue
these iterations until we find the lexicographically first z. Recall that Hy +b is a permu-
tation. Thus, once we found z, the solution y is uniquely defined and is easy to compute
from the system of equations, that is, compute y = H−1(z − b).

Linear Algebra over Finite Fields We show that the construction described for linear
algebra over F2 works for an arbitrary finite field Fq when we use Lq,n as the pairwise
independent permutations. In the case of F2, when we ruled out the case zi = 0, we
immediately deduced that zi = 1. In a first glance, it seems that generalizing the above
construction to Fq would require checking if xi = a for every value of a ∈ Fq . However,
the next claim shows that this is not required.

Claim 4.13. Let Dw = c be a system of linear equations. Assume that there are two
solutions v and w to the system such that vi
= wi for some i. Then the system has a
solution u such that ui = 0.

Proof. Let

u
def= v − vi

vi − wi

(v − w).

First, since vi
= wi , the vector u is properly defined. Second, ui = vi − vi

vi−wi
(vi −

wi) = 0, as required. Third, u is a solution to the system of equations

Du = D

(

v − vi

vi − wi

(v − w)

)

= Dv − vi

vi − wi

(Dv − Dw)

= c − vi

vi − wi

(c − c) = c. �

Recall that the algorithm for finding the lexicographically first z iteratively adds the
equation zi = 0 if, after adding the equation, the system has a solution and does not
add anything otherwise. By Claim 4.13, when the algorithm does not add the equation
zi = 0, there is a unique value for zi in all the solutions. Thus, after the n iterations, the
system has a unique solution y, z, and the algorithm computes y and returns it.

Union of Linear Spaces We want to use the resemblance-preserving algorithm for
finding a solution of a system of linear equations to construct resemblance-preserving
algorithms for other problems. That is, we want to represent the set of solutions of an

How Should We Solve Search Problems Privately? 363

instance of some search problem as a set of solutions of a system of linear equations. In
our applications, we manage to represent the set of solutions of an instance as a union
of polynomially many linear spaces represented by systems of linear equations over the
same field. We next show how to construct a resemblance-preserving algorithm for such
a union. That is, the input is a sequence M1, v1, . . . ,M�, v�, and a solution is a vector y

such that Miy = vi for at least one i.
Algorithm LinearAlgebraUnion

INPUT: A sequence M1, v1, . . . ,M�, v� and a seed H,b.
OUTPUT: A vector y such that Miy = vi for at least one i.

1. Find for each system of equations a solution yi such that Hyi + b is minimized amongst
all vectors such that Miy = vi .

2. Output yj such that Hyj + b = min{Hyi + b : 1 ≤ i ≤ �}.

Theorem 4.14. There is a resemblance-preserving algorithm for finding a solution in
a union of polynomially many solution sets of systems of linear equations over the same
field.

4.3.2. Points in a Union of Discrete Rectangles

We show how to use the resemblance-preserving algorithm for linear algebra to con-
struct resemblance-preserving algorithms for finding a point in a union of discrete rec-
tangles. We construct such algorithms for two cases: (1) unions of rectangles in [2]n,
that is, DNF formulae, and (2) unions of rectangles in [N]d when d is fixed (however,
N is not fixed).

Satisfying Assignment for a DNF Formula We show how to construct a resemblance-
preserving algorithm for finding a satisfying assignment of a DNF formula. This follows
from Theorem 4.14 and the following observations. First, the set of satisfying assign-
ments of a single term is the set of solutions of a system of linear equations over F2:

• For every variable xi that appears in the term without negation, add the equation
yi = 1.

• For every variable xi that appears in the term with negation, add the equa-
tion yi = 0.

Now, given a DNF formula with � terms, a satisfying assignment to the formula is an
assignment satisfying at least one of the terms in the formula, that is, it belongs to the
union of solutions of the � systems of linear equations constructed for each of the terms
of the formula. Thus, by Theorem 4.14, we get a resemblance-preserving algorithm for
finding a satisfying assignment of a DNF formula.

