J. Cryptol. (2011) 24: 427-445

DO 10.1007/500145-009-9053-2 Journal of

CRYPTOLOGY

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16
in Real Time*

Martin Hell and Thomas Johansson

Department of Electrical and Information Technology, Lund University, Box 118 22100 Lund, Sweden
Martin.Hell @eit.1th.se; Thomas.Johansson @eit.lth.se

Communicated by Willi Meier

Received 24 March 2009 and revised 9 November 2009
Online publication 29 October 2009

Abstract. The F-FCSR stream cipher family has been presented a few years ago.
Apart from some flaws in the initial propositions, corrected in a later stage, there are
no known weaknesses of the core of these algorithms. Two variants, F-FCSR-H and
F-FCSR-16, were proposed in the eSTREAM project, and F-FCSR-H v2 is one of the
ciphers selected for the eSSTREAM portfolio.

In this paper we present a new and severe cryptanalytic attack on the F-FCSR stream
cipher family. We give the details of the attack when applied to F-FCSR-H v2 and
F-FCSR-16. The attack requires a few Mbytes of received sequence, and the complex-
ity is low enough to allow the attack to be performed on a single PC within seconds.

Key words. Stream cipher, Cryptanalysis, F-FCSR-H, F-FCSR-16, Linearization.

1. Introduction

The cryptographic scene includes a variety of efficient and trusted block ciphers. How-
ever the same does not seem to hold for stream ciphers. The stream ciphers that have
received attention through use in various standards tend to have more or less serious se-
curity weaknesses. Examples are A5 algorithms used in GSM, the RC4 algorithm used
in, for example, WLAN applications through the WEP protocol, and the EO stream ci-
pher used in Bluetooth.

Based on a belief that a dedicated stream cipher still has a capability of significantly
outperforming a block cipher, the eSTREAM project was launched in 2004. The goal of
this project was to solicit and evaluate submitted proposals of stream ciphers for future
standardization. The main evaluation criteria set up were long-term security, efficiency
in terms of performance, flexibility, and market requirements. The eSTREAM project
was not a standardization body, like the AES project or the ongoing SHA-3 project. The

* This paper was solicited by the Editors-in-Chief as one of the best papers from Asiacrypt 2008, based on
the recommendation of the program committee.

© International Association for Cryptologic Research 2009

mailto:Martin.Hell@eit.lth.se
mailto:Thomas.Johansson@eit.lth.se

428 M. Hell and T. Johansson

goal was to stimulate work in the area of stream ciphers. As an example, designers were
allowed to tweak their proposals in the early phases of the project.

The eSTREAM project considered two different profiles, one targeting software im-
plemented stream ciphers, profile 1; and one for hardware implemented stream ciphers
(in particular constrained devices), profile 2. The hardware category received a total of
25 submitted proposals. After three phases of evaluation, the final eSSTREAM portfolio
recommended four of them. One of them is a design called F-FCSR-H v2.

F-FCSR-H v2 is one of several algorithms in the F-FCSR family of stream ciphers
designed by F. Arnault, T.P. Berger, and C. Lauradoux. The family of ciphers is based
on feedback with carry shift registers (FCSR) together with a filtering function. The
idea of using FCSRs to generate sequences for cryptographic applications was initially
proposed by Klapper and Goresky in [21]. The F-FCSR family was introduced in [2],
proposing four concrete constructions. These proposals were cryptanalyzed in [19]. The
initial version submitted to eSTREAM, targeting hardware, was called F-FCSR-H. It
was shown in [18] that this construction also had security problems. This led to a change
in the initialization procedure, and the resulting algorithm was named F-FCSR-H v2.
Also, a new variant called F-FCSR-16 was proposed. This variant outputs 16 bits in
each register update compared to 8 bits in F-FCSR-H v2. This paper will focus on the
specification of F-FCSR-H v2 and F-FCSR-16 given in [6]. A more comprehensive
overview of stream ciphers based on FCSRs is given in Appendix A.

The eSTREAM class of hardware stream ciphers (and F-FCSR-H v2 in particular)
prescribes a key of length 80 bits. F-FFSCR-16 can be used with either 80 or 128 bit key,
with the 80 bit choice targeting profile 2 (hardware) and the 128 bit choice targeting
profile 1 (software) in eSTREAM. The constructions also use a public IV value of bit-
size v which can be set in the interval 32 < v < 80 for F-FCSR-H v2 and 32 < v < 128
for F-FCSR-16.

Apart from exhaustive key search, there are a number of standard attacks that can be
applied. Time-memory-data trade-off attacks of different kinds [10,13,16] are applica-
ble, but due to fairly large state size (size of the FCSR), this does not give a successful
attack. Correlation attacks and linear cryptanalysis techniques [25,26] are also possible
approaches, but the nonlinearity of the carry in the FCSR makes this difficult, and no
promising ideas in this direction have been proposed. Also algebraic attacks has been
accounted for in the design. Another standard technique today is a chosen IV attack
[14,27,29], but the latest versions of the F-FCSR have not shown weaknesses in the
initialization. So apart from the initial flaws (on the I'V-setup procedure, and a TMD
tradeoff attack), there were no known weaknesses of the core of these algorithms until
a preliminary version of this paper was presented in [17].

We present a new and severe cryptanalytic attack on the F-FCSR stream cipher fam-
ily. We give the details of the attack when applied to F-FCSR-H v2. The attack is based
on observing that the contribution of nonlinearity comes from the carry bits only and
that sometimes this contribution is too low and the system can be linearized. We de-
fine this as an event, and when the event occurs, we show how we can very efficiently
derive the whole state. The whole attack requires a few Mbytes of received sequence,
and the complexity is low enough to allow the attack to be performed on a single PC
within seconds. The attack has been fully implemented using the designers’ reference
implementation. Simulations show that the attack requires 227 keystream bytes for
F-FCSR-H v2 and 2% keystream bytes for F-FCSR-16.

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 429

Since only the initialization was changed when updating F-FCSR-H to F-FCSR-H
v2, our state recovery attack will be identical for both these versions. For simplicity, we
will refer to this stream cipher as just F-FCSR-H.

In Sect. 2 we give an overview of the FCSR automaton and the F-FCSR construction.
In Sect. 3 we then discuss the underlying weaknesses giving the attack. In Sect. 4 we
give a description of the attack on F-FCSR-H, and in Sect. 5 we give a more detailed
analysis of parts of the attack and also give the estimated and simulated complexities.
In Sect. 6 we apply the same attack to the stream cipher F-FCSR-16. In Sect. 7 we give
a rough outline of how the key could be reconstructed from a known state. Finally, we
end with some conclusions.

