J. Cryptol. (2010) 23: 580-593
ryptol. () Journal of

DOI: 10.1007/500145-010-9056-z CRYPTOLOGY

On d-Multiplicative Secret Sharing*

Omer Barkol®

HP Labs, Haifa, Israel
omer.barkol @hp.com

Yuval Ishai

Computer Science Department, Technion, Haifa, Israel
yuvali@cs.technion.ac.il
and
UCLA, Los Angeles, CA, USA

Enav Weinreb*

VERIX, Glil-Yam, Israel
weinreb@cs.technion.ac.il

Communicated by Ronald Cramer

Received 22 October 2008 and revised 22 December 2009
Online publication 5 February 2010

Abstract. A multiplicative secret sharing scheme allows players to multiply two
secret-shared field elements by locally converting their shares of the two secrets into an
additive sharing of their product. Multiplicative secret sharing serves as a central build-
ing block in protocols for secure multiparty computation (MPC). Motivated by open
problems in the area of MPC, we introduce the more general notion of d-multiplicative
secret sharing, allowing to locally multiply d shared secrets, and study the type of ac-
cess structures for which such secret sharing schemes exist.

While it is easy to show that d-multiplicative schemes exist if no d unauthorized
sets of players cover the whole set of players, the converse direction is less obvious for
d > 3. Our main result is a proof of this converse direction, namely that d-multiplicative
schemes do not exist if the set of players is covered by d unauthorized sets. In particu-
lar, #-private d-multiplicative secret sharing among k players is possible if and only if
k>dt.

Our negative result holds for arbitrary (possibly inefficient or even nonlinear) secret
sharing schemes and implies a limitation on the usefulness of secret sharing in the
context of MPC. Its proof relies on a quantitative argument inspired by communication
complexity lower bounds.

Key words. Secret sharing, Secure multiparty computation, Secure multiplication.

* Research supported by grant 1310/06 from the Israel Science Foundation and grant 2004361 from the
U.S.-Israel Binational Science Foundation. Work done in part while the authors were visiting the Institute for
Pure & Applied Mathematics (IPAM) at UCLA.

T Work done in part at the Computer Science Department, Technion.

¥ Work done in part at the Computer Science Department, Technion, and at CWI Amsterdam.

© International Association for Cryptologic Research 2010

mailto:omer.barkol@hp.com
mailto:yuvali@cs.technion.ac.il
mailto:weinreb@cs.technion.ac.il

On d-Multiplicative Secret Sharing 581

1. Introduction

Secret sharing schemes allow a dealer to share a secret among a set of players, such that
only some pre-defined authorized subsets of the players are able to reconstruct the se-
cret from their shares. The notion of secret sharing was introduced by Shamir [27] and
Blakely [7], independently, for the threshold case where the authorized sets are those
whose cardinality is larger than a given threshold. Later, Ito et al. [22] generalized this
notion to a setting where the authorized subsets are an arbitrary! family of subsets of
the players; this family of authorized subsets is called an access structure. Secret shar-
ing schemes are used in many cryptographic and distributed computing applications,
such as Byzantine agreement and distributed coin-flipping, distributed storage, thresh-
old cryptography, private information retrieval and locally decodable error-correcting
codes. Most notably, secret sharing is employed as a central building block in proto-
cols for secure multiparty computation (MPC) [6,9,15]. This latter application of secret
sharing serves as the primary motivation for the current work.

The application of secret sharing in the context of unconditionally secure MPC pro-
tocols relies on an additional multiplication property, allowing players to multiply two
secret-shared field elements by locally converting their shares of the two secrets into
an additive sharing of their product. More precisely, in a multiplicative secret sharing
scheme each player P;, given its share a; of a secret field element a and its share b; of
a secret field element b, can locally compute a field element ¢; such that the outputs c;
add up to ab. The multiplication property of Shamir’s threshold scheme [27] was im-
plicitly used in the early MPC protocols of [6,9]. The general notion of multiplication
for linear secret sharing schemes?” was first introduced and studied by Cramer, Damgérd,
and Maurer [13] and has since received a considerable amount of attention. In particu-
lar, efficient constructions of multiplicative secret sharing schemes were recently given
in [10,11,25]. The study of multiplicative secret sharing is motivated not only by the
natural application to secure multi-party computation, but also by recent applications to
zero-knowledge proofs and secure two-party computation [16,20,21].

It is known that multiplicative secret sharing is possible if and only if the access
structure is of type Q», namely there are no two unauthorized sets whose union covers
the entire set of players [13]. The negative result can be proved via a reduction to the
two-party case and by using known impossibility results for unconditionally secure two
party computation [17,23]. Furthermore, Cramer et al. [13] obtained strong positive re-
sults about the efficiency of multiplicative secret sharing. Specifically, any linear secret
sharing scheme can be transformed into a multiplicative linear secret sharing scheme
for the same access structure while only doubling the original share size. A stronger
notion of multiplication, termed strong multiplication, was also introduced in [13] and
motivated by its application to perfectly secure MPC in the presence of an active adver-
sary. Strong multiplication requires that even if an arbitrary unauthorized set of players

! Here and in the following, an access structure is required to be monotone, in the sense that if A is an
authorized set and A € A’ then A’ is authorized as well.