Points in a Union of Discrete Rectangles in a d-dimensional Space We show how to
construct a resemblance-preserving algorithm for finding a point in a discrete rectangle.
That is, for some fixed d ∈ N and for an integer N ∈ N, our inputs are 2d elements
a1, . . . , ad, b1, . . . , bd ∈ [N] which represent a rectangle as follows:

Ra1,...,ad ,b1,...,bd
def= {〈

y1, . . . , yd
〉 : ∀i∈[d]ai ≤ yi ≤ bi

}

.

364 A. Beimel et al.

Fig. 4. A decision tree for a ≤ y ≤ b, where a = (1,0,0,1) and b = (1,1,1,0).

Let n
def= �logN�; we represent a number a ∈ [N] by an n-bit string a1, . . . , an, where

a = ∑n
i=1 ai2n−i . Note that, in this section, ai is a string in {0,1}n, and ai is the ith bit

of a string a.
We solve the problem of finding a point in a rectangle by describing a decision tree8

that accepts exactly the points in the rectangle. Since each decision tree with � nodes
can be represented by a DNF formula with at most � terms, we can use the resemblance-
preserving algorithm for DNF (described in the previous paragraph) to output a satisfy-
ing assignment to the formula, i.e., a point in the rectangle.

Let us start with the simple case where d = 1. That is, an input is two strings a and
b, and a solution is a string a ≤ y ≤ b. Let a < b and i0 be the minimal index such that
ai = 0 and bi = 1. A point y satisfies a ≤ y ≤ b if yj = aj = bj for every 1 ≤ j ≤ i0 −1
and one of the following conditions hold:

1. yi0 = ai0 and a ≤ y, or
2. yi0 = bi0 and y ≤ b.

The decision tree for this case is very simple; it is basically composed of two paths of
internal nodes, and it has at most 2n leaves. We will not describe the tree but rather
give an example in Fig. 4, where a = (1,0,0,1) and b = (1,1,1,0). In this example,
if y1 = 0, then y < a, thus, the root of the decision tree is labeled by the variable y1,
its left son is a leaf labeled by 0, and its right subtree is a decision tree checking if
(0,0,1) ≤ (y2, y3, y4) ≤ (1,1,0). Furthermore, a2
= b2, so in this subtree the root is
labeled by y2, its left subtree checks if (0,1) ≤ (y3, y4), and its right subtree checks if
(y3, y4) ≤ (1,0). The DNF formula for this tree has a term for each leaf labeled by 1;
the formula is

(y1 ∧ ¬y2 ∧ ¬y3 ∧ y4) ∨ (y1 ∧ ¬y2 ∧ y3) ∨ (y1 ∧ y2 ∧ ¬y3) ∨ (y1 ∧ ¬y2 ∧ y3 ∧ ¬y4).

8 A decision tree is an ordered binary tree such that each leaf is labeled by 0 or 1 and each internal node is
labeled by a variable. To check if the decision tree accepts an assignment, we start at the root of the tree and
traverse until we reach a leaf according to the following rule: If the assignment satisfies the variable in the
internal node, we go to its right son, otherwise we go to its left son. The assignment is accepted if we reach a
leaf labeled by 1 and is rejected otherwise.

How Should We Solve Search Problems Privately? 365

To construct a decision tree checking membership in a d-dimensional rectangle spec-
ified by a1, . . . , ad , b1, . . . , bd , we first construct a decision tree for a1 ≤ y1 ≤ b1. We
then replace each leaf labeled by 1 with a decision tree checking if a2 ≤ y2 ≤ b2. We
repeat this process for each dimension. All together, we get a decision tree of depth
O(nd), which has (O(n))d leaves, thus, it can be described by a DNF formula with
(O(n))d terms. Finally, if our input is a union of � rectangles, we can represent it as a
DNF formula with �(O(n))d terms, hence:

Theorem 4.15. There exists an efficient resemblance-preserving algorithm for find-
ing a point in a union of � rectangles in [N]d . The running time of the algorithm is
poly((logN)d, �).

