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Abstract. We show that if a language L has a 4-round, black-box, computational
zero-knowledge proof system with negligible soundness error, then L̄ ∈ MA. Assuming
the polynomial hierarchy does not collapse, this means in particular that NP-complete
languages do not have 4-round zero-knowledge proofs with black-box simulation.
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1. Introduction

A zero-knowledge proof system [24] for a language L is a protocol that enables a prover
P to convince a polynomial-time verifier V that a given instance x is indeed a member
of L. Roughly speaking, the guarantees provided are:

Completeness. If x ∈ L then the honest prover P will convince the honest verifier V
to accept, except possibly with some small probability. If P always convinces V to
accept when x ∈ L then we say the proof system has perfect completeness.

Soundness. If x �∈ L a cheating prover P ∗ will be unable to falsely convince the honest
verifier that x is in L, except with some small probability known as the soundness
error.

Zero knowledge. When x ∈ L and the prover is honest, even a malicious verifier V ∗
“learns nothing” beyond the fact that x ∈ L.

There are various ways of formalizing these properties. In this paper, we do not require
that the honest prover be implementable in polynomial time. We consider the case where
soundness holds against all-powerful provers—i.e., we focus on proofs rather than ar-
guments [14]—and are interested in proof systems with negligible soundness error. For
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a proof system to be nontrivial, the completeness error should not be too large; we will
consider both the case of perfect completeness as well as the case when, for x ∈ L, the
honest verifier accepts only with some noticeable (i.e., inverse polynomial) probability.
Finally, we focus on the case of computational zero knowledge (CZK) where, infor-
mally, the requirement is that a nonuniform polynomial-time cheating verifier learns
nothing from the interaction. (Formal definitions are provided in Sect. 2.) We let CZK
denote the class of languages that admit a computational zero-knowledge proof system.

In this paper we study the round complexity of CZK proof systems, where a round
consists of a message sent from one party to the other and we assume that the prover
and the verifier speak in alternating rounds. We survey what is known in this regard.

Unconditional Constructions The only languages currently known to be in CZK un-
conditionally are those that admit statistical zero-knowledge (SZK) proofs [24] where,
informally, even an all-powerful cheating verifier learns nothing from its interaction
with the prover; we denote the class of languages admitting statistical zero-knowledge
proofs by SZK. It has recently been established [35] that all languages in SZK have
constant-round statistical zero-knowledge proof systems (with negligible soundness
error).1 As particular (and chronologically earlier) special cases, graph nonisomor-
phism [22, Remark 12] as well as languages related to various number-theoretic prob-
lems [15,16,24,32,33,37] have 4-round SZK proof systems, and graph isomorphism [8]
has a 5-round SZK proof system.

Constructions Based on One-Way Functions/Permutations Assuming the existence of
one-way functions, every language in NP has an ω(1)-round CZK proof system where
the honest prover runs in polynomial time given an NP-witness for the statement being
proved [22]. (Actually, this result holds for MA as well.2) If no computational restric-
tions are placed on the honest prover, then any language in AM has an ω(1)-round CZK
proof system under the same assumption, and any language in IP = PSPACE has a CZK
proof system with polynomially many rounds [11,31].

Assuming the existence of one-way permutations, Feige and Shamir [18] show a
4-round computational zero-knowledge argument for any language in NP. Their tech-
niques yield a 5-round CZK argument based on one-way functions; this was later im-
proved to 4 rounds by Bellare et al. [7]. (A 4-round argument can also be constructed
using the work of [6], based on one-way functions and mild complexity-theoretic as-
sumptions.)

Constructions Based on Stronger Assumptions Assuming the existence of a two-round
statistically hiding commitment scheme, there exists a 5-round CZK proof system for
any language in NP [20], or even AM if the honest prover can be unbounded. (More

1 Note that the constant-round proofs in [9] consider a weaker variant of SZK where the verifier is assumed
to run in polynomial time during its interaction with the prover. See [38] for further discussion of these
variants.

2 MA is a randomized version of NP, and is defined in Sect. 2. AM denotes the class of languages having
constant-round Arthur-Merlin proofs.
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generally, given a constant-round statistically hiding commitment scheme, there ex-
ists a constant-round CZK proof system for any language in AM.) Two-round sta-
tistically hiding commitment schemes, in turn, can be constructed based on a vari-
ety of number-theoretic assumptions [13,14,25] and, more generally, the existence of
collision-resistant hash functions [17,30].

