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Abstract. This paper considers the hash function MD2 which was developed by Ron
Rivest in 1989. Despite its age, MD2 has withstood cryptanalytic attacks until recently.
This paper contains the state-of-the-art cryptanalytic results on MD2, in particular col-
lision and preimage attacks on the full hash function, the latter having complexity 273,
which should be compared to a brute-force attack of complexity 2128.
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1. Introduction

A cryptographic hash function takes an arbitrary length input, the message, and pro-
duces a fixed length output. The output is often called the hash or the fingerprint of
the message. A cryptographic hash function needs to satisfy certain security criteria in
order to be considered secure. Let

H : {0,1}∗ → {0,1}n

denote a hash function whose output is of length n bits. A cryptographic hash function
should be resistant to the following attacks:
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– Collision: Find x and x′ such that x �= x′ and H(x) = H(x′).
– 2nd preimage: Given x and y = H(x), find x′ �= x such that H(x′) = y.
– Preimage: Given y = H(x), find x′ such that H(x′) = y.

A collision for any hash function can be found by a birthday attack with complexity
around 2n/2. Preimages and 2nd preimages can be found by a brute force search with
complexity 2n. Typically, one considers a hash function secure only if no attacks better
than these are known.

The Merkle–Damgård construction [2,11] is a typical method of constructing hash
functions. This method works as follows. Given a so-called compression function f :
{0,1}n × {0,1}b → {0,1}n and an initial n-bit value h0, the message m is split into
a number of b-bit message blocks m1,m2, . . . ,mt . Then, for every i from 1 to t , one
computes

hi ← f (hi−1,mi), (1)

and finally H(m) = ht is returned as output. Examples of hash functions based on the
Merkle–Damgård construction are MD4 [17], MD5 [18], SHA-1 [13], and many others.

MD2 [5] is an example of a hash function which does not follow the Merkle–
Damgård principle. It was developed in 1989 by Ron Rivest. It was soon deemed to
be too slow; since it is based on operations on words of only 8 bits, and inherently
serial, significant speed improvements on the more common processors operating with
larger word sizes are not possible. MD2 deviates from Merkle–Damgård-based hash
functions in that a second state, the so-called checksum, is computed from the message,
and this checksum is subsequently appended to the message as an additional message
block. This feature is quite unique to MD2. Another feature which separates MD2 from
immediate successors such as MD4, MD5, and SHA-1 is the use of an S-box.

MD2 was soon superseded by other designs, not because it had been broken, but
because its performance could not compete with the more modern designs. Although,
as we describe in the following, there is a number of successful cryptanalytic results on
MD2, it is still used in practise and is part of several (de facto) standards, e.g., PKCS
#1 v2.1: RSA Cryptography Standard [20]. As an example, VeriSign has issued a class
3 root certificate (expiring in 2028) using MD2 in the signature algorithm [22].

The first analysis of MD2 was done by Preneel [15], who noted that after 16 rounds
(out of 18), not all hash values are possible. Rogier and Chauvaud [19] described a
collision attack on a simplified variant of MD2 where the checksum block is omitted.
The first attack against the full MD2 hash function was a preimage attack published
by Muller [12] in 2004. This attack was improved by Knudsen and Mathiassen in [6],
where they also generalised and found further use of the collision attack by Rogier and
Chauvaud.

In this paper we present the current state of the art of cryptanalysis of MD2. Hence,
we describe known attacks and also present new attacks and improvements. Among the
new attacks, there are the first collision attack breaking the birthday bound on the full
MD2 hash function and also an improved preimage attack on the full hash function,
having complexity about 273. See Table 1 for a summary of the best known attacks on
MD2.

The paper is organised as follows. In Sect. 2 we introduce the MD2 hash function and
mention an important observation in Sect. 3. In Sect. 4 we describe the known collision
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Table 1. A summary of the best known attacks on MD2 and their approximate complexities.

Attack type Note Reference Time complexity Memory complexity

Collision No checksum [19] 212 (negligible)
Collision Full hash This paper 263.3 252

(2nd) preimage Full hash This paper 273 272

attacks of Rogier and Chauvaud [19] and Knudsen and Mathiassen [6], and we also
present a new collision attack on the MD2 compression function giving the attacker
more freedom than in the known attacks, and which leads to a collision attack on the
full hash function. In Sect. 5 we describe known preimage attacks by Muller [12] on
the MD2 compression function, one of which can be improved and extended to a new
preimage attack on the full hash function. Finally, in Sect. 6 we conclude.