The above algorithm is polynomial in � and (logN)d , while the size of the input is
O(�d logN), thus, it is polynomial when d is constant. It would be interesting to con-
struct an efficient algorithm for nonconstant d . Notice that a union of � rectangles in [2]d
is equivalent to an �-term DNF formula with d variables. Thus, there is a polynomial
resemblance-preserving algorithm for union of rectangles in [2]d .

5. Relationships Between the Classes of Private Algorithms

Figure 5 summarizes the main classes of private algorithms discussed in this paper
and their containment relationships. We now show that different search problems admit
different types of private algorithms.

5.1. Deterministic Private Algorithms: Lexicographically First vs. Median

Claim 5.1. There exists a polynomial time deterministic algorithm for outputting the
lexicographically first assignment of DNF formulae.

Proof sketch. We use the fact that it is possible to decide in polynomial time whether
a DNF formula φ is satisfiable. Given a satisfiable DNF formula φ over variables
x1, . . . , xn, our algorithm constructs the formula φ′ = φ|x1=0. If φ′ is satisfiable, let
a1 = 0, and otherwise let a1 = 1. Continue by finding the lexicographically first assign-
ment for the formula φ|x1=a1 . �

Claim 5.2. Unless RP = NP, there is no polynomial time deterministic algorithm for
outputting the median assignment of DNF formulae.

Fig. 5. The algorithm classification tree.

366 A. Beimel et al.

Proof sketch. We use the fact that (the decision problem) UNIQUE-SAT is NP-hard
under randomized reductions [20] and show that it is possible to reduce UNIQUE-SAT
to finding the median assignment of DNF formulae. Let φ be an instance of UNIQUE-
SAT (i.e., φ is a CNF formula (over the variables x1, . . . , xn) that is either unsatisfiable
or has a unique satisfying assignment). Construct a DNF formula ψ by exchanging
conjuncts with disjuncts and negating all literals. It is easy to see that an assignment
a = (a1, . . . , an) satisfies φ iff it does not satisfy ψ . Hence, if φ is unsatisfiable, then ψ

is a tautology, and its median assignment is (1,0, . . . ,0); otherwise there exists a unique
assignment that does not satisfy ψ .

We now show how to check whether ψ is a tautology. We first compute the median
satisfying assignment of ψ and note that if it is not (1,0, . . . ,0), then ψ is not a tautol-
ogy. It is, however, possible that the unique assignment that does not satisfy ψ is above
(1,0, . . . ,0) in lexicographic order. We hence continue recursively with the formula
ψ |x1=1. �

5.2. Deterministic Private vs. Output-Sampling Algorithms

We now demonstrate a search problem that admits an output-sampling algorithm (re-
call that an output-sampling algorithm outputs a uniformly chosen solution on each
instance) but no efficient deterministic private, equivalence-protecting, or resemblance-
preserving algorithm.

Definition 5.3. Define

Q R(N,a) = {

ar2 mod N : r ∈ Z
∗
N

}

.

Claim 5.4. The problem Q R admits a polynomial time output-sampling algorithm but
no efficient deterministic private, equivalence-protecting, or resemblance-preserving al-
gorithm, unless quadratic residuosity is decidable in polynomial time.

Proof. Construct an algorithm AQR that on input (N,a) selects a random r ∈ Z
∗
N and

outputs b = r2 · a mod N . It is easy to see that b is chosen uniformly from Q R(N,a).
Hence, algorithm A QR is an output-sampling algorithm.

To see the infeasibility result for the class of deterministic private algorithms, as-
sume the existence of such an algorithm AQR for Q R and construct a (deterministic)
algorithm B for deciding quadratic residuosity as follows.9 On input (N,a) algorithm
B applies A QR on (N,1) and on (N,a). It answers “QR” if AQR outputs the same
element of Z

∗
N on both invocations and “NQR” otherwise. Note that Q R(N,a) = QRN

if and only if a ∈ QRN . Since A QR is a deterministic private algorithm (with answers
depending only on the solution set), for every N , it returns the same quadratic residue
for all a ∈ QRN . The correctness follows since 1 ∈ QRN and hence Q R(N,1) = QRN .