2. Recalling the FCSR Automaton and the F-FCSR Construction

Let us start by recalling some useful facts from the theory on p-adic numbers. In partic-
ular, we consider only 2-adic numbers. For a more detailed overview of this subject, we
refer to any textbook on the subject (e.g., [24]) or the more comprehensive description
in [22], from which the brief reminder hereafter is largely inspired.

A 2-adic number a can be represented by a sequence of bits representing a binary
number

a=---aajayg.a—_1a_y---a_g,

where a; € {0, 1}. The sequence of bits extends infinitely to the left. A 2-adic number
may also be represented as a formal power series @ = Y oo, a;2', a; € {0, 1}.

If we fix k =0, i.e., we do not allow nonzero bits to the right of the binary point, we
get the 2-adic integers. A 2-adic integer a is written as a = Z?io a;2', where g; € {0, 1}.
The set containing all such power series forms a ring with respect to usual addition and
multiplication. This ring of 2-adic integers is denoted Z;-,gic (Whereas Z; denotes the
ring of integers modulo 2). The characterizing property of Zj-agic is that addition in
the ring has a “carry” property and can be compared to a usual integer addition of two
numbers in binary representation but with infinite word size. This may be illustrated by
comparing Z,-,dic and the ring Z,[[X]] of formal power series in X. In Zj-,gic addition
is performed by moving overflow bits to higher-order terms, since 2/ + 2/ = 2i*! In
Z»[[X1] we would instead have X! + X' = 0.

Multiplication among 2-adic integers is done by a shift and add procedure. We can
also see that the additive and multiplicative identities are 0 and 1 (= 2°), respectively.
Moreover, using the addition rule, it is easily seen that

1+ (1+2"+22+2° +...) =0,
and, hence, 1 +2' +22 4+ 23 + ... = —1 in Z)-uqic. If we write the integer ¢ as
g=qo+q12+---+q2", q {01}, 0<i<r,

then

—g=(1+2"+224+2% 4+)(qo+q12+ - +¢2").

430 M. Hell and T. Johansson

We have demonstrated that Z,-,4ic contains all the integers. So Z C Z3-agic. Using long
division, we can verify that every odd integer g € Z, i.e., integers with go = 1, has
a unique inverse in Zo-udic- This proves that every rational number p/q is in Z;-adic,
provided that g is odd. This leads to the following characterization theorem.

Theorem 1 [22]. There is a one-to-one correspondence between rational numbers
a = p/q (where q is odd) and eventually periodic binary sequences a = apayas - - - ,
which associates to each such rational number a, the bit sequence apaias --- of its
2-adic expansion. The sequence a is strictly periodic if and only if a <0 and |a| < 1.

See [22] for proof details. Furthermore, let 7 = ord, (2) denote the order of the ele-
ment 2 in the multiplicative group Z,\{0}, i.e., T = ord, (2) is the smallest integer such
that 27 =1 (mod q).

Corollary 1 (Gauss). If p and q are relatively prime, —q < p <0, and q is odd, then
the period T of the bit sequence for the 2-adic expansion of a = p/q is T = ord,(2).

A Feedback with Carry Shift Register (FCSR) is a device that computes the binary
expansion a of the 2-adic number a = p/q, where p and g are some fixed integers, with
q odd. For simplicity, we assume that ¢ <0 < p < |q|.

Similar to LFSRs, an FCSR can be implemented either with Fibonacci or Galois
representation. The Galois implementation is most suitable for hardware realization, and
this is the implementation used for all stream ciphers in the F-FCSR family. Thus, we
will restrict ourselves to this case in the following. Other representations in connection
with F-FCSR were considered in [15].

Following the notation from [6], the size n of the FCSR is the value such that n + 1
is the bitlength of |g|. In the stream cipher construction, p depends on the secret key
(and the V), and ¢ is a public parameter. From Corollary 1 we know that the choice of
g completely determines the length of the period T of the keystream as T = ord, (2).

An FCSR is defined by choosing ¢ to be a negative prime 2" < —g < 2"*! such
that 7 = ord,(2) = |g| — 1. Then, setd = (1 — q)/2 = Z;’;OI d;2' and check that the
Hamming weight W (d) of the binary expansion of d is not too small, say W(d) > n/2.
Since W(d) is the number of carry cells used in the FCSR, and the carry cells are the
only components introducing nonlinearity, it is important that W (d) is not too small.

An example, also used in, e.g., [2,19], of a Galois FCSR is given in Fig. 1. It
contains two registers. One is the main register, denoted M, and the other is the
carry register C. In a Galois FCSR the main register M contains n cells. Let M =
(my—1,my_2,...,mp,mp) and associate M to the integer M = Z?;ol m;2L.

Recall the positive integer d = (1 — ¢)/2 and its binary representation d =
Z:l:_ol d;2'. The carry register contains [active cells where [+ 1 is the number of
nonzero d; binary digits in d. The active cells are the ones in the interval 0 <i <n — 2,
and d,—; = 1 always hold. For this purpose, we write the carry register C as C =
(ch—2,Cn—3,...,c1,co) and associate C to the integer C = er'l;()z ¢;2'. Note that only /
of the bits in C are active, and the remaining ones are set to zero. In the example given
in Fig. 1, the parameters are given by g = —347, d = 174 with its binary expansion
(10101110), n =8, and [= 4.

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 431

Fig. 1. Example of an FCSR.

For all defined variables, we also introduce a time index ¢ and denote by M(¢) the
content of M at time ¢. Similarly, C(¢) denotes the content of C at time 7. The contents
at time ¢ of the individual cells in the FCSR are denoted m; (¢) and ¢; (¢).

The addition with carry, denoted H in Fig. 1, has a one bit memory (the carry). It
takes three inputs in total, two external inputs and the carry bit. It outputs the XOR of
the inputs and sets the new carry value to one if the integer sum of the three inputs is
two or three.

