
J. Cryptol. (2010) 23: 121–168
DOI: 10.1007/s00145-009-9046-1

Obfuscation for Cryptographic Purposes∗

Dennis Hofheinz
CWI, Amsterdam, The Netherlands

Dennis.Hofheinz@cwi.nl

John Malone-Lee
EMB Consultancy LLP, Epsom, UK

malone@cs.bris.ac.uk

Martijn Stam
EPFL/LACAL, Lausanne, Switzerland

martijn.stam@epfl.ch

Online publication 13 June 2009

Abstract. Loosely speaking, an obfuscation O of a function f should satisfy two
requirements: firstly, using O, it should be possible to evaluate f ; secondly, O should
not reveal anything about f that cannot be learnt from oracle access to f alone. Several
definitions for obfuscation exist. However, most of them are very hard to satisfy, even
when focusing on specific applications such as obfuscating a point function (e.g., for
authentication purposes).

In this work, we propose and investigate two new variants of obfuscation definitions.
Our definitions are simulation-based (i.e., require the existence of a simulator that can
efficiently generate fake obfuscations) and demand only security on average (over the
choice of the obfuscated function). We stress that our notions are not free from generic
impossibilities: there exist natural classes of function families that cannot be securely
obfuscated. Hence we cannot hope for a general-purpose obfuscator with respect to our
definition. However, we prove that there also exist several natural classes of functions
for which our definitions yield interesting results.

Specifically, we show that our definitions have the following properties:

Usefulness: Securely obfuscating (the encryption function of) a secure private-key en-
cryption scheme yields a secure public-key encryption scheme.

Achievability: There exist obfuscatable private-key encryption schemes. Also, a point
function chosen uniformly at random can easily be obfuscated with respect to the
weaker one (but not the stronger one) of our definitions. (Previous work focused on
obfuscating point functions from arbitrary distributions.)

Generic impossibilities: There exist unobfuscatable private-key encryption schemes.
Furthermore, pseudorandom functions cannot be obfuscated with respect to our de-
finitions.

∗ This is the full version of [21], which appeared at the Theory of Cryptography Conference (TCC) 2007.
Work by the second and third author was partially conducted while employed at the University of Bristol.

This work was partially funded by the European Commission through the ICT programme under Contract
ICT-2007-216646 ECRYPT II.

© International Association for Cryptologic Research 2009

mailto:Dennis.Hofheinz@cwi.nl
mailto:malone@cs.bris.ac.uk
mailto:martijn.stam@epfl.ch

122 D. Hofheinz, J. Malone-Lee, and M. Stam

Our results show that, while it is hard to avoid generic impossibilities, useful and rea-
sonable obfuscation definitions are possible when considering specific tasks (i.e., func-
tion families).

Key words. Obfuscation, Point functions.

1. Introduction

Suppose a software vendor wants to sell its products without giving away internal know-
how used in the code. In other words, the software should provide the intended function-
ality, yet hide internal implementation details completely, even from a curious party that
can see and analyze the (compiled) program code. Although there are hardware-based
alternatives, the obvious way to achieve this is to obfuscate the code, i.e., to make it in-
comprehensible. Intuitively, the obfuscation of a piece of code (or of a function) should
provide nothing more than the possibility of evaluating that function. A little more tech-
nically, from an obfuscation of a function one should not be able to learn more than one
can learn from oracle access to that function. Here we restrict ourselves to learning in a
computationally restricted sense.

As another use case of obfuscation techniques, consider a password query during a
user login onto a computer terminal. Verification that a user correctly entered his or
her password can be done of course by storing all user passwords in the clear on that
machine. This works, but an adversary who breaks into that machine can learn all user
passwords with just read-only access. We can do much better by storing only hashes (or
images of the password under a one-way function) H(p) for every user password p.
Verification of a user-entered password p′ with p is then done by comparing H(p) and
H(p′). One-wayness of H guarantees that p (or any other “good” password p′ with
H(p) = H(p′)) is not found even when H(p) becomes known.

Abstracting here, the functionality of this password authentication is that of evalu-
ating a point function. (A point function is a function Px with Px(x

′) = 1 if x = x′
and Px(x

′) = 0 else.) Informally, hence, the verification procedure that uses H(p) can
be considered a useful obfuscation of a point function. Namely, it provides the desired
functionality,1 but in a way such that releasing the implementation, here H(p), does not
enable an adversary to learn p.

Focus. The focus of this work is the technical definition of a secure obfuscation suit-
able for cryptographic purposes. Before we detail our own contribution and our results,
we give a survey of previous work.

History and Survey of Related Work. Practical yet informal approaches to code ob-
fuscation were considered by Jaeschke [23] and Linn and Debray [25]. Goldreich and
Ostrovsky [13] show how to use a low-memory secure hardware component to obfus-
cate general programs. A crucial ingredient in their construction is oblivious memory
access (i.e., they consider machines whose memory access behavior does not depend on
the input). Another early theoretical contribution to obfuscate functions was made by

1 Technically, in fact, perfect functionality is only provided if H is a one-way permutation. Otherwise,
there might be x′ �= x with H(x′) = H(x), so that x′ passes the verification although it should not.

Obfuscation for Cryptographic Purposes 123

Hada [19]. He gave a simulation-based security definition for obfuscation and related it
to zero-knowledge proof systems.

In their seminal paper, Barak et al. [3] define a hierarchy of obfuscation definitions,
the weakest of which is predicate-based, and the strongest of which is simulation-based.
They show that there are function families that cannot be obfuscated, even under the
weakest definition that they proposed. Specifically, they show that there are (contrived)
sets of functions such that no single obfuscation algorithm can work for all of them
(and output secure obfuscations of the given function). Hence, Barak et al. rule out
the possibility of generic obfuscation. (And, jumping ahead, we stress that the proof
argument they give also applies to our notion.) Yet, Barak et al. leave room for the
possibility of obfuscators for specific families of functions.

Goldwasser and Kalai [3] present obfuscation definitions that model several types of
auxiliary information available to an adversary. Their definitions are predicate-based.
One of them, in contrast to the main definitions of Barak et al., models a random choice
of the function to be obfuscated. They show general impossibility results for these defi-
nitions using filtered functions (functions whose output is forced to ⊥ if the input is not
“certified” by a witness). In particular, with respect to obfuscation with dependent input,
they show the following. Either common cryptographic primitives (such as encryption,
signing, and pseudorandom functions) cannot be obfuscated, or a large class of filtered
functions based on N P -complete problems cannot be obfuscated (or both). (The latter
would imply that no N P -complete language has a hard-core predicate.) They also show
that with respect to their definitions, an obfuscation of a point function is secure against
adversaries without auxiliary information if and only if it is secure against adversaries
with (point-)independent auxiliary information.

Even before a precise definition of obfuscation was formulated, positive obfuscation
results were given implicitly and in a different context for a special class of functions.
Namely, Canetti [8] and Canetti et al. [10] essentially obfuscate point functions. The
construction from Canetti [8] works for (almost) arbitrary function distributions and
hence requires a very strong computational assumption. On the other hand, one con-
struction from Canetti et al. [10] requires only a standard computational assumption,
but is also proven only for a uniform point function distribution. Another construction
of [10] works for arbitrary distributions but assumes the existence of a specific type of
hash function.

Positive results for the predicate-based definition of Barak et al. [3] were demon-
strated by Lynn et al. [26]. They show how to employ a random oracle to obfuscate
access control functions efficiently. This includes point functions. A generalization of
point functions can be found in the work of Dodis and Smith [12], who show how to
obfuscate a proximity function.

Subsequently Wee [34] showed how to obfuscate point functions in the standard
model (still predicate-based). Yet he only does this under very strong computational
assumptions and for a very weak definition of obfuscation. Wee also shows that, at least
under one of the original obfuscation definitions of Barak et al., strong computational
assumptions are necessary for obfuscating point functions.

Recently (and concurrently to the conference version [21] of this paper), relaxed defi-
nitions of obfuscation have been considered by Goldwasser and Rothblum [18] and Ho-
henberger et al. [22]. Goldwasser and Rothblum allow an obfuscation to leak as much

124 D. Hofheinz, J. Malone-Lee, and M. Stam

information as any implementation of the function of a specific size would. Potentially
this reveals more information than can be obtained in a black-box way from the function.
They show that this leads to a strictly weaker but still meaningful definition. On the other
hand, [22] demands only average-case security for probabilistic functions (very similar
to our definition). They also show how to obfuscate the task of re-encrypting ciphertexts.

Also related is the recent work on public key obfuscation by Ostrovsky and
Skeith III [31] and later by Adida and Wikström [1]. In this setting, obfuscating a
function means that one obfuscates the composition of that function followed by en-
cryption. (Thus, querying the obfuscated function results in encrypted function values.)
Correctness (or functionality) is defined relative to the decryption. Security is based
on the notion of indistinguishability under chosen plaintext attacks. Here the adversary
gets to pick two functions, and he gets a randomly chosen public key obfuscation of one
of them. The adversary has to guess of which one it is. Public key obfuscation does not
seem to fit cleanly within any of the other definitional models.

Finally, Narayanan and Shmatikov [30] investigated to what extent point function
obfuscations can be used to bootstrap other obfuscations. They did this under a defi-
nition of obfuscation in which adversaries are bounded only in their number of oracle
queries, but not in the number of their computation steps. With respect to this defini-
tion, Narayanan and Shmatikov show that there are circuits which can be obfuscated
with a random oracle, but not with just an oracle to a point function. Narayanan and
Shmatikov [30] also improve an upper bound on the concurrent self-composability (i.e.,
security preservation if several obfuscated instances of the same function are available)
of Wee’s construction for point function obfuscation.

Our Results. Our own contribution is two-fold:

Definitional contribution. We consider two specific variants of simulation-based obfus-
cation definitions. Our weaker definition could be called our “main” definition, be-
cause most of our results are formulated with respect to it. However, we also present a
stronger definition. Our stronger definition is harder to achieve, and indeed our exam-
ples on how to achieve it are less interesting. However, the stronger definition behaves
more nicely in larger contexts. Specifically, an obfuscation that satisfies the stronger
definition can be simulated even in contexts in which (partial or full) information
about the obfuscated input is used.
Note that we call these variants “our definitions” since they have not been consid-
ered before in the literature. However, technically they merely combine a number of
known definitional ingredients in a new way. We compare and relate our definitions
to a number of known definitions, and investigate how known (impossibility) results
carry over to our definitions.

Results for our new definitions. We show that our definitions are useful cryptographic
definitions in the following sense:

Useful building block. Our definitions serve as a useful building block in a larger cryp-
tographic system. Specifically, secure obfuscators in our sense can be used to turn
private-key cryptography into public-key cryptography. For instance, a private-key
encryption scheme can be transformed into a public-key encryption scheme by ob-
fuscating the encryption algorithm. If the obfuscation satisfies our weaker obfusca-
tion definition, then this transformation preserves the passive (IND-CPA) security

Obfuscation for Cryptographic Purposes 125

of the encryption scheme. Our stronger notion even preserves active (IND-CCA)
security. In that sense, our definitions are “not too weak.”

Achievable. Our definitions can be achieved for a number of interesting function
classes under standard computational assumptions. In particular, we show that our
weaker obfuscation definition can be achieved for point functions (with respect
to a uniform distribution on the point function). Furthermore, we exemplify that
the encryption algorithm of certain private-key encryption schemes is obfuscatable
with respect to both our weaker and our stronger definition. (Although arguably,
this merely constitutes a proof of concept.) In that sense, our definitions are “not
too strong.” However, we stress that there are also natural classes of functions
which cannot be obfuscated according to our definitions. Examples of such func-
tion classes are, e.g., pseudorandom functions.

We give a more detailed explanation of our results below.

Our New Definitions. More concretely, we introduce variants of the simulation-based
definition of Barak et al. [3]. Roughly, a simulation-based obfuscation definition re-
quires that there is a simulator that, using oracle access to the obfuscated function only,
efficiently produces fake obfuscations which are indistinguishable from real obfusca-
tions. We deviate from [3] in the following respects:

Security on average. We randomly choose the function to be obfuscated according to
a distribution and demand only “good obfuscations on average.” Here “good” refers
to simulatability. This is unlike the main definitions of [3], which demand good ob-
fuscations for every function in a given set. Our definitional choice follows from the
intuition that in many applications, the function in question is initially sampled from
its function class in an honest way. For instance, in a private-key encryption scheme,
we can assume that the key itself (which determines the corresponding encryption
function) is honestly and uniformly chosen. (If the key is sampled by an adversarial
entity, then we cannot guarantee any reasonable form of security anyway.) Techni-
cally, our definition follows Canetti’s “oracle hashing” definition [8], Hada’s security
definition [19], and Goldwasser and Kalai [3]. These notions also demand security
on average in the same way as we do.2

Access to the obfuscated function. When it comes to distinguishing real from fake ob-
fuscations, the distinguisher should have some information about what function has
been obfuscated (in particular given that the function is sampled from a distribution,
as described above). Barak et al. [3] demand security for every function in a given set,
so that, implicitly, the distinguisher gets the function description itself as input. Other
definitions provide the distinguisher with an independently generated obfuscation of
the same function [19], with auxiliary information about the function [16],3 or with
oracle access to the function [22]. Our two new definitions differ in the information

2 When demanding security on average, it is reasonable to ask whether the obfuscator itself gains from
being probabilistic. For example, one might hope to extract sufficiently good random coins for the obfuscation
algorithm itself from its input; after all, the input itself is chosen randomly and contains a certain min-entropy.
We will comment below, after the actual security definition, further on this.

3 Since the definitions of [16] are predicate-based, there is actually no distinguisher in their setting; there,
adversary (and simulator) get auxiliary information about the function.

126 D. Hofheinz, J. Malone-Lee, and M. Stam

the distinguisher receives about the obfuscated function. Concretely, our weaker de-
finition grants the distinguisher oracle access only to the obfuscated function. The
stronger definition gives the function description itself to the distinguisher.

Obfuscation of probabilistic functions. We consider probabilistic functions. That is, we
consider functions whose output on a given input is a distribution of output values
as opposed to a single output value. This is a minor technical change that can easily
be applied to previous definitions. (And to some extent this is already considered
in the “sampling algorithms” section of [3].) However, this change is essential, as it
enables the obfuscation of for instance encryption algorithms that necessarily behave
probabilistically. Furthermore, allowing probabilistic functions for obfuscation opens
another door as follows. A simulation-based obfuscation definition (such as ours or
that of Hada [19]) is very restrictive. Namely, following Hada [19] and Wee [34], we
remark that any family of deterministic functions must be approximately learnable to
be obfuscatable. For probabilistic functions, this level of learnability is not required,
and one can hope to obfuscate more interesting classes of functions. Indeed, this hope
is shown justified in the concurrent work of Hohenberger et al. [22].

For a detailed comparison of existing definitions to ours, see Sect. 4.3.

Negative Results for Our Definitions. As a first observation, we stress that the generic
impossibility results from [3] also carry over to our notions in a meaningful way (see
also [3, Discussion after Theorem 4.5]). That means that also for (both of) our notions,
there can be no general-purpose obfuscators. Indeed, recall that deterministic functions
must be approximately learnable in order to be obfuscatable (in a simulation-based
way). As a consequence, we can prove that in particular it is not possible to obfus-
cate pseudorandom functions (PRFs) under our definition. Barak et al. already consider
the obfuscation of PRFs ([3, Theorem 4.12 of full version]). They show that specific
(contrived) PRFs exist such that any obfuscation would leak the PRF’s key. In contrast
to that, we show that no PRF can be obfuscated. This impossibility however applies
only to simulation-based obfuscation definitions such as ours.

Positive Results for Our Definitions. We show how our definitions can be a useful
cryptographic building block. Namely, we show that obfuscations secure according to
our definitions can be used to turn private-key cryptography into public-key cryptogra-
phy. For instance, obfuscating the encryption function of a secure private-key encryption
scheme should (intuitively) yield a secure public-key encryption scheme. We show that
this intuition holds true when using our obfuscation definitions. Interestingly, the degree
of preserved security depends on which of our obfuscation definitions is used. Namely,
the stronger definition preserves active (IND-CCA) security of the encryption scheme,
while the weaker definition only preserves passive (IND-CPA) security (and, in gen-
eral, not IND-CCA security). Hence, our definitions are useful in the sense that secure
obfuscations can be used in a meaningful way in larger constructions.

On the other hand, our definitions are achievable. For instance, there exist (contrived)
private-key encryption schemes whose encryption function is obfuscatable according
to our definitions. Concretely, any public-key encryption scheme can be modified into
an obfuscatable private-key encryption scheme: the obfuscation is the public key. Of
course, this construction is not very interesting but it does show that our notion is in

Obfuscation for Cryptographic Purposes 127

principle achievable, even for the nontrivial class of encryption functions. In particu-
lar, it rules out general impossibility results in this direction and leaves hope for more
meaningful obfuscations.

