J. Cryptol. (2011) 24: 157-202

DO 10.1007/500145-010-9064-7 Journal of

CRYPTOLOGY

Utility Dependence in Correct and Fair Rational
Secret Sharing*

Gilad Asharov and Yehuda Lindell

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
asharog @cs.biu.ac.il; lindell @cs.biu.ac.il

Communicated by Ran Canetti

Received 3 September 2009
Online publication 27 March 2010

Abstract. The problem of carrying out cryptographic computations when the partic-
ipating parties are rational in a game-theoretic sense has recently gained much atten-
tion. One problem that has been studied considerably is that of rational secret sharing.
In this setting, the aim is to construct a mechanism (protocol) so that parties behaving
rationally have incentive to cooperate and provide their shares in the reconstruction
phase, even if each party prefers to be the only one to learn the secret.

Although this question was only recently asked by Halpern and Teague (STOC
2004), a number of works with beautiful ideas have been presented to solve this prob-
lem. However, they all have the property that the protocols constructed need to know
the actual utility values of the parties (or at least a bound on them). This assumption
is very problematic because the utilities of parties are not public knowledge. We ask
whether this dependence on the actual utility values is really necessary and prove that
in the case of two parties, rational secret sharing cannot be achieved without it. On
the positive side, we show that in the multiparty case it is possible to construct a sin-
gle mechanism that works for all (polynomial) utility functions. Our protocol has an
expected number of rounds that is constant, and is optimally resilient to coalitions.

In addition to the above, we observe that the known protocols for rational secret
sharing that do not assume simultaneous channels all suffer from the problem that one
of the parties can cause the others to output an incorrect value. (This problem arises
when a party gains higher utility by having another output an incorrect value than by
learning the secret itself; we argue that such a scenario needs to be considered.) We
show that this problem is inherent in the non-simultaneous channels model, unless the
actual values of the parties’ utilities from this attack are known, in which case it is
possible to prevent this from happening.

Key words. Rational secret sharing, Game theory and cryptography.

* This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 781/07). An extended
abstract of this work appeared in CRYPTO 2009.

© International Association for Cryptologic Research 2010

mailto:asharog@cs.biu.ac.il
mailto:lindell@cs.biu.ac.il

158 G. Asharov and Y. Lindell

1. Introduction

1.1. Background

Recently, there has been much interest in the intersection between cryptography and
game theory [1,5-7,11,12]. One specific question that has gained much attention is
that of rational secret sharing. The basic problem that arises when considering secret
sharing (or to be more exact, protocols for the reconstruction phase) is that the parties
actually have no incentive to reveal their share. Specifically, assume that ¢ parties get
together to reconstruct a secret that was shared using a t-out-of-n secret sharing scheme.
The standard way that this reconstruction takes place is simply for each party to broad-
cast its share to all others. However, if one party does not broadcast its share, it can still
reconstruct the secret (because it received the + — 1 shares of all other parties and so
has ¢ shares overall), but the others cannot (because they only have ¢ — 1 shares). Thus,
under the assumption that parties prefer to be the only one to learn the secret, the ra-
tional behavior in the above naive reconstruction procedure is for every party to remain
quiet and not broadcast its share [7]. The aim of rational secret sharing is therefore to
construct a mechanism so that it is in the interest of rational parties to cooperate, with
the result being that all parties learn the reconstructed secret. The fact that the parties
are rational means that they each have a utility function assigning a value to every pos-
sible outcome of the protocol (this value represents the gain that the party achieves if
the given outcome occurs). Furthermore, the parties’ aim is to maximize their utility.
We remark that a mechanism is considered successful if it achieves a Nash equilibrium
(or one of its variants) for the strategy which instructs all parties to cooperate. Loosely
speaking, this means that if any one of the parties deviates from the prescribed strategy
(while others follow it), then it will not obtain a higher utility (and may even lose). Thus,
it is in the interest of all parties to follow the prescribed strategy and cooperate.

In order to construct a mechanism with the above properties, certain natural assump-
tions are made regarding the utilities of the parties. In particular, it is assumed that a
party always prefers learning the secret over not learning it (this is essential to assume,
or else there is no reason for a party to ever participate in the reconstruction). Further-
more, it is assumed that parties prefer to learn the secret, and have some or all of the
other parties not learn it (when knowledge is power, this makes a lot of sense). Although
the above assumptions are very reasonable, a concern with all of the known protocols is
that they do not just assume that this “learning preference” holds. Rather, they assume
that the actual utility values of the parties (or at least bounds on them) are known to
all, and the mechanism itself depends on these values. The problem with this assump-
tion is that in reality the utility of a party may not even be known to itself, let alone to
others. Furthermore, even if a party knows its own utility, it is unclear how others can
learn this value (it would not necessarily be rational for a party to be honest about its
utility; rather, it may gain something by providing incorrect information about its util-
ity function). This problem stands at the center of this work, and we ask the following
fundamental question:

Is it possible to construct a single reconstruction mechanism for rational
secret sharing that achieves a Nash equilibrium for all possible values of
utility functions that fulfill the aforementioned assumptions regarding learn-
ing preference?

Utility Dependence in Correct and Fair Rational Secret Sharing 159

In addition to the above, we observe that some of the known protocols suffer from a
correctness issue. Specifically, most of the positive results on this topic assumed that the
parties have access to a simultaneous channel (meaning that all parties can simultane-
ously send messages and so no party can see what the others broadcast before sending
its own message). Since simultaneous channels are problematic to implement in prac-
tice, a recent breakthrough was made that achieved rational secret sharing in a model
with non-simultaneous channels [12]. However, the protocol of [12] (and a follow-up
protocol by [8]) has the problem that one of the parties can cause the others to output
an incorrect value, at the expense of not learning the secret itself. Thus, the assump-
tion made by [12] is that since a party always prefers to learn the secret, it will never
follow such a strategy. However, we do not believe that this assumption is always rea-
sonable. Rather, there are certainly scenarios where a party can gain more by having
another learn incorrect information than by learning the information itself (for example,
consider the case where the use of incorrect information can result in a loss of reputa-
tion, to the potential gain of others). In any case, it would certainly be preferable to not
have to assume this. Noting that this problem of correctness does not arise in any of the
protocols using simultaneous channels, we ask:

Is it possible to construct a reconstruction mechanism for rational secret
sharing that uses non-simultaneous channels and achieves Nash equilib-
rium even if a party’s utility when another party outputs an incorrect value
is higher than its utility when it learns the secret? Furthermore, is it possible
to achieve this without assuming knowledge of the actual utility value?

1.2. Our Results
We focus mainly on 2-out-of-2 secret sharing. Let UZ.Jr denote the utility of party P;

when it learns the secret and the other party does not. Furthermore, let U if denote the
utility of party P; when the other party outputs an incorrect (false) value, even if P; itself
did not learn the output. We call a mechanism U T -independent if it achieves Nash equi-
librium for all possible (polynomial) values of (U,", U,) that fulfill the aforementioned
learning-preference assumptions (i.e., that a party prefers learning over not learning, and
prefers to be the only one to learn). We define U/ -independence similarly. We stress
that when a mechanism is U or U/ -independent, it may still know the values of the
other utilities (i.e., the utility when all parties learn the secret or when none learn it). We
begin by proving an interesting connection between U *-independence and complete
fairness, and between U ! -independence and correctness (where fairness and correct-
ness here are in the presence of malicious adversarial behavior that may not be rational
and is aimed only to break the protocol). In Sect. 3, we prove the following informally
stated theorem:

Theorem 1.1. Any two-party mechanism that achieves U T -independence guarantees
complete fairness in the presence of malicious adversarial behavior. Furthermore, any
two-party mechanism that achieves U/ -independence guarantees correctness in the
presence of malicious adversarial behavior.

Intuitively, Theorem 1.1 holds because if a mechanism is U -independent, then it
must be in a party’s interest to cooperate even if its U™ utility is very high. However, if

160 G. Asharov and Y. Lindell

aparty’s U™ utility is high enough—but still polynomial—then it can be shown that its
best strategy is to just try and break fairness (because then it gains U ™). Since it should
not be able to succeed in doing this, it follows that a malicious adversary also can only
break fairness with negligible probability. The connection between U/ -independence
and correctness is proven in a similar way. It is possible to use Theorem 1.1 in or-
der to prove that there do not exist two-party reconstruction mechanisms for rational
secret sharing that are independent of U™, by showing how to toss a fair coin given
any such mechanism. (Intuitively, given such a mechanism, we construct a protocol
where in the first stage multiparty computation is used to generate shares of an unbi-
ased coin, and then the mechanism is used to fairly reveal the coin.) Using the impos-
sibility result of Cleve [4] for coin tossing, we then conclude that such a mechanism
does not exist. However, we stress that unbiased coin tossing is only impossible in the
non-simultaneous channels model, and thus this would only prove the impossibility of
obtaining U -independence in this model, and leaves open the possibility that there do
exist Ut-independent mechanisms in the simultaneous channels model.

We therefore provide a direct proof, ruling out the possibility of obtaining U™-
independence even when given a simultaneous channel. That is, we prove the following:

Theorem 1.2. There does not exist a two-party reconstruction mechanism for rational
secret sharing that is independent of U™ in either the simultaneous or non-simultaneous
channels model.

In order to prove this, we present a lower bound on the number of rounds needed for
achieving fair reconstruction and show that this number is dependent on the actual utility
functions of the parties (or, to be more exact, a bound on them). Thus, no mechanism
can be independent of the utilities because this implies that its number of rounds is
also independent. Our lower bound is proven in the simultaneous channels model and
therefore also holds for non-simultaneous channels.

Having established that U T-independence is impossible to achieve, we ask whether
the other utility values must also be known. For example, we know that U/-
independence is possible in the simultaneous channels model, because all of the known
protocols for the simultaneous channels model (cf. [6,12]) are U/ -independent. This
leaves open the question regarding U/ -independence with non-simultaneous channels.
We prove that:

Theorem 1.3. There does not exist a two-party reconstruction mechanism for rational
secret sharing that is U/ -independent in the non-simultaneous channels model.

The proof of this theorem uses Theorem 1.1 that states that a U/ -independent mech-
anism guarantees correctness. We then prove that in the non-simultaneous channels
model, a correct reconstruction mechanism cannot be fair.

Positive results. In Sect. 5, we present two positive results as follows:

1. We present a multiparty reconstruction mechanism that uses simultaneous chan-
nels and is independent of all utility values. The reconstruction mechanism is also

Utility Dependence in Correct and Fair Rational Secret Sharing 161

resilient to coalitions of size /2, where ¢ is the secret sharing threshold (i.e.,
when considering 7-out-of-n secret sharing). We also show that it is not possible
to achieve resilience to coalitions of a larger size, while preserving utility inde-
pendence. Thus, in this sense, our mechanism is optimal.1

2. We present a two-party reconstruction mechanism for rational secret sharing that
works in the non-simultaneous model and achieves correctness. This mechanism
uses the actual values of U/ (recall that by Theorem 1.3, U f—independence is
impossible and so the use of the actual values of U/ here is inherent).

The above results show that (a) utility independence is possible to achieve in the
multiparty setting, and (b) correctness need not be forfeited in the model with non-
simultaneous channels.

1.3. Related Work

The question of rational secret sharing was first introduced by [7]. They showed that
there does not exist a mechanism with a constant number of rounds, that achieves Nash
equilibrium that survives iterated deletions of weakly dominated strategies. Moreover,
they presented a protocol for n > 3 (that is U+ -dependent) in the simultaneous model.
More protocols, dealing with other settings, were presented for the simultaneous model
in [1,6,11,12], and for the non-simultaneous model in [8,12]. The basic question that
we ask regarding utility independence was proposed in [7]. The first partial answer to
this question was given by [1] (with extension in [2]) who showed that utility indepen-
dence is possible for 7-out-of-n secret sharing as long as t < n/3. This question was
also considered by [16] who showed that utility independence can be achieved if the
number of parties participating in the reconstruction procedure is strictly greater than
the threshold . The works of [13—15] can be used to obtain fair secret sharing, but
assume stronger physical assumptions than a simultaneous channel. Other works have
also considered a mix of rational, honest and malicious parties [1,16,18].

2. Preliminaries and Definitions

2.1. Secret Sharing

Informally, a f-out-of-n secret sharing scheme involves a dealer D and n parties
Py, ..., P,. The dealer D wishes to distribute “shares” of a secret s which is chosen
according to some efficiently samplable distribution ensemble S = {Sk }xen. The main
security requirement is that every subset of t* > ¢ parties is capable of reconstructing s,
whereas any subset of t* < ¢ parties cannot learn anything whatsoever about the secret.
See [17] for a formal definition.

A secret sharing protocol consists of two phases, called sharing and reconstruction.
In the first phase the dealer selects a secret s according to the distribution S, where k is
the security parameter. It then generates the shares from the secret, and sends each party

1 We note that in the preliminary version of this paper that appeared at CRYPTO 2009, we presented a
mechanism that achieved utility independence when assuming a relaxation on the assumptions of the utilities
functions of the parties. Here, we present a stronger result which does not need any relaxation at all.

162 G. Asharov and Y. Lindell

its share using a private channel (we assume that the dealer can distribute the shares
perfectly privately). The algorithm used to generate the shares for each party is denoted
SHARE(S), and the shares themselves are denoted s, . .., s,. We remark that the above
assumes that SHARE(S) is a non-interactive procedure. In the second phase, the parties
run an interactive protocol in order to reconstruct the secret. We stress that the dealer
is not involved in this phase, and we assume for simplicity that the participating parties
can communicate via a broadcast channel. At the end of the reconstruction protocol,
each party outputs what it has “learned” (i.e., what it believes that the share is).

The broadcast channel is sometimes simultaneous, meaning that some parties can
broadcast messages at the same time (and so the adversary is not rushing), and some-
times the channel is not simultaneous, and so there is only a single sender at any one
time (or, equivalently, the adversary is assumed to be rushing). Clearly, it is preferable
to have protocols for the non-simultaneous model as true simultaneity is very hard (if
not impossible) to achieve in practice.