2 In a linear secret sharing scheme, the shares are obtained by applying a linear function to the secret and
random field elements picked by the dealer. In this paper, we consider the multiplication property in general
(possibly nonlinear) secret sharing schemes. We note, however, that the multiplication property implies some
limited form of linearity, namely that the shares of a secret can be locally converted into additive shares of the
same secret.

582 O. Barkol, Y. Ishai, and E. Weinreb

is excluded, the scheme still retains its (standard) multiplication property. In contrast to
standard multiplication, the efficiency of strongly multiplicative schemes realizing gen-
eral access structures is far less understood and remains an intriguing open question.
However, the class of access structures for which secret sharing with strong multipli-
cation is possible is well understood: A necessary and sufficient condition is that the
access structure be of type Q3, namely no union of three unauthorized sets covers the
entire set of players. Necessity follows by an easy reduction to the case of standard
multiplication.

In this paper, we consider a different natural extension of the basic multiplication
property of secret sharing that we call d-multiplication. The d-multiplication property
generalizes standard multiplication by considering a multiplication of d (rather than
two) secrets. Specifically, a secret sharing with d-multiplication allows to multiply d
secret-shared field elements by enabling the players to locally convert shares of d dif-
ferent secrets into an additive sharing of their product. In contrast to the case of strong
multiplication, even the question of characterizing the class of adversary structures that
admit a (possibly inefficient or even nonlinear) scheme with d-multiplication does not
seem straightforward when d > 3.

One direction is easy: both Shamir’s scheme (in the threshold® case) and the
replication-based secret scheme of Ito et al. [22] (in the general case) are d-multipli-
cative if the access structure is of type Q4. In particular, ¢-private d-multiplicative se-
cret sharing among k players is possible if k > dt. (By t-private we mean that every
set of ¢ players is unauthorized, without making any further requirement on the autho-
rized sets.) The main focus of the current work is on whether the above positive result
is optimal. In particular:

Is there any d > 3 for which there exists a 1-private d-multiplicative secret
sharing scheme involving d or fewer players?

We note that in the case of linear secret sharing, a negative answer follows from a
fairly simple linear algebra argument; see Corollary 1 in [30]. However, such an ar-
gument does not apply to general secret sharing. Moreover, in contrast to the cases
of multiplication and strong multiplication discussed above, here one cannot resort to
standard impossibility results for unconditionally secure MPC. Indeed, unconditionally
1-private computation of arbitrary functions is possible whenever the number of players
is at least 3 [6,9].

The above question is motivated by several open problems in the area of MPC. One
such problem is related to the possibility of secure computation in the following nat-
ural scenario. Suppose that n clients wish to employ m servers in order to securely
compute some (possibly complex) function of their inputs. We would like to obtain a
non-interactive protocol in which each client sends a single message to each server,
depending on its input and its local randomness, and gets a single message from each
server in return. The protocol should protect uncorrupted clients from any collusion
involving corrupted clients and a single server. (This can be generalized to collusions

3 Allowing a small gap between the privacy threshold and the reconstruction threshold, the algebraic—
geometric secret sharing scheme of Chen and Cramer [10] can support d-multiplication with the additional
feature that the size of each share does not grow with the number of players.

On d-Multiplicative Secret Sharing 583

involving clients and at most 7 servers.) Current techniques allow solving this problem
with m > 4 servers and leave the possibility of using only 3 servers open. The existence
of a l-private 3-multiplicative secret sharing scheme for 3 players would imply that
3 servers are indeed sufficient.

Other open problems which motivate our main question include the exact charac-
terization of the round complexity of secure multiparty computation of general func-
tions and the communication complexity of securely computing low-degree multivari-
ate polynomials, constant-depth circuits, and natural database search functionalities (see
Sect. 3 for a discussion of these problems). A positive answer to the main question, even
one obtained via nonlinear secret sharing, would imply solutions to these open prob-
lems.

Our main result provides a negative answer to the question, implying a limitation on
the usefulness of secret sharing in the context of MPC. More generally, there exists a
d-multiplicative secret sharing scheme realizing a given access structure if and only if
the access structure is of type Q. It is interesting to note that in the case d = 3 this is
precisely the condition for strong multiplication.