2. Description of MD2

MD2 takes messages of any length and returns a 128-bit hash. The message is padded
so that its length becomes a multiple of 16 in bytes. Padding is described in Sect. 2.1.
The message is then split into t blocks m1,m2, . . . ,mt of 16 bytes each, and a 16-byte
checksum block c is computed from the padded message. c is appended to the message
as the (t +1)th message block. The t +1 blocks are then processed sequentially: starting
from the initial state (denoted h0 in the following) which is the all zero 16-byte string,
every message block updates the state, and the state after mt+1 has been processed is
the output of the hash function. Hence, once the checksum block has been appended to
the message, MD2 can be seen as following the Merkle–Damgård principle (1) on the
resulting message. We now give the relevant details of the MD2 hash function. Since
the internals of the checksum function are irrelevant to the attacks presented in this
paper, a detailed description is postponed to Appendix A.2. We would like to mention
here, however, that the checksum function takes two inputs, the current checksum and
a message block, and produces a new checksum. The checksum function is invertible,
i.e., given two of the three values, the third can be easily computed.

2.1. Padding

If the original message consists of r bytes, then d bytes, each having the value d , are
appended to the message, where d is the integer between 1 and 16 such that r + d is
a multiple of 16. Hence, all messages are padded, even if r is itself a multiple of 16.
This padding rule ensures that there is a one-to-one relationship between the original
message and the padded message.

2.2. The Compression Function

In the following we denote by xb the bth byte of a string x. The compression function
f : {0,1}128 × {0,1}128 → {0,1}128 works as follows. Given 16-byte strings hin (called
the chaining input) and m (the message block), let

A0 ← hin,
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Fig. 1. The MD2 compression function. The ‘0’ entering from the left in the first computed row is a constant.
In the rows below, the value that enters from the left is the sum of the last byte computed in the row above,
and a round constant which is i − 1 in row i.

B0 ← m,

C0 ← hin ⊕ m

(⊕ is the exclusive or (xor) operator). The concatenation Ai‖Bi‖Ci may be viewed as
a single 48-byte entity Xi .

To generate the output of the compression function, do the following:

1. L ← 0
2. For increasing i from 1 to 18 do

(a) For increasing j from 0 to 47 do
i. X

j
i ← S(L) ⊕ X

j

i−1

ii. L ← X
j
i

(b) L ← L + i − 1
3. Output A18, i.e., the first 16 bytes of X18.

Here, S is a nonlinear bijective function (an S-box) from {0,1}8 to {0,1}8, the specifi-
cation of which can be found in Appendix A.1.

See also Fig. 1. This view of the compression function is instructive when studying
the attacks presented in this paper. We shall often refer to the three rectangular structures
as rectangles A, B , and C, since row i of, e.g., A is exactly Ai . Note that since there
are 832 bytes in total in the three rectangles A, B , and C, we shall often estimate that
computing one byte corresponds to 1/832 compression function evaluations. This will
also be used as an estimate for a simple operation such as an xor.

3. Observations on the Compression Function

Since X
j
i is computed as the xor of X

j

i−1 and a bijective function of X
j−1
i (for i > 0

and j > 0), a cryptanalyst may instead compute either of the three values from the two
others in one of the following ways:

X
j
i = X

j

i−1 ⊕ S
(
X

j−1
i

)
, (2)
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Fig. 2. The shaded values are the values of the rectangle A that may be computed if the output of the
compression function, corresponding to the last row of A, is known.

X
j

i−1 = X
j
i ⊕ S

(
X

j−1
i

)
, (3)

X
j−1
i = S−1(Xj

i ⊕ X
j

i−1

)
. (4)

For i = 0, X
j
i is not computed but is rather part of the input. X0

1 = A0
1 is computed

from X0
0 = A0

0 = h0
in only.

For j = 0, a similar relationship exists, i.e., X0
i (= A0

i ) is computed from X0
i−1 and

X47
i−1 (= C15

i−1).
Comparing with Fig. 1, this means that any “triangle” of the form

is completely determined by two of the squares. As an example, if the output of the com-
pression function, which corresponds to the last row of A, is known, then by repeatedly
applying (3) above, one may compute the entire lower right triangle as indicated in
Fig. 2. In the following, we shall generally indicate known values as shaded squares of
the rectangles A, B , and C.

4. Collision Attacks

In this section we describe a number of collision attacks on MD2. The first attack by
Rogier and Chauvaud [19] finds collisions of the MD2 compression function and re-
quires the chaining input to be the all-zero 128-bit string (which is also the specified
initial value of the hash function). Because of the checksum block, this attack does not
constitute an attack on the MD2 hash function. The second attack we describe is a gen-
eralisation of the first attack, where more collisions are found, and hence it improves
the applicability of the first attack. For instance, it enables the construction of multicol-
lisions, which are sets {m1,m2, . . . ,mr}, r ≥ 2, of messages all having the same hash,
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Fig. 3. Known values (shaded) in the collision attack.

however, these are still only attacks on the compression function. The last collision
attack we describe is an attack on the MD2 compression function where any chaining
input may be used. This attack can be extended into an attack on the MD2 hash function,
which is slightly faster than the birthday attack.