Let the integer p be written as p = Z?;OI pi2', where p; € {0, 1}. Then the 2-adic
expansion of the number p/g is computed by the automaton given in Fig. 1. To see this
we write the output sequence a in its 2-adic representation a =) ., a,2". Each state
value of the two registers represent a certain value of the integer p. The initial value of
p is denoted p(0), and as the FCSR is updated, p is updated as p(0), p(1), p(2),....
Assume that a is the 2-adic expansion of p/q. Then we can write p =g > o a;2". We
define the sequence p(t) as

p(t)%atq =2""p(®) (modg). .

pit+1)=
To see why this definition is natural, consider

P(0)=q(a0+a12+a222+...)’

which corresponds to the sequence apajaz - - - . According to (1), p(1) is written as
0)—a ao+ai2+a2*+--)—a

p(l)zp()2 0 _ qlaotai 22) Oq:q(a1+a22+a322+-~-),

which shows that p(1)/q corresponds to the sequence ajazasz---, i.e., the sequence

a shifted one step in time. Generalizing this, it is easy to see that p(r)/q gives the
sequence a;a;+1a,+2--- and p(t) =q Z;’it a;j2/~". Also note that a, = p(¢) (mod 2).
The integer M corresponding to the main register is updated as
M(t) —mo(1) M(t) +2C(t) —mo(t)q

M(t+l):f+mo(t)d+6'(t)= > , (@

using the fact that d = (1 — ¢g)/2. Comparing (1) and (2), we see that if we write

p()=M()+2C1) 3

432 M. Hell and T. Johansson

and let p = p(0) = M(0), i.e., C(0) = 0, then the FCSR indeed generates the 2-adic
expansion of p/q. Referring to Fig. 1, the output of the FCSR at time ¢ is mo = p(¢)
(mod 2) = a;.

Finally, we note that the FCSR automaton has n bits of memory in the main register
and [bits in the carry register, in total n 4 / bits. If (M, C) is our state, then many
states are equivalent in the sense that starting in equivalent states will produce the same
output. As the period is |g| — 1 &~ 2", the number of states equivalent to a given state is
in the order of 2'.

2.1. The F-FCSR-H Construction

The F-FCSR family of stream ciphers combines the FCSR automaton with a filtering
function. The filtering function extracts keystream bits from the state of the main register
in the FCSR automaton. The filter is a simple linear function of bits from the state. In
order to increase the throughput, the constructions extract not only one but many bits
each clock cycle. The number of extracted bits is eight for F-FCSR-H. Thus there are
eight different filters, now called subfilters, used to extract an 8-bit keystream byte after
each transition of the automaton.

A one bit filter F is a bitstring (fp, ..., fn—1) of length n. The output bit of the filter
is defined to be

n—1
FOD) =P fimi,
i=0
i.e., the scalar product. As F' is a known string, the output is a linear function (in F3).

For the 8-bit filter, it consists of eight such binary functions Fy, Fi, ..., F7. However,
filter F; uses only cells m; in the main register that satisfies i = j (mod 8).

The parameters for F-FCSR-H are now given. The proposal uses key length 80 and
an IV of bitsize v with 32 < v < 80. The FCSR length (size of the main register) is
n = 160. The carry register contains / = 82 cells. The feedback is determined by the
prime

q =1993524591318275015328041611344215036460140087963.
This gives
d = (1+1q])/2 = (AE985DFF 26619FC5 8623DC8A AF46D590 3DD4254E)
(hexadecimal notation). So addition boxes and carry cells are present at the positions
matching the binary ones in the binary expansion of d. To extract one keystream byte,
F-FCSR-H uses the static filter

F =d = (AE985DFF 26619FCS5 8623DCSA AF46D590 3DD4254E).

Using the designers notation, this means that the eight subfilters (subfilter j is ob-
tained by selecting the bit j in each byte of F’) are given by

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 433

iFilter

Fig. 2. An overview of F-FCSR-H and how the linear filter is used to produce the keystream.

Fy=(00110111010010101010), F4 =(01110010001000111100),
F1 =(10011010110111000001), F5=(10011100010010001010),
F> =(10111011101011101111), F¢ =(00110101001001100101),
F3 = (11110010001110001001), F7 =(11010011101110110100).

So the F-FCSR-H generator outputs one byte every time instance, and it is simply given
as

z=(mg+moq +mgo +mse+---+miz6,mi +mag+ - ,...,mp3+---).

Figure 2 gives an overview of the F-FCSR-H stream cipher and how the filter function
is used to extract the output bits.

The key and IV initialization consists of loading key and IV into the main register,
clocking 20 times and extracting 20 bytes of output. These 160 bits are used as initial
state in the main register of the FCSR automaton, and it is clocked 162 times without
producing output. More details are given in Sect. 7.

The second relevant construction in the F-FCSR family, called F-FCSR-16, is con-
structed in a similar manner. More details on this are given in Sect. 6.

3. Weaknesses of the FCSR Automaton and the F-FCSR Family of Stream
Ciphers

As the filtering function is F; linear, essentially all the security of the FCSR construc-
tions relies on the FCSR automaton ability to create nonlinearity. It might at first glance
look like this is achieved. The nonlinearity lies in the carry bit calculation, and carry bits
are quickly spread over the entire main register. They enter new carry bit calculations,
thus increasing the degree of nonlinear expressions rapidly. This is probably the first
way one tries to analyze the construction, looking at the algebraic expressions created
when the automaton is clocked a few times. It looks difficult to find some useful alge-
braic expression or some correlation between different variables that can be tracked all
the way to the keystream symbols.

434 M. Hell and T. Johansson

Instead, we look at the nonlinearity from a different perspective. The main obser-
vation we use is the fact that the carry bits in the carry register behave very far from
random. The key point is that they all have one common input variable, the feedback
bit. Let us look at what happens for a carry bit when the feedback bit is set to zero. We
can see that when the feedback bit is zero, then a carry bit that is zero must remain zero,
whereas if the carry bit is one, then by probability 1/2 it will turn to zero (assuming
random input on the active input). If we now assume that the feedback bit is zero a few
consecutive time instances, then it is very likely that the carry bit is pushed to zero.

Actually, the same arguments can be repeated when the feedback bit is one. Then the
carry is more likely to be one, and by repeatedly having ones on the feedback bit we
push the carry value to one. However, for the moment, we ignore this case.

Since the feedback bit is a common input to all carries, this has a dramatic effect on
the carry vector C. We know that C has [= 82 active cells (carry bits), and we can
expect that on average C will have a weight of 41. However, the weight is strongly
correlated to the values of the feedback bit. Every time the feedback bit is zero, all cells
in C that are zero must remain zero, whereas those with value one have a 50% chance
of becoming zero. So a zero feedback bit at time ¢ gives a carry vector at time ¢ + 1
of roughly half the weight compared to time ¢. This behavior is easily checked by just
running the generator and observing the contents of C.

