
J. Cryptol. (2010) 23: 37–71
DOI: 10.1007/s00145-009-9049-y

Efficient Cache Attacks on AES, and Countermeasures

Eran Tromer
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,

32 Vassar Street, G682, Cambridge, MA 02139, USA
tromer@csail.mit.edu

and
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel

Dag Arne Osvik
Laboratory for Cryptologic Algorithms, Station 14, École Polytechnique Fédérale de Lausanne,

1015 Lausanne, Switzerland
dagarne.osvik@epfl.ch

Adi Shamir
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel
adi.shamir@weizmann.ac.il

Communicated by Lars R. Knudsen

Received 20 July 2007 and revised 25 June 2009
Online publication 23 July 2009

Abstract. We describe several software side-channel attacks based on inter-process
leakage through the state of the CPU’s memory cache. This leakage reveals memory
access patterns, which can be used for cryptanalysis of cryptographic primitives that
employ data-dependent table lookups. The attacks allow an unprivileged process to
attack other processes running in parallel on the same processor, despite partitioning
methods such as memory protection, sandboxing, and virtualization. Some of our meth-
ods require only the ability to trigger services that perform encryption or MAC using
the unknown key, such as encrypted disk partitions or secure network links. Moreover,
we demonstrate an extremely strong type of attack, which requires knowledge of nei-
ther the specific plaintexts nor ciphertexts and works by merely monitoring the effect
of the cryptographic process on the cache. We discuss in detail several attacks on AES
and experimentally demonstrate their applicability to real systems, such as OpenSSL
and Linux’s dm-crypt encrypted partitions (in the latter case, the full key was recov-
ered after just 800 writes to the partition, taking 65 milliseconds). Finally, we discuss
a variety of countermeasures which can be used to mitigate such attacks.

Key words. Side-channel attack, Cryptanalysis, Memory cache, AES.

© International Association for Cryptologic Research 2009

mailto:tromer@csail.mit.edu
mailto:dagarne.osvik@epfl.ch
mailto:adi.shamir@weizmann.ac.il

38 E. Tromer, D.A. Osvik, and A. Shamir

1. Introduction

1.1. Overview

Many computer systems concurrently execute programs with different privileges, em-
ploying various partitioning methods to facilitate the desired access control semantics.
These methods include kernel vs. userspace separation, process memory protection,
filesystem permissions and chroot, and various approaches to virtual machines and
sandboxes. All of these rely on a model of the underlying machine to obtain the desired
access control semantics. However, this model is often idealized and does not reflect
many intricacies of the actual implementation.

In this paper we show how a low-level implementation detail of modern CPUs,
namely the structure of memory caches, causes subtle indirect interaction between
processes running on the same processor. This leads to cross-process information leak-
age. In essence, the cache forms a shared resource which all processes compete for, and
it thus affects and is affected by every process. While the data stored in the cache is
protected by virtual memory mechanisms, the metadata about the contents of the cache,
and in particular the memory access patterns of processes using that cache, are not fully
protected.

We describe several methods an attacker can use to learn about the memory access
patterns of another process, e.g., one which performs encryption with an unknown key.
These are classified into methods that affect the state of the cache and then measure the
effect on the running time of the encryption, and methods that investigate the state of
the cache after or during encryption. The latter are found to be particularly effective and
noise-resistant.

We demonstrate the cryptanalytic applicability of these methods to the Advanced
Encryption Standard (AES, [39]) by showing a known-plaintext (or known-ciphertext)
attack that performs efficient full key extraction. For example, an implementation of
one variant of the attack performs full AES key extraction from the dm-crypt system
of Linux using only 800 accesses to an encrypted file, 65 ms of measurements and
3 seconds of analysis; attacking simpler systems, such as “black-box” OpenSSL library
calls, is even faster at 13 ms and 300 encryptions.

One variant of our attack has the unusual property of performing key extraction with-
out knowledge of either the plaintext or the ciphertext. This is a particularly strong form
of attack, which is clearly impossible in a classical cryptanalytic setting. It enables an
unprivileged process, merely by accessing its own memory space, to obtain bits from a
secret AES key used by another process, without any (explicit) communication between
the two. This too is demonstrated experimentally, and implementing AES in a way that
is impervious to this attack, let alone developing an efficient generic countermeasure,
appears nontrivial.

This paper is organized as follows: Sect. 2 gives an introduction to memory caches
and AES lookup tables. In Sect. 3 we describe the basic attack techniques, in the “syn-
chronous” setting where the attacker can explicitly invoke the cipher on known data.
Section 4 introduces even more powerful “asynchronous” attacks which relax the latter
requirement. In Sect. 5, various countermeasures are described and analyzed. Section 6
summarizes these results and discusses their implications.

Efficient Cache Attacks on AES, and Countermeasures 39

1.2. Related Work

The possibility of cross-process leakage via cache state was first considered in 1992 by
Hu [24] in the context of intentional transmission via covert channels. In 1998, Kelsey
et al. [27] mentioned the prospect of “attacks based on cache hit ratio in large S-box
ciphers.” In 2002, Page [47] described theoretical attacks on DES via cache misses, as-
suming an initially empty cache and the ability to identify cache effects with very high
temporal resolution in side-channel traces. He subsequently proposed several counter-
measures for smartcards [48], though most of these require hardware modifications and
are inapplicable or insufficient in our attack scenario. Recently, variants of this attack
(termed “trace-driven” in [48]) were realized by Bertoni et al. [11] and Acıiçmez and
Koç [3,4], using a power side-channel of a MIPS microprocessor in an idealized simula-
tion. By contrast, our attacks operate purely in software and are hence of wider applica-
bility and implications; they have also been experimentally demonstrated in real-life
scenarios.

In 2002 and subsequently, Tsunoo et al. devised a timing-based attack on MISTY1
[57,58] and DES [56], exploiting the effects of collisions between the various memory
lookups invoked internally by the cipher (as opposed to the cipher vs. attacker collisions
we investigate, which greatly improve the efficiency of an attack). Recently Lauradoux
[32] and Canteaut et al. [18] proposed some countermeasures against these attacks, none
of which are satisfactory against our attacks (see Sect. 5).

An abridged version of this paper was published in [45] and announced in [44].
Concurrently but independently, Bernstein [10] described attacks on AES that ex-

ploit timing variability due to cache effects. This attack can be seen as a variant of our
Evict + Time measurement method (see Sect. 3.4 and the analysis of Neve et al. [42]),
though it is also somewhat sensitive to the aforementioned collision effects. The main
difference is that [10] does not use an explicit model of the cache and active manipu-
lation, but rather relies only on the existence of some consistent statistical patterns in
the encryption time caused by memory access effects; these patterns are neither con-
trolled nor modeled. The resulting attack is simpler and more portable than ours, since
its implementation is mostly oblivious to the fine (and often unpublished) details of the
targeted CPU and software; indeed, [10] includes the concise C source code of the at-
tack. Moreover, the attack of [10] locally executes only time measurement code on the
attacked computer, whereas our attack code locally executes more elaborate code that
also performs (unprivileged) memory accesses. However, the attack of [10] has sev-
eral shortcomings. First, it requires reference measurements of encryption under known
key in an identical configuration, and these are often not readily available (e.g., a user
may be able to write data to an encrypted filesystem, but creating a reference filesystem
with a known key is a privileged operation). Second, the attack of [10] relies on timing
the encryption and thus, similarly to our Evict + Time method, seems impractical on
many real systems due to excessively low signal-to-noise ratio; our alternative methods
(Sects. 3.5 and 4) address this. Third, even when the attack of [10] works, it requires a
much higher number of analyzed encryptions than our method.1 A subsequent paper of

1 In our experiments the attack code of [10] failed to get a signal from dm-crypt even after a 10 hours
run, whereas in the same setup our Prime + Probe (see Sect. 3.5) performed full key recovery using 65 ms of
measurements.

40 E. Tromer, D.A. Osvik, and A. Shamir

Canteaut et al. [18] describes a variant of Bernstein’s attack which focuses on internal
collisions (following Tsunoo et al.) and provides a more in-depth experimental analy-
sis;2 its properties and applicability are similar to Bernstein’s attack.3 See Sect. 6.5 for
subsequent improvements.

Also concurrently with but independently of our work, Percival [50] described a
cache-based attack on RSA for processors with simultaneous multithreading. The mea-
surement method is similar to one variant of our asynchronous attack (Sect. 4), but the
cryptanalysis has little in common since the algorithms and time scales involved in RSA
vs. AES operations are very different. Both [10] and [50] contain discussions of coun-
termeasures against the respective attacks, and some of these are also relevant to our
attacks (see Sect. 5).

Koeune and Quisquater [30] described a timing attack on a “bad implementation” of
AES which uses its algebraic description in a “careless way” (namely, using a condi-
tional branch in the MixColumn operation). That attack is not applicable to common
software implementations but should be taken into account in regard to certain counter-
measures against our attacks (see Sect. 5.2).

Leakage of memory access information has also been considered in other contexts,
yielding theoretical [22] and heuristic [63,64] mitigation methods; these are discussed
in Sect. 5.3.

See Sect. 6.5 for a discussion of additional works following our research.

2. Preliminaries

2.1. Memory and Cache Structure

Over the past couple of decades, CPU speed (in terms of operations per second) has
been benefiting from Moore’s law and growing at rate of roughly 60% per year, while
the latency of main memory has been decreasing at a much slower rate (7–9% per
year).4 Consequentially, a large gap has developed between the two. Complex multilevel
cache architectures are employed to bridge this gap, but it still shows through during
cache misses: on a typical modern processor, accessing data in the innermost (L1) cache
typically requires amortized time on the order of 0.3 ns, while accessing main memory
may stall computation for 50 to 150 ns, i.e., a slowdown of 2–3 orders of magnitude. The
cache architectures are optimized to minimize the number of cache misses for typical
access patterns but can be easily manipulated adversarially; to do so we will exploit the
special structure in the association between main memory and cache memory.

2 Canteaut et al. [18] claim that their attack exploits only collision effects due to microarchitectural details
(i.e., low address bits) and that Bernstein’s attack [10] exploits only cache misses (i.e., higher address bits).
However, experimentally both attacks yield key bits of both types, as can be expected: the analysis method of
[10] also detects collision effects (albeit with lower sensitivity), while the attack setting of [18] inadvertently
also triggers systematic cache misses (e.g., due to the encryption function’s use of stack and buffers).

3 [18] reports an 85% chance of recovering 20 bits using 230 encryptions after a 230 learning phase, even
for the “lightweight” target of OpenSSL AES invocation. In the same setting, our attack reliably recovers the
full key from just 300 encryptions (Sect. 3.7).

4 This relatively slow reduction in DRAM latency has proven so reliable, and founded in basic technolog-
ical hurdles, that it has been proposed by Abadi et al. [1] and Dwork et al. [21] as a basis for proof-of-work
protocols.

Efficient Cache Attacks on AES, and Countermeasures 41

Fig. 1. Schematic of a single level of set-associative cache. Each column of memory blocks (right side)
corresponds to S ·B contiguous bytes of memory. Each row of memory blocks is mapped to the corresponding
row in the cache (left side), representing a set of W cache lines. The light gray blocks represent an AES lookup
table in the victim’s memory. The dark gray blocks represent the attacker’s memory used for the attack, which
will normally be at least as big as the size of the cache.

Modern processors use one or more levels of set-associative memory cache. Such a
cache consists of storage cells called cache lines, each consisting of B bytes. The cache
is organized into S cache sets, each containing W cache lines,5 so overall the cache
contains B · S · W bytes. The mapping of memory addresses into the cache is limited
as follows. First, the cache holds copies of aligned blocks of B bytes in main memory
(i.e., blocks whose starting address is 0 modulo B), which we will term memory blocks.
When a cache miss occurs, a full memory block is copied into one of the cache lines,
replacing (“evicting”) its previous contents. Second, each memory block may be cached
only in a specific cache set; specifically, the memory block starting at address a can be
cached only in the W cache lines belonging to cache set �a/B� mod S. See Fig. 1.
Thus, the memory blocks are partitioned into S classes, where the blocks in each class
contend for the W cache lines in a single cache set.6

Modern processors have up to 3 levels of memory cache, denoted L1 to L3, with
L1 being the smallest and fastest cache and subsequent levels increasing in size and
latency. For simplicity, in the following we mostly ignore this distinction; one has a
choice of which cache to exploit, and our experimental attacks used both L1 and L2
effects. Additional complications are discussed in Sect. 3.6. Typical cache parameters
are given in Table 1.

2.2. Memory Access in AES Implementations

This paper focuses on AES, since its memory access patterns are particularly suscepti-
ble to cryptanalysis (see Sect. 6.2 for a discussion of other ciphers). The cipher is ab-
stractly defined by algebraic operations and could, in principle, be directly implemented

5 In common terminology, W is called the associativity, and the cache is called W -way set associative.
6 CPUs differ in their policy for choosing which cache line inside a set to evict during a cache miss. Our

attacks work for all common algorithms, but as discussed in Sect. 3.8, knowledge of the policy allows further
improvements.

42 E. Tromer, D.A. Osvik, and A. Shamir

Table 1. Data cache parameters for popular CPU models.