4.1. A Collision Attack on the Compression Function

The first collision attack [19] requires that hin = 0, i.e., A
j

0 = 0 for 0 ≤ j < 16. This
also means that B0 = C0, and the idea of the attack is to have

A15
i = B15

i = C15
i for 1 ≤ i ≤ 14. (5)

In other words, the last columns of A, B , and C should be identical down to row 14,
inclusive. With this condition and the condition on hin, the entire rectangle A down
to row 15 can be computed. Also, given part of the last column of B and C, we can
compute the lower right triangle of B and C from row 1 down to row 14. See Fig. 3.
Note that all these values are independent of the message when (5) holds and that the
lower right triangle contains the same values in all three rectangles.

At this point, row 14 of B is determined except for the two values B0
14 and B1

14. By
selecting these, given the last column of A, we can compute the entire rectangle B down
to row 14, and hence m is determined (since it equals B0). Since A is determined down
to row 15, two messages collide if they collide on the values A0

16, A0
17, and A0

18. From
the 216 different values of m arising from different choices of B0

14 and B1
14, we can form

232/2 pairs, so we expect about 27 of them to collide on the 24 bits, assuming that these
are uniformly distributed.

If one is interested in only a single collision, this can be found in time about 212, since
the attack is in effect a birthday attack on 24 bits. Memory requirements are negligible.

4.2. More Collisions and Multicollisions

The attack just described can be generalised as follows. In the attack we may choose
to impose the requirement A15

i = B15
i = C15

i for 1 ≤ i ≤ k, where k is some fixed
value that we are free to choose as long as 1 ≤ k ≤ 14. This would have the effect
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Fig. 4. The idea of the collision attack with arbitrary chaining input. Shaded values are chosen, or computed
from the chaining input and the chosen values. The blackened columns are computed from the left and from
the right, as indicated by the arrows. These are the “meet-in-the-middle” columns.

that we can vary the 16 − k bytes B0
k , . . . ,B15−k

k , giving us more collisions as k is de-
creased. The messages now have to collide on the 17 − k bytes A0

k+2, . . . ,A
0
18, and the

complexity of finding all collisions is 28(16−k). The expected number of collisions is
22·8(16−k)−1/28(17−k) = 28(15−k)−1.

To find an r-way multicollision, i.e., r message blocks that all have the same hash,
we may reduce k above. For every set of r messages, the probability that all r messages
have the same hash is 2−8(17−k)(r−1). The number of different subsets of r messages out
of a set of 28(16−k) messages is

(
28(16−k)

r

)
≈ 28(16−k)r/r!.

Multiplying this number by the probability of an r-way multicollision per subset of r

messages, we get the expected number

28(16−k)r/r! · 2−8(17−k)(r−1) = 28(17−k−r)/r!
of r-way multicollisions.

Hence, if one is looking for, e.g., four messages all having the same hash, by choosing
k = 12 there is a very high probability that one succeeds. The complexity of this attack
with k = 12 is about 232.

4.3. A Collision Attack with Arbitrary Chaining Input

We now describe a collision attack on the MD2 compression function which does not
impose any restrictions on the chaining input and which leads to an attack on the full
MD2 hash function. The attack is largely inspired by the preimage attack described in
Sect. 5.1.2, which was discovered first. We describe the two attacks independently.

Given a chaining input hin, we look for messages that collide starting from hin. We
choose C15

1 , C15
2 , . . . , C15

k arbitrarily, for some k, 1 ≤ k < 18. This will enable us to
compute A1 to Ak+1, because hin is known. We also choose B15

1 , . . . , B15
k arbitrarily.

The attack proceeds as follows, where we are free to choose � ∈ [0,64] (see Fig. 4 for
an illustration of the idea of the attack).

1. For 2� different values of m0, . . . ,m7, compute B7
j and C7

j for 1 ≤ j ≤ k, in the
forward direction (i.e., using (2)). Store the message bytes in table T1, indexed by
the 2k bytes computed. In the case of collisions on the index, several messages
can be stored in, e.g., a linked list.

2. For 2� different values of m8, . . . ,m15, compute B7
j and C7

j for 1 ≤ j ≤ k, in the
backward direction (using (3)). Store the message bytes in table T2, indexed by
the 2k bytes computed. Again, collisions must be handled properly.
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3. Find (in linear time) all matches between indices of the two tables. Store the corre-
sponding complete message blocks in table T . The expected number of messages
in T is 22�−16k , since there are 22� pairs of message halves, and each pair consti-
tutes a match on the 2k bytes with probability about 2−16k .