Having found this crucial observation, the attack looks almost trivial. We assume
that we have a number of consecutive feedback bits all zero. This would push the carry
register to the all-zero content. Then we have 19 more zero feedback bits to keep C zero
all the time. During this time the generator outputs 20 bytes, or 160 bits. We can thus
reconstruct the main register from knowing these values and the fact that C is zero. The
only problem is that this does not work.

4. Describing the Attack

The underlying ideas of the attack were given in the previous section. However, the
assumption that a large number of consecutive zero feedback bits would push the weight
of C to zero is wrong. By simply running the generator we could see that this never
happened. Looking at the details, there is a simple explanation for this. If one considers
the FCSR automaton as illustrated in Fig. 2, especially the last (least significant) active
cell ¢; among the carries. Assume that the feedback bits are zero from time ¢ to ¢ + 1y
and the feedback bit at time ¢ — 1 was one. Now since the feedback bit at time # — 1 was
one, and the feedback bits are zero from time ¢ to ¢ + #g, the last carry addition must
return zero to the next main register cell. Thus it must set the carry to one. Now, when
the carry is one, the only way we can have zero output, and thus zero feedback is if the
main register input to the last carry addition is one. Thus the last carry cell will never
be pushed to zero, as we initially hoped. The fact that the carry vector and the feedback
will not be zero for several consecutive clock cycles was actually observed in [9]. It was
shown that this situation can not occur if the FCSR automaton has reached a state of the
main cycle, which is the case for all proposed F-FCSR stream ciphers.

However, this is not a problem. Slightly modifying the approach will make it work.
As we described above, the all zero feedback sequence can appear if the main register
input to the last carry addition is the all-one sequence, and we start with setting the carry

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 435

bit to one. Then the all zero feedback will push the weight of C to one (the last active
carry cell is always one). So it is natural to define the following event:

Event E,ero : C(t) =C(t +1)=---=C(t +19) = (0,0,...,0,1,0).

Using our previous arguments, we would think that we need about log, 82 ~ 7 zeros
in the feedback to push the weight of C to 1 and then an additional 19 zeros in the
feedback to keep C constant for 20 time instances. Assuming a uniform distribution
on the feedback bits, this would lead to a probability of very roughly 2726 for the event
Eero to happen. As we will see in the next section, it is possible to use more information
about the state in order to increase the efficiency of the attack. For now, let us just
assume that we know how the main register M at time # + 1,7 + 2, ..., ¢ 4+ 19 depends
on M(¢) and that this dependency is linear.

Assuming that event E,¢r, Occurs, the remaining part is to recover the main register
from the given keystream bytes z(¢), z(r + 1), ..., z(t + 19). This will lead to a linear
system of equations with 160 equations in 160 unknowns. This could basically be solved
through Gaussian elimination, costing something like 160° operations. However, we
observe that the equations have the special byte structure explained before. There are
20 equations that only include the main register variables mg, mg, mis, ..., mis3, there
are 20 equations that only include m, mo9, m17, ..., m153, etc. Note that we are only
shifting in zeros in M due to the assumption.

So it is much more efficient to treat each 20 by 20 system of equations independently.
Let us describe the received systems of linear equations in more detail. Note that, for
simplicity, in the presentation we disregard from the fact that we need to add a constant
1 to some equations, due to the fact that ¢c; = 1. We denote the least significant bit of
z(t) by z(t)o, the next bit by z(¢)1, etc., i.e., the output byte z(¢) at time ¢ is given by

z(t) = (z(1)7, 2(1)6, 2(1)5, Z(1)4, 2(1)3, 2(1)2, Z(1) 1, Z(1)0) - “)
~—— ——
MSB LSB

Then the linear equations involving the main register bits m; when i =0 (mod 8) at
time ¢ can be written as

Z(t) o =mg ®mos @ --- O my3e,

Z(t+1)7=mu ®my @ --- Dmis2,

Z(t +19)s =m3 ®mug B --- D mis2.

Similar equations containing only the main register bits m; such thati =1 (mod 8) can
also be listed. The same can then be done for equations using only bits m; where i =2

436 M. Hell and T. Johansson

(mod 8), etc. Altogether, we can for simplicity write

Wo = (2(1)o, 2(1 + D)7, ..., 2(t + 19)5),
Wi = (2(D)1,2(+ Do, ..., 2(t + 19)6),

W7 = (2(1)7,2(t + Dg, - .., 2(t +19)4).
The vector of main register values mq, mg, mis, ..., M5z is denoted Mo. Then we get

Wo = My Po, (5)

A

where Py is a known 20 by 20 matrix (determined from the filter F'). Similarly, M;,
1 <i <7, will denote the main register variables (m;, m; g, miyi6, ..., Mi+152). With
this notation we can write the eight 20 by 20 linear systems of equations as

Wo=MoPy, Wi=MP, ..., W;=M;P;. (6)

The idea is now to precompute, for each linear system, the solution Mi for each
possible value of the vector of keystream bits W;. This would require eight tables of
size 220 entries, each entry being a 20-bit vector. Though, the real time phase will be
more efficient if 20 bytes are stored in each entry, having values only in the bit positions
corresponding to the bits in M; . Then a full candidate state can be found by just XORing
together the eight saved contributions.

Finding the main register content would then require only to compute the vectors
W;, 0 <i <7, from the keystream and then eight table lookups to get the candidate
main register state. The part of a candidate main register state given by W; is denoted
TABLE; [W;].

We can note that the P; matrices are not all of full rank. This means that for our
table of solutions, some W; values will have no solutions, whereas other values will
have multiple (a power of two) solutions. This fact will then be combined over all eight
systems of equations, leading to a total number of S =]_[ZZO s; solutions, where s; is
the number of solutions to the ith system. Thus TABLE;[W;] returns a set of zero or
more solutions.

In our case this property will increase the efficiency of the attack because if we get a
value Wy for which TABLEy[W] returns no solutions, we can immediately stop and

conclude that our assumption of event Eer, Was wrong.

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 437

We now summarize our attack as follows.

0. fort=1to Tyax do
1. Select the 20 consecutive output bytes z(¢), z(t + 1), ..., z(t + 19).
fori=0to7
Compute W;
if TABLE;[W;] has no solutions
go to 0.
else
store all possible values for Mi.
end for
3. “Check candidate states”: Test all possible values of (1\7[0, Ml, e M7)
by checking if a candidate value generates z(t + 1), z(t + 2),
4. gotoO.

Note that we are still guessing a part of the state (the carry bits), so the computed
candidate main register state may not produce z(¢ + 1), z(t +2), ..., z(t + 19).