2.2. Game Theory and Fair Secret Sharing

We assume that the parties are rational. Therefore, we will refer to the reconstruction
protocol as a mechanism, where a mechanism is a pair (I',), where I' is the game
(i.e., a specification of what actions are allowed or possible by the parties) and o =
(o1, ...,0y) is a strategy for that game (o; is a set of instructions for party P; in the
game). The aim of a mechanism is to have the parties follow the prescribed strategy o,
which in turn will result in the desired outcome. Another way of looking at this is that
the recommended strategy & is a protocol, and the game T is defined to be all possible
deviations from the protocol.

Notation. 'We call a vector of parties’ strategies a strategy profile, and use the following
notations: o—; = (&1, ..., @1, Uip1,-..,0), (@, d_) = (01, ..., 01,0, sl, ...,
ay), and u;(o/,6_;) is the expected utility of party i when it plays according to o/,
while other parties play according to . When considering 2-out-of-2 secret sharing, we
sometimes use the notation u; (o1, 02’), which is the expected utility of party i € {1, 2},
when party Py plays according to o1, and P> plays according to 0. Again, in the two-
party setting, letting i € {1, 2} we denote by P_; the party P3_; (i.e., the participating
parties are P; and P_;).

Definition 2.1 (Nash Equilibrium). A behavioral strategy profile ¢ for the game I is
said to be a Nash equilibrium if for every i € [1] and every behavioral strategy o for P;,
it holds that u; (o;,0_;) > M,’((Tl-/, o_;).

Definition 2.2 (¢-Nash Equilibrium). Let ¢ : N — [0, 1] be a function. A behavioral
strategy profile 6 for the game T is said to be an e-Nash equilibrium if for every i € [n]
and every behavioral strategy o/, it holds that u; (6}, 6_;) <u;(0;,6—;) + (k).

Definition 2.3 (Strict Nash Equilibrium). A behavioral strategy profile o for the game
I" is said to be a strict Nash equilibrium if for every i € [n] and every behavioral strategy
o/ # oy, it holds that u; (0;,6_;) > u;(6/,6_;).

Utility Dependence in Correct and Fair Rational Secret Sharing 163

Table 1. Outcome and utility.

P receives s P, receives s Outcome notation Py ’s utility Py’s utility
NO NO o"one Uy U,
NO YES oy Uy~ U5
YES NO of vt Uy~
YES YES oboth U; U,

Computational Nash equilibrium. In a computational world, all parties run in proba-
bilistic polynomial-time, and events that happen with negligible probability are not of
any concern. We therefore consider probabilistic polynomial-time behavioral strategies
and e-Nash for a negligible function . Nash equilibrium in such a world was defined
by [5,8,9], as follows:

Definition 2.4 (Computational Nash Equilibrium). A behavioral strategy profile &
for the game I is said to be a computational Nash equilibrium if it is probabilistic
polynomial-time and there exists a negligible function ¢ : N — [0, 1] such that ¢ is
an ¢(k)-Nash equilibrium where k denotes the security parameter.

Outcome and utilities. The outcome of an execution of a game I with some strategy
profile & is denoted o and consists of the output of all of the parties. In the case of 2-
out-of-2 secret sharing, each party may learn or may not learn the secret, and there are
therefore exactly four possible outcomes. (This ignores the issue of correctness which
we introduce in this work and discuss below.) Each party’s utility is a function of these
outcomes, and there are therefore also four possible utility values for each party. The
notations for the four possible outcomes, and the associated utility for each party, are
described in Table 1.

In this work, we consider the possibility that parties may output incorrect values
and introduce a utility U/ for this event (informally, a party gains Ul.f if it succeeds
in having the other party output a false/incorrect value). This results in nine possible
outcomes of the game (each party may learn the correct value, not learn, or output an
incorrect value). For simplicity we will consider only the outcome where one party does
not learn the secret while the other outputs an incorrect (or false) value. We denote this
event by of_a%se where P_; is the party who outputs the incorrect value. (We explicitly
consider this event because this is the one that occurs naturally. Needless to say, when
analyzing mechanisms all possibilities need to be taken into account.)

Assumptions on the utility functions. We assume that the utility functions of all parties
are polynomial in the security parameter. The importance of this is discussed in Ap-
pendix A. Formally, a party’s utility function u; is a function of the outcome and the
security parameter k. We therefore write U; (1%) = u; (1%, obothy, Ul.+(lk) =u; (1K, oi+),
U7 (15) = w; (1%, 0, U7~ (1K) = u; (1%, o), and U/ (1%) = u; (15, 0%05). As is
now standard [6,7,12], we assume that each party always prefers learning the secret
over not learning it, and that each party most prefers to be the sole party to learn the
secret. We add an additional assumption being that a party prefers to have the other

164 G. Asharov and Y. Lindell

party output an incorrect value than not, when in both cases the first party does not learn
anyway. We do not make any assumption on U,.f beyond this. (In [12], the authors im-

plicitly assume that Ul.f < U; for all parties.) For lack of a better name, we call utility
functions that fulfill these assumptions “natural.” Formally:

Definition 2.5. Letl/ = {(Ui+, U,U;,U; Uif),»e{l,z}} be a set of utility functions
for the parties. We say that U/ is natural if for every i € {1,2} and for every k € N, it
holds that

U () = Ui 2 U7 ()2 U7 ()20 and Uf (k) = U (k).

We remark that in some previous works, it was formally assumed that U;” (k) =
U; " (k), even though none of the protocols utilized this fact (this is despite the fact
that [7] explicitly introduce this utility value). We find it unsatisfactory to assume that
once a party has not learned, it makes no difference to its utility if others did or did not
learn. On the contrary, it can be a lot worse if a party does not learn while others do
learn and so protocols should take this into account.

Fair secret sharing. A number of different notions have been used regarding the
desired equilibrium for rational secret sharing. Our impossibility results refer to the
weakest of these assumptions, which is e-Nash equilibrium for a negligible func-
tion £(-) [9,12]. However, we also require that the number of rounds be polynomial (this
is needed for our lower bounds, but we argue that this does not significantly weaken our
results because a mechanism with a super-polynomial of rounds is not computationally
feasible to run). The natural way to model this is as a computational Nash equilib-
rium [5,9]. We define computationally fair reconstruction mechanisms in this light:

Definition 2.6. Let U/ be a set of natural utility functions for P; and P, (as in Defin-
ition 2.5). We say that a mechanism (I, &) is a fair reconstruction mechanism for I/ if
& is a computational Nash equilibrium and if the probability that the result is not o?°™"
when both parties follow o is negligible.

3. Utility-Independent Mechanisms and Properties

3.1. Definitions

We now formalize the notion of utility independence. Loosely speaking, a mechanism is
independent of a given utility function if it achieves its desired properties for any value
of that utility for all parties.

Definition 3.1 (Utility Independence). Let Ue ({Ut,u,U-,U~~,U ! } be a utility
type and let U’ = {Ul.+, U, v, U, Ul.f };’zl \ {l},-};?:1 be a set of polynomial util-
ity functions (excluding all the 0,- values). We say that the mechanism (", o) is a
U -independent fair reconstruction mechanism if for all polynomial utility functions
{Uyr_, for which U = U'U{U;}7_, is natural, it holds that (', &) is a fair reconstruction
mechanism for /.

Utility Dependence in Correct and Fair Rational Secret Sharing 165

Note that our definition of utility independence includes the assumption that U/ is
natural. In our results, we focus on Ut and U/ -independence.

Fairness and correctness. In this section, we show that Ut and U/ -independence,
respectively, imply the properties of complete fairness and correctness in the presence
of adversarial behavior. We stress that we define these notions in an adversarial con-
text and not in a game-theoretic one. That is, we say that a protocol or mechanism is
completely fair/correct if it maintains this property when one of the parties follows a
worst-case strategy (meaning that it has no aim to gain utility and its aim is simply to
break this property of the protocol). Before proceeding, we remark that we will freely
move between protocols in a cryptographic setting with an adversary A and mecha-
nisms involving rational adversaries playing a game in order to achieve utility. Despite
the apparent differences between these notions, they are actually very similar. In partic-
ular, one can define a one-to-one mapping ¢ from a mechanism to a protocol and back,
as follows:

e Let (I, o) be a mechanism. We define m = ¢(I", 5) to be a protocol where all
honest parties follow the strategy specified in &, according to the game I.

e Let 7 be a protocol. We define (I, 5) = ¢~ () to be the mechanism where I’
specifies the order of sending messages that appears in 7, and & is the strategy to
follow the instructions of 7 honestly.

We now proceed to define complete fairness and correctness. We present the definitions
in a “protocol context”; their translation to the game-theoretic context is discussed be-
low. Intuitively, a two-party reconstruction protocol is completely fair if whenever one
party learns the secret the other party is also guaranteed to learn the secret, except with
negligible probability. Likewise, a reconstruction protocol is correct if the honest party
is guaranteed to either output the correct value (i.e., the secret that was shared) or a
special abort symbol L. Although it is difficult to formalize these notions for general
secure computation without resorting to a full ideal model/real model definition (since
the output depends on the actual inputs used by the possibly malicious parties), in the
case of secret sharing it is much simpler because the output of the protocol is well de-
fined. In particular, the output can only be the shared secret s or an abort symbol L. We
assume that any reconstruction protocol is non-trivial meaning that if both parties are
honest, then they both learn the secret, except with negligible probability.

In order to formalize the above, we introduce some notation. Let REAL, 4 ;
(SHARE(S)) denote the outcome o of an execution of the reconstruction protocol 7,
with the parties Py and P,, an adversary .A controlling party P; (i € {1, 2}), and a share
s that was chosen according to the distribution S and shared as in SHARE; recall that
an outcome is simply the concatenation of the outputs of all participating parties (since
A controls P;, we consider only the output of A and the honest party). Next, denote
by OUTPUTx (REAL, 4 ;(SHARE(S)) the output of party X (where X may be A or the
honest party P_;). Recall that the security parameter is denoted k.

Definition 3.2. Let SHARE be a share generation algorithm for a 2-out-of-2 secret
sharing scheme, and let 7 be the reconstruction protocol for the scheme.

166 G. Asharov and Y. Lindell

1. We say that & is completely fair if for every probabilistic polynomial-time adver-
sary A that controls party P; there exists a negligible function p(-) such that

Pr[OUTPUT 4 (REALy, 4 ; (SHARE(S))) = S]

<Pr[OUTPUTp_, (REALy 4 ; (SHARE(S))) = 8] + u(k).

2. We say that 7 is correct if for every probabilistic polynomial-time adversary A
that controls party P; there exists a negligible function j(-) such that

Pr[OUTPUTp_, (REAL, 4;(SHARE(S))) € {S, L}] < (k).

An equivalent formulation of the above for mechanisms is obtained by requiring that
the result of an execution where one party follows the prescribed strategy and the other
may follow any arbitrary alternative strategy is fair (or correct). For example, correct-
ness of a mechanism (", &) can be formalized by saying that for every arbitrary strategy
o/ followed by party P; (i € {1,2}) there exists a negligible function 4 such that

Pr[OUTPUTp (REALF’Pi(Ji/)’Pii (o_) (SHARE(S))) ¢ (S, L}] < pu(k).

(Observe that correctness is guaranteed only when party P_; follows the prescribed
strategy o—_;.)

3.2. Ut -Independence Implies Fairness

We now prove that the existence of a Ut -independent reconstruction mechanism im-
plies the existence of a completely fair reconstruction protocol. Intuitively this holds
because if complete fairness is not achieved, then there exists an adversary who can
participate in the protocol induced from the mechanism and with non-negligible proba-
bility can learn the secret while the honest party does not. Given such an adversary, we
can set the utility U™ of one of the parties to be high enough so that its expected gain by
following the adversarial strategy is high enough. Our proof holds for both simultaneous
and non-simultaneous channels.

Proposition 3.3. [f there exists a U™ -independent fair reconstruction mechanism for
a 2-out-of-2 secret sharing scheme (as in Definition 3.1), then there exists a completely
fair reconstruction protocol (as in Definition 3.2) for the scheme.

Proof. Let (I',5) be a U*-independent fair reconstruction mechanism and let 2’ be
a set of utilities specifying {U, U~, U~ ~, U’} for both parties. Denote by 7 the pro-
tocol derived from (I", 5) by the mapping ¢ described above in Sect. 3.1. Assume by
contradiction that 7 is not a completely fair reconstruction protocol. This implies that
there exists a probabilistic polynomial-time adversary .4 that controls some party P;
(i € {1, 2}) and a polynomial p(-) such that for infinitely many k’s:

Pr[OUTPUT 4 (REAL,, 4 ; (SHARE(S))) = S|

> Pr[OUTPUTp_, (REAL, 4 ;(SHARE(S))) =S|+ B
p

Utility Dependence in Correct and Fair Rational Secret Sharing 167

Let oA be the corresponding behavioral strategy of the adversary A in the game I'. Note
that for infinitely many k’s, the outcome of the game when party P; plays according
to o4, while the other party plays according to the prescribed strategy o, is 017" with
probability 1/p(k).

We now define the utility function U l.+ for party P; by U l.+ > p(k)-(U; +1). We show
that for infinitely many k’s, P;’s utility is greater if it follows oA than if it follows o;,
which is a contradiction to the assumption that ¢ is a (computational) Nash equilibrium.
Let O denote the set of all possible outcomes, and recall that u; (o) is the utility of P;
upon outcome 0. We have that for infinitely many k’s:

ui(o7 o) = ZPr[0 | (07 0-1)] - ui ()

0eO
- ot | (00 U

1

1
—— - (pk)- Ui + 1)) =U; + 1.
Zp(k) (pto) - (Ui + 1)) +

In contrast,
ui(oj,0-;) =U;.

Thus, there exists a non-negligible function &’ (even if U; is negligible), such that
Mi(UiA, o_i) > ui(0;,0-;) + €' (k)

in contradiction to the assumption that ¢ is a computational Nash equilibrium for I".
We therefore conclude that the protocol 7 induced from (T, &) is completely fair, as in
Definition 3.2. U

3.3. U/-Independence Implies Correctness

In this section, we prove that U/ -independence implies correctness. That is, we show
that any protocol that is U/ -independent achieves correctness in the presence of ma-
licious adversarial behavior. The intuition for this proof is the same as for Ut and
fairness. Namely, if the mechanism does not achieve correctness then the strategy used
to break it can provide a high enough payoff, given a large enough U .