CPU model Level B (cache line size) S (cache sets) W (associativity) B · S · W (total size)

Athlon 64/Opteron L1 64 B 512 2 64 KB
Athlon 64/Opteron L2 64 B 1024 16 1024 KB
Pentium 4E L1 64 B 32 8 16 KB
Pentium 4E L2 128 B 1024 8 1024 KB
PowerPC 970 L1 128 B 128 2 32 KB
PowerPC 970 L2 128 B 512 8 512 KB
UltraSPARC T1 L1 16 B 128 4 8 KB
UltraSPARC T1 L2 64 B 4096 12 3072 KB

using just logical and arithmetic operations.7 However, performance-oriented software
implementations on 32-bit (or higher) processors typically use an alternative formula-
tion based on lookup tables, as prescribed in the Rijndael specification [19,20]. In the
subsequent discussion we assume the following implementation, which is typically the
fastest.8

Several lookup tables are precomputed once by the programmer or during system
initialization. There are 8 such tables, T0, T1, T2, T3 and T

(10)
0 , T

(10)
1 , T

(10)
2 , T

(10)
3 , each

containing 256 4-byte words. The contents of the tables, defined in [20], are inconse-
quential for most of our attacks.

During key setup, a given 16-byte secret key k = (k0, . . . , k15) is expanded into 10
round keys9 K(r) for r = 1, . . . ,10. Each round key is divided into 4 words of 4 bytes
each: K(r) = (K

(r)
0 ,K

(r)
1 ,K

(r)
2 ,K

(r)
3). The 0th round key is just the raw key K

(0)
j =

(k4j , k4j+1, k4j+2, k4j+3) for j = 0,1,2,3. The details of the rest of the key expansion
are mostly inconsequential.

Given a 16-byte plaintext p = (p0, . . . , p15), encryption proceeds by computing a
16-byte intermediate state x(r) = (x

(r)
0 , . . . , x

(r)
15) at each round r . The initial state x(0)

is computed by x
(0)
i = pi ⊕ ki (i = 0, . . . ,15). Then, the first 9 rounds are computed by

updating the intermediate state as follows, for r = 0, . . . ,8:

(
x

(r+1)
0 , x

(r+1)
1 , x

(r+1)
2 , x

(r+1)
3

) ← T0
[
x

(r)
0

] ⊕ T1
[
x

(r)
5

] ⊕ T2
[
x

(r)
10

] ⊕ T3
[
x

(r)
15

] ⊕ K
(r+1)
0

(
x

(r+1)
4 , x

(r+1)
5 , x

(r+1)
6 , x

(r+1)
7

) ← T0
[
x

(r)
4

] ⊕ T1
[
x

(r)
9

] ⊕ T2
[
x

(r)
14

] ⊕ T3
[
x

(r)
3

] ⊕ K
(r+1)
1

(
x

(r+1)
8 , x

(r+1)
9 , x

(r+1)
10 , x

(r+1)
11

) ← T0
[
x

(r)
8

] ⊕ T1
[
x

(r)
13

] ⊕ T2
[
x

(r)
2

] ⊕ T3
[
x

(r)
7

] ⊕ K
(r+1)
2

(
x

(r+1)
12 , x

(r+1)
13 , x

(r+1)
14 , x

(r+1)
15

) ← T0
[
x

(r)
12

] ⊕ T1
[
x

(r)
1

] ⊕ T2
[
x

(r)
6

] ⊕ T3
[
x

(r)
11

] ⊕ K
(r+1)
3

(1)

7 Such an implementation would be immune to our attack but exhibit low performance. A major reason
for the choice of Rijndael in the AES competition was the high performance of the implementation analyzed
here.

8 See Sect. 5.2 for a discussion of alternative table layouts. A common variant employs 1 or no extra tables
for the last round (instead of 4); most of our attacks analyze only the first few rounds and are thus unaffected.

9 We consider AES with 128-bit keys. The attacks can be adapted to longer keys.

Efficient Cache Attacks on AES, and Countermeasures 43

Finally, to compute the last round, (1) is repeated with r = 9, except that T0, . . . , T3

is replaced by T
(10)
0 , . . . , T

(10)
3 . The resulting x(10) is the ciphertext. Compared to the

algebraic formulation of AES, here the lookup tables represent the combination of
SHIFTROWS, MIXCOLUMNS, and SUBBYTES operations; the change of lookup tables
in the last round is due to the absence of MIXCOLUMNS.

2.3. Notation

We treat bytes interchangeably as integers in {0, . . . ,255} and as elements of {0,1}8

that can be XORed. Let δ denote the cache line size B divided by the size of each table
entry (usually 4 bytes10); on most platforms of interest we have δ = 16. For a byte y

and table T�, we will denote 〈y〉 = �y/δ� and call this the memory block of y in T�. The
significance of this notation is as follows: two bytes y, z fulfill 〈y〉 = 〈z〉 iff, when used
as lookup indices into the same table T�, they would cause access to the same memory
block,11 i.e., such indices cannot be distinguished by a single memory access observed
at block granularity. For a byte y and table T�, we say that an AES encryption accesses
the memory block of y in T� if, according to the above description of AES, at some point
during that encryption there is some table lookup of T�[z] where 〈z〉 = 〈y〉.

In Sect. 3 we will show methods for discovering (and taking advantage of the dis-
covery) whether the encryption code, invoked as a black box, accesses a given memory
block. To this end we define the following predicate: Qk(p, �, y) = 1 iff the AES en-
cryption of the plaintext p under the encryption key k accesses the memory block of
index y in T� at least once throughout the 10 rounds.

Also in Sect. 3, our measurement procedures will sample a measurement score from
a distribution Mk(p, �, y) over R. The exact definition of Mk(p, �, y) will vary, but it
will approximate Qk(p, �, y) in the following rough sense: for a large fraction of the
keys k, all12 tables � and a large fraction of the indices x, for random plaintexts and
measurement noise, the expectation of Mk(p, �, y) is larger when Qk(p, �, y) = 1 than
when Qk(p, �, y) = 0.

3. Synchronous Known-Data Attacks

3.1. Overview

Our first family of attacks, termed synchronous attacks, is applicable in scenarios where
either the plaintext or ciphertext is known and the attacker can operate synchronously
with the encryption on the same processor, by using (or eavesdropping upon) some in-
terface that triggers encryption under an unknown key. For example, a Virtual Private
Network (VPN) may allow an unprivileged user to send data packets through a secure

10 One exception is OpenSSL 0.9.7g on x86-64, which uses 8-byte table entries. The reduced δ improves
our attacks.

11 We assume that the tables are aligned on memory block boundaries, which is usually the case. Non-
aligned tables would benefit our attacks by leaking an extra bit (or more) per key byte in the first round. We
also assume for simplicity that all tables are mapped into distinct cache sets; this holds with high probability
on many systems (and our practical attacks can handle some exceptions).

12 This will be relaxed in Sect. 3.7.

44 E. Tromer, D.A. Osvik, and A. Shamir

channel which uses the same secret key to encrypt all packets. This lets the user trigger
encryption of plaintexts that are mostly known (up to some uncertainties in the packet
headers), and our attack would thus, under some circumstances, enable any such user
to discover the key used by the VPN to protect the packets of other users. As another
example, consider the Linux dm-crypt and cryptoloop services. These allow the
administrator to create a virtual device which provides encrypted storage on an under-
lying physical device, and typically a normal filesystem is mounted on top of the virtual
device. If a user has write permissions to any file on that filesystem, he can use it to
trigger encryptions of known plaintext, and using our attack, he is subsequently able to
discover the universal encryption key used for the underlying device. We have exper-
imentally demonstrated the latter attack and showed it to reliably extract the full AES
key using about 65 ms of measurements (involving just 800 write operations) followed
by 3 seconds of analysis. Note that, unlike classical known-plaintext attacks, in this
scenario there is no access to the corresponding ciphertexts.

The attack consists of two stages. In the on-line stage, we obtain a set of random
samples, each consisting of a known plaintext and the memory-access side-channel in-
formation gleaned during the encryption of that plaintext. This data is cryptanalyzed in
an off-line stage, through hypothesis testing: we guess small parts of the key, use the
guess to predict some memory accesses, and check whether the predictions are con-
sistent with the collected data. In the following we first describe the cryptanalysis in a
simplified form by assuming access to an ideal predicate Q that reveals which mem-
ory addresses were accessed by individual invocations of the cipher. We then adapt the
attack to the real setting of noisy measurement M that approximate Q, show two practi-
cal methods for obtaining these measurements, report experimental results, and outline
possible variants and extensions.

3.2. One-Round Attack

Our simplest synchronous attack exploits the fact that in the first round, the accessed
table indices are simply x

(0)
i = pi ⊕ ki for all i = 0, . . . ,15. Thus, given knowledge of

the plaintext byte pi , any information on the accessed index x
(0)
i directly translates to

information on key byte ki . The basic attack, in idealized form, is as follows.
Suppose that we obtain samples of the ideal predicate Qk(p, �, y) for some table �,

arbitrary table indices y, and known but random plaintexts p. Let ki be a key byte such
that the first encryption round performs the access “T�[x(0)

i]” in (1), i.e., such that i ≡ �

(mod 4). Then we can discover the partial information 〈ki〉 about ki by testing candi-
date values k̃i and checking them the following way. Consider the samples that fulfill
〈y〉 = 〈pi ⊕ k̃i〉. These samples will be said to be useful for k̃i , and we can reason about
them as follows. If we correctly guessed 〈ki〉 = 〈k̃i〉, then Qk(p, �, y) = 1 for useful
samples, since the table lookup “T�[x(0)

i]” in (1) will certainly access the memory block

of y in T�. Conversely, if 〈ki〉 	= 〈k̃i〉, then we are assured that “T�[x(0)
i]” will not ac-

cess the memory block of y during the first round; however, during the full encryption
process, there is a total of 36 accesses to T� (4 in each of the first 9 AES rounds).
The remaining 35 accesses are affected also by other plaintext bytes, so heuristically
the probability that the encryption will not access that memory block in any round is

Efficient Cache Attacks on AES, and Countermeasures 45

Fig. 2. Candidate scores for a synchronous attack using Prime + Probe measurements (see Sect. 3.5), an-
alyzing a dm-crypt encrypted filesystem on Linux 2.6.11 running on an Athlon 64. Left subfigure: after
analysis of 30,000 triggered encryptions. The horizontal axis is k̃5 = p5 ⊕ y, and the vertical axis is the av-
erage measurement score over the samples fulfilling y = p5 ⊕ k̃5 (in units of clock cycles). Right subfigure:
after just 800 triggered encryptions, with the horizontal axis condensed to 〈k̃5〉. The encryption function al-
ways accesses 〈k5 ⊕ p5〉, and thus the high nibble of k5 = 0x50 is easily gleaned from the high points in
either plot.

(1 − δ/256)35 (assuming sufficiently random plaintexts and avalanche effect). By defi-
nition, that is also the probability of Qk(p, �, y) = 0, and in the common case δ = 16,
it is approximately 0.104.

Thus, after receiving a few dozen useful samples we can identify a correct 〈k̃i〉—
namely, the one for which Qk(p, �, y) = 1 whenever 〈y〉 = 〈pi ⊕ k̃i〉. Applying this test
to each key byte ki separately, we can thus determine the top log2(256/δ) = 4 bits of
every key byte ki (when δ = 16), i.e., half of the AES key. Note that this is the maximal
amount of information that can be extracted from the memory lookups of the first round,
since they are independent and each access can be distinguished only up to the size of a
memory block.

In reality, we do not have the luxury of the ideal predicate and have to deal with mea-
surement score distributions Mk(p, �, y) that are correlated with the ideal predicate but
contain a lot of (possibly structured) noise. For example, we will see that Mk(p, �, y) is
often correlated with the ideal Qk(p, �, y) for some � but is uncorrelated for others (see
Fig. 5). We thus proceed by averaging over many samples. As above, we concentrate on
a specific key byte ki and a corresponding table �. Our measurement will yield samples
of the form (p, y,m) consisting of arbitrary table indices y, random plaintexts p, and
measurement scores m drawn from Mk(p, �, y). For a candidate key value k̃i we define
the candidate score of k̃i as the expected value of m over the samples useful to k̃i (i.e.,
conditioned on y = pi ⊕ k̃i). We estimate the candidate score by taking the average
of m over the samples useful for k̃i . Since Mk(p, �, y) approximates Qk(p, �, y), the
candidate score should be noticeably higher when 〈k̃i〉 = 〈ki〉 than otherwise, allowing
us to identify the value of ki up to a memory block.

Indeed, on a variety of systems we have seen this attack reliably obtaining the top
nibble of every key byte. Figure 2 shows the candidate scores in one of these experi-
ments (see Sects. 3.5 and 3.7 for details); the δ = 16 key byte candidates k̃i fulfilling
〈k̃i〉 = 〈ki〉 are easily distinguished.

3.3. Two-Round Attack

The above attack narrows each key byte down to one of δ possibilities, but the table
lookups in the first AES round cannot reveal further information. For the common case
δ = 16, the key has 64 remaining unknown bits—still too much for exhaustive search.