4. Find all colliding messages in T .

Two messages in T collide with probability about 2−8(17−k), since they must collide
in 17 − k bytes. Hence, the size of T must be at least 24(17−k) for a collision to occur
with good probability. This means that for a given (integer) value of k, we would choose
� such that

2� − 16k = 4(17 − k) ⇐⇒ � = 6k + 34. (6)

The complexity of the attack is dominated by the construction of T1 and T2, and the
subsequent construction of and search through T . T1 and T2 are constructed using 2 · 2�

computations of the 2k bytes in column 7 of B and C. Each computation (on average)
corresponds to about 2k 8-bit xors, since given, e.g., m0, . . . ,m6, one may precompute
part of column 6 and loop through all values of m7. Then, only a single xor is required to
compute each byte in column 7. On a 32-bit machine, 4 xors can be done in one opera-
tion. Hence, each computation may be estimated to be equivalent to about 2/832 < 2−8

compression function evaluations. This depends on k, but for values up to k = 6, this
estimate seems reasonable. Hence, the construction of T1 and T2 takes time equivalent
to about 2�−7 compression function evaluations. The subsequent search through the two
lists takes a similar amount of time, so the complexity of this first part is about 2�−6.

Finding collisions in T requires about the same number of compression function
evaluations as the size of T , which is 22�−16k . Hence, the total complexity of the attack is
about 2�−6 +22�−16k . Using (6) to eliminate �, we get the complexity 26k+28 +2−4k+68,
which we want to minimise, observing that k must be an integer. The optimal value is
k = 4, yielding � = 58, and a total complexity of around 253. This complexity is well
below the complexity of a standard birthday attack. However, the memory requirements
are about 2� message blocks. These can be reduced; see the subsection below.

The probability of success for the attack is estimated to be about 0.39. For a better
success probability, � may be increased; with, e.g., � = 58.6, the success probability is
estimated to be about 0.93, and the complexity of the attack is about 254. We shall use
this complexity estimate below.

4.3.1. Memory Requirements

The memory requirements of the meet-in-the-middle part can be reduced significantly
by using a memoryless meet-in-the-middle search, as described by Quisquater and De-
lescaille [16] and also by van Oorschot and Wiener [21]. This technique can also be
used to find multiple solutions for the meet-in-the-middle problem, as needed in the
attack described above. Using this method, memory requirements can be reduced to a
negligible quantity, but the time complexity slightly increases.

However, still about 24(17−k) (which is 252 with k = 4) solutions to the meet-in-the-
middle problem must be found, and the corresponding message blocks must be stored
so that collisions among them can be found. With fewer solutions, the collision still
occurs with some (lower) probability. Hence, a way to reduce memory requirements
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of the second part also is to repeat the attack several times with a smaller value of �.
However, this is not an effective way of reducing memory requirements; reducing them
by a factor K leads to roughly a factor K2 increase in time complexity.

We might add that the time complexity of a cryptanalytic attack can never (asymp-
totically) be below the memory complexity, since the memory needs to be written and
(usually) read. Accurately estimating the time needed for a memory access compared to
the time needed for a compression function evaluation is, however, close to impossible
and depends on many factors such as the type of storage used. Assuming a one-to-one
relationship between the two seems to be the best (conservative) estimate.

4.3.2. Collisions for the Full MD2

The collision attack on the compression function can be extended to attack the full
MD2 hash function. This extension has a time complexity (in terms of compression
function evaluations) slightly below that required by the birthday attack on MD2, but
the memory requirements are high, and therefore, in practise, the attack may not be
faster than a birthday attack. We describe the attack nonetheless.

The extension of the collision attack entails two complications: (1) padding for the
message must be correct, and (2) the checksum block must be correct. Condition (1)
is easily fulfilled; simply append to every message an additional message block of 16
bytes each with the value 16. Condition (2), on the other hand, is not as easily dealt
with.

By Joux’s method [4], using 65 collisions with chosen chaining input, we can con-
struct a 265-way multicollision of messages of 65 blocks each. With probability about
p1 = 1−1/e2, one of the pairs also collides on the checksum block. To find this pair, we
need to compute (and store) the 265 checksums. Since updating the checksum with one
message block takes about 16/832 ≈ 2−5.7 times the time of one compression function
evaluation, computing the 265 checksums takes time about (265 +264 +· · ·+2) ·2−5.7 ≈
260.3 in terms of compression function evaluations. The memory requirements are 265

checksums (along with some bits identifying the combination of message blocks). Find-
ing the 65 ≈ 26 collisions takes time about 26+54 = 260 using the collision attack de-
scribed above. Hence, the total complexity of the attack is about 260.3 + 260 ≈ 261.2.
Taking into account the probability of finding the collision in the checksum block, the
complexity may be estimated to 261.2/p1 ≈ 261.4. As mentioned above, accessing the
memory required to store the checksums may take longer than this estimate. The birth-
day attack on MD2 is expected to take time about 265.5, because hashing a message
always requires at least two compression function calls due to the checksum block.