Although statistically hiding commitment schemes can be constructed from any one-
way function [29], black-box constructions of constant-round statistically hiding com-
mitment schemes from one-way functions do not exist [28].

Lower Bounds Goldreich and Oren [23] show that 2-round CZK proofs exist only
for languages in BPP. (Their result applies to auxiliary-input zero knowledge proofs,
the type we will be concerned with here as well.) Extending this result, Goldreich
and Krawczyk [21] show that 3-round black-box CZK proofs exist only for languages
in BPP. (A definition of black-box CZK is given in Sect. 2.) Both these results hold for
arguments as well as proofs.

1.1. Our Result

We show that 4-round black-box CZK proofs, even with imperfect completeness, exist
only for languages whose complement is in MA. This result is unconditional, and holds
independently of any cryptographic assumptions one might make. Other than the fact
that the bound holds only with respect to black-box simulation, this result is essentially
the best one could hope for.

• Under widely believed number-theoretic assumptions, there do exist 5-round CZK
proofs for all of NP [20]. Assuming the polynomial hierarchy does not col-
lapse [12], our result indicates that the round complexity in this case is optimal.

• Our result applies only to proofs, but not arguments. Indeed, as noted earlier, there
do exist 4-round CZK arguments for all of NP under relatively weak assump-
tions [7,18].

• There exist 4-round SZK proofs for languages believed to be outside of BPP, such
as graph nonisomorphism [22].

We remark also that for the case of uniform zero knowledge (i.e., protocols which are
zero knowledge for uniform polynomial-time verifiers), a 4-round protocol for all of NP
is possible using the techniques of [20] and assuming the existence of 1-round statis-
tically hiding commitment schemes (that are computationally binding for uniform ad-
versaries). One advantage of considering nonuniform zero knowledge (where the zero-
knowledge property holds even for verifiers given arbitrary auxiliary input) is that such
protocols remain zero knowledge under sequential composition [23].

Besides shedding further light on the finer structure of the class CZK, our result in-
dicates that (black-box) 4-round CZK proofs for all of NP are impossible and so the
round complexity of the Goldreich-Kahan protocol [20] is optimal. Our result also gives
an “explanation” as to why the known SZK proof for graph isomorphism requires five
rounds [8] while graph nonisomorphism has a 4-round SZK proof [22].

Limitations of Black-Box Impossibility Results We prove our result only for the case of
black-box zero-knowledge protocols (i.e., where the simulator is given only black-box
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access to the cheating verifier). The work of Barak [3], however, shows that black-box
impossibility results and lower bounds need not carry over to the general case.3 Nev-
ertheless, black-box bounds are useful insofar as they rule out one class of approaches
for solving a problem. We remark further that Barak’s techniques currently yield only
arguments rather than proofs; this is also the case for nonblack-box protocols based on
“knowledge of exponent” assumptions [10,27]. On the other hand, some nonblack-box
zero-knowledge proofs using four or fewer rounds are known to exist based on nonstan-
dard assumptions [5,34].

Our current ability to prove general (as opposed to black-box) lower bounds for zero-
knowledge protocols is, unfortunately, relatively limited [5,23].

1.2. A High-Level Overview of Our Technique

Our lower bound for 4-round protocols is proved by extending the Goldreich-Krawczyk
lower bound [21] for 3-round protocols. (We assume familiarity with their proof in what
follows.) To prove their result, Goldreich and Krawczyk consider a cheating verifier V ∗
who generates its message, in the second round of the protocol, using fresh random
coins that are determined as a function of the prover’s first message. On an intuitive
level this means that rewinding is useless because every time V ∗ is rewound, and a
different first message is sent by the simulator, it is as if the protocol execution is being
started again from scratch.

We use the same basic idea, now applied to the verifier’s message sent in the third
round of the protocol. A problem is that the verifier’s first-round message may “com-
mit” the verifier, in a computational sense, to only one possible third-round message.
(Roughly speaking, the verifier cannot be committed in an information-theoretic sense
because then an all-powerful prover could guess the third-round message in advance
based on the first-round message alone. This is one reason why our result applies only
to proofs, and not arguments.) For this reason, we need some “all-powerful” entity to
provide the verifier with collisions, i.e., multiple third-round messages consistent with
the same first-round message. This idea was inspired by the work of Haitner et al. [28],
who use collisions of exactly this sort to prove lower bounds on the round complexity of
black-box constructions of interactive protocols in other settings. In their work, an ora-
cle provides collisions. Here, we do not have an oracle; instead, we have an all-powerful
prover (“Merlin”) provide such collisions as part of an interactive MA-proof for some
language. See Sect. 3 for further intuition, as well as the details of the proof.