We show similar statements for authentication schemes, although in that case there
are some serious caveats, as follows. Namely, the analogue of passive security for sig-
nature schemes is a trivial security notion. Hence, our weaker security notion is not very
useful in that context. Our stronger security notion preserves security against active at-
tacks. However, in case of signature schemes, our stronger notion is not achievable in
the standard model.

Also, we prove that point functions can be obfuscated very easily with respect to
the weaker (but not the stronger) of our definitions. To obfuscate a point function Px ,
publish �(x) for a one-way permutation �. This closely mimics the way password
checks are implemented in practice (as sketched above). However, note that we can
prove security only under the assumption that the password is chosen from the uniform
distribution. In practice, it may seem more reasonable to model passwords as coming
from a low-entropy distribution.

General Composability of Obfuscations. However, note that the simple point function
obfuscation just described is considerably weaker than previous point function obfusca-
tions: security is lost when the point function is not chosen randomly, or when auxiliary
information about the point x is published. In particular, security may be lost when the
obfuscation is used in larger settings in which x is used in several places. We use this
observation as a motivation to investigate when the security of obfuscation is preserved
in larger contexts. Concretely, we show that our stronger obfuscation definition does
remain secure in larger contexts. Technically, we give a formulation of a secure obfus-
cation in the indifferentiability framework [27] which provides general secure composi-
tion. (That is, any security statement automatically also holds under composition in the
indifferentiability framework, similarly to the universal composability [9] and reactive
simulatability [2] models.) We prove that our stronger definition, along with a suitable
correctness requirement, is equivalent to indifferentiable obfuscation and hence behaves
well in larger contexts.

Additionally, we prove that our stronger obfuscation notion behaves well under self-
composition. That is, we show that several (different) obfuscations of the same function
can be used concurrently without sacrificing security.

2. Notation

Throughout the paper, k ∈ N denotes a security parameter. With growing k, attacks
should become harder, but we also allow schemes to be of complexity which is polyno-
mial in k. A PPT algorithm/Turing machine is a probabilistic algorithm/Turing machine
which runs in time polynomial in k. All algorithms implicitly receive the security para-
meter as input, so we write A(ε) for algorithms without further input (where ε denotes
the empty bitstring). If A is a PPT algorithm, then Y ← A(X) denotes that Y is the ran-
dom variable obtained by running A with uniformly distributed random coins and on
input X. If X is a distribution, then X ← X denotes that X is sampled according to X .

128 D. Hofheinz, J. Malone-Lee, and M. Stam

If X is a set, then X
$← X means that X is sampled according to the uniform distrib-

ution over X . For a random variable X, the expected value of X is denoted by EV[X].
For random variables X1,X2, their statistical distance 1

2

∑
x |Pr[X1 = x]− Pr[X2 = x]|

is denoted by �(X1 ; X2). A function ν : N → R is negligible iff for all c > 0, we have
that |ν(k)| < k−c for sufficiently large k. For two functions f,g : N → R, we write

f
c≈ g iff their difference f − g is negligible.

3. Previous Obfuscation Definitions

Intuition and Worst-Case Obfuscation. We recall the obfuscation definitions from
Barak et al. [3]. As mentioned in the introduction, intuitively an obfuscation O of a
function f should provide nothing more than the possibility to evaluate that function.
Now it does not make sense to speak about a single, isolated function f here. If f

is agreed upon, there is no need for an obfuscation in the first place. Hence, we con-
sider a family F = (Fk)k∈N with Fk = (f) of functions. Henceforth it is understood
that all functions f ∈ Fk can be represented in polynomial space allowing evaluation
in polynomial time (in k). Whenever we input f to an algorithm, we implicitly refer to
its description. (And consequently, the particular representation of the function could
make a difference.)

Syntactically, an obfuscator O for F takes as input the description of a function
f ∈ F and outputs an obfuscation O = O(f). Formally, both the function and the ob-
fuscation are represented as a circuit. The definitions of Barak et al. require that for
every f ∈ F , the obfuscation O(f) should be secure, in a sense to be defined. Because
security is required for all f , we will call Barak et al.’s definitions worst-case.

Definition 3.1 (Worst-Case Obfuscation [3] (Generic)). Let F = (Fk), where each Fk

is a family of functions associated with security parameter k. Let O be a PPT algorithm
which maps (descriptions of) functions f to circuits O(f). We say that O is a worst-
case obfuscator for F iff the following holds.

Functionality: For all k ∈ N, all f ∈ Fk , and all possible O = O(f), we have that O

computes the same function as f .
Virtual black-box (informal): For all f ∈ Fk ⊆ F , given access to the obfuscation O =

O(f), an adversary cannot learn anything about the original function f that it could
not have learnt from oracle access to f .

Barak et al. also mention a third requirement, namely polynomial slowdown. This
means that the time it takes to evaluate the obfuscated function is polynomially bounded
by the runtime of the original. Since we require O to be PPT and to output a circuit,
polynomial slowdown is fulfilled automatically.

We stress that the functionality requirement can be relaxed in meaningful ways. For
instance, one might require “approximate functionality” in the sense that O evaluates f ,
except with negligible probability over the random coins of O. Our results are not af-
fected by such a relaxation. For probabilistic functions f , the functionality requirement

Obfuscation for Cryptographic Purposes 129

is to be understood such that O gives rise to the same output distribution as f . (Ap-
pendix A is dedicated to a more detailed discussion of the functionality requirement for
probabilistic functions.)

The virtual black-box requirement can be formalized in different ways. For instance,
one could require that no adversary can approximate a non-trivial predicate on (the
description of) f . Alternatively, one could demand that there exists a simulator that
produces fake obfuscations, using oracle access to f only.

We now elaborate on these variants of the virtual black-box requirement.

Predicate-Based Worst-Case Obfuscation. This variant of the virtual black-box re-
quirement is based on computing a predicate on the description of f . Concretely, the
task of an adversary A given the obfuscation O(f) is to compute a boolean predicate
π on the description of f . Of course, there are always predicates, such as constant
predicates, which can be easily computed. Hence, we want that O(f) does not help
in approximating π(f). That is, for any adversary A and any boolean predicate π , the
probability that an adversary computes π(f) given O(f) is not significantly greater
than the probability that a suitable simulator S, given only oracle access to f , computes
π(f). This notion is formally defined by a slightly simpler, but equivalent, notion:

Definition 3.2 (Predicate-Based Worst-Case Virtual Black-Box [3]). Let F , O be as
in Definition 3.1. Then O satisfies the predicate-based worst-case black-box property
iff for all PPT algorithms A, there exist a PPT algorithm S and a negligible function ν

such that for all k ∈ N and f ∈ Fk , we have

Pr
[
A

(
O(f)

) = 1
] − Pr

[
Sf (·)(ε) = 1

] ≤ ν(k).

Definition 3.2 is the main notion of security used in the impossibility result of Barak
et al. [3]. (However, their result holds for a number of other definitional variants, in-
cluding all the definitions discussed in this work.)

Simulation-Based Obfuscation. This secrecy requirement is based on computational
indistinguishability. Under this formulation one does not restrict the nature of what an
adversary must compute. Concretely, we require that it is possible to produce, from or-
acle access to f only, “fake obfuscations.” These fake obfuscations should be computa-
tionally indistinguishable from the real obfuscations O(f). Hence, also every (efficient)
function computed on O(f) can be approximated using oracle access to f . Obfuscators
satisfying Definition 3.3 can easily be seen to satisfy Definition 3.2 as well.

Definition 3.3 (Simulation-Based Worst-Case Virtual Black-Box [3], Formulation Due
to [34]). Let F and O be as in Definition 3.1. Then O satisfies the simulation-based
worst-case black-box property iff there exists a PPT simulator S such that for every PPT
distinguisher D, some negligible function ν, all k ∈ N, and all f ∈ Fk , we have

Pr
[
D

(
O(f)

) = 1
] − Pr

[
D

(
Sf (·)(ε)

) = 1
] ≤ ν(k).

130 D. Hofheinz, J. Malone-Lee, and M. Stam

Connection to Learnability. The following has been noticed already by Hada [19]
and formally shown by Wee [34, Proposition 5.2]. Namely, simulation-based worst-
case obfuscation can be achieved for (deterministic) functions f precisely when f is
efficiently and exactly learnable through oracle access. For instance, in case the function
is learnable, the obfuscation can return the learned function. However, Wee’s result
uses that the function in question is deterministic, so we can hope to avoid the strict
requirement of learnability when considering probabilistic functions.

4. Our Definition

We first present our own definition (which is a variant of simulation-based obfuscation)
and then justify the main design choices we made. In fact, we will present two defini-
tions, which are syntactically very similar but differ substantially in their properties (we
will explore the properties of our definitions in Sects. 5 and 6). The first, weaker defini-
tion can be seen as our “main” definition, since most of our results hold with respect to
this definition. However, the second, stronger definition will turn out to have a number
of nice properties that make up for some of the weaker definition’s drawbacks. After
our definitions have been presented and discussed, we will compare them to a number
of existing definitions.

4.1. The Definitions

As noted, our definitions are simulation-based, but we do not call them “worst-case,”
since we only require security on average (over f):

Definition 4.1 (Simulation-Based Average-Case Virtual Black-Box Property). Let
F = (Fk), where each Fk is a family of probabilistic functions associated with security
parameter k. Let O be a PPT algorithm which maps (descriptions of) functions f to
circuits O(f). We say that O has the simulation-based average-case virtual black-box
property iff for every PPT distinguisher D, there is a PPT simulator S such that

Advsbvbb
F ,O,D,S(k) := Pr

[
f

$← Fk : Df (·)(O(f)
) = 1

]

− Pr
[
f

$← Fk : Df (·)(Sf (·)(ε)
) = 1

]
(1)

is negligible in k.

We stress that oracles in this definition (in particular, D’s f (·) oracle) may use ran-
domness that is independent and hidden from D. In particular, D does not get to choose
or even see the random coins used to evaluate f . In case of probabilistic functions f ,
this opens a door to sidestep impossibility results (see, e.g., Hohenberger et al. [22,
Sect. 2] for an example and further discussion).

We also introduce a stronger variant, which features a different order of quantifiers
and gives the distinguisher D access to the full description of the function f :

Definition 4.2 (Strong Simulation-Based Average-Case Virtual Black-Box Property).
Let F = (Fk), where each Fk is a family of probabilistic functions associated with

Obfuscation for Cryptographic Purposes 131

security parameter k. Let O be a PPT algorithm which maps (descriptions of) func-
tions f to circuits O(f). We say that O has the strong simulation-based average-case
virtual black-box property iff there is a PPT simulator S such that for every PPT distin-
guisher D, we have that

Advssbvbb
F ,O,D,S(k) := Pr

[
f

$← Fk : D
(
f, O(f)

) = 1
]

− Pr
[
f

$← Fk : D
(
f,Sf (·)(ε)

) = 1
]

(2)

is negligible in k.

The following lemma is trivial from the definitions:

Lemma 4.3 (Strong Average-Case Implies Average-Case). Whenever an obfuscator
satisfies the strong simulation-based average-case virtual black-box property (Defini-
tion 4.2), it satisfies the simulation-based average-case virtual black-box property (De-
finition 4.1).

4.2. Motivation of Design Choices

Based on Simulation. Our definitions require the existence of a simulator that is able
to generate “fake obfuscations” that are indistinguishable from real obfuscations. This
design choice makes our definition easy to use in larger constructions. For instance, in a
game-based security proof of a cryptographic system, one substitutes components of the
real system one by one with different but indistinguishable components, until one ends
up with an ideal system which is trivially secure. The obfuscation O(f) and the simu-
lated obfuscation Sf (ε) can be seen as such indistinguishable and hence interchange-
able components. We demonstrate this concept in a number of proofs in Sect. 5, where
we show how to use our definitions. We stress that predicate-based obfuscation defini-
tions do not support game-based proofs in a similar way. Indeed, while a predicate-based
definition states that an obfuscation leaks no given (nontrivial) predicate bit about f , it
is unclear how this could be used as an intermediate step in a game-based proof. (Usu-
ally it is not a priori clear how the obfuscation is used by an adversary to achieve his
overall attack goal. Hence, it is not clear what predicate of f the adversary crucially
uses.)

We summarize that using a simulation-based definition is the key to the usability of
our definition.

Probabilistic Functions. In contrast to earlier works, we consider probabilistic func-
tions. First, this obviously makes it easier to express, say, the (necessarily probabilistic)
encryption algorithm of a secure encryption scheme as a suitable function family F .
But we gain much more than just syntactic compatibility. More importantly, probabilis-
tic functions avoid the necessity for f to be learnable in order to be obfuscatable. (Recall
that for deterministic functions f , learnability and simulation-based obfuscatability are
equivalent.)

132 D. Hofheinz, J. Malone-Lee, and M. Stam

Concurrently to our work, also Hohenberger et al. [22] use probabilistic functions
instead of deterministic ones in order to prove their positive result. Furthermore, proba-
bilistic functions have been implicitly used in the context of obfuscation by Adida and
Wikström [1], Ostrovsky and Skeith III [31] in the setting of encryption.

Hence, we gain expressiveness and achievability by using probabilistic functions.

Average-Case Security. We do not require security for all functions f , but instead we
require security on average, over a uniform choice of f ∈ Fk . This relaxation of Barak
et al.’s definition will be the key to the achievability of our definition. Namely, a random
choice of f enables reducing the security of an obfuscator to standard cryptographic
assumptions. In such standard assumptions, usually also a random choice of an under-
lying secret is crucial. For instance, Theorem 5.4 reduces the security of an obfuscator
for point functions to the security of a one-way permutation. Now in the proof, the point
function Px , or rather the secret point x, can be directly mapped to the preimage of the
one-way permutation, since both are distributed uniformly. This enables a very simple
security proof. The two security experiments (obfuscation and underlying primitive) are
“compatible.”

We stress that, with similar arguments, the idea of average-case obfuscation has al-
ready been considered in a number of works, e.g., by Hada [19], Goldwasser and Kalai
[16]. Also, concurrently to our work, Hohenberger et al. [22] use and achieve (for a non-
trivial and natural class of functions) an average-case definition quite similar to ours.

We summarize that average-case security is the key to the achievability of our defin-
ition.

On the Necessity of a Probabilistic Obfuscator. We consider a distribution on the ob-
fuscated functions f , and in particular f is chosen after the distinguisher D. Hence,
the obfuscator O essentially gets two types of random inputs, both independent of D:
a randomly selected f ∈ F , and O’s own random coins. The question arises whether O
can do without its random coins and derive all needed randomness from its input f .4 In
other words: is it feasible without loss of generality to assume that O is deterministic?

We contend that the answer is no. To explain, consider the stronger Definition 4.2 in
case of a deterministic obfuscator O. Hence, the obfuscation O(f) follows deterministi-
cally from the input function f . Specifically, since the distinguisher D in Definition 4.2
gets f as input, D can always compute O(f) on its own and compare the result to its
second input O . When D’s second input really is an obfuscation, then O = O(f). A
successful (in the sense of Definition 4.2) simulator must hence achieve that its output
matches O(f) with overwhelming probability.

Thus, to achieve Definition 4.2 in case of deterministic obfuscators, there must exist
a simulator S that finds the (unique) real obfuscation O(f) except with negligible prob-
ability. Because we require perfect functionality, O(f) evaluates f everywhere. This
means that a successful S has to learn f efficiently and exactly from oracle access only.
(Note that this holds even if f is a probabilistic function, since S has to outputs the same
function O(f) with overwhelming probability.) Consequently, while we do not have a
natural example of a function family that can only be obfuscated with a probabilistic
obfuscator, it seems that we gain generality by the obfuscator to be probabilistic.

4 Such techniques have been successfully applied in the encryption setting, see Bellare et al. [7].

Obfuscation for Cryptographic Purposes 133

The Difference Between Our Two Definitions. Our Definitions 4.1 and 4.2 differ in
two aspects. Namely, first, the order of quantifiers (∀D∃S vs. ∃S∀D), and second, how
D may access f (oracle access to f vs. getting f as input). Definition 4.2 is the stricter
definition in both respects. This leads to a more versatile but also harder to achieve
definition. Most of our results hold with respect to the weaker Definition 4.1, hence
Definition 4.1 can be called our main (or standard) definition. However, we include
Definition 4.2 because it shows how to circumvent some of the shortcomings of Defini-
tion 4.1.