Proposition 3.4. If a fair reconstruction mechanism for a 2-out-of-2 secret sharing
scheme is U/ -independent (as in Definition 3.1), then it achieves correctness (as in
Definition 3.2).

Proof. Let(I',o)bealU f -independent mechanism, and assume by contradiction that
the mechanism does not imply correctness as in Definition 3.2. We will show that for
some i € {1,2} and a particular value of Ul.f , the prescribed strategy & is not a compu-
tational Nash equilibrium. By our contradicting assumption, there exists an adversary
A that controls party P; and a polynomial p(-) such that for infinitely many k’s:

Pr[OUTPUTp_, (REAL, 4 ; (SHARE(S))) ¢ (S, 1}] > %
p

168 G. Asharov and Y. Lindell

Let o be the corresponding behavioral strategy of A in the game I'. Let O denote
the set of all possible outcomes, and recall that u; (o) is the utility of P; upon outcome
o. It follows that for infinitely many k’s, the expected utility of party P; when it plays
according to oA, and assuming that P_; plays according to oj, is:

ui(o*0-1) = 3 Prlo| (07" 0i)] - ui(0) = Prlol* | (07, 0-i)] - ui (o2F)
0eO

> L . U:f.

pky !

Now, if U/ > p(k) - (U; + 1), then we have that

Agys_ o uro L i =u,
’U_Z)Zp() U; >p(k) pk)-(Ui+1)=U; +1.

It follows that u,-(oA, 0_;) > U; + 1 and so & is not an &-Nash equilibrium for any
negligible ¢; in particular & is not a computational Nash equilibrium. (]

4. Negative Results

4.1. Impossibility for U™ -Independence

As we have mentioned, Proposition 3.3 can be used to prove the impossibility of obtain-
ing U ' -independent fair reconstruction mechanisms in the non-simultaneous channels
model. This is because any such mechanism can be used to toss a fair coin, in contradic-
tion to [4]. (Specifically, secure computation can be used to generate shares of a random
bit, which are then reconstructed using the mechanism. By Proposition 3.3, this mecha-
nism guarantees complete fairness in the presence of malicious behavior and so neither
party can bias the outcome.) Such a proof leaves open the possibility of obtaining U -
independence in the simultaneous channels model. In this section we therefore prove a
lower bound on the number of rounds that are needed in any fair reconstruction mech-
anism, even in the simultaneous model. As we will see, the number of rounds depends
on the U™ utilities of the parties; Ut -independence is therefore not achievable.

Completeness assumption. We assume that every execution of the protocol, where
both parties are honest, will end at a point where both parties learn the secret, except
with some negligible probability. Let (I', 5) be the mechanism, where I" is the game
and o is the prescribed strategy. The completeness assumptions states that

Pr[OUTPUT p, (REALT, p, (6, P»(o) (SHARE(S)))

= OUTPUTp, (REALF, p, (), P> (o) (SHARE(S))) = S| = 1 — (k)

for some negligible function w.

Utility Dependence in Correct and Fair Rational Secret Sharing 169

Number of rounds as random variable. Protocols for rational reconstruction all have
an expected number of rounds (this was proven to be necessary by [7]), and so
the number of rounds of a protocol is actually a random variable. We denote by
ROUNDS(REALT, p, (¢), P,(c) (SHARE(S))) the number of rounds of the execution of the
game ' with parties P; and P, where both parties follow the prescribed strategy o and
use the shares generated by the algorithm SHARE. For brevity, we denote it by R};l o)
Additional assumption on the utility functions of the parties. We add the assumption
that there exists a non-negligible difference between U (the value that the party gains
when both parties learn the secret) and U;”~ (the value that the party gains when it
does not learn the secret, but the other party does). That is, there exists a non-negligible
function &’ such that for every i and k,

Uitk) —=U; (k) > g (k). (1)

This assumption makes a lot of sense. In particular, assuming that any acceptable mech-
anism does not enable party P; to obtain Uf, the party may as well just hand its share
to the other party and gain utility U, (which is the same as U; up to a negligible
amount).

Intuition for the Theorem. We prove our lower bound by considering a specific attack
(or, an alternative strategy) that can be carried out on every mechanism. The attack that
we consider is a premature abort. When a party aborts prematurely, it does not broadcast
its message in the round that it quits, while the other party does. Therefore, intuitively, it
may gain more information about the secret than the other party. The mechanism must
therefore guarantee that the amount of information gained in any single round is small
enough so that carrying out such an attack is not profitable and will yield a lower utility.
We quantify this amount of information and define an “aborting threshold” for each
party as follows:

U —-U; ™
U -uUr

U, —-U, ™

/31 W

and B =

Notation. Denote by a; the output of party P; when P, quits at round i before sending
its message (that is, at round i only P; broadcast its message); likewise, b; denotes the
output of P, when P quits at round i. We call these values “the default outputs”; see
Fig. 1.

Note that when P quits at round i (before sending its message) and P, does not quit
in that round, party P; receives an additional message and therefore may gain additional
knowledge about the secret. In such a case, P outputs a; 41, while P, outputs b;. In the
following claim, we bound the amount of additional knowledge that a party can gain in
such a situation:

Claim 4.1. Let U be a set of natural utility functions for Py and P> (as in Defini-
tion 2.5), and let the mechanism (I', &) be a fair reconstruction mechanism for I (as in
Definition 2.6). For every round i > 0, the following must hold:

170 G. Asharov and Y. Lindell

P Py
ag bo
ay bl
a;) bi
@it1 bit1

Fig. 1. Default output notations (simultaneous).

L. Prlaj1 =s] < Pr[b; = 5]+ 2p1.
2. Pr[bi1 = s] = Prla; =s]1+2p.

Proof. We show that the first requirement must hold; the second can be shown in a
similar way. Assume by contradiction that there exists a round i such that

Prla;+1 = s] > Pr[b; =s] + 28;.

We show that ¢ is not a computational Nash equilibrium in I". Denote by oli the
strategy when party P; acts according to the prescribed strategy o in rounds 1 through
i, and does not broadcast its message at round i 4+ 1. We show that it is better for P;
to play according to af then o1, when P, plays according to the prescribed strategy o7.
In order to show this, we need to show that the expected utility of P; when it plays
according to ail is greater than the expected utility when it plays according to o1 (when
in both cases we assume that P, plays according to o). That is, we need to show that
uj (ali ,02) > uy(oy,03) + €&, for some non-negligible function &’. Using the fact that
(T, 0) is fair, we know that u (o1, 02) = U;. We need to calculate:

0’1,02 ZPr0| a],az] u1(o)
0O

= Prfof | (of.02)]- U+ (1 - Pt | (o} o2)]) - U7~ @

The above holds since U 1_ ~ is the lowest utility that P; can gain. In order to continue,
we need to calculate Pr[o1 | (al ,02)]. When Pj plays according to strategy ol , the only
way that it can be the only one to learn the secret is if it learns the secret in round i + 1
and P, has not yet learned the secret. Note that P; plays honestly up until round i + 1
and so if the protocol terminates before round i 4 1, it must be that both parties learned
the secret. Therefore, P is the only one to learn the secret if and only if round i 4 1 is
reachable (that is, RY > 1), and a;+1 = s while b; # s. We therefore have:

(01,02)

Pr[o?' | (oli, 02)] = Pr[ai+1 =sSAbj £S5 A Rgﬂm) > i]

= Pr[a,-+1 =5 ADb; ;és] 'Pr[R(l;l’Uz) >1i|aj+1=S,b; ;és]. 3)

Utility Dependence in Correct and Fair Rational Secret Sharing 171

Calculating Pr[R(FUl’Uz) >i|ajy1 =s,b; #s]. Using the completeness assumption,
the fact that b; # s implies that the number of rounds is greater than i, except with
negligible probability. That is,

Pr(R(,, o) > i |aiv1 =5.bi #5] = 1— pu(k),

where p is some negligible function.

Calculating Prla;+1 = s A b; # s]. Using the inequality Pr[A A =B] > Pr[A] — Pr[B]
we have that

Prla; 1 =s A b; #5] > Prla;y1 =s] — Pr[b; =s].

Recall that by our contradiction assumption, Pr[a;+1 = s] > Pr[b; = s] 4+ 28;. There-
fore:

Prla;+1 =s A b; # 5] > 28.

Completing the proof of Claim 4.1: By (3), we have
Prlof | (of.02)] =Prlaiy1 =s Ab; #5]-Pr[Ri, o, >i|ait1=s,bi#s]
>2B1- (1= pk) =281 — ' (k)

for some negligible function w’, where the latter is true since B is polynomial and u is
negligible. Plugging this into (2), we have:

wi(of.2) = Prfo} | (of.02)] - U+ (1~ Pelof | (o} o)) - U~
_ U7 4o | (ol)] - (UF — U7
- U7+ (2B -) (U7~ U7

U —U7~

U7 2
: U -u;

(A) B T (A V|
=U;~ +2U —2U; " = - (U = U 7)
U+ WU U7 = - (U = U7,

Using the assumption that there is a non-negligible difference between Uy and U,
(see (1)), and using the fact that 1 is a negligible function, we conclude that

ui(of,02) = Ur + (Ur = Uy ") = (U] = U7 7)
=U1+8/

for some non-negligible function &’. This contradicts the assumption that & is a compu-
tational Nash equilibrium in I', completing the proof of Claim 4.1. O

172 G. Asharov and Y. Lindell

Claim 4.2. Let B <min{p1, Ba}. For every i it holds that:

L. Prla; = s] < 2ip + (k)
2. Prlb; = 5] <2ip + p(k)

where [is some negligible function.

Proof Sketch. Since the mechanism must work for all samplable distributions S over
the secret, it also has to work for the uniform distribution over {0, l}k. Observe that in
this case, the probability that the parties output the correct secret without any interaction
is 27K, The claim is proven by induction. The base case follows from the fact that when
i = 0, the parties can guess the secret with only negligible probability, and the inductive
step follows from Claim 4.1.]

The main theorem. We use the above claims in order to show our main theorem. We
now prove that the number of rounds in any fair reconstruction mechanism depends on
{B1, B2} and so depends on the actual utilities.

Theorem 4.3. Let (I', 5) be a fair reconstruction mechanism, let R{Ul o) be a random
variable denoting the number of rounds in T when both parties play according to 6 =
(01, 02), and let B < min{By, B2} be as above. Then:

1
E[R%:flﬂz)] = w

Proof. We start by calculating an upper bound on the event RETWZ) =i.Recall that the
protocol may fail with some negligible probability, even when both parties are honest.
Let good be the event that both parties learn the secret when both play honestly, and
let bad be the event that at least one of the parties does not learn the secret when both
parties play honestly. By our completeness assumptions, we know that:

Pr[good] > 1 — (k) and Pr[bad] < u(k).

Note that when the number of rounds is i, and we are in good, then both a; = s and
b; = s. Therefore, we have:

Pr(R(,, o =i] =Pr[R(,, ,,, =i |good]-Pr[good] + Pr[R(, ,, =i |bad]-Pr[bad]

<Pr[R{,, ,, =i|good] + Pribad] < Pra; =s Ab; =s] + (k)

< Prla; =s]+ n(k). C))
Letr(k)=E [R%;l,dz)]. Then, by Markov’s inequality it holds that:
Pr(R(;, o) = 2r(K)] < %
and thus:
Pr(R(,, o, <2r(K)] > %

Utility Dependence in Correct and Fair Rational Secret Sharing 173

We compute an upper bound for the event Rgrl o) < 2r(k), using (4):

1 2r(k)—1 2r(k)—1
r r . r .
5 = Pr[R(UI,Gz) < 2r(k)] = PI‘|: \/ R(Ulﬂz) = l:| = Z Pr[R(Ul,Uz) = l]

i=0 i=0
2r(k)—1 2r(k)—1
< > (Plar=sl+pm) < Y Pria=s]+2r(uk).
i=0 i=0

Therefore, we have
2r(k)—1 1
Z Prla; =5]> > — 2r (k) (k).
i=0
On the other hand, using Claim 4.2:

2r(k)—1 2r(k)—1 2r(k)—1 2r(k)—1
Y Pilai=sl< Y Qip+pk)=26- Y i+ Y k)
i=0 i=0 i=0 i=0

< 8r2(k)B + 2r (k) (k).

Combining the above together we have:

! 2r(k)—1)
= —2r(k)u(k) < Z Prla; = 5] < 8r (k)8 + 2r (k) u(k).
2 i=0

That is:
% < 872(k)B + 4r (k) (k).

Since B is a fraction of polynomials, and u is a negligible function, for sufficiently large
k’s it holds that:

B k) > (k)
and therefore:
% < 8r2(k)B + 4r(k)u(k) < 8r2(k)B + 4r(k)B < 32r2 (k) B.

‘We conclude that:

1
32r2(k)B > >

Z(k) L
r > 615"

1

k) > ——.
r()>8\/3

This completes the proof. O

174 G. Asharov and Y. Lindell

Conclusion. Using Theorem 4.3 we conclude that there do not exist U T -independent
fair reconstruction mechanisms with an expected number of rounds that is polynomial,
even in the simultaneous model. In order to see this, we show that for all fixed poly-
nomials U;, U;, U;”~ and r(k), there exists a polynomial Ul.Jr such that r(k) < ﬁ
Specifically, take Ul.Jr > 64r2(k) - (U; — U;7) + U . This suffices because in such a
case,

_Ui-U7 U —-U; "~
Ur—u7~ " 64r2k) - (U; — U7)+ U~ U~

Bi

B Ui — U~ 1
C64r2(k) - (Ui — U7 T) 64r2(k)

and thus (k) < —= in contradiction. We have therefore proven the following:

8V/Bi

Theorem 4.4. There do not exist U™ -independent fair reconstruction mechanisms for
two parties, even in the simultaneous channels model.