1.1. Technique

Interestingly, the proof of our main result relies on a quantitative argument inspired
by lower bound techniques in the area of communication complexity. To the best of
our knowledge, this is the first time such techniques are used in the context of proving
negative results on the feasibility of secret sharing or secure computation. (Different
connections between communication complexity and secret sharing were recently ex-
ploited in [4].) More concretely, we show that it is impossible to implement a secret
sharing scheme such that (i) no individual player gets information about the secret from
its share, and (ii) all d players can locally convert shares of d different secrets into an
additive representation of the product of these secrets. This impossibility result implies
the characterization described above. The proof shows a method for d servers, holding a
vector y of n field elements, to use any d-multiplicative secret sharing scheme in order
to communicate y to a client by sending him less than »n field elements altogether. This
method employs a technique that was previously used by Babai et al. [2] in the con-
text of obtaining lower bounds for the simultaneous messages model in communication
complexity.

The high level idea is the following. Let m = O(n'/?) and let V = {vy, ..., v,} be
a set of n distinct length-m vectors, each containing the value 1 in d positions and the
value O elsewhere. The vector y can be represented by an m-variate degree-d polyno-
mial py such that p,(v;) = y; for each 1 < j <n. By the d-multiplication property
of the given secret sharing scheme, if the vector v; is (componentwise) secret-shared
between the d servers, the servers can non-interactively communicate y; = py(v;) to
the client by each sending a single field element which depends on its share of v;. The
crucial property of our particular choice of V is that it is possible to find a valid secret-
sharing of all n vector v; such that the total number of distinct shares given to each
server is only O (n@=D/4) = o(n) rather than n. Thus, the entire vector y can be com-
municated to the client by having each server send only o(n) field elements, which for
sufficiently large n yields the desired contradiction.

584 O. Barkol, Y. Ishai, and E. Weinreb

Related Work In a recent and independent work, Zhang et al. [30] studied the power
of d-multiplicative linear secret sharing schemes and their relation with strongly multi-
plicative schemes. In particular, they showed that any linear 3-multiplicative scheme is
also strongly multiplicative, and that any linear strongly multiplicative scheme can be
efficiently converted into a strongly multiplicative scheme for the same access structure.
As discussed above, this answers our main question for the case of linear schemes, but
leaves open the question for the general case.

Organization In Sect. 2, we define d-multiplicative secret sharing schemes and dis-
cuss some of their properties. In Sect. 3, we present open problems and applications
which motivate the main question we address in this work. Finally, in Sect. 4, we
present our main (negative) result, which together with a folklore positive result (proved
in Appendix A) gives a precise characterization of the access structures for which d-
multiplicative secret sharing is possible.

2. Preliminaries

In this section, we formally define the notion of d-multiplicative secret sharing and
discuss some of its basic properties.

A secret sharing scheme involves a dealer and k players P;, 1 <i < k. We consider
secret sharing schemes in which the secret is taken from a finite field F.* The scheme
specifies a randomized mapping from the secret s to a k-tuple of shares (sq, ..., k),
where the share s; is given to player P;. We assume that all shares s; are taken from a
finite share domain S, and let D denote a discrete probability distribution from which
the dealer’s randomness is chosen. To share a secret s € [F, the dealer chooses a ran-
dom string r € D and applies a sharing function SHARE : F x D — S* to compute
SHARE(s,r) = (s1,...,8k). For T C [k], we let SHARE(s,)7 denote the restriction of
SHAREC(s, r)7 to its T-entries.

We turn to define the ¢-privacy and d-multiplication properties of secret sharing
schemes. We say that a secret sharing scheme is 7-private if no set of ¢ players can learn
anything about the secret from their shares. In contrast to traditional secret sharing, here
we do not insist that every set of ¢ + 1 players should be able to completely reconstruct
the secret from their shares. (This makes our negative results stronger.) However, the
multiplication property implies that all players together can reconstruct the secret.

Definition 2.1 (z-Private secret sharing). A secret sharing scheme is said to be
t-private if for every pair of secrets s,s’ € F and every set T C [k] such that |T| =1,
the random variables SHARE(s, r)7 and SHARE(s', r)7 (induced by a random choice
of r € D) are identically distributed.

We now define the d-multiplication property of secret sharing schemes which is the
focus of this work. In a d-multiplicative secret sharing scheme, each player should be
able to apply a local computation on its shares of d secrets, such that the outcomes of
the k local computations always add up to the product of the d secrets. Formally:

4 Our definitions and results can be generalized to the case of d-multiplicative secret sharing over arbitrary
finite rings.

On d-Multiplicative Secret Sharing 585

Definition 2.2 (d-Multiplicative secret sharing). We call a secret sharing scheme d-
multiplicative if it satisfies the following d-multiplication property. Let s!,...,s¢ € F
be d secrets, and r!,...,r% be d elements in the support of D. For 1 < j <d, let

(s{,....s]) = SHARE(s/, /). We require the existence of a function MULT : [k] x

89 — T such that for all possible s/ and 7/ as above we have ZLI MULT(, sil, s

<o 8

Remark 2.3. Note that the multiplication property imposes no linearity requirement
on the secret sharing scheme itself. That is, it may be that given shares of two secret
s1, 2 € IF, the players have no way of computing valid shares of the secret 51 + 5o (with
respect to the same scheme). This should not be confused with the ability to generate an
additive sharing of products of secrets after applying the function MULT.