In particular, Definition 4.1 cannot generally be used in larger contexts in which the
function f itself is used. As an example, consider the obfuscation of the encryption
algorithm of a private-key encryption scheme. It is reasonable to assume that in a larger
context, the decryption algorithm is used (with respect to the same private key). In such
a context, obfuscations that satisfy Definition 4.1 may not remain secure. (In a nutshell,
this holds because Definition 4.1 considers an isolated obfuscation of f , while, say, a
decryption oracle uses information related to f . For details, see Sect. 5.3.)

Definition 4.2 provides a more useful definition in such settings. Particularly, Defin-
ition 4.2 guarantees that the obfuscation of (the encryption algorithm of) a private-key
encryption scheme remains secure in the presence of a decryption oracle. More gen-
erally, we will show that Definition 4.2 can be used in a large class of contexts (see
Sect. 6). However, at the same time, Definition 4.2 appears to be extremely strict. In
fact, we can only show that Definition 4.2 is achievable for toy examples (such as in
Theorem 5.15).

Auxiliary Input and Composability. Goldwasser and Kalai [3] distinguish in their ob-
fuscation definitions two types of auxiliary information that an adversary might possess:
(f -)dependent auxiliary information and (f -)independent auxiliary information. (Their
definitions are reproduced below in Definitions 4.4 and 4.5.) At first glance, our defini-
tions do not feature any kind of auxiliary information, and it might seem surprising that
we can derive any compositional guarantees without auxiliary information. (Usually,
auxiliary information is a technical tool to derive security guarantees in larger contexts:
the auxiliary information given to the adversary incorporates all information that an
adversary could obtain from the context “surrounding” the obfuscation.)

However, at a closer inspection, in particular Definition 4.2 grants the adversary a
very specific (f -dependent) auxiliary information about f : namely, f itself. (And con-
sequently, the adversary can derive any information that can be efficiently computed
from f .) This is the key to our compositional guarantees we can provide for Defin-
ition 4.2 (cf. Sect. 6). The auxiliary information provided to the adversary in Defin-
ition 4.1 is much weaker: here, it consists of oracle access to f . (And consequently,
Definition 4.1 fails to provide strong compositional guarantees, cf. the discussion in
Sect. 5.1.)

We stress that the technical way that auxiliary information is incorporated into the
definitions by Goldwasser and Kalai (see also Definition 4.4) differs from ours. Namely,
Goldwasser and Kalai hand the auxiliary information to both adversary and simulator.
(In their case, there is no distinguisher.) In our case, the simulator does not get any
form of auxiliary information, not even in our stronger Definition 4.2. This technical
difference makes relating their definitions to ours even harder.

134 D. Hofheinz, J. Malone-Lee, and M. Stam

On the other hand, adding independent auxiliary input to our definitions (similarly to
Hohenberger et al. [22]) does not alter our results. All reductions and proofs derived still
hold, only that the respective computational assumptions must hold against nonuniform
adversaries.

4.3. Comparison with Other Definitions

The Relationship with Predicate-Based Definitions. The main definition of Barak et
al. is a predicate based definition (see also Definition 3.2). It was later modified by
Goldwasser and Kalai [3], who demand security in the presence of auxiliary information
on the key. More specifically, one of the definitions by Goldwasser and Kalai [3] models
security in presence of auxiliary information that depends on the particular function to
be obfuscated. The other definition from Goldwasser and Kalai [3] models security in
the presence of auxiliary information that is independent of the obfuscated function.

To ease a comparison, we recast their definitions in our notation. This results in a
minor change in the definition due to their emphasis on circuits, whereas we consider
more general function families.

Definition 4.4 (Goldwasser and Kalai’s Obfuscation w.r.t. Dependent Auxiliary In-
put [16, Definition 3]). An obfuscator O for a function family F = (Fk) is secure
with respect to dependent auxiliary input iff for every PPT adversary A, there exist a
PPT simulator S and a negligible function ν such that for all k, all f ∈ Fk , all auxiliary
inputs z, and all predicates π , we have

Pr
[
A

(
O(f), z

) = π(f, z)
] − Pr

[
Sf (·)(z) = π(f, z)

] ≤ ν(k).

Definition 4.5 (Goldwasser and Kalai’s Obfuscation w.r.t. Independent Auxiliary In-
put [16, Definition 4]). An obfuscator O for a function family F = (Fk) is secure
with respect to independent auxiliary input if for every PPT adversary A, there exist a
PPT simulator S and a negligible function ν such that for all k, all auxiliary inputs z,
and all predicates π , we have

Pr
[
A

(
O(f), z

) = π(f, z)
] − Pr

[
Sf (·)(z) = π(f, z)

] ≤ ν(k),

where the probability is over f
$← Fk and the internal coins of A and S.

Firstly, our definitions require security w.r.t. a randomly chosen key from a given set,
whereas [3, Definition 2.1] and [16, Definition 3] demand security for every key in that
set. In that sense, our definitions are a relaxation (although this does not protect our
definitions from impossibility results for general-purpose obfuscation; see below). On
the other hand, our definitions require a multi-bit output from the simulator, whereas
[3, Definition 2.1] and [16, Definition 3] restrict adversary and simulator to a one-bit
output. In that sense our definitions are harder to satisfy, and obfuscations satisfying
[16, Definition 3] (which is stronger than [3, Definition 2.1]) do not necessarily satisfy
our definitions.

Obfuscation for Cryptographic Purposes 135

Of more interest to us is a comparison with [16, Definition 4], which is also relaxed in
the sense that it only requires security for a random function chosen from some distrib-
ution.5 Nonetheless, we will show a simple example of a predicate-leaking obfuscation
secure in the sense of Definition 4.1, so it seems that the two definitions are incompara-
ble.

Secondly, the definitions from [16] give adversary as well as simulator auxiliary in-
formation. One of the motivations of [16] to incorporate auxiliary input in their defini-
tions is composability; Although we do not explicitly model such auxiliary information
in our definitions, we do consider the composability for Definition 4.2 (in Sect. 6 we
show that Definition 4.2 implies obfuscation in the indifferentiability framework, which
in turn implies a certain form of composability). (See also the discussion after Defini-
tion 4.2 for the role of auxiliary information in our definitions.)

The Definition of Hohenberger et al. Definition 2 of Hohenberger et al. [22] also in-
troduces average-case secure obfuscation, dealing with probabilistic functionalities as
well. This definition is very similar, but subtly stronger than ours. Since Hohenberger
et al. give a positive result of an obfuscation, a stronger definition is more desirable than
a weaker one.

For ease of comparison, let us first recast [22, Definition 2] in our notation. For the
moment, we ignore the functionality requirements. (This is done for simplicity; a discus-
sion is deferred to Appendix A.) We give a slightly different but equivalent formulation
(polynomial slowdown is implicit, the adversary in [22] is superfluous):

Definition 4.6 (Hohenberger et al.’s Average-Case Secure Obfuscation [22, Defini-
tion 2]). An obfuscator O for a function family F = (Fk) is average-case secure iff
there exists a PPT simulator S such that for every PPT distinguisher D and all auxiliary
inputs z, we have that

Pr
[
f

$← Fk : Df (·)(O(f), z
) = 1

]

− Pr
[
f

$← Fk : Df (·)(Sf (·)(z), z
) = 1

]

is negligible as a function in k.

From our reformulation it is already clear that the virtual black box requirements
(ours and theirs) are surprisingly similar. Compared to Definition 4.1, there are only
two differences. Firstly, our weaker Definition 4.1 uses a different order of quantifiers.
Namely, whereas Hohenberger et al. require a universal simulator that works for all
distinguishers, we use the more relaxed quantification of allowing the simulator to de-
pend on the distinguisher. (The simple point function obfuscation, Sect. 5.1, we give
for Definition 4.1 actually does come with a universal simulator.)

Secondly, we do not take into account auxiliary information (although of course it is
easy to change our definition so it does). As mentioned before, the main advantage of

5 The relaxation is necessary to obtain independence of the auxiliary information; Goldwasser and Kalai
justify it by the observation that in most cryptographic applications, an adversary is confronted with such a
randomly chosen (obfuscated) function. This motivation is similar to ours.

136 D. Hofheinz, J. Malone-Lee, and M. Stam

including auxiliary information in the definition is that it makes the obfuscation more
robust in case of composition of the obfuscation with other protocols. We will come
back to the issue of composability and the role our stronger Definition 4.2 plays in it in
more detail in Sect. 6.

Perfectly One-Way Hashing and Point Functions. We note that a distribution on the
function to obfuscate was already considered in other definitions, such as in the secu-
rity definition for perfect one-way hashing (that is actually an obfuscation of a point
function) from Canetti [8]. In that case security could be achieved as long as the distri-
bution on the functions is well spread, which basically means that a brute-force search
for the function has only negligible success. Our results from Sect. 5.1 (that also con-
cern an obfuscation of a point function) are formulated with a uniform distribution on
the functions. (We note that, of course, also perfect one-way hashing can and has been
considered with respect to a uniform input distribution, in which case interesting results
can be derived from weaker assumptions, see Canetti et al. [10].)

In contrast to the analysis from [8,10], the analysis of our construction is quite
straightforward. Our obfuscation of a point function Px is �(x) for a one-way per-
mutation �. Also, the obfuscation security experiment for P and the one-wayness ex-
periment of � can be related in a very direct manner. However, there can be well-spread
distributions (different from the uniform one) for which our point function obfuscation
becomes insecure. (Imagine a one-way permutation that leaks the upper half of the
preimage and a distribution that keeps the lower half of the preimage constant.) In other
words, the price to pay for the simplicity of our analysis is the dependency on a uniform
distribution of the function.

Also, the constructions from [8,10] are “semantically secure” in the sense that any
predicate on the hashed value (i.e., the key of the point function to be obfuscated) is
hidden. Our construction from Sect. 5.1 does not guarantee this. Just like the one-way
permutation that is employed, our construction only hides the key in its entirety. In some
applications this might not be sufficient and in particular not a meaningful “idealization”
of a point function. However, in other settings, this may be exactly the idealization one
is interested in.

Example: Point Functions/Password Queries. With respect to obfuscating point func-
tions in view of implementing a password query (see Sect. 1 for motivation on this),
Canetti’s definition and our definition can hence be nicely compared:

• Canetti demands that as long as there is some uncertainty about the password, no
predicate on the password can be guessed from its obfuscation alone. In particu-
lar, the password itself cannot be guessed. Formally, as long as the password has
significant min-entropy, no predicate of the password can be guessed from its ob-
fuscation significantly better than without the obfuscation.

• The variation of Canetti’s definition with respect to uniform distributions (as used
in one result of [10]) requires that if there is no a priori information about the
password, then no predicate of the password can be guessed. Formally, if the pass-
word has full min-entropy, no predicate on the password can be guessed from its
obfuscation significantly better than without the obfuscation.

Obfuscation for Cryptographic Purposes 137

• We demand that if there is no a priori information about the password, then it
cannot be guessed from its obfuscation alone. Formally, if the password has full
min-entropy, its obfuscation looks like that of any other password.

This shows that, of course, our notion is considerably weaker than Canetti’s (even when
considered for uniform input distribution).

Other Similar Definitions. Technically, our Definition 4.1 is quite similar to Hada [19,
Definition 10] (the latter definition which is also formulated with a distribution on the
keys). Essentially, the only difference is that [19, Definition 10] equips the distinguisher
with an extra copy of the obfuscation instead of oracle access to the function. As argued
by Hada [19], this leads to a very strong definition (that is, in particular strictly more
restrictive than ours).

Finally, the definitions from Wee [34, Sect. 5.2] are technically similar to ours, in
that they are simulation-based. His definitions suffer from strong impossibility results
(in particular, a function must be exactly learnable for obfuscation). This is partly due
to the fact that these definitions demand security for all keys in a given set. In our case,
a function must be approximately learnable for obfuscation, and this enables, e.g., the
obfuscation of point functions (see Sect. 5.1).

4.4. Specific vs. General-Purpose Obfuscation

Impossibility of General-Purpose Obfuscation. As already indicated our definitions
still suffer from certain impossibility results. First, the argument of Barak et al. [3,
Sect. 3] works also for the case of a randomized key distribution, and hence there are
certain (albeit constructed) examples of unobfuscatable function families. There are
even less constructed examples, as we will show in Sect. 5. In other words: there can be
no general-purpose obfuscation.6

Specific Obfuscators. What we advocate here is to consider specific obfuscators for
specific function families. For example, we will show (in Sect. 5.3) that obfuscating the
encryption algorithm of a private-key encryption scheme yields a public-key encryption
scheme and that such obfuscations (in principle at least) exist. However, our example
that such obfuscations exist assumes a public-key encryption scheme in the first place.
Plugging this example into the private-key→public-key transformation gives (nearly)
the same public-key encryption scheme one started with. So the following question
arises:

What is Gained? Firstly, the private-key→public-key transformation can be seen,
similarly to Diffie and Hellman [11], as a technical paradigm to realize public-key en-
cryption in the first place. In that context, a formalization of obfuscation can provide an
interface and a technical guideline of what to aim for.

Secondly, the mentioned impossibility results do not exclude that a sensible formu-
lation of what can be obfuscated exists. In other words, there may be a large and easily
characterizable class of functions which can be obfuscated. Universal, general-purpose
obfuscators for this class may exist and provide solutions for applications which corre-
spond to functions inside this class.

6 It is actually worse: as in [3], there exist function families that cannot be obfuscated with any obfuscator.

138 D. Hofheinz, J. Malone-Lee, and M. Stam

5. Results for Our Definitions

Overview. Here we investigate the usefulness of our obfuscation definitions, where we
concentrate mainly on the weaker of the two, Definition 4.1. Concretely, we show that
this definition is:

• weak enough to be achieved with simple constructions: point functions can be
easily obfuscated according to our definition (Sect. 5.1);

• strong enough to be used as a useful building block: secure obfuscations according
to our definition can be used to transform private-key encryption into public-key
encryption (Sect. 5.3).

In the process, we will encounter a number of concrete and natural examples of obfus-
catable and unobfuscatable function families:

• obfuscatable according to our definition are point functions, certain private-key
encryption schemes, and certain message authentication codes, whereas

• unobfuscatable according to our definition are pseudorandom functions, certain
private-key encryption schemes, and certain message authentication codes.

Our interpretation of these results is that one should not strive for all-purpose obfusca-
tors, since they may not exist (even for restricted tasks such as private-key encryption
schemes). Instead, obfuscating very specific function families may often be possible
and may prove useful for larger constructions.

5.1. Achievability: Obfuscating Point Functions

Definition 5.1 (Point Function). For k ∈ N and x ∈ {0,1}k , we define the point func-
tion Px : {0,1}k → {0,1} by Px(x

′) := 1 iff x′ = x. Furthermore, we define the families
of point functions Pk := (Px)x∈{0,1}k and P := (Pk)k∈N.

Our goal is to obfuscate the function family P according to Definition 4.1. That is,
we want to obfuscate the evaluation of a point function Px sampled uniformly from
Pk for k being the security parameter. As it turns out, �(x) is a secure obfuscation
of Px whenever � is a one-way permutation. Hence, we make the following defini-
tions:

Definition 5.2 (One-Way Permutation). Let � : {0,1}∗ →{0,1}∗ be length-preserving
and bijective (i.e., �({0,1}k) = {0,1}k for all k ∈ N). We say that � is a one-way
permutation iff for all PPT adversaries A, the function Advow

�,A(k) is negligible in k,
where

Advow
�,A(k) := Pr

[
x

$← {0,1}k : A
(
�(x)

) = x
]
.

Construction 5.3 (Point Function Obfuscator). Let P = (Pk)k∈N be the family of
point functions from Definition 5.1, and let � be a one-way permutation as in Defini-
tion 5.2. For Px ∈ Pk , define the obfuscation O(Px) := �(x), with the semantics that
(O(Px)) (x′) = 1 iff �(x′) = O(Px).

Obfuscation for Cryptographic Purposes 139

The actual proof that O securely obfuscates P is quite simple:

Theorem 5.4 (Security of Construction 5.3). O from Construction 5.3 securely obfus-
cates the point function family P from Definition 5.1 in the sense of Definition 4.1.

Proof. Let an arbitrary PPT distinguisher D as in Definition 4.1 be given. We define
a PPT simulator S as follows: S uniformly samples x′ ∈ {0,1}k and outputs �(x′). We
have to show that

Advsbvbb
P ,O,D,S(k) = Pr

[
x

$← {0,1}k : DPx(·)(�(x)
) = 1

]

− Pr
[
x, x′ $← {0,1}k : DPx(·)(�(x′)

) = 1
]

is negligible in k. We use a game-based proof technique for clarity.
So let Game 0 denote the execution of DPx(·)(�(x)) for uniformly chosen x ∈ {0,1}k .