5. Improving the Attack Complexity

In the previous section we assumed that the carry vector was fixed to C(z) =

C¢t+1)=---=C(t+19)=(0,0,...,0,1,0) for all considered time instances. How-
ever we note that this is not necessary. As long as we can express the output bits in
z(t),z(t + 1),...,z(t + 19) as linear equations in the main register variables at time ¢,

the attack will work.

Denote the state at time ¢ as (M, C)(¢) and let x represent bits in the state that the
output can be expressed as linear combinations of. Let ? represent bits that we do not
need to know the value of. Assume that the state (M, C)(¢) is given by

M, O) (@) =(xx-- ~xx011---1100,000---0010).
16
Then, the state will be updated as
MOt +1)=(xx---xx011---1100,000---0010),
\—Nf——/
15

(M, C)(t +2) = (xx---xx011---1100,000- - -0010),
h\/_/
14

M, O)(t 4+ 15) = (xxxxxxxx ---xx0100,000---0010),
M, O)(t 4+ 16) = (xxxxxxxx ---xxx000,000---0010),
M, O)(t+17) = (xxxxxxxx ---xxxx10,000- - -0000),

438 M. Hell and T. Johansson

M, O)(t 4+ 18) = (xxxxxxxx---xxxxx1,000---0000),

M, C)(t +19) = (xxxxxxxx---xxxxxx, ?22777777777).

The only difference from the case presented in the previous section is that we should
not compensate for the carry bit when computing the state (M, C)(z + 18) and we need
to compensate for the 1 in the feedback when computing the state (M, C)(¢ + 19). Note
that the feedback used when calculating (M, C) (¢ + 19) will cause the carry vector to be
unpredictable. However, only M(7 4 19) is used to extract z(¢ 4+ 19), and knowledge of
the carry vector here is not necessary. Using these observations, we can conclude that we
only require the carry vector to take the value (0,0, ...,0, 1, 0) at least 17 consecutive
time instances. Thus, we update the definition of E,y, to

Event Eyero : C(t) =C(t+1)=---=C(t 4+16) = (0,0, ...,0,1,0). @)

The probability of E,¢, has been simulated using in total 2 TB data and 2000 different
keys and is estimated to be

P (Ejero) =273, (8)

Thus, we would expect that we need on average 22°3 bytes of keystream to recover the
state.

Further, we can note that there is a dual of the event E ¢, denoted Eqpe. Analogously
to (7), we define this event as

Event Egne : C(t) = C(t +1) = --- = C(t + 16) = d’ XOR 26,)

where d’ is the hexadecimal representation of the least n — 1 significant bits of d. In
other words, this is the event when all active carries are set to one, except the last. In
this case we will have ones in the feedback, and the main register state at time ¢ is given
by
M) = (xx---xx100---0011).
16 -

Simulations show that this event occurs with the same probability, i.e., P(Eqope) =
P(Ezer0) = 27253 When recovering the internal state, we do not know which event
has occurred so both events need to be tested. Thus, the computational complexity re-
mains the same, but the amount of expected keystream will be halved, and we expect
that we need about 2243 keystream bytes.

The attack using the observations from this section has been fully implemented. The
low complexity of the attack allows it to be simulated targeting the full version of F-
FCSR-H. Using 5000 random keys, the state was recovered using on average 2237 bytes
of keystream. The success rate was 100%. The slightly lower amount of keystream
which was observed compared to the expected amount can easily be accounted for.
For each state, there are many equivalent states, and sometimes one of these equivalent
states is recovered. As an example, if C(r) = C(t +1) =C(t + 15) = (0,0,...,0,1,0)
but C(r — 1) # (0,0, ...,0,1,0), then (M, C),_ can be recovered if it is equivalent to
another state (M, C’) with C’ = (0,0, ..., 0, 1, 0). Since the two states will merge after

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 439

a few clocks, the attack will also recover the real state. The simulations were done using
an AMD Athlon 64 X2 Dual Core Processor 4200+, 2.21 GHz and 4 GB RAM. The
average time to recover the state was 10 seconds.

6. Applying the Attack to F-FCSR-16

The variant denoted F-FCSR-16 was proposed in [6]. By increasing the register size to
256 bits it was argued that it is possible to output 16 bits in each clock cycle instead
of eight bits as in F-FCSR-H. There are in total 16 filter functions, Fy, ..., Fi5, each
filtering out one bit from the main register. The filter F; uses main register cells m; that
satisfies i = j (mod 16). For the exact definition of the filter functions, we refer to [6].
However, we note that, similar to F-FCSR-H, the last carry bit is not active and is thus
not used in the filter either.

The attack as described on F-FCSR-H is immediately applicable to F-FCSR-16.
However, since each output gives us 16 equations, and there are 256 main register bits,
we only need 256/16 = 16 consecutive time instances during which we know the reg-
ister update. Thus, we define the two events

Event Eyero : C(t) = C(t + 1) = --- = C(t + 12) = (0,0, ..., 0, 1,0),
Event Eope : C(t) = C(t + 1) = --- = C(t + 12) = d’ XOR 245.

Simulations show that P(Egne) = P(Ezer0) = 27220 and we expect that we need 221.0
keystream words (2220 keystream bytes) to recover the state.

The state recovery attack was also implemented for F-FCSR-16, and since we some-
times recover equivalent states, the actual attack complexity is slightly lower than
expected. The state is recovered using on average 2°0> keystream words, i.e., 221
keystream bytes. The average attack time is less than 2 seconds using an AMD Athlon
64 X2 Dual Core Processor 4200+, 2.21 GHz and 4 GB RAM.

7. Recovering the Key

We have described a state recovery attack that completely breaks F-FCSR-H and F-
FCSR-16. We now outline how we can also derive the key from a known state at any
time t. We give the details for F-FCSR-H v2, but the reasoning will also apply to F-
FCSR-16. Note that the initialization was changed between F-FCSR-H and F-FCSR-H
v2, and in this section we will focus on the latter. In order to shortly describe how to
recover the key, we recall the initialization from the design document (reference code).
Inputs to the initialization are a key K of length 80 bits and an IV of length v < 80 bits.
For simplicity, we fix the IV length to 80 bits.

Key+IV setup:

1. The main register M is initialized with key and IV by
M=K +2%1v=1v | K),

and the carry register is initialized by C = 0.

440 M. Hell and T. Johansson

2. A loop is iterated 20 times. Each iteration of this loop consists in clocking the
FCSR and then extracting a pseudorandom byte S; (0 <i < 19) using the filter.
3. The main register M is reinitialized with these bytes:

M = (S19, S13, - - -, S0),

and C=0.
4. The FCSR is clocked 162 times (output is discarded).