In applications of d-multiplicative secret sharing that will be presented in the next
section, we will use the multiplication property to evaluate multivariate polynomials on
vectors of shared secrets. This motivates the following definition.

Definition 2.4 (Evaluating a polynomial on shares). Let p € F[xy, ..., x;,] be an m-
variate polynomial over I that can be written as the sum of degree-d monomials (of
the form o - x;, x;, - - - x;;). We define the operation of p on a vector of secret shares
(sl.], e, si’”) € 8™, where the shares are held by player P;, for some i € [k]. Each
monomial is evaluated by applying the function MULT to the corresponding shares,
and addition is simply the addition over F. That is, if

d
pPX1y .oy Xm) = Z aJl_[le

Jemd =1
J=(j1seesdid)

then
Pi(silv---vsim)g Z OlJ'MULT(i,sijl,...,sijd).

Jelmid
J=(j1s-na)
The above definition can be naturally extended to general polynomials of total degree
(at most) d by converting each monomial of degree d’ < d into an equivalent monomial
of degree d. This conversion is done by padding the monomial with d — d’ copies of
a dummy variable xg, whose corresponding secret will be set to 1. The shares of this

secret will always be set to SHARE(1, rp), where r¢ is some fixed element in the support
of D.

The following straightforward lemma shows that d-multiplication can be used to lo-
cally convert shares of the inputs of a degree-d multivariate polynomial into additive
shares of its output.

Lemma 2.5. Let p € F[xy,...,x,] be a degree d polynomial over F. Suppose that
the vector of secrets (s',...,s™) € F" was coordinate-wise secret shared using a d-

586 O. Barkol, Y. Ishai, and E. Weinreb

multiplicative secret sharing scheme, such that for every j € [m], the shares corre-
sponding to s/ are (sf, e, s,i) € SK. Then, it holds that

k
p(sl,...,sm)=Zp,-(si1,...,s;”).

i=1
3. Motivating Applications

In this section, we highlight several open problems in the area of MPC and connect
them with the problem of d-multiplicative secret sharing. These connections motivate
our main result, which rules out a solution of the open problems by means of better
d-multiplicative secret sharing schemes.

Since this section is mainly intended for motivational purposes, we do not include
formal definitions of the (standard) notions of MPC we will be using, and refer readers
to the literature (e.g., [8], [14, Chap. 7]) for such definitions.

3.1. Secure Polynomial Evaluation

In all of the following applications, we will apply a d-multiplicative secret sharing
scheme in order to securely evaluate a multivariate polynomial of total degree (at
most) d. For simplicity, we restrict the attention to security against “honest but curi-
ous” players, who follow the protocol’s instructions but try to learn as much as possible
about other players’ inputs from the messages they receive. This is also referred to as
security in the semi-honest model. We note, however, that the following protocols and
questions can be extended to the case of security against malicious players who may
behave arbitrarily.

In presenting the following secure polynomial evaluation protocol, it will be con-
venient to distinguish between “clients”, who hold inputs and receive outputs, and
“servers” who help perform the computation and only know the identity of the poly-
nomial that should be evaluated. Since the two roles are not mutually exclusive, this
generalizes the standard setting for secure computation in which each player is both a
client and a server.

More concretely, we consider a scenario in which n clients jointly hold inputs
(sl, ...,s8™) € F"" (where each input s’ is known to only one of the clients) and wish to
evaluate a publicly known degree-d polynomial p on their joint inputs without reveal-
ing their inputs to each other. To this end, the clients can interact with k servers. The
protocol should satisfy the following correctness and privacy requirements:

e Correctness. All clients output p(s',...,s™) (assuming that both clients and
servers follow the protocol).

e ¢-Privacy. Any collusion involving a strict subset of the clients and at most 7 servers
should not learn anything about the inputs of the other clients other than what
follows from their own inputs and the output.

For simplicity, we assume that m is a multiple of n and Client i holds inputs
(sG-DEHL s where £ = m/n.

On d-Multiplicative Secret Sharing 587

The following simple protocol applies d-multiplicative secret sharing for solving the
above secure polynomial evaluation problem with only two rounds of interaction.

Lemma 3.1. Given a t-private d-multiplicative secret sharing for k players over F,
there exists a t-private k-server secure polynomial evaluation protocol as above for
m-variate polynomials of degree d over F. The protocol requires only two rounds of
interaction, and its communication complexity’ is O (m).

The protocol proceeds as follows:

e Round 1: Client j, 1 < j < n, shares every input s” he holds by computing

SHARE(sh, rh) = (s{’, cee, s,i’). After sharing his £ inputs, he sends the vector of

shares that correspond to Server i, (s.(j —Dhe+l

l ,...,siﬂ) to Server i. In addition,
Client j distributes between the servers random additive shares of 0, namely it
sends to Server i a field element z{ such that the k elements zij are random subject
to the restriction that they add up to 0.

e Round 2: Server i, 1 <i <k, computes y; = p; (sil, .. .,sim) + Z';:l zl.] (where
pi (sl.l, e, sl.”‘) is as defined in Definition 2.4), and sends y; to all clients.

e Outputs: Each client computes and outputs Zle yi. By Lemma 2.5, this output is
equal to p(sl, ...,s™) as required.