To reduce memory requirements, a collision in the checksum can be found using a
cycle-finding method [1,3,14]. (Note, however, that the memory requirements for find-
ing the collisions in the compression function are about 259 hash values, or 252 in the
memory-reduced case.) As an example trade-off, consider the following attack: Pre-
compute all 249 checksums of the messages that can be constructed from the first 49
message blocks. Use the cycle-finding algorithm to iterate through the full checksums,
requiring the computation of 16 = 24 “atomic” checksums for each, hence requiring the
time of about 2−1.7 compression function evaluations. Assuming that 264.6 checksums
are needed before the algorithm starts repeating (estimate taken from Nivasch [14]), this
method takes time about 262.9. The complexity of finding the 265-way multi-collision
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should be added, yielding a total time complexity of about 263.3. Memory requirements
are now dominated by the collision attack on the compression function, hence about 252

in the memory-reduced case.

5. Preimage Attacks

A preimage attack on the compression function of a hash function in Merkle–Damgård
mode can often be extended to a preimage attack on the hash function. This is true in
particular if the attack works for any chaining input to the compression function. In
MD2, however, the checksum block makes things more complicated. We start off with
a description of three types of preimage attack on the compression function, and then
we describe how these can be extended to cover the full MD2 hash function. We note
here that any type of preimage attack, whether on the compression function or on the
hash function, when carried out by the brute force method, has complexity about 2128

in terms of compression function evaluations.

5.1. Preimage Attacks on the MD2 Compression Function

When discussing preimage attacks on a compression function f taking two inputs, we
need to make the following distinction between three different types of preimage attack:

Type 1: Given hout, find hin and m such that f (hin,m) = hout.
Type 2: Given hout and hin, find m such that f (hin,m) = hout.
Type 3: Given hout and m, find hin such that f (hin,m) = hout.

Type 1 is sometimes called a pseudo-preimage attack on the compression function. We
now describe how to carry out these attacks on the MD2 compression function.

5.1.1. A Type 1 Attack

In a type 1 attack, the attacker is free to choose the chaining input hin. Hence, a type 1
attack will always be at least as efficient as a type 2 or 3 attack. In the case of MD2,
the type 1 attack can be carried out more efficiently than the two others. Let the target
output be hout.

Given hout, we can compute the lower right triangle as indicated in Fig. 5a. By arbi-
trarily fixing A15

1 and A15
2 , we may complete a further two “diagonals” in A, see Fig. 5b.

We note that fixing A15
1 and A15

2 introduces a condition on hin: one byte-degree of free-
dom is lost because A15

1 depends only on hin. A15
2 , on the other hand, depends also on

the message block, so fixing this byte introduces no condition on hin.
When hout, A15

1 and A15
2 are fixed, the rectangle B does not depend on hin but only

depends on the message block m.
On the other hand, using just the chaining input hin, we can compute all of A. By

fixing the last, say, k bytes of every message block, we can furthermore, independently
of the remaining bytes in the message blocks, compute a large part of C and part of
the last column of B . See Fig. 6, which shows how much of B and C can be computed
when k = 6 is assumed. The blackened bytes play a certain role in the attack. With any
given k, we can compute k + 1 bytes of the last column of B . The idea of the attack is
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Fig. 5. The type 1 preimage attack. This figure shows the values of A that can be computed (a) from hout
and (b) from hout, A15

1 and A15
2 .

Fig. 6. The type 1 preimage attack. The shaded and blackened values are the values of B and C that can be
computed once the chaining input and the last 6 bytes of the message block are fixed.

now to compute B for many different values of the message block m, but where the last
k bytes of m are the same for all these message blocks. Similarly, we compute A and
the part of B and C seen in Fig. 6 for many different chaining inputs hin, using the fact
that we know the last k bytes of the message block. We then look for a collision on the
blackened bytes of B in Fig. 6. For each collision, we check if the message block and
the chaining input also match on the remaining blackened bytes (those in C) in Fig. 6.
If they match, then we have found a chaining input hin and a message block m such that
f (hin,m) = hout.

An algorithmic version of the attack, with any value of k from 0 to 16, follows.

1. We are given the target chaining output hout. Fix A15
1 and A15

2 arbitrarily and
compute the part of A that is shaded in Fig. 5.

2. For each of the 28(16−k) values of the message block for which the last k bytes
are fixed to some arbitrary values, compute B and store the last column in the
table T1.

3. Choose 28(k+1) chaining inputs such that A15
1 , as chosen in Step 1, is reached.

In other words, choose the first 15 bytes of each input and compute the required
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value of the 16th byte. For each of these inputs, compute all of A and the parts of
B and C that are shaded in Fig. 6. Store the blackened bytes in the table T2.

4. Find collisions in T1 and T2 on the last k +1 bytes of the last column of B , i.e., the
blackened bytes of B in Fig. 6. Since T1 contains 28(16−k) values, and T2 contains
28(k+1) values, and the collision must occur in k +1 bytes, we expect to find about
28(16−k)+8(k+1)−8(k+1) = 28(16−k) collisions.

5. For a collision from the previous step to correspond to a preimage, the chaining
input/message pair must also agree in the remaining 16 − k blackened bytes in
Fig. 6. For each collision, this happens with probability about 2−8(16−k). Hence,
we expect to find one preimage with this method. Since we stored the last column
of B in T1, and all blackened bytes in T2, we only need to do a few computations
for each collision to check if there is a match.