An easy extension of our results shows that if a language L has a 4-round CZK proof
system where the verifier’s first message is independent of the instance (and depends
only on the instance length), then L̄ ∈ P/poly. This explains why the 4-round SZK
proof system for graph nonisomorphism [22] uses an instance-dependent message in
the first round.

1.3. Outline of the Paper

Standard definitions, as well as some terminology specific to this paper, are provided
in Sect. 2. In Sect. 3 we prove our result for the case of CZK proof systems with per-

3 Barak’s work gives a constant-round, public-coin, CZK argument for all of NP, something that was ruled
out with respect to black-box simulation by Goldreich and Krawczyk [21].
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fect completeness. Technical modifications necessary to deal with the case of imperfect
completeness are deferred to Sect. 4. We conclude with some open questions in Sect. 5.

2. Definitions

Given interactive algorithms P and V , we let 〈P (x), V (y)〉 denote the interaction of
P , holding input x, with V , holding input y. We let 〈P (x), V (y)〉 = 1 denote the event
that V outputs 1 in the indicated interaction, where an output of “1” is interpreted as “ac-
cept” and an output of “0” is interpreted as “reject.” We now give the standard definition
of an interactive proof system [24] for a language L.

Definition 1. Interactive algorithms P , V form an interactive proof system for a lan-
guage L if V runs in probabilistic polynomial time and there exist functions c, s such
that:

• For all x ∈ L, it holds that Pr[〈P (x), V (x)〉 = 1] ≥ c(|x|),
• For all x �∈ L and any P ∗ we have Pr[〈P ∗, V (x)〉 = 1] ≤ s(|x|),
• There exists a polynomial p such that c(|x|) ≥ s(|x|) + 1/p(|x|).

(Note that we do not require P to run in polynomial time.) We call c the acceptance
probability, and s the soundness error. If c(|x|) = 1 for all x, we say the proof system
has perfect completeness. If s is negligible, we say the proof system has negligible
soundness error.

We will only consider zero-knowledge proof systems having negligible soundness error.
A round of an interactive proof system consists of a message sent from one party to

the other, and we assume the prover and verifier speak in alternating rounds. Follow-
ing [2], we let MA denote the class of languages having a 1-round proof system and
in this case refer to the prover as Merlin and the verifier as Arthur. We define this as
follows.

Definition 2. L ∈ MA if there exists a probabilistic polynomial-time verifier V , a func-
tion s, and a polynomial p such that the following hold for all sufficiently long x:

• If x ∈ L then there exists a string w (that can be sent by Merlin) such that

Pr
[

V (x,w) = 1
] ≥ s

(|x|) + 1/p
(|x|),

• If x �∈ L then for all w (sent by a cheating Merlin) it holds that

Pr
[

V (x,w) = 1
] ≤ s

(|x|).

It is known that an equivalent definition is obtained even if we require perfect com-
pleteness and negligible soundness error.
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2.1. Zero-Knowledge Proof Systems

A distribution ensemble {X(a)}a∈{0,1}∗ is an infinite sequence of probability distribu-
tions, where a distribution X(a) is associated with each value of a. Two distribution
ensembles X = {X(a)}a∈{0,1}∗ and Y = {Y(a)}a∈{0,1}∗ are computationally indistin-
guishable if for all probabilistic polynomial-time algorithms D, there exists a negligible
function μ such that for every a we have

∣∣Pr
[
D

(
X(a), a

) = 1
] − Pr

[
D

(
Y(a), a

) = 1
]∣∣ ≤ μ

(|a|).
(We do not need to consider nonuniform distinguishers here since nonuniformity can be
incorporated via the auxiliary input that we will provide to the cheating verifier, below.)

Given interactive algorithms P , V ∗, we let transV ∗〈P (x), V ∗(y)〉 denote the tran-
script of the indicated interaction; for convenience, this includes both the messages of
the prover as well as those of the verifier. (We do not need to consider the entire view
of V ∗ since we will restrict to deterministic verifiers, as justified below; note further
that the input y = (x, z) of V ∗ is provided to the distinguisher as per our definition of
computational indistinguishability, above.) We now review the standard definitions for
computational zero-knowledge proofs.