In the following sections, we apply the above protocol in several different MPC sce-
narios.

3.2. Secure Computation with Minimal Interaction

The above secure polynomial evaluation protocol has the appealing feature of requiring
a minimal amount of interaction: the protocol involves only a single message from each
client to each server, followed by a single message from each server to each client. The
following open questions address the feasibility of general secure computation with
such a minimal amount of interaction.

Question 1. What is the smallest number of servers k such that n clients can -
privately evaluate an arbitrary function f of their inputs by sending a single message to
each server and receiving a single message in return? In particular, do 3 servers suffice
for 1-privacy?

The best upper bound on the number of servers k implied by current techniques (see
below) is k = 3¢ 4 1. In particular, the best known 1-private protocol requires 4 servers
(regardless of the number of clients). The above question is open even if one settles for
computational (as opposed to unconditional, or “information-theoretic”) privacy.

We now formulate a variant of Question 1 that applies to the standard MPC model,
in which k players wish to privately compute some function on their inputs by directly
communicating with each other over point-to-point channels.

5 The size of the field F and the number of players are considered as constants.

588 O. Barkol, Y. Ishai, and E. Weinreb

Question 2. What is the maximal privacy level ¢ for which k players can evaluate an
arbitrary function f on their inputs using a ¢-private 2-round MPC protocol? In partic-
ular, does every k-argument function f have a 2-round, L"Z;lj -private MPC protocol?

It is known [18] that a privacy level of ¢ = L%J can be achieved (see below), or
alternatively ¢t = L%J can be achieved if one allows three (rather than two) rounds
of interaction. The latter level of privacy is optimal if one insists on unconditional pri-
vacy [12]. Thus, while it is possible to get optimal privacy with nearly optimal interac-
tion or optimal interaction with nearly optimal privacy, the possibility of simultaneously
maximizing privacy and minimizing interaction remains an intriguing open question.

We now relate these questions to the problem of d-multiplicative secret sharing. This
relation together with standard constructions of d-multiplicative secret sharing schemes
(e.g., Shamir’s scheme for k > dt players) implies the state of the art mentioned above.

Using randomizing polynomials [18] it is possible to represent an arbitrary function
f by a vector of (randomized) degree-3 polynomials. The complexity of such a rep-
resentation can be polynomial in the branching program size of f [19], or even in the
circuit size of f if one settles for computational privacy [1] (and assumes the exis-
tence of a pseudorandom generator in NC!). Combining randomizing polynomials with
Lemma 3.1 we thus have the following:

Claim 3.2. Suppose there is a t-private 3-multiplicative secret sharing for k play-
ers. Then there is a t-private solution to Question 1 (resp., Question 2) with k servers
(resp., players). In both cases, the complexity of the protocol is either polynomial in
the branching program size of f (with perfect privacy) or in the circuit size of f (with
computational privacy, assuming the existence of a pseudorandom generator in NC1).

In particular, the existence of a 3-multiplicative secret sharing scheme for k players
that is L%J—private (as opposed to Lkg);lj—private, which is currently known) would
imply a positive answer to both open questions. Unfortunately, in Sect. 4, we show that
the latter is impossible to achieve.

3.3. Communication Complexity of Secure Computation

The polynomial evaluation protocol from Sect. 3.1 also suggests that better
d-multiplicative schemes would imply progress on the following open question:

Question 3. What is the minimal number of servers/players k required for 7-private
computation of degree-d multivariate polynomials in which the communication com-
plexity is linear in the length of the input (rather than the number of monomials)?

Currently it is known that k > dt /2 servers suffice [3,29]. The existence of a t-private
d-multiplicative secret sharing scheme for k players implies (via a straightforward use
of Lemma 3.1) that k players suffice.

Progress on Question 3 is motivated by techniques for representing useful classes of
functions by short vectors of low-degree polynomials, see [3,26,28]. Using such rep-
resentations, progress on Question 3 would imply better sublinear-communication pro-

On d-Multiplicative Secret Sharing 589

tocols for securely evaluating DNF and CNF formulas, securely searching for partial
matches, and solving other natural database search problems.

4. The Negative Result

In this section, we give an exact characterization of the type of access structures for
which d-multiplicative secret sharing is possible.

Our main result rules out the existence of a 1-private d-multiplicative secret sharing
schemes involving d (or less) players, for any value of d. The proof of this result uses an
information theoretic argument borrowed from the field of communication complexity.
Suppose there are d servers holding a vector y € [F”. The servers want to communicate
y to a client. We show that given a d-multiplicative secret sharing scheme for d players
that is 1-private, the servers can do so by sending to the client less than n field elements
(for sufficiently large n) and by this we derive a contradiction. For this we use the de-
composition technique of Babai et al. [2], which utilizes a small number of information
pieces to reconstruct a large amount of data. The high level idea of the proof was already
described in Sect. 1.1. Below we provide the details.