Let us find the optimal value of k. Step 1 is only performed once and hence does not
contribute to the complexity of the attack. In Step 2 we compute B 28(16−k) times.
Since computing B corresponds to evaluating about one third of the compression func-
tion, Step 2 has complexity below 28(16−k)−1. In Step 3 we compute about half of A,
most of C, and k + 1 bytes of B , 28(k+1) times. The complexity is equivalent to about
28(k+1)−1 evaluations of the compression function. In Step 4 we find collisions between
T1 and T2. If the tables are sorted, which can be done as they are formed, the expected
complexity of finding the collisions is about max(28(16−k),28(k+1))/832, assuming that
a comparison on the k + 1 bytes on average requires an amount of work similar to com-
puting one byte in the compression function (recall that 832 bytes need to be computed
in the compression function). In Step 5 we need to check each collision to see if the col-
lision extends to the remaining blackened bytes. There are about 28(16−k) collisions, and
we need to compute on average about 16 − k bytes to check if there is a match (in most
cases, there will be no match already on the byte C15−k

1 , i.e., the top blackened byte in
Fig. 6). Hence, the expected complexity of Step 5 is about 28(16−k) · (16 − k)/832.

To sum up, Steps 2, 3, and 5 are expected to dominate the total complexity, so we
try to minimise these complexities. Having 16 − k = k + 1 would give Steps 2 and
3 similar complexity. This would result in k being a noninteger, which complicates the
attack. With k = 7 we get a total complexity of about 271 +263 +272 ·9/832 ≈ 271. With
k = 8 the complexity is about 263 + 271 + 264 · 8/832 ≈ 271. The memory requirements
and the number of memory accesses are about 272 in both cases; therefore, we might
“round up” the time complexity also to 272.

We would like to point out that there are two important differences between the de-
scription of the attack given here and that of Muller [12]:

– In Muller [12], k is chosen to be 6, but the work done in Steps 2 and 3 is scaled
differently. One does not really need to choose 28(16−k) message blocks and 28(k+1)

chaining inputs, as described above, but one cannot choose more message blocks
than this number, and the product of the two numbers must be at least 2136 to
get a preimage with good probability. The resulting complexity in Muller [12] is
dominated by Step 5 and is therefore about 280 · 10/832 ≈ 273.6.

– In Muller [12], the last k = 6 bytes of the chaining input are also fixed. This is
not necessary, since C can be (and needs to be) computed from scratch for every
chaining input. The reason is that the first column of A depends on all bytes of the
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Fig. 7. The type 2 preimage attack. The shaded bytes are the bytes of A that can be computed from hin and
hout. By fixing the value marked ‘$’, the rest of A can be computed.

chaining input, and therefore C does as well. The fact that only a single byte of the
chaining input is fixed (by A15

1 ) leads to an improvement of the preimage attack on
the full MD2 hash function, as we shall see in Sect. 5.2.

5.1.2. A Type 2 Attack

In a type 2 attack on the MD2 compression function, a solution is not guaranteed to
exist, but on the average one message m solves f (hin,m) = hout, where hin and hout are
given. We now describe such an attack. The attack follows the same principles as the
collision attack of Sect. 4.3.

Since hin and hout are given, we can compute a large part of A as shown in Fig. 7.
As shown, by fixing a single byte of A, all of A can be computed. With hin and hout
given, most likely only a single value of the byte A0

2, indicated with a ‘$’ in Fig. 7, will
produce a preimage. With the first and last column of A known, we know what enters
the first column of B and what leaves the last column of C.

The attack proceeds as follows, where A0
2 = 0 to begin with (the reader may again

refer to Fig. 4).

1. Compute all of A.
2. For every possible value of the four bytes B15

1 , B15
2 , B15

3 , and B15
4 , do the follow-

ing:
(a) For every value of the first 8 message bytes, compute rows 1–4 of columns 0–

7 of both B and C. Store the message bytes in table T1 indexed by the value of
the 8 bytes of B and C. T1 consists of 264 messages. In the case of a collision
on the index value, resolve this by using, e.g., a linked list.

(b) For every value of the last 8 message bytes, compute rows 1–4 of columns
7–15 of both B and C (in the backward direction). Store the message bytes in
table T2 indexed by the value of the 8 bytes of B and C. T2 also consists of
264 values, and collisions must be taken care of.

(c) Find all matches between indices of tables T1 and T2. Produce corresponding
message blocks by all possible combinations of message halves stored at col-
liding indices. Since there are 2128 possible messages and 264 possible indices,
about 264 candidate messages are expected.
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Fig. 8. The type 3 preimage attack. Known values in A (shaded) after having guessed two bytes, e.g., A15
1

and A15
2 . All values in B are known at this point.

