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Abstract. This paper concerns the possibility of developing a coherent theory of se-
curity when feasibility is associated with expected probabilistic polynomial-time (ex-
pected PPT). The source of difficulty is that the known definitions of expected PPT
strategies (i.e., expected PPT interactive machines) do not support natural results of
the type presented below.

To overcome this difficulty, we suggest new definitions of expected PPT strategies,
which are more restrictive than the known definitions (but nevertheless extend the no-
tion of expected PPT noninteractive algorithms). We advocate the conceptual adequacy
of these definitions and point out their technical advantages. Specifically, identifying
a natural subclass of black-box simulators, called normal, we prove the following two
results:

1. Security proofs that refer to all strict PPT adversaries (and are proven via normal
black-box simulators) extend to provide security with respect to all adversaries
that satisfy the restricted definitions of expected PPT.

2. Security composition theorems of the type known for strict PPT hold for these
restricted definitions of expected PPT, where security means simulation by nor-
mal black-box simulators.

Specifically, a normal black-box simulator is required to make an expected polynomial
number of steps, when given oracle access to any strategy, where each oracle call is
counted as a single step. This natural property is satisfied by most known simulators
and is easy to verify.
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1. An Opinionated Introduction

The title of this introduction and the use of first person singular in its text are meant
to indicate that this introduction is more opinionated than is customary in our field.
Nevertheless, I will try to distinguish facts from my opinions by using adequate phrases.

In my opinion, the first question that should be asked when suggesting and/or re-
viewing a definition is what is the purpose of the definition. When reviewing an existing
definition, a good way to start is to look into the history of the definition, since the
purpose may be more transparent in the initial works than in follow-up ones.

Before turning to the history and beyond, let me state that I assume that the reader
is familiar with the notion of zero-knowledge and the underlying simulation paradigm
(see, e.g., [10, Sect. 4.3.1]). In fact, some familiarity with general secure multi-party
computation (e.g., at the overview level of [11, Sect. 7.1]) is also useful. Indeed, this
paper is not intended for the novice: it deals with subtle issues that the novice may (or
even should) ignore.

1.1. The History of Related Definitions

To the best of my recall, the first appearance in cryptography of the notion of expected
(rather than strict) probabilistic polynomial time was in the seminal work of Goldwasser,
Micali, and Rackoff [16]. The reason was that the simulators presented in that paper
(for the Quadratic Residuosity and the Quadratic Non-Residuosity interactive proofs)
were only shown to run in expected probabilistic polynomial time.1 Recall that these
simulators were used in order to simulate the interaction of arbitrary strict probabilistic
polynomial-time (adversarial) verifiers with the honest prover.

At the time, the discrepancy between the expected probabilistic polynomial time al-
lowed to the simulator and the restriction of the adversary to strict probabilistic polyno-
mial time did not bother anybody. One reason for this lack of concern seems to be that
everybody was overwhelmed by the new fascinating notion of zero-knowledge proofs,
its mere feasibility, and its wide applicability (as demonstrated by [15,16]). But as time
passed, some researchers became bothered by this discrepancy, which seemed to vio-
late (at least to some extent) the intuition underlying the definition of zero-knowledge.
Specifically, relating the complexity of the simulation to the complexity of the adver-
sary is the essence of the simulation paradigm and the key to the conclusion that the
adversary gains noting by the interaction (since it can obtain the same, essentially as
easily, without any interaction). But may we consider expected polynomial time and
strict (probabilistic) polynomial time as being the same complexity?

The original feeling was that the discrepancy between strict and expected polyno-
mial time is not very significant, and I do hold this view to this very day. It is telling

1 Note that while a small definitional variation (cf. [10, Sect. 4.3.1.1] versus [10, Sect. 4.3.1.6]) suffices
for obtaining a strict probabilistic polynomial-time (perfect) simulation for the QR protocol, this does not
seem to be the case where the QNR protocol is concerned. The same dichotomy is manifested between the
Graph Isomorphism and Graph 3-Colorability protocols (of [15]) on the one hand and the constant-round
zero-knowledge proof of [12] on the other hand. The dichotomy arises from two different simulation tech-
niques; the first is tailored for “challenge-response” protocols, while the second refers to the use of “proofs-
of-knowledge” (which may be implicit and trivial (as in [12])). Indeed, recall that the definition of proofs-of-
knowledge refers explicitly to expected running time (cf., e.g., [10, Sect. 4.7.1]).
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that everybody seems quite happy with replacing one polynomial (bound of the run-
ning time) by another, at least as a very first approximation of the intuitive notion of
similar complexity.2 Still, I cannot deny that there is something unpleasing about this
discrepancy. Following [17], let me refer to this issue as an aesthetic consideration.

Jumping ahead in time, let me mention a more acute consideration articulated in [17]:
A different handling of adversaries and simulations (e.g., the discrepancy between ex-
pected polynomial time and strict probabilistic polynomial time) raises technical dif-
ficulties and, in particular, stands in the way of various desired composition theorems
(e.g., of the type presented in [4,14]). But let me get back to the story.

Faced with the aforementioned aesthetic consideration, a few researchers suggested
a simple solution: extending the treatment of adversaries to ones running in expected
polynomial time. This suggestion raised a few problems, the first being how to define
expected polynomial-time interactive machines? (In addition, there are other problems,
which I will discuss later.)

Feige’s proposal [8] was to consider the running time of the adversary when it inter-
acts with the honest party that it attacks, and require that the adversary runs in expected
polynomial time (in such a random interaction). My own proposal was to allow only
adversaries that run in expected polynomial time regardless with whom they interact;
that is, the adversary is required to run in expected polynomial time when interacting
with any other strategy. Feige objected to my proposal saying that it unduly restricts the
adversary, which is designed to attack a specific strategy and thus should be efficient
only when attacking this strategy. My own feeling was that it is far more important
to maintain a coherent theory by using a “stand-alone” notion of expected polynomial
time; that is, a notion that categorizes strategies regardless of their aim (e.g., without ref-
erence to whether or not these strategies model adversaries (and which strategies these
adversaries attack)). The rationale underlying this feeling is discussed in Sect. 1.2. (An-
other objection to Feige’s definition refers to the fact that, when applying its underlying
principle to the standard definition of strict probabilistic polynomial time, the result is
a significantly larger class of adversaries, which includes adversaries that may not even
halt when interacting with strategies other than those they were designed to attack.)

In any case, a major problem regarding the suggestion of extending the treatment of
adversaries to ones running in expected polynomial time is whether such an extension
is at all possible. One specific key question is whether known simulators can handle
expected polynomial-time adversaries. As pointed out in [17], in some cases (e.g., the
simulator of [12]), the answer is negative even if one uses the more restricted notion
of expected polynomial-time adversaries (which refers to interaction with any possible
strategy). Another important question is whether composition theorems that are known
to hold for strict probabilistic polynomial-time (strategies and simulators) can be ex-
tended to the case of expected polynomial-time (strategies and simulators).

Indeed, the “question of composition” became a major concern in the 1990s and moti-
vated a reexamination of many aspects of the theory of cryptography. Here I refer specif-
ically to the Sequential Composition Theorem of Canetti [4], which supports modular

2 Indeed, my advocacy of knowledge tightness [10, Sect. 4.4.4.2], a notion aimed at quantitatively bound-
ing the ratio of the running times of the simulator and adversary, has never gain much attention. (And yes,
I am aware of the recent work of Micali and Pass [20] that introduces and advocates an even more refined
notion.)
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construction of protocols, and to the Concurrent Composition Theorem of Canetti [5],
which is aimed at preserving security in settings where numerous executions of arbi-
trary protocols are taking place concurrently. These composition results were obtained
when modeling adversaries as strict probabilistic polynomial-time strategies and allow-
ing only strict probabilistic polynomial-time simulators. One consequence of the lack
of analogous results for the case of expected polynomial time was that the modular
construction of secure protocol had to avoid protocols that were only known to be sim-
ulatable in expected polynomial time.3

Recently, Katz and Lindell [17] initiated a study of the possibility of simulating ex-
pected polynomial-time adversaries and/or obtaining composition theorems (or suffi-
ciently good alternatives) for the case of expected polynomial time. They showed that
in some cases (e.g., when the simulator satisfies some additional properties and/or un-
der some super-polynomial intractability assumptions) such partial results can be ob-
tained.4 These results do not provide a “free” transformation from the strict probabilis-
tic polynomial-time model to the expected polynomial-time model, where “free” means
without referring to additional assumptions. In my opinion, as long as this is the state
of affairs, one better look for alternative directions.

1.2. Towards New Definitions

My starting point (or thesis) is that we should not care about expected polynomial-time
adversaries per se. As hinted by my historical account, researchers were perfectly happy
with strict probabilistic polynomial-time adversaries and would have probably remained
so if it were not for the introduction of expected polynomial-time simulators. Indeed, at
the end of the day, the user (especially a nonsophisticated one) should care about what
an adversary can obtain within a specific time (or various possible amounts of work),
where the term “obtain” incorporates also a quantification of the success probability.
I claim that our goal as researchers is to provide such statements (or rather techniques
for providing such statements) and that expected polynomial-time machines may appear
in the analysis only as intermediate steps (or mental experiments).

My thesis is further enforced by the confusing and nonintuitive nature of expected
running time, especially when applied in the context of cryptography, and by numerous
annoying phenomena related to expected-time complexity.

3 For example, relatively efficient proofs-of-knowledge (which only guarantee expected polynomial-time
extraction) were avoided (e.g., in [11, Sect. 7.4.1.3]) and strong proofs-of-knowledge (cf. [10, Sect. 4.7.6])
were used instead.

4 Roughly speaking, one of their results provides a transformation of some simulators that handle strict
probabilistic polynomial-time adversaries into simulators that handle expected polynomial-time adversaries,
while assuming that the original simulator’s queries are strongly indistinguishable from the messages of the
real protocol. Another result provides a composition theorem for expected polynomial-time simulators (which
handle strict probabilistic polynomial-time adversaries), while relying on strongly pseudorandom functions.
In both cases, the term strong refers to versions of computational indistinguishability that are required to hold
with respect to super-polynomial-time observers. This means that for obtaining (ordinary) computational
security, somewhere along the way, one needs to make a super-polynomial-time intractability assumption.
Also note that the simulators constructed in [17] use the corresponding adversaries in a “slightly non-black-
box” manner in the sense that they terminate executions (of these adversaries) that exceed a specific number
of steps.
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The cryptographic angle. A typical security analysis refers both to the running time
and the success probability of a possible attack. Usually the former is fixed (i.e., to
strict polynomial time), and so one may discuss the latter separately. However, in my
opinion, when the running time is a random variable, providing only the expected
running time and the overall success probability is quite meaningless, because the
success is likely to be correlated with the running time. Instead, one should keep track
of both the running time and the success probability; that is, provide an estimate of
the success probability per each approximate value of the running time (i.e., assert
that with probability p(t) the attack runs for t steps, and conditioned on this event, it
succeeds with probability s(t)).

The generic phenomena. The point is that, unlike strict polynomial time, expected
polynomial time is a highly nonrobust notion that is not preserved under changes of
computational model and standard algorithmic compositions. These “features” are an
artifact of the “bad interaction” between the expectation operator and many nonlinear
operators: for example, for a random variable X, we cannot upper-bound E[X2] as a
function of E[X]. Thus, if X is a random variable that represents the running time of
some process � (where the probability space is that of the internal coin tosses of �),
then we cannot bound the expected running time of various modest variants of �

(e.g., which square its running time) in terms of the expected running time of �. (See
Footnote 26, which refers to a natural case in which this problem arises, and [9] for
an analogous discussion of the effect of this problem in the context of average-case
complexity.)

The foregoing reservations regarding expected polynomial time are of lesser concern
when expected running time is only used as an intermediate step (rather than as a fi-
nal statement). Taking this approach to its extreme, I claim that for this purpose (of
an intermediate step), it is legitimate to use any (reasonable) definition of expected
polynomial-time strategies and that among such possibilities we better select a defini-
tion that supports the desired results (e.g., simulation of corresponding adversaries and
composition theorems). Thus, we should seek a definition of expected polynomial-time
strategies that enjoys the following properties:

1. The definition should include all strict probabilistic polynomial-time strategies
(but should not extend “much beyond that”; e.g., super-polynomial-time compu-
tations may only occur with negligible probability).

2. When applied to noninteractive strategies (i.e., stand-alone algorithms), the defi-
nition of expected polynomial-time strategies should yield the standard notion of
expected polynomial time.