The argument for showing infeasibility of equivalence-protecting and resemblance-
preserving algorithms is similar. We modify algorithm B to be a randomized algorithm

9 The Quadratic Residuosity problem is to decide, given a modulus N and a number a ∈ Z
∗
N

, whether

a ∈ QRN = {r2 : r ∈ Z
∗
N

}. It is believed that deciding quadratic residuosity when N = p · q for large primes
p,q is intractable.

How Should We Solve Search Problems Privately? 367

that first chooses a random seed s (of the appropriate length) for A QR and then acts
like the deterministic algorithm described above. �

The next example is of a search problem that admits a deterministic private algorithm
but no (nontrivial) output-sampling algorithm.

Definition 5.5. For a CNF formula φ over Boolean variables x1, . . . , xn, define

Z E RO–S A T (φ) = {

a ∈ {0,1}n : a = 0n ∨ φ(a) = TRUE
}

.

We say that a randomized algorithm A for Z E RO–S A T is nontrivial if A(φ) returns,
with a non-negligible probability, a nonzero assignment whenever φ is satisfiable by
some nonzero assignment.

Claim 5.6. The problem Z E RO–S A T admits a deterministic polynomial time pri-
vate algorithm, but, unless RP = NP , no nontrivial output-sampling algorithm for
Z E RO–S A T exists.

Proof. Consider the algorithm that on input a CNF formula φ over Boolean variables
x1, . . . , xn outputs 0n. This is a private deterministic algorithm for Z E RO–S A T .

To get the infeasibility result, assume AZ E R O−S AT is a non-trivial output-sampling
algorithm for the search problem Z E RO–S A T , and let p(n) be a polynomial such
that, on satisfiable formulae over x1, . . . , xn,

Pr
[

A Z E R O−S AT (φ)
= 0n
] ≥ 1/p(n).

Construct a randomized algorithm B for deciding SAT. On input a CNF formula φ,
algorithm B first checks if φ(0n) is satisfied. Otherwise, it applies A Z E R O−S AT for
a total of n · p(n) times. If in any of the invocations AZ E R O−S AT returns a nonzero
assignment satisfying φ, then B outputs “YES,” otherwise it outputs “NO.” It is easy
to see that algorithm B runs in polynomial time, accepts all satisfiable formulae with
probability 1 − e−n, and rejects all non-satisfiable formulae. If RP
= NP , then no
such efficient algorithm B exists, and, thus, no efficient nontrivial randomized private
algorithm for Z E RO–S A T exists. �

5.3. Resemblance-Preserving vs. Equivalence-Protecting Algorithms

In Sect. 4.3 we saw that a resemblance-preserving algorithm exists for the search
problem of finding satisfying assignments for DNF formulae. However, no efficient
equivalence-protecting algorithm for DNF exists, unless NP⊆BPP (and hence using
self reduction of NP-complete problems, RP = NP) since such an algorithm can be
used to check if two DNF formulae are equivalent, a problem that is coNP-complete
(since it is possible to reduce DNF-TAUTOLOGY to DNF equivalence by setting one
of the formulae to a tautology). This problem does exhibit efficient deterministic private
algorithms as described in Sect. 5.1.

Our last example is of a search problem that has an equivalence-protecting algorithm
but no resemblance-preserving algorithm. This example is a variation on the quadratic

368 A. Beimel et al.

residuosity problem discussed above, where we ensure that there are no equivalent in-
puts, however, there are inputs with nearly identical sets of solutions.

Definition 5.7. Define

Q R∗(N,a) = {(

j, ar2 mod N
) : 1 ≤ j ≤ N,r ∈ Z

∗
N

} ∪ {

(0, a)
}

.

Claim 5.8. The problem Q R∗ admits a polynomial time equivalence-protecting algo-
rithm but no efficient resemblance-preserving algorithms, unless quadratic residuosity
is decidable in polynomial time.