(d) For every candidate message, check if it is a proper preimage, and if it is, add
it to list M .

(e) Increment A0
2 by 1. If A0

2 = 256, stop. Otherwise, go to Step 1.

At the end M contains all preimages for the given values of hin and hout. The expected
number of such preimages is 1.

The complexity of the attack must be evaluated. First, there is an outer loop count-
ing over the 28 possibilities of A0

2. Second, there is another loop inside the first, which
counts over the four bytes B15

i , 1 ≤ i ≤ 4. For these, there are 232 possibilities. For each
of these, in total 240 values, we produce two lists of 264 elements each by computing
four rows of B and C. However, as described in Sect. 4.3, by not doing the same work
more than once, we may compute the 8 bytes by (on average) 2 32-bit xors, and hence
we estimate the workload to be equivalent to 2−8 compression function evaluations. In
total, producing the two lists requires an estimated time about 257 in terms of compres-
sion function calls. Once the lists are produced, collisions can be found in linear time
since the lists are sorted. Hence, we estimate that this step takes about the same time as
producing the two lists, i.e., 257. Finally, we must search the about 264 candidates for
messages that produce the right A18. On average, about 32 bytes of the full state X must
be computed for each candidate, and hence we may estimate that this step corresponds
to 264 ·32/832 ≈ 259.6 evaluations of the compression function. This should be added to
the 2 ·257 and subsequently multiplied by 240, yielding a total complexity of about 2100,
not counting memory accesses, which amount to about 2105. The memory requirements
are about 264 message blocks.

5.1.3. A Type 3 Attack

The type 3 attack on the MD2 compression function is similar to the type 2 attack. In this
case B0 is known, but A0 is not. From A18, however, the lower right triangle of A can
be computed, and by guessing two bytes, e.g., A15

1 and A15
2 , all of B can be computed.

See Fig. 8, where the known bytes in A (after guessing two bytes) are shaded.
Now one may perform a meet-in-the-middle attack as the one in the type 2 attack,

only the four bytes in rows 1–4 of the last column of C are now guessed, and the meet-
in-the-middle columns are columns 7 of C and A. The complexity of the attack after
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guessing is the same, but in this type 3 attack we need to guess one more byte, increasing
the complexity to about 2108 (2113 memory accesses).

5.2. Preimage Attack on the Full MD2

The preimage attacks on the MD2 compression function can be extended to cover the
full MD2 hash function, as described in this section. In the previous papers [6,12] the
type 2 preimage attack from above was used to produce a preimage on the hash func-
tion. However, given the additional freedom in the choice of hin in the type 1 attack,
compared to the description of this attack in Muller [12], the type 1 attack can in fact be
used to produce preimages for the full hash function more efficiently.

The idea is to compute the 28(k+1) chaining inputs from a given initial value, instead
of choosing them directly. Say we are given an initial value hiv. Then we may choose
message blocks mi

0, 0 ≤ i < 28(k+2) and compute hi
1 = f (hiv,m

i
0) for each i. Since only

about 1 in 256 of these will produce the value of A15
1 that we choose in the beginning,

there will be about 28(k+1) valid chaining inputs. This is the number required in the
type 1 attack, as described in Sect. 5.1.

We still have not taken the checksum into account. We shall postpone this a little
longer and determine the complexity of the attack when the chaining inputs are com-
puted rather than chosen directly. The only difference is in Step 3, where the complex-
ity now is about 28(k+2) instead of 28(k+1)−1. With k = 7 the total complexity is about
271 + 272 + 272 · 9/832 ≈ 272.6.

The attack described provides two messages blocks, say m0 and m1, such that
f (f (hiv,m0),m1) = hT for some given target chaining output hT and a given initial
chaining value hiv. The probability that m1 is the checksum of m0, as required, is only
about 2−128. However, if we have 2128 preimages of hT, then with good probability, one
of them will have m1 as its checksum. We do not have to carry out the attack 2128 times,
though. Instead, we do the following (see also Fig. 9).

1. Given a target hash value hT and the initial value h0 of MD2, produce a 2128-
way multicollision by the method of Joux [4], starting from h0. Let the common
chaining output of all these 2128 messages be h128.

2. With hiv = h128, carry out the preimage attack described above on the compres-
sion function. Say this preimage attack produces two message blocks m0 and m1
such that f (hiv,m0) = h129 and f (h129,m1) = hT.

3. Find the checksum state C∗ such that g(C∗,m0) = m1, where g is the checksum
function of MD2. This step requires negligible time, since inverting the checksum
function is as efficient as computing it in the forward direction.

4. Perform a meet-in-the-middle search through the 2128-way multicollision to find
a message in this multicollision which has checksum C∗. This search is done
by computing the 264 checksums of the first 64 blocks of the messages in the
multicollision, and also the 264 checksums reached by inverting the checksum
backwards through the last 64 blocks of the messages in the multicollision. One
then searches for a collision among these 2 × 264 values. Let the message found
by this meet-in-the-middle search be M .