Definition 3. An interactive proof system P , V for a language L is said to be a compu-
tational zero-knowledge proof system if for any probabilistic polynomial-time algorithm
V ∗ there exists an expected polynomial-time simulator S such that the following distri-
bution ensembles are computationally indistinguishable:

{
transV ∗

〈
P (x), V ∗(x, z)

〉}
x∈L,z∈{0,1}∗ and

{
S(x, z)

}
x∈L,z∈{0,1}∗ .

The above definition incorporates an auxiliary input z provided to V ∗, and we may
therefore restrict our consideration to cheating verifiers V ∗ that are deterministic (since
we may view the randomness as being included in z). Note also that we allow simulation
in expected polynomial time; this makes our results stronger. (Constant-round, black-
box CZK proofs with strict polynomial-time simulation are already ruled out by Barak
and Lindell [4].)

A computational zero-knowledge proof system (P , V ) is black-box zero knowledge
if there exists a “universal” simulator that takes oracle access to the cheating verifier V ∗,
as now defined.

Definition 4. A computational zero-knowledge proof system P , V is black-box zero-
knowledge if there exists an expected polynomial-time oracle machine Sim (the black-
box simulator) such that for any probabilistic polynomial-time algorithm V ∗ the follow-
ing distribution ensembles are computationally indistinguishable:

{
transV ∗

〈
P (x), V ∗(x, z)

〉}
x∈L,z∈{0,1}∗ and

{
SimV ∗(x,z)(x)

}
x∈L,z∈{0,1}∗ .

We denote by bbCZK(r) the class of languages that have r-round, black-box, compu-
tational zero-knowledge proof systems with negligible soundness error.
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Terminology and Simplifying Assumptions We will be concerned with 4-round CZK
proof systems where (without loss of generality) the verifier sends the first message
and the prover sends the final message. We use α,β, γ, δ to denote the first, second,
third, and fourth messages, respectively. Px (resp., Vx ) denotes the honest prover (resp.,
honest verifier) algorithm when the common input is x.

We let α = Vx(r) denote the first message sent by Vx when its random coins are fixed
to r , and let γ = Vx(α,β; r) denote the third-round message sent by Vx when it receives
the second-round message β . Finally, Vx(α,β, γ, δ; r) is a bit denoting whether the ver-
ifier accepts (i.e., outputs 1) or rejects, given final message δ. We say that (α,β, γ, δ, r)

is an accepting transcript for a given x if Vx(α,β, γ, δ; r) = 1. Note that we do not
require the verifier’s decision to depend on the actual transcript alone, but allow its
decision to also possibly depend on its random coins.

Without loss of generality, we make a number of simplifying assumptions about the
behavior of black-box simulator Sim. The first query of Sim to V ∗ will simply be a
“prompt” query to which V ∗ responds with α. Subsequent queries by Sim are all of the
form (α,β) (for some β of Sim’s choice), to which V ∗ will respond with some γ . (We
can assume Sim makes no queries of the form (α,β, γ, δ) since V ∗ can simply refuse
to respond to such queries.) We assume Sim makes any given query only once. Finally,
if the simulator outputs the transcript (α′, β, γ, δ) we assume that α′ = α, and that the
simulator previously queried (α,β) to V ∗ and received response γ . This is without loss
of generality since we can always force the simulator to make the query (α,β) (if it has
not done so already) immediately before it outputs the transcript.

3. CZK Proof Systems with Perfect Completeness

We now state our main result.

Theorem 1. bbCZK(4) ⊆ coMA.

In this section we prove this result in the easier case when the proof system in question
has perfect completeness; we handle the case of imperfect completeness in the following
section.

As intuition for the proof, consider first the case of a malicious verifier V̂ that acts in
the following way: it sends an initial message α, and then in response to the prover’s sec-
ond message β it chooses a random message γ consistent with α. (For now, we ignore
the fact that this does not necessarily represent a feasible polynomial-time strategy.)
Formally, if we let Rα denote the set of random coins consistent with α (i.e., r ∈ Rα im-
plies Vx(r) = α), then in response to β the malicious verifier chooses a random r ∈ Rα

and computes γ = Vx(α,β; r). Intuitively, it will be difficult to simulate an accepting
transcript for such a verifier since each time the simulator “rewinds” V̂ it will be given
a message γ consistent with a possibly different set of random coins. In fact, one can
prove that if x �∈ L then the simulator will not be able to simulate an accepting tran-
script for such a verifier, since the ability to do so with nonnegligible probability could
be translated into the ability to violate the soundness condition of the proof system with
nonnegligible probability. (A proof of this fact goes along similar lines as the proof of
the Goldreich-Krawczyk result [21].)
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On the other hand, consider the case when x ∈ L. From the perspective of the honest
prover, the behavior of V̂ is identical to that of the honest verifier, and so the honest
prover’s interaction with V̂ leads to an accepting transcript with probability 1. We would
like to now use the zero-knowledge condition to show that Sim simulates an accepting
transcript for such a verifier with high probability. Unfortunately, V̂ as described above
may not run in polynomial time, whereas simulation is only guaranteed for polynomial-
time verifiers.