Proof. Given an input (N,a), let n = �logn�, that is, n is the number of bits in the
representation of N . We construct an equivalence-protecting algorithm AQR∗ that uses
the seed sn as a seed for a family {Fn}n∈N of pseudorandom functions. On input (N,a),
the algorithm A QR∗ uses fsn(N,a) to sample r ∈ Z

∗
N and j ∈ {1, . . . ,N} and returns

(j, ar2 mod N).
The argument for showing infeasibility of resemblance-preserving algorithms for

Q R∗ is similar to the infeasibility of such an algorithm for Q R. The only difference is
that for every a ∈ QRN , the sets Q R∗(N,1) and Q R∗(N,a) have symmetric difference
two, thus their resemblance is large, and thus a resemblance-preserving algorithm must
return the same answer on them with high probability. �

6. Discussion

Understanding how the choice of a solution for a search problem affects the extent that
information is leaked is essential in coming up with protocols that preserve meaningful
privacy. At present, no theory exists for analyzing this leakage and for matching such
choices with the privacy needs of applications.

The research of private approximation and private search [1,2,11,17,18] and the re-
sults herein suggests that the picture may be quite complicated. For instance, we would
like to be able to postulate all (or most) privacy concerns in a single standard definition.
However, as we showed in Sect. 5 above, search problems may admit significantly dif-
ferent privacy requirements, and hence the decision on privacy requirements cannot be
disentangled from complexity considerations.

We conclude with a few (more concrete) problems that emerge from our work:

1. Theorem 3.4 relates the construction of equivalence-protecting algorithms to find-
ing canonical representative and output-sampling algorithms. Which search prob-
lems admit such algorithms?

2. Similarly, for which search problems it is possible to efficiently compute a min-
imum element under a min-wise or a pairwise permutation (hence, yielding
resemblance-preserving algorithms)?

3. As we noted in Sect. 1.1.1, the Gale–Shapley algorithm [13] for stable matching is
not a private search algorithm. While a deterministic private algorithm for stable
marriage exists (by computing a lexicographically first solution), the question of
constructing an equivalence-protecting algorithm or an output-sampling algorithm
for stable marriage is still open, even in restricted scenarios [5].

How Should We Solve Search Problems Privately? 369

Acknowledgements

Part of this research was performed when the authors visited IPAM at UCLA. We thank
Rafi Ostrovsky, Mark Green, and the IPAM staff for inviting us to IPAM and making
our stay pleasant and productive. We would like to thank the anonymous reviewers for
their useful comments.

Appendix A. Proof of Theorem 4.9

We first prove that

Pr
[

πs(a1) = minπs(A)
] ≤ 2√|A| − 1 − 1

.

Let A = {a1, a2, . . . , ak}, where k = |A|, and let U = [N] for some integer N . For all
n0 ∈ [N], the probability that πs(a1) attains the minimum is bounded by

Pr
[

πs(a1) = minπs(A)
] ≤ Pr

[

πs(a1) ≤ n0
]

+ Pr
[

πs(a1) > n0 for all a2, . . . , ak

]

. (A.1)

Define α = n0/N . We will bound each of the terms in the above sum separately. For the
first term, note that Pr[πs(a1) ≤ n0] = n0/N = α.

For 2 ≤ i ≤ k, let Bi = 1 if πs(ai) > n0 and Bi = 0 otherwise, and let B =
∑

1<i≤k Bi . Using linearity of expectation,

E[B] = (k − 1) · N − n0

N
= (k − 1)(1 − α).

Computing the second moment, we get that

E
[

B2] = 2
∑

1<i<j≤k

E[BiBj] +
∑

1<i≤k

E[Bi].

The equality follows since B2
i = Bi . Using pairwise independence, we get that

E[BiBj] = Pr
[

πs(ai) > n0 ∧ πs(aj) > n0
]

= (N − n0)(N − n0 − 1) · 1

N(N − 1)
≤ (1 − α)2,

and hence

E
[

B2] ≤ (k − 1)(k − 2)(1 − α)2 + (k − 1)(1 − α).