This property is not only a matter of aesthetic considerations but is rather im-
portant for composition theorems (as desired in Property b). Furthermore, when
applied to the context of zero-knowledge, the current property implies that ex-
pected polynomial-time simulators are deemed admissible by this definition.5

3. The definition should allow us to derive the results that we seek:

5 In fact, we should strengthen Property 2 by requiring that also in the context of secure multi-party
computation (where the simulators are themselves interactive machines) the known “expected polynomial-
time” simulators (of strict probabilistic polynomial time) are deemed admissible by the selected definition.
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(a) Known simulators that handle strict probabilistic polynomial-time adversaries
should also handle adversaries that satisfy the definition.6

(b) The definition should support natural composition theorems (e.g., of the type
proven by Canetti [4]).

With the foregoing properties in mind, let me suggest a couple of new definitions of
expected polynomial-time strategies. These definitions will be more restrictive than the
existing definitions of this notion (which were reviewed in Sect. 1.1).

1.3. The New Definitions

Looking at the problem of simulating an “expected polynomial-time” adversary
(cf. [17]), it becomes evident that the source of trouble is the fact that the bound on
the running time of the adversary (w.r.t. any real interaction) is no longer guaranteed
when the adversary is invoked by a simulator. The point is that the queries made by the
simulator may have a different distribution than the messages sent in any real interac-
tion (especially, since some of these queries may not appear in the transcript output by
the simulator). Furthermore, the simulator is resetting the adversary, which may allow
it to find queries that are correlated to the adversary’s internal coin tosses in ways that
are unlikely to happen in any real interaction (see examples in [17] and in the proof of
Proposition 5). Such queries may cause the adversary to run for a number of steps that is
not polynomial on the average. Indeed, this problem does not occur in the case of strict
probabilistic polynomial-time adversaries because in that case we have an absolute
bound on the number of steps taken by the adversary, regardless of which messages it
receives.

Let me stress that assuming that the adversary runs in expected polynomial time when
interacting with any other party does not solve the problem, because the distribution of
the simulator’s queries may not correspond to the distribution of an interaction with any
standard interactive machine. The simulator’s queries correspond to a “reset attack” on
the adversary, where reset attacks are as defined in [6] (except that here they are applied
on the adversary’s strategy rather than on the honest party’s strategy). Specifically, in a
reset attack, the internal coin tosses of the strategy are fixed (to a random value), and the
attacker may interact several times with the resulting residual (deterministic) strategy.

The foregoing discussion suggests a simple fix to the problem. Just define expected
polynomial-time strategies as ones that run in expected polynomial time under any reset
attack that interact with them for a polynomial number of times. Actually, we should
allow attacks that interact with these strategies for an expected polynomial number of
times.7 (See Definition 3.)

It seems that any (black-box) simulator that handles strict probabilistic polynomial-
time adversaries can also handle adversaries that run in expected polynomial time under
the foregoing definition. After all, this definition was designed to support such a result.

6 Actually, we may relax this condition by allowing a modification of the simulator but not of the protocol
and/or the underlying intractability assumptions.

7 When measuring the expected number of interactions, I refer to a variant of Feige’s notion of expected
complexity with respect to the designated machine. Indeed, this widens the class of possible (reset) attackers,
which further limits the class of admissible strategies (i.e., those that are expected polynomial-time under
such attackers).
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However, I was not able to prove this result without further restricting the class of sim-
ulators (in a natural way). For details, see Sect. 1.4.

But before turning to the results, let me suggest an even more restricted notion of ex-
pected polynomial-time strategies. I suggest to consider strategies that run in expected
polynomial time when interacting with any (“magical”) machine that receives the strat-
egy’s internal coin tosses as side information. Arguably, this is the most restricted (nat-
ural) notion of expected polynomial-time strategies (which, when applied to noninter-
active machines, coincides with the standard definition of expected polynomial time).
Needless to say, this definition (which is more restrictive than the aforementioned reset-
ting definition) also supports the extension of simulators that handle strict probabilistic
polynomial-time adversaries to handle adversaries satisfying the current definition.

Clearly, both definitions satisfy the first two desirable properties stated in Sect. 1.2.
As for the third desirable property, it will be at the focus of the next subsection.

1.4. The Main Results

In a nutshell, the main results establish the third desirable property for both the (new)
definitions, when assuming that the provided simulators (i.e., the simulators provided
by the corresponding hypothesis) belong to a natural subclass of black-box simulators.
Indeed, one could hope that these results would hold for all (universal) simulators or at
least for all black-box simulators.8

The issue at hand is the definition of efficient black-box simulators. Since black-box
simulators are typically given oracle access to an efficient strategy, some texts only re-
fer to what happens in such a case (and mandate that the overall simulation be efficient,
where one also accounts for the steps of the strategy). A more natural and robust defin-
ition mandates that the number of steps performed by the black-box simulator itself be
feasible, when the simulator is given oracle access to any strategy. Specifically, I con-
sider black-box simulators that make an expected number of steps that is upper-bounded
by a fixed polynomial in the length of the input, where each oracle call is counted as
a single step, and call such a simulator normal.9 Indeed, the known (black-box) sim-
ulations including those that run in expected polynomial time (e.g., [12]) are normal.
Furthermore, in my opinion, the notion of a normal black-box simulator fits the natural
formulation of the notion of an expected probabilistic polynomial-time oracle machine,
because it is natural to require that the complexity of an oracle machine (unlike its
output) be independent of the oracle that it accesses. (For further discussion, see the
beginning of Sect. 3 (including Footnote 23).)

Turing back to the main results, recall that the new definitions (or actually the
“resetting-based” one) were devised to support the first main result (stated in Theo-
rem 10). This result asserts that any normal black-box simulator that handles strict
probabilistic polynomial-time adversaries can also handle adversaries that run in ex-
pected polynomial time under the new definition(s). In particular, it implies that normal
black-box zero-knowledge protocols remain simulatable when attacked by adversaries

8 Recall that a universal simulator is a universal machine that is given (as input) the code of the adversary
that it simulates. In contrast, a black-box simulator is only given oracle access to the corresponding strategy.

9 In contrast, the number of steps made by an oracle machine that is not normal may not be “uniformly
bounded” over all possible oracles.
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that satisfy the new definition(s) of expected polynomial time. This applies, in partic-
ular, to the proof system of [12], for which analogous (“free”) results were not known
under the previous definitions of expected polynomial time.10

Note that the fact that the aforementioned (normal black-box) simulations run in ex-
pected polynomial time also when given access to any expected polynomial-time adver-
sary is quite obvious from the new definition(s). This follows from the fact that normal
black-box simulators invoke the adversary strategy for an expected polynomial number
of times, while the “resetting-based definition” upper-bounds the total expected time
consumed by the adversary in such invocations. What should be shown is that, also
in this case, the corresponding simulation produces good output (i.e., indistinguishable
from the real interaction). This can be shown by using a rather straightforward “trunca-
tion” argument.11

Let us now turn to the question of composition, starting with the sequential compo-
sition of zero-knowledge protocols. The known result (of [14]) refers to strict proba-
bilistic polynomial-time adversaries (and holds both with respect to strict and expected
polynomial-time simulation).12 However, the known argument does not extend to ex-
pected polynomial-time adversaries. Recall that the said argument transforms any ad-
versary that attacks the composed protocol into a residual adversary that attacks the
basic protocol. The source of trouble is that the fact that the former adversary is ex-
pected polynomial-time (under any definition) does not imply that the latter adversary
is expected polynomial-time (under this definition). See the proof of Theorem 9 for
details. Fortunately, there is an alternative way: just note that the simulator obtained
by [14], which refers to strict probabilistic polynomial-time adversaries, can handle
expected polynomial-time adversaries (i.e., by invoking Theorem 10 (or rather its zero-
knowledge version, Theorem 8)).

The foregoing idea can also be applied to the general setting of secure multi-party
computation, but additional care is needed to deal with the extra complexities of this
setting (as described next). Specifically, the so-called sequential composition theorem
of Canetti [4] (see also [11, Sect. 7.4.2]) refers to an oracle-aided (or “hybrid”) pro-
tocol � that uses oracle calls to a functionality13 f , which can be securely computed
by a protocol ρ. (Note that the corresponding oracle-aided protocol was not mentioned
in the context of zero-knowledge, because it is trivial (i.e., it merely invokes the basic
protocol several times).) The theorem asserts that the security of � (with respect to

10 As in Sect. 1.1, by free results we mean positive results that do not rely on additional assumptions.
Recall that Katz and Lindell [17] showed that the simulator presented in [12] fails (w.r.t. expected polynomial
time under the previous definitions). Their work implies that, if strongly hiding commitment schemes are used
in the protocol, then an alternative simulator does work. In contrast, my result applies to the simulator pre-
sented in [12] and does not require strengthening the commitment scheme used in the protocol. Furthermore,
the running time is preserved also for no-instances (cf., in contrast, [17, Sect. 3.3]).

11 Indeed, the running-time analysis relies on the hypothesis that the simulator is normal, whereas the
analysis of its output only relies on the hypothesis that the simulator is black-box. In contrast, for the claim
(of Theorem 10) itself to make sense at all, it suffices to have a universal simulator. (Note that in the (hard to
conceive) context of “nonuniversal” simulation it is not clear what we mean by saying that a simulator that
handles any A ∈ C can handle any A′ ∈ C′ .)

12 The original proof (of [14]) refers to strict polynomial-time simulators, but it extends easily to expected
polynomial-time simulators.

13 A functionality is a randomized version of a multi-input multi-output function (cf. [11, Sect. 7.2.1]).



On Expected Probabilistic Polynomial-Time Adversaries 9

a specific functionality unmentioned here) is preserved when � uses subroutine calls
to ρ rather than oracle calls to f . This result refers to security with respect to strict
probabilistic polynomial-time adversaries that is demonstrated by strict probabilistic
polynomial-time simulators. One point to notice is that the proof of security of the
resulting protocol, denoted �′, proceeds by incorporating the simulator of ρ into an
adversary for �. Thus, if the simulator of ρ runs in expected polynomial-time, then
so does the resulting adversary (for �), and thus the simulator for � has to handle
expected polynomial-time adversaries (even if we only care of strict polynomial-time
adversaries attacking �′). Indeed, having a simulator for � that handles any expected
polynomial-time adversaries suffices for a partial result that refers to strict probabilistic
polynomial-time adversaries for the resulting protocol �′ and to expected polynomial-
time simulators (for ρ, �, and �′). The general (sequential) composition theorem for
the case of expected polynomial time (which refers to expected polynomial-time adver-
saries and simulators) follows by applying Theorem 10.

An important corollary to the foregoing extendability and composition theorems (i.e.,
Theorems 10 and 11) asserts that it is possible to compose secure protocols when se-
curity is demonstrated via expected polynomial-time simulators but refers only to strict
probabilistic polynomial-time adversaries. In such a case, the extendability theorem al-
lows us to use these simulators with respect to expected polynomial-time adversaries,
whereas the composition theorem applies to the latter. Thus, one may freely use ex-
pected polynomial-time simulators and be assured that the corresponding secure proto-
cols can be composed (just as in the case that their security is demonstrated via strict
polynomial-time simulators).

Turning to the concurrent composition theorem of Canetti [5], recall that it evolves
around the notion of environmental security (a.k.a. UC-security [5]). Specifically,
Canetti proved that any protocol that is environmentally secure preserves security under
arbitrary concurrent executions, where the adversaries, simulators, and environments
are all modeled as strict probabilistic polynomial-time strategies (with nonuniform aux-
iliary inputs for the environments). He then suggested the methodology of establishing
environmental security as a way of obtaining security under concurrent composition.
Consequently, an extension of Canetti’s methodology to the expected polynomial-time
setting requires (1) verifying that Canetti’s proof extends to this setting, and (2) obtain-
ing environmental security for expected polynomial-time adversaries and environments.
Using the new definitions of expected polynomial-time strategies, the first requirement
follows analogously to the proof of the sequential composition theorem, while the sec-
ond requirement follows by generalizing Theorem 10 (which may be viewed as referring
to trivial environments).

The bottom-line is that, for normal black-box simulators, the new definitions of ex-
pected polynomial-time strategies provide a “free” transformation from the strict prob-
abilistic polynomial-time model to the expected polynomial-time model. In particular,
normal black-box simulators that work in the strict model extend to the expected model,
and the most famous composition theorems extend similarly.

1.5. Why Deal with Expected Polynomial-Time at All?

In light of the difficulties discussed in Sect. 1.1, one may ask why do we need this
headache (of dealing with expected polynomial time) at all? This question is further
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motivated by my views (expressed in Sect. 1.2) by which we should not care about
expected polynomial-time adversaries per se. The answer, as hinted in Sect. 1.1, is that
we do care about expected polynomial-time simulators.