46 E. Tromer, D.A. Osvik, and A. Shamir

We thus proceed to analyze the 2nd AES round, exploiting the nonlinear mixing in the
cipher to reveal additional information. Specifically, we exploit the following equations,
easily derived from the Rijndael specification [20], which give the indices used in four
of the table lookups in the 2nd round:13

x
(1)
2 = s(p0 ⊕ k0) ⊕ s(p5 ⊕ k5) ⊕ 2 • s(p10 ⊕ k10) ⊕ 3 • s(p15 ⊕ k15) ⊕ s(k15) ⊕ k2

x
(1)
5 = s(p4 ⊕ k4) ⊕ 2 • s(p9 ⊕ k9) ⊕ 3 • s(p14 ⊕ k14) ⊕ s(p3 ⊕ k3) ⊕ s(k14)

⊕ k1 ⊕ k5

x
(1)
8 = 2 • (p8 ⊕ k8) ⊕ 3 • s(p13 ⊕ k13) ⊕ s(p2 ⊕ k2) ⊕ s(p7 ⊕ k7) ⊕ s(k13)

⊕ k0 ⊕ k4 ⊕ k8 ⊕ 1

x
(1)
15 = 3 • s(p12 ⊕ k12) ⊕ s(p1 ⊕ k1) ⊕ s(p6 ⊕ k6) ⊕ 2 • s(p11 ⊕ k11) ⊕ s(k12)

⊕ k15 ⊕ k3 ⊕ k7 ⊕ k11

(2)

Here, s(·) denotes the Rijndael S-box function, and • denotes multiplication over
GF(256).14

Consider, for example, (2) above and suppose that we obtain samples of the ideal
predicate Qk(p, �, y) for table � = 2, arbitrary table indices y, and known but random
plaintexts p. We already know 〈k0〉, 〈k5〉, 〈k10〉, 〈k15〉, and 〈k2〉 from attacking the first
round, and we also know the plaintext. The unknown low bits of k2 (i.e., k2 mod δ)
affect only the low bits of x

(1)
2 (i.e., x

(1)
2 mod δ), and these do not affect which memory

block is accessed by “T2[x(1)
2]”. Thus, the only unknown bits affecting the memory

block accessed by “T2[x(1)
2]” in (1) are the lower log2 δ bits of k0, k5, k10, and k15. This

gives a total of δ4 (i.e., 216 for δ = 24) possibilities for candidate values k̃0, k̃5, k̃10, k̃15,
which can be easily enumerated. To complete the recovery of these four key bytes, we
can identify the correct candidate as follows.

Identification of a correct guess is done by a generalization of the hypothesis-
testing method used for the one-round attack. For each candidate guess and each sam-
ple Qk(p, �, y), we evaluate (2) using the candidates k̃0, k̃5, k̃10, k̃15 while fixing the
unknown low bits of k2 to an arbitrary value. We obtain a predicted index x̃

(1)
2 . If

〈y〉 = 〈x̃(1)
2 〉, then we say that this sample is useful for this candidate, and reason as

follows.
If the guess was correct, then 〈y〉 = 〈x̃(1)

2 〉 = 〈x(1)
2 〉, and thus “T2[x(1)

2]” certainly
causes an access to the memory block of y in T2, whence Qk(p, �, y) = 1 by definition.
Otherwise we have ki 	= k̃i for some i ∈ {0,5,10,15}, and thus

x
(1)
2 ⊕ x̃

(1)
2 = c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i) ⊕ · · ·

13 These four equations are special in that they involve just 4 unknown quantities, as shown below.
14 The only property of these functions that we exploit is the fact that s(·), 2•s(·), and 3•s(·) are “random-

looking” in a sense specified below; this is needed for the analysis of the attack’s efficiency. The actual attack
implementation can be done in terms of S-box lookup tables.

Efficient Cache Attacks on AES, and Countermeasures 47

for some c ∈ {1,2,3}, and since p is random, the remaining terms are independent of
the first two. But for these specific functions, the above is distributed close to uniformly.
Specifically, it is readily computationally verified, from the definition of AES [20], that
the following differential property (cf. [13]) holds: for any ki 	= k̃i , c ∈ {1,2,3}, δ ≥ 4,
and z ∈ {0, . . . ,256/δ}, we always have

Pr
p

[〈
c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i)

〉 	= z
]
> 1 − (1 − δ/256)3

Thus, the probability that “T2[x(1)
2]” in (1) does not cause an access to the memory block

of y in T2 is at least (1 − δ/256)3, and each of the other 35 accesses to T2 performed
during the encryption will access the memory block of y in T2 with probability δ/256.
Hence, Qk(p, �, y) = 0 with probability greater than (1 − δ/256)3+35.

We see that each sample eliminates, on average, a (δ/256) · (1 − δ/256)38-fraction
of the candidates—this is the probability, for a wrong candidate, that a random sample
is useful for that candidate (i.e., yields a testable prediction) and moreover eliminates
that candidate (by failing the prediction). Thus, to eliminate all the wrong candidates
out of the δ4, we need about log δ−4/ log(1− δ/256 · (1− δ/256)38) samples, i.e., about
2056 samples when δ = 16. Note that with some of our measurement methods the attack
requires only a few hundred encryptions, since each encryption can provide samples for
multiple y.

Similarly, each of the other three equations above lets us guess the low bits of four
distinct key bytes, so taken together they reveal the full key. While we cannot reuse
samples between equations since they refer to different tables �, we can reuse samples
between the analysis of the first and second round. Thus, if we had access to the ideal
predicate Q, we would need a total of about 8220 encryptions of random plaintexts and
an analysis complexity of 4 · 216 · 2056 ≈ 229 simple tests, to extract the full AES key.

In reality we get only measurement scores from the distributions Mk(p, �, y) that
approximate the ideal predicate Qk(p, �, y). Similarly to the one-round attack, we pro-
ceed by computing, for each candidate k̃i , a candidate score obtained by averaging the
measurement scores of all samples useful to k̃i . We then pick the k̃i having the largest
measurement score. The number of samples required to reliably obtain all key bytes by
this method is, in some experimentally verified settings, only about 7 times larger than
the ideal (see Sect. 3.7).

3.4. Measurement via Evict + Time

One method for extracting measurement scores is to manipulate the state of the cache
before each encryption and observe the execution time of the subsequent encryption.
Recall that we assume the ability to trigger an encryption and know when it has begun
and ended. We also assume knowledge of the memory address of each table T� and
hence of the cache sets to which it is mapped.15 We denote these (virtual) memory
addresses by V (T�). In a chosen-plaintext setting, the measurement routine proceeds as
follows given a table �, index y into �, and plaintext p:

15 Also, as before, the cache sets of all tables are assumed to be distinct. See Sect. 3.6 for a discussion of
possible complications and their resolution.

48 E. Tromer, D.A. Osvik, and A. Shamir

Fig. 3. Schematics of cache states, in the notation of Fig. 1. States (a)–(c) depict Evict + Time, and (d)–(e)
depict Prime + Probe.

(a) Trigger an encryption of p.
(b) (evict) Access some W memory addresses, at least B bytes apart, that are all

congruent to V (T�) + y · B/δ modulo S · B .
(c) (time) Trigger a second encryption of p and time it.16 This is the measurement

score.

The rationale for this procedure is as follows. Step (a) makes it highly likely that all ta-
ble memory blocks accessed during the encryption of p are cached;17 this is illustrated
in Fig. 3(a). Step (b) then accesses memory blocks, in the attacker’s own memory space,
that happen to be mapped to the same cache set as the memory block of y in T�. Since
it is accessing W such blocks in a cache with associativity W , we expect these blocks
to completely replace the prior contents of the cache. Specifically, the memory block of
index y in the encryption table T� is now not in cache; see Fig. 3(b). When we time the
duration of the encryption in (c), there are two possibilities. If Qk(p, �, y) = 1, that is,
if the encryption of the plaintext p under the unknown encryption key k accesses the
memory block of index y in T�, then this memory block will have to be re-fetched from
memory into the cache, leading to Fig. 3(c). This fetching will slow down the encryp-
tion. Conversely, if Qk(p, �, y) = 0, then this memory fetch will not occur. Thus, all
other things being equal, the expected encryption time is larger when Qk(p, �, y) = 1.
The gap is on the order of the timing difference between a cache hit and a cache miss.

Figure 4 demonstrates experimental results. The bright diagonal corresponds to sam-
ples where 〈y〉 ⊕ 〈p0〉 = 〈k0〉 = 0, for which the encryption in step (c) always suffers a
cache miss.

This measurement method is easily extended to a case where the attacker can trig-
ger encryption with plaintexts that are known but not chosen (e.g., by sending network
packets to which an uncontrolled but guessable header is added). This is done by re-
placing step (a) above with one that simply triggers encryptions of arbitrary plaintexts
in order to cause all table elements to be loaded into cache. Then the measurement and
its analysis proceed as before.

16 To obtain high-resolution timing we use the CPU cycle counter (e.g., on x86 the RDTSC instruction
returns the number of clock cycles since the last CPU reset).

17 Unless the triggered encryption code has excessive internal cache contention, or an external process
interfered.

Efficient Cache Attacks on AES, and Countermeasures 49

Fig. 4. Timings (lighter is slower) in Evict + Time measurements on a 2 GHz Athlon 64, after 10,000
samples, attacking a procedure that executes an encryption using OpenSSL 0.9.8. The horizontal axis is the
evicted cache set (i.e., 〈y〉 plus an offset due to the table’s location), and the vertical axis is p0 (left) or
p5 (right). The patterns of bright areas reveal high nibble values of 0 and 5 for the corresponding key byte
values, which are XORed with p0.

The weakness of this measurement method is that, since it relies on timing the trig-
gered encryption operation, it is very sensitive to variations in the operation. In particu-
lar, triggering the encryption (e.g., through a kernel system call) typically executes ad-
ditional code, and thus the timing may include considerable noise due to sources such
as instruction scheduling, conditional branches, page table misses, and other sources
of cache contention. Indeed, using this measurement method, we were able to extract
full AES keys from an artificial service doing AES encryptions using OpenSSL library
calls,18 but not from more typical “heavyweight” services. For the latter, we invoked
the alternative measurement method described in the next section.

3.5. Measurement via Prime + Probe

This measurement method tries to discover the set of memory blocks read by the encryp-
tion a posteriori, by examining the state of the cache after encryption. This method pro-
ceeds as follows. The attacker allocates a contiguous byte array A[0, . . . , S ·W ·B − 1],
with start address congruent modulo S · B to the start address of T0.19 Then, given a
plaintext p, it obtains measurement scores for all tables � and all indices y and does so
using a single encryption:

(a) (prime) Read a value from every memory block in A.
(b) Trigger an encryption of p.
(c) (probe) For every table � = 0, . . . ,3 and index y = 0, δ,2δ, . . . ,256 − δ:

– Read the W memory addresses A[1024�+ 4y + tSB] for t = 0, . . . ,W − 1.
The total time it takes to perform these W memory accesses is the measure-
ment score for � and y, i.e., our sample of Mk(p, �, y).

Step (a) completely fills the cache with the attacker’s data; see Fig. 3(d). The encryp-
tion in step (b) causes partial eviction; see Fig. 3(e). Step (c) checks, for each cache
set, whether the attacker’s data is still present after the encryption: cache sets that were

18 For this artificial scenario, [10] also demonstrated key extraction.
19 For simplicity, here we assume that this address is known and that T0, T1, T2, T3 are contiguous.

50 E. Tromer, D.A. Osvik, and A. Shamir

Fig. 5. Prime + Probe attack using 30,000 encryption calls on a 2 GHz Athlon 64, attacking Linux 2.6.11
dm-crypt. The horizontal axis is the evicted cache set (i.e., 〈y〉 plus an offset due to the table’s location),
and the vertical axis is p0. Left: raw timings (lighter is slower). Right: after subtraction of the average timing
of each cache set (i.e., column). The bright diagonal reveals the high nibble of p0 = 0x00.

accessed by the encryption in step (b) will incur cache misses in step (c), but cache sets
that were untouched by the encryption will not, and thus induce a timing difference.

Crucially, the attacker is timing a simple operation performed by itself, as opposed
to a complex encryption service with various unknown overheads executed by some-
thing else (as in the Evict + Time approach); this is considerably less sensitive to timing
variance, and oblivious to time randomization or canonization (which are frequently
proposed countermeasures against timing attacks; see Sect. 5). Another benefit lies in
inspecting all cache sets in one go after each encryption, so that each encryption effec-
tively yields 4 · 256/δ samples of measurement score, rather than a single sample.

An example of the measurement scores obtained by this method, for a real crypto-
graphic system, are shown in Fig. 5. Note that to obtain a visible signal it is necessary to
normalize the measurement scores by subtracting, from each sample, the average timing
of its cache set. This is because different cache sets are affected differently by auxiliary
memory accesses (e.g., variables on the stack and I/O buffers) during the system call.
These extra accesses depend on the inspected cache set but are nearly independent of
the plaintext byte; thus they affect each column uniformly and can be subtracted away.
Major interruptions, such as context switches to other processes, are filtered out by ex-
cluding excessively long time measurements.