Keystream generation:
Keystream is produced by first clocking the FCSR, then extracting one pseudorandom
byte using filter F as described before.

Let us assume that time ¢ = 0 appears directly after Step 3 in the initialization above,
ie.,

M(0) = (S19, S18, - - -, So).

Recall from Sect. 2 that every state (M, C) is associated with an integer p, 1 < p <|q|,
as the state generates the 2-adic expansion of p/q, where p = M + 2C. The value of p
at time 7 is written as p(t).

Now assume that we have recovered the state M and the carry register C at some
time 7. So p(t) is known. Thus p(0) can be derived since p(0) = p(¢) - 2! (mod gq).
This gives us knowledge of M(0) = (S19, S13, ..., So), since the carry register at time 0
was 0.

Recall that (S19, Si3, - .., So) was the output from F-FCSR-H v2 when the main reg-
ister was initialized with IV and key bits with C = 0. If we for simplicity assume that
1V =0, then the remaining problem is to reconstruct the key bits. We give a rough out-
line on how such a reconstruction could be done. A more careful analysis might reveal
more efficient ways to solve the problem.

The main register starts as M = (0% || k79k7g - - - k1kg) and C = 0. The FCSR is
clocked once before any output.

We start by guessing the first eight key bits k7, kg, . .., ko that control the feedback
during the generation of the first eight output bytes. With known feedback we can de-
scribe how every state bit can be expressed in algebraic form. Note that as long as we
have zero feedback, the carry register remains zero, and we just get linear equations
from the output bytes. The nonlinearity starts to grow when the feedback is one. So as-
suming that the first feedback bit is one, we can examine the equations from the output
bytes. . . .

Similarly as before, let Ko = (ko, ks, . . ., k72), K| = (ky, kg,A. .. ,1(73), etc. Let Li(K;)
denote some linear function of variables in K;, and let C;(K;,,K;,, ..., K;) denote
some nonlinear function of variables in K; . Kiz, cees IA(,-H. Then the received equations
for the first output byte have the form

(S0)7 = Lo(Ko),
(So)1 = L1(Ky),

(S0)6 = L7(K7).

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 441

The next output byte is written

(S1)6 = Ls(Ko) + C5(K7),
(81)7 = Lo(K1) + Co(Ko).

(81)s5 = L15(K7) + C15(Ks),
and then

(82)5 = L16(Ko) + C16(Ke, K7),
($2)6 = L17(K1) + C17(K7, Ko),

($2)4 = L23(K7) + C23(Ks, Ke),
and so on. The last one we use is

(57)0 = Ls6(Ko) + Cs6 (K1, ..., Ke, K7),
(87)6 = L57(K1) + Cs7(Ka,, K7, Ko),

(57)4 = L63(K7) + Ce3 (Ko, . . ., K5, Ke).

When Ki appears in the linear expression but not in the nonlinear expression in an
equation, we can use the equation to eliminate one variable. Starting with K7 we have
eight such equations. Since we guessed the first key byte K7 contains nine unknown
variables. By leaving or guessing one bit in K7 we can derive the remaining ones as
functions C (KO, .. K5, K6) These functions are inserted instead of K7 Varlables in the
remaining equatlons. Then examining the equations and looking for those with K6 only
in the linear part gives seven more equations that can be used to eliminate KG variables.
Then the same for K5 gives six more equations, etc. Altogether we can remove 36
variables in this way, and we have to do a work effort of trying 2** choices of certain
key bits. The algebraic expressions we need to test can be precomputed. Observe that
if the first feedback bit is zero (probability 1/2), the complexity drops to 23¢, two zero
feedback bits give complexity 228, etc

The key recovery part has not been fully implemented, but the given arguments show
that also key recovery can be done with low complexity.

8. Conclusions

We have given a very strong attack on the F-FCSR-H v2 and the F-FCSR-16 stream ci-
phers. F-FCSR-H v2 was selected for the eSSTREAM portfolio [11]. The state recovery

442 M. Hell and T. Johansson

attack has been fully implemented to attack both variants using the designers reference
code. For F-FCSR-H (and F-FCSR-H v2), it succeeds in a few seconds using on aver-
age 22%7 bytes (~13 Mbyte) of keystream. For F-FCSR-16, the amount of keystream
needed is 22! keystream bytes (=3 Mbyte).

Instead of having a single keystream from one IV, the attack can also be applied if we
have only a few bytes, but instead from several different IVs. In that case we expect that
one of the IVs will initialize the cipher such that our events occur almost immediately.

The weakness that was exploited is that the FCSR automata sometimes temporarily
(almost) behaves as a regular LESR. Together with the fact that the output filter is linear,
the complete cipher became temporarily linear, which allowed us to recover the internal
state.

Due to the weaknesses presented in this paper, F-FCSR-H v2 was removed from the
eSTREAM portfolio [12].

Acknowledgements

‘We thank the reviewers for several useful comments.

Appendix A. A Brief History of FCSR Based Stream Ciphers

There are several examples of stream ciphers based on FCSRs. In particular, the stream
cipher family Filtered FCSR (F-FCSR) consists of several different constructions. In
this appendix we give a brief overview of the different constructions and cryptanalysis of
these. The idea of using FCSRs as a building block in stream ciphers was first given by
Klapper and Goresky in [21]. A more comprehensive introduction to FCSRs was later
given in [22], a paper that also gives an algorithm for FCSR synthesis. This synthesis
shows, similar to LFSR synthesis, how to reconstruct an FCSR from known output.
However it was only shown for the case where we are in Z,-ngic where p is prime.
A synthesis algorithm that could be applied to any p were later given in [23] and [4].
A survey of results on FCSRs prior to 2004 can be found in [20].