Specifically, some natural protocols are known to be secure (or zero-knowledge) only
when the definition of security allows expected polynomial-time simulators. A notable
example, already mentioned several times, is the constant-round zero-knowledge proof
system of [12]. Furthermore, as proved in [3], constant-round proof system for sets
outside BPP do not have strict polynomial-time black-box simulators (although they do
have such non-black-box simulators [1], which are less preferable for reasons discussed
below).

In general, expected polynomial-time simulators seem to allow more efficient pro-
tocols and/or tighter security analysis. Whereas various notions of protocol efficiency
are well understood, a few words about the tightness of various security analyses are in
place. Loosely speaking, security tightness14 is essentially the ratio between the running
time of the adversary and the (expected) running time of the simulator that handles it:
The security tightness of a protocol is a lower bound on the aforementioned ratio that
essentially holds for every probabilistic polynomial-time adversary; that is, a protocol
is said to have security tightness τ if there exists a polynomial q0 such that, for every
polynomial p, every p-time adversary is simulated within time τ−1p+q0 +q0. Indeed,
in many cases (also when strict polynomial-time simulators exist), the expected running
time of the simulator provides a better bound than the worst-case running time of the
simulator.

In my opinion, security tightness should serve as a major consideration in the evalu-
ation of alternative protocols, and claims about protocol efficiency are almost meaning-
less without referring to their security tightness. For example, in many cases, modest
parallelization can be achieved at the cost of a deterioration in the security tightness
(cf. [10, Sect. 4.4.4.2]). Let me stress that, by definition, black-box simulators always
yield a noticeable bound on the security tightness (and in some cases they offer a con-
stant bound), whereas non-black-box simulators may fail to have such bound (e.g., in-
deed, that is the case with Barak’s simulators [1]). 15

Thus, I suggest the following methodology: When designing your protocol and prov-
ing its security, allow yourself expected polynomial-time simulations. To assist the de-
sign and analysis, use the “extendability results” (e.g., Theorem 10) provided in this
work as well as relevant composition theorems (e.g., Theorem 11). Finally, when obtain-
ing the desired protocol with a security analysis that refers to an expected polynomial-
time simulator, you may interpret it as providing a trade-off between the simulation time
and the corresponding deviation (from the real interaction). But actually, a final claim
that refers to expected simulation time may be as appealing when stated in terms of se-
curity tightness (e.g., the effect of any strict polynomial-time adversary can be achieved
by a simulation that is expected to run three times as long).

14 In the special case of zero-knowledge, the corresponding notion is called knowledge tightness
[10, Sect. 4.4.4.2]. Note a minor technicality: here tightness is define as the reciprocal of the ratio in
[10, Sect. 4.4.4.2].

15 As usual, a noticeable function is one that decreases slower than the reciprocal of some positive poly-
nomial. Thus, noticeable security tightness means that there exists a polynomial q such that, for every poly-
nomial p, every p-time adversary is simulated within time q · p. But if the simulation of p-time adversaries
requires time p3, then the protocol does not have a noticeable security tightness.
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Indeed, my opinion is that there is no contradiction between not caring about ex-
pected polynomial-time adversaries and providing security guarantees that refer to the
expected simulation time: Whereas (at least potentially) the adversary is a real entity, its
simulation is (always) a mental experiment. Furthermore, I believe that the foregoing
methodology may yield the best trade-offs between the efficiency of the protocol and
the tightness of its security.

Finally, let me note that there are alternative ways of handling the problems that
motivate the introduction of expected polynomial time to Cryptography (i.e., the failure
of strict polynomial-time simulation in some cases). These alternatives are based on
different notions of “typical efficiency” that are applicable to “varying” running time
(i.e., running time that is expressed as a random variable). In each case, one should
start with a definition that refers to standard algorithms and extend it to a definition that
refers to interactive machines. For details, see Sect. 5. Indeed, the issues arising in such
extensions are the same as the ones discussed throughout the rest of this paper. It is my
belief, however, that expected running time (as treated in the rest of this paper) provides
the best trade-offs between the efficiency of the protocol and the tightness of its security.

1.6. On the Treatment of Concurrent Composition

As stated at the end of Sect. 1.4, the new definitions of expected probabilistic
polynomial-time strategies allow us to extend the known sequential and concurrent
composition theorems from the strict PPT setting to the expected PPT setting. However,
in my opinion, there is a significant difference between the importance of these exten-
sions (which correspond to these two cases). The difference is rooted in the difference
between the original theorems (i.e., their strict PPT versions).

Recall that the sequential composition theorem holds for every secure protocol (i.e.,
“stand-alone security” suffices [4]), whereas concurrent composition essentially re-
quires a stronger notion of security (i.e., environmental security [5,19]). This differ-
ence in the security level seems to be reflected by a difference in the variety of proof
techniques (i.e., simulation techniques), where more stringent security leaves room for
less techniques. Indeed, while stand-alone security is sometimes demonstrated by using
expected PPT simulators, all known demonstrations of environmental security employ
strict PPT simulators. Furthermore, my feeling is that there is no benefit in using ex-
pected PPT simulators towards demonstrating environmental security (with respect to
strict PPT adversaries). Thus, unless my feeling is wrong, I see no real motivation for
extending the concurrent composition theorem to the expected PPT setting. Neverthe-
less, I provided such an extension in order to show that the new definitions of expected
PPT strategies are not incompatible with such an extension.

1.7. Organization

Section 2 provides formal statements of the aforementioned (old and new) defini-
tions and a demonstration of a hierarchy among them. Since the special case of zero-
knowledge protocols provides a good benchmark for the general case of secure pro-
tocols, the main results are first presented in that setting (see Sect. 3). This simplifies
things, because in that special case the simulators are standard algorithms rather than
interactive strategies (for the so-called “ideal-model,” see, e.g., [11, Sect. 7.2]). Never-
theless, I believe that the main ideas are already present in the zero-knowledge setting,
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and this belief is supported by the treatment of general protocols (provided in Sect. 4).
Section 5 demonstrates the applicability of the main approach to alternatives measures
of “varying” running time. Sect. 6 contains conclusions and open problems.

The exposition in Sects. 4.3 and 5 is significantly less detailed and more sketchy than
the rest of the paper. Indeed, these sections should be viewed as a demonstration of the
feasibility of applying the main definitional approach also to these settings. My choice
to provide only a sketchy exposition of these applications is related to my reservations
regarding their importance (see Sect. 1.6 and the end of Sect. 1.5, respectively).

The (Security) Tightness Lens. Paragraphs with this heading are meant to facilitate the
methodology suggested in Sect. 1.5, but they may be ignored at first reading.

2. The Definitions

We adopt the standard terminology of interactive machines while occasionally identify-
ing strategies (which specify the next message to be sent by an interactive machine given
its view so far) with the interactive machines that activate them. We use the shorthand
PPT for probabilistic polynomial time whenever using the full term is too cumbersome;
typically, we do so when contrasting strict PPT and expected PPT. For simplicity, we
only consider the two-party case. We denote by x the common (part of the) input and
denote by y and z the corresponding private inputs of the two parties. The reader may
ignore y and z, which model (possibly nonuniform) auxiliary information.

Additional (Standard) Conventions. We state the complexity of interactive machines
(and strategies) as a function of the length of the common input x; consequently, some
time-bounded machines cannot read their entire private inputs (i.e., y or z, resp.). For
sake of brevity, we sometimes say that some quantity (e.g., number of steps) is poly-
nomial (or exponential), rather than saying that it is polynomial (or exponential) in the
length common input, but this is always the intention. In the actual technical treatment
we assume that all computations of all machines halt in finite time and furthermore that
this time is bounded by a single function in the length of the common input.16 (Note
that, in all reasonable cases, this restriction can be easily enforced by truncating all runs
after an exponential number of steps.)

2.1. Known Definitions

We start by formulating the two known definitions that were mentioned in Sect. 1.1.

Definition 1 (Feige [8]). The strategy σ is expected PPT w.r.t. a specific interactive
machine M0 if, for some polynomial p and all x, y, z, the expected number of steps
taken by σ(x, z) during an interaction with M0(x, y) is upper-bounded by p(|x|), where
the expectation is taken over the internal coin tosses of both machines.

16 Hence, the probability space of all possible executions (on a fixed input) is finite, and so the expectation
is always well defined and finite.
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We stress that σ may be expected PPT with respect to some interactive machines but
not with respect to others.

Definition 2 (Attributed to Goldreich, e.g., in [17]). The strategy σ is expected PPT
w.r.t. any interactive machine if, for some polynomial p, every interactive machine M ,
and all x, y, z, the expected number of steps taken by σ(x, z) during an interaction with
M(x,y) is upper-bounded by p(|x|).

Here we may assume, without loss of generality, that M (which is computationally
unbounded) is deterministic, and thus the expectation is only taken over the internal coin
tosses of σ . The same convention is applied also in Definition 4 (but not in Definition 3;
see discussion there).

2.2. New Definitions

In the first new definition, we refer to the notion of a reset attack as put forward in [6].
Such an attack proceeds as follows. First, we uniformly select and fix a sequence of
internal coin tosses, denoted ω, for the attacked strategy σ , obtaining a residual deter-
ministic strategy σω. Next, we allow the attacker to interact with σω numerous times
(rather than a single time). Specifically, for each possible value of ω, the expected num-
ber of times that attacker interacts with σω is upper-bounded by a fixed polynomial.17

Note that the attacker is not given ω explicitly, but its ability to (sequentially) in-
teract with the residual strategy σω for several times provides it with additional power
(beyond interacting with σ itself for several times, where in each interaction σ uses a
fresh sequence of coin tosses). As shown in [6], such an attack is equivalent to a sin-
gle interaction in which the attacker may (repeatedly) “rewind” σ (or rather σω) to any
prior point in the interaction and ask to resume the interaction from that point. Indeed,
such an attack is reminiscent of the way that a (black-box) simulator uses an adversary
strategy.

Definition 3 (Tailored for Simulation). A q-reset attack on σ is an attack that, for
all x, y, z, and ω, interacts with σω for an expected number of times that is upper-
bounded by q(|x|).18 The strategy σ is expected PPT w.r.t. any reset attack if, for some
polynomial p, every polynomial q , every q-reset attack on σ , and all x, y, z, the ex-

17 That is, there exists a polynomial p such that, for every ω, the expected number of times that the
attacker interacts with σω , on common input x, is at most p(|x|). Note that we are upper-bounding the
(expected) number of interactions initiated by the attacker (rather than its running time). More importantly,
the formulation of this restriction on the number of interactions is a hybrid of (the spirit of) Definitions 1
and 2: We are upper-bounding the (expected) number of interactions, not with respect to the designated σ , but
rather with respect to each of the residual σω . Finally, note that a simplified version that refers to the expected
number of interactions with σ (i.e., the expectation is taken also over the coins of σ ) yields a “bad” definition.
(For example, suppose that σω sends ω and makes 2|ω| steps if ω = 1|ω| and halts immediately otherwise.
Then, intuitively σ is expected PPT (and in fact it even satisfies Definition 4), but the reset attack that, upon
receiving ω in the first interaction, invokes σω for 2|ω| additional times if and only if ω = 1|ω|, causes σ to
make an expected exponential number of steps.)

18 As in Definitions 1 and 2, such an attack is given x and y as its input.
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pected total number of steps taken by σ(x, z) during this attack is upper-bounded by
q(|x|) · p(|x|).19

We stress that the number of invocations of σ (like the total number of steps taken
by σ ) is a random variable defined over the probability space consisting of all possible
interactions of the attacker and σ . Here (unlike in Definition 2), allowing the potential
attacker to be probabilistic increases its power (and thus adds restrictions on strategies
satisfying the definition). The reason is that, for each fixed ω, the number of times
that a probabilistic attacker invokes σω may be an arbitrary random variable with a
polynomially bounded expectation (rather than being strictly bounded by a polynomial).

In the next (and last) definition, we consider a “magical” attacker that is given the
outcome of the strategy’s internal coin tosses as side information. That is, such an attack
proceeds as follows. First, we uniformly select and fix a sequence of internal coin tosses,
denoted ω, for the attacked strategy σ , obtaining a residual deterministic strategy σω.
Next, we provide the attacker with ω (as well as with z) and allow it a single interaction
with σω. We stress that this attacker is merely a mental experiment used for determining
whether or not σ is expected polynomial-time (under the following definition).