3.6. Practical Complications

Above we have ignored several potential complications. One of these is that the attacker
does not know where the victim’s lookup tables reside in memory. It may be hard to tell
in advance, or it might be randomized by the victim.20 However, the attacker usually
does know the layout (up to unknown global offset) of the victim’s lookup tables, and
this enables the following simple procedure: try each possible table offset in turn, and
apply the one-round attack assuming this offset. Then pick the offset that gave the max-
imal candidate score. In our experiments this method reliably finds the offset even on
a real, noisy system, e.g., a standard Linux distribution running its default background
tasks (see Fig. 6). Moreover, when the machine is mostly idle, it suffices to simply look
for a frequently-accessed range of memory of the right size (see Fig. 8).

20 For example, recent Linux kernels randomize memory offsets.

Efficient Cache Attacks on AES, and Countermeasures 51

Fig. 6. Scores (lighter is higher) for combinations of key byte candidate (vertical axis) and table offset
candidate (horizontal axis). The correct combinations are clearly identified as the bright spots at the head of
the Sierpinski-like triangle (which is row-permuted on the right). Note the correct relative offsets of tables T0
(left) and T1 (right). This is the same dataset as in Fig. 5.

Fig. 7. Priming and probing using pointer chasing in doubly-linked list spanning cache lines. Each cache
line is divided into several fields: a pointer to the next and previous cache line in the same set, a pointer to the
next set, and time measurement ti .

A naive implementation of the prime and probe steps (i.e., scanning the memory
buffer in fixed strides) gives poor results due to two optimizations implemented in mod-
ern CPUs: reordering of memory accesses and automatic read-ahead of memory by
the “hardware prefetcher.” Our attack code works around both disruptions by using the
following “pointer chasing” technique. During initialization, the attacker’s memory is
organized into a linked list (optionally, randomly permuted); later, priming and probing
are done by traversing this list (see Fig. 7). To minimize cache thrashing (self-eviction),
we use a doubly-linked list and traverse it forward for priming but backward for prob-
ing. Moreover, to avoid “polluting” its own samples, the probe code stores each obtained
sample into the same cache set it has just finished measuring. On some platforms one
can improve the timing gap by using writes instead of reads, or more than W reads.

The aforementioned prime and probe code is the main time-critical and machine-
specific part of the attack, and was tailored by hand to the CPU at hand. The measure-
ment obtained by this code can be read and analyzed at one’s leisure (in our case, using
C and Perl).

Another complication is the distinction between virtual and physical memory ad-
dresses. The mapping between the two is done in terms of full memory pages (i.e.,
aligned ranges of addresses). These can be of different sizes, even on a single system,

52 E. Tromer, D.A. Osvik, and A. Shamir

but are usually large enough to contain all the tables used in the first 9 AES rounds.
In the above descriptions, and in some of our attacks, we used the knowledge of both
virtual and physical addresses of the victim’s tables. Sometimes this is available (e.g.,
when the attacker and victim use the same shared library); it is also not a concern when
the cache uses indexing by virtual address. When attacking a physically indexed cache,
the attacker can run a quick preprocessing stage to gain the necessary knowledge about
the mapping from virtual to physical addresses, by analysis of cache collisions between
pages. Some operating systems perform page coloring [29], which makes this even eas-
ier. Alternatively, in both measurement methods, the attacker can increase the number
of pages accessed to well above the cache associativity, thereby making it likely that the
correct pages are hit; we have verified experimentally that this simple method works,
albeit at a large cost in measurement time (a factor of roughly 300).

3.7. Experimental Results

We have tested the synchronous attacks against AES in various settings. To have an
initial “clean” testing environment for our attack code, we started out using OpenSSL
library calls as black-box functions, pretending we have no access to the key. In this
setting, and with full knowledge of the relevant virtual and physical address mappings,
using Prime + Probe measurements, we recover the full 128-bit AES key after only 300
encryptions on Athlon 64, and after 16,000 encryptions on Pentium 4E.21 In the same
setting but without any knowledge about address mappings (and without any attempt
to discover it systematically), we still recover the full key on Athlon 64 after 8,000
encryptions.

We then proceeded to test the attacks on a real-life encrypted filesystem. We set up a
Linux dm-crypt device, which is a virtual device that encrypts all data at the sector
level. The encrypted data is saved in an underlying storage device (here, a loopback
device connected to a regular file). On top of the dm-crypt device, we created and
mounted an ordinary ext2 filesystem. The dm-crypt device was configured to use
a 128-bit AES in ECB mode.22 We triggered encryptions by performing writes to an
ordinary file inside that file system, after opening it in O_DIRECT mode; each write
consisted of a random 16-byte string repeated 32 times. Running this on the Athlon 64
with knowledge about address mappings, we succeeded in extracting the full key after
just 800 write operations done in 65 ms (including the analysis of the cache state after
each write), followed by 3 seconds of off-line analysis. Data from two analysis stages
for this kind of attack are shown in Figs. 5 and 6 (the figures depict a larger number of
samples, in order to make the results evident not only to sensitive statistical tests but
even to cursory visual inspection).

The Evict + Time measurements (Fig. 4) are noisier, as expected, but still allow us
to recover the secret key using about 500,000 samples when attacking OpenSSL on

21 The Athlon 64 processor yielded very stable timings, whereas the Pentium 4E timings exhibited con-
siderable variance (presumably, due to some undocumented internal state).

22 Our tests used ECB mode in order to have, for each disk block encryption, identical known plaintexts in
all AES invocations. In the recommended mode, namely CBC, the synchronous attack is less efficient since
there is a lower probability that a given memory block in the S-box tables will remain unaccessed throughout
the disk block encryption. It may still be feasible, e.g., if the tables are not aligned to memory blocks.

Efficient Cache Attacks on AES, and Countermeasures 53

Athlon 64. Gathering the data takes about half a minute of continuous measurement,
more than three orders of magnitude slower than the attacks based on Prime + Probe.

3.8. Variants and Extensions

There are many possible extensions to the basic techniques described above. The fol-
lowing are a few notable examples.

Known-Ciphertext Attacks So far we have discussed known-plaintext attacks. All of
these techniques can be applied analogously in known-ciphertext setting. In fact, for
AES implementations of the form given in Sect. 2.2, known-ciphertext attacks are more
efficient than known-plaintext ones: the last round uses a dedicated set of tables, which
eliminates the noise due to other rounds (assuming the two sets of tables map to disjoint
subsets of the cache). Moreover, the last round has nonlinearity but no MixColumn
operation, so the key can be extracted byte-by-byte without analyzing additional rounds.
Indeed, this was demonstrated by [41] (subsequent to [44]); see Sect. 6.5. Since the
round subkey derivation process in AES is reversible, recovering the last round’s subkey
yields the full key.

Also, even in the case of a known-plaintext attack, the final guess of the key can
be efficiently verified by checking the resulting predictions for the lookups in the last
round.

Note that in some scenarios, like the attacker having access to an encrypted partition,
the ciphertext may not be available.

Attacking AES Decryption Since AES decryption is very similar to encryption, all of
our attacks can be applied to the decryption code just as easily. Moreover, the attacks are
also applicable when AES is used in MAC mode, as long as either the input or output
of some AES invocations is known.

Reducing Analysis Complexity In the two-round attack, we can guess byte differences
Δ̃ = ki ⊕ kj and consider plaintexts such that pi ⊕ pj = Δ̃, in order to cancel out pairs
of terms S(ki ⊕ pi) ⊕ S(kj ⊕ pj) in (2). This reduces the complexity of analysis (we
guess just Δ̃ instead of both k̃i and k̃j), at the cost of using more measurements.

Redundant Analysis To verify the results of the second-round analysis, or in case some
of the tables cannot be analyzed due to excessive noise, we can use the other 12 lookups
in the second round, or even analyze the third round, by plugging in partial information
obtained from good tables.

Sub-cacheline Leakage Typically, loading a memory block into a cache line requires
several memory transfer cycles due to the limited bandwidth of the memory interface.
Consequently, on some processors the load latency depends on the offset of the address
within the loaded memory block. Such variability can leak information on memory
accesses with resolution better than δ, hence an analysis of the first round via Evict +
Time can yield additional key bits. Cache bank collisions (e.g., in Athlon 64 processors)
likewise cause timing to be affected by low address bits.

54 E. Tromer, D.A. Osvik, and A. Shamir

Detection of Eviction Depth The Prime + Probe measurement can be extended to re-
veal not only whether a given cache set was accessed but also the number of evictions
from that cache set (i.e., the number of accessed distinct memory blocks mapped to
that cache set). This means that the accesses of interest, such as S-box lookups, can be
detected even when “masked” by accesses to the same cache set, whether accidental
(e.g., to the stack or I/O buffers; see Fig. 5) or intentional (as an attempted countermea-
sure). For example, in the case of a set-associative cache employing an LRU eviction
algorithm, each distinct memory block accessed by the victim will evict exactly one of
the attacker’s memory blocks from the corresponding cache set (if any are left); con-
sequentially, the Probe time for a given cache set is roughly linear in the number of
distinct accessed memory blocks mapped to that set (for up to W such blocks). For the
pseudo-LRU (also called tree-LRU) eviction algorithm, this leakage is slightly weaker:
the number of detected evictions equals the number of cache set accesses done by the
victim for up to log2(W) + 1 such accesses;23 beyond this bound, the two values are
still highly correlated if accesses are sufficiently random. The attacker can also find
the exact number of evictions from a pseudo-LRU cache by repeating the measurement
experiment multiple times using different orderings of probed addresses.

Remote Attacks We believe that this attack can be converted into a remote attack
on a network-triggerable cryptographic network process (e.g., IPsec [28] or Open-
VPN [43]).24 The cache manipulation can be done remotely, for example, by triggering
accesses to the state tables employed by the host’s TCP stack, stateful firewall, or VPN
software. These state tables reside in memory and are accessed whenever a packet be-
longing to the respective network connection is seen. The attacker can thus probe differ-
ent cache sets by sending packets along different network connections and also measure
access times by sending packets that trigger a response packet (e.g., an acknowledgment
or error). If a large number of new connections is opened simultaneously, the memory
addresses of the slots assigned to these connections in the state tables will be strongly re-
lated (e.g., contiguous or nearly so), and can be further ascertained by finding slots that
are mapped to the same cache set (by sending appropriate probe packets and checking
the response time). Once the mapping of the state table slots to cache sets is established,
all of the aforementioned attacks can be carried out; however, the signal-to-noise (and
thus, the efficiency) of this technique remains to be evaluated.

4. Asynchronous Attacks

4.1. Overview

While the synchronous attack presented in the previous section leads to very efficient
key recovery, it is limited to scenarios where the attacker has some interaction with
the encryption code which allows him to obtain known plaintexts and execute code

23 In a W -associative cache with binary-tree pseudo-LRU, the victim evicts its own data using log2(W)+2
accesses, but no fewer, assuming that the cache initially does not contain any data from the victim’s memory
space.

24 This is ruled out in [18], though no justification is given.

Efficient Cache Attacks on AES, and Countermeasures 55

just before and just after the encryption. We now proceed to describe a class of at-
tacks that eliminate these prerequisites. The attacker will execute his own program on
the same processor as the encryption program but without any explicit interaction such
as inter-process communication or I/O, and the only knowledge assumed is about the
nonuniform distribution of the plaintexts or ciphertexts (rather than their specific val-
ues). Essentially, the attacker will ascertain patterns of memory access performed by
other processes just by performing and measuring accesses to its own memory. This
attack is more constrained in the hardware and software platforms to which it applies,
but it is very effective on certain platforms, such as the increasingly popular CPU archi-
tectures which implement simultaneous multithreading.

4.2. One-Round Attack

The basic form of this attack works by obtaining a statistical profile of the frequency of
cache set accesses. The means of obtaining this will be discussed in the next section, but
for now we assume that for each table T� and each memory block n = 0, . . . ,256/δ −1,
we have a frequency score value F�(n) ∈ R that is strongly correlated with the relative
frequencies of the victim’s table lookups.25 For a simple but common case, suppose
that the attacker process is performing AES encryption of English text, in which most
bytes have their high nibble set to 6 (i.e., lowercase letters a through o). Since the
actual table lookups performed in round 1 of AES are of the form “T�[x(0)

i]” where

x
(0)
i = pi ⊕ ki , the corresponding frequency scores F�(n) will have particularly large

values when n = 6⊕〈ki〉 (assuming δ = 16). Thus, just by finding the n for which F�(n)

is large and XORing them with the constant 6, we get the high nibbles 〈ki〉.
Note, however, that we cannot distinguish the order of different memory accesses to

the same table and thus cannot distinguish between key bytes ki involved in the first-
round lookup to the same table �. There are four such key bytes per table (for example,
k0, k5, k10, k15 affect T0; see Sect. 2.2). Thus, when the four high key nibbles 〈ki〉 affect-
ing each table are distinct (which happens with probability ((16!/12!)/164)4 ≈ 0.2), the
above reveals the top nibbles of all key bytes but only up to four disjoint permutations
of 4 elements each. Overall this gives 64 − log2(4!4) ≈ 45.66 bits of key information,
somewhat less than the one-round synchronous attack. When the high key nibbles are
not necessarily disjoint we get more information, but the analysis of the signal is some-
what more complex.