Lemma 4.1. There is no secret sharing scheme for d players that is 1-private and
d-multiplicative.

Proof. For notational convenience, we present the proof for the case d = 3. The gen-
eralization to an arbitrary d > 3 is straightforward. Suppose there is a 1-private, 3-
multiplicative secret sharing scheme for 3 players over some finite field I, with share
domain S. Suppose S1, S» and S3 are three servers holding a vector y € F”. The servers
are interested in communicating y to a client, using a small amount of communication.
Clearly, they cannot do that by sending less than n field elements. We show that given
the 3-multiplicative 1-private secret sharing scheme they can do it more efficiently (for
a sufficiently large n), and by this we derive a contradiction to the existence of the
scheme.

Let (s?, s(z) , sg) be a valid secret sharing of the secret 0. By the 1-privacy requirement,
there must exist two shares 521 , and s31, such that (s?, s21 , s31) is a valid secret sharing of
the secret 1 (otherwise, given that SHARE(s,r)] = s?, player P; knows that the secret
1 is impossible while the probability of the secret O is positive). Similarly, there exist
shares s%, s% such that (slz, sg , s%) is a valid secret sharing of 1, and shares sf, sg such
that (s?, sg’, sg) is a valid secret sharing of 1.

Let n be a sufficiently large integer (n > 1200 will do) such that n = ('g) for some
positive integer m. Let V = {vy, ..., v,} be the set of all distinct length-m vectors con-
taining the value 1 in three positions and the value O elsewhere. Let y € F" be a vector
of length n. The vector y can be represented by an m-variate degree-3 polynomial p
such that p(v;) = y; for each 1 < j <n. Indeed, letting h; 1, h; 2, h; 3 denote the co-
ordinates in which v; is equal to 1, we can define

n
px1, ., X)) = Z)’j “Xhj Xk 2 Xh -
j=I1

That is, p is a degree 3 polynomial encoding of y.

590 O. Barkol, Y. Ishai, and E. Weinreb

Define the set Q| € S™ as follows. The set Q; contains all the vectors g € S™ of the
following form: There are m — 2 entries with the value s?, one entry with the value 512,
and one entry with the value sf. All together, there are m(m — 1) = O(n2/ 3) vectors in
Q1. Similarly, we define the set Q> € S™ containing the vectors whose entries are all
equal to sg except one entry that equals 521 and one that equals s% , and the set Q3 € S™
containing the vectors with all entries equal to sg except one that equals s31 and one that
equals s32.

We are now ready to define the messages that the servers send to the client. The
message z; sent by server i contains, for each g € Q;, the value of p;(g) as defined in
Definition 2.4. Note that each message contains exactly m(m — 1) field elements.

We claim that given z1, z2 and z3, the client can completely reconstruct y. For 1 <
J <n, the client computes y; as follows. By the definitions of V' and p, it suffices for
the client to compute p(v;), where v; is the length-m characteristic vector of the set
{hj1,hj2,hj3}. Consider the vector g1 € Q1 in which the h; > entry is s12, the ;3
entry is sl3 , and all other entries are s?. Similarly, let g» € Q> be the vector in which the
hj 1 entry is s21 , the 1 3 entry is s;, and all other entries are sg. Finally, let g3 € O3 be
the vector in which the % 1 entry is s31, the i > entry is s% and all other entries are sg .

Note that taking the /1 entry of the three vectors (g1, g2, g3), we get the shares
(s?, szl, s31) which is a valid secret sharing of 1. Similarly, in the &;> entry we get
(slz, sg, s%) and in the 4 3 entry we get (s?, s;, sg), which are both secret sharings of 1.
In every other entry, we get (s?, sg , sg) which is a valid secret sharing of 0. It follows
that the vectors g1, g2, and g3 form a valid coordinate-wise secret sharing of v;, and
thus by Lemma 2.5 we have pi(q1) + p2(q2) + p3(q3) = p(v}).

We conclude that the servers can communicate any y € F” to the client using only

3m(m — 1) field elements. Whenever n = ("31) > 3m(m — 1) this is impossible, and thus
we get a contradiction to the existence of the desired secret sharing scheme. |

Remark 4.2 (Extensions). The proof of Lemma 4.1 can be extended to the case of
d-multiplicative secret sharing in which secrets are taken from an arbitrary finite ring
(as opposed to a field). It can also be directly extended to the case of statistical secret
sharing schemes in which both the correctness and privacy requirements are relaxed to
allow some small statistical error. We do not know how to extend the negative result
to the case of computationally private secret sharing schemes and leave this as an open
question.