It is possible, however, to obtain a polynomial-time cheating verifier with the desired
behavior by providing the verifier as auxiliary input a sequence of sufficiently many
coins r1, . . . , rs that are all consistent with the same first message α. Specifically, con-
sider the verifier V ∗ defined as follows: given auxiliary input r1, . . . , rs (all consistent
with the same first message α) and a poly-wise independent hash function h, send α

as the first message. In response to the prover’s second message β , compute i = h(β)

and use ri to compute the next message γ = Vx(α,β; ri). Note that if r1, . . . , rs are
chosen at random (subject to the constraint that they are all mutually consistent) then
the behavior of V ∗ is identical to the behavior of V̂ as far as the honest prover is con-
cerned. Since V ∗ runs in polynomial time, we are now able to argue that Sim simulates
an accepting transcript for V ∗ with high probability when x ∈ L. Furthermore, it is still
possible to show (using a slightly more complicated argument) that, with overwhelm-
ing probability, Sim fails to simulate an accepting transcript for this verifier whenever
x �∈ L.

Based on the above, we obtain an MA proof system for L̄: on common input x, Merlin
sends Arthur a sequence r1, . . . , rs of random coins that are all consistent with the same
first message α, and Arthur runs SimV ∗

(x). If this does not result in an accepting tran-
script then Arthur accepts, while if it does lead to an accepting transcript then Arthur
rejects. In what follows, we formalize the above intuition and show how to handle vari-
ous technicalities that arise.

3.1. Technical Details

Fix L ∈ bbCZK(4). This means that, for this language, there exists a prover P , a verifier
V , and a black-box simulator Sim satisfying Definitions 1–4 (except that, in this section,
we assume perfect completeness). Assume without loss of generality that the second
message of the protocol (on input x) always has length m(|x|), and let �(|x|) denote the
number of random coins used by V . Let T (|x|) denote a polynomial upper bound on the
expected running time of Sim.

Consider the following MA proof system for the language L̄, where Merlin (i.e., the
prover) and Arthur (i.e., the verifier) share in advance an input x of length n.

Notation: Let � = �(n), m = m(n), and T = T (n). Set s = 50 · T 2; note that s is poly-
nomial in n.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0,1}�. (For the hon-
est Merlin, these are all consistent with the same first message α. See the proof of
Claim 2 for details.)

Arthur’s actions: Arthur proceeds as follows:

1. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s, i.e., that all the random
coins are consistent with the same first message α. If not, reject; otherwise, go
to the next step.
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2. Choose a random 5T -wise independent hash function h : {0,1}m → {1, . . . , s}.
Construct the following deterministic verifier V ∗

α :
(a) Send first message α to the prover.
(b) Upon receiving message β from the prover, compute i = h(β) and send the

message γ = Vx(α,β; ri) to the prover.
3. Run SimV ∗

α (x) for at most 5T steps using uniform random coins for Sim. If
Sim does not output an accepting transcript within this time bound, output “ac-
cept”. Otherwise, output “reject”. (Formally, output “reject” iff Sim outputs
(α,β, γ, δ), within the allotted time bound, such that Vx(α,β, γ, δ; rh(β)) = 1.)

The following claims show that the above is a valid MA-protocol for L̄, thus proving
Theorem 1 for the case of protocols having perfect completeness.

Claim 1. For sufficiently long x �∈ L̄ and for any message r1, . . . , rs sent by Merlin,
the probability that Arthur accepts is at most 2/5.

Proof. Fix some r1, . . . , rs sent by Merlin. Set α = Vx(r1), and assume Vx(ri) = α for
all 1 ≤ i ≤ s since, if not, Arthur rejects immediately. Define V ∗

α as in the description of
Arthur. When x �∈ L̄ we have x ∈ L and, by perfect completeness, the interaction of the
honest prover Px with V ∗

α would result in an accepting transcript with probability 1. (To
see this, note that an execution of V ∗

α is equivalent to an execution of the honest verifier
Vx using random coins rh(β).) The zero-knowledge condition thus implies that, for x

sufficiently long, SimV ∗
α (x) outputs an accepting conversation with probability at least

1−negl(n) > 4/5. It follows that even the truncated version of Sim, where its execution
is halted after 5T steps, outputs an accepting conversation with probability at least 3/5.
Arthur thus accepts with probability at most 2/5, as claimed. �

Claim 2. For sufficiently long x ∈ L̄, there exists a message r1, . . . , rs such that Arthur
will accept with probability at least 1/2.