Neither LFSRs nor FCSRs can be used alone as a stream cipher. Both need another
component in order not to be trivially breakable. An FCSR can be combined with a
linear component, and an LFSR has to be combined with a nonlinear component. Based
on these facts, a pseudorandom generator and a self-synchronizing stream cipher were
proposed in 2002, combining an LFSR and an FCSR [3]. The self-synchronizing stream
cipher was later broken using a chosen ciphertext attack [30]. In [1] Arnault and Berger
proposed to use an FCSR together with a linear output filter. The idea was to filter
out a subset of the main register cells by XORing them together. More specifically,
all cells immediately to the right of a feedback tap were included in this filter. The
paper did not specify an initialization algorithm, and how to incorporate an initialization
vector was not discussed. Since this was not an explicit stream cipher proposal, the
construction was not given a name other than the F-FCSR generator and can thus be
seen as a general method of how to construct stream ciphers using FCSRs with linear
output filters. Instead, four more explicit designs were proposed in [2]. The first was
called F-FCSR-SF1, which was equivalent to the design discussed in [1]. The second

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 443

construction, called F-FCSR-SF8, used eight static filters and output eight bits/clock.
The last two constructions, F-FCSR-DF1 and F-FCSR-DF8, were similar, but instead
of a static filter, it was proposed that the output filter would be key dependent. The
initialization procedure proposed for these stream ciphers was to put the key in the main
register, the IV in the carry register, and then to clock the generator six times, discarding
the output, in order to make all main register cells dependent on the IV. Clocking six
times as initialization does not prevent an attacker from learning differences between
keystream bytes for initializations only differing in one IV bit. This was shown and
exploited by Jaulmes and Muller in [19]. By guessing a subset of the key bits, wrong
key candidates could be discarded using the knowledge of keystream differences. In the
same paper, also a time-memory-data tradeoff attack was given, exploiting the fact that
not all parts of the state provided entropy. All versions proposed in [2] were broken
using these attacks.

The stream cipher proposals submitted to eSTREAM were denoted F-FCSR-H and
F-FCSR-8. The former was targeting the hardware profile (profile 2), while the latter
was targeting the software efficient profile (profile 1). The size of the main register in F-
FCSR-H was 160 bits, and the initialization algorithm loaded key and IV into the main
register, put the carry register to the zero vector, and clocked the generator 160 times,
discarding the output. The filter function was static, outputting eight bits/clock. Thus, it
was based on the idea behind F-FCSR-SF8. The software oriented variant, F-FCSR-8,
had a main register of only 128 bits. It was based on the idea behind F-FCSR-DFS,
outputting eight bits/clock using a key dependent filter. The filter was constructed by
loading the main register with the key and clocking six times. If the content of the reg-
ister passed a suitability test it was used as filter, otherwise the FCSR was clocked six
more times, etc. The initialization algorithm clocked the FCSR 64 or 128 times depend-
ing on the size of the IV. While the number of initialization clocks were substantially
increased compared to the previous version, it was shown in [18] that the generators
were still prone to attacks on the initialization. A resynchronization attack applied to
F-FCSR-H resulted in a distinguishing attack and on F-FCSR-8 it could also recover
the key. The small state of F-FCSR-8 also made it prone to attacks.

In a short note [5] the designers presented how the algorithms could be tweaked in
order to prevent the suggested attacks. The initialization algorithm of F-FCSR-H was
changed. Instead of just clocking the register 160 times, as in the original version, the
register was first clocked 20 times. The output was used to reinitialize the main reg-
ister, and the FCSR was then clocked 162 times. For F-FCSR-8, the tweak was more
substantial. The main register was increased to 256 bits. The initialization was tweaked
similar to F-FCSR-H with the difference that it was clocked 258 times after reinitial-
ization instead. Increasing the main register to 256 bits meant that the speed (in soft-
ware) was halved. To compensate for this, the output filter (still key dependent) was de-
signed to output 16 bits/clock instead of previously eight. The name was also changed
to F-FCSR-8.2.

Before entering the second phase of eSSTREAM, designers were given the opportunity
to tweak algorithms. This opportunity was taken by the F-FCSR designers, and [6]
describes the algorithms that were official in phase 2. The tweak to F-FCSR-H proposed
in [5] were kept. Later, in phase 3, the algorithm is referred to as F-FCSR-H v2 on the
eSTREAM web page, although this name is not explicitly mentioned in [6]. F-FCSR-8.2

444 M. Hell and T. Johansson

as described in [5] was dropped. Instead, this stream cipher also adopted the idea of a
static filter since a key dependent filter did not provide as high security as first expected.
Other features from F-FSCR-8.2 were kept, namely 16 bits/clock with a register of size
256 bits. This new version was called F-FCSR-16 and was claimed suitable for both
hardware and software.

While F-FCSR-16 targeted both the hardware and software profile of eSSTREAM, it
has no apparent advantages over AES in software as it runs at less than half the speed.
Instead, two other stream ciphers based on FCSRs, called X-FCSR-128 and X-FCSR-
256, were proposed in [7]. These ciphers were very efficient in software and used two
FCSR together with an S-box. In [28], an attack on X-FCSR-256 were given. The attack
used the weakness presented in this paper as one component in the attack.

In 2008, further results on FCSRs and FCSR-based stream ciphers were given in [9],
which is the journal version of [8]. Among other things, the possibility that the carry
register could be zero for several consecutive register updates was discussed. It was
shown that all carry and register cells to the right of the rightmost feedback cell (in the
case of the carry the cell at the same position as the feedback cell is included) could not
be all zero at the same time if we are on the main cycle. We gave an intuitive explanation
of this in Sect. 4.

It is clear that the weakness given in this paper can be used to attack several ciphers
using FCSRs. However, the attractive properties of the sequences, together with the
inherent nonlinearity of the FCSR, motivate further research on stream ciphers incorpo-
rating this building block.

References

[1]1 F. Arnault, T. Berger, Design and properties of a new pseudorandom generator based on a filtered FCSR
automaton. /[EEE Trans. Comput. 54, 1374—-1383 (2005)

[2] F. Arnault, T. Berger, F-FCSR: Design of a new class of stream ciphers, in Fast Software Encryption
2005, ed. by H. Gilbert, H. Handschuh. Lecture Notes in Computer Science, vol. 3557 (Springer, Berlin,
2005), pp. 83-97

[3] F. Arnault, T. Berger, A. Necer, A new class of stream ciphers combining LFSR and FCSR architec-
tures, in Progress in Cryptology—INDOCRYPT 2002, ed. by A. Menezes, P. Sarkar. Lecture Notes in
Computer Science, vol. 2551/2002 (Springer, Berlin, 2002), pp. 22-33

[4] F. Arnault, T. Berger, A. Necer, Feedback with carry shift registers synthesis with the Euclidean algo-
rithm. IEEE Trans. Inf. Theory 50(5), 910-917 (2004)

[5] F. Arnault, T. Berger, C. Lauradoux, Preventing weaknesses on F-FCSR in IV mode and trade-
off attack on F-FCSR-8. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/075 (2005).
http://www.ecrypt.eu.org/stream