More generally, suppose the attacker knows the first-order statistics of the plaintext;
these can usually be determined just from the type of data being encrypted (e.g., English
text, numerical data in decimal notation, machine code, or database records).26 Specifi-
cally, suppose that the attacker knows R(n) = Pr[〈pi〉 = n] for n = 0, . . . , (256/δ − 1),
i.e., the histogram of the plaintext bytes truncated into blocks of size δ (where the proba-
bility is over all plaintext blocks and all bytes i inside each block). Then the partial key
values 〈ki〉 can be identified by finding those that yield maximal correlation between
F�(n) and R(n ⊕ 〈ki〉).

25 Roughly, F�(n) is the average time (cycle count) it takes the attacker to access memory mapped to the
same cache set as T�[n].

26 Note that even compressed data is likely to have strong first-order statistical biases at the beginning of
each compressed chunk, especially when file headers are employed.

56 E. Tromer, D.A. Osvik, and A. Shamir

Fig. 8. Frequency scores for OpenSSL AES encryption of English text. Horizontal axis: cache set. Timings
performed on 3 GHz Pentium 4E with HyperThreading. To the right we zoom in on the AES lookup tables; the
pattern corresponds to the top nibbles of the secret key 0x004080C0105090D02060A0E03070B0F0.

4.3. Measurements

One measurement method exploits the simultaneous multithreading (SMT, called “Hy-
perThreading” in Intel Corp. nomenclature) feature available in some high-performance
processors (e.g., most modern Pentium and Xeon processors, as well as POWER5
processors, UltraSPARC T1, and others).27 This feature allows concurrent execution
of multiple processes on the same physical processor, with instruction-level interleav-
ing and parallelism. When the attacker process runs concurrently with its victim, it
can analyze the latter’s memory accesses in real time and thus obtain higher resolu-
tion and precision; in particular, it can gather detailed statistics such as the frequency
scores F�(n) ∈ R. This can be done via a variant of the Prime + Probe measurements of
Sect. 3.5 as follows.

For each cache set, the attacker thread runs a loop which closely monitors the time
it takes to repeatedly load a set of memory blocks that exactly fills that cache set with
W memory blocks (similarly to step (c) of the Prime + Probe measurements).28 As
long as the attacker is alone in using the cache set, all accesses hit the cache and are
very fast. However, when the victim thread accesses a memory location which maps
to the set being monitored, this causes one of the attacker’s cache lines to be evicted
from cache and replaced by a cache line from the victim’s memory. This leads to one
or (most likely) more cache misses for the attacker in subsequent loads and slows him
down until his memory once more occupies all the entries in the set. The attacker thus
measures the time over an appropriate number of accesses and computes their average,
thus obtaining the frequency score F�(n).

4.4. Experimental Results

Attacking a series of processes encrypting English text with the same key using
OpenSSL, we effectively retrieve 45.7 bits of information29 about the key after gath-
ering timing data for just 1 minute. Timing data from one of the runs is shown in Fig. 8.

27 We stress that this attack can be carried out also in the absence of simultaneous multithreading; see
Sect. 4.5.

28 Due to the time-sensitivity and effects such as prefetching and instruction reordering, getting a signifi-
cant signal requires a carefully crafted architecture-specific implementation of the measurement code.

29 For keys with distinct high nibbles in each group of 4; see Sect. 4.1.

Efficient Cache Attacks on AES, and Countermeasures 57

4.5. Variants and Extensions

This attack vector is quite powerful and has numerous possible extensions, such as the
following.

Second-Round Analysis The second round can be analyzed using higher-order statis-
tics on the plaintext, yielding enough key bits for exhaustive search.

Detecting Access Order If measurements can be made to detect the order of accesses
(which we believe is possible with appropriately crafted code), the attacker can ana-
lyze more rounds, as well as extract the unknown permutations from the first round.
Moreover, if the temporal resolution suffices to observe adjacent rounds in a single en-
cryption, then it becomes possible to recover the complete key without even knowing
the plaintext distribution, as long as it is sufficiently nonuniform.

Other Architectures We have demonstrated the attack on a Pentium 4E with Hyper-
Threading, but it can also be performed on other platforms without relying on simul-
taneous multithreading. The essential requirements is that the attacker can execute its
own code while an encryption is in progress, and this can be achieved by exploiting the
interrupt mechanism. For example, the attacker can predict RTC or timer interrupts, and
yields the CPU to the encrypting process a few cycles before such an interrupt; the OS
scheduler is invoked during the interrupt, and if dynamic priorities are set up appropri-
ately in advance, then the attacker process will regain the CPU and can analyze the state
of the cache to see with great accuracy what the encrypting process accessed during
those few cycles.30

Multi-Core and Multi-Processor On multi-core processors, the lowest-level caches
(L1 and sometimes L2) are usually private to each core; but if the cryptographic code
occasionally exceeds these private caches and reaches caches that are shared among the
cores (L2 or L3), then the asynchronous attack becomes applicable at the cross-core
level. In SMP systems, cache coherency mechanisms may be exploitable for similar
effect.

Remote Attacks As in the synchronous case, one can envision remote attack variants
that take advantage of data structures to which accesses can be triggered and timed
through a network (e.g., the TCP state table).

5. Countermeasures

In the following we discuss several potential methods to mitigate the information leak-
age. Since these methods have different trade-offs and are architecture- and application-
dependent, we cannot recommend a single recipe for all implementers. Rather, we aim
to present the realistic alternatives along with their inherent merits and shortcomings.
We focus our attention on methods that can be implemented in software, whether by

30 This was indeed subsequently demonstrated by [41]; see Sect. 6.5.

58 E. Tromer, D.A. Osvik, and A. Shamir

operating system kernels or normal user processes, running under today’s common
general-purpose processors. Some of these countermeasures are presented as specific
to AES but have analogues for other primitives. Countermeasures which require hard-
ware modification are discussed in [10,47–50].

Caveat: due to the complex architecture-dependent considerations involved, we ex-
pect the secure implementation of these countermeasures to be a very delicate affair.
Implementers should consider all exploitable effects given in [10] and carefully review
their architecture for additional effects.

5.1. Avoiding Memory Accesses

Our attacks exploit the effect of memory access on the cache and would thus be com-
pletely mitigated by an implementation that does not perform any table lookups. This
may be achieved by the following approaches.

First, one could use an alternative description of the cipher which replaces table
lookups by an equivalent series of logical operations. For AES, this is particularly el-
egant, since the lookup tables have concise algebraic descriptions, but performance is
degraded by over an order of magnitude.31

Another approach is that of bitslice implementations [12]. These employ a descrip-
tion of the cipher in terms of bitwise logical operations and execute multiple encryptions
simultaneously by vectorizing the operations across wide registers. Their performance
depends heavily on the structure of the cipher, the processor architecture, and the possi-
bility of amortizing the cost across several simultaneous encryptions (which depends on
the use of an appropriate encryption mode). For AES, bitsliced implementation on pop-
ular architectures can offer a throughput comparable to that of lookup-based implemen-
tations [26,31,34,35,51,52], but only when several independent blocks are processed
in parallel.32 Bitsliced AES is thus efficient for parallelized encryption modes such as
CTR [35] and for exhaustive key search [62], but not for chained modes such as CBC.

Alternatively, one could use lookup tables but place the tables in registers instead of
cache. Some architectures (e.g., x86-64, PowerPC AltiVec, and Cell SPE) have register
files sufficiently large to hold the 256-byte S-box table, and instructions (e.g., AltiVec’s
VPERM and Cell’s SHUFB) that allow for efficient lookups.

5.2. Alternative Lookup Tables

For AES, there are several similar formulations of the encryption and decryption algo-
rithms that use different sets of lookup tables. Above we have considered the most com-
mon implementation, employing four 1024-byte tables T0, . . . , T3 for the main rounds.
Variants have been suggested with one 256-byte table (for the S-box), two 256-bytes
tables (adding also 2 • S[·]), one 1024-byte table (just T0 with the rest obtained by rota-
tions), and one 2048-byte table (T0, . . . , T3 compressed into one table with nonaligned
lookups). The same applies to the last round tables, T

(10)
0 , . . . , T

(10)
3 . For encryption

31 This kind of implementation has also been attacked through the timing variability in some implementa-
tions [30].

32 Optimal throughput requires 64 parallel blocks in [34], 64/128/192 in [51], 128 in [35], 4 in [31], and
8 in [26].

Efficient Cache Attacks on AES, and Countermeasures 59

(but not decryption), the last round can also be implemented by reusing one byte out of
every element in the main tables.33

In regard to the synchronous attacks considered in Sect. 3, the effect of using smaller
tables is to decrease the probability ρ that a given memory block will not be accessed
during the encryption (i.e., Qk(p, �, y) = 0) when the candidate guess k̃i is wrong.
Since these are the events that rule out wrong candidates, the amount of data and analy-
sis in the one-round attack is inversely proportional to log(1 − ρ).

For the most compact variant with a single 256-byte table and δ = 64, the probability
is ρ = (1 − 1/4)160 ≈ 2−66.4, so the synchronous attack is infeasible—we are unlikely
to ever see an unaccessed memory block. For the next most compact variant, using
a single 1024 bytes table, the probability is ρ = (1 − 1/16)160 ≈ 2−14.9, compared to
ρ ≈ 0.105 in Sect. 3.2. The attack will thus take about log(1−0.105)/ log(1−2−14.9) ≈
3386 times more data and analysis, which is inconvenient but certainly feasible for the
attacker. The variant with a single 2 KB table (8 → 64 bit) has ρ = (1 − 1/32)160,
making the synchronous attack just 18 times less efficient than in Sect. 3.2 and thus still
doable within seconds.

For asynchronous attacks, if the attacker can sample at intervals on the order of single
table lookups (which is architecture-specific), then these alternative representations pro-
vide no appreciable security benefit. We conclude that overall, this approach (by itself)
is of very limited value. However, it can be combined with some other countermeasures
(see Sects. 5.3, 5.5, 5.8).

5.3. Data-Independent Memory Access Pattern

Instead of avoiding table lookups, one could employ them but ensure that the pattern
of accesses to the memory is completely independent of the data passing through the
algorithm. Most naively, to implement a memory access, one can read all entries of the
relevant table, in fixed order, and use just the one needed. Modern CPUs analyze depen-
dencies and reorder instructions, so care (and overhead) must be taken to ensure that the
instruction and access scheduling, and their timing, are completely data-independent.

If the processor leaks information only about whole memory blocks (i.e., not about
the low address bits),34 then it suffices that the sequence of accesses to memory blocks
(rather than memory addresses) is data-independent. To ensure this one can read a rep-
resentative element from every memory block upon every lookup.35 For the implemen-
tation of AES given in Sect. 2.2 and the typical δ = 16, this means that each logical table
access would involve 16 physical accesses, a major slowdown. Conversely, in the for-
mulation of AES using a single 256-byte table (see Sect. 5.2), the table consists of only
4 memory blocks (for δ = 64), so every logical table access (the dominant innermost-
loop operation) would involve just 4 physical accesses; but this formulation of AES is
inherently very slow.

33 Beside memory saving, this has the benefit of foiling attacks based on the last round involving a separate
set of cache sets; see Sect. 3.8.

34 This assumption is false for the Athlon 64 processor (due to cache bank collision effects) and possibly
for other processors as well. See Sect. 3.8 and [10].

35 This approach was suggested by Intel Corp. [17] for mitigating the attack of Percival on RSA [50] and
incorporated into OpenSSL 0.9.7h. In the case of RSA the overhead is insignificant, since other parts of the
computation dominate the running time.

60 E. Tromer, D.A. Osvik, and A. Shamir

A still looser variant is to require only that the sequence of accesses to cache sets
is data-independent (e.g., store each AES table in memory blocks that map to a single
cache set). While this poses a challenge to the cryptanalyst, it does not in general suffice
to eliminate the leaked signal: an attacker can still initialize the cache to a state where
only a specific memory block is missing from cache, by evicting all memory blocks
from the corresponding cache set and then reading back all but one (e.g., by triggering
access to these blocks using chosen plaintexts); he can then proceed as in Sect. 3.4.
Moreover, statistical correlations between memory block accesses, as exploited in the
collision attacks of Tsunoo et al. [56,57], are still present.

Taking a broader theoretical approach, Goldreich and Ostrovsky [22] devised a re-
alization of Oblivious RAM: a generic program transformation which hides all infor-
mation about memory accesses. This transformation is quite satisfactory from an (as-
ymptotic) theoretical perspective, but its concrete overheads in time and memory size
are too high for most applications.36 Moreover, it employs pseudo-random functions,
whose typical realizations can also be attacked since they employ the very same cryp-
tographic primitives we are trying to protect.37

Xhuang, Zhang, Lee, and Pande addressed the same issue from a more practical per-
spective and proposed techniques based on shuffling memory content whenever it is
accessed [63] or occasionally permuting the memory and keeping the cache locked be-
tween permutations [64]. Both techniques require nontrivial hardware support in the
processor or memory system and do not provide perfect security in the general case.