We get that

Var[B] = E
[

B2] − (

E[B])2 ≤ (k − 1)α(1 − α).

370 A. Beimel et al.

Using Chebyshev’s inequality, we get that

Pr[B ≥ k − 1] ≤ Pr

[

B − E[B] ≥ √

Var[B] ·
√

(k − 1)α

1 − α

]

≤ 1 − α

α(k − 1)
≤ 1

α(k − 1)
.

Thus, by (A.1),

Pr
[

πs(a1) = minπs(A)
] ≤ α + 1

α(k − 1)
. (A.2)

Choosing n0 = �N/
√

k − 1�, we obtain α = n0/N = �N/
√

k − 1�/N . Substituting this
value of α into (A.2), we conclude that

Pr
[

πs(a1) = minπs(A)
] ≤ N/

√
k − 1

N
+ 1

(k − 1)(N√
k−1

− 1)/N

≤ 1√
k − 1

+ 1√
k − 1 − (k − 1)/N

≤ 2√
k − 1 − 1

.

The lower bound on Pr[πs(a1) = minπs(A)] is a simple application of the union
bound. For n0 ∈ [N], by the pairwise independence we have Pr[πs(ai) < n0|πs(a1) =
n0] = (n0 − 1)/(N − 1). Hence,

Pr
[

πs(ai) > n0 for all 1 < i ≤ k|πs(a1) = n0
] ≥ 1 − (k − 1)(n0 − 1)

N − 1
.

Noting that 1− (k −1)(n0 −1)/(N −1) is nonnegative for n0 ≤ �(N −1)/(k −1)�+1,
we get

Pr
[

πs(a1) = minπs(A)
]

=
∑

n0∈[N]
Pr

[

πs(a1) = n0
] · Pr

[

πs(ai) > n0 for all 1 < i ≤ k|πs(a1) = n0
]

≥ 1

N

�(N−1)/(k−1)�+1
∑

n0=1

(

1 − (k − 1)(n0 − 1)

N − 1

)

= 1

N
· 1

2

(⌊
N − 1

k − 1

⌋

+ 1

)(

2 − (k − 1)�(N − 1)/(k − 1)�
N − 1

)

≥ 1

2N

(
N

k − 1

)(

2 − (k − 1)(N − 1)/(k − 1)

N − 1

)

= 1

2(k − 1)
.

How Should We Solve Search Problems Privately? 371

References

[1] A. Beimel, P. Carmi, K. Nissim, E. Weinreb, Private approximation of search problems, in Proc. of the
38th ACM Symp. on the Theory of Computing, pp. 119–128, 2006

[2] A. Beimel, R. Hallak, K. Nissim, Private approximation of clustering and vertex cover, in Proc. of the
Fourth Theory of Cryptography Conference—TCC 2007, ed. by S. Vadhan. Lecture Notes in Computer
Science, vol. 4392 (Springer, Berlin, 2007), pp. 383–403

[3] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for noncryptographic fault-tolerant
distributed computations, in Proc. of the 20th ACM Symp. on the Theory of Computing, pp. 1–10, 1988

[4] E.R. Berlekamp, Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970)
[5] N. Bhatnagar, S. Greenberg, D. Randall, Sampling stable marriages: Why spouse-swapping won’t work,

in Proc. of the 19th ACM-SIAM Symp. on Discrete Algorithms, pp. 1223–1232, 2008
[6] A.Z. Broder, On the resemblance and containment of documents, in Compression and Complexity of

Sequences 1997, pp. 21–29, 1997
[7] A.Z. Broder, S.C. Glassman, M.S. Manasse, G. Zweig, Syntactic clustering of the web, in Proc. of World

Wide Web Conference, pp. 1157–1166, 1997
[8] A.Z. Broder, M. Charikar, A.M. Frieze, M. Mitzenmacher, Min-wise independent permutations. J. Com-

put. Syst. Sci. 60(3), 630–659 (2000)
[9] D. Chaum, C. Crépeau, I. Damgård, Multiparty unconditionally secure protocols, in Proc. of the 20th