Definition 4 (Seemingly most Restrictive). The strategy σ is expected PPT w.r.t. any
magical machine if, for some polynomial p, every interactive machine M ′ that is pro-
vided with the internal coin tosses of σ as side information, and all x, y, z, the ex-
pected number of steps taken by σ(x, z) during an interaction with M ′ is upper-bounded
by p(|x|). That is, for a randomly selected ω, the expected number of steps taken by
σω(x, z) during its interaction with M ′(x, y, z,ω) is upper-bounded by p(|x|).20

Here as in Definition 2, we may assume, without loss of generality, that M ′ (which
is computationally unbounded) is deterministic, and thus the expectation is only taken
over the internal coin tosses of σ . Thus, Definition 4 refers to the expectation, taken
uniformly over all possible choices of ω, of the number of steps taken by (the residual
deterministic strategy) σω(x, z) during an interaction with (the deterministic strategy)
M ′(x, y, z,ω). Indeed, a strategy σ satisfies Definition 4 if and only if it runs in ex-
pected polynomial time even if each of the incoming messages is selected to maximize
its running time, when this selection may depend on the internal coin tosses of σ (and
its auxiliary input z). This formulation is closest in spirit to the standard definition of
strict PPT strategies.

2.3. Relating the Definitions

It is easy to see that, for i = 1,2,3, Definition i+1 implies Definition i. In fact, it is not
hard to see that the converses do not hold. That is:

19 The upper-boundedness of q(|x|) · p(|x|) seems natural; however, an upper-boundedness of p(|x| +
q(|x|)) would work just as well (for all results stated in this work), but would yield weaker quantitative
bounds.

20 Note that, unlike in Definitions 1–3, the attacker is given σ ’s auxiliary input (i.e., z). This is most natural
in the context of the current attack, which is also given σ ’s internal coin tosses (i.e., ω).
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Proposition 5. For i = 1,2,3, the set of strategies that satisfy Definition i+1 is strictly
contained in the set of the strategies that satisfy Definition i.

Proof. The first two containments (i.e., for i = 1,2) are plainly syntactic. Intuitively,
the third containment (i.e., the fact that Definition 4 implies Definition 3) follows by
noting that a reset attack does not add power to a computationally unbounded machine
that gets σ ’s internal coin tosses. A rigorous proof of this fact follows.

Fixing an arbitrary q-reset attack A, denote by TA(r)(ω) the total time spent by σω

when attacked by A, which in turn uses coins r . Likewise, denote by nA(r)(ω) the
number of interactions of A with σω when A uses coins r . By the hypothesis that A

is a q-reset attack, for every value of ω, it holds that Er [nA(r)(ω)] is upper-bounded

by q(). On the other hand, tA(r)(ω)
def= TA(r)(ω)/nA(r)(ω) corresponds to the (average)

time spend by σω in a single iteration with A(r). Thus, if σ satisfies Definition 4, then
Eω[maxr{tA(r)(ω)}] is upper-bounded by some polynomial p(), because the attack of
A(r) on a single iteration of σω can be emulated in the model of Definition 4. Indeed,
the last assertion is the core of the entire argument. Now, observing (see details be-
low) that Er,ω[TA(r)(ω)] = Er,ω[nA(r)(ω) · tA(r)(ω)] is upper-bounded by the product of
maxω{Er [nA(r)(ω)]} and Eω[maxr{tA(r)(ω)}], and using the foregoing upper-bounds, it
follows that σ satisfies Definition 3. Details follow.

Let us first prove that Ei,j [ai,j bi,j ] is upper-bounded by maxj {Ei[ai,j ]} ·
Ej [maxi{bi,j }]. This fact can be proved by noting that Ej [Ei[ai,j bi,j ]] ≤ Ej [maxi{bi,j }·
Ei[ai,j ]], letting Bj = maxi{bi,j } and Aj = Ei[ai,j ], and using Ej [BjAj ] ≤ maxj {Aj } ·
Ej [Bj ]. We now apply this fact to the analysis of Er,ω[TA(r)(ω)], obtaining

Er,ω

[
TA(r)(ω)

] = Er,ω

[
nA(r)(ω) · tA(r)(ω)

]

≤ max
ω

{
Er

[
nA(r)(ω)

]} · Eω

[
max

r

{
tA(r)(ω)

}]
,

which is in turn upper-bounded by q() · p().
To show that the foregoing containments are strict, we present corresponding strate-

gies that witness the separations. The following examples are rather minimal, but they
can be augmented into strategies that seem natural (even for natural protocols). For
example, a strategy that halts immediately upon receiving the message 0 and runs for
exponential time upon receiving the message 1 witnesses the separation between Defini-
tion 1 and Definition 2, when assuming that the designated machine M0 (of Definition 1)
always sends the message 0. Note that this example has nothing to do with the issue of
expected polynomial time (although an example that does relate to the latter issue can
be constructed similarly).

To separate Definition 3 from Definition 4, consider a strategy that uniformly selects
an n-bit long string r and, upon receiving a message s, halts immediately if s �= r and
halts after making 2n steps otherwise. Clearly, this strategy does not satisfy Definition 4,
but it does satisfy Definition 3.

A small twist on the foregoing example can be used to separate Definition 2 from
Definition 3: Suppose that upon receiving s, the strategy first sends r and then halts
immediately if s �= r and halts after making 2n steps otherwise. In this case a 2-reset
attack can cause this strategy to always run for 2n steps, while no ordinary interactive
machine can do so. �



16 O. Goldreich

Discussion: Definitions 2–4 versus Definition 1. We believe that there is a fundamental
difference between Definitions 2–4 on the one hand and Definition 1 on the other hand.
This can be demonstrated by considering strict PPT versions of all four definitions;
that is, versions of these definitions in which each bound on an expectation is replaced
by a corresponding strict bound (i.e., a bound that holds with probability 1). Then,
the resulting (strict) versions of Definitions 2–4 coincide21 but remain separated from
the (strict) version of Definition 1 (as actually shown in the proof above). Note that
the (strict) version of Definition 1 is extremely sensitive to minuscule variations in the
probabilistic behavior of the designated machine M0 (i.e., variations that change the
support). We believe that the combination of these facts speaks against Definition 1.

3. Results for Zero-Knowledge

The setting of zero-knowledge provides a good warm-up for the general study of secure
protocols. Recall that, in the context of zero-knowledge, simulators are used to estab-
lish the security of predetermined prover strategies with respect to attacks by adversarial
verifiers. We start by showing that (normal black-box) simulators that handle strict PPT
adversaries also handle adversaries that are expected PPT (under Definitions 3 and 4).
We next turn to an expected PPT version of the standard sequential composition theo-
rem. (In Sect. 4, analogous results are proved for general secure protocols.)

Since the notion of normal black-box simulators is pivotal to our results, let us
start by briefly recalling the standard definition of black-box simulators (see, e.g., [10,
Def. 4.5.10]). Loosely speaking, a black-box simulator is a universal machine that is
given oracle access to a deterministic strategy and provides a simulation of the interac-
tion of this strategy with the party attacked by this strategy.22 In extending this notion
to randomized strategies, we refer to providing the simulator with oracle access to a
residual (deterministic) strategy obtained by fixing random coin tosses to the given ran-
domized strategy.

Typically, one considers the execution of black-box simulator when given oracle ac-
cess to any (strict or expected) PPT adversary. In that case, one sometimes states both
the complexity and the quality of the simulation when referring only to the case that
the oracle is a PPT strategy.23 While the restriction of the quality requirement to the
said case is often essential, this is typically not the case with respect to the complexity

21 Consider a (standard) interactive machine that guesses at random the internal coin tosses of σ . Then,
the strict version of Definition 2 guarantees that even in the rare case that this guess is correct, the strategy
σ makes only a polynomial number of steps. But this conditional probability space is exactly the probability
space that occurs in Definition 4, which implies that σ satisfies the (strict) version of Definition 4.

22 In typical use of a black-box simulator one also refers to the quality of this simulation. Specifically, it is
required that if the former strategy is efficient (in some adequate sense), then the simulation is computationally
indistinguishable from the real corresponding interaction. Since the notion of efficiency will vary (i.e., from
strict PPT to expected PPT), we shall separate the operational aspect of the black-box simulator from the
quality of the output that it produces; that is, we shall discuss each aspect separately (rather than coupling
them together).

23 Even in the case that the complexity requirement is confined to the case that the simulator accesses
an arbitrary (strict or expected) PPT adversary, one may distinguish between two requirements regarding
the complexity of the simulation. The more liberal requirement, which is rarely used, only mandates that
for any such adversary, the total simulation time (see below) must be feasible. This means that the total
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requirement (which refers only to the number of steps taken by the black-box machine
itself). Indeed, it is more natural to formulate the complexity requirement when referring
to any possible oracle. We adopt this convention below, but in order to avoid possible
confusion (with different views), we refer to simulators that satisfy this convention as
normal.

Definition 6 (Normal Black-Box Simulators). A black-box simulator is called normal
if, on any input and when given oracle access to any strategy, it makes an expected
number of steps that is upper-bounded by a fixed polynomial in the length of the input,
where each oracle call is counted as a single step. That is, there exists a polynomial q

such that the expected number of steps made by the simulator itself, on any input x and
oracle access to any strategy σ , is at most q(|x|).

Although it is possible to construct black-box simulators that are not normal (e.g.,
they run for exponential time if the black-box manages to solve a hard problem), the
standard black-box simulators (e.g., the ones of [12,15,16]) are all normal. Furthermore,
normality seems a very natural property, and it is easy to verify. For example, if the
running-time analysis of a simulator (unlike the analysis of the quality of its output)
does not rely on any intractability assumptions, then it is probably the case that the
simulator is normal.24

The Total Simulation Time. We will often refer to the (total) simulation time of the com-
bined simulator SV ∗

, which consists of a (normal) black-box simulator S that is given
oracle access to an adversarial verifier V ∗. Needless to say, for any normal simulator S,
if V ∗ is strict PPT, then the expected (total) simulation time of SV ∗

is polynomial. As
observed by Katz and Lindell [17], this is not necessarily the case if V ∗ is expected PPT
w.r.t. Definition 2. The key observation, which motivates Definition 3, is that the desired
bound on the expected (total) simulation time of SV ∗

does hold if V ∗ is expected PPT
w.r.t. any reset attack.

Observation 7. If S is a normal black-box simulator and V ∗ is expected polynomial-
time w.r.t. Definition 3, then the expected total simulation time of SV ∗

is polynomial.

simulation time may be bounded by an arbitrary polynomial that is not necessarily linearly related to the
(polynomial) running time of the adversary. A more restricted and natural formulation, which is typically
used, either refers (only) to the number of steps taken by the simulator itself or views oracle calls as single
steps (i.e., counting them at unit cost). Specifically, the number of steps of the black-box simulator itself is
bounded by a fixed polynomial, regardless of the (polynomial) complexity of the strategy to which it is given
oracle access. (Indeed, in such a case, the total simulation time is linearly related to the running time of the
adversary.) Definition 6 takes this approach to its logical conclusion by requiring that, given oracle access to
any strategy (regardless of its complexity), the (expected) number of steps taken by the black-box simulator
itself is bounded by a fixed polynomial. Indeed, Definition 6 reflects the intuition that the operational aspects
of a black-box simulator (unlike the quality of its output) should not be affected by the specifics of its oracle.
Note that the gap between the foregoing restricted formulation (which only refers to PPT strategies) and
Definition 6 (which refers to all strategies) can be easily bridged if the number of steps taken by the black-box
simulator itself is strictly polynomial (rather than having expectation that is bounded by a polynomial).

24 The word “probably” indicates that the said implication is not claimed as a fact but is rather suggested
as a rule of thumb and/or as a conjecture regarding any natural case.
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Proof. Since S is a normal black-box simulator, there exists a polynomial q such that,
for every setting of coins ω for V ∗, the expected number of times that S invokes the
residual strategy V ∗

ω is upper-bound by q(). Thus, S is a q-reset attack on V ∗. Since V ∗
satisfies Definition 3, it follows that the expected (total) number of steps taken by V ∗
during the entire simulation is upper-bound by a polynomial. The claim follows. �

The (Knowledge) Tightness Lens. The foregoing proof clarifies that the (polynomial)
upper-bound q guaranteed for a normal simulator (in Definition 6) provides a bound
on the knowledge tightness established by this simulator. Indeed, the polynomial p

in Definition 3 should be viewed as an upper bound on the expected running time of
the relevant strategy (as per Definition 3).25 Thus, the foregoing proof shows that the
interaction of any expected p-time (w.r.t. Definition 3) verifier V ∗ is simulated in total
expected time q() · p(), which implies that this normal simulator has tightness 1/q .
We mention that better tightness bounds may be obtained when using a more refined
definition of normality in which both the (expected) number of simulator steps and the
(expected) number of oracle calls are bounded. Denoting the first polynomial bound by
q0 and the second polynomial bound by q , the proof of Observation 7 yields a bound
of q() · p() + q0() on the total (expected) simulation time, and a knowledge tightness
bound of 1/q follows.