By definition,

Pr[out0 = 1] = Pr
[
x

$← {0,1}k : DPx(·)(�(x)
) = 1

]

with out0 being D’s output in Game 0.
In Game 1, we change D’s oracle Px to the all-zero oracle that outputs 0 on every

input. We claim that

|Pr[out1 = 1] − Pr[out0 = 1]| ≤ Advow
�,A(k) (3)

for a suitable PPT adversary A on �’s one-way property and the output out1 of D in
Game 1. To show (3), let bad denote the event that D queries its oracle Px on input x.
Clearly, unless bad occurs, Games 0 and 1 proceed identically (in particular, the proba-
bility for bad in Games 0 and 1 is identical). On the other hand, we have that

Pr[bad] ≤ Advow
�,A(k) (4)

for the following adversary A: On input �(x) it simulates DPx(·)(�(x)), implementing
the Px -oracle using �(x). Concretely, a Px -query x′ is answered with 1 iff �(x′) =
�(x). If bad occurs (i.e., if D queries Px with x), then A outputs x. By definition, this
adversary establishes (4) and hence (3).

In Game 2, we substitute D’s all-zero oracle from Game 1 with an oracle that eval-
uates the point function Px′ for a uniformly and independently chosen x′ ∈ {0,1}k .
Games 1 and 2 differ only if D queries x′. Since x′ is independently chosen and
information-theoretically hidden from D, we have that

∣
∣Pr[out2 = 1] − Pr[out1 = 1]∣∣ ≤ q(k)

2k
,

where q = q(k) is a polynomial upper bound on the number of D’s oracle queries, and
out2 denotes D’s output in Game 2.

140 D. Hofheinz, J. Malone-Lee, and M. Stam

Now observe that

Pr[out2 = 1] = Pr
[
x, x′ $← {0,1}k : DPx′ (·)(�(x)

) = 1
]

= Pr
[
x, x′ $← {0,1}k : DPx(·)(�(x′)

) = 1
]
.

Taking things together proves that

Advsbvbb
P ,O,D,S(k) ≤ Advow

�,A(k) + q(k)

2k

is negligible as desired. �

We note that it is easy to see that Construction 5.3 does not strongly obfuscate P (in
the sense of Definition 4.2). Moreover, with a little tweak we can also show that Con-
struction 5.3 does not imply the predicate-based Definition 4.5 (even when not taking
auxiliary information into consideration). Given a one-way permutation �, define the
related permutation �′ by �′(b‖x) = b‖�(x) (where b a bit). Then �′ is one-way iff
� is, yet the point function obfuscation using �′ clearly leaks the first bit of its input
(hence a predicate).

On the Weakness of Our Construction. Construction 5.3 provides significantly weaker
secrecy guarantees than previous constructions for point function obfuscations (such as
[8,10,34]). For instance, our obfuscation O(Px) = �(x) might well leak, say, the first
half of the bits of the secret point x. The only guarantee we provide is that the whole
point x cannot be reconstructed from O(Px). In strong contrast to that, e.g., Canetti [8]
(and similarly [10,34]) aims at an “all-or-nothing” property, even for arbitrary distrib-
utions of x, and in presence of arbitrary auxiliary information about x. Namely, either
the whole secret point x can already be guessed without the obfuscation (in which case
the obfuscation of Px merely provides a confirmation of x), or the obfuscation leaks no
additional information about x. And even when assuming a uniform distribution on x

(as, e.g., for one construction in [10]), Canetti’s definition requires that not even a pred-
icate (such as a bit of x) can be approximated from an obfuscation. This is essentially
the secrecy guarantee a random oracle would provide in place of � in Construction 5.3;
and in fact, the main goal of [8] is to provide a computational instantiation of (the se-
crecy properties of) a random oracle. These extremely strong secrecy guarantees are
bought at a certain price: the construction of [8] requires a much stronger and nonstan-
dard computational assumption. (We note that one construction of [10], that provides
security only for the uniform distribution on x, makes only standard computational as-
sumptions; however, their construction is comparatively involved.)

So in a nutshell, Construction 5.3 does not provide security in the presence of aux-
iliary information (about x), in contrast to previous constructions. As a consequence,
Construction 5.3 should only be used in contexts in which no auxiliary information
about x is used. This effect illustrates the general composability limitations of Defini-
tion 4.1, and an alternative based on Definition 4.2 will be discussed in detail in Sect. 6.

Obfuscation for Cryptographic Purposes 141

5.2. A Natural Example of an Unobfuscatable Function Family

Despite our good start with point functions, we can show that our obfuscation notion is
not free from impossibility results, not even for specific (and natural) classes of function
families. Concretely, we will prove that pseudorandom functions cannot be obfuscated
under our obfuscation definitions. Intuitively, this is not at all surprising, independently
of the used obfuscation notion: obfuscating a pseudorandom function essentially yields
a random oracle.

The upcoming definition follows Goldreich et al. [14].

Definition 5.5 (Family of Pseudorandom Functions). Let F = (Fk)k∈N, Fk =
(fs)s∈{0,1}k with fs : {0,1}|s| → {0,1}|s| be given. Let R = (Rk)k∈N, where Rk denotes
the set of all functions {0,1}k → {0,1}k . Then F is called a family of pseudorandom
functions iff for every PPT A, the function Advprf

F ,A
(k) is negligible in k. Here,

Advprf
F ,A

(k) := Pr
[
s

$← {0,1}k : Afs(·)(ε) = 1
] − Pr

[
R

$← Rk : AR(·)(ε) = 1
]
.

Theorem 5.6 (Pseudorandom Function Families Cannot be Obfuscated). Let F be a
family of pseudorandom functions as in Definition 5.5. Then F cannot be obfuscated in
the sense of Definition 4.1, and with perfect functionality.

Proof. Let O be an obfuscator of F in the sense of Definition 4.1, and with perfect
functionality. Consider the distinguisher D that, upon input O and with oracle access
to fs , proceeds as follows. D uniformly chooses x ∈ {0,1}k and outputs 1 iff O(x) =
fs(x). Clearly,

Pr
[
Dfs(·)(O(fs)

) = 1
] = 1

by functionality of the obfuscation. Now fix any PPT simulator S in the sense of Defin-
ition 4.1. We have that

Pr
[
Dfs(·)(Sfs(·)(ε)

) = 1
] c≈ Pr

[
DR(·)(SR(·)(ε)

) = 1
]

for a truly random function R as in Definition 5.5. Furthermore, Pr[DR(·)(SR(·)(ε)) = 1]
is negligible by the statistical properties of R. To see this, note that unless S queries
R(x) for the point x ∈ {0,1}k chosen by D, we have that S’s view is independent
of R(x). Furthermore, since x ∈ {0,1}k is chosen independently by D, we have that S

queries R(x) only with negligible probability. Hence, S produces an output O with
O(x) = R(x) only with negligible probability. Thus,

Pr
[
Dfs(·)(Sfs(·)(ε)

) = 1
] c≈ Pr

[
DR(·)(SR(·)(ε)

) = 1
] c≈ 0,

which shows that Advsbvbb
F ,O,D,S

(k) is nonnegligible, overwhelming even, and so O does
not obfuscate F . �

142 D. Hofheinz, J. Malone-Lee, and M. Stam

5.3. How to Use Our Definition: Transforming Private-Key Encryption
into Public-Key Encryption

We now exemplify that our obfuscation definition is strong enough to be useful as
a building block. Concretely, we take up the motivation of Diffie and Hellman [11],
who suggested that one way to produce a public-key encryption scheme was to ob-
fuscate a private-key scheme. This application of obfuscation was also suggested by
Barak et al. [3]. Specifically, say we obfuscate the encryption algorithm (with hard-
wired private key) of a private-key encryption scheme and call the result the public key.
Intuitively, the public key then allows encrypting messages, but nothing more. We will
investigate below when this transformation actually yields a secure public-key encryp-
tion scheme.

Encryption Schemes. We start by recalling some standard definitions, starting with the
definition of a private-key encryption scheme:

Definition 5.7 (Private-Key Encryption Scheme). A private-key encryption scheme
SKE = (K,E,D) consists of three PPT algorithms with the following semantics:

• The key generation algorithm K samples a key K . We write K ← K(ε) and let Kk

denote the set of all keys K in the range of K(ε) on security parameter k.
• The encryption algorithm E encrypts a message M ∈ {0,1}∗ and produces a ci-

phertext C. We write C ← E(K,M).
• The decryption algorithm D decrypts a ciphertext C to a message M . We write

M ← D(K,C).

We require perfect correctness of the scheme, i.e., that D(K,E(K,M)) = M for all
M ∈ {0,1}∗ and all possible K ← K(ε).

To ease presentation, and to maintain compatibility with our definitional choices for
obfuscation, we will assume (without loss of generality) that K samples keys uniformly
from Kk .

The definition of a public-key encryption scheme is identical, except that encryption
is performed with a public key, and decryption is performed with a private key:

Definition 5.8 (Public-Key Encryption Scheme). A public-key encryption scheme
PKE = (Gen,Enc,Dec) consists of three PPT algorithms with the following semantics:

• The key generation algorithm Gen samples a keypair (pk, sk) consisting of a public
key pk along with a private key sk. We write (pk, sk) ← Gen(ε).

• The encryption algorithm Enc encrypts a message M ∈ {0,1}∗ and produces a
ciphertext C. We write C ← Enc(pk,M).

• The decryption algorithm Dec decrypts a ciphertext C to a message M . We write
M ← Dec(sk,C).

We require perfect correctness of the scheme, i.e., that Dec(sk,Enc(pk,M)) = M for
all M ∈ {0,1}∗ and all possible (pk, sk) ← Gen(ε).

Obfuscation for Cryptographic Purposes 143

We stress that we model encryption schemes which encrypt arbitrary messages M ∈
{0,1}∗ (as opposed to, say, messages M ∈ G from a cyclic group). This definitional
choice has been made only to ease presentation.7

Security of Encryption Schemes. To capture the security of a (private-key or public-
key) encryption scheme, we require indistinguishability of ciphertexts [17,29,32]. The
following definition captures active attacks (aka chosen-ciphertext attacks, in which an
adversary has access to a decryption oracle). A straightforward variant models passive
attacks (in which an adversary only gets to observe a ciphertext).

Definition 5.9 (Security of an Encryption Scheme). Let SKE = (K,E,D) be a private-
key encryption scheme, and let A = (A1,A2) be a pair of PPT algorithms we call ad-
versary. We define

Advind-cca
SKE,A(k) := Pr

[
Expind-cca

SKE,A(k) = 1
] − 1

2
,

where Expind-cca
SKE,A(k) is the following experiment:

Experiment Expind-cca
SKE,A(k)

Choose uniformly b ∈ {0,1}
K ← K(ε)

(M0,M1, s) ← A
E(K,·),D(K,·)
1 (ε)

C∗ ← E(K,Mb)

b′ ← A
E(K,·),D(K,·)
2 (C∗, s)

Return b ⊕ b′

A1 is restricted to always output equal-length messages M0,M1, and A2 is restricted
not to query its decryption oracle D(K, ·) on the challenge ciphertext C∗. SKE is in-
distinguishable against chosen-ciphertext attacks (IND-CCA) if the advantage function
Advind-cca

SKE,A(k) is negligible in k for all A.
Define further

Advind-cpa
SKE,A (k) := Pr

[
Expind-cpa

SKE,A (k) = 1
] − 1

2
,

where Expind-cpa
SKE,A (k) is defined like Expind-cca

SKE,A(k), with the difference that A1 and A2 do
not get access to a decryption oracle D(K, ·). SKE is indistinguishable against chosen-
plaintext attacks (IND-CPA) if the advantage function Advind-cpa

SKE,A (k) is negligible in k

for all A.
For a public-key encryption scheme PKE = (Gen,Enc,Dec), define the experiments

Expind-cca
PKE,A(k) and Expind-cpa

PKE,A (k) as above, with the difference that A does not get access
to an encryption oracle Enc(pk, ·), but instead, A1 gets the public key pk as input. PKE

is IND-CCA (resp., IND-CPA) if Advind-cca
PKE,A(k) (resp., Advind-cpa

PKE,A (k)) is negligible for
all A.

7 Strictly speaking an infinite message space is not compatible with our computational model where all
algorithms are required to run in time polynomial in the security parameter.

144 D. Hofheinz, J. Malone-Lee, and M. Stam

The Transformation. We are now ready to formally define what we mean by obfuscat-
ing the encryption algorithm of a private-key encryption scheme.

Definition 5.10 ((Strongly) Obfuscatable Private-Key Encryption). Let SKE=(K,E,D)

be a private-key encryption scheme as in Definition 5.7. Then, define EK(·) := E(K, ·)
as the encryption algorithm of SKE with hardwired private key K . Let Ek := (EK)K∈Kk

and E := (Ek)k∈N. Suppose that O is an obfuscator for the family E such that O satisfies
Definition 4.1 and has perfect functionality. Then we say that O obfuscates SKE. If O
even satisfies Definition 4.2, then we say that O strongly obfuscates SKE. If an O exists
that (strongly) obfuscates SKE, then we say that SKE is (strongly) obfuscatable.

Construction 5.11 (Obfuscating Private-Key Encryption). Let SKE = (K,E,D) and
O as in Definition 5.10, such that O obfuscates SKE. Then, define the following public
key encryption scheme PKE = (Gen,Enc,Dec) as follows:

• Gen(ε) samples K ← K(ε), sets pk ← O(EK) and sk ← K , and outputs the key-
pair (pk, sk).

• Enc(pk,M) interprets pk as an algorithm, computes C ← pk(M), and returns C.
• Dec(sk,C) computes M ← D(sk,C) and returns M .

Since we require perfect functionality from an obfuscation, it is clear that the scheme
PKE from Construction 5.11 fulfils the correctness requirement from Definition 5.8.
However, for the analysis of PKE, the following questions are much more interesting:

• Is PKE secure (in the sense of Definition 5.9) if SKE is?
• Is it realistic to assume that one can obfuscate the encryption of SKE in the first

place?

In the following, we will try to answer these questions. Concretely, we will show that
PKE is IND-CPA secure if SKE is; however, we will also illustrate that this does not hold
in general for IND-CCA security, unless O strongly obfuscates SKE. We will also show
that there exist private-key encryption schemes with (strongly) obfuscatable encryption
algorithm; however, there also exist encryption schemes which are not obfuscatable.

What Security Properties Our Transformation Preserves. We start by showing that our
transformation preserves IND-CPA security.

Theorem 5.12 (Obfuscating Private-Key Encryption Preserves IND-CPA). Let SKE,
O, and PKE be as in Construction 5.11. Then the transformed public-key encryption
scheme PKE is IND-CPA secure whenever SKE is.

Proof. Let A = (A1,A2) be an adversary on PKE’s IND-CPA property as in Defini-
tion 5.9. We need to show that Advind-cpa

PKE,A (k) is negligible in k. We proceed in games.

Let Game 0 denote Expind-cpa
PKE,A (k). We have

Pr[out0 = 1] = Pr
[
Expind-cpa

PKE,A (k) = 1
]

if we let out0 denote the experiment output in Game 0.

Obfuscation for Cryptographic Purposes 145

In Game 1, we change the generation of the challenge ciphertext C∗. Recall that in
Game 0, C∗ = Enc(pk,Mb) = (O(EK))(Mb). We now set C∗ = EK(Mb) = E(K,Mb).
Since the obfuscator O satisfies perfect functionality, we have (O(EK))(Mb) =
EK(Mb) always, and so

Pr[out1 = 1] = Pr[out0 = 1]
for the experiment output out1 in Game 1.

To define Game 2, we interpret Game 1 as a PPT distinguisher D as in Definition 4.1.
Concretely, D has oracle access to EK(·) = E(K, ·), gets as input pk = O(EK), and
internally simulates Game 1. Observe that D does not need explicit knowledge about
K but instead can pass its input pk to A1 and use its oracle EK(·) to generate C∗ =
EK(Mb). Finally, D outputs the experiment output out1. Definition 4.1 guarantees the
existence of a PPT simulator S such that

Pr[out1 = 1] = Pr
[
DEK(·)(O(EK)

) = 1
] c≈ Pr

[
DEK(·)(SEK(·)(ε)

) = 1
]
.