4.2. Impossibility for U -Independence (Non-Simultaneous)

In Sect. 3 we showed that any mechanism that is U/ -independent achieves correctness.
In the simultaneous channels model, U/ -independence—and correctness—has been
achieved by previous protocols [6,11]. However, as we have mentioned, the known pro-
tocols for the model with non-simultaneous channels do not guarantee correctness. In
particular, if Uif > U; for some party P; then the strategy profiles ¢ of [8,12] are not
computational Nash equilibriums. In this section we prove that this is inherent to the
non-simultaneous model. That is, there does not exist a fair reconstruction mechanism
that is U/ -independent in the non-simultaneous model.

The Kol-Naor mechanism [12] and correctness. Before proceeding with our proof, we
describe the mechanism of Kol and Naor for non-simultaneous channels and show why
it does not achieve correctness. This example illustrates the problem of achieving U/ -
independence and is thus very instructive. The Kol-Naor mechanism assumes that the
utility functions U, U and U~ fulfill the assumptions in Definition 2.5. Furthermore,
the mechanism itself is constructed given the actual values of the utility functions (i.e.,
it is utility-dependent). The general idea of their protocol is that the shares assigned to
the party are actually lists of possible secrets. One party receives a list of size £ (this
party is called “the short party”), and the other party receives a list of size £ + d (this
party is called “the long party”). The short list is a strict prefix of the other. The lengths
£ and d are chosen according to a geometric distribution with parameter 8, where f
depends on the utility functions of the parties. The real secret is located at position
£ + 1 in the long list, while all the other elements in the lists are fake; the (¢ + 1)th
round is called the definitive round because in this round the secret is learned. In addition
to the lists described above, the dealer selects an independent random permutation for
every round; this permutation determines the order in which the parties send their list
elements in the round. The party that sends its message first in the definitive round is

Utility Dependence in Correct and Fair Rational Secret Sharing 175

given the long list, and the other party is given the short list. In addition, the parties
receive the permutations for the rounds appearing in their respective lists (i.e., the short
party receives the permutation only for the first £ rounds). We stress that neither party
knows if it is the short or long party. In any given round, we call the party who sends its
element first the “first party” and we call the other the “second party.”

In order to reconstruct the secret, the parties proceed round by round; in the ith round
each party sends its ith list element in the order determined by the permutation. At
iteration £ + 1 (the “definitive iteration”), the long party is the first to broadcast its share
(that is, it is the “first party”). However, the short party’s list is finished and thus it has
no element to send. It therefore remains silent in this round. The first round in which
only one party sends a list element is the definitive round, and so the secret sent in this
round is taken to be the real secret. Intuitively, fairness is achieved because the owner of
the long list does not know the length of the short list, and in particular does not know
which round is the definitive round. It therefore does not know which of the elements in
its list is the real secret and so has to send its share every round. See [12] for details.

As pointed out in [12, Note 6.2], if one of the parties aborts prematurely (i.e., remains
silent in round i for some i < £) then the other party will output an incorrect value (with
high probability the element s; of the ith round will not equal the secret). It is important
to note that the aborting party knows that s; is not the real secret because its list is
not yet finished. Furthermore, it can even have some influence over the incorrect value
output by the first party (this is because it can choose at which point to stop and thus
it can choose which of the values in the prefix of the list is output by the first party).
The protocol is therefore clearly not correct. We remark that the same problem also
exists for the protocol of [8]. As we have mentioned, [12] assume that rational parties
will not behave in this way because they always prefer to learn the secret than to not
learn it (observe that if a party aborts prematurely then it will not learn the real secret).

That is, they assume that U,.f < U;. We show that this assumption is essential as long as
U -independence is desired.

The impossibility result. Our proof of impossibility assumes that for all i, Ul.+ is
strictly greater than U; by a non-negligible amount. This is called strict competitive-
ness [12] and is defined as follows:

Definition 4.5 (Strict Competitiveness). Letif = {(Ul.+, Ui, u;, U, Uf)ie{m}} be
a set of natural utility functions. We say that the set is strictly competitive if for every
i € {1, 2}, there exists a polynomial p(-) such that for infinitely many &’s it holds that:

1
Ut (k) > Ui (k) + ——.
i (k) = ()+p(k)

We are now ready to formally state the theorem.
Theorem 4.6. For any set of strictly competitive utility functions U, there does not

exist a fair reconstruction mechanism that is U/ -independent in the non-simultaneous
model.

176 G. Asharov and Y. Lindell

By Proposition 3.4, U/ -independence implies correctness. We therefore prove that
in the non-simultaneous model there does not exist a fair reconstruction mechanism that
is correct, as defined in Definition 3.2.

Intuition. 'We begin by describing two strategies, 01 P and 02 P The strategy al op

for party Py is the strategy that follows the prescribed strategy & in all the rounds with
the following difference. In every round, P; checks what its output would be if P, quits
at that round. In the first round for which the output is not L, the strategy o SP instructs

P to quit at that round. 02 P is defined analogously. Since we assume correctness, the
probability that one of the parties will output a value which is not s or L when the
other prematurely aborts, is negligible. Thus, when playing o°%°P, both of the parties
will output the correct s in the round that they quit. Next, we prove that when both
parties follow & °°P, with high probability one of them learns the secret while the other
does not. We conclude by showing that the prescribed strategy & is not a computational
Nash equilibrium by showing that one of the 5P strategies has a better expected utility
than . That is, we show that either u> (o7, crzsmp) > uy(oy,07) + & oruj (o'fmp, 07) >
u1(oq, 02) + &', for some non-negligible function &’.
Before proceeding to the formal proof, we introduce the necessary notation.

Notations and conventions. Assume that P; sends the first message, and P> sends the
last message. A round of (I', &) consists of a message from P; followed by a message
from P,. If P; aborts before sending its ith-round message, then we will say that P,
outputs b;_1 (thus, if P; does not send any messages then P, outputs byp). Furthermore,
if P, aborts before sending its ith-round message (which is after it has received the ith
message from Pp), then we say that P outputs a;. Thus, if P, sends no messages, P;
outputs a;. For simplicity, if party Py halts atround i (and outputs a;), we define a; = a;
for every j > i. We define b; = b; after P, halts in the same way. We call these values
“the default output.” See Fig. 2.

P i)
a bo
b1
a2
bo
;
b;
Aj41

Fig. 2. Default output notations (non-simultaneous).

Utility Dependence in Correct and Fair Rational Secret Sharing 177

Random coins. Denote by ROUNDS(REALT p, (0, p,), P(0,p2) (SHARE(S, py))) the ex-
act number of rounds of the execution of the game I' with parties P; and P, using
random coins p; and pj, respectively, where both parties follow the prescribed strat-
egy o and use the shares generated by the algorithm SHARE with coins py (recall
that pg also determines the secret s chosen according to S). Furthermore, denote by
ROUNDS(REALT, p, (o), P,(c) (SHARE(S))) the random variable on the number of rounds
when p1, p2, ps are uniformly distributed. We denote the expected number of rounds by
r(k); that is, (k) = E[ROUNDS(REALT, p, (), P,(c) (SHARE(S)))]. For the sake of clar-
ity (and to reduce the amount of notation), we include the sampling of s according to S
in the random coins of the algorithm SHARE used to generate the shares.

Proof of Theorem 4.6. Let I/ be a set of strictly competitive utility functions and let
S be the uniform distribution over {0, 1}"". We prove that for every mechanism (T, &),
one of the following does not hold:

1. (I, o) is a fair reconstruction mechanism for the set of utility functions /.
2. (', o) provides correctness. That is, for every arbitrary strategy o/ followed by
party P; (i € {1,2}) there exists a negligible function p such that:

Pr[OUTPUTp_, (REALF,Pi(Ji/)’Pﬂ_ (o_) (SHARE(S))) ¢ {S, L}] < u(k).

It suffices to show that every protocol that achieves correctness (item 2) is not a fair
reconstruction mechanism (item 1). We stress that we ignore the U I utilities in this
proof because we assume U/ -independence.

In the proof below, we will define a set 2 of “good” coins for (SHARE, Py, P»). The
set contains all of the coins with the property that an execution of the share (SHARE)
and reconstruction protocol ((I', 5)) with these coins fulfill a number of requirements.
We will then show that the size of the set €2 is “large.” Furthermore, we show that when
both parties use these coins and follow %P, then the outcome must be oT or 0; (i.e.,
only one of the parties learns the output). Finally, based on this, we show that (o1, 07) is
not a computational Nash equilibrium, since for at least one of the parties P;, its utility
is larger by a non-negligible amount when following oismp than when following o;.

Definition 4.7 (The Set of Coins €,x)). Let p(-) be a polynomial. Define the set
Qpk) €10, 1}* x {0, 1}* x {0, 1}* to be the set of coins (ps, p1, p2) for (SHARE, Py, Py)
that fulfill the following requirements for parties running the prescribed strategy o':

e req;: The number of rounds in the execution of the reconstruction protocol is less
than p(k); that is, ROUNDS(REALT, p, (5, 01), P> (0, p2) (SHARE(S, 05))) < p(k).

e red,: In every round, the default outputs of both parties are in {s, L}. That is:
— Foreveryi (1 <i < p(k)), it holds that a; € {s, L}.
— Forevery j (0<j < p(k) —1),itholds that b; € {s, L}.

e reqs: Neither party outputs the correct value s without participating in the protocol.
That is, a1 # s and by # 5.

e reqy: Both parties output s at the end of the protocol. That is, apx)—1 = s and

by =s.

178 G. Asharov and Y. Lindell

We stress that the set €2,) is well defined because the parties’ strategies are specified
and thus the random coins fully determine the flow of execution and outputs. Recall that
r(k) is the expected number of rounds in the reconstruction protocol. The following
claim states that “most” of the random coins are in the set €2):

Claim 4.8. For every polynomial q(-), every polynomial p(k) > 2 -r(k) - q(k), and all
sufficiently large k’s, it holds that

1
PrlpeQ,n]>1— —,
p(k) q(k)

where p €g {0, 1}* x {0, 1}* x {0, 1}* is uniformly distributed.

Proof. Let g(-) be a polynomial, and define p(k) > 2 - r(k) - g(k). Now, let p €g
{0, 1}* x {0, 1}* x {0, 1}* be uniformly distributed. We calculate the probability that
P € Qpk), which occurs when all the requirements of Definition 4.7 are met by p. That
is,

Pr[p € Qp)] = Prlreq; A req, A reqz A regy]
= Pr[req] - Prreq, | req;] - Pr[req; | req; Areq,]
- Pr[reqy | req; A req, Areqs].
Computing the first term Pr[req;]: The first requirement states that the number of

rounds should be no more than p(k). Since the expected number of rounds is r(k), by
Markov’s inequality we have that

r(k)
Pr{—req;] = Pr[ROUNDS(REALF, p, (g,p), P2 (0. 02) (SHARE(S, py))) = p(k)] < 0
and thus:
r (k)
Pr{req;] = Pr[ROUNDS(REALTF, p,(s,p)), P2(0.02) (SHARE(S, py))) < p(k)] > 1 — 0

Computing the second term Pr[req, | req]: Given that req; holds, we know that the
protocol terminates after no more than p(k) rounds. That is, it suffices to show that for
every i € {1,..., p(k)}, a; € {s, L}, and for every j € {0, ..., p(k) — 1}, b; € {s, L}.
Thus,
Prlreq, | req;] =Pr[(Vi € {1...., p(k)}. a; € {5, L})
/\(Vj € {O,...,p(k) — 1}, bje {s,J_})]
=1 —Pr[(EIi € {1,...,p(k)},a,- ¢ {s,J_})
\/(Elj € {0,...,p(k) — 1}, b; ¢ {s, J_})].

Utility Dependence in Correct and Fair Rational Secret Sharing 179
Using the union bound, we get:

Pr{3ie{l,....p)}.ai ¢ {s. L}) v (3j€{0,.... ptk) — 1}, b; ¢ {s. 1})]

pk) plk)—1
<> Prlai¢ls, LY+ Y Prlb; ¢ s, 1}]
i=1 j=0

=2p(k) - u(k)

for some negligible function w. This last inequality follows from the assumption that
the reconstruction protocol achieves correctness and thus a party outputs an incorrect
value with only negligible probability (even if the other party terminates early). By the
fact that p(-) is a polynomial, it follows that there exists a negligible function w1 such
that

Prlreq; [req;] = 1 —=2p(k) - (k) = 1 — p1 (k).

Computing the third term Pr[reqs | reql A req,]: The third requirement states that
neither party outputs s without participating in the protocol. Using req,, we know that
a; €{s, L}, bp € {s, L} and thus:

Prlreqs | req; Aredy] =Prla; = L Aby= L a1, by € {s, L}].

We calculate:

Prlreq; | req; Areqy] =1—Pr[a; =sV by =s|ai, by € {s, L}]
>1 —Pr[a1 =s|ay,bg€ {s,J_}] —Pr[b0=s |ai, by € {s,J_}].

We show that Prla; = s | a1, by € {s, L}] is negligible (the calculation for b is equiva-
lent). Since S is the uniform distribution over {0, 1}¥, it holds that:

Prlay =s |ay. bo € {s, 1})] < Pria; =5
PR RO = Biar, by € (s, L)

27k
Prlay, bo € {s, L}]
—k

< -
R 7109

for some negligible function po (k). (The equality follows from the fact that S is the
uniform distribution over {0, 1}¥ and the last inequality follows from the assumption of
correctness on the protocol.) Thus,

< ua(k)

Prlreq; [req; Areqp] = 1 —2us (k).

180 G. Asharov and Y. Lindell

Computing the fourth term Pr[req, | reql Areqy Areqs]: The fourth requirement says
that at the end of the execution of the protocol, both parties output the secret s. By
the completeness of the protocol when both parties follow the prescribed strategy, we
know that whenever the strategy instructs the parties to halt, they must output s, except
with negligible probability. Since we are conditioning on req, the prescribed strategy
instructs the parties to halt before round p (k). Therefore, there exists a negligible func-
tion w3 such that

Pr[req, | req; Areq, Areqz] > 1 — us(k).