3.1. Simulating Expected PPT Adversaries

Bearing in mind that (in the context of zero-knowledge) the simulator is a standard
algorithm, it suffices to state the following result with respect to Definition 3, and its
applicability to Definition 4 follows as a special case.

Theorem 8 (Extendability of Normal Black-Box Simulators, the Zero-Knowledge
Case). Let (P,V ) be an interactive proof (or argument) system for a set L, and
〈P,V ∗〉(x) denote the output of the adversarial verifier strategy V ∗ on input x after
interacting with the prescribed prover P . Let M be a normal black-box simulator that,
on input in L and when given access to any strict PPT strategy V ∗, produces output
that is computationally indistinguishable from 〈P,V ∗〉. Then, when M is given oracle
access to any strategy V ∗ that is expected PPT w.r.t. any reset attack, the expected sim-
ulation time of MV ∗

is polynomial, and the output is computationally indistinguishable
from 〈P,V ∗〉.

Note that the hypothesis allows the simulator to run in expected PPT while simulating
a strict PPT adversary. This makes the hypothesis weaker and the theorem stronger; that
is, the theorem can be applied to a wider class of protocols (including protocols that
are not known to have strict PPT simulators such as, e.g., the constant-round zero-
knowledge proof of [12]).

Proof. Fixing any expected PPT w.r.t. Definition 3 strategy V ∗, we first note that
(by Observation 7) the expected simulation time of MV ∗

is polynomial. To analyze

25 Indeed, it is telling to note that if a strategy is expected p-time w.r.t. Definition 4, then p can be used as
a bound in Definition 3 (see the proof of Proposition 5).
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the quality of this simulation, suppose towards the contradiction that D distinguishes
between the simulation and the real interaction, and let p be a polynomial such that

the distinguishing gap of D for infinitely many x ∈ L is at least ε(|x|) def= 1/p(|x|). Let
t∗(x) denote the total (over all invocations) expected number of steps taken by V ∗ when
invoked by M . Note that t∗(x) is upper-bounded by a polynomial in |x|, and assume
(without loss of generality) that t∗(x) also upper-bounds the expected running time of
V ∗ in the real interaction (with P ). Now, consider a strict PPT V ∗∗ that emulates V ∗,
while truncating the emulation as soon as 3t∗/ε steps are emulated. Then, the variation
distance (a.k.a. statistical difference) between MV ∗

(x) and MV ∗∗
(x) is at most ε(|x|)/3,

because ε/3 upper-bounds the probability that the total number of steps taken by V ∗
during all invocations by M exceeds 3t∗/ε (and otherwise V ∗∗ perfectly emulates all
these invocations, since none exceeds 3t∗/ε steps). Similarly, the variation distance
between 〈P,V ∗〉(x) and 〈P,V ∗∗〉(x) is upper-bounded by ε(|x|)/3. It follows that D

distinguishes the simulation MV ∗∗
from the real interaction 〈P,V ∗∗〉 with a gap that

exceeds ε/3, on infinitely many inputs in L, in contradiction to the hypothesis that M

simulates all strict PPT verifiers. �

Digest. We believe that the fact that the proof of Theorem 8 is rather straightforward
should not be counted against Definition 3, but rather the other way around. That is,
we believe that the claim that the simulation of strict PPT adversaries extends (without
modifications) to expected PPT adversaries is natural, and as such a good definition of
expected PPT adversaries should support it. It may be that Theorem 8 can be generalized
also to arbitrary black-box simulators and even to arbitrary universal simulators, but the
current proof fails to show this: the running-time analysis relies on the hypothesis that
the simulator is normal, whereas the output-quality analysis relies on the hypothesis that
the simulator is black-box.26 While this possibility is certainly interesting, we consider
it secondary to the main message carried by Theorem 8 (i.e., that a good definition of
expected PPT strategies (such as Definition 3) supports the “extendability of simulators”
from handling strict PPT verifiers to handling expected PPT verifiers).27

Note that the combined simulator resulting from Theorem 8 is trivially expected PPT
under reset attacks (and also under Definition 4), because it is a noninteractive machine
(which runs in expected polynomial time). Things are not as simple when we move
to the setting of secure protocols, where the simulator is an interactive strategy (which
operates in a so-called ideal-model). See Sect. 4.1.

26 Recall that a universal simulator obtains the code of the adversary’s strategy rather than a black-box
access to it. Thus, it may be the case that such a simulator can distinguish the code of V ∗ from the code of
V ∗∗ (i.e., the timed version of V ∗) and produce bad output in the latter case. Indeed, a “natural” simulator
will not do so, but we cannot rely on this. Turning to a more natural example, we note that the known non-
black-box simulator of Barak [1] (as well as its modification [2]) may fail to simulate expected PPT verifiers,
because the random variable representing its simulation time is polynomially related (rather than linearly
related) to the running time of the verifier. Recall that it may be the case that t (x) has expectation that is
upper-bounded by a polynomial in |x|, while t (x)2 has expectation that is lower-bounded by exp(|x|); for
example, consider t :{0,1}∗→N such that Pr[t (x) = 2|x|] = 2−|x| and Pr[t (x) = |x|2] = 1 − 2−|x|.

27 One of the reviewers asked us to state an opposite opinion by which Theorem 8 is mainly due to the
normality hypothesis. We strongly disagree with this opinion. In particular, we mention that the simulator
in [12] is normal, but (as shown in [17]) it fails to handle some verifier strategies that are expected PPT w.r.t.
Definition 2.
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The (Knowledge) Tightness Lens. Note that the knowledge tightness (as provided by
Theorem 8) does not change when moving from strict PPT verifiers to expected PPT
verifiers.

3.2. Sequential Composition

The following theorem (i.e., Theorem 9) is an expected PPT version of the stan-
dard result (of [14]) that refers to strict PPT adversaries and simulators (see also [10,
Lemma 4.3.11]). Note that the standard result does not require the simulator to be black-
box (let alone normal). The reason for the extra requirement in Theorem 9 will become
clear in the proof.

Theorem 9 (Expected PPT Version of Sequential Composition for Zero-Knowledge).
In this theorem zero-knowledge means the existence of a normal black-box simulator
that handles any expected PPT w.r.t. Definition 3 (resp., w.r.t. Definition 4) adversar-
ial verifier, where handling means that the corresponding combined simulator runs in
expected PPT and produces output that is computationally indistinguishable from the
real interaction. Suppose that (P,V ) is a zero-knowledge protocol. Then, sequentially
invoking (P,V ) for a polynomial number of times yields a protocol, denoted (P ′,V ′),
that is zero-knowledge.

We stress that Theorem 9 differs from the standard result (of [14]) in two ways.
Theorem 9 refers to expected PPT adversarial verifiers (rather than to strict PPT ones),
and it refers to expected PPT simulators (rather than to strict PPT ones).

Proof. The proof of the strict PPT version (see [10, Sect. 4.3.4]) proceeds in two steps:
First, any verifier V ∗ that attacks the composed protocol (or rather the prover P ′) is
transformed into a verifier V ∗∗ that attacks the basic protocol (or actually the prover P ).
This transformation is quite straightforward; that is, V ∗∗ handles a single interaction
with P (while receiving the transcript of previous interactions as auxiliary input). Let M

denote a simulator for (P,V ∗∗). Then (in the second step), a simulator for the composed
protocol (or rather for the attack of V ∗ on P ′) is obtained by invoking M for an adequate
number of times (using a correspondingly adequate auxiliary input in each invocation).

Wishing to pursue the foregoing route, we merely need to check that any verifier V ∗
that is expected PPT w.r.t. Definition 3 (resp., Definition 4) is transformed into a verifier
V ∗∗ that is expected PPT w.r.t. Definition 3 (resp., Definition 4). Unfortunately, this is
not necessarily the case. Indeed, the expected running-time of V ∗∗ when given a random
auxiliary input (i.e., one produced at random by prior interactions) is polynomial, but
this does not mean that the expected running time of V ∗∗ on each possible value of
the auxiliary input is polynomial. For example, it may be the case that, with probability
2−|x| over the history of prior interactions, the current interaction of V ∗ (i.e., V ∗∗ with
the corresponding auxiliary input) runs for 2|x| steps. The bottom-line is that V ∗∗ may
not be expected PPT w.r.t. any reasonable definition (let alone w.r.t. Definition 3 or
Definition 4).

In view of the foregoing, we take an alternative route. We only use the hypothe-
sis that some normal black-box simulator M can handle all strict PPT verifiers that
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attack the basic prover P . Still, the hypothesis provides us with expected PPT simula-
tors (rather than with strict PPT ones). Nevertheless, we observe that the proof of [10,
Lemma 4.3.11] (i.e., the strict PPT version) can be extended to the case that the simula-
tion of the basic protocol (w.r.t. strict PPT adversaries) runs in expected PPT. The key
observation is that in this case V ∗∗ is strict PPT, although it will be fed with auxiliary
inputs that are produced in expected PPT (by the simulation of prior interactions of V ∗∗
with P ). Thus, following the construction in the proof of [10, Lemma 4.3.11], we obtain
an expected PPT simulation that handles any strict PPT attack on P ′. Furthermore, the
simulation amounts to invoking M for a polynomial number of times (while providing
it with black-box access to V ∗∗, which in turn is implemented by a black-box access
to V ∗). It follows that the simulation of (P ′,V ∗) is performed by a normal black-box
simulator (because M is normal). Hence, we have obtained a normal black-box simu-
lator that can handle any strict PPT attack on the composed protocol (or rather on the
prover P ′). The current theorem follows by applying Theorem 8 to the latter simula-
tor. �

Digest. The proof of Theorem 9 is somewhat disappointing because it does not use the
hypothesis that P is zero-knowledge w.r.t. expected PPT verifiers. Instead, Theorem 8
is used to bridge the gap between strict and expected PPT verifiers. A similar (but not
identical) phenomenon will occur in the sequential composition theorem for general
protocols, presented in Sect. 4.2.

The (Knowledge) Tightness Lens. The normal simulator constructed for (P ′,V ′) in the
proof of Theorem 9 preserves the knowledge tightness of the original simulator (i.e., the
normal simulator provided for (P,V )).

4. Results for General Secure Protocols

In this section we extend the treatment of zero-knowledge (provided in Sect. 3) to a
treatment of arbitrary secure protocols. The extension is quite straightforward, once the
key notions are properly extended. The main issue that deserves attention is that, in the
context of arbitrary secure protocols, simulators are not standard algorithms but rather
interactive strategies (for a corresponding ideal-model, to be discussed next). Conse-
quently, notions such as expected PPT simulation and normal (black-box) simulators
will have to be clarified. For simplicity, we focus on the two-party case.

Recall that the standard (“simulation-based”) definitions of secure protocols call for
comparing the real execution of the protocol (when certain parties are controlled by an
adversary) to the affect of a corresponding adversary in an ideal model (see, e.g., [11,
Sect. 7.2]). The ideal model consists of the parties sending their inputs to a trusted
party that provides each party with its corresponding output, where the trusted party
computes these outputs according to the predetermined functionality that the protocol
is supposed to securely compute. Thus, the actions of the adversary in the ideal model
are confined to selecting the messages sent to the trusted party (by the parties controlled
by the adversary) and computing its final output based on the messages it received from
the trusted party (i.e., the messages received by the parties controlled by the adversary).
In the two-party case, this adversary sends a single message to the trusted party and
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receives a single message in return. Note that this adversary is an interactive machine,
although its interaction is very minimal, and thus the various definitions of expected
PPT strategies should and can be applied to it.

Another point to note is that the ideal-model adversary is viewed as a simulator of the
real-model adversary and that (as in the case of zero-knowledge) the simulator is typi-
cally described as a universal machine that is given black-box access to the real-model
adversary that it simulates. For simplicity, we shall refer to the ideal-model adversary
as the simulator and to the real-model adversary as the adversary.

Turning to the notion of normal black-box simulators, let us first restate Definition 6
(which refers to noninteractive simulators). For any black-box simulator S and any ad-
versary A, we consider an imaginary machine I that emulates SA such that each oracle
call to A is emulated in unit time. Then, Definition 6 mandates that, for every adver-
sary A, the corresponding I is expected PPT.28 In our context, the simulator itself is
an interactive machine, and thus the imaginary machines will also be interactive. For
i = 1,2,3,4, we say that a black-box simulator S is normal w.r.t. Definition i if, for
every adversary A, the corresponding I = SA is expected PPT w.r.t. Definition i. We
note that natural simulators used in security proofs are normal. This holds for simulators
of simple protocols (cf., e.g., [11, Sects. 7.4.3.1–7.4.3.3]) and for simulators of complex
protocols obtained by composition (cf., e.g., [11, Sect. 7.4.4]).