Using S, we define Game 2 as a modification of Game 1 as follows: in Game 2, we now
generate pk as pk := SEK(·)(ε); the remaining execution is as in Game 1. We have

Pr[out2 = 1] = Pr
[
DEK(·)(SEK(·)(ε)

) = 1
]

for the experiment output out2 in Game 2, and so Pr[out2] c≈ Pr[out1].
Finally, observe that in Game 2, the public key pk = SEK(·)(ε) can be generated from

oracle access to EK(·) = E(K, ·) alone. Hence, we can modify A1 into A′
1 such that

A′
1 no longer expects a public key as input but instead requires only oracle access to

E(K, ·) to generate pk on its own. Furthermore, recall that we generate C∗ using E
directly. Hence, we can interpret A′ := (A′

1,A2) as a PPT adversary on SKE’s IND-
CPA security, and we get

Pr
[
Expind-cpa

SKE,A′(k) = 1
] = Pr[out2 = 1].

Since SKE is IND-CPA secure by assumption, we have that

Pr
[
Expind-cpa

PKE,A (k) = 1
] = Pr[out0] = Pr[out1] c≈ Pr[out2]

= Pr
[
Expind-cpa

SKE,A′(k) = 1
] c≈ 1

2
,

which proves that Advind-cpa
PKE,A (k) is negligible as desired. �

If we assume that O strongly obfuscates SKE, we can even show that IND-CCA
security is preserved:

Theorem 5.13 (Strongly Obfuscating Private-Key Encryption Preserves IND-CCA).
Let SKE, O, and PKE be as in Construction 5.11 and such that O strongly obfuscates

146 D. Hofheinz, J. Malone-Lee, and M. Stam

SKE. Assume here that the description of EK allows one to extract the key K .8 Then,
the transformed public-key encryption scheme PKE is IND-CCA secure whenever SKE
is.

Proof. The proof is identical to the proof of Theorem 5.12, except that D now needs
to simulate an IND-CCA experiment instead of an IND-CPA experiment. Since we
assumed that O strongly obfuscates SKE, D can do so with using its input EK , which
by assumptions allows one to extract the (encryption and decryption) key K . The rest
of the proof remains unchanged. �

What Security Properties our Transformation Does Not Preserve. Unfortunately IND-
CCA security of SKE is not necessarily preserved by Construction 5.11 in case O does
not strongly obfuscate SKE. The intuitive reason is the following. Assume an obfus-
cator O in the sense of Definition 4.1 for the probabilistic functions EK(·) = E(K, ·).
In Definition 4.1, the distinguisher D gets an encryption oracle (namely, an oracle for
evaluating the obfuscated function EK(·)), but no means of decrypting ciphertexts. (This
is in contrast to our stronger Definition 4.2 which grants D the full key K .) It is now
conceivable that the obfuscation loses its security only in the presence of a decryption
oracle. In particular, in the IND-CCA security experiment with a transformed encryp-
tion scheme PKE constructed from SKE and O, the adversary does have access to a
decryption oracle, and security of the obfuscation can no longer be guaranteed. Hence,
we cannot apply the reasoning of Theorem 5.12 to show that PKE inherits SKE’s IND-
CCA security when the obfuscator O does not strongly obfuscate SKE. More generally,
we can construct the following counterexample:

Theorem 5.14 ((Not Strongly) Obfuscating Private-Key Encryption Does Not Pre-
serve IND-CCA). Assume that obfuscatable IND-CCA secure private-key encryption
schemes exist. Then there exists an IND-CCA secure private-key encryption scheme SKE
and an obfuscator O such that the following holds:

• O obfuscates (but not strongly) SKE’s encryption algorithm as in Construc-
tion 5.11.

• The public-key encryption scheme PKE obtained by Construction 5.11 is not IND-
CCA.

Proof. Assume an IND-CCA secure private-key encryption scheme SKE′ that is ob-
fuscatable in the sense of Definition 5.10. Say that O′ obfuscates SKE′. We modify
SKE′ = (K′,E′,D′) into a scheme SKE = (K,E,D) as follows:

• K samples K ′ ← K′, chooses uniformly R ∈ {0,1}k , and outputs K = (K ′,R).
• E(K,M) parses K = (K ′,R), generates a ciphertext C′ ← E′(K ′,M), and outputs

C = (C′, ε).
• D(K,C) parses K = (K ′,R) and C = (C′, T) and determines its output M as

follows:

8 We stress that this is a (natural) assumption about the representation of EK , not the encryption algorithm
itself.

Obfuscation for Cryptographic Purposes 147

– If T = ε, then M ← D′(K ′,C′).
– If T = R, then M = K .
– Otherwise, M = ⊥.

Assume an adversary A = (A1,A2) on SKE’s IND-CCA property. We construct an
adversary A′ = (A′

1,A
′
2) on SKE′’s IND-CCA property, such that

Advind-cca
SKE,A(k)

c≈ Advind-cca
SKE′,A′(k). (5)

Now A′ proceeds like A, translating A’s E(K, ·)- and D(K, ·)-queries into E′(K ′, ·)-
and D′(K ′, ·)-queries for A′’s own oracles as follows:

• E(K,M)-queries are answered with (E′(K ′,M), ε).
• D(K, (C′, T))-queries are answered with D′(K ′,C′) if T = ε and with ⊥ other-

wise.

Let bad denote the event that A asks for a decryption of some C = (C′, T) with T = R.
It is clear that A′’s emulation of oracles E(K, ·) and D(K, ·) is perfect unless bad oc-
curs. On the other hand, the probability that bad occurs is at most q(k)/2k for some
polynomial q , since R is information-theoretically hidden from A′ and thus A. Hence,
(5) follows and so SKE achieves IND-CCA security.

By assumption, O′ obfuscates SKE′. We construct an obfuscator O for SKE’s encryp-
tion algorithm EK(·) = E(K, ·) as follows: O(EK) parses K = (K ′,R) and internally
runs O ′ ← O′(E′

K ′). O then outputs an obfuscation (O,R), where O is obtained from
O ′ by adding a second ciphertext component T = ε to each encryption. We claim that
O obfuscates SKE. Indeed, assume a PPT distinguisher D on O’s virtual black-box
property. Using trivial syntactic modifications, we can construct from D a distinguisher
D′ on O′’s virtual black-box property, so that

Pr
[
DEK(·)(O(EK)

) = 1
] = Pr

[
D′E′

K ′ (·)(O′(E′
K ′)

) = 1
]

c≈ Pr
[
D′E′

K ′ (·)(S′E′
K ′ (·)(ε)

) = 1
]
. (6)

Here, S′ is a PPT simulator whose existence follows from our assumption that O′ ob-
fuscates SKE′. From S′ we can construct a PPT simulator S that runs O ′ ← S′(ε) and
outputs a simulated obfuscation (O,R). Here, R ∈ {0,1}k is uniformly chosen by S,
and O is obtained from O ′ as above by adding a second ciphertext component T = ε.
Now by definition, D’s encryption oracle EK is independent of the actual value of R,
so inventing R achieves

Pr
[
DEK(·)(SEK(·)(ε)

) = 1
] = Pr

[
D′E′

K ′ (·)(S′E′
K ′ (·)(ε)

) = 1
]
. (7)

Taking (6) and (7) together shows that

Advsbvbb
E ,O,D,S(k) = Pr

[
DEK(·)(O(EK)

) = 1
] − Pr

[
DEK(·)(SEK(·)(ε)

) = 1
]

is negligible. Hence, O obfuscates SKE.
It remains to show that the public-key encryption scheme PKE, as obtained from

SKE and O using Construction 5.11, is not IND-CCA secure. To this end, consider

148 D. Hofheinz, J. Malone-Lee, and M. Stam

the following trivial adversary A = (A1,A2) on PKE’s IND-CCA property. A1 gets as
input pk = O(EK) = (O,R) and then queries its decryption oracle Dec(sk, ·) on input
C = (ε,R). By definition, Dec(sk,C) outputs D(sk, (ε,R)) = K , which can be used to
decrypt any challenge ciphertext. Hence, Advind-cca

PKE,A(k) = 1/2, and so PKE is not IND-
CCA secure. �

Can Private-Key Encryption be Obfuscated? We now show that there exist private-key
encryption schemes which can be obfuscated, even strongly; however, we also show that
there exist schemes which cannot be obfuscated. But before we explain our own results,
we discuss a connected result.

On a Negative Result Due to [3] Barak et al. [3, Theorem 4.12 in the full version], give
a transformation that turns any private-key encryption scheme into an equally secure
unobfuscatable private-key encryption scheme SKE. The definition of unobfuscatabil-
ity employed here implies that any obfuscation of SKE’s encryption algorithm allows
extracting the private key K . This also rules out obfuscation with respect to our def-
initions for private-key encryption schemes meeting any reasonable security standard.
(Essentially a simulator should be able to construct a decryption algorithm using a poly-
nomial number of encryption queries: this breaks IND-CPA security.) To achieve their
strong result, Barak et al. employ a sophisticated modular construction based on “totally
unobfuscatable one-way functions.” Our construction of an unobfuscatable private-key
encryption scheme below is conceptually much easier but only works for our security
definitions.

(Strongly) Obfuscatable Private-Key Encryption Schemes Exist. Given the preceding
discussion, the most pressing question is whether there exist private-key encryption
schemes which can be obfuscated according to our definition. Trivially, the answer is
yes as already observed by Barak et al. [3], since any public-key encryption scheme can
be turned into an obfuscatable private-key scheme. Essentially, the obfuscation is the
public key. Formally:

Theorem 5.15 ((Strongly) Obfuscatable Private-Key Encryption Schemes Exist). As-
sume that IND-CPA (resp., IND-CCA) secure public-key encryption schemes exist. Then
there exist IND-CPA (resp., IND-CCA) secure private-key encryption schemes which are
strongly obfuscatable.

Proof. Let PKE = (Gen,Enc,Dec) be an IND-CPA (resp., IND-CCA) secure private-
key encryption scheme. Without loss of generality, we assume that Gen always uses
p(k) random coins for a polynomial p. Then, we interpret PKE as a private-key encryp-
tion scheme SKE = (K,E,D) as follows:

• K(ε) outputs a uniformly chosen K ∈ {0,1}p(k).
• E(K,M) uses K as random coins for Gen to deterministically obtain a keypair

(pk, sk). Then, E returns9 C ← (pk,Enc(pk,M)).

9 The trick to include pk in each ciphertext to achieve trivial obfuscatability was suggested by a TCC
referee.

Obfuscation for Cryptographic Purposes 149

• D(K,C) uses K as random coins for Gen to deterministically obtain a keypair
(pk, sk), and parses C = (pk′,C′). If pk = pk′, then D returns M ← Dec(sk,C);
else, D returns ⊥.

Using a merely syntactic reduction, it is clear that SKE is IND-CPA (resp., IND-CCA)
whenever PKE is. To show that SKE is obfuscatable, consider the obfuscator O with
O(EK) = pk for the public key pk obtained by running Gen with random coins K . Now
a PPT simulator S in the sense of Definition 4.2 can simply obtain pk by its own encryp-
tion oracle EK(·) and perfectly simulate an obfuscation. Hence, O strongly obfuscates
SKE. �

We stress that Theorem 5.15 is not very useful in conjunction with Construction 5.11.
Namely, Theorem 5.15 shows that any public-key encryption scheme can be interpreted
as an obfuscatable private-key encryption scheme; Construction 5.11 states that any ob-
fuscatable private-key encryption scheme gives rise to a public-key encryption scheme.
Even worse, plugging any public-key encryption scheme into Theorem 5.15 and then
into Construction 5.11, one ends up with essentially the original scheme. However, the
point of Theorem 5.15 is a structural one: it shows that some private-key encryption
schemes can be obfuscated, and in particular, there can be no generic impossibilities for
obfuscating private-key encryption schemes according to our definition.

Unobfuscatable Private-Key Encryption Schemes Exist. Unfortunately, also private-
key encryption schemes which are unobfuscatable exist. We stress that by unobfuscat-
able, we mean “not obfuscatable” in the sense of Definition 5.10. We do not mean “to-
tally unobfuscatable” as in Barak et al. [3] (cf. also the discussion about their negative
result above).

The idea to construct unobfuscatable private-key encryption schemes is simple: sign
each ciphertext with a digital signature scheme and include the signature verification
key in each ciphertext. This way, the encryption is authenticated, in a publicly verifiable
way. In particular, any obfuscation of the encryption algorithm can be used to generate
fresh signatures for new ciphertexts. In the setting of Definition 4.1 this means that
a simulator S has to essentially forge signatures for fresh encryptions. (Since D has
direct oracle access to the encryption algorithm, it can obtain the “right” verification
key independently of S’s output.) This contradicts the security of the signature scheme.
Formally:

Theorem 5.16 (Unobfuscatable Private-Key Encryption Schemes Exist). Assume that
one-way functions exist. Then an IND-CCA secure private-key encryption exists which
is not obfuscatable in the sense of Definition 5.10.

Proof. Let SKE′ = (K′,E′,D′) be an IND-CPA secure private-key encryption scheme,
and let SIG = (Gen,Sig,Ver) be an EUF-CMA secure digital signature scheme (see
Definition 5.19). These ingredients can be constructed from one-way functions (see,
e.g., Bellare et al. [6] and Rompel [33]). We construct a private-key encryption scheme
SKE = (K,E,D) which cannot be obfuscated:

• K(ε) runs K ′ ←K′(ε) and (verkey, sigkey)←Gen(ε), and outputs K = (K ′, verkey,
sigkey).

150 D. Hofheinz, J. Malone-Lee, and M. Stam

• E(K,M) parses K = (K ′, verkey, sigkey), computes C′ = E′(K ′,M), signs C′ via
σ ← Sig(sigkey,C′), and outputs C = (C′, σ, verkey).

• D(K,C) parses K = (K ′, verkey, sigkey) and C = (C′, σ, verkey). If verkey =
verkey and Ver(verkey, σ,C′) = 1, then D outputs D′(K ′,C′); otherwise, D out-
puts ⊥.

It is easy to see that SKE constitutes an authenticated encryption scheme and conse-
quently achieves IND-CCA security (see, e.g., [5,24]). Now consider an arbitrary ob-
fuscator O for SKE. Furthermore, consider the following distinguisher D in the sense
of Definition 4.1:

1. First, D uses its oracle EK to encrypt M0 = 0 and so obtain a ciphertext C0 =
(C′

0, σ0, verkey).
2. Then, D interprets its input O as an (encryption) algorithm and obtains a cipher-

text C1 = (C′
1, σ1, verkey′) as an encryption of M1 = 1.

3. D outputs 1 iff Ver(verkey, σ1,C
′
1) = 1 and C′

1 �= C′
0.

By construction, DEK(·)(O(EK)) always outputs 1, since C′
0 �= C′

1 by correctness of the
encryption scheme. On the other hand, for any fixed PPT simulator S, we have that

Pr
[
DEK(·)(SEK(·)(ε)

) = 1
] ≤ Adveuf-cma

SIG,A (k) (8)

for the adversary A on SIG that proceeds as follows. Namely, A internally runs
DEK(·)(SEK(·)(ε)) and implements the EK oracles on its own, choosing a key K ′ for
SKE′ on its own, and using its own challenge verification key and signature oracle to
sign ciphertexts. If D outputs 1, this means that it has constructed a valid signature σ1
for a fresh message C′

1. The given bound (8) follows.
But since Adveuf-cma

SIG,A (k) is negligible by assumption on SIG, we obtain that

Advsbvbb
E ,O,D,S

(k) is overwhelming, so that O does not obfuscate SKE. The claim fol-
lows. �

5.4. Another Example: From Message Authentication to Digital Signatures

Message authentication codes (MACs) are the private-key analogue to digital signature
schemes. While verification of signatures is public in a digital signature scheme, the
verification algorithm of a MAC requires a private key. In particular in view of the
results of Sect. 5.3, it is now tempting to convert a MAC into a signature scheme by
obfuscating the verification algorithm (with hardwired key). It will turn out that this
does not work as easily as in the encryption case, due to two circumstances. Firstly, the
authentication analogue of IND-CPA security is not very meaningful;10 hence we omit
it. Secondly, the interface of the verification algorithm is very restricted: verification
only outputs a bit and only outputs 1 in case of a valid signature.

Consequently, our results concerning MACs and digital signatures are mainly nega-
tive. Concretely, we show that

• the situation is nontrivial, i.e., there exist obfuscatable as well as unobfuscatable
MACs (Theorems 5.25 and 5.26; here, “obfuscatable” means that the verification
algorithm can be obfuscated),

10 We would like to thank Salil Vadhan for pointing this out to us.

Obfuscation for Cryptographic Purposes 151

• a strongly (in the sense of Definition 4.2) obfuscatable MAC would give rise to a
secure digital signature scheme (Theorem 5.22), while an obfuscatable MAC is not
enough (Theorem 5.22),

• however, there exist no strongly obfuscatable MACs (at least in the standard model;
see Theorem 5.24).