ACM Symp. on the Theory of Computing, pp. 11–19, 1988
[10] V.M.F. Dias, G.D. da Fonseca, C.M.H. de Figueiredo, J.L. Szwarcfiter, The stable marriage problem

with restricted pairs. Theor. Comput. Sci. 306(1–3), 391–405 (2003)
[11] J. Feigenbaum, Y. Ishai, T. Malkin, K. Nissim, M.J. Strauss, R.N. Wright, Secure multiparty computa-

tion of approximations. ACM Trans. Algorithms 2(3), 435–472 (2006). Conference version, in Proc. of the
28th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer
Science, vol. 2076 (Springer, Berlin, 2001), pp. 927–938

[12] M. Franklin, M. Gondree, P. Mohassel, Improved efficiency for private stable matching, in Topics in
Cryptology – CT-RSA 2007, ed. by M. Abe. Lecture Notes in Computer Science, vol. 4377 (Springer,
Berlin, 2007), pp. 163–177

[13] D. Gale, L.S. Shapley, College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15
(1962)

[14] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807
(1986)

[15] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game, in Proc. of the 19th ACM Symp.
on the Theory of Computing, pp. 218–229, 1987

[16] P. Golle, A private stable matching algorithm, in 10th International Conference on Financial Cryptog-
raphy and Data Security, ed. by G. Di. Lecture Notes in Computer Science, vol. 4107 (Springer, Berlin,
2006), pp. 65–80

[17] S. Halevi, R. Krauthgamer, E. Kushilevitz, K. Nissim, Private approximation of NP-hard functions, in
Proc. of the 33th ACM Symp. on the Theory of Computing, pp. 550–559, 2001

[18] P. Indyk, D. Woodruff, Polylogarithmic private approximations and efficient matching, in Proc. of the
Third Theory of Cryptography Conference—TCC 2006, ed. by S. Halevi, T. Rabin. Lecture Notes in
Computer Science, vol. 3876 (Springer, Berlin, 2006), pp. 245–264

[19] M. Jerrum, A. Sinclair, E. Vigoda, A polynomial-time approximation algorithm for the permanent of a
matrix with nonnegative entries. J. ACM 51(4), 671–697 (2004)

[20] L.G. Valiant, V.V. Vazirani, NP is as easy as detecting unique solutions. Theor. Comput. Sci. 47, 85–93
(1986)

[21] A.C. Yao, Protocols for secure computations, in Proc. of the 23th IEEE Symp. on Foundations of Com-
puter Science, pp. 160–164, 1982

	How Should We Solve Search Problems Privately?n1
	Abstract
	Introduction
	This Work
	Deterministic vs. Randomized Private Algorithms
	Framework: Seeded Algorithms
	Our Results
	Equivalence-ProtectingAlgorithms
	Resemblance-Preserving Algorithms
	Summary

	Organization

	Definitions
	Equivalence-Protecting Algorithms
	Canonical Representatives
	Equivalence-Protecting Algorithms for Monotone Search Problems
	Applications of the Construction

	Resemblance-Preserving Algorithms
	Resemblance-Preserving vs. Equivalence-Protecting
	Generic Constructions of Resemblance-Preserving Algorithms
	Resemblance-Preserving Using Pairwise Independence
	Applications of the Pairwise Independence Construction
	Linear Algebra
	Linear Algebra over F2
	Linear Algebra over Finite Fields
	Union of Linear Spaces

	Points in a Union of Discrete Rectangles
	Satisfying Assignment for a DNF Formula
	Points in a Union of Discrete Rectangles in a d-dimensional Space

	Relationships Between the Classes of Private Algorithms
	Deterministic Private Algorithms: Lexicographically First vs. Median
	Deterministic Private vs. Output-Sampling Algorithms
	Resemblance-Preserving vs. Equivalence-Protecting Algorithms

	Discussion
	Acknowledgements
	Appendix A. Proof of Theorem 4.9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