Proof. Fix x ∈ L̄. We show a randomized strategy that allows Merlin to convince
Arthur with probability at least 1/2; this implies the claim.

Merlin proceeds as follows: choose random r1 ∈ {0,1}� and compute α = Vx(r1).

Define Rα
def= {r | Vx(r) = α}; i.e., Rα is the set of coins for the honest verifier consistent

with the first message α. Then choose r2, . . . , rs uniformly from Rα . (These need not
be distinct.) Send r1, . . . , rs to Arthur. Let p∗ denote the probability that Arthur rejects.
Note that this is exactly the probability that SimV ∗

α (x) outputs an accepting transcript
within the allotted time bound.

We upper-bound p∗ by considering a slightly different experiment involving an all-
powerful cheating prover P ∗ attempting to falsely convince the honest verifier Vx that
x ∈ L. The strategy of P ∗ is defined as follows.

1. Receive message α from the real verifier. Let Rα
def= {r | Vx(r) = α}.

2. Run Sim using uniform random coins, for at most 5T steps. Sim expects to be
given oracle access to a (possibly cheating) verifier, and P ∗ simulates the actions
of such a verifier by choosing a random index q ← {1, . . . ,5T } and then proceed-
ing as follows.
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(a) Send α as the verifier’s first message.
(b) In response to the ith simulator message (α,βi) for i �= q , choose a random

ri ← Rα , compute γi = Vx(α,βi; ri), and give γi to Sim. (Recall we assume
that Sim never makes the same query twice.)

(c) In response to the qth simulator message (α,βq), send βq to the (external)
honest verifier, and receive in return a message γq . Give γq to Sim.

3. If Sim outputs a conversation (α,β, γ, δ) with β = βq within the allotted time
bound, then send δ to the (external) honest verifier.

In the above experiment, each “query” βi of Sim is answered by using a random
element ri ← Rα to compute the response γi = Vx(α,βi; ri). This is immediate for i �=
q , but is true also for i = q since, from the perspective of P ∗ and Sim, the coins being
used by the external, honest verifier are uniformly distributed in Rα . Let p̂ denote the
probability that Sim outputs an accepting transcript in this case, within the allotted time
bound. Since Sim makes at most 5T queries to its oracle in the above experiment, P ∗
convinces the honest verifier to accept with probability p̂/5T . Since the proof system
has negligible soundness error we have that, for x sufficiently long, p̂ ≤ 1/4.

We return now to consideration of p∗. When Arthur runs SimV ∗
α (x), he does so by

first choosing a random h and then answering the simulator’s ith query (α,βi) by using
rh(βi ) to compute the response γi = Vx(α,βi; rh(βi )). Since Merlin chooses each of the ri
uniformly from Rα , these responses are distributed identically to the above experiment
unless there is a collision in h; that is, unless there exist some βi �= βj with h(βi) =
h(βj ). Because h is chosen in a 5T -wise independent fashion and Sim is restricted to
making only 5T queries, a standard birthday bound shows that the probability of such
a collision is at most (5T )2/2s = 1/4. Conditioned on a collision not occurring, the
probability that SimV ∗

α (x) outputs an accepting conversation is exactly p̂ ≤ 1/4. We
conclude that p∗ ≤ 1/4 + 1/4 = 1/2, and so Arthur rejects with probability at most 1/2
(and accepts with probability at least 1/2). �

4. Handling Imperfect Completeness

In the previous section we assumed perfect completeness, and this assumption is essen-
tial for the MA-proof system given there. To see the problem, assume P , V is such that
the honest verifier always rejects whenever its random coins are all 0. Then a cheating
Merlin can send r1 = · · · = rs = 0� and this will cause Arthur to accept with probabil-
ity 1 even when x �∈ L̄.