Summarizing, our results suggest that MACs cannot be turned into signatures schemes
as smoothly as private-key into public-key encryption schemes. While our results do not
imply that such a transformation is impossible, they suggest that both Definitions 4.1
and 4.2 are unsuitable as technical tools for such a transformation. Namely, Defini-
tion 4.1 is too weak to guarantee security of the obtained digital signature scheme in
general, whereas Definition 4.2 cannot be achieved in case of MACs.11 We believe that
a definition suitable for this transformation would have to be case-tailored (e.g., incor-
porating black-box access to a signature oracle).

Message Authentication Codes. Again, we start by recalling some standard defini-
tions.

Definition 5.17 (Message Authentication Code (MAC)). A message authentication
code (MAC) MAC = (K,S,V) consists of three PPT algorithms with the following se-
mantics:

• The key generation algorithm K samples a key K . We write K ← K(ε), where Kk

denotes the set of all keys K in the range of K(ε) on security parameter k.
• The signature algorithm S signs a message M ∈ {0,1}∗ and produces a signa-

ture σ . We write σ ← S(K,M).
• The verification algorithm V verifies a signature σ for a message M . We write

ver ← V(K,σ,M), where ver ∈ {0,1}.
We require perfect correctness, namely that V(K,S(K,M),M) = 1 for all M ∈ {0,1}∗
and all possible K ← K(ε).

Again, we assume for simplicity that K samples its keys K uniformly from Kk .

Digital Signature Schemes. The definition of a digital signature scheme is almost iden-
tical:

Definition 5.18 (Digital Signature Scheme). A digital signature scheme SIG = (Gen,

Sig,Ver) consists of three PPT algorithms with the following semantics:

• The key generation algorithm Gen samples a keypair (verkey, sigkey) consist-
ing of a verification key verkey along with a signing key sigkey. We write
(verkey, sigkey) ← Gen(ε).

• The signature algorithm Sig signs a message M ∈ {0,1}∗ and produces a signa-
ture σ . We write σ ← Sig(sigkey,M).

11 At least in the standard model; it is conceivable that strongly obfuscatable MACs exist, e.g., in the
random oracle model.

152 D. Hofheinz, J. Malone-Lee, and M. Stam

• The verification algorithm Ver verifies a signature σ for a message M . We write
ver ← Ver(verkey, σ,M), where ver ∈ {0,1}.

We require perfect correctness of the scheme, i.e., that Ver(verkey,Sig(sigkey,M),M) =
1 for all M ∈ {0,1}∗ and all possible (verkey, sigkey) ← Gen(ε).

Security of Signatures. We demand that, even with access to a signing oracle, one
cannot forge signatures of new messages.

Definition 5.19 (Security of a MAC/Signature Scheme). Let MAC = (K,S,V) be a
message authentication code, and let A be a PPT algorithm we call adversary. We define

Adveuf-cma
MAC,A (k) := Pr

[
Expeuf-cma

MAC,A (k) = 1
]
,

where Expeuf-cma
MAC,A (k) is the following experiment:

Experiment Expeuf-cma
MAC,A (k)

K ← K(ε)

(σ,M) ← AS(K,·),V(K,·,·)(ε)
Return V(K,σ,M)

A is restricted to never return a message M for which it has requested a signature
from S(sigkey, ·). We call MAC existentially unforgeable under chosen-message attacks
(EUF-CMA) if Adveuf-cma

MAC,A (k) is negligible in k for all A.
For a digital signature scheme SIG = (Gen,Sig,Ver), define the experiment

Expeuf-cma
SIG,A (k) as above, with the difference that A does not get access to a verifica-

tion oracle Ver(verkey, ·, ·), but instead gets the verification key verkey as input. SIG is
EUF-CMA if Adveuf-cma

SIG,A (k) is negligible for all A.

The Transformation. We now define what we mean by obfuscating the verification
algorithm of a message authentication code:

Definition 5.20 ((Strongly) Obfuscatable MAC). Let MAC = (K,S,V) be a message
authentication code as in Definition 5.17. Then, define VK(·, ·) := V(K, ·, ·) as the ver-
ification algorithm of SIG with hardwired private key K . Let Vk := (VK)K∈Kk

and
V := (Vk)k∈N. Suppose that O is an obfuscator for the family V such that O satisfies
Definition 4.1 and has perfect functionality. Then we say that O obfuscates MAC. If O
even satisfies Definition 4.2, then we say that O strongly obfuscates MAC. If an O exists
that (strongly) obfuscates MAC, then we say that MAC is (strongly) obfuscatable.

Construction 5.21 (Obfuscating a MAC). Let MAC = (K,S,V) and O be as in Defin-
ition 5.20 and such that O obfuscates MAC. Then, define the following digital signature
scheme SIG = (Gen,Sig,Ver) as follows:

• Gen(ε) samples K ← Gen(ε), sets verkey ← O(VK) and sigkey ← K , and outputs
the keypair (verkey, sigkey).

• Sig(sigkey,M) computes σ ← S(sigkey,M) and returns σ .

Obfuscation for Cryptographic Purposes 153

• Ver(verkey, σ,M) interprets verkey as an algorithm, computes ver ← verkey(σ,M),
and returns ver.

Since we require perfect functionality from an obfuscation, it is clear that SIG fulfils
the correctness requirement from Definition 5.18.

When Obfuscating a MAC Preserves EUF-CMA Security. The proof of the following
theorem is analogous to the proof of Theorem 5.12, resp. Theorem 5.13, so we omit it.

Theorem 5.22 (Strongly Obfuscating a MAC Preserves EUF-CMA). Let MAC, O,
and SIG be as in Construction 5.21 and such that O strongly obfuscates MAC. Then,
the transformed digital signature scheme SIG is EUF-CMA secure whenever MAC is.

Analogously to Theorem 5.14 (and with a similar proof), it can be shown that obfus-
cation in the sense of Definition 4.1 is not enough:

Theorem 5.23 ((Not Strongly) Obfuscating a MAC Does Not Preserve EUF-CMA).
Assume that obfuscatable EUF-CMA secure MAC exists. Then there exists an EUF-
CMA secure MAC MAC and an obfuscator O such that the following holds:

• O obfuscates (but not strongly) MAC’s verification algorithm as in Construc-
tion 5.21.

• The digital signature scheme SIG obtained by Construction 5.21 is not EUF-CMA.

Strongly Obfuscatable MACs Do Not Exist. Intuition says that any digital signature
scheme is, when interpreted as a message authentication code, obfuscatable. (The ob-
fuscation is simply the verification key.) However, there is a crucial difference to the
encryption setting: there, we modified encryption so as to include the public encryption
key. A simulator could then obtain this public key through oracle access to the encryp-
tion function and output the public key as a perfect obfuscation. In the authentication
case, there is no way to include the public verification key as part of the verification out-
put: the verification algorithm outputs only bits, and a 1-output means that a signature is
valid. Hence, if verification outputs 1 too carelessly, the scheme becomes forgeable. In
fact, the EUF-CMA security of the scheme implies that the simulator essentially always
receives 0-answers from its verification oracle. Hence, the verification oracle is useless
to the simulator, and the simulated obfuscation does not depend on the used signing key.
So if the distinguisher can generate valid signatures, it can distinguish a real from a sim-
ulated obfuscation.12 We formalize this in Theorem 5.24 below. As an aside, the same
proof can be used to show impossibility according to a weaker version of Definition 4.2,
where the simulator is allowed to depend on the distinguisher.

Theorem 5.24 (Strongly Obfuscatable MACs Do Not Exist). Let MAC = (K,S,V)

be an EUF-CMA secure message authentication code. Let VK(·, ·) := V(K, ·, ·) be the
verification algorithm of MAC with hardwired private key K . Let Vk := (VK)K∈Kk

and
V := (Vk)k∈N. Then no obfuscator O for V achieves Definition 4.2.

12 The idea to distinguish real from simulated obfuscations using honestly generated signatures was also
remarked by a Journal of Cryptology referee.

154 D. Hofheinz, J. Malone-Lee, and M. Stam

Proof. Fix any PPT simulator S as in Definition 4.2. Consider the following PPT
distinguisher D that gets as input the description of a function VK (which includes the
key K) and an obfuscation O (which is either produced as O ← O(VK) or as O ←
SVK(·,·)(ε)).

1. D independently chooses another key K ′ $← Kk .
2. D signs a message M = 0 according to K and K ′ via σ ← S(K,0) and σ ′ ←

S(K ′,0).
3. D uses its second input O to check both signatures via ver ← O(σ,0) and ver′ ←

O(σ ′,0).
4. D outputs 1 iff ver = 1 and ver′ = 0.

Our first claim about D is that D outputs 1 with overwhelming probability when O ←
O(VK). Indeed, when O ← O(VK), then the functionality of O and the correctness of
MAC guarantee that ver = 1. Furthermore, ver′ = 1 implies that D produced a signature
σ ′ using an independent key K ′, but σ ′ turned out to be valid for key K . Hence, D

essentially forged a signature, and so

Pr[ver′ = 1] ≤ Adveuf-cma
MAC,A (k)

is negligible by assumption about MAC, where A is an adversary that chooses indepen-
dently a key K ′ and outputs a signature σ ′ ← S(K ′,0) for 0. Summarizing,

Pr
[
D

(
VK, O(VK)

) = 1
] = 1 − Pr[ver′ = 1]

is overwhelming.
Conversely, assume O ← SVK(·,·)(ε). Let bad denote the event that S queries its ver-

ification oracle VK with a signature σ and a message M such that VK(σ,M) returns 1.
Clearly, bad implies that S forged a signature from oracle access to the verification
algorithm only, so that

Pr[bad] ≤ Adveuf-cma
MAC,S (k)

is negligible by assumption about MAC. In case bad does not occur, however, S only
receives 0s as oracle answers from VK , and so its output O must be independent of K .
Hence, for the signatures σ and σ ′ produced as above, O(σ,0) and O(σ ′,0) are identi-
cally independently distributed with

Pr
[
O(σ,0) = 1 | ¬bad

] = Pr
[
O(σ ′,0) = 1 | ¬bad

]

so that

Pr
[
D

(
VK,SVK(·,·)(ε)

) = 1
]

≤ Pr
[
O(σ,0) = 1 | ¬bad

](
1 − Pr

[
O(σ ′,0) = 1 | ¬bad

]) + Pr[bad]

≤ 1

4
+ Pr[bad].

This shows that D successfully distinguishes real from fake obfuscations, and so O does
not achieve Definition 4.2. �

Obfuscation for Cryptographic Purposes 155

Obfuscatable and Unobfuscatable MACs Exist. The proof of Theorem 5.24 utilizes
that D has access to the key K and can produce signatures under key K . In Defini-
tion 4.1, the weaker one of our definitions, a similar argument is not possible, since D

only gets oracle access to the verification algorithm VK . (And if MAC is secure, then
oracle access to the verification algorithm alone does not allow one to produce signa-
tures.)

To construct obfuscatable MACs (in the sense of Definition 4.1), our escape is to let
the simulator output a different, freshly sampled verification key as obfuscation. Since
a distinguisher in the sense of Definition 4.1 only has oracle access to the verification
algorithm, it cannot produce a signature for which the verification oracle outputs 1.
Hence, the distinguisher’s views with a real obfuscation and the simulator’s output are
identical except with negligible probability. Formally:

Theorem 5.25 (Obfuscatable MACs Exist). Assume that EUF-CMA secure signature
schemes exist. Then there exist EUF-CMA secure MACs which are obfuscatable in the
sense of Definition 5.20.

Proof. Let SIG = (Gen,Sig,Ver) be an EUF-CMA secure signature scheme. Without
loss of generality, we assume that Gen always uses p(k) random coins for a polyno-
mial p. Then, we interpret SIG as a MAC MAC = (K,S,V) as follows:

• K(ε) outputs a uniformly chosen K ∈ {0,1}p(k).
• S(K,M) uses K as random coins for Gen to deterministically obtain a keypair

(verkey, sigkey) and returns σ ← Sig(sigkey,M).
• V(K,σ,M) uses K as random coins for Gen to deterministically obtain a pair

(verkey, sigkey) and returns ver ← Ver(verkey, σ,M).

Using a merely syntactic reduction to SIG’s EUF-CMA security, it is clear that MAC
is EUF-CMA secure. To show that SKE is obfuscatable, consider the obfuscator O
with O(VK) = verkey for the verification key verkey obtained by running K with ran-
dom coins K . Consider furthermore the PPT simulator S that outputs a freshly sampled
verification key verkey′ obtained through (verkey′, sigkey′) ← Gen(ε). Fix any PPT dis-
tinguisher D in the sense of Definition 4.1. Let bad denote the event that D, on input
O(VK) = verkey and with oracle access to VK , queries VK with a signature σ and a
message M such that VK(σ,M) returns 1. Since bad implies that D forged a signature
using a verification key verkey only, we have that

Pr[bad] ≤ Adveuf-cma
SIG,A (k)

is negligible. Here, A denotes an adversary that internally simulates D and answers
D’s verification oracle queries using its own verification key verkey. Note also that
when D gets as input a fake obfuscation SVK(·,·)(ε) = verkey′ instead of a real one, the
probability for bad does not change. Formally, unless bad occurs, D’s oracle calls are
all answered with 0, and hence D’s view with a real and a fake obfuscation is identical.
We get

Pr
[
DVK(·,·)(O(VK)

) = 1 | ¬bad
] = Pr

[
DVK(·,·)(SVK(·,·)(ε)

) = 1 | ¬bad
]
,

156 D. Hofheinz, J. Malone-Lee, and M. Stam

so that
∣
∣Pr

[
DVK(·,·)(O(VK)

) = 1
] − Pr

[
DVK(·,·)(SVK(·,·)(ε)

) = 1
]∣
∣

≤ Pr[bad] ≤ Adveuf-cma
SIG,A (k)

is negligible as desired. �

We now try to construct a MAC which is unobfuscatable (even according to our
weaker obfuscation notion Definition 4.1). Recall that Theorem 5.16 constructs an un-
obfuscatable private-key encryption scheme by authenticating ciphertexts. This way, a
simulator in the sense of Definition 4.1 has to forge signatures to generate valid cipher-
texts. In the authentication setting, a simulator only has to simulate a verification algo-
rithm which outputs bits (instead of bitstrings), hence we must find a different strategy.
Also, we must take care that our modifications of the verification algorithm do not dam-
age the unforgeability of our MAC. Facing these difficulties, we resort to non-black-box
techniques very similar to those from Barak et al. [3, Sect. 3]. Formally:

Theorem 5.26 (Unobfuscatable MACs Exist). Assume that EUF-CMA secure MACs
exist. Then an EUF-CMA secure MAC exists which is not obfuscatable in the sense of
Definition 5.20.

Proof. Let MAC′ = (K′,S′,V′) be an EUF-CMA secure MAC. We construct a MAC
MAC = (K,S,V) that cannot be obfuscated:

• K(ε) runs K ′ ← K′(ε), uniformly samples α ∈ {0,1}k and β = (β1, . . . , βk) ∈
{0,1}k , and returns K ← (K ′, α,β).

• S(K,M) parses K = (K ′, α,β), computes σ ′ ← S′(K ′,M) and returns σ ←
(0, σ ′).

• V(K,σ,M) parses K = (K ′, α,β) and σ = (i, σ ′), and determines its output ver
as follows:
– If i = 0, then ver ← V′(K ′, σ ′,M).
– If 1 ≤ i ≤ k and σ ′ = α, then ver ← βi = “the ith bit of β”.
– If i = k + 1 and σ ′(α) = β (where σ ′ is interpreted as an algorithm), then

ver ← 1.
– In all other cases, set ver ← 0.

It is clear that MAC satisfies the correctness requirement of Definition 5.17. Further-
more, for any PPT adversary A, we have

Adveuf-cma
MAC,A ≤ Adveuf-cma

MAC′,A′ + Pr[bad],
where A′ is the MAC′-adversary canonically obtained from A by rejecting all signatures
of the form (i, σ ′) with i �= 0, and bad denotes the event that A submits a verifica-
tion query (σ,M) = ((i, σ ′),M) with i �= 0 but V(K,σ,M) = 1. However, Pr[bad] is
negligible since α and β are information-theoretically hidden from A. Hence, MAC is
EUF-CMA secure.

Now consider an arbitrary obfuscator O for MAC. Furthermore, consider the follow-
ing distinguisher D in the sense of Definition 4.1:

Obfuscation for Cryptographic Purposes 157

1. D constructs algorithm O ′ by concatenating k copies of O with some of its inputs
already fixed. More precisely, O ′ will compute the following function:

O ′(x) = (
O

(
(1, x),0

)
, . . . ,O

(
(k, x),0

))
,

where the range of O ′ is {0,1}k .
2. D queries its oracle VK on input ((k + 1,O ′),0) and outputs the result.