Completing the proof: Combining all of the above we have that for all sufficiently
large k’s:

Pr[p € Q)| = Prlreq;] - Prlreq, | req;] - Prlreq; | req; A req,]

-Pr[req, | req; A req, A reqs]

k
> (1 - Q) (1= 1) - (1= 20200) - (1 = pa(0)

p(k)
_rl_r®
) P

where the last inequality is due to the fact that ;((',?) is larger than any negligible function

(for all sufficiently large k’s). Since p(k) > 2-r(k) - q(k),

2-r(k) 2-r(k) 1
Prlp e Qppl=1— >1- =1-—.
p(k) 2-r(k)-q(k) q(k)
This completes the proof of Claim 4.8.]

We now formally define the strategy o%'°P for both parties:

Formal description of o7 *": Formal description of g} P
o i« 1. o j<0.
e Calculate aj. e Calculate bg.
e Whileq; = L e While bj =1

— Increment j.

Receive the round j message from
Py.

— Calculate b;.

— Ifb; = 1, run P, forround j (send

— Run P; for round i (send a mes-
sage using the strategy o and then
receive a message).

— Increment i.

— Calculate a;. a message using the strategy o7).
e On the first element such that a; 7 L, e Onthe first element such thatb; # L,
quit, and output a;. quit, and output b;.

We remark that for the analysis to go through, it is crucial that the strategy o 5P

uses the exact same random coins as . Thus, if ¢ does not calculate a; or b j in every

Utility Dependence in Correct and Fair Rational Secret Sharing 181

step (since such a value is only needed if indeed the other party aborts early), and if
these calculations are probabilistic and require random coins, then & and 5P need a
different number of random coins. In order to overcome this technical detail, we define
the profile strategy 4“4 which is equivalent to & except that it internally calculates a;
bj in every step (and does nothing with this additional information). It is easy to see that
o and 5°9"4 are equivalent. That is, if & is a computational Nash equilibrium, then so is

o1l Moreover, 5“4 and ¢5°P use the exact same number of coins. For the sake of
clarity, we ignore this from now on and just assume that & itself uses the same number
of coins as o5%°P,

We have shown that for every polynomial there is a large set of random coins 2)
that result in a “good” outcome in an execution of the strategy o. We now show that for
every set of random tapes p in ,), if both parties change their strategy to ¢*'°P and
use such a p, then with probability 1 exactly one of the parties will learn the secret. We
stress that this is guaranteed only for the “good” coins in €2) and thus the probability
overall that this occurs when both parties follow P equals the probability that a set of
random coins are in) (which is close to 1). Before stating the claim, we introduce
the following shorthand. We write

[o](o1.07. 0 € 2pw))]

to denote the event that the outcome is o after an execution where party 1 runs strategy
oy, party 2 runs strategy o5 and the coins used, p, are in the set Q,) as defined in
Definition 4.7. Recall also that oi+ is the outcome that P; learns the secret while P_;
does not. We have:

Claim 4.9. For every polynomial p(-) it holds that
stop _stop
Prlof v oy [(07,0, " p € Qpuy) | = 1.

Proof. Let p(-) be a polynomial. By the definition of £2,) we have that for every
P € Qp(k), the following holds:

The number of rounds is less than p(k).

o At the end of the protocol, both parties learn the secret (as long as they follow the
prescribed strategy).

ea=1,bg=1.

e Foreveryie{l,...,p(k)}, j€{0,...,pk) =1}, a; e{s, L}, bj €{s, L}.

It follows that when both of the parties follow &, there exists a round i such that a; #
1, and a round j such that b; # L (this must occur since a; = by = L and apy) =
bp@—1 = s). We will consider the first i such that a; # L and the first j such that
bj # L. Since all a;, b; values are in {s, L}, it follows that a; = s and b; = 5. Now, if
both parties will play according to 5 °°P, then when one of them receives a value which
is not _L, it will immediately stop. Since we are working in the non-simultaneous model,
we can show that:

e Ifi < j, then by the definition of af fop party P; will not send its round i message
and party P, will output L. (When i < j, this is clear. Furthermore, when i = j,

182 G. Asharov and Y. Lindell

Tl B it P
a1 = L b= L a; = L bo= L
by =1 by=1
ao = L ao = L
. bi1=1 a; =L
a; =8 bj = s
bpiy = 5 bpiy = 5
Op(ky+1 = S Opk)+1 = S
(1) (2)
(1) P1 learns the secret before P; quitting in round i will result in oi"

(2) P, learns the secret before Pp; quitting in round j will result in 02+

Fig. 3. The possible cases of a run with p € Q).

note that Py defines a; before sending its message inround i and P, defines b; only
after receiving this message from P;. Thus, when i = j, P, will output b; 1 = L.)
In this case, P; outputs s and P, outputs _L; thus the outcome is OT. See Fig. 3,
case (1).

e If j < i, then by the definition of a;t()p party P, will stop before sending its mes-
sage in round j. Thus, a; = L. This implies that P, alone learns the secret (since
bj =s)and P; outputs L. The outcome in this case is 0;. See Fig. 3, case (2).

We conclude that when p € €2, and both parties follow ¢°, the probability that
exactly one of the parties learns the secret is 1, as required. |

In the previous claim we showed that when both parties play according to 6%°P, and
when p € Q)), there will be a party that learns the secret alone.

Our aim overall is to show that the strategy ¢ does not achieve computational Nash
equilibrium. In order to do this, we show that for a particular party, there exists a better
strategy; in particular, we will show that o3P is better for one of the parties. A key step
in doing this is the next technical claim which considers what happens when one party
P; uses al.smp while the other uses o_;. We use the previous claim to show that:

Corollary 4.10. For every polynomial p(-) it holds that:

stop

Pr[+ | (stop (72), pE Qp(k)] +Pr[0;r | (01 o,) pE Qp(k)] =1.
Proof. In Claim 4.9 we proved that
Prlof v o3 | (07", 03), p € piy] = 1.

We observe the following three facts:

Utility Dependence in Correct and Fair Rational Secret Sharing 183

1. of and ozr are disjoint events (i.e., they cannot both occur in a single execution).
Hence:

Prlof v o3 | (07", 03'). p € 2pe0]
=Prof [(07, 03""). p € po] + Prlo3 | (07", 5). p € et -

2. We claim that

Prlo} | (07", 03 "). p € Qpy] < Pr[o] | (07", 02). p € Lyt]-

This is true since in every run with the parties following (,'"?, o5 %) in which P

learns the secret before P», it follows that P; learns the secret before P, even if
P, plays according to 2. (Until the point that P; learns the secret, o2 and a2t°p
are 1dent1cal)

3. Pr[o] | (0,7, 05), p € Qpay] < Prlo] | (1,0, F), p € Lp]. This follows
as above

Combining the above, we conclude that:

top stop

Uf ,02),p € Qp(k)] +Pr[02 ‘ (01,0,) pe Qp(k)]

Prlo}" [(
> Prlof [(o7 05“’") p € 2] +Pr[o] | (7,53), p € 2pw)]
= Prfo} v of | (6. 037). p € Q] = 1

completing the proof of the claim. U

We are now ready to prove our main claim:

Claim 4.11. The prescribed strategy 6 = (01, 02) is not a computational Nash equi-
librium.

Proof. 'We prove this by showing that there exists a non-negligible function &’ = &’ (k)
for which at least one of the following holds:

O]
P, 02) > ui(o1,00) + ¢,

S

uj (01
{1

uz(o1, 05 ") > us(o1,02) + €.

Let g(-) be a polynomial such that for all sufficiently large k’s it holds that

20U +2U, 20U +20, })

(k) > maX{ ,
1 -U, U -Us
Such a polynomial g (-) exists because all of the utility functions are polynomial, and by
strict competitiveness there is a non-negligible difference between Uf and U;. Now, let
p(k) =2-r(k) - q(k) (where r(k) equals the expected number of rounds and g (k) is as
above), and define 2,) as in Definition 4.7, using this p (k).

184 G. Asharov and Y. Lindell

Notation:

e Denote by « the probability that party P; learns the secret and P, does not, when
Py follows crl‘smp, P, follows o7, and p € Q). That is,

a =Prfof | (0}, 02). p € Q|-

e Denote by B the probability that p € €2,). Recall that by Claim 4.8:

1
B ="Prlp € Qpul=> <1 - m)

The expected utility of P1: The expected utility of party P; when it plays according to
afmp, P, plays according to o2, and when p € Q) is:

ui(0y™. 02| p € Qpy)

= P[0 | (51, 02). p € iy] - Uit + Bl | (07, 02). p € 2] - U
+Prfoy | (07", 02). p € Qo] - U +Prlo] | (07 02). 0 € Qpwo] - U
We now calculate each of the above probabilities:

e By our above notation, Pr[oi" | (alsmp, 02), p € Lppy] = a.

e Prlo, | (olsmp, 02), p € Qpk)] = 0: This holds because when P, plays according
to 02, we know that Py will always learn the secret. Recall that p € €2, and so
when neither party stops early, both output s with probability 1. Since P> does not
stop early, P; will only stop when it learns s (note that P; only stops when a; # L
and by req, we are given that a; = s).

° Pr[o? | (UlS mp, 02), p € Qp(k)] = 0: This follows from the exact same argument as
above.

° Pr[obOth | (alsmp, 02), p € Qpk)] = 1 — a: This holds because the sum of all four
probabilities in the expected utility of P; equals 1 (they cover all possibilities).

‘We therefore have
ul((TlStOP,O’z | p € Qp(k)) =u- U1+ +(1—«a)-U.

We have calculated the expected utility of Py for p €). We conclude by calculating
the expected utility for P for a randomly chosen p:

P 02) = ul(dlswp, 02| p € Qpiy) - Prlp € Qpay] + u1(6ft°p, o2 p ¢ Qpw))

‘Prlp & Qpw)]
> u1(0ft0p, 02 p € Qpwy) - Prlp € Lp]
(o Uf (- U) B ©

ul(O']SIO

Below, we will show that when o > 1/2 (and for an appropriate), this expected utility
is greater than U + &', where ¢’ is non-negligible. Before doing this, we carry out an
analogous calculation for the expected utility of P.

Utility Dependence in Correct and Fair Rational Secret Sharing 185

The expected utility of Py: The expected utility of party P> when it follows o', Py
follows o1, and p € Qp) is:

w2 (01,0, | p € Qpiwy)
= P[0y | (01.03"). p € Qo] - Uy + Prlo™" [(01,03'7). p € Qpiiy] - U
+Prfoy [(01.03). p € Q] - Uy +Prlof [(01.03'7). p € Qo] - Uy ~

We calculate each of the above probabilities:

e Prlo] | (01,0,""), p € Qp@)] = | — a. This follows from Claim 4.10 and the fact
that Pr[ol+ | (ofmp, 02),p € Qpyl = .

e Prlo, | (01, ofmp), p € Qpx)] = 0. This is exactly the same as in the calculation
of the utility of Pj.

e Prlo] | (ol,ozsmp), p € Qp] =0. Again, as above.

o Pr[o™M | (o, Uzsmp), p € Qpx)] = a. Once again, this follows because all four
probabilities sum to 1.

We therefore write:

uz((al, G;top) ‘,0 € Qp(k)) =1—-a)- U2+ +oa-Us.

We have calculated the expected utility for P> when p € Q). The expected utility for
P, for a randomly chosen p is:

St Sty Sty
uz(o1,05 ") =uz(01,05" | p € Qi) Prlp € Qo] +ua(01,0, " 10 # Qi)

Prlp & Qpi)]
> uy(01,05 7 | 0 € 2ty - Prip € iy
=(1-a)- U +a-U,)-B. Q)

Below, we will show that when o < 1/2 (and for an appropriate), this expected utility
is greater than U| + &', where &’ is non-negligible.

Computing B: In order to complete our analysis, we need to compute the value of g
as a function of the utilities. Recall that we set

1
p=1-—
q (k)
and by (5):
U 42U, 2US 42U
q(k)Zmax{ 1+ 1, 2+ 2}.
Uu"-u U, —Us

186 G. Asharov and Y. Lindell

. . . 2UT2U; .
Leti € {1, 2} be the index for which U’_Jr_ — is the maximum. We have:
1 1 Ut —-u;, 22U 42U - Ut +U;
ﬂ = 1 —_ Z 1 - T =] — L = ! U
q(k) 20, 420 2U; +2U; 2U; +2U;
Ut-u;
U H3U; AU+ (U -U) Ui+ 3 (U - U
Ut +2us 20t +2u; 0 lut+lu

Therefore, it holds that:

U + 3t - Uy
T+, 1
§U1 +§U1

Us + 3(U) —Un)
T+, 1
§U2 +§U2

and B> ®)

Concluding the proof: In order to show that ¢ is not a computational Nash equilib-
rium, we show that at least one of the parties P; will prefer to change its strategy to 5";“’}).

The specific party that will prefer to change its strategy depends on the value «. There
are two cases:

e Case I. —% <« < 1: In this case, we claim that P prefers to change its strategy to
0,'". Recall that by (6):

stop

ul(al‘ ,U2):(01~U1++(1—oz)-U1)~ﬂ.

Leta = % + &, where 6 > 0. We write:

Using (8) we know that:

Ui+ 3t - Uy
177+ 1
iUl +ZU1

B>
and so:
(o) 00) = (- U + (1 —a)- U)) - B

Lyt —
> 1.U1++£.U1 .U1+4(U1 v
—\2 2 lut+1o

1
=U, +Z(U1+—U1).

Utility Dependence in Correct and Fair Rational Secret Sharing 187

However, u1 (o1, 02) = Uy. By the assumption that the utility functions are strictly
competitive, U;" = U} + ¢’ for some non-negligible function &’. Thus:

sto
ui(o] P, 02) > ui(o1,02) +¢

for a non-negligible function €. We conclude that when 1 > o > %, P prefers to
. stop
change its strategy to o " .
e Case2. O0<ua < %: This is almost equivalent to the previous case. We claim that

in this case P, prefers to change its strategy to O_zstop . By (7) we have:
ur(o1.03%) = (1 —e) - Uy +a-12) - B.