In the modified MA proof system we describe in this section, we address the problem
raised above by having Arthur “verify” that Merlin sends “representative” random coins
r1, . . . , rs . We do this by having Arthur check that SimVx(ri )(x), for a random index
i ∈ {1, . . . , s}, outputs an accepting transcript with “high” probability. Arthur rejects
immediately if this is not the case; otherwise, Arthur accepts if SimV ∗(x;r1,...,rs ,h)(x)

fails to output an accepting transcript (as in the previous section). Unfortunately, this
may cause a problem with completeness (i.e., for the honest Merlin when x ∈ L̄): there
may be instances x ∈ L̄ for which SimVx(ri )(x) never outputs an accepting transcript.
(For example, the instance x may be such that the verifier V in the underlying proof
system can decide on its own that x �∈ L without any help from P .) We therefore add
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an additional test at the beginning of the MA-protocol: Arthur runs SimVx(r)(x) using
random coins r that it chooses itself, and accepts that x ∈ L̄ if this execution of Sim
fails to output an accepting transcript. (This is only the intuition behind our protocol;
the technical details are slightly different.)

Before presenting the modified Arthur-Merlin protocol, we introduce some nota-
tion. For a given randomized experiment Expt that depends on random coins r , we
let estimateε(Prr [Expt = 1]) denote a procedure that outputs an estimate to the given
probability (taken over randomness r) to within an additive factor of ε, except with
probability at most ε. That is:

Pr
[∣∣estimateε

(
Prr [Expt = 1]) − Prr [Expt = 1]∣∣ ≥ ε

] ≤ ε.

This can be done in the standard way using Θ(ε−2 log 1
ε
) independent executions of

Expt. The important thing to note is that when ε is noticeable (and Expt can be run in
polynomial time), this estimation can be done in polynomial time. In the experiments we
will be considering, some variables will be fixed as part of the experiment and others
will be chosen at random; we will always subscript those variables being chosen at
random (as done above with the subscripted r).

Below, we let V ∗ denote the same malicious verifier as in the previous section. Specif-
ically, on input x and auxiliary input z = r1, . . . , rs, h, where each ri represents coins
for the honest verifier and h is a hash function, V ∗ acts as follows.

1. Send first message α = Vx(r1) to the prover.
2. Upon receiving message β from the prover, compute i = h(β) and send the mes-

sage γ = Vx(α,β; ri) to the prover.
3. Receive final message δ from the prover.

We say an interaction of Px with V ∗(x, z) results in an accepting transcript if
(α,β, γ, δ, ri) is an accepting transcript.

Let L ∈ bbCZK(4), and say L has a 4-round CZK proof system P , V with acceptance
probability c(·) where c is noticeable (i.e., c = 
(1/p(·)) for some polynomial p). Let
Sim be the black-box simulator for the proof system, and let �,m, and T be as in the
previous section.

Once again, Merlin and Arthur share in advance an input x of length n. The MA-proof
system for the language L̄ follows.

Notation: Let c = c(n), � = �(n), m = m(n), and T = T (n). Assume n is large enough
so that c > 0. Set ε = c/20, and s = 4T 2ε−3. (Note that ε is noticeable, and s is
polynomial.) Let S̃im denote an execution of Sim for at most 2T/ε steps, and making
exactly 2T/ε queries.

Merlin’s message: Merlin sends a sequence of s coins r1, . . . , rs ∈ {0,1}�.
Arthur’s actions: Arthur proceeds as follows:

1. Compute

p1 = estimateε

(
Prr,ρ

[
S̃im

Vx(r)
(x;ρ) outputs an accepting transcript

])
.

If p1 < c − 2ε then accept; otherwise, continue to the next step.
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2. Set α = Vx(r1). Check that α = Vx(ri) for all 1 < i ≤ s. If not, reject; otherwise,
continue to the next step.

3. Choose i ← {1, . . . , s} and coins ρ and run S̃im
Vx(ri )(x;ρ). If this does not

result in an accepting transcript, reject; otherwise, continue to the next step.
4. Let H denote a family of 2T/ε-wise independent hash functions h : {0,1}m →

{1, . . . , s}. Compute

p2 = estimateε

(
Prh←H,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting

transcript
])

.

If p2 < c − 10ε accept; else reject.

(It should be clear that we have not attempted to optimize any of the parameters of the
above proof system.) We now prove claims analogous to those in the previous section.

Claim 3. For any x �∈ L̄ sufficiently long and for any message r1, . . . , rs sent by Mer-
lin, the probability that Arthur accepts is at most c − 6ε.

Proof. If x �∈ L̄ then x ∈ L and so the interaction of Px with Vx results in an accepting
transcript with probability at least c. The zero-knowledge condition implies that, for x

sufficiently long,

Prr,ρ
[
S̃im

Vx(r)
(x;ρ) outputs an accepting transcript

] ≥ c − ε.