Now first consider what happens when D receives as input an obfuscation O = O(VK)

of MAC’s verification algorithm. Then, by construction,

O ′(α) = (
O

(
(i, α),0

))k

i=1 = (
V
(
K,(i,α),0

))k

i=1 = (βi)
k
i=1 = β,

so that VK((k +1,O ′),0) = V(K, (k +1,O ′),0) = 1. This implies that DVK(·)(O(VK))

always outputs 1. On the other hand, for any fixed PPT simulator S, we have that

Pr
[
DVK(·)(SVK(·)(ε)

) = 1
] ≤ Adveuf-cma

MAC,A (k)

for the adversary A on MAC that internally simulates D and S by relaying its verification
only. Since Adveuf-cma

MAC,A (k) is negligible as argued before, Advsbvbb
V ,O,D,S

(k) is overwhelm-
ing, so that O does not obfuscate MAC. The claim follows. �

6. Composable Obfuscators

In Sect. 5.1, we already noticed the composability defects of our virtual black-box prop-
erty from Definition 4.1: secure obfuscations may lose their security in larger contexts.
Intuitively, our strong virtual black-box property from Definition 4.2 should guarantee
more: since the distinguisher D gets the to-be-obfuscated function f itself as input, a
secure obfuscation stays secure even if auxiliary information about f (efficiently com-
putable from f) is leaked in a larger context.

In this section, we will investigate the compositional properties of Definition 4.2 more
closely. It will turn out that Definition 4.2 guarantees indifferentiability (a simulation-
based generic notion of security similar to universal composability or reactive simu-
latability). Indifferentiability provides clean interfaces for the modular design of larger
systems that use obfuscation as a tool. In particular, the indifferentiability framework
comes with a composition theorem that allows a modular security analysis.

6.1. Indifferentiability

The indifferentiability framework of Maurer et al. [27] follows a simulation-based ap-
proach (cf. [2,4,9,15,17,28]) to define security. Concretely, a cryptographic system is
compared to an idealization of the respective protocol task (usually a trusted host that
performs the task in an ideal and incorruptible manner). If every attack on the real sys-
tem has a counterpart attack in the ideal system such that both systems and attacks are
indistinguishable, then we say that the real system is secure.

158 D. Hofheinz, J. Malone-Lee, and M. Stam

Fig. 1. Systems in the indifferentiability framework.

Formally, a (real or ideal) system S = (pubS,privS) consists of a public interface pubS

and a private interface privS . The private interface privS is the input/output interface for
honest parties. For instance, in a system for secure message transmission, a private input
could be “send message X to Bob,” and a private output could be “received message Y

from Bob.” Conversely, the public interface pubS interfaces an adversary with the net-
work. For example, in the secure message transmission example, the adversary would
receive a ciphertext over the public interface.

To capture the security of a real system, we compare it to a suitable ideal system:

Definition 6.1 (Indifferentiability of Systems, Sketch). A system R = (pubR,privR)

is indifferentiable from another system I = (pubI ,privI) iff there exists a PPT simulator
S such that for all PPT distinguishers D, the advantage Advindiff

R,I,S,D(k) is negligible in k.
Here,

Advindiff
R,I,S,D(k) := Pr

[
D(privR,pubR) = 1

] − Pr
[
D

(
privI , S(pubI)

) = 1
]
,

where

• D(privR,pubR) denotes the execution of D with access to the interfaces privR and
pubR , and

• D(privI , S(pubI)) denotes the execution of D with access to the interface privI

and to S, where S has access to interface pubI .

The situation is illustrated in Fig. 1. For a more comprehensive introduction to indiffer-
entiability, we refer to Maurer et al. [27].

On the Order of Quantifiers. Definition 6.1 deviates from the original security def-
inition in [27] with respect to the order of quantifiers: we demand the existence of a
universal simulator S that works for all D, whereas [27, Definition 3] only requires the
existence of an S for every given D. We chose the stronger order of quantifiers for two
reasons:

Obfuscation for Cryptographic Purposes 159

Fig. 2. The real and ideal systems for indifferentiable obfuscation, running with a distinguisher D and a
simulator S. Here Oh(·) denotes oracle access to a function h.

Stronger composability: Whereas the stronger order of quantifiers (∃S ∀D) provides
secure universal composition ([9]), the weaker order of quantifiers (∀D ∃S) does not
provide concurrent composability ([20]).13

Decomposition of obfuscation definition: Jumping ahead, the stronger order of quanti-
fiers allows us to express the indifferentiable obfuscation definition as a combination
of a functionality and a virtual black-box requirement.

6.2. Our Indifferentiable Obfuscation Definition

To capture obfuscation through indifferentiability, we need to specify a real and an ideal
system. The real system should reflect what really happens when using an obfuscator,
whereas the ideal system should specify what should happen. Hence,

the real private interface contains oracle access to an obfuscation O(f) (since real
honest users use the obfuscation only as a black box), as well as a description of the
function f itself (so information about f can be used in some other place as well);

the real public interface contains the obfuscation O(f) (since the obfuscation is public);
the ideal private interface contains oracle access to f (since this is the function that

should be evaluated), as well as f itself (so that again, f can be used elsewhere);
the ideal public interface contains only oracle access to f (since ideally this is all that

should be leaked).

The real and ideal systems for obfuscation are depicted in Fig. 2.
Hence, we get the following definition as a special case of Definition 6.1:

Definition 6.2 (Indifferentiable Obfuscation). Let F = (Fk)k∈N be a family of func-
tions. Then O is an indifferentiable obfuscator for F iff the following holds: there exists
a PPT simulator S such that for every PPT distinguisher D, the function Advind-obf

F ,O,S,D
(k)

13 The cited works prove composability statements in the frameworks of universal composability and
reactive simulatability. However, they do not rely on model specifics and are applicable to indifferentiability
as well.

160 D. Hofheinz, J. Malone-Lee, and M. Stam

is negligible in k. Here,

Advind-obf
F ,O,S,D(k) := Pr

[
f

$← Fk,O ← O(f) : DO(·)(f,O) = 1
]

− Pr
[
f

$← Fk : Df (·)(f,Sf (·)(ε)
) = 1

]
.

On the Choice of f . Note that in our ideal obfuscation system, f is chosen at random
by the system itself (and not, e.g., by a user of the system). This design choice has a
number of consequences for the use of the ideal system: it means that a user cannot
obfuscate arbitrary functions; instead, the obfuscated function is chosen by the system
(but of course made available to the user via the private interface). Hence, we can only
model larger systems in which the obfuscated functions (if there is more than one ob-
fuscation) are independently chosen. However, while we restrict the choice of f , we do
not restrict its usage: f can be reused in several places in a larger system, since it is
provided to a user as part of the private interface. Any such larger system can then be
analyzed modularly, taking advantage of the composition theorem [27, Theorem 1].

As part of this philosophy, it is best (but not necessary) if the description of f given
to the distinguisher is as forthright as possible—think the random coins used to sample
from Fk—and no hidden secret about f is known or used elsewhere.

What Type of Composability Is Implied (and What Type Is Not). Indifferentiability (in
the sense of Definition 6.2) implies that one obfuscation can be used in arbitrary larger
contexts. (As explained above, these contexts may even make direct use of f .) Using
the composition theorem [27, Theorem 1], we can deduce that any constant number
of obfuscations can be used concurrently.14 However, recall that in our formulation,
the obfuscated function is selected randomly by the system. Hence, the composition
theorem only implies that several different and independently selected obfuscations can
be used concurrently. It makes no claim about several different obfuscations related
functions. However, if the same function is obfuscated several times, we can at least say
the following:

Theorem 6.3 (Composability of Indifferentiable Obfuscations of the Same Function).
Let F = (Fk)k∈N be a family of functions, let O be an indifferentiable obfuscator for
F , and let p be a polynomial. Then there exists a PPT simulator Sp such that for every
PPT distinguisher Dp , the function

Advind-obf-mult
F ,O,Sp,Dp,p(k)

:= Pr
[
f

$← Fk,O1 ← O(f), . . . ,Op(k) ← O(f) : DO(·)
p (f,O1, . . . ,Op(k)) = 1

]

− Pr
[
f

$← Fk : D
f (·)
p

(
f,S

f (·)
p (ε)

) = 1
]

is negligible.

14 Reference [27, Theorem 1] only proves composability for a constant number of subsystems (in our case
obfuscations). However, it seems that techniques from Canneti [9] can be used to prove composability for any
polynomial number of subsystems, given that we use the stronger order of quantifiers (see the comment in
Sect. 6.1).

Obfuscation for Cryptographic Purposes 161

Proof. Let S be the PPT simulator that is guaranteed by Definition 6.2. We define
Sp as the PPT simulator that runs p(k) independent copies of S. Finally, Sp outputs
(O ′

1, . . . ,O
′
p(k)

), where O ′
i denotes the output of the ith simulation of S. A simple

hybrid argument (that uses the assumption that O is an indifferentiable obfuscator for
F) shows

Advind-obf-mult
F ,O,Sp,Dp,p(k) ≤ p(k) · Advind-obf

F ,O,S,D(k)

for any given PPT D. �

Hence, we can use several obfuscations of the same function concurrently. However,
note that the function is still chosen from the uniform distribution by the subsystem.

6.3. Basic Properties of Our Indifferentiable Definition

Technically, the only difference between Definitions 6.2 and 4.2 (our strong virtual
black-box definition) is the following: in Definition 4.2, D always gets oracle access
to f , whereas in Definition 6.2, D gets oracle access to O(f) in the real setting and
oracle access to f in the ideal setting. But when we assume perfect functionality of the
obfuscation, we have that O(f) evaluates f everywhere, so that oracle access to O(f)

and oracle access to f are interchangeable. We get:

Theorem 6.4 (Definition 4.2 ⇔ Definition 6.2 for Obfuscations With Perfect Function-
ality). Let F = (Fk)k∈N be a family of functions, and let O be an obfuscator for F
that achieves perfect functionality (i.e., (O(f))(x) = f (x) for all k, f ∈ Fk , and x).
Then O satisfies Definition 4.2 if and only if O satisfies Definition 6.2.

On the other hand, Definition 6.2 already implies a certain form of functionality: if
no D can distinguish the real from the ideal setting, then no efficient algorithm can
distinguish between oracle access to O(f) and oracle access to f . This gives rise to the
following functionality requirement for obfuscations:

Definition 6.5 (Computational Functionality). Let F = (Fk)k∈N a family of functions.
Then O achieves computational functionality for F iff the following holds: for every
PPT distinguisher D, the function Advcomp-func

F ,O,D
(k) is negligible in k. Here,

Advcomp-func
F ,O,D

(k) := Pr
[
DO(·)(f,O) = 1

] − Pr
[
Df (·)(f,O) = 1

]

where the probability is taken over f
$← Fk,O ← O(f)

We obtain the following connection between our definitions:

Theorem 6.6 (Indifferentiability is Equivalent to Computational Functionality Plus
Strong Virtual Black-Box). Let F = (Fk)k∈N a family of functions, and let O be an
obfuscator for F . Then O satisfies indifferentiable obfuscation (Definition 6.2) if and
only if O satisfies the strong virtual black-box property (Definition 4.2) and computa-
tional functionality (Definition 6.5).

162 D. Hofheinz, J. Malone-Lee, and M. Stam

Proof. The definitions can be summarized as:

Definition 6.5: ∀ PPT D : DO(·)(f,O)
c≈ Df (·)(f,O) (9)

Definition 4.2: ∃ PPT S ∀ PPT D : D(f,O)
c≈ D

(
f,Sf (·)(ε)

)
(10)

Definition 6.2: ∃ PPT S ∀ PPT D : DO(·)(f,O)
c≈ Df (·)(f,Sf (·)(ε)

)
, (11)

where we write

X
c≈ Y for Pr[X = 1] c≈ Pr[Y = 1],

and we silently assume f
$← Fk and O ← O(f) in all probabilities. We have to show

that (11) is equivalent to the combination of (9) and (10).
First assume (11). Fix the S from (11) and assume an arbitrary D as in (9). Define D1

such that D
h(·)
1 (f,O) := Df (·)(f,O) (i.e., D1 simulates D but answers oracle queries

using its first argument f). Then using (11) twice (once for D and once for D1) yields

DO(·)(f,O)

(11)
c≈ Df (·)(f,Sf (·)(ε)

) = D
f (·)
1

(
f,Sf (·)(ε)

)

(11)
c≈ D

O(·)
1 (f,O) = Df (·)(f,O),

which shows (9). Now consider a D as in (10). Note that D does not have any oracle
access, but we can interpret D as a distinguisher in the sense of (11) that does not use
its oracle. We get

D(f,O) = DO(·)(f,O)

(11)
c≈ Df (·)(f,Sf (·)(ε)

)

= D
(
f,Sf (·)(ε)

)
,

which shows (10).
Conversely, assume (10) and (9). Fix the S from (10) and assume an arbitrary D as

in (11). Define D2 such that D2(f,O) := Df (·)(f,O), similar to D1 above. We get

DO(·)(f,O)

(9)
c≈ Df (·)(f,O) = D2(f,O)

(10)
c≈ D2

(
f,Sf (·)(ε)

) = Df (·)(f,Sf (·)(ε)
)
,

which shows (11) as desired. �

We note that the functionality requirement from Definition 6.5 is significantly weaker
than perfect functionality or the approximate functionality by Hohenberger et al. [22].
For completeness, we include a discussion involving the latter in Appendix A.

Obfuscation for Cryptographic Purposes 163

7. Conclusion

We have presented a simulation-based definition that, on the one hand, allows for obfus-
cating point functions, yet at the same time is strong enough for converting private-key
cryptography into public-key cryptography.

We would like to stress again that we do not rule out unobfuscatability results. In
fact, we have shown certain scenarios in which obfuscation is not possible. On the other
hand, our positive results (in particular the simplicity of our point function obfuscation)
leave hope that obfuscations in interesting cryptographic scenarios are possible. We
have given a toy example for the case of private-key encryption.

As it turns out, our relaxed simulation-based definition does not behave well un-
der composition. Hence, we have given another, stronger definition that has a built-in
composability property. We have shown that this definition naturally splits up into a
functionality (correctness) and a virtual black-box (secrecy) requirement. Even though
our composable definition does not allow for obfuscating point functions in the stan-
dard model, it is an interesting question which positive results are possible here, in the
random oracle model for example.

Acknowledgements

We are indebted to the Crypto 2006, the TCC 2007, and the Journal of Cryptology
referees who gave very valuable comments that helped to substantially improve the
paper. Specifically, the construction from Sect. 5.2 was suggested by one referee, and
one TCC referee had very constructive comments concerning the presentation of our
results. Much of the discussion in the paper is inspired by constructive comments or
questions from the reports. We also thank Alex Dent for motivating discussions and
Salil Vadhan for pointing out the unreasonableness of verify-only secure MACs and
signatures.

Appendix A. Comparison of Approximate Functionality Requirements

In the main body of our paper we have concentrated on the security of obfuscation by
presenting and analyzing several definitions for behaving like a virtual black box. For
simplicity, we assumed the obfuscation to have perfect functionality, that is, for any
function f ∈ F and any input x, we require, with probability 1, that (O(f))(x) = f (x)

(when f is probabilistic, the equality refers to the output distribution).
We have already given a very relaxed definition of computational approximate func-

tionality (Definition 6.5). A more natural analogue of the “approximate functionality”
requirement from Definition 3.1 for the case of function distributions would be the fol-
lowing. For a random function f and its obfuscation O , for all inputs x, the distributions
f (x) and O(x) are close. If we only allow finite domains15 for f and O , this can be
formalized as follows.

15 The assumption that f ∈ Fk can be computed in PPT in the security parameter already implies that the
domain of f ∈ Fk is polynomially bounded (in k) and hence finite.

164 D. Hofheinz, J. Malone-Lee, and M. Stam

Definition A.1 (Approximate Functionality). An obfuscator O satisfies the approxi-
mate functionality requirement for a family of functions F = (Fk)k∈N iff there exists a
negligible function ν such that for all k, we have

εfun
O,F (k) := EV

f ←Fk,O←O(f)

[
max

x

{
�

(
f (x) ; O(x)

)}] ≤ ν(k).

(Henceforth we will use εfun as shorthand for εfun
O,F (k).)

For deterministic functions, the requirement reduces to the statement that, with over-
whelming probability over the choice of f and the obfuscator O, f and O(f) should
be the same functions. This is similar to the approximate functionality of the worst-case
definition [3, Definition 4.3], with the caveat that we take our probability over f as well.