Clarification. As usual, we shall only consider the secure computation of functional-
ities that can be (insecurely) computed in strict PPT. Similarly, we shall only consider
protocols in which all prescribed strategies are implementable in strict PPT; that is,
the proper execution of all protocols (by honest users) only requires strict PPT. Indeed,
the notion of expected PPT is only applied to adversaries (and to simulators, which are
themselves ideal-model adversaries). Needless to say, this attitude is in perfect agree-
ment with the views expressed in the introduction.

4.1. Simulating Expected PPT Adversaries

In continuation to Sect. 3.1, we prove that normal black-box simulation of strict PPT
adversaries can be extended to expected PPT adversaries. Unlike in Theorem 8, here the
result (i.e., Theorem 10) is stated for both the new definitions, because the combined
simulator is an interactive machine (and thus Definitions 3 and 4 do not necessarily
coincide when applied to it).

Theorem 10 (Extendability of Normal Black-Box Simulators, the Case of General Two-
Party Protocols). Let � be a two-party protocol and REALA(x) denote the output of
its execution, on input tuple x, under an attack of the adversary A. Let S be a normal
w.r.t. Definition 3 (resp., Definition 4) simulator and IDEALA

F (x) denote the output of its
execution, on input tuple x, oracle access to the strategy A, and when the trusted party
answers according to the functionality F . Suppose that for every strict PPT strategy A,
it holds that IDEALA

F is computationally indistinguishable from REALA. Then, for every

28 Thus, we have restated the condition that refers to the number of steps performed by S itself (when
using oracle calls to A) as a condition that refers to the total number of steps performed by the imaginary
machine I .
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strategy A that is expected PPT w.r.t. Definition 3 (resp., Definition 4), the total sim-
ulation time of the combined simulator SA is expected PPT w.r.t. Definition 3 (resp.,
Definition 4), and IDEALA

F is computationally indistinguishable from REALA.

As in case of zero-knowledge, Theorem 10 asserts that known simulators that han-
dle strict PPT adversaries can also handle adversaries that run in expected polynomial
time under the new definition(s). (Again, this holds even if the former simulators run in
expected PPT.)

Proof. The current proof is analogous to the proof of Theorem 8, except that the ver-
ification of the expected total running time of the combined simulation is slightly less
evident. The key point is that a definitional attack (i.e., as in Definitions 3 and 4) on
the combined simulator SA yields a corresponding attack on A, whereas A satisfies
Definition 3 (resp. Definition 4) by the hypothesis. Details follow.

We can focus on the total time spent by A in all its invocations by S, since the number
of steps of S itself is upper-bounded by the normality hypothesis. Let us first consider
the version that refers to Definition 4, denoting by nωA

(ωS) the maximum number of
invocations of A by S when A (resp., S) uses coins ωA (resp., ωS ) and the maximization
is over all possible messages (supposedly by the trusted party) that can be provided to
the simulator (maximized for these choices of ωA and ωS ). By the normality hypoth-
esis (applied to the residual adversaries AωA

), it follows that maxωA
{EωS

[nωA
(ωS)]} is

upper-bounded by a polynomial, denoted q . Turning to a setting in which A interacts
with a “magic” machine as in Definition 4, we denote by t (ωA) the maximum running
time of A (in such an interaction) when the maximization is over all possible messages
sent to A (again maximized for this choice of ωA). It follows that EωA

[t (ωA)] is upper-
bounded by a polynomial, denoted p (since A is PPT w.r.t. Definition 4). Finally, we
consider the total time spent by A when SA interacts with a magical machine (as in
Definition 4), and upper-bound it by

EωS,ωA

[
nωA

(ωS) · t (ωA)
] = EωA

[
EωS

[
nωA

(ωS)
] · t (ωA)

]

≤ EωA

[
max

ω

{
EωS

[
nω(ωS)

]} · t (ωA)
]

= max
ω

{
EωS

[
nω(ωS)

]} · EωA

[
t (ωA)

]
,

which equals q() · p(). This establishes the claim for Definition 4.
Turning to the version that refers to Definition 3, we apply an analogous analysis.

Specifically, fixing any reset attack on the simulator SA, we let nr(ωS,ωA) denote the
number of invocations of A(ωA) by S(ωS) when SA(ωA)(ωS) is invoked by the reset
attack that uses coins r . The admissibility of this reset attack on SA means that, for any
ωA and ωS , the expected number of invocations of SA(ωA)(ωS) by this attack is upper-
bounded by a polynomial (where the expectation is taken over all possible choices of r).
Fixing any ωA, we may view the foregoing reset attack (on SA) as a reset attack on
SA(ωA) and note that it is an admissible reset attack (since, for every ωS , the expected
number of invocations of SA(ωA)(ωS) is upper-bounded by the aforementioned polyno-
mial). Hence, the normality condition of S (w.r.t. Definition 3) implies that the expected
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number of times that S invokes A(ωA) during this attack is upper-bounded by a poly-
nomial, denoted q; that is, maxωA

{Er,ωS
[nr(ωS,ωA)]} is upper-bounded by q . Now,

combining the reset attack on SA with S itself, we obtain an admissible reset attack on
A (i.e., a q-reset attack on A). Thus, by Definition 3 (applied to A), it follows that the
expected total amount of time spent by A in these interactions is upper-bounded by a
polynomial. �

4.2. Sequential Composition

In continuation to Sect. 3.2, we turn to discuss the preservation of the security of general
protocols under sequential composition. The formulation is more complex in the cur-
rent setting, because sequential composition of general protocols refers to a model of
oracle-aided protocols (a.k.a. “hybrid” model). Thus, we need to extend our definitional
treatment of expected PPT to that model.

Recall that an oracle-aided protocol � that uses oracle calls to a functionality f , is a
protocol augmented by special instructions by which the (two) parties may invoke the
functionality f (several times). Each invocation is performed by sending inputs to f ,
via special (imaginary) channels, and receiving corresponding outputs (again via special
channels).29 Thus, in the various definitions of expected PPT we need to refer also to
the distribution of the messages obtained through the aforementioned special channels.
Specifically, when considering a strategy in the oracle-aided model, the (definitional)
attack30 on this strategy controls both the ordinary channels (on which the strategy
expects to get messages from other parties) and the special channels (on which the
strategy expects to get outputs from the functionality). We stress that only under (the
natural extension of) Definition 1, it is the case that the messages delivered over the
special channels must fit the designated functionality f .

A sequential composition theorem refers to an oracle-aided protocol that uses oracle
calls to some functionality, and to the effect of replacing these oracle calls by invoca-
tions of a secure protocol for the said functionality. In the standard results of this type
(cf. [4]), it is assumed that the proof of security of the sub-protocol (which replaces the
oracle calls to the functionality) is via a strict PPT simulator. The difficulty addressed
here is that allowing an expected PPT simulator for this sub-protocol requires consider-
ing expected PPT adversaries for the oracle-aided protocol (even if we only care about
strict PPT adversaries for the composed protocol). But if the oracle-aided protocol is se-
cure also with respect to expected PPT adversaries, then we are fine (as far as strict PPT
adversaries for the composed protocol are concerned). As in the proof of Theorem 9,
if all the simulators guaranteed by the hypothesis are normal, then we can extend the
result to expected PPT adversaries.

29 We stress that each invocation of f is performed instantaneously and no other protocol activity (i.e.,
neither an ordinary communication nor another invocation of f ) is performed concurrently. As usual, towards
the time complexity, each invocation is considered a single step.

30 Note that here we refer to the attacks used (as a mental experiment) in the various definitions of expected
PPT strategies (especially in Definitions 3 and 4).
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Theorem 11 (Expected PPT Version of the Standard Sequential Composition Theo-
rem31). In this theorem security means the existence of normal black-box simulators
that can handle32 any expected PPT adversary, where normality and expected PPT are
defined as in either Definition 3 or Definition 4. Suppose that F can be securely com-
puted by an oracle-aided protocol � that is given oracle access to the functionality f ,
which can be securely computed by a standard protocol ρ. Then, F can be securely
computed by a standard protocol �′, which is composed of � and ρ.

Note that, by Theorem 10, it suffices to have in the hypothesis expected PPT (or rather
normal black-box) simulators that can simulate any strict PPT adversary. Actually,
the following proof invokes Theorem 10 anyhow, which in turn is the reason that the
definition of security refers to simulators that operate in a black-box and normal fashion.

Proof. As in the proof of Theorem 9, the first idea that comes to mind is adapting the
standard proof of the corresponding result (i.e., [11, Thm. 7.4.3]) that refers to strict
PPT. Specifically, the standard proof (as presented, say, in [11, Sect. 7.4.2]) proceeds as
follows: First, any adversary that attacks the standard protocol �′ is transformed into an
adversary that attacks the standard protocol ρ. Next, the former adversary (i.e., of �′)
and as a simulator for the latter adversary (i.e., of ρ) are combined and transformed into
an adversary that attacks the oracle-aided protocol � (which uses oracle calls to f ).
A simulator of this adversary of � yields the desired simulation.

However, as in the proof of Theorem 9, it is not necessarily the case that if the adver-
sary attacking �′ is expected PPT, then the adversary obtained for ρ is also expected
PPT. Thus, again, we take an alternative route, starting by establishing the current the-
orem for strict PPT adversaries attacking �′ and next applying Theorem 10 to extend
the result to adversaries that are expected PPT w.r.t. Definition 3 (resp., Definition 4).
Now there is no problem with the first transformation (which transforms any strict PPT
adversary attacking �′ into a strict PPT adversary attacking ρ). Hence, we obtain a
simulator for ρ, which runs in expected PPT w.r.t. Definition 3 (resp., Definition 4).
Combining this simulator with the former adversary (for �′), we obtain an adversary
attacking � that runs in expected PPT according to Definition 3 (resp., Definition 4).

The key point is that (by the hypothesis) we do have a (normal black-box) simula-
tor that can handle any expected PPT adversary attacking �. Thus, proceeding as in
the proof of [11, Thm. 7.4.3], we obtain a simulator for �′, which is expected PPT
w.r.t. Definition 3 (resp., Definition 4). Using the fact that both simulators we used are
normal black-box simulators (and so is the construction presented in the proof of [11,
Thm. 7.4.3]), we infer that the simulator obtained for �′ is a normal black-box simula-
tor. This allows invoking Theorem 10 and thus extending the simulation to adversaries
that are expected PPT w.r.t. Definition 3 (resp., Definition 4). The theorem follows. �

31 This is an expected PPT version of the Sequential Composition Theorem of [4] (see also [11,
Thm. 7.4.3]), which refers to security as the existence of strict PPT simulators that handle any strict PPT
adversary. As in Theorem 9, our expected PPT version requires that the simulators in the hypothesis operate
in a black-box (and normal) manner.

32 As in Theorem 9, handling means that the corresponding combined simulator runs in expected PPT
under the relevant definition and produces output that is computationally indistinguishable from the real in-
teraction.
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Digest. Note that the partial result by which �′ is secure w.r.t. strict PPT adversaries
(via an expected PPT simulator) was established using the following two hypotheses:
(1) the simulator for � can handle expected PPT adversaries, and (2) the (expected PPT)
simulator for ρ can handle strict PPT adversaries. That is, this partial result neither uses
the hypothesis that the simulator for ρ can handle expected PPT adversaries nor the
hypothesis that both simulators operate in a black-box (and normal) fashion. The latter
hypothesis is used in order to guarantee that the simulator constructed for �′ is a normal
black-box simulator, which in turn is used for extending the partial result to the general
result stated in Theorem 11. The hypothesis that the simulator for ρ can handle expected
PPT adversaries is never used.

Recall that, as a direct corollary to Theorems 10 and 11, we may obtain the following
result, which suffices in many (if not all)33 applications. This result refers to the compo-
sition of protocols that are proved secure with respect to strict PPT adversaries by using
expected PPT simulators.

Corollary 12 (Sequential Composition for the Mixed Strict/Expected Model). Here
security means the existence of normal black-box simulators that can handle any strict
PPT adversary, where normality is defined as in either Definition 3 or Definition 4
(and, in particular, allows expected PPT simulators). Suppose that F can be securely
computed by an oracle-aided protocol � that is given oracle access to the functionality
f , which can be securely computed by a standard protocol ρ. Then, F can be securely
computed by a standard protocol �′, which is composed of � and ρ.

Actually, the simulator for ρ need not be black-box, because Corollary 12 can be
derived as an consequence of the aforementioned partial result, which only requires the
simulator of � to handle expected PPT adversaries. The latter condition is guaranteed
by applying Theorem 10 to the normal black-box simulator that can handle any strict
PPT adversary for �.