Leta = % — &, where § > 0. We write:

uz(o1, 0, ")

I
—

(1-0a) - Uf +a-Us)-B

(Ls)vs o (L-s)0a)

8- (US =)+

Il
TN TN TN

N =

v

1
Uy + < U2> -B.
Using (8) we know that:

_ bt HUS =)
— 177+ 1
§U2 +§U2

and thus:
stop 1 + 1
uz(al,az)Z E-Uz +§U2 -B
(1

1
=U2+Z(2+—U2).

v
N |

1 >.U2+J—‘(U2+—U2)
2

U 45U L+ 4 1
EUZ +§U2

Recall again that uy(oq, 02) = Up and U2+ > U, + ¢’ where ¢’ is non-negligible
(by the assumption of strict competitiveness). We therefore conclude that:

Sto|
uz(o1, 05 ") > uz(o1,02) + ¢

for some non-negligible function €. Hence, when % >« > 0, P, prefers to change

its strategy to astOP

188 G. Asharov and Y. Lindell

We have shown that for every «, there is a party P; whose utility is higher if it changes
its strategy from o; to Ul.smp . Hence, (o1, 02) is not a computational Nash equilibrium,
in contradiction. U

This completes the proof of Theorem 4.6. |

Remark. Note that when o = 1/2, both parties prefer to change their strategy. In
actuality, we can show that when § is almost 1, for almost every «, it is better for
both parties to change their strategy to % (assuming that the other party follows the
prescribed strategy o). Nevertheless, 6%°P is not a fair prescribed strategy for rational
reconstruction because as we have shown, in such a case only one of them will learn the
result (with very high probability). Thus, 5°P does not result in 0*°!h,

4.3. Impossibility with Arbitrary Auxiliary Input (Non-Simultaneous)

A closer look at the Kol and Naor mechanism (in the non-simultaneous model) raises
another possible problem, namely the possibility that one of the parties has some prior
information about the secret. The problem is that the party with the long list sees the
entire secret s at the definitive iteration before it is supposed to broadcast it. Suppose
that the long party has some prior information about the secret s, or has access to some
“place” where it can check whether the possible current secret s” is the real secret (e.g.
the secret is a password to some web server, and the party can just type the password
and see if it works). In such a case, there is no incentive for the party to broadcast the
secret at the definitive iteration, and therefore the party with the short list does not learn
the secret.

In this section, we ask whether this weakness in the protocol is inherent (for the non-
simultaneous model). In order to formalize this question, we assume that the parties
have access to some membership oracle O, and each party can query the oracle to ask
whether the current possible secret s’ is the actual secret. We assume that the parties
are run in polynomial-time and so can only query the oracle a polynomial number of
times. Clearly, this implies that fair secret sharing with auxiliary input is only possible
if the secret is taken from a super-polynomial domain. We model it this way because
otherwise there is a non-negligible a priori probability of guessing the secret anyway.

We stress that this is just one type of auxiliary information. However, a proof of
impossibility in the face of such an oracle suffices to demonstrate impossibility in the
presence of arbitrary auxiliary input.

Defining membership-auxiliary information. We define a fair reconstruction mecha-
nism with membership-auxiliary information to be a mechanism that achieves fairness,
even when the parties have an access to such an oracle. Formally, a membership Oracle
O :S — {0, 1} is defined as follows:

1 x=s,
Os(x) =

0 otherwise.

For simplicity, we assume that the oracle is never wrong. We define fair reconstruction
mechanism with membership-auxiliary information as follows:

Utility Dependence in Correct and Fair Rational Secret Sharing 189

Definition 4.12. Let Py, P, be two parties, let U be a set of natural utility values
for the parties (as in Definition 2.5), and let O be a membership oracle. We say that
(FO, 80) is a fair reconstruction mechanism with membership-auxiliary information for
the set U, if the mechanism is fair (as in Definition 2.6), even when both parties have
access to the oracle O.

We now show another impossibility result in the non-simultaneous model:

Theorem 4.13. For any set of strictly competitive utility functions U (see Defin-
ition 4.5), there does not exist a fair reconstruction mechanism with membership-
auxiliary information for the set U, in the non-simultaneous model.

Proof Sketch. The proof for this theorem is the same proof as Theorem 4.6, with
some modifications. Actually, in Theorem 4.6 we assumed that the mechanism achieves
correctness. However, our mechanism does not necessarily guarantee this property, and
this requires some changes. Let (%, 59) be the mechanism. We make the following
modifications to the proof of Theorem 4.6:

e Default output notation: In the original proof, it is guaranteed that every default
output of the parties is in the set {s, L }, except with negligible probability. This was
crucial for the definition of the set €2, and is actually a property of the correctness
assumption. In our proof, (FO, 50) does not guarantee correctness, and therefore,
the above does not hold. Therefore, we have to modify the definition of the default

output: denote by afrlgmal the output value of party P; on round i in the original

protocol. We define our “new default output” as follows:

a9r1g1nal if(’)(ai) =1,

a; = !

1 otherwise.

That is, in order to compute the new default output at round i, P; calculates the
default output of that round (as it did in the previous proof), and queries the oracle
with that value. If the oracle returns 1, then P; outputs it (using the oracle answer,
we know that this value is s). Otherwise, it sets the new default output to be L. We
define the “new default output” for the party P, in the same way. With this modifi-
cation, our new default outputs will also be in the set {s, L}, as needed in the proof.
Given this modification, we use the same definition of good coins (Definition 4.7).
The proof that its size is the same as before (except that requirement 2 holds with
probability 1, in contrary to the original proof, where it may not hold with at most
negligible probability).

o The alternative strategy o°°P: We use exactly the same alternative strategy o 5P,
but emphasize that we use the new default output notations in the calculation of
this strategy.

e About U/: In the original proof, we assumed correctness, and therefore we as-
sumed that the probability of causing the other party to output an incorrect value,
and achieve U/, is negligible. In other words, we assumed that:

Pr[ogalse | (olsmp, 0’2), pE Qp(k)] =0 and Pr[ogalse | (ol,azsmp), pE Qp(k)] =0.

190 G. Asharov and Y. Lindell

The above was true because whenever p € Q,), then for both parties the de-
fault outputs were always in {s, L }. This assumption was used in the calculations of
Claim 4.11. For example, this is an implicit assumption in the following equation:

st
ui(o) ", 021 p € 2pw)

= Pr[of' | (UISIOP, 02), pE Qp(k)] . U1+ + Pr[oboth | (olsmp, 02), pE Q,,(k)] - Uy

+Prfoy [(07P.02). p € Qpo] - Uy

+Pr[o | (07", 02), p € Q] - Uy~

In the proof here, we do not assume correctness, and therefore, apparently, we
cannot ignore U/ . However, we note that including the possibility of causing the
other party to output a wrong secret can only make the expected utility even bigger
(irrespective of the value of U f and even if U/ > U). In order to see this, recall
that we are considering the case that P; always learns the secret. Since U/ is the
expected utility when P; does not learn the secret (but causes to the other party
to output an incorrect value), it follows that U / does not occur at all. Thus, the
probability of obtaining U/ is zero. Note that there is still the possibility that Py
learns the secret, and also causes to the other party to output an incorrect value. In
this case, the utility that it achieves may be greater than or equal to U 1+ . However,
this only makes the expected utility of following strategy als P even greater, as
required.]

Auxiliary information—simultaneous channels. We remark that in the simultaneous
channels model, it is possible to obtain fair reconstruction with auxiliary information.
In particular, the protocols of [6,12] achieve this.

5. Positive Results

5.1. Fully Independent Mechanisms for n > 3 with Simultaneous Channels

In this section we show that utility dependence is not always essential. In particular, we
show that it is possible to construct a utility-independent fair reconstruction mechanism
for the case of f-out-of-n secret sharing, where n > 3. Our protocol is also resilient
to coalitions, where the size of the coalition is less than [%1. Our protocol can use
as a subprotocol any one of the protocols that were suggested in previous papers (for
example [1,6,11,12]). For the sake of concreteness, we use the protocol of Gordon—
Katz [6] and show that our protocol inherits its properties. Specifically, we achieve a
computational Nash equilibrium that survives iterated deletion of weakly dominated
strategies. Using a subprotocol with a stronger Nash equilibrium will yield a stronger
guarantee for our protocol as well.

5.1.1. Preliminaries

Utility functions for the multiparty case. Until this point in this paper we consid-
ered the two-party case only. We now introduce the “standard” assumptions [7,12]

Utility Dependence in Correct and Fair Rational Secret Sharing 191

on the utility functions that are used in the multiparty case. Let r be the run of an
execution, containing the random tapes of all parties and all messages sent, and let
o(r) = (01(r), ..., 0,(r)) be the outcome of the execution r such that o; (r) = 1 if and
only if party P; learned the secret in the run r. Let and r’ be two possible executions.
The assumptions on the utilities are:

1. u;(r) =u;(r") if o(r) = o(r’). Stated in words, the utilities of the parties depend
only on the outcome of the run (that is, it depends only on who learned and who
did not learn the secret).2

2. For every i, if 0;(r) = 1 and 0; (') =0, then u; (r) > u; (r"). That is, each party
prefers to learn the secret than not learning it, irrespective of who else learns the
secret.

3. If 0;(r) = 0; (") and wt(o(r)) < wt(o(r’)) (where wt(x) is the Hamming weight
of the bit vector x), then u; (r) > u; (r"). (Each party prefers that as few parties as
possible learn the secret.)

The third assumption is general enough to allow parties to have different utilities when
different subsets of parties (of the same size) learn the secret.

Coalitions. We take the definition of an equilibrium that is resilient to coalitions
from [1]. Let C denote a subset of the parties, or coalition. Informally, a joint strat-
egy 0 = (01, ...,0y) is k-resilient if for any coalition of parties C of size at most k that
jointly deviate from o, none of the parties in the coalition can gain a higher utility than
they would have gained by running o. Let P = {1, ..., n} be the set of indices of the
parties and let X; be the set of all possible strategies for party P; (note that X; may be
an infinite set). For any subset of parties C C P, let E¢ be the set of all possible joint
strategies for parties in C, and let o¢ € ¢ be a joint strategy for those parties.

Definition 5.1 (k-Resilient Equilibrium). For any non-empty subset of parties C C P,
oc € X is a group best response for C to o_¢ € X _¢ if for every strategy o/, € X¢ and
for every i € C, it holds that:

ui(oc,0-¢) > ui(op, 0-c).
A join strategy ¢ is a k-resilient Nash equilibrium if for all C C P for which |C| <k, it

holds that o is a group best response for C to o_¢.

Weakly dominated strategies and iterated deletion. We refer the reader to [7] for a
formal definition of this notion; our protocol directly inherits this property from the
protocol of [6] and we therefore omit technical details of this notion.

5.1.2. The Gordon—Katz Protocol

We now describe the protocol of [6] for rational secret sharing. This protocol is used as a
building block in our protocol. The protocol of [6] uses an online dealer (or alternatively

2 We ignore here the issue of correctness and assume that it is always achieved. This is reasonable in
the simultaneous channels model where all protocols—including ours—guarantee correctness, except with
negligible probability.

192 G. Asharov and Y. Lindell

a protocol for secure computation), who in every round creates shares of the real secret
with probability S, and shares of a fake secret with probability 1 — B, where B is a
parameter described below. All the shares are signed by the dealer. At every round, the
parties reveal their shares (at the same time, using the simultaneous channel). If a party
refuses to reveal its share, or if a party reveals an incorrect share (i.e. a share with an
invalid signature), then all the parties stop the execution and the game is terminated.
Thus, if a party decides to remain silent in any particular round and all other parties
reveal their shares in that round, then with probability 8 the party can reconstruct the
secret and be the only one to learn the secret (thereby gaining utility U™). However,
with probability 1 — B, the party will learn nothing and will cause the execution to halt,
with the result that it gains utility U . Thus, such a party takes a risk by not cooperating.

Consider now for simplicity the case of 2-out-of-2 secret sharing. Assume that party
P; defects in a given round, while the other party does not (i.e., the other party sends its
share in the round). The expected utility of party P; when it defects (quits, or remains
silent in order to learn the secret alone) in the current round is:

ui(defect) =B - U +(1—B)-U;.

This is because with probability 8 the real secret is revealed in this round and with
probability 1 — B a fake secret is revealed. Since P; does not send its share, it is the
only party to obtain the real or fake secret. Thus, with probability B it obtains utility
UZ.Jr (when the real secret is revealed) and with probability 1 — g it obtains utility U;”
(observe that when a fake secret is revealed in this round, the execution is halted and
neither party learns the secret).

In contrast, the expected utility of party P; when it cooperates and broadcasts its share
in every round (assuming that the other party plays according to the prescribed strategy)
is U;; that is, u;(coop) = U;. Thus, as long as u; (coop) > u; (defect), the prescribed
strategy is a Nash equilibrium. Plugging in our calculations of these expected utility
values, we have that the protocol achieves a Nash equilibrium as long as for every i it
holds that:

B-UT+(1-pB)-U~ <U.

1

By simple manipulation we obtain that this holds as long as for every i,

Ui —-U;-
Pe Ui+ -U .
(We remark that this can be achieved as long as Ul.+ # U;” because otherwise we di-
vide by 0; this follows by the assumption in (1) (see Sect. 4.1). However, if the dif-
ference between Ui+ and U; " is negligible, then the expected number of rounds of the
protocol—which is 1/8—will not be polynomial. This can be solved by assuming strict
competitiveness, or just that there exists a polynomial p such that for every i and all
sufficiently large k’s it holds that Ui+ >U; +1/pk).)

Note that the protocol assumes that the parties can determine whether a given value
is the real secret or a fake one. This can be achieved by simply adding a bit that in-
dicates whether the value is the real secret or not. Gordon and Katz proved that for g

Utility Dependence in Correct and Fair Rational Secret Sharing 193

set as above, the prescribed strategy of this protocol is a Nash equilibrium that survives
iterated deletions of weakly dominated strategies. They also claim that in the case of
t-out-of-n secret sharing, their protocol is k-resilient for k =t — 1. See [6] for more
details. We also refer to [11] regarding modifications necessary to obtain resilience to
backward induction.

5.1.3. Our Protocol

We now present a protocol for ¢-out-of-n secret sharing for n > 3 and any ¢ < n that is
completely independent of all the actual utility values. That is, our protocol achieves a
Nash equilibrium that survives iterated deletions of weakly dominated strategies and is
((%1 — 1)-resilient for any set of natural utility functions that are strictly competitive.
This is in contrast to all of the protocols that were suggested in previous papers, and in
contrast to our impossibility result in Sect. 4.1 for the two-party case.