The Relation with the Composable Functionality Definition. With some work one can
show that Definition A.1 implies Definition 6.5. What is more surprising perhaps is
that Definition A.1 is equivalent to a statistical version of Definition 6.5 where D is
computationally unrestricted but is restricted to only polynomially many queries. For
completeness, we first explicitly state the relevant definition, before stating the theorem
detailing equivalence and its proof.

Definition A.2 (Statistical Functionality). Let F = (Fk)k∈N be a family of functions.
Then O achieves statistical functionality for F iff the following holds: for every (com-
putationally unbounded) distinguisher D making only polynomially many queries to its
oracle, the function

Pr
[
f

$← Fk,O ← O(f) : DO(·)(f,O) = 1
]

− Pr
[
f

$← Fk,O ← O(f) : Df (·)(f,O) = 1
]

is negligible in k.

Theorem A.3. Let F = (Fk)k∈N be a family of functions. Then O satisfies Defini-
tion A.2 if and only if it satisfies Definition A.1.

Proof (sketch). We show that for all distinguishers according to Definition A.2, their
advantage is upper bounded by a polynomial (in k) multiple of εfun. Hence if εfun is
negligible according to Definition A.1, so should any distinguisher’s advantage accord-
ing to Definition A.2. Furthermore we exhibit a distinguisher that has advantage εfun, so
if all distinguishers have a negligible advantage (Definition A.2), it follows that εfun is
negligible, fulfilling Definition A.1.

Recall the definition of εfun and consider a computationally unbounded distinguisher
with polynomially many queries. For any single query x, it is well known that the ad-
vantage of a distinguisher is at most �(f (x) ; O(x)). The best the distinguisher can
do given f and O = O(f) is to determine the x that maximizes the statistical distance
�(f (x) ; O(x)) (as in εfun) and query the function on that point. Each new query will
add at most εfun to the distinguisher’s advantage, so with polynomially many queries,

Obfuscation for Cryptographic Purposes 165

the total advantage will still be a polynomial multiple of the maximum statistical dis-
tance. Hence we can upper bound the advantage of D in terms of properties of f and O ,

where we still need to average out over f
$← Fk and O ← O(f).

On the other hand, there exists a distinguisher that achieves the advantage governed
by the statistical difference. The key observation is that determining the value x for
which the maximum maxx �(f (x) ; O(x)) is achieved can be done by a computation-
ally unbounded distinguisher given f and O without using its oracle (in fact, it can even
be done in polynomial space). The main point here is that f and O can be computed in
probabilistic polynomial time, so in particular there is polynomial bound on the amount
of random coins each uses. Consequently, for each x, we have that �(f (x) ; O(x)) can
be computed (in finite time). The maximum can be computed exploiting that f (and
hence O) have a finite domain. Now consider the distinguisher that, on input f and O ,
first determines the x that maximizes �(f (x) ; O(x)) and queries x to its oracle. When
it gets a response s that would have been more likely to have originated from f , or
Pr[f (x) = s] > Pr[O(x) = s], it outputs 1, when O(x) was more likely to have caused
s it outputs 0; when both were equally likely, it flips a coin. In this case the advantage
is equal to εfun. �

The Connection with Hohenberger et al.’s Functionality Requirement. A relaxed func-
tionality requirement for probabilistic functions was given by Hohenberger et al. [22].
Adapted to our notation, it is reproduced below in Definition A.4.

Definition A.4 ([22]-Approximate Functionality). An obfuscator O satisfies the [22]-
approximate functionality requirement for a family of functions F = (Fk)k∈N iff there
exists a negligible function ν such that for all k and all f ∈ Fk ,

Pr
[
O ← O(f) : ∃x �

(
f (x) ; O(x)

) ≥ ν(k)
] ≤ ν(k).

On quick inspection, this functionality requirement looks quite different from previ-
ous ones. Let us concentrate on a comparison with Definition A.1. An obvious differ-
ence is that Hohenberger et al. quantify universally over f ∈ Fk , whereas we randomize

over f
$← Fk . It turns out that if we would account for this (either by using a universal

quantifier over f in Definition A.1 or by randomizing over f in Definition A.4), the
two seemingly different looking definitions are in fact equivalent, as demonstrated by
the following lemma.

Lemma A.5. Let O be an obfuscator for a class of functions F . Then the following
two statements are equivalent:

1. There exists a negligible function ν such that for all k and all f ∈ Fk ,

EV
O←O(f)

[
max

x
�

(
f (x) ; O(x)

)] ≤ ν(k).

2. There exists a negligible function ν such that for all k and all f ∈ Fk ,

Pr
[
O ← O(f) : ∃x �

(
f (x) ; O(x)

) ≥ ν(k)
] ≤ ν(k).

166 D. Hofheinz, J. Malone-Lee, and M. Stam

Proof. Write σ(x) = �(f (x) ; O(x)) (where f and O should be clear from the con-
text).

We first show that the second statement implies the first. We notice that the event
∃xσ (x) ≥ ν(k) occurs iff maxx σ (x) ≥ ν(k). Thus,

Pr
[
O ← O(f) : ∃xσ (x) ≥ ν(k)

] = Pr
[
O ← O(f) : max

x
σ (x) ≥ ν(k)

]
.

We can now split the expectancy in two and use that any statistical distance, so in par-
ticular σ(x), is always upper bounded by 1:

EV
O←O(f)

[
max

x
σ (x)

]
≤ Pr

[
max

x
σ (x) ≥ ν(k)

]
· 1 + Pr

[
max

x
σ (x) < ν(k)

]
ν(k) ≤ 2ν(k),

where the probabilities are over the choice of the obfuscation O ← O(f). Since 2ν(k)

is negligible if ν(k) is, this concludes the first implication.
Conversely, Pr[O ← O(f) : maxx σ (x) ≥ ν(k)] > ν(k) implies that

EV
O←O(f)

[
max

x
σ (x)

]
≥ Pr

[
O ← O(f) : max

x
σ (x) ≥ ν(k)

]
ν(k) >

(
ν(k)

)2
.

Therefore, if EVO←O(f)[maxx σ (x)] ≤ ν(k) for some negligible function ν, it follows
that for the negligible function ν′(k) = √

ν(k), it holds that

Pr
[
O ← O(f) : max

x
σ (x) ≥ ν′(k)

]
≤ ν′(k). �

References

[1] B. Adida, D. Wikström, How to shuffle in public, in TCC 2007, ed. by S.P. Vadhan. Amsterdam, The
Netherlands, February 21–24, 2007. LNCS, vol. 4392 (Springer, Berlin, 2007), pp. 555–574

[2] M. Backes, B. Pfitzmann, M. Waidner, A composable cryptographic library with nested operations, in
ACM CCS 03, ed. by S. Jajodia, V. Atluri, T. Jaeger. Washington DC, USA, October 27–30, 2003 (ACM
Press, New York, 2003), pp. 220–230

[3] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S.P. Vadhan, K. Yang, On the
(im)possibility of obfuscating programs, in CRYPTO 2001, ed. by J. Kilian. Santa Barbara, CA, USA,
August 19–23, 2001. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 1–18

[4] D. Beaver, Foundations of secure interactive computing, in CRYPTO’91, ed. by J. Feigenbaum. Santa
Barbara, CA, USA, August 11–15, 1992. LNCS, vol. 576 (Springer, Berlin, 1992), pp. 377–391

[5] M. Bellare, C. Namprempre, Authenticated encryption: Relations among notions and analysis of the
generic composition paradigm, in ASIACRYPT 2000, ed. by T. Okamoto. Kyoto, Japan, December 3–7,
2000. LNCS, vol. 1976 (Springer, Berlin, 2000), pp. 531–545

[6] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, A concrete security treatment of symmetric encryption,
in 38th FOCS. Miami Beach, Florida, October 19–22, 1997 (IEEE Computer Society, Los Alamitos,
1997), pp. 394–403

[7] M. Bellare, A. Boldyreva, A. O’Neill, Deterministic and efficiently searchable encryption, in CRYPTO
2007, ed. by A. Menezes. Santa Barbara, CA, USA, August 19–23, 2007. LNCS, vol. 4622 (Springer,
Berlin, 2007), pp. 535–552

[8] R. Canetti, Towards realizing random oracles: Hash functions that hide all partial information, in
CRYPTO’97, ed. by B.S. Kaliski Jr. Santa Barbara, CA, USA, August 17–21, 1997. LNCS, vol. 1294
(Springer, Berlin, 1997), pp. 455–469

Obfuscation for Cryptographic Purposes 167

[9] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in 42nd
FOCS. Las Vegas, Nevada, USA, October 14–17, 2001 (IEEE Computer Society, Los Alamitos, 2001),
pp. 136–145

[10] R. Canetti, D. Micciancio, O. Reingold, Perfectly one-way probabilistic hash functions (preliminary
version), in 30th ACM STOC. Dallas, Texas, USA, May 23–26, 1998 (ACM Press, New York, 1998),
pp. 131–140

[11] W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[12] Y. Dodis, A. Smith, Correcting errors without leaking partial information, in 37th ACM STOC, ed. by
H.N. Gabow, R. Fagin. Baltimore, Maryland, USA, May 22–24, 2005 (ACM Press, New York, 2005),
pp. 654–663

[13] O. Goldreich, R. Ostrovsky, Software protection and simulation of oblivious rams. J. ACM 43(3), 431–
473 (1996)

[14] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33, 792–807
(1986)

[15] O. Goldreich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity or all languages in
NP have zero-knowledge proof systems. J. ACM 38(3), 691–729 (1991)

[16] S. Goldwasser, Y. Tauman Kalai, On the impossibility of obfuscation with auxiliary input, in 46th FOCS.
Pittsburgh, PA, USA, October 23–25, 2005 (IEEE Computer Society, Los Alamitos, 2005), pp. 553–562

[17] S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
[18] S. Goldwasser, G.N. Rothblum, On best-possible obfuscation, in TCC 2007, ed. by S.P. Vadhan. Amster-

dam, The Netherlands, February 21–24, 2007. LNCS, vol. 4392 (Springer, Berlin, 2007), pp. 194–213
[19] S. Hada, Zero-knowledge and code obfuscation, in ASIACRYPT 2000, ed. by T. Okamoto. Kyoto, Japan,

December 3–7, 2000. LNCS, vol. 1976 (Springer, Berlin, 2000), pp. 443–457
[20] D. Hofheinz, D. Unruh, Simulatable security and polynomially bounded concurrent composability, in

2006 IEEE Symposium on Security and Privacy. Berkeley, California, USA, May 21–24, 2006 (IEEE
Computer Society, Los Alamitos, 2006), pp. 169–183

[21] D. Hofheinz, J. Malone-Lee, M. Stam, Obfuscation for cryptographic purposes, in TCC 2007, ed. by
S.P. Vadhan. Amsterdam, The Netherlands, February 21–24, 2007. LNCS, vol. 4392 (Springer, Berlin,
2007), pp. 214–232

[22] S. Hohenberger, G.N. Rothblum, Abhi Shelat, V. Vaikuntanathan, Securely obfuscating re-encryption,
in TCC 2007, ed. by S.P. Vadhan. Amsterdam, The Netherlands, February 21–24, 2007. LNCS, vol.
4392 (Springer, Berlin, 2007), pp. 233–252

[23] R. Jaeschke, Encrypting C source for distribution. J. C Lang. Trans. 2(1) 1990
[24] J. Katz, M. Yung, Complete characterization of security notions for probabilistic private-key encryption,

in 32nd ACM STOC. Portland, Oregon, USA, May 21–23, 2000 (ACM Press, New York, 2000), pp.
245–254

[25] C. Linn, S.K. Debray, Obfuscation of executable code to improve resistance to static disassembly, in
ACM CCS 03, ed. by S. Jajodia, V. Atluri, T. Jaeger. Washington D.C., USA, October 27–30, 2003
(ACM Press, New York, 2003), pp. 290–299

[26] B. Lynn, M. Prabhakaran, A. Sahai, Positive results and techniques for obfuscation, in EUROCRYPT
2004, ed. by C. Cachin, J. Camenisch. Interlaken, Switzerland, May 2–6, 2004. LNCS, vol. 3027
(Springer, Berlin, 2004), pp. 20–39

[27] U.M. Maurer, R. Renner, C. Holenstein, Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology, in TCC 2004, ed. by M. Naor. Cambridge, MA, USA,
February 19–21, 2004. LNCS, vol. 2951 (Springer, Berlin, 2004), pp. 21–39

[28] S. Micali, P. Rogaway, Secure computation (abstract), in CRYPTO’91, ed. by J. Feigenbaum. Santa
Barbara, CA, USA, August 11–15, 1992. LNCS, vol. 576 (Springer, Berlin, 1992), pp. 392–404

[29] M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in 22nd
ACM STOC. Baltimore, Maryland, USA, May 14–16, 1990 (ACM Press, New York, 1990)

[30] A. Narayanan, V. Shmatikov, Stronger security of authenticated key exchange. Cryptology ePrint
Archive, Report 2006/182 (2006). http://eprint.iacr.org/

[31] R. Ostrovsky, W.E. Skeith III, Private searching on streaming data, in CRYPTO 2005, ed. by V. Shoup.
Santa Barbara, CA, USA, August 14–18, 2005. LNCS, vol. 3621 (Springer, Berlin, 2005), pp. 223–240

http://eprint.iacr.org/

168 D. Hofheinz, J. Malone-Lee, and M. Stam

[32] C. Rackoff, D.R. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack, in CRYPTO’91, ed. by J. Feigenbaum. Santa Barbara, CA, USA, August 11–15, 1992. LNCS,
vol. 576 (Springer, Berlin, 1992), pp. 433–444

[33] J. Rompel, One-way functions are necessary and sufficient for secure signatures, in 22nd ACM STOC.
Baltimore, Maryland, USA, May 14–16, 1990 (ACM Press, New York, 1990), pp. 387–394

[34] H. Wee, On obfuscating point functions, in 37th ACM STOC, ed. by H.N. Gabow, R. Fagin. Baltimore,
Maryland, USA, May 22–24, 2005 (ACM Press, New York, 2005), pp. 523–532

	Obfuscation for Cryptographic Purposesn1
	Abstract
	Introduction
	Focus.
	History and Survey of Related Work.
	Our Results.
	Our New Definitions.
	Negative Results for Our Definitions.
	Positive Results for Our Definitions.
	General Composability of Obfuscations.

	Notation
	Previous Obfuscation Definitions
	Intuition and Worst-Case Obfuscation.
	Predicate-Based Worst-Case Obfuscation.
	Simulation-Based Obfuscation.
	Connection to Learnability.

	Our Definition
	The Definitions
	Motivation of Design Choices
	Based on Simulation.
	Probabilistic Functions.
	Average-Case Security.
	On the Necessity of a Probabilistic Obfuscator.
	The Difference Between Our Two Definitions.
	Auxiliary Input and Composability.

	Comparison with Other Definitions
	The Relationship with Predicate-Based Definitions.
	The Definition of Hohenberger et al.
	Perfectly One-Way Hashing and Point Functions.
	Example: Point Functions/Password Queries.
	Other Similar Definitions.

	Specific vs. General-Purpose Obfuscation
	Impossibility of General-Purpose Obfuscation.
	Specific Obfuscators.
	What is Gained?

	Results for Our Definitions
	Overview.
	Achievability: Obfuscating Point Functions
	On the Weakness of Our Construction.

	A Natural Example of an Unobfuscatable Function Family
	How to Use Our Definition: Transforming Private-Key Encryption into Public-Key Encryption
	Encryption Schemes.
	Security of Encryption Schemes.
	The Transformation.
	What Security Properties Our Transformation Preserves.
	What Security Properties our Transformation Does Not Preserve.
	Can Private-Key Encryption be Obfuscated?
	On a Negative Result Due to C:BGIRSVY01
	(Strongly) Obfuscatable Private-Key Encryption Schemes Exist.
	Unobfuscatable Private-Key Encryption Schemes Exist.

	Another Example: From Message Authentication to Digital Signatures
	Message Authentication Codes.
	Digital Signature Schemes.
	Security of Signatures.
	The Transformation.
	When Obfuscating a MAC Preserves EUF-CMA Security.
	Strongly Obfuscatable MACs Do Not Exist.
	Obfuscatable and Unobfuscatable MACs Exist.

	Composable Obfuscators
	Indifferentiability
	On the Order of Quantifiers.

	Our Indifferentiable Obfuscation Definition
	On the Choice of .
	What Type of Composability Is Implied (and What Type Is Not).

	Basic Properties of Our Indifferentiable Definition

	Conclusion
	Acknowledgements
	Appendix A. Comparison of Approximate Functionality Requirements
	The Relation with the Composable Functionality Definition.
	The Connection with Hohenberger et al.'s Functionality Requirement.

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