The (Security) Tightness lens. The proof of Theorem 11 preserves the security tight-
ness of the strict PPT result (i.e., [11, Thm. 7.4.3]), which in turn is the multiple of the
security tightness of the two underlying protocols (i.e., � and ρ). The same holds with
respect to Corollary 12.

4.3. Concurrent Composition

Turning to concurrent composition theorems, we recall the pivotal role of environmental
security (a.k.a. UC-security [5]) in that context. Specifically, Canetti [5] put forward a
robust notion of security (i.e., environmental security) and proved that any protocol that
satisfies this notion also preserves security under arbitrary concurrent executions. Since
environmental security refers to a single execution, an appealing methodology for pro-
viding protocols that are secure under arbitrary concurrent executions emerged: design
your protocol to be environmentally secure and obtain (for free) security under concur-
rent executions. Our goal is to extend this methodology, which was developed for the

33 The stronger statement relies on the opinions expressed in Sect. 1.5.
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strict PPT setting, to the expected PPT setting. This requires (1) showing that environ-
mental security in the strict PPT setting implies environmental security in the expected
PPT setting, and (2) verifying that Canetti’s proof extends to the expected PPT setting.
But let us start by recalling Canetti’s notion of environmental security [5] (see also [11,
Sect. 7.7.2]), while confining ourselves to standard (nonreactive) functionalities.34

A Brief Introduction to Environmental Security. Loosely speaking, environmental se-
curity35 is aimed at representing the preservation of the protocol’s security when exe-
cuted within any (feasible) environment. The notion of an environment is a generaliza-
tion of the notion of an auxiliary-input; that is, the environment is an auxiliary oracle
(or rather a state-dependent oracle) that the adversary may access. In particular, the
environment may represent other executions of various protocols that are taking place
concurrently (with the execution that we consider). We stress that the environment is
not supposed to assist the proper execution of the protocol (and, in fact, honest parties
merely obtain their inputs from it and return their outputs to it). In contrast, the envi-
ronment may assist the adversary in attacking the protocol. Following the simulation
paradigm, we say that a protocol (for computing a functionality F ) is environmentally
secure if any feasible real-model adversary attacking the protocol, with the assistance
of any feasible environment, can be simulated by a corresponding ideal-model adver-
sary that uses the same environment (and communicates with a trusted party that rep-
resents F ). We stress that both adversaries interact with an environment that is selected
after they are fixed (i.e., they “use” the environment in a black-box manner). For sake
of simplicity, the environment is also responsible for providing the parties with inputs
and for trying to distinguish the real-model execution from the ideal-model execution.
In the standard formulation (see [11, Sect. 7.7.2]), the environment is implemented by
a (nonuniform) family of polynomial-size circuits (or, equivalently, by strict PPT with
arbitrary auxiliary inputs). As usual, the real-model and ideal-model adversaries are
modeled as strict PPT interactive machines.

The Expected PPT Version. Firstly, we apply our definitions of expected PPT (i.e.,
Definitions 3 and 4) to the real-model and ideal-model adversaries, hereafter referred
to as adversaries and simulators, respectively. Note that the (definitional) attacks on
these strategies control both the ordinary channels (on which such a strategy expects
to get messages from other parties) and the channels used for communication with the
environment. Secondly, we apply our definitions of expected PPT (i.e., Definitions 3
and 4) to the environment itself, which after all is merely a strategy.36 Lastly, we extend

34 Recall that a (nonreactive) functionality is a randomized version of a multi-input multi-output func-
tion (cf. [11, Sect. 7.2.1]). In contrast to our approach, Canetti’s exposition of environmental security [5] is
dominated by reactive functionalities, which are of natural (secondary) interest also when the basic notion
of (stand-alone) security is concerned (cf. [11, Sect. 7.7.1.3]). We see no reason to couple the treatment of
environmental security with reactive functionalities.

35 The term used by Canetti [5] is Universally Composable, abbreviated UC-secure, but we believe that
a reasonable sense of “universal composability” is merely a corollary of the suggested definition. Further-
more, as indicated by subsequent research (e.g., [19]), it is beneficial to distinguish the desired “universal
composability” property from the specific way it is formulated.

36 In fact, since the simulator cannot “rewind” the environment, we may allow the environment to be
expected PPT according to Definition 2. However, in the main application (i.e., Theorem 14) we shall only
use environments that are expected PPT according to Definition 3 (resp. Definition 4).
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the notion of normal black-box simulators such that its “net” time bound (i.e., counting
only its own steps) refers to interaction with any environment.

Theorem 13 (Extendability of Simulators, the Case of Environmental Security). In
this theorem, an expected PPT strategy is one that satisfies Definition 3 (resp., Defini-
tion 4). Suppose that � is environmentally secure in the sense that for every strict PPT
adversary, there exists an expected PPT simulator such that, for every strict PPT envi-
ronment, the corresponding real-model and ideal-model executions are computationally
indistinguishable. Further suppose that the simulator runs in expected PPT even when
interacting with an arbitrary environment. Then, there exists a normal black-box simu-
lator such that, for every expected PPT adversary and every expected PPT environment,
the following holds:

1. The expected total simulation time is polynomial, where the total simulation time
includes the steps taken by the simulator itself, the steps taken by the black-box
adversary in all invocations, and all steps taken by the environment.

2. The corresponding real-model and ideal-model executions are computationally
indistinguishable.

Note that the hypothesis allows the simulator to run in expected PPT while simu-
lating a strict PPT adversary and that the simulation is guaranteed to be computation-
ally indistinguishable with respect to strict PPT environments. Unlike in the previous
extendability theorems (i.e., Theorems 8 and 10), here we did not require the simula-
tor to use the adversary in a black-box manner, because without loss of generality (in
the environmental setting) it suffices to consider a fixed (and rather trivial) adversary
(cf. [5]). We did require, however, that the simulator of that adversary runs in expected
PPT when interacting with any environment (which means that it is “normal w.r.t. the
environment”).

Proof. By the last comment, the hypothesis actually yields a normal black-box simu-
lator that handles any strict PPT adversary and any strict PPT environment. Proceeding
as in the proof of Theorem 10, which in turn builds on the proof of Theorem 8, we note
that the same simulator can handle any expected PPT adversary and any expected PPT
environment. The current theorem follows. �

Security Under Concurrent Executions. For any protocol �, we wish to consider nu-
merous executions of � that take place concurrently, where the scheduling of messages
in the various executions is up to the adversary.37 In addition, other numerous executions
of other protocols (sometimes referred to as “arbitrary network activity”) can take place
concurrently, but our concern is with the security of the copies of �. Loosely speaking,
this should mean that these actual executions of � can be simulated in a correspond-
ing ideal-model (where a trusted party answers according to the desired functionality).

37 Note that this differs from sequential composition (treated in Sect. 4.2) in that these executions take
place concurrently rather than sequentially. Furthermore, additional activity (which is referred to next) takes
place concurrently rather than before and/or after these executions.
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Needless to say, the simulator control the same parties that are controlled by the ad-
versary in the real-model. For simplicity, consider the case that all executions of the
(two-party) protocol � are played by the same pair of parties (and that the adversary
controls a single party).

Canetti [5] proved that if � is environmentally secure, then the concurrent execution
of multiple copies of � is secure, where security refers to strict PPT adversaries and
simulators (as well as such environments when relevant). Loosely speaking, Canetti’s
proof consists of simultaneously replacing all the (real-model) concurrent executions by
copies of the simulator (of the environmental security hypothesis) while emulating the
adversary’s attack on the concurrent system by using the channels of the corresponding
environments. (A hybrid argument that refers to partial replacements of real executions
by simulations is used for showing that the behavior is maintained.) Here we claim an
expected PPT version of Canetti’s result.

Theorem 14 (Environmental Security Implies Concurrent Composability, an Expected
PPT Version (Roughly Stated)). Suppose that � is environmentally secure with re-
spect to adversaries, simulators, and environments that are expected PPT w.r.t. Defin-
ition 3 (resp., Definition 4). Further suppose that the simulator runs in expected PPT
even when interacting with an arbitrary environment. Then the concurrent execution of
polynomially many copies of � is secure with respect to adversaries and simulators that
are expected PPT w.r.t. Definition 3 (resp., Definition 4).

The proof is analogous to the proof of Theorem 11. For clarity, we start by defining
an imaginary protocol �′ that consists of polynomially many concurrent copies of �,
each initiated by any party at any time and proceeding at arbitrary pace (i.e., at each
time, each party decides whether to initiate a new copy or advance an active copy by
sending a corresponding message). Next, adapting the proof of Canetti [5], we first
prove a partial result in which we only consider an arbitrary strict PPT adversary that
attacks �′ (i.e., polynomially many copies of �). We note that the simulator constructed
by Canetti (for �′) uses the simulator for environmental security of � in a black-box
and normal manner. Thus, the former simulator runs in expected PPT, provided that
the latter simulator runs in expected PPT, which is definitely the case when simulating
residual adversaries and environments that are derived from the strict PPT adversary
that attacks �′. Finally, proceeding as in the proof of Theorem 11, we extend the result
to any expected PPT adversary that attacks �′. Theorem 14 follows.

5. Alternatives to Expected PPT

In standard algorithmic settings, strict PPT captures the intuitive notion of efficient prob-
abilistic computations. However, as explained in Sect. 1.5, in some cases strict PPT is
slightly too rigid, and one may seek a more flexible alternative. Expected PPT provides
such a flexible alternative, and in fact it is the first such alternative that comes to mind.
Throughout this work, we ignored the question of what is a good flexible definition of
“efficient probabilistic” algorithms. We merely assumed that it is provided by expected
PPT and focused on extending this notion to interactive machines. In this section we
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discuss several alternatives to the association of efficient probabilistic algorithms with
expected PPT.

Recall that expected PPT refers to the expected running-time and requires that this
expectation be upper-bounded by a polynomial (in the length of the input). However,
as advocated by Levin [18] in a somewhat different context (see [9]), a better defini-
tion of “flexible probabilistic efficiency” is obtained by requiring that the running time
itself, as a random variable, be upper-bounded by a polynomial in a random variable
that has expectation that is at most linear (in the length of the input). In particular,
Levin’s definitional approach eliminates the technical difficulties exemplified at the end
of Footnote 26 and provides a robust definition of probabilistic efficiency; that is, if
a probabilistic algorithm is deemed “efficient,” then also a modification that squares
its running time will yield an “efficient” algorithm.38 In Sect. 5.1 we extend Levin’s
definitional approach to interactive strategies, pursuing the same alternatives as those
presented in Sect. 2 and establishing analogous extendability and composition results.

In general, the question of how to define flexible probabilistic efficiency for non-
interactive algorithms is quite orthogonal to the issues discussed in the current paper
(i.e., how to extend such a definition to interactive strategies). Indeed, it seems that any
reasonable definition for algorithms can be extended in analogous ways to interactive
strategies. For example, in the context of zero-knowledge, it was suggested (cf. [7]) to
use simulators that, for every desired noticeable deviation ε (from the real interaction),
run in time that is strictly bounded by a polynomial in 1/ε. An alternative sugges-
tion (of Vadhan [21]) is allowing (standard) simulation with varying running time such
that the probability that the simulation takes more than t steps is upper-bounded by
poly() · t−�(1) + μ(), where μ is a negligible function. Note that, in both cases, the
definition (stated here for standard algorithms) will have to be extended to interactive
machines, and the issues and approaches presented in this paper will apply. For details,
see Sect. 5.2.

Before discussing these alternatives in greater detail, we note that all these alternative
definitions of “flexible probabilistic efficiency” are (intentionally) more permissive than
the standard definition (i.e., expected PPT). We believe that in the current context, where
expected PPT is reluctantly introduced to account for “probabilistic efficiency” that goes
beyond strict PPT, the approach of restricting probabilistic efficiency to expected PPT
is more adequate.

5.1. Extending Levin’s Approach

Let us first spell out Levin’s suggestion (which was loosely stated above). This sug-
gestion is rooted in the realization that an important aspect of (deterministic and strict
probabilistic) polynomial time as a model of efficient computation is the closure of poly-
nomial time under natural algorithmic compositions. This feature, in turn, boils down
to closure properties of the set of polynomials (i.e., their closure to addition, multiplica-
tion, and composition). The problem is that, in the case of “flexible efficient probabilis-
tic computation,” directly upper-bounding the expected running time (as underlying the

38 Indeed, this guarantees that Barak’s non-black-box simulator [1] (when applied to “efficient” verifiers)
remains “efficient,” and an extension of Barak’s result to “efficient” strategies follows as in the proof of
Theorem 8 (while noting that this specific simulator is not affected by replacing of the code of V ∗ with the
code of V ∗∗). For details, see Sect. 5.1.
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definition of expected PPT) does not provide closure under natural algorithmic compo-
sitions. But upper-bounding the expectation of a root of the running time does deliver
the desired property. Specifically, we obtain the following definition.