The protocol idea. Our protocol is based on an observation made by [16] that extrane-
ous shares help to achieve fairness. In particular, consider the case of ¢-out-of-n secret
sharing where 7 is strictly less than n, and consider what happens when t* > ¢ parties
come together to reconstruct the secret using the naive reconstruction mechanism of
just broadcasting the shares. In this case, if a single party deviates from the prescribed
strategy and is silent, then it will not prevent the others from learning the secret. This is
because there are still #* — 1 > ¢ shares that are broadcast. This does not suffice because
the strategy of being silent still dominates the strategy of broadcasting (nothing is lost
by being silent). However, if any penalty is introduced that makes being silent “risky”,
then parties will have an incentive to cooperate. In particular, if instead of using the
naive mechanism, the Gordon—Katz protocol is used with § = 1/2, then no party has
an incentive to not cooperate. In order to see why this is the case, we analyze the ex-
pected utility of a party P; who is silent in some round. If in that round the fake secret
is revealed, then P; will not learn the secret and will obtain the utility value U; . In
contrast, if the real secret is revealed, then it will learn the secret. However, since there
are t* — 1 >t other parties who do participate, then all parties still learn the secret and
the utility gained is U; (and not Ui+). Thus, the expected utility of P; is

%~U,~+%~U;<Ui.

Thus, P; can only lose by being silent. Note that this can be extended so that any coali-
tion of ¢* — ¢ parties has nothing to gain by being silent. The crucial point here is that the
above mechanism works irrespective of the actual utility values of the parties. However,
it does not suffice for our goal because it requires that t* > ¢ parties participate in the
reconstruction which cannot always be guaranteed. In particular, in the highly important
case of n-out-of-n secret sharing (which has many applications in secure computation,
for example) it is not possible to ever have * > ¢.

Our protocol works by achieving the effect as above even when * =¢. As a first
attempt, consider what happens if instead of sharing the secret using a ¢-out-of-n secret
sharing scheme, a f%} -out-of-n secret sharing scheme is used instead. In this case, when
t parties come together to reconstruct the secret, there are always t — f%] extraneous

194 G. Asharov and Y. Lindell

shares (i.e., the effect is that of * ~ 2¢), and so fairness can be achieved as above. Of
course, this does not work because the scheme is no longer a ¢-out-of-n secret sharing
scheme because only (%1 parties are needed to reconstruct instead of 7. This problem
can be solved by first sharing a random value r to mask the secret using a f-out-of-
n secret sharing scheme, and then sharing r @ s using a f%]-out-of—n secret sharing
scheme. First observe that now only ¢ parties can reconstruct the secret, because r @ s
reveals nothing about s as long as » remains hidden. Now, in order to reconstruct, the
parties, first broadcast their shares of r naively; if any party is silent then they all abort
and learn nothing. Then, after » is reconstructed, they use the Gordon—Katz protocol
with 8 = 1/2 in order to reconstruct r @ s. The key observation is that in this second
phase there are ¢ parties, whereas only {%] shares are needed. Thus, no coalition of size
less than f%] has any incentive to be silent (as shown above, being silent in this case
only decreases their expected utility). As above, this holds irrespective of the actual
utility values of the parties.

Our protocol:

The Dealer protocol. Let n be the number of parties, let 7 be the threshold and let s be
the secret to be shared.

e Choose a random r € {0, 1}15].

e Generate shares of r using a 7-out-of-n secret sharing scheme; let (r,...,r,) be
the resulting shares.

e Generate shares of r @ s using a [%1-0ut-0f—n secret sharing scheme; let
(p1s - .., pn) be the resulting shares.

e Foreveryi e {l,...,n}, send the pair (r;, p;) to party P;.

All the shares are signed by the dealer.

Reconstruction—the prescribed strategy o; for party P;. Let oiGK be the prescribed
strategy for party P; in the protocol of Gordon—Katz with 8 = 1. The prescribed strat-

egy in our protocol is as follows:

e Broadcast the share ;.

e If all other parties that are participating in the reconstruction protocol broadcast
their shares, and the shares are correct, then reconstruct . Otherwise, abort.

e Run the protocol of Gordon—Katz with 8 = 1/2 using strategy aiGK, using as input
the shares p1,..., p, of r & 5.3 Let w be the output received from this execution.

e If w = _1, then output L. Otherwise, output s =w @ r.

Theorem 5.2. Let n >3 and 2 <t < n be integers. Then, the prescribed strategy
o of the game (I, 0) is a Nash equilibrium that survives iterated deletions of weakly
dominated strategies and is ((%] — 1)-resilient, for any set U of natural utility functions
that are strictly competitive. Furthermore, the expected number of rounds of the game
is O(1).

3 The secure computation of Gordon—Katz can be defined so that in every iteration the parties input their
shares pip,..., pn. The functionality checks the validity of the shares and then generates either fake shares
(with probability 1 — B) or new real shares of s, as reconstructed from py, ..., Pn-

Utility Dependence in Correct and Fair Rational Secret Sharing 195

Proof. The expected number of phases of the Gordon—Katz protocol is 1/8. Since we
use B = 1/2, the expected number of phases is constant. When using an online dealer,
the number of rounds is essentially the same as the number of phases. However, when
using secure computation, a constant-round protocol must be used; see [10]. We now
proceed to show that & is a Nash equilibrium that survives iterated deletions of weakly
dominated strategies. (This involves considering only a single party deviating from the
strategy; we will demonstrate resilience to coalitions afterwards.)

We first show that the expected utility of any deterministic aborting strategy is lower
than the expected utility of the prescribed strategy. As is usual, we assume that the
only effective actions a party can take are to send the correct share and be silent. This
is because sending an incorrect share has the same effect as being silent which is to
cause the execution to halt. (We ignore the negligible probability that a signature can be
successfully forged.) Clearly, if any party is silent in the first phase where r is recon-
structed, then all parties obtain U™ . Thus, any non-zero probability of following this
strategy always yields a lower utility. From here on, we consider the utility of being

silent in the second phase of the protocol. Denote by abort{ the deterministic strategy
where party P; follows the prescribed strategy in rounds 1 through j — 1, and then is
silent in round j. If the protocol concludes before round j, then all parties learn the
secret and obtain U. Otherwise, with probability 8 = 1/2 no parties learn the secret (in
the case that a fake secret is revealed in this round) and with probability 1 — 8 =1/2
all parties still learn the secret (because ¢ — 1 shares are sent and only [%] shares are
actually needed). Denoting by halt(< ;) the event that the protocol halts before round j,
we have that:

ui(abort/,o_;) = Pr[halt(< j)] - U; + Pr[—halt(< j)]- (% Ui + % : U;)

= Prlhalt(< j)] - U; + (1 — Pr[halt(< j)]) - (% i+ % : U;)

=1.U,-+1-U.+Pr[ha|t(<j)].(U,-—l.Ul-—1~U.>
2 2 2 2
=1-Ui+l-U.‘+Pr[ha|t(<j)]-<1-Ui—l-U.‘>

2 2 2 2
<1~Ui+l~U7+<l-Ui—l-U-_>

2 2 2 2

where the inequality is due to the fact that Pr[halt(< j)] < 1. Thus, for every i €
{1,...,n} and for every j,

u; (0) > u; (abortij, cr_,-).

In order to consider probabilistic strategies, we note that the view of any party until the
protocol terminates is independent of the secret (it contains just fake random secrets).
Thus, any strategy of being silent during the execution can be written as a strategy

196 G. Asharov and Y. Lindell

that assigns an a priori probability that the party is silent in every round. Specifically,
a probabilistic strategy is a set of probabilities P; = { pij } =1 such that the probability

that the party P; follows strategy abort{ equals pl.j and Z?’;l pl.j = 1. Based on this, we
have that for every such strategy P;:

oo o oo

ui(Pi,o-;) = Z[’l] -uj(abort!,o_;) < ZPIJ ui(0) =u;(0)- ZP,] =u;(6)=U;,
j=1 j=1 j=1

where the inequality is from our proof above that for every i and j, u;(0) >

u; (abort'i’ ,0—;). This shows that & is a Nash equilibrium. The fact that it survives iter-

ated deletion of weakly dominated strategies is identical to the proof that the Gordon—

Katz mechanism has this property. We therefore do not repeat the proof and refer the

reader to [6].

It remains to show that our protocol is ([%1 — 1)-resilient. This is shown via a re-
duction to the fact that the protocol of Gordon—Katz is (+' — 1)-resilient when ¢’ is the
threshold used. (Note that we use threshold ¢’ = (%1 and thus this is consistent.) Assume
by contradiction that our protocol is not ([%1 — 1)-resilient. This implies that there ex-
ists a coalition of parties C of size less than (%1 and a strategy o/, such that for some
ieC,

ui(of, 0_¢) > uiloc, o_¢).

Consider now the strategy aé in the first phase of our protocol. If aé instructs any of
the parties to not broadcast their share of r in this phase, then as we have seen, this
can only lower the utility. Thus, if this is the case, then there exists another strategy
oé/ in which all parties in C broadcast their share of r with probability 1 and for every
i €C,ui(os,0_¢) > ui(o), 0_c), which is greater than u; (6) by the assumption. Now,
since aé’ instructs all parties to broadcast their share of » with probability 1, they always

proceed to the second phase. Let ¢ be the strategy of aé’ in the second phase of the

protocol. Clearly, if u; (6, 095) < u,-(agK, Uf'é(), then the expected utility of every

i € C when running our protocol with o/ would be less than or equal to the expected
utility of every i € C when running our protocol with the prescribed strategy oc. Thus,
it must hold that for some i € C,

ui(c}c, ogg) > u,-(oCGK, U_Gé().
However, the above now relates to the utility purely in the Gordon—Katz protocol. Since
this protocol is resilient to any coalitions of size less than the threshold, it follows that
it is resilient to any coalition of size [%] — 1 or less (because the threshold used in the
secret sharing of r @ s is f%]). Since by the assumption |C| < (%] , we have a contradic-
tion. We conclude that our protocol is ((%1 — 1)-resilient, as required. O

Remark (The Case of r =2). Observe that Theorem 5.2 is stated only for the case that
t > 2. (It is actually possible to state it also for t = 2; however, in this case the theorem
is vacuous because when ¢ = 2, the resilience is to coalitions of size f%] —1=0.) The
reason for this is that the impossibility results for utility-independent two-party rational

Utility Dependence in Correct and Fair Rational Secret Sharing 197

secret sharing hold when ¢ = 2 irrespective of the value of n (this is because two parties
alone must be able to reconstruct fairly). We remark that if t = 2, n > 3 and one is
willing to assume that reconstruction always takes place with t* > ¢ parties, then utility
independence is possible, as shown by [16]. In this case, the solution is to just run the
second phase of the reconstruction protocol above directly with s (instead of with r & s).

5.1.4. Optimality of Our Protocol with Respect to Strong Coalitions

We now show that it is impossible to achieve utility-independent fair reconstruction
with strong coalitions of size (%] or greater by showing that this would imply fair re-
construction for the case of n = 2. That is, we show that it is impossible to have a fair
reconstruction protocol with a k-resilient equilibrium for every k£ > [%] . As aresult, this
shows that it is impossible to achieve a so-called strong resilient equilibrium as defined
by Abraham et al. [1] (a strategy o is strongly resilient if it is k-resilient for all k <
t* — 1, where t* is the number of parties participating in the reconstruction phase). We
leave open the question of whether or not it is possible to achieve fair reconstruction in
the presence of “rational coalitions”; i.e., coalitions where the parties within the coali-
tion are also rational [3].

Theorem 5.3. LetneN,lett <nandletk = f%'|. Then, there does not exist a fair re-
construction that is k-resilient and U T -independent, even in the simultaneous channels
model.

Proof. The proof of this theorem follows by a simple reduction to the two-party case.
Assume by contradiction that there exists such a mechanism, and let & o be the prescribed
strategy. We construct a two-party mechanism for parties Py and P, as follows: party
Py runs the strategy of parties Pp, .. PF 7 in & and P, runs the strategy of parties

P(%] Llr---s Pyin o . This means that P1 internally emulates the execution of all parties
Py, ..., PF%T; all messages that are sent between these parties are dealt with internally

by Py and all messages that are sent to the other parties are sent to b, (with a clear
labeling that states which message is intended for which party). The simple observation
is that both P; and P constitute coalitions of size at most |'%'| in the mechanism. Thus,
by the assumption, the reconstruction must be fair, and so o (as transformed to the
two-party setting) is a Nash equilibrium for Py and P». However, since in & all parties
Py, ..., P, receive the secret, both ﬁl and 132 also receive the secret. Thus, we obtain a
U -independent fair reconstruction mechanism for the two-party case, in contradiction
to Theorem 4.4. (|

5.2. U'-Dependent Correct Reconstruction in the Non-simultaneous Model

In this section, we address the basic question of whether or not it is possible to construct
a fair and correct reconstruction mechanism using non-simultaneous channels even if
U; ! > U; (recall that the mechanism of [12] achieves correctness when U; f < U;). We
answer this in the positive by constructing a mechanism that works as long as the value
of U for each party P; is known (in the same way that the values of Ul. , Ui, U7 and
U; are known).

198 G. Asharov and Y. Lindell

The idea behind the mechanism. We will consider the two-party case only; the exten-
sion to the multiparty case is straightforward. We assume familiarity with the protocol
of Kol and Naor [12]; see the beginning of Sect. 4.2 for a short description of the proto-
col and why it does not guarantee correctness; this will be used below. Looking closely
at the strategy for breaking correctness in the Kol-Naor mechanism, it arises because
the first party to send its list element in an iteration has no way of verifying if the current
round is the definitive round or not. This is necessary because if the long party (i.e., the
party with the long list) can determine that the current round is the definitive one before
sending its element, then it can simply not send its element with the result being that
it learns the secret without the other party learning it. Despite this, our key observation
is that it is not necessary that all of the fake iterations be the same, as in the Kol-Naor
mechanism. Rather, we introduce additional rounds with the property that the first party
in each such round knows that the round is fake while the second party does not. Now,
if a second party halts in such a round under the premise that it reached the end of the
list, then the first party will know that it has cheated and so will abort. The result is
that the parties do not learn the secret and so the parties both gain utility U, and the
second party does not gain U/ . By adding enough of these additional rounds, we have
that the probability that a party successfully achieves U/ is low enough so that a higher
expected utility is obtained by playing ¢ and obtaining U.