A simple heuristic approach is to add noise to the memory access pattern by adding
spurious accesses, e.g., by performing a dummy encryption in parallel to the real one.
This decreases the signal visible to the attacker (and hence necessitates more samples)
but does not eliminate it.

5.4. Application-Specific Algorithmic Masking

There is extensive literature about side-channel attacks on hardware ASIC and FPGA
implementations and corresponding countermeasures. Many of these countermeasures
are implementation-specific and thus of little relevance to us, but some of them are
algorithmic. Of particular interest are masking techniques, which effectively randomize
all data-dependent operations by applying random transformations; the difficulty lies, of
course, in choosing transformations that can be stripped away after the operation. One
can think of this as homomorphic secret sharing, where the shares are the random mask
and the masked intermediate values. For AES, several masking techniques have been
proposed (see, e.g., [46,53], and the references therein). However, most (except [53])
are designed to protect only against first-order analysis, i.e., against attacks that measure
some aspect of the state only at one point in the computation—our asynchronous attacks
do not fall into this category. Moreover, the security proofs consider leakage only of

36 The Oblivious RAM model of [22] protects against a stronger adversary which is also able to corrupt the
data in memory. If one is interested only in achieving correctness (not secrecy) in the face of such corruption,
then Blum et al. [14] provide more efficient schemes, and Naor and Rothblum [38] provide strong lower
bounds.

37 In [22] it is assumed that the pseudorandom functions are executed completely within a secure CPU
without memory accesses. If such a CPU was available, we could use it to run the AES algorithm itself.

Efficient Cache Attacks on AES, and Countermeasures 61

specific intermediate values, which do not correspond to the ones leaking via memory
access metadata. Lastly, every AES masking method we are aware of has either been
shown to be insecure even for its original setting (let alone ours) or is significantly
slower in software than a bitslice implementation (see Sect. 5.1).

Finding an efficient masking scheme for AES on 32-bit (or wider) processors that is
resilient to cache attacks is thus an open problem.

5.5. Cache State Normalization and Process Blocking

To foil the synchronous attacks of Sect. 3, it suffices to ensure that the cache is in
a data-independent normalized state (e.g., by loading all lookup table elements into
cache) at any entry to and exit from the encryption code (including interrupt and context
switching by the operating system). Thus, to foil the Prime + Probe attack, it suffices
to normalize the state of the cache after encryption. To foil the Evict + Time attack,
one needs to normalize the state of the cache immediately before encryption (as in [47])
and also after every interrupt occurring during an encryption (the memory accesses
caused by the interrupt handler will affect the state of the cache in some semi-predictable
way and can thus be exploited by the attacker similarly to the Evict stage of Evict +
Time). Performing the normalization after interrupts typically requires operating system
support (see Sect. 5.11). As pointed out in [10, Sects. 12 and 14], it should be ensured
that the table elements are not evicted by the encryption itself, or by accesses to the
stack, inputs or outputs; this is a delicate architecture-dependent affair.

A subtle aspect is that the cache state which we seek to normalize includes a hidden
state which is used by the CPU’s cache eviction algorithm (typically Least Recently
Used or variants thereof). If multiple lookup table memory blocks are mapped to the
same cache set (e.g., OpenSSL on the Pentium 4E; see Table 1), the hidden state could
leak information about which of these blocks was accessed last even if all of them are
cached; an attacker can exploit this to analyze the last rounds in the encryption (or
decryption).

All of these countermeasures provide little protection against the asynchronous at-
tacks of Sect. 4. To fully protect against those, during the encryption one would have
to disable interrupts and stop simultaneous threads (and perhaps also other processors
on an SMP machine, due to the cache coherency mechanism). This would significantly
degrade performance on SMT and SMP machines, and disabling interrupts for long
durations will have adverse effects. A method for blocking processes more selectively
based on process credentials and priorities is suggested in [50].

Note that normalizing the cache state frequently (e.g., by reloading all tables after
every AES round) would merely reduce the signal-to-noise of the asynchronous attacks,
not eliminate them.

5.6. Disabling Cache Sharing

To protect against software-based attacks, it would suffice to prevent cache state effects
from spanning process boundaries. Alas, practically this is very expensive to achieve.
On current single-threaded processors, it would require flushing all caches during every
context switch. Alternatively, and necessarily on a processor with simultaneous multi-
threading, the CPU can be designed to allow separate processes to use separate logical

62 E. Tromer, D.A. Osvik, and A. Shamir

caches that are statically allocated within the physical cache (e.g., each with half the
size and half associativity). Besides reduced performance and lack of support in current
processors, one would also need to consider the effect of cache coherency mechanisms
in SMP configurations, as well as the caveats in Sect. 5.3.

A relaxed version would activate the above means only for specific processes, or spe-
cific code sections, marked as sensitive. This is especially appropriate for the operating
system kernel but can be extended to user processes as explained in Sect. 5.11.

To separate two processes with regard to the attacks considered here, it suffices38 to
ensure that all memory accessible by one process is mapped into a group of cache sets
that is disjoint from that of the other process.39 In principle, this can be ensured by the
operating system virtual memory allocator through a suitable page coloring algorithm.
Alas, this fails on both of the major x86 platforms: in modern Intel processors every
4096-byte memory page is mapped to every cache set in the L1 cache (see Table 1),
while in AMD processors the L1 cache is indexed by virtual addresses (rather than
physical addresses), and these are allocated contiguously.

5.7. Static or Disabled Cache

One brutal countermeasure against the cache-based attacks is to completely disable the
CPU’s caching mechanism.40 Of course, the effect on performance would be devastat-
ing, slowing down encryption by a factor of about 100. A more attractive alternative is
to activate a “no-fill” mode41 where the memory accesses are serviced from the cache
when they hit it, but accesses that miss the cache are serviced directly from memory
(without causing evictions and filling). The encryption routine would then proceed as
follows:

(a) Preload the AES tables into cache
(b) Activate “no-fill” mode
(c) Perform encryption
(d) Deactivate “no-fill” mode

The section spanning (a) and (b) is critical, and attacker processes must not be allowed
to run during this time. However, once this setup is completed, step (c) can be safely
executed. The encryption per se would not be slowed down significantly (assuming that
its inputs are in cache when “no-fill” is enabled), but its output will not be cached,
leading to subsequent cache misses when the output is used (in chaining modes, as well
as for the eventual storage or transmission). Other processes executed during (c), via
multitasking or simultaneous multithreading, may incur a severe performance penalty.
Breaking the encryption chunks into smaller chunks and applying the above routine to
each chunk would reduce this effect somewhat by allowing the cache to be occasionally
updated to reflect the changing memory working set.

38 In the absence of low-address-bit leakage due to cache bank collisions.
39 This was proposed to us by Úlfar Erlingsson of Microsoft Research.
40 Some stateful effects would remain, such as the DRAM bank activation. These might still provide a

low-bandwidth side channel in some cases.
41 Not to be confused with the “disable cache flushing” mode suggested in [48], which is relevant only in

the context of smartcards.

Efficient Cache Attacks on AES, and Countermeasures 63

Intel’s family of Pentium and Xeon processors supports such a mode,42 but the cost
of enabling and disabling it are prohibitive. Also, some ARM implementations allow
cache lines to be locked (e.g., [25, Sect. 3.4.4]). We do not know which other processor
families currently offer this functionality.

This method can be employed only in privileged mode, which is typically avail-
able only to the operating system kernel (see Sect. 5.11) and may be competitive
performance-wise only for encryption of sufficiently long sequences. In some cases it
may be possible to delegate the encryption to a co-processor with the necessary proper-
ties. For example, IBM’s Cell processor consists of a general-purpose (PowerPC) core
along with several “Synergistic Processing Element” (SPE) cores. The latter have a fast
local memory but it is not a cache per se, i.e., there are no automatic transfers to or
from main memory, thus, SPEs employed as cryptographic co-processors would not be
susceptible to this attack.43

5.8. Dynamic Table Storage

The cache-based attacks observe memory access patterns to learn about the table
lookups. Instead of eliminating these, we may try to decorrelate them. For example,
one can use many copies of each table, placed at various offsets in memory, and have
each table lookup (or small group of lookups) use a pseudorandomly chosen table. Ide-
ally, the implementation will use S copies of the tables, where S is the number of cache
sets (in the largest relevant cache). However, this means most table lookups will incur
cache misses. Somewhat more compactly, one can use a single table but pseudoran-
domly move it around in memory several times during each encryption.44 If the tables
reside in different memory pages, one should consider and prevent leakage (and perfor-
mance degradation) through page table cache (i.e., Table Lookaside Buffer) misses.

Another variant is to mix the order of the table elements several times during each
encryption. The permutations need to be chosen with lookup efficiency in mind (e.g.,
via a linear congruential sequence), and the choice of permutation needs to be suffi-
ciently strong; in particular, it should employ entropy from an external source (whose
availability is application-specific).45

The performance and security of this approach are very architecture-dependent. For
example, the required strength of the pseudorandom sequence and frequency of ran-
domization depend on the maximal probing frequency feasible for the attacker.

42 Enable the CD bit of CR0 and, for some models, adjust the MTRR. Coherency and invalidation concerns
apply.

43 In light of the Cell’s high parallelism and the SPE’s abundance of 128-bit registers (which can be
effectively utilized by bitslice implementations), it has considerable performance potential in cryptographic
and cryptanalytic applications (e.g., [54]).

44 If the tables stay static for long, then the attacker can locate them (see Sect. 3.6) and discern their
organization. This was prematurely dismissed by Lauradoux [32], who assumed that the mapping of table
entries to memory storage will be attacked only by exhaustive search over all possible such mappings; the
mapping can be recovered efficiently on an entry-by-entry basis.

45 Some of these variants were suggested to us by Intel Corp and implemented in [16], following an early
version of this paper.

64 E. Tromer, D.A. Osvik, and A. Shamir

5.9. Hiding the Timing

All of our attacks perform timing measurements, whether of the encryption itself (in
Sect. 3.4) or of accesses to the attacker’s own memory (in all other cases). A natural
countermeasure for timing attacks is to try to hide the timing information. One com-
mon suggestion for mitigating timing attacks is to add noise to the observed timings
by adding random delays to measured operations, thereby forcing the attacker to per-
form and average many measurements. Another approach is to normalize all timings to
a fixed value, by adding appropriate delays to the encryption, but beside the practical
difficulties in implementing this, it means that all encryptions have to be as slow as
the worst-case timing (achieved here when all memory accesses miss the cache). Nei-
ther of these provide protection against the Prime + Probe synchronous attack or the
asynchronous attack.

At the operating system or processor level, one can limit the resolution or accuracy
of the clock available to the attacker; as discussed by Hu [23], this is a generic way to
reduce the bandwidth of side channels but is nontrivial to achieve in the presence of
auxiliary timing information (e.g., from multiple threads [50]), and will unpredictably
affect legitimate programs that rely on precise timing information. The attacker will
still be able to obtain the same information as before by averaging over more samples
to compensate for the reduced signal-to-noise ratio. Since some of our attacks require
only a few milliseconds of measurements, to make them infeasible the clock accuracy
may have to be degraded to an extent that interferes with legitimate applications.

5.10. Selective Round Protection

The attacks described in Sects. 3 and 4 detect and analyze memory accesses in the
first two rounds (for known input) or last two rounds (for known output). To protect
against these specific attacks it suffices to protect those four rounds by some of the
means given above (i.e., hiding, normalizing, or preventing memory accesses) while
using the faster, unprotected implementation for the internal rounds.46 This does not
protect against other cryptanalytic techniques that can be employed using the same
measurement methods. For example, with chosen plaintexts, the table accesses in the
3rd round can be analyzed by differential cryptanalysis (using a 2-round truncated dif-
ferential). Nonetheless, those cryptanalytic techniques require more data and/or chosen
data, and thus when quantitatively balancing resilience against cache-based attacks and
performance, it is sensible to provide somewhat weaker protection for internal rounds.

5.11. Operating System Support

Several of the countermeasures suggested above require privileged operations that are
not available to normal user processes in general-purpose operating systems. In some
scenarios and platforms, these countermeasures may be superior (in efficiency or safety)
to any method that can be achieved by user processes. One way to address this is to
provide secure execution of cryptographic primitives as operating system services. For

46 This was suggested to us by Intel Corp and implemented in [16], following an early version of this
work.

Efficient Cache Attacks on AES, and Countermeasures 65

example, the Linux kernel already contains a modular library of cryptographic primi-
tives for internal use; this functionality could be exposed to user processes through an
appropriate interface. A major disadvantage of this approach is its lack of flexibility:
support for new primitives or modes will require operating system modifications (or
loadable drivers) which exceed the scope of normal applications.

An alternative approach is to provide a secure execution facility to user processes.47

This facility would allow the user to mark a “sensitive section” in his code and ask the
operating system to execute it with a guarantee: either the sensitive section is executed
under a promise sufficient to allow efficient execution (e.g., disabled task switching and
parallelism, or cache in “no-fill” mode—see above), or its execution fails gracefully.
When asked to execute a sensitive section, the operating system will attempt to put
the machine into the appropriate mode for satisfying the promise, which may require
privileged operations; it will then attempt to fully execute the code of the sensitive
section under the user’s normal permissions. If this cannot be accomplished (e.g., a
hardware interrupt may force task switching, normal cache operation may have to be
enabled to service some performance-critical need, or the process may have exceeded
its time quota), then the execution of the sensitive section will be aborted, and prescribed
cleanup operations will be performed (e.g., complete cache invalidation before any other
process is executed). The failure will be reported to the process (now back in normal
execution mode), so it can restart the failed sensitive section later.