4.1. A General Characterization

Lemma 4.1 implies a more general negative result, ruling out the existence of a ¢-private
d-multiplicative secret sharing scheme for dt players. Below we further generalize this
result from the threshold case to general access structures. Together with a (folklore)
matching positive result, which we prove in Appendix A, this provides a complete char-
acterization of the access structures for which d-multiplication is possible.

While the usual notion of access structure specifies a collection of authorized player
sets, here it will be more convenient to use the complementary notion of an adversary
structure, specifying a collection of unauthorized sets.

On d-Multiplicative Secret Sharing 591

Definition 4.3 (Adversary structure). A k-player adversary structure is a collection of
sets 7 C 241 that is closed under subsets; that is, if T € 7 and T C T then T’ € 7.

The definition of ¢-privacy from Sect. 2 naturally generalizes to 7 -privacy for a gen-
eral adversary structure 7 . Formally:

Definition 4.4 (7 -Private secret sharing). Let 7 be an adversary structure. A secret
sharing scheme is said to be 7 -private if for every pair of secrets s, s’ € F and every
T € T, the random variables SHARE(s, r)7 and SHARE(s’, r)7 (induced by a random
choice of r € D) are identically distributed.

We now define a property of adversary structures that will be useful for our main
characterization.

Definition 4.5 (Adversary structure of type Q4). Let d, k be positive integers and
7T be a k-player adversary structure. We say that 7 is of type Qg if for every d sets
Ti,....,T; €T wehave TY UT, U ---U Ty C [k]; that is, no d unauthorized sets cover
the entire set of players.

Theorem 4.6. For any positive integers k,d and a k-player adversary structure T,
there exists a d-multiplicative T -private secret sharing scheme if and only if T is of

type Q4.

Proof. If 7 is not of type Q, then the set of players [k] can be partitioned into d dis-
joint subsets 71, ..., Ty € 7. This gives rise to a 1-private d-multiplicative secret shar-
ing scheme on d players, where Player i in the new scheme gets the shares of all players
in the set 7; in the original scheme, in contradiction with Lemma 4.1. For the other di-
rection, note that the CNF secret sharing scheme (cf. [5,22,24]) is d-multiplicative for
any adversary structure of type Q4. See Appendix A for details. U

Appendix A. A Positive Result

In this section, we prove a (folklore) positive result on d-multiplicative secret sharing
which matches our negative result. Specifically, we show that every adversary structure
of type Qg4 can be realized by a d-multiplicative scheme. (Recall that an adversary
structure is of type Qg if no d unauthorized sets cover the entire set of players.) This
result will be proved by using the following specific secret sharing scheme.

Definition A.1 (CNF secret sharing) [22]. Let 7 be a k-player adversary structure.
The 7 -private CNF secret sharing scheme is defined by the following sharing algo-
rithm. Let 7 be the collection of maximal sets in 7 (namely those that are not contained
in any other set from 7). The dealer first additively breaks s into 17| additive parts rr,
TeT. (That is, the parts r7 are chosen at random from [subject to the restriction that
their sum is s.) The share of player P; consists of all parts r7 such thati ¢ T'.

592 O. Barkol, Y. Ishai, and E. Weinreb

Note that in the ¢-private CNF scheme each player P; receives exactly (kjl) field

elements, namely the parts r7 labeled by the sets 7' € (U;]) which do not contain i. The

t-privacy property follows by observing that every set T of k players jointly misses the
share r7, and thus can learn no information about 7.

We are now ready to state the positive result, which extends in a simple way previous
applications of the CNF scheme in the context of MPC [5,24].

Theorem A.2. For any adversary structure T of type Qgq, the T -private CNF secret
sharing scheme is d-multiplicative.

Proof. Forl <j <d,welet r%, T e ’f denote the additive parts of secret s/ Writing

the product s1...s? as the sum of the |’j'|d monomials of the form r}l e r%[, we can

partition the monomials into k sets X; such that all monomials in set X; are known
to P;. This follows from the fact that every monomial as above can be assigned to a set
X; such thati ¢ 71 U --- U Ty (the existence of such i follows from the assumption that
T is of type Qg). The d-multiplication property follows by letting MULT(i, -) output
the sum of all monomials in X;. O

Note that the CNF secret sharing scheme is generally inefficient, and this is also the
case in the important case of threshold structures. However, for this case the 7-private
secret sharing scheme of Shamir [27] can be used as an efficient d-multiplicative secret
sharing scheme whenever k > dt.