In more detail, in our new mechanism we give the first party to speak in a given
iteration a way to distinguish between types of rounds. While in the original protocol,
there were two types of rounds (one real round and many fake rounds), we have three
different types of rounds:

e The real round: that is, the definitive iteration. In this round, the secret is exposed.

e Fake rounds: The goal of these fake rounds is to decrease the probability of
achieving U™. The number of fake rounds is chosen according to a geometric
distribution with parameter § that depends on U +, U, U™, as defined in [12]. The
number of fake rounds is exactly the same as in the Kol-Naor mechanism [12].

e Completely fake rounds: The goal of these rounds is to decrease the probability
of achieving U/. In contrast to fake rounds, at every completely fake round the
first party will be informed that the round is completely fake. That is, it is given
a boolean vector that indicates for every round whether it is completely fake or
whether it is either fake or real (of course, without distinction regarding the lat-
ter). The number of completely fake rounds is chosen according to a geometric
distribution with a parameter « (we will show how to choose o below).

The main idea is as follows. The first party at every iteration cannot know which is the
definitive round because it does not know which of the non-completely fake rounds is
the real one. This is exactly the same as in the Kol-Naor mechanism. Furthermore, the
second party cannot stop early and fool the first party into accepting an incorrect value
because it does not know which of the rounds are completely fake and which are fake.
Observe that if the second party stops on a completely fake round then the first party
detects this and aborts. In this case, the second party will obtain U™ instead of U or
U/, and so certainly loses.

Utility Dependence in Correct and Fair Rational Secret Sharing 199

The protocol itself. Let Dealer(s, B) be the dealer in the Kol-Naor mechanism. In our
new protocol, we use the value of the utility U/ in order to achieve correctness. Our new
Dealer takes the shares generated by Dealer(s, §) and extends the list for the parties.

The Dealer Protocol:

e Input: A secret s and a set of utility functions of the parties U = {(Ul.+, U;,
U;, U/)ie{l,z}}~4

e Output: A list of shares for each of the parties, denoted L3~ and L?(;]r:g' More-
over, each party receives a boolean list, denoted blistiong, blistshort. The values of
these lists are false (informing the party that this round is completely fake), or
unknown (meaning that this round may be either the real round or a fake round).
Note that when a party is the second party to broadcast in a round, its value is
always unknown.

e The protocol:

1. Compute S as defined in [12], call Dealer(s,) and obtain the lists Lin

;) short
and .Ligng. Let £gnore be the length of the list LY} ., and fjong the length
of LM

short?
o Initialize blistiong, blistshort, Lime, and L to be empty lists ().
2. Seti =0 and compute « as described below.

long short
3. Repeat £iong times:
— Toss a coin with probability « to be 1, and with probability 1 — « to be 0.

Let b be the result of the current toss.

— While b =0:

% Add a completely fake round. That is, choose a possible secret (from S),’
and append it to the lists Lﬁ;ﬁg and LYY . Moreover, create at ran-
dom a permutation of broadcast order: toss a random coin order eg
{long, short}:

+ If order = long then the first party to talk in this round will be the
long party. Thus, append to blistjong the boolean false and append to
blistshort the value unknown.

+ If order = short then the first party to talk in this round will be the
short party. Thus, append to blistshore the value false, and append to
blistiong the value unknown.

* Toss the coin again.

— When b = 1, add a real round or a fake round: Take the ith element from

in in s out out : :
Lore> Liong and place it in LG, Lig,, . (If there is no such element in

Lis?wrt since it has already ended, then take the element from Ligng and put

it in Lﬁ;’;g only). Append to the blistjong the boolean unknown. If i < £gpore

(L;';lort has not ended yet), append also to the short party’s boolean list the
value unknown.

4 We ignore U; ™ in order to be consistent with the original protocol. However, the protocol can easily be
extended to deal with U; ™.

5 Note that at each completely fake round we construct a round which looks exactly like an original round
in the Kol-Naor mechanism. That is, we give each party a masked secret, authentication information, and
other details as described in the protocol. We omit these details as they are not important for our main point.

200 G. Asharov and Y. Lindell

4. Assign the shares to Py, P> as Dealer(s, B), and send the long party the list
blistiong and the short party the list blistshort.

Before proceeding, we remark that the expected number of rounds of our protocol is
1/a times the expected number of rounds in the original Kol-Naor mechanism. More-
over, the vector blist does not affect the equilibrium demonstrated by Kol and Naor
because the number of “fake rounds” equals the number of rounds in their protocol.

Let oKN = (alKN , O'ZKN) be the prescribed strategy in the Kol-Naor mechanism. The
new prescribed strategy is & = (01, 07) as follows:

e Party P;:
— Follow the exact same strategy ol.KN.
— When al.KN instructs to leave the game at round i and output s’, check that
blist[i] # false. If yes, output s’. Otherwise, output L.

Setting a. Note that party P; will obtain Ul.f if it quits at round j (where j is not the
definitive iteration), it is the second party in that round, and blist[i] = unknown (recall
that if blist[i] = false then P; obtains U;"). Let o] be the strategy in which party P; quits
at the non-definitive round j. The expected utility of this strategy is:

ui(o),0_j)=a- Ul.f +(1—a)-U .
In contrast, the expected utility of party P; playing according to the prescribed strat-
egy o; under the assumption that the other parties follow o_;, is U;. Thus, in order to
guarantee that u; (o1, 02) > u; (O’i/ ,0_;) we require that:
Ui>a-U +(1-a)-U~
=a~Uif+Ui7—a-Uf
=U;, +a- (Uif - Ui_)
and so
a (U —U7)<U —U.

We conclude that u; (o1, 02) > u; (0], 0_;) if and only if

Ui —-U;

o< —.
vl —u-

This should hold for every i € {1, 2}. Combining the above with the analysis of [12] we

obtain that the mechanism has the same equilibrium as in the mechanism of Kol-Naor.

The expected running time of the Kol-Naor mechanism is O (%), and its expected share

size is O(ZI;TgZ(log% + log Urg“x

)), where Unax is an upper bound on the payoffs that

the party may receive. Thus, the expected running time of our new protocol is O(ﬁ),

and the expected share size is O(Ziffggz (log % + log %)).

Utility Dependence in Correct and Fair Rational Secret Sharing 201
Acknowledgements

We thank Ran Canetti for asking the question of whether it is possible to achieve fair
secret sharing with auxiliary input with non-simultaneous channels (see Sect. 4.3).

Appendix A. Modeling Utility Functions

The standard definition of a utility function is a function that maps the outcome of an
execution of the protocol to the parties’ “satisfaction” or benefit from this outcome. The
standard definition states that the utilities depend only on the outcome of the execution
of the mechanism. If we use this definition, then the question of whether there exists
a single mechanism that is independent of the utility functions of the parties is easy, if
we allow asymptotics. Specifically, if we view the utility functions as constant, then we
can use the mechanisms that were suggested in the previous papers (like the mechanism
of [6,12] etc.) and set B to equal 1/k where k is the security parameter. This will then
guarantee that the mechanism will achieve equilibrium for all large enough values of k.
(This is because for all large enough values of k, 8 will be smaller than the defined ratio
between the utility functions.)

Although this may seem reasonable at first sight, we argue that it is highly unsat-
isfactory. In particular, although we happily work with asymptotics when it comes to
cryptographic hardness assumptions, when it comes to actually using a scheme we need
to set a concrete security parameter. This is not done by mere guessing but by making
careful calculations based on the best known algorithms for solving the hard problem
being used. The important point is that this state of art is public knowledge and so can
be used to calculate the security parameter.® In contrast, it is not at all clear that it is
possible to bound the utility of parties. In particular, a personal gain of a given party in
a game may be based on their investment portfolio and political connections. This infor-
mation is often not public knowledge and so cannot be used to reasonably estimate S.

Due to the above, we propose that utility functions should be modeled as functions
that are polynomial in the security parameter. All known protocols work for this mod-
eling, and we believe that this is what was actually implicitly assumed.

References

[1] L Abraham, D. Dolev, R. Gonen, J.Y. Halpern, Distributed computing meets game theory: robust mech-
anisms for rational secret sharing and multiparty computation, in The 25th PODC (2006), pp. 53—-62

[2] 1. Abraham, D. Dolev, J.Y. Halpern, Lower bounds on implementing robust and resilient mediators, in
The 5th TCC. LNCS, vol. 4948 (Springer, Berlin, 2008), pp. 302-319

[3] B.D. Bernheim, B. Peleg, M.D. Whinston, Coalition-proof Nash equilibria. J. Econ. Theory 42, 1-12
(1987)

[4] R. Cleve, Limits on the security of coin flips when half the processors are faulty, in 182 STOC (1986),
pp. 364-369

[5] Y. Dodis, T. Rabin, Cryptography game theory, in Algorithmic Game Theory (Cambridge University
Press, Cambridge, 2007)

6 Of course, it may be the case that a better algorithm is known but has not been published. However, by
taking conservative values of the security parameter, we can make a reasonable estimate of the needed value.

202

[6]
(7]
[8]
[9]
[10]
(1]

[12]
[13]

[14]

[15]
[16]

[17]
[18]

G. Asharov and Y. Lindell

S.D. Gordon, J. Katz, Rational secret sharing, revisited, in The 5th Conference on Security and Cryp-
tography for Networks (SCN) (2006), pp. 229-241

J. Halpern, V. Teague, Rational secret sharing and multiparty computation, in The 36th STOC (2004),
pp. 623-632

G. Fuchsbauer, J. Katz, E. Levieil, D. Naccache, Efficient rational secret sharing in the standard com-
munication model. Cryptology ePrint Archive, Report #2008/488, 2008

J. Katz, Bridging game theory and cryptography: recent results and future directions, in 5th TCC. LNCS,
vol. 4948 (Springer, Berlin, 2008), pp. 251-272

J. Katz, R. Ostrovsky, A. Smith, Round efficiency of multi-party computation with a dishonest majority,
in EUROCRYPT 2003. LNCS, vol. 2656 (Springer, Berlin, 2003), pp. 578-595

G. Kol, M. Naor, Cryptography and game theory: designing protocols for exchanging information, in
The 5th TCC. LNCS, vol. 4948 (Springer, Berlin, 2008), pp. 320-339

G. Kol, M. Naor, Games for exchanging information, in The 40th STOC (2008), pp. 423432

S. Izmalkov, S. Micali, M. Lepinski, Rational secure computation and ideal mechanism design, in The
46th FOCS (2005), pp. 585-595

M. Lepinski, S. Micali, C. Peikert, A. Shelat, Completely fair SFE and coalition-safe cheap talk, in The
23rd PODC (2004), pp. 1-10. doi:10.1145/1011767.1011769

M. Lepinski, S. Micali, A. Shelat, Collusion-free protocols, in The 37th STOC (2005), pp. 543-552

A. Lysyanskaya, N. Triandopoulos, Rationality and adversarial behavior in multiparty computation,
in CRYPTO 2006. LNCS, vol. 4117 (Springer, Berlin, 2006), pp. 180-197

A. Shamir, How to share a secret. Commun. ACM 22(11), 612-613 (1979)

S.J. Ong, D. Parkes, A. Rosen, S. Vadhan, Fairness with an honest minority and a rational majority,
in The 6th TCC. LNCS, vol. 5444 (Springer, Berlin, 2009), pp. 36-53

http://dx.doi.org/10.1145/1011767.1011769

	Utility Dependence in Correct and Fair Rational Secret Sharinga1
	Abstract
	Introduction
	Background
	Our Results
	Positive results.

	Related Work

	Preliminaries and Definitions
	Secret Sharing
	Game Theory and Fair Secret Sharing
	Notation.
	Computational Nash equilibrium.
	Outcome and utilities.
	Assumptions on the utility functions.
	Fair secret sharing.

	Utility-Independent Mechanisms and Properties
	Definitions
	Fairness and correctness.

	U+-Independence Implies Fairness
	Uf-Independence Implies Correctness

	Negative Results
	Impossibility for U+-Independence
	Completeness assumption.
	Number of rounds as random variable.
	Additional assumption on the utility functions of the parties.
	Intuition for the Theorem.
	Notation.
	Calculating Pr[RGamma(sigma1,sigma2)> i |ai+1 = s, bi <>s].
	Calculating Pr[ai+1 = s bi <>s].
	Completing the proof of Claim 4.1:
	The main theorem.
	Conclusion.

	Impossibility for Uf-Independence (Non-Simultaneous)
	The Kol-Naor mechanism KN and correctness.
	The impossibility result.
	Intuition.
	Notations and conventions.
	Random coins.
	Computing the first term Pr[req1]:
	Computing the second term Pr[req2|req1]:
	Computing the third term Pr[req3|req1req2]:
	Computing the fourth term Pr[req4|req1req2req3]:
	Completing the proof:
	Formal description of sigma1stop:
	Formal description of sigma2stop:
	Notation:
	The expected utility of P1:
	The expected utility of P2:
	Computing beta:
	Concluding the proof:

	Impossibility with Arbitrary Auxiliary Input (Non-Simultaneous)
	Defining membership-auxiliary information.
	Auxiliary information-simultaneous channels.

	Positive Results
	Fully Independent Mechanisms for n>=3 with Simultaneous Channels
	Preliminaries
	Utility functions for the multiparty case.
	Coalitions.
	Weakly dominated strategies and iterated deletion.

	The Gordon-Katz Protocol
	Our Protocol
	The protocol idea.
	Our protocol:
	The Dealer protocol.
	Reconstruction-the prescribed strategy sigmai for party Pi.

	Optimality of Our Protocol with Respect to Strong Coalitions

	Uf-Dependent Correct Reconstruction in the Non-simultaneous Model
	The idea behind the mechanism.
	The protocol itself.
	The Dealer Protocol:
	Setting alpha.

	Acknowledgements
	Appendix A. Modeling Utility Functions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