The exact semantics of this “sensitive section” mechanism depend on the specific
countermeasure and on the operating system’s conventions. This approach, while hardly
the simplest, offers maximal flexibility to user processes; it may also be applicable in-
side the kernel when the promise cannot be guaranteed to hold (e.g., if interrupts cannot
be disabled).

5.12. Hardware AES Support

Several major vendors (including Intel, AMD, Sun, and Via) have recently announced
or implemented specialized AES hardware support in their chips. Assuming that the
hardware executes the basic AES operation with constant resource consumption, this
allows for efficient AES execution that is invulnerable to our attacks. Other code running
on the system may, of course, remain vulnerable to cache attacks.

Similarly, AES may be relegated to a hardware implementation in a secure coproces-
sor. In particular, Trusted Platform Module (TPM) chip are nowadays ubiquitous; alas,
they are typically too slow for bulk encryption.

6. Conclusions and Implications

6.1. Summary of Results

We described novel attacks which exploit inter-process information leakage through the
state of the CPU’s memory cache. This leakage reveals memory access patterns which
can be used for cryptanalysis of cryptographic primitives that employ data-dependent

47 Special cases of this were discussed in [50] and [10], though the latter calls for this to be implemented
at the CPU hardware level.

66 E. Tromer, D.A. Osvik, and A. Shamir

table lookups. Exploiting this leakage allows an unprivileged process to attack other
processes running in parallel on the same processor, despite partitioning methods such
as memory protection, sandboxing, and virtualization. Some of our methods require
only the ability to trigger services that perform encryption or MAC using the unknown
key, such as encrypted disk partitions or secure network links. Moreover, we demon-
strated an extremely strong type of attack, which requires knowledge of neither the
specific plaintexts nor ciphertexts, and works by merely monitoring the effect of the
cryptographic process on the cache. We discussed in detail several such attacks on AES
and experimentally demonstrated their applicability to real systems, such as OpenSSL
and Linux’s dm-crypt encrypted partitions (in the latter case, the full key was recov-
ered after just 800 writes to the partition, taking 65 milliseconds). Finally, we proposed
a variety of countermeasures.

6.2. Vulnerable Cryptographic Primitives

The cache attacks we have demonstrated are particularly effective for typical imple-
mentations of AES, for two reasons. First, the memory access patterns have a simple
relation to the inputs; for example, the indices accessed in the first round are simply the
XOR of a key byte and a plaintext byte. Second, the parameters of the lookup tables
are favorable: there is a large number of memory blocks involved (but not too many to
exceed the cache size), and thus many bits are leaked by each access. Moreover, there
is a significant probability that a given memory block will not be accessed at all during
a given random encryption.

Beyond AES, such attacks are potentially applicable to any implementation of a cryp-
tographic primitive that performs key- and input-dependent memory accesses. The ef-
ficiency of an attack depends heavily on the structure of the cipher and chosen imple-
mentation, but heuristically, large lookup tables increase the effectiveness of all attacks:
having few accesses to each table helps the synchronous attacks, whereas the related
property of having temporally infrequent accesses to each table helps the asynchronous
attack. Large individual table entries also aid the attacker in reducing the uncertainty
about which table entry was addressed in a given memory block. This is somewhat
counterintuitive, since it is usually believed that large S-boxes are more secure.

For example, DES is vulnerable when implemented using large lookup tables which
incorporate the P permutation and/or to compute two S-boxes simultaneously. Cryp-
tosystems based on large-integer modular arithmetic, such as RSA, can be vulnerable
when exponentiation is performed using a precomputed table of small powers (see [50]).
Moreover, a naive square-and-multiply implementation would leak information through
accesses to long-integer operands in memory. The same potentially applies to ECC-
based cryptosystems.

Primitives that are normally implemented without lookup tables, such as the SHA
family [40] and bitsliced Serpent [9], are impervious to the attacks described here. How-
ever, to protect against timing attacks one should scrutinize implementations for use of
instructions whose timing is key- and input-dependent (e.g., bit shifts and multiplica-
tions on some platforms) and for data-dependent execution branches (which may be an-
alyzed through data cache access, instruction/trace cache access, or timing). Note that
timing variability of non-memory operations can be measured by an unrelated process

Efficient Cache Attacks on AES, and Countermeasures 67

running on the same machine, using a variant of the asynchronous attack, via the effect
of those operations on the scheduling of memory accesses.

We stress that cache attacks are potentially applicable to any program code, cryp-
tographic or otherwise. Above we have focused on cryptographic operations because
these are designed and trusted to protect information, and thus information leakage from
within them can be critical (for example, recovering a single decryption key can com-
promise the secrecy of all messages sent over the corresponding communication chan-
nel). However, information leakage can be harmful also in noncryptographic context.
For example, even knowledge of what programs are running on someone’s computer at
a given time can be sensitive.

6.3. Vulnerable Systems

At the system level, cache state analysis is of concern in essentially any case where
process separation is employed in the presence of malicious code. This class of sys-
tems includes many multiuser systems, as well as web browsing, DRM applications,
the Trusted Computing Platform [55],48 and NGSCB [37]. The same applies to acoustic
cryptanalysis, whenever malicious code can access a nearby microphone device and
thus record the acoustic effects of other local processes.

Disturbingly, virtual machines and sandboxes offer little protection against the asyn-
chronous cache attack (in which attacker needs only the ability to access his own mem-
ory and measure time) and against the acoustic attacks (if the attacker gains access to a
nearby microphone). Thus, our attacks may cross the boundaries supposedly enforced
by FreeBSD jail(), VMware [61],49 Xen [59], the Java Virtual Machine [33], and
plausibly even scripting language interpreters. Today’s hardware-assisted virtualization
technologies, such as Intel’s “Virtualization Technology” and AMD’s “Secure Virtual
Machine”, offer no protection either.

Remote cache attacks are in principle possible, and if proven efficient, they could pose
serious threats to secure network connections such as IPsec [28] and OpenVPN [43].

Finally, while we have focused our attention on cryptographic systems (in which
even small amount of leakage can be devastating), the leakage also occurs in noncryp-
tographic systems and may thus leak sensitive information directly.

6.4. Mitigation

We have described a variety of countermeasures against cache state analysis attacks;
some of these are generic, while others are specific to AES. However, none of these
unconditionally mitigates the attacks while offering performance close to current im-
plementations. Thus, finding an efficient and secure solution that is application- and
architecture-independent remains an open problem. In evaluating countermeasures, one
should pay particular attention to the asynchronous attacks, which on some platforms
allow the attacker to obtain (a fair approximation of) the full transcript of memory ac-
cesses done by the cryptographic code.

48 While the Trusted Computing Module (TPM) chip itself may be invulnerable to software attacks, it
cannot effectively enforce information flow control in the rest of the system when side channels are present.

49 This compromises the system described in the recent NSA patent 6,922,774 [36].

68 E. Tromer, D.A. Osvik, and A. Shamir

6.5. Follow-up Works

Since the initial publications of these results [44,45], numerous extensions and variants
have been suggested, including the following.

Countermeasures Brickell et al. of Intel Corp. [16,17] implemented and experimen-
tally evaluated several AES implementations that reduce the cache side-channel leakage
(see discussion in Sect. 5), and Page [49] evaluated partitioned cache architectures as a
countermeasure.

Survey and Extensions to Related Attacks In [18], Canteaut et al. survey and classify
the various cache attacks, and proposes extensions and countermeasures.

Collision-Based Attacks As discussed in Sect. 1.2, [18] describes an attack on AES
based on exploiting internal cache collisions, following the approach of Tsunoo et al.
This was improved by Bonneau and Mironov [15] (attacking the first or last round)
and by Acıiçmez et al. [7] (attacking the first round). These attacks still require many
thousands of encryptions even for an in-process OpenSSL target.

Exploiting the OS Scheduler In [41], Neve and Seifert empirically demonstrate the
effectiveness of an extension we have merely alluded to hypothetically: carrying out an
asynchronous attack without simultaneous multithreading, by exploiting only the OS
scheduling and interrupts. Indeed, they show that with appropriate setup their approach
provides excellent temporal resolution. They also demonstrate the effectiveness of ana-
lyzing the last round of AES instead of the first one, where applicable (see Sect. 3.8).

Branch Prediction and Instruction Cache Attacks In [2,5,6], Acıiçmez et al. describe
new classes of attacks that exploit the CPU instruction cache or its branch prediction
mechanism, instead of the data cache considered herein. They demonstrate efficient
RSA key recovery via contention for these resources. The measurement approaches
(and hence attack scenarios) are similar to the data cache attack techniques described
here, but the information obtained is about the execution path rather than data accesses.
Veith et al. [60] presented a related attack, which monitors branch prediction via the
CPU performance counters. Since the type of vulnerable code is different compared to
data cache attacks, these attacks are complementary.

Multiplier Unit Contention Attacks In [8], Acıiçmez and Seifert demonstrate an-
other microarchitectural side channel: contention for the multiplication unit when two
processes are running concurrently on an Intel HyperThreading CPU. They exploit this
to eavesdrop on modular exponentiation in RSA signing.

Indubitably, further side channels in all levels of system architecture will be created
and discovered, as hardware grows in parallelism and complexity.

Acknowledgements

We are indebted to Ernie Brickell, Jean-Pierre Seifert, and Michael Neve of Intel Corp.
for insightful discussions and proposal of several countermeasures, to Daniel J. Bern-
stein for suggesting the investigation of remote attacks, and to Eli Biham, Paul Karger,
Maxwell Krohn, and the anonymous referees for their helpful pointers and comments.

Efficient Cache Attacks on AES, and Countermeasures 69

References

[1] M. Abadi, M. Burrows, M. Manasse, T. Wobber, Moderately hard, memory-bound functions. ACM
Trans. Internet Technol. 5(2), 299–327 (2005)

[2] O. Acıiçmez, Yet another microarchitectural attack: exploiting I-cache, in IACR Cryptology ePrint
Archive, report 2007/164 (2007). http://eprint.iacr.org/2007/164

[3] O. Acıiçmez, Ç.K. Koç, Trace driven cache attack on AES. IACR Cryptology ePrint Archive, report
2006/138 (2006). http://eprint.iacr.org/2006/138; full version of [4]

[4] O. Acıiçmez, Ç.K. Koç, Trace driven cache attack on AES (short paper), in Proc. International Confer-
ence on Information and Communications Security (ICICS) 2006. Lecture Notes in Computer Science,
vol. 4296 (Springer, Berlin, 2006), pp. 112–121. Short version of [3]

[5] O. Acıiçmez, Ç.K. Koç, J.-P. Seifert, On the power of simple branch prediction analysis. IACR Cryp-
tology ePrint Archive, report 2006/351 (2006)

[6] O. Acıiçmez, Ç.K. Koç, J.-P. Seifert, Predicting secret keys via branch prediction, in Proc. RSA Confer-
ence Cryptographers Track (CT-RSA) 2007. Lecture Notes in Computer Science, vol. 4377 (Springer,
Berlin, 2007), pp. 225–242

[7] O. Acıiçmez, W. Schindler, Ç.K. Koç, Cache based remote timing attack on the AES, in Proc. RSA Con-
ference Cryptographers Track (CT-RSA) 2007. Lecture Notes in Computer Science, vol. 4377 (Springer,
Berlin, 2007), pp. 271–286

[8] O. Acıiçmez, J.-P. Seifert, Cheap hardware parallelism implies cheap security, in Proc. Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC) 2007 (IEEE, New York, 2007), pp. 80–91

[9] R.J. Anderson, E. Biham, L.R. Knudsen, Serpent: A Proposal for the Advanced Encryption Standard.
AES submission (1998). http://www.cl.cam.ac.uk/~rja14/serpent.html

[10] D.J. Bernstein, Cache-timing attacks on AES. Preprint (2005). http://cr.yp.to/papers.html#cachetiming
[11] G. Bertoni, V. Zaccaria, L. Breveglieri, M. Monchiero, G. Palermo, AES power attack based on induced

cache miss and countermeasure, in Proc. International Conference on Information Technology: Coding
and Computing (ITCC’05) (IEEE, New York, 2005), pp. 586–591

[12] E. Biham, A fast new DES implementation in software, in Proc. Fast Software Encryption (FSE) 1997.
Lecture Notes in Computer Science, vol. 1267 (Springer, Berlin, 1997), pp. 260–272

[13] E. Biham, A. Shamir, Differential cryptanalysis of DES-like Cryptosystems. J. Cryptol. 4(1), 3–72
(1991)

[14] M. Blum, W. Evans, P. Gemmell, S. Kannan, M. Naor, Checking the correctness of memories, in Proc.
Conference on Foundations of Computer Science (FOCS) 1991 (IEEE, New York, 1991), pp. 90–99