[6] F. Arnault, T. Berger, C. Lauradoux, Update on F-FCSR stream cipher. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/025 (2006). http://www.ecrypt.eu.org/stream

[7]1 F. Arnault, T.P. Berger, C. Lauradoux, M. Minier, X-FCSR—a new software oriented stream cipher
based upon FCSRs, in Progress in Cryptology—INDOCRYPT 2007, ed. by K. Srinathan, C. Pandu
Rangan, M. Yung. Lecture Notes in Computer Science, vol. 4859/2007 (Springer, Berlin, 2007), pp.
341-350

[8] F. Arnault, T. Berger, M. Minier, On the security of FCSR-based pseudorandom generators. eSSTREAM,
ECRYPT Stream Cipher Project, Report 2007/022 (2007). http://www.ecrypt.eu.org/stream

[9] F. Arnault, T. Berger, M. Minier, Some results on FCSR automata with applications to the security of
FCSR-based pseudorandom generators. I[EEE Trans. Inf. Theory 54(2), 836-840 (2008)

[10] S.Babbage, A space/time tradeoff in exhaustive search attacks on stream ciphers. In European Conven-
tion on Security and Detection. IEE Conference Publication, vol. 408 (1995)

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Time 445

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]
[25]

[26]
[27]
[28]
[29]

[30]

S. Babbage, C. De Canniére, A. Canteaut, C. Cid, H. Gilbert, T. Johansson, M. Parker, B. Preneel, V. Rij-
men, M.J.B. Robshaw, The eSTREAM portfolio (2008). Available via http://www.ecrypt.eu.org/stream
S. Babbage, C. De Canniére, A. Canteaut, C. Cid, H. Gilbert, T. Johansson, M. Parker, B. Preneel, V.
Rijmen, M.J.B. Robshaw, The eSTREAM portfolio (rev. 1) (2008). Available via http://www.ecrypt.
eu.org/stream

A. Biryukov, A. Shamir, Cryptanalytic time/memory/data tradeoffs for stream ciphers, in Advances in
Cryptology—ASIACRYPT 2000, ed. by T. Okamoto. Lecture Notes in Computer Science, vol. 1976
(Springer, Berlin, 2000), pp. 1-13

H. Englund, T. Johansson, M.S. Turan, A framework for chosen IV statistical analysis of stream ci-
phers, in Progress in Cryptology—INDOCRYPT 2007, ed. by K. Srinathan, C. Pandu Rangan, M. Yung.
Lecture Notes in Computer Science, vol. 4859/2007 (Springer, Berlin, 2007), pp. 268-281

S. Fischer, W. Meier, D. Stegemann, Equivalent representations of the F-FCSR keystream generator. The
State of the Art of Stream Ciphers, Workshop Record, SASC 2008, Lausanne, Switzerland, February
2008

J.D. Goli¢, Cryptanalysis of alleged AS stream cipher, in Advances in Cryptology—EUROCRYPT 97,
ed. by W. Fumy. Lecture Notes in Computer Science, vol. 1233 (Springer, Berlin, 1997), pp. 239-255
M. Hell, T. Johansson, Breaking the F-FCSR-H stream cipher in real time, in Advances in Cryptology—
ASIACRYPT 2008. Lecture Notes in Computer Science, vol. 5350/2008 (Springer, Berlin, 2008), pp.
557-569

E. Jaulmes, F. Muller, Cryptanalysis of ECRYPT candidates F-FCSR-8 and F-FCSR-H. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/046 (2005). http://www.ecrypt.eu.org/stream

E. Jaulmes, F. Muller, Cryptanalysis of the F-FCSR stream cipher family, in Selected Areas in
Cryptography—SAC 2005, ed. by B. Preneel, S. Tavares. Lecture Notes in Computer Science, vol. 3897
(Springer, Berlin, 2005), pp. 36-50

A. Klapper, A survey of feedback with carry shift registers, in Sequences and Their Applications—
SETA 2004, ed. by T. Helleseth, D. Sarwate, H. Song, K. Yang. Lecture Notes in Computer Science,
vol. 3486/2005 (Springer, Berlin, 2004), pp. 56-71

A. Klapper, M. Goresky, 2-adic shift registers, in Fast Software Encryption’93, ed. by R.J. Anderson.
Lecture Notes in Computer Science, vol. 809 (Springer, Berlin, 1994), pp. 174-178

A. Klapper, M. Goresky, Feedback shift registers, 2-adic span, and combiners with memory. J. Cryptol.
10(2), 111-147 (1997)

A. Klapper, J. Xu, Register synthesis for algebraic feedback shift registers based on non-primes. Des.
Codes Cryptogr. 31(3), 227-250 (2004)

N. Koblitz, P-adic Numbers, p-adic Analysis, and Zeta-Functions (Springer, Berlin, 1996)

M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology—EUROCRYPT 93,
ed. by T. Helleseth. Lecture Notes in Computer Science, vol. 765 (Springer, Berlin, 1994), pp. 386-397
W. Meier, O. Staffelbach, Fast correlation attacks on certain stream ciphers. J. Cryptol. 1(3), 159-176
(1989)

M.-J.O. Saarinen, Chosen-1V statistical attacks on eSTREAM stream ciphers. eSSTREAM, ECRYPT
Stream Cipher Project, Report 2006/013 (2006). http://www.ecrypt.eu.org/stream

P. Stankovski, M. Hell, T. Johansson, An efficient state recovery attack on X-FCSR-256. Fast Software
Encryption 2009 (2009). Preproceedings

M. Vielhaber, Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack (2007). Available at
http://eprint.iacr.org/2007/413

B. Zhang, H. Wu, D. Feng, F. Bao, Chosen ciphertext attack on a new class of self-synchronizing stream
ciphers, in Progress in Cryptology—INDOCRYPT 2004, ed. by A. Canteaut, K. Viswanathan. Lecture
Notes in Computer Science, vol. 3348/2004 (Springer, Berlin, 2004), pp. 73-83

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/2007/413

	Breaking the Stream Ciphers F-FCSR-H and F-FCSR-16 in Real Timen1
	Abstract
	Introduction
	Recalling the FCSR Automaton and the F-FCSR Construction
	The F-FCSR-H Construction

	Weaknesses of the FCSR Automaton and the F-FCSR Family of Stream Ciphers
	Describing the Attack
	Improving the Attack Complexity
	Applying the Attack to F-FCSR-16
	Recovering the Key
	Conclusions
	Acknowledgements
	Appendix A. A Brief History of FCSR Based Stream Ciphers
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