This means that, except with probability at most ε, the value p1 computed by Arthur
satisfies p1 ≥ c − 2ε; thus, Arthur accepts in the first step with probability at most ε.

Fix some r1, . . . , rs sent by Merlin. We may assume Vx(ri) = Vx(rj ) for all 1 ≤
i, j ≤ s since, if not, Arthur rejects in the second step. Define

p̂ = Pri←{1,...,s},ρ
[
S̃im

Vx(ri )(x;ρ) outputs an accepting transcript
]
.

There are two cases to consider.

Case 1: If p̂ < c − 7ε, then the probability that Arthur does not reject in step 3 is at
most c − 7ε.

Case 2: On the other hand, if p̂ ≥ c−7ε then (again using the zero-knowledge property)

Pri←{1,...,s},r
[〈

Px(r), Vx(ri)
〉 = 1

] ≥ c − 8ε.

By definition of V ∗ it holds that

Prh←H,r

[〈
Px(r), V ∗(x, r1, . . . , rs, h)

〉
results in an accepting transcript

]

= Pri←{1,...,s},r
[〈

Px(r), Vx(ri)
〉 = 1

]
.

Thus, relying on the zero-knowledge property once again,

Prh←H,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript

] ≥ c − 9ε.
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So, except with probability at most ε, the value p2 computed by Arthur satisfies p2 ≥
c − 10ε; thus, Arthur accepts in the last step with probability at most ε.

Combining the above, we see that Arthur accepts with probability at most ε +
max{c − 7ε, ε}, which is at most c − 6ε. �

Claim 4. For any x ∈ L̄ sufficiently long, there exists a message r1, . . . , rs such that
Arthur will accept with probability at least c − 5ε.

Proof. Fix x ∈ L̄. Define

p̂ = Prr,ρ
[
S̃im

Vx(r)
(x;ρ) outputs an accepting transcript

]
.

There are two cases to consider.

Case 1: If p̂ < c − 3ε then, except with probability at most ε, the value p1 computed
by Arthur satisfies p1 < c − 2ε; thus, Arthur accepts in the first step with probability at
least 1 − ε ≥ c − 5ε.

Case 2: On the other hand, say p̂ ≥ c − 3ε. As in the proof of Claim 2, Merlin pro-

ceeds as follows: choose random r1 ∈ {0,1}� and compute α = Vx(r1). Let Rα
def= {r |

Vx(r) = α}, and choose r2, . . . , rs uniformly from Rα . Send r1, . . . , rs to Arthur. We
show that Arthur will accept with high probability, taken over its own coins and Mer-
lin’s message.

Arthur can reject in either step 3 or step 4. We upper-bound the probability that Arthur
rejects in either of these steps individually, and then apply a union bound to upper-bound
the total probability that Arthur rejects.

Each ri , taken individually, is uniformly distributed in {0,1}�. Thus, in step 3, choos-
ing a random i ∈ {1, . . . , s} and using coins ri is equivalent to choosing uniformly ran-
dom coins for Vx . It follows that the probability that Arthur rejects in step 3 is exactly
equal to 1 − p̂ ≤ 1 − c + 3ε.

We proceed to analyze step 4. As in the proof of Claim 2, say a collision occurs in an

execution of S̃im
V ∗(x;r1,...,rs ,h)

(x;ρ) if the simulator makes two distinct queries (α,βi)

and (α,βj ) for which h(βi) = h(βj ). Let coll denote such an event. As before, we have

Pr
r1,...,rs ,h,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript

]

≤ Pr
r1,...,rs ,h,ρ

[coll]

+ Pr
r1,...,rs ,h,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript

∣∣ coll
]
, (1)

where r1, . . . , rs are chosen by Merlin as described above (and not uniformly and in-
dependently at random). The probability of a collision is independent of r1, . . . , rs , and

is upper-bounded by Pr[coll] ≤ (2T/ε)2

2s
= ε

2 . As in the proof of Claim 2, for sufficiently
long x it holds that

Prr1,...,rs ,h,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript | coll

] ≤ ε2/2;
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this means that, except with probability at most ε, the r1, . . . , rs chosen by Merlin satisfy

Prh,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript

∣∣ coll
] ≤ ε/2.

Combined with (1), this means that with probability at most ε the r1, . . . , rs chosen by
Merlin satisfy

Prh,ρ

[
S̃im

V ∗(x;r1,...,rs ,h)
(x;ρ) outputs an accepting transcript