Definition 15 (Flexible Probabilistic Efficiency, Following Levin [18]). For a proba-
bilistic algorithm A and any string x, let TA(x) denote a random variable representing
the running-time of A on input x. Such an algorithm is said to be efficient if there exists
a constant γ > 0 such that for every x, it holds that E[TA(x)γ ] = O(|x|).

Although this definition looks peculiar, note that it is quite similar to the naive de-
finition, which can be reformulated as asserting E[TA(x)]γ = O(|x|): the different is
merely in the order of applying the expectation and powering operations. Definition 15
reflects a better understanding of the nature of the expectation operator (with respect
to its interaction with other operations) and is preferable for the purpose of introducing
a robust theory of efficient probabilistic algorithms. Indeed, Definition 15 implies the
standard definition of expected PPT, but the fact that Definition 15 goes beyond ex-
pected PPT is of some concern in the current setting. Furthermore, keeping track of the
actual expected running time (as in the standard notion of expected PPT) seems better
for the purpose of actually analyzing the running time of simulators (especially, because
our aim is comparing these to the running time of corresponding adversaries). For that
reason, we performed our main treatment in terms of expected PPT and only comment
here on how it can be adapted to Definition 15.

Indeed, let us turn to our own business. For simplicity of exposition, note that
Definition 15 remains intact if we require that E[TA(x)γ ] = poly(|x|) (rather than
E[TA(x)γ ] = O(|x|)).39 Next, note that the definitions presented in Sect. 2 can be
adapted by merely replacing the random variable that represents the running time (or the
number of interactions) by its γ th power for some constant γ > 0. Let us demonstrate
this adaptation for the most complicated case, where we use the related formulation of
saying that the running-time is polynomial in a quantity that has polynomial expecta-
tion.

Definition 16 (Definition 3, Revisited). A q-reset attack on σ is an attack that, for
all x, y, z, and ω, interacts with σω for a number of times that is upper-bounded by
q(Xx,y,z,ω) such that E[Xx,y,z,ω] ≤ poly(|x|). The strategy σ is efficient w.r.t. any reset
attack if, for some polynomial p, every polynomial q , every q-reset attack on σ , and all
x, y, z, the total number of steps taken by σ(x, z) during this attack is upper-bounded
by q(Yx,y,z) · p(Yx,y,z) such that E[Yx,y,z] ≤ poly(|x|).

The analogues of Definitions 1, 2, and 4 are easier to obtain. We similarly adapt the
definition of normal (black-box) simulator (i.e., Definition 6). It is left to verify that the
analogous results remain valid.

Proposition 5, Revisited. With the exception of the proof that Definition 4 implies
Definition 3, all the claims are highly insensitive to the specific notion of efficient prob-

39 This follows by observing that, for all c ≥ 1 and X ≥ 0, it holds that E[Xc] ≥ E[X]c . Hence,

E[TA(x)γ ] = O(|x|)c implies E[TA(x)γ /c] = O(|x|).



32 O. Goldreich

abilistic computation. When proving the remaining analogue (and referring to notation
as in the said proof), note that Er,ω[TA(r)(ω)γ ] is upper-bounded by the product of
maxω{Er [nA(r)(ω)γ ]} and Eω[maxr{tA(r)(ω)γ }]. Thus, upper-bounds on the latter fac-
tors40 yield the desired upper-bound, which implies that any strategy that satisfies the
analogue of Definition 4 also satisfies the analogue of Definition 3. �

Theorem 8, Revisited. Noting that Observation 7 extends to the current setting, we
infer that so does the running-time analysis of the simulator. Thus, it remains to consider
the analysis of the quality of the simulator’s output. Let T ∗(x) be a random variable
representing the total number of steps taken by V ∗ during all its invocations by M . (Re-
call that in the proof of Theorem 8 we only considered the expectation of this number,
which was denoted t∗(x) and indeed equals E[T ∗(x)].) Then, for some γ > 0, it holds

that μ
def= E[(T ∗(x))γ ] = poly(|x|). Thus, Pr[(T ∗(x))γ > 3μ/ε(|x|)] < ε(|x|)/3 and

Pr[T ∗(x) > (3μ/ε)1/γ ] < ε/3 follows. Truncating runs of V ∗ once (poly(|x|)/ε)1/γ

steps are completed, we obtain a strict PPT V ∗∗ and continue as in the original analy-
sis. �

On the Extendability of Barak’s Non-black-Box Simulation. We claim that Barak’s
simulator [1] (as well as its modification [2]) can handle adversaries that satisfy Defi-
nition 16 (or actually even a corresponding version of Definition 2). This claim can be
proved by noting that this simulator can be applied to any deterministic adversary while
running in time that is polynomial in the running time of the adversary. Thus, we may
apply this simulator to a residual deterministic adversary obtained by fixing (at ran-
dom) the coins of the given probabilistic adversary. It follows that the simulator makes
a number of steps that satisfies Definition 15 (because its running time is polynomial
in a quantity that satisfies Definition 15). As for the quality of this simulation, it can
be analyzed as the foregoing version of Theorem 8, while noting that the effect (on this
specific simulator) of replacing of the code of V ∗ by the code of V ∗∗ is limited to the
effect that this replacement has on a black-box simulator.41

Note that Theorem 9 and the other composition theorems are highly insensitive to the
specific notion of efficient probabilistic computation in use. Their proof merely invokes
the corresponding composition theorem for strict PPT and the relevant extendability the-
orem (e.g., Theorem 8). We thus conclude this section by considering the extendability
theorem for general protocols.

Theorem 10, Revisited. The issue again is the analysis of the running time of the
combined simulator (which in this context is an interactive machine). For the analogue
of Definition 4, it suffices to relate to powers of the quantities appearing in the proof of
Theorem 10 (rather than to the quantities themselves), indeed as done in the proof of
the revisited Proposition 5. For the analogue of Definition 3, the modification is even
more transparent. �

40 Note that we may need to use the fact that E[Xγ ] ≤ E[Xγ ′ ] for every γ ≤ γ ′ .
41 This is the case since this specific simulator only uses the code in order to generate a proof that the

corresponding verifier behaves in a certain way.
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5.2. Extending Other Approaches

We consider a relaxation of Definition 15 suggested by Vadhan [21] and a generalization
of the notion of epsilon-knowledge (used in, e.g., [7]).

5.2.1. Extending Vadhan’s Relaxation of Levin’s Approach

Let us start by noting that an equivalent formulation of Definition 15 asserts that,
for some constant γ > 0, it holds that Pr[TA(x) > t] = O(|x|/tγ ) for every x and t .
Clearly, E[TA(x)γ ] = O(|x|) implies Pr[TA(x)γ > tγ ] = O(|x|)/tγ (for every t). On
the other hand, if for some constant γ > 0, it holds that Pr[TA(x)γ > tγ ] = O(|x|)/tγ

(for every t), then, for every γ ′ < γ , it holds that E[TA(x)γ
′ ] = O(|x|).

The foregoing equivalent form of Definition 15 is the starting point for further re-
laxation, suggested by Vadhan [21]. According to this relaxation, it is only required
that for some negligible function μ : {0,1}∗ → [0,1], it holds that Pr[TA(x) > t] =
O(|x|/tγ )+ μ(|x|). This relaxation is conceptually appealing, because a negligible de-
viation of various probabilities is allowed throughout the theory of cryptography.

Extending Vadhan’s Approach. Again, the definitional treatment provided in Sect. 2
and Definition 6 is easily adapted to the current notion of probabilistic efficiency. As
for the analogous results, they all hold. This can be proved by noting that, for each rele-
vant probabilistic process, all but a negligible measure of the probability space behaves
analogously to Definition 15. Thus, the analysis used in Sect. 5.1 can be applied to the
nonexceptional part of the probability space, and the negligible part can be ignored (or
rather accounted for by the negligible error probability allowed in the final result). We
stress that this decomposition of the probability space is only a mental experiment per-
formed in the analysis, while the various strategies and algorithms remain exactly as
described in Sect. 5.1.

5.2.2. Extending the Epsilon-Knowledge Approach

Our starting point is an approach that was used in the context of zero-knowledge, where
it is called epsilon-knowledge. In this approach the simulator is provided with a non-
negligible deviation parameter, denoted ε. The simulator is required to run in (strict)
poly(|x|/ε)-time and should output a transcript that is ε-indistinguishable from the real
interaction (i.e., the probability gap observed by any PPT distinguisher is at most ε

(rather than negligible)). We stress that the running time of the simulator may depend
on ε. Intuitively, when the simulator is required to produced an output of higher quality
(i.e., corresponding to a smaller ε), it is allowed more time.

From Epsilon-Knowledge to Epsilon-Security. Although (to the best of our knowl-
edge) this approach has only been applied in the context of zero-knowledge, it can be
applied to general secure protocol yielding a corresponding notion of epsilon-security.42

42 In fact, a related notion of security has appeared in the context of password-based security (cf. [13]), but
there ε is not a free parameter but rather represents the noticeable a priori probability of guessing the correct
password, and the running time of the simulator is independent of ε.
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That is, we consider arbitrary (noninteractive (and later interactive)) probabilistic ma-
chines that are given a parameter ε and always run for at most poly(|x|/ε) steps; both
the adversary and its simulator will be modeled as such machines, but they may use
different values of the deviation parameter (e.g., when given the parameter ε, the simu-
lator may invoke the adversary with parameter ε′). Hence, epsilon-security means that
for every such adversary, there exists a corresponding simulator that, when given the
parameter ε, yields an ideal execution that is ε-indistinguishable from the real one.

Note that in the foregoing paragraph we postulated that the relevant interactive (prob-
abilistic) machine always run for at most poly(|x|/ε) steps. That is, this formulation
refers to strict running time (and corresponds to strict PPT). We note that considering
expected running-time (which corresponds to expected PPT) buys us nothing in the set-
ting of epsilon-security, because one can always truncate runs that exceed the expected
value by a factor of 1/ε′ (while incurring only a deviation of ε′ in performance). Thus,
the notion of epsilon-security is actually unrelated to the issues discussed in this paper.

On the Composition of Epsilon-Secure Protocols. We seize the opportunity to pointing
out an important detail regarding the composition of epsilon-secure protocols. Suppose
that we are composing an oracle-aided protocol � with a protocol ρ, obtaining a pro-
tocol �′. Recall that when constructing a simulator for �′, we use a simulator for �

that refers to an adversary A, where A itself incorporates a simulator for ρ, which is
being invoked t (|x|) times. Thus, the deviation of the combined simulator (for �′) is
upper-bounded by ε + nε(|x|) · t (|x|) · ερ , where ε (resp., ερ ) is the deviation of the
simulator of � (resp., of ρ), and nε is an upper-bound on the number of invocations
of A (by the simulator for �). Note that nε is upper-bounded by the running-time of
the simulator of �, which in turn may depend on its own deviation parameter (i.e., ε);
that is, we may have nε(|x|) = poly(|x|/ε). Thus, the total deviation of the combined
simulator (for �′) may take the form ε + poly(|x|/ε) · ερ . This means that, when given
a deviation parameter ε′, the combined simulator should invoke the two simulators with
sufficiently small deviation parameters (e.g., setting ε = ε′/2 and ερ = poly(ε/|x|) will
do).

6. Conclusions and Open Problems

We believe that the new definitions of expected PPT (i.e., Definitions 3 and 4) are satis-
factory. Indeed, our belief is supported by the results presented in this paper; that is, by
the fact that normal black-box simulators that handle strict PPT adversaries also handle
adversaries that satisfy our definitions, and that these definitions support various natural
composition theorems.

We note that both definitions arise naturally. As we saw, Definition 3 arises as the
natural answer to the problem caused by dealing with adversaries that are expected
PPT under Definition 2. As for Definition 4, it is simplest to state, and, contrary to our
initial feeling, it works just as well. A natural question that arises is which definition is
preferable: Definition 3 or Definition 4? At this point we feel no urge to address this
question. In our opinion, a choice will have to be made only once we reach applications
that work with one definition but not with the other.
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We note that normal black-box simulators are pivotal to our main results. It may
be that the same results (or equally satisfactory modifications of them) hold also for
arbitrary black-box simulators and even for any universal simulators, but the current
proofs fail to show this (see Footnote 26). We leave the resolution of this issue as an
open problem. A good place to start may be getting rid of the normality condition.
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