References

[1] B. Applebaum, Y. Ishai, E. Kushilevitz, Computationally private randomizing polynomials and their
applications. Comput. Complex. 15(2), 115-162 (2006). Earlier version in Proc. CCC 05
[2] L. Babai, A. Gdl, P.G. Kimmel, S.V. Lokam, Communication complexity of simultaneous messages.
SIAM J. Comput. 33(1), 137-166 (2003). Earlier version in Proc. STACS "95
[3] O. Barkol, Y. Ishai, Secure computation of constant-depth circuits with applications to database search
problems, in Proc. CRYPTO ’05 (2005), pp. 395-411
[4] O. Barkol, Y. Ishai, E. Weinreb, Communication in the presence of replication, in Proc. 40th STOC
(2008), pp. 661-670
[5]1 D. Beaver, A. Wool, Quorum-based secure multi-party computation, in Proc. EUROCRYPT ’98 (1998),
pp- 375-390
[6] M. Ben-Or, S. Goldwasser, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant
distributed computation, in Proc. 20th STOC (1988), pp. 1-10
[71 G.R. Blakley, Safeguarding cryptographic keys, in Proc. of the American Federation of Information
Processing Societies (AFIPS), vol. 48 (1979), pp. 313-317
[8] R. Canetti, Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143-202
(2000)
[9] D. Chaum, C. Crépeau, I. Damgard, Multiparty unconditionally secure protocols, in Proc. 20th STOC
(1988), pp. 11-19
[10] H. Chen, R. Cramer, Algebraic geometric secret sharing schemes and secure multi-party computations
over small fields, in CRYPTO (2006), pp. 521-536
[11] H. Chen, R. Cramer, S. Goldwasser, R. de Haan, V. Vaikuntanathan, Secure computation from random
error correcting codes, in EUROCRYPT (2007), pp. 291-310
[12] B. Chor, E. Kushilevitz, A zero-one law for boolean privacy. SIAM J. Discrete Math. 4(1), 3647 (1991)

On d-Multiplicative Secret Sharing 593

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]
[28]

[29]

[30]

R. Cramer, I. Damgard, U. Maurer, General secure multi-party computation from any linear secret-
sharing scheme, in Proc. EUROCRYPT ’00 (2000), pp. 316-335

O. Goldreich, Foundations of Cryptography: Vol. 2, Basic Applications (Cambridge University Press,
New York, 2004)

O. Goldreich, S. Micali, A. Wigderson, How to play any mental game, in Proc. 19th STOC (1987),
pp. 218-229

D. Harnik, Y. Ishai, E. Kushilevitz, J.B. Nielsen, Ot-combiners via secure computation, in 7CC (2008),
pp. 393-411

M. Hirt, U. Maurer, Player simulation and general adversary structures in perfect multiparty computa-
tion. J. Cryptol. 13(1), 31-60 (2000). Earlier version in Proc. PODC ’97

Y. Ishai, E. Kushilevitz, Randomizing polynomials: A new representation with applications to round-
efficient secure computation, in Proc. 41st FOCS (2000), pp. 294-304

Y. Ishai, E. Kushilevitz, Perfect constant-round secure computation via perfect randomizing polynomi-
als, in Proc. 29th ICALP (2002), pp. 244-256

Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai, Zero-knowledge from secure multiparty computation,
in STOC (2007), pp. 21-30

Y. Ishai, M. Prabhakaran, A. Sahai, Founding cryptography on oblivious transfer—efficiently, in
CRYPTO (2008), pp. 572-591

M. Ito, A. Saito, T. Nishizeki, Secret sharing schemes realizing general access structure, in Proc. of the
IEEE Global Telecommunication Conf., Globecom 87 (1987), pp. 99-102. Journal version: Multiple
assignment scheme for sharing secret. J. Cryptol. 6(1), 15-20 (1993)

E. Kushilevitz, Privacy and communication complexity. SIAM J. Discrete Math. 5(2), 273-284 (1992)
U.M. Maurer, Secure multi-party computation made simple. Discrete Appl. Math. 154(2), 370-381
(2006). Earlier version in Proc. SCN ’02

I.C. Pueyo, H. Chen, R. Cramer, C. Xing, Asymptotically good ideal linear secret sharing with strong
multiplication over ny fixed finite field, in CRYPTO (2009), pp. 466-486

A. Razborov, Lower bounds for the size of circuits of bounded depth with basis (AND, XOR). Math.
Notes Acad. Sci. USSR 41(4), 333-338 (1987)

A. Shamir, How to share a secret. Commun. ACM 22(11), 612-613 (1979)

R. Smolensky, Algebraic methods in the theory of lower bounds for boolean circuit complexity, in STOC
(1987), pp. 77-82

D.P. Woodruff, S. Yekhanin, A geometric approach to information-theoretic private information re-
trieval. STAM J. Comput. 37(4), 1046—1056 (2007). Earlier version in Proc. CCC '05

Z. Zhang, M. Liu, Y.M. Chee, S. Ling, H. Wang, Strongly multiplicative and 3-multiplicative linear
secret sharing schemes, in ASIACRYPT (2008), pp. 19-36

	On d-Multiplicative Secret Sharingthanks
	Abstract
	Introduction
	Technique
	Related Work
	Organization

	Preliminaries
	Motivating Applications
	Secure Polynomial Evaluation
	Secure Computation with Minimal Interaction
	Communication Complexity of Secure Computation

	The Negative Result
	A General Characterization

	Appendix A. A Positive Result
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