[15] J. Bonneau, I. Mironov, Cache-collision timing attacks against AES, in Proc. Cryptographic Hardware
and Embedded Systems (CHES) 2006. Lecture Notes in Computer Science, vol. 4249 (Springer, Berlin,
2006), pp. 201–215

[16] E. Brickell, G. Graunke, M. Neve, J.-P. Seifert, Software mitigations to hedge AES against cache-based
software side channel vulnerabilities. IACR Cryptology ePrint Archive, report 2006/052 (2006). http://
eprint.iacr.org/2006/052

[17] E. Brickell, G. Graunke, J.-P. Seifert, Mitigating cache/timing attacks in AES and RSA software im-
plementations, in RSA Conference 2006, San Jose, session DEV-203 (2006). http://2006.rsaconference.
com/us/cd_pdfs/DEV-203.pdf

[18] A. Canteaut, C. Lauradoux, A. Seznec, Understanding cache attacks. Research report RR-5881, INRIA,
April 2006. http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf

[19] J. Daemen, V. Rijmen, AES Proposal: Rijndael, version 2, AES submission (1999). http://csrc.nist.gov/
archive/aes/rijndael/Rijndael-ammended.pdf

[20] J. Daemen, V. Rijmen, The Design of Rijndael: AES—The Advanced Encryption Standard (Springer,
Berlin, 2001). ISBN 3-540-42580-2

[21] C. Dwork, A. Goldberg, M. Naor, On memory-bound functions for fighting spam, in Proc.
CRYPTO’2003. Lecture Notes in Computer Science, vol. 2729 (Springer, Berlin, 2003), pp. 426–444

[22] O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious RAMs. J. ACM 43(3),
431–473 (1996)

[23] W.-M. Hu, Reducing timing channels with fuzzy time, in Proc. IEEE Computer Society Symposium on
Research in Security and Privacy (IEEE, New York, 1991), pp. 8–20

http://eprint.iacr.org/2007/164
http://eprint.iacr.org/2006/138
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/2006/052
http://eprint.iacr.org/2006/052
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf
http://2006.rsaconference.com/us/cd_pdfs/DEV-203.pdf
http://www-rocq.inria.fr/codes/Anne.Canteaut/Publications/RR-5881.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

70 E. Tromer, D.A. Osvik, and A. Shamir

[24] W.-M. Hu, Lattice scheduling and covert channels, in IEEE Symposium on Security and Privacy (IEEE,
New York, 1992), pp. 52–61

[25] Intel Corp., Intel IXP42X Product Line of Network Processors and IXC1100 Control Plane Proces-
sor Developer’s Manual. Order Number 252480-006US (2006). http://www.intel.com/design/network/
manuals/252480.htm

[26] E. Käsper, P. Schwabe, Faster and Timing-Attack Resistant AES-GCM. IACR Cryptology ePrint
Archive, report 2009/129 (2009). http://eprint.iacr.org/2009/129

[27] J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side channel cryptanalysis of product ciphers, in Proc. 5th
European Symposium on Research in Computer Security. Lecture Notes in Computer Science, vol. 1485
(Springer, Berlin, 1998), pp. 97–110

[28] S. Kent et al., RFC 4301 through RFC 4309. Network Working Group Request for Comments. http://rfc.
net/rfc4301.html etc. (2005)

[29] R.E. Kessler, M.D. Hill, Page placement algorithms for large real-indexed caches. ACM Trans. Comput.
Syst. 10(4), 338–359 (1992)

[30] F. Koeune, J.-J. Quisquater, A timing attack against Rijndael. Technical Report CG-1999/1, Université
catholique de Louvain, http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz

[31] R. Könighofer, A fast and cache-timing resistant implementation of the AES, in Proc. RSA Conference
Cryptographers Track (CT-RSA) 2008. Lecture Notes in Computer Science, vol. 4964 (Springer, Berlin,
2008), pp. 187–202

[32] C. Lauradoux, Collision attacks on processors with cache and countermeasures, in Western European
Workshop on Research in Cryptology (WEWoRC) 2005. Lectures Notes in Informatics, vol. P-74 (2005),
pp. 76–85. http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf

[33] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd edn. (Prentice Hall, New York,
1999)

[34] M. Matsui, How far can we go on the x64 processors?, in Proc. Fast Software Encryption (FSE) 2006.
Lecture Notes in Computer Science, vol. 4047 (Springer, Berlin, 2006), pp. 341–358

[35] M. Matsui, J. Nakajima, On the power of bitslice implementation on Intel Core2 processor, in Proc.
Cryptographic Hardware and Embedded Systems (CHES) 2007. Lecture Notes in Computer Science,
vol. 4727 (Springer, Berlin, 2007), pp. 121–134

[36] R.V. Meushaw, M.S. Schneider, D.N. Simard, G.M. Wagner, Device for and method of secure computing
using virtual machines. US patent 6,922,774 (2005)

[37] Microsoft Corp., Next-generation secure computing base. Web page, http://www.microsoft.com/
resources/ngscb

[38] M. Naor, G.N. Rothblum, The complexity of online memory checking, in Proc. 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS) 2005 (IEEE, New York, 2005), pp. 573–584

[39] National Institute of Standards and Technology, Advanced Encryption Standard (AES), FIPS PUB 197
(2001)

[40] National Institute of Standards and Technology, Secure Hash Standard (SHS), FIPS PUB 180-2 (2002)
[41] M. Neve, J.-P. Seifert, Advances on access-driven cache attacks on AES, in Proc. Selected Areas

in Cryptography (SAC’06). Lecture Notes in Computer Science, vol. 4356 (Springer, Berlin, 2006),
pp. 147–162

[42] M. Neve, J.-P. Seifert, Z. Wang, A refined look at Bernstein’s AES side-channel analysis. in Proc. ACM
Symposium on Information, Computer and Communications Security (2006), p. 369

[43] OpenVPN Solutions LLC, OpenVPN—an Open Source SSL VPN Solution by James Yonan. Web site,
http://openvpn.net

[44] D.A. Osvik, A. Shamir, E. Tromer, Other people’s cache: Hyper Attacks on HyperThreaded processors.
Fast Software Encryption (FSE) 2005 rump session, Feb. 2005

[45] D.A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: the case of AES, in Proc.
RSA Conference Cryptographers Track (CT-RSA) 2006. Lecture Notes in Computer Science, vol. 3860
(Springer, Berlin, 2006), pp. 1–20

[46] E. Oswald, S. Mangard, N. Pramstaller, V. Rijmen, A side-channel analysis resistant description of
the AES S-box, in Proc. Fast Software Encryption (FSE) 2005. Lecture Notes in Computer Science,
vol. 3557 (Springer, Berlin, 2005), pp. 413–423

[47] D. Page, Theoretical use of cache memory as a cryptanalytic side-channel. Technical Report CSTR-
02-003, Department of Computer Science, University of Bristol (2002). http://www.cs.bris.ac.uk/
Publications/pub_info.jsp?id=1000625

http://www.intel.com/design/network/manuals/252480.htm
http://www.intel.com/design/network/manuals/252480.htm
http://eprint.iacr.org/2009/129
http://rfc.net/rfc4301.html
http://rfc.net/rfc4301.html
http://www.dice.ucl.ac.be/crypto/tech_reports/CG1999_1.ps.gz
http://www.cosic.esat.kuleuven.ac.be/WeWorc/allAbstracts.pdf
http://www.microsoft.com/resources/ngscb
http://www.microsoft.com/resources/ngscb
http://openvpn.net
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625

Efficient Cache Attacks on AES, and Countermeasures 71

[48] D. Page, Defending against cache-based side-channel attacks. Information Security Technial Report,
vol. 8, issue 8 (2003)

[49] D. Page, Partitioned cache architecture as a side-channel defence mechanism. IACR Cryptology ePrint
Archive, report 2005/280 (2005). http://eprint.iacr.org/2005/280

[50] C. Percival, Cache missing for fun and profit. BSDCan 2005, Ottawa (2005). See http://www.
daemonology.net/hyperthreading-considered-harmful

[51] C. Rebeiro, D. Selvakumar, A.S.L. Devi, Bitslice implementation of AES, in Proc. Cryptology and
Network Security (CANS) 2006. Lecture Notes in Computer Science, vol. 4301 (Springer, Berlin, 2006),
pp. 203–212

[52] A. Rudra, P.K. Dubey, C.S. Jutla, V. Kumar, J.R. Rao, P. Rohatgi, Efficient Rijndael encryption imple-
mentation with composite field arithmetic, in Proc. Cryptographic Hardware and Embedded Systems
(CHES) 2001. Lecture Notes in Computer Science, vol. 2162 (Springer, Berlin, 2001), pp. 171–184

[53] K. Schramm, C. Paar, Higher Order Masking of the AES, in Proc. RSA Conference Cryptographers
Track (CT-RSA) 2006. Lecture Notes in Computer Science, vol. 3860 (Springer, Berlin, 2006), pp. 208–
225

[54] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D.A. Osvik, B. de Weger, Short chosen-
prefix collisions for MD5 and the creation of a rogue CA certificate, in Proc. CRYPTO 2009 (to be
published). http://www.win.tue.nl/hashclash/rogue-ca/

[55] Trusted Computing Group, Trusted Computing Group: Home. Web site, http://www.
trustedcomputinggroup.org

[56] Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, H. Miyauchi, Cryptanalysis of DES implemented on comput-
ers with cache, in Proc. Cryptographic Hardware and Embedded Systems (CHES) 2003. Lecture Notes
in Computer Science, vol. 2779 (Springer, Berlin, 2003), pp. 62–76

[57] Y. Tsunoo, E. Tsujihara, K. Minematsu, H. Miyauchi, Cryptanalysis of block ciphers implemented on
computers with cache, in Proc. International Symposium on Information Theory and Its Applications
2002 (2002), pp. 803–806

[58] Y. Tsunoo, E. Tsujihara, M. Shigeri, H. Kubo, K. Minematsu, Improving cache attacks by considering
cipher structure. Int. J. Inf. Secur. “Online First”, Springer, Nov. 2005

[59] University of Cambridge Computer Laboratory, The Xen virtual machine monitor. Web site, http://www.
cl.cam.ac.uk/research/srg/netos/xen

[60] A.A. Veith, A.V. Belenko, A. Zhukov, A preview on branch misprediction attacks: using Pentium per-
formance counters to reduce the complexity of timing attacks. CRYPTO’06 rump session (2006)

[61] VMware Inc., VMware: virtualization, virtual machine & virtual server consolidation. Web site, http://
www.vmware.com

[62] J. Yang, J. Goodman, Symmetric key cryptography on modern graphics hardware, in Proc. Asiacrypt
2007. Lecture Notes in Computer Science, vol. 4833 (Springer, Berlin, 2007), pp. 249–264

[63] X. Zhuang, T. Zhang, H.-H.S. Lee, S. Pande, Hardware assisted control flow obfuscation for embedded
processors, in Proc. International Conference on Compilers, Architectures and Synthesis for Embedded
Systems (ACM, New York, 2004), pp. 292–302

[64] X. Zhuang, T. Zhang, S. Pande, HIDE: An Infrastructure for Efficiently protecting information leakage
on the address bus, in Proc. Architectural Support for Programming Languages and Operating Systems
(ACM, New York, 2004), pp. 82–84

http://eprint.iacr.org/2005/280
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.trustedcomputinggroup.org
http://www.trustedcomputinggroup.org
http://www.cl.cam.ac.uk/research/srg/netos/xen
http://www.cl.cam.ac.uk/research/srg/netos/xen
http://www.vmware.com
http://www.vmware.com

	Efficient Cache Attacks on AES, and Countermeasures
	Abstract
	Introduction
	Overview
	Related Work

	Preliminaries
	Memory and Cache Structure
	Memory Access in AES Implementations
	Notation

	Synchronous Known-Data Attacks
	Overview
	One-Round Attack
	Two-Round Attack
	Measurement via Evict+Time
	Measurement via Prime+Probe
	Practical Complications
	Experimental Results
	Variants and Extensions
	Known-Ciphertext Attacks
	Attacking AES Decryption
	Reducing Analysis Complexity
	Redundant Analysis
	Sub-cacheline Leakage
	Detection of Eviction Depth
	Remote Attacks

	Asynchronous Attacks
	Overview
	One-Round Attack
	Measurements
	Experimental Results
	Variants and Extensions
	Second-Round Analysis
	Detecting Access Order
	Other Architectures
	Multi-Core and Multi-Processor
	Remote Attacks

	Countermeasures
	Avoiding Memory Accesses
	Alternative Lookup Tables
	Data-Independent Memory Access Pattern
	Application-Specific Algorithmic Masking
	Cache State Normalization and Process Blocking
	Disabling Cache Sharing
	Static or Disabled Cache
	Dynamic Table Storage
	Hiding the Timing
	Selective Round Protection
	Operating System Support
	Hardware AES Support

	Conclusions and Implications
	Summary of Results
	Vulnerable Cryptographic Primitives
	Vulnerable Systems
	Mitigation
	Follow-up Works
	Countermeasures
	Survey and Extensions to Related Attacks
	Collision-Based Attacks
	Exploiting the OS Scheduler
	Branch Prediction and Instruction Cache Attacks
	Multiplier Unit Contention Attacks

	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