5. A preimage of hT is m∗ = M‖m0. m1 is the checksum of m∗. It is a simple matter
to ensure, in Step 2, that m0 is properly padded.
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Fig. 9. An illustration of the 5 steps of the preimage attack on the full MD2 hash function. Circles represent
hash (chaining) states, and squares represent checksum states.

(We note that the technique used in Step 4 to find the message having the right check-
sum has been used before in preimage attacks on other hash functions [7–10].) Step 1 re-
quires finding 128 collisions in the MD2 compression function. By the birthday method,
this has complexity about 264+7 = 271. By using the collision attack of Sect. 4.3, the
complexity is only about 260. Step 2 has complexity about 272.6, as found above. Step
3 has negligible complexity, and Step 4 requires about 266 evaluations of the checksum
function, when the tree structure of the multicollisions is taken into account. Hence,
the complexity is about 260.3 in terms of compression function evaluations. Altogether,
Step 2 dominates the attack with respect to complexity, and hence the total complex-
ity is about 272.6. If collisions are found by a birthday attack in Step 1, then the total
complexity is about 273. As in the type 1 preimage attack on the MD2 compression
function, memory requirements are about 272. The meet-in-the-middle attack in Step 4
can be carried out using memoryless techniques [16,21].

The preimage is of length 129 message blocks. If we can find a shorter 2128-way
multicollision, then we can find a shorter preimage. We now describe how the type 1
attack on the compression function can be used to produce short multicollisions faster
than by brute force. Then we explain how to use these multicollisions to produce shorter
preimages for the full hash function.

5.2.1. Multicollisions

By using more chaining inputs in the type 1 attack, we can find several preimages. For
instance, we may choose 280 message blocks mi

0, used to produce chaining inputs for
the type 1 attack. This would result in about 272 valid chaining inputs. With k = 7 we get
expected 28 preimages. The complexity is about 280 in terms of compression function
evaluations. Notice that this attack can be carried out using any initial chaining value
hin and any target chaining value hT. The result is a set of 28 two-block messages all
mapping hin to hT, and hence we have a 28-way multi-collision. This method can be
generalised; a 2t -way multicollision can be constructed in time about 272+t for t from
0 to 56.
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Table 2. Complexity of the preimage at-
tack with different preimage lengths.

Preimage length (blocks) Complexity

129 272.6

63 281

31 284

15 291

7 2106

5.2.2. Shorter Preimages

Let h32 = hT be the target hash, and choose h30 arbitrarily. Then find a 28-way multi-
collision mapping h30 to h32. Repeat this procedure, finding 28-way multicollisions
mapping h2i to h2(i+1) for decreasing i from 14 down to 0. h2i may be chosen arbitrarily
in each step, except when i = 0: h0 must be chosen as the initial value of MD2.

By this procedure we obtain (28)16 = 2128 preimages of hT, and we expect one of
them to have the right checksum. The complexity is about 16 × 280 = 284, and the
preimages are of length 2 · 16 − 1 = 31 blocks (the last block being the checksum).
Other combinations of preimage lengths and complexities are possible; see Table 2 for
examples.

5.3. 2nd Preimages

The preimage attack is also a 2nd preimage attack, since it is trivial to ensure that the
preimage obtained is different from some given preimage. Hence, 2nd preimages of
length 129 blocks can be found in time about 273.

6. Conclusion

This paper describes both known and previously unpublished cryptanalysis of the cryp-
tographic hash function MD2. The cryptanalysis includes a number of collision and
preimage attacks on the MD2 compression function, and also methods of extending
these to the full MD2 hash function. The attacks on the full hash function constitute (in
the case of preimage attacks: significant) improvements over the previous best known
attacks.

The attacks prove that MD2 is neither one-way nor collision resistant, and hence
we recommend that the use of MD2 in any application relying on its cryptographic
properties be phased out.
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Appendix A. MD2 Details

Some details of the MD2 compression function are omitted in the paper but given here.
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Fig. 10. The MD2 S-box.

A.1. The S-box

The MD2 S-box is defined as follows. View the input as a two-digit hexadecimal value.
In Fig. 10, find the first input digit in the first column and find the second input digit in
the first row. Where the row and the column meet, find the output of S (in hexadecimal).
This S-box is derived from the digits of the fractional part of π .

A.2. The Checksum Function

The checksum function of MD2 operates with a 128-bit (16-byte) state (initially all
bytes are zero), which is updated by a message block of the same size. Let D denote the
state, and Di be the ith byte of the state. Let m be the message block with ith byte mi .
The state D is updated by m as follows.

1. L ← D15

2. For increasing i from 0 to 15 do
(a) Di ← Di ⊕ S(L ⊕ mi)

(b) L ← Di

The final value of the state D is the checksum of the message and will be processed as a
final message block. The reader may note the similarity between the checksum function
and the compression function of MD2.
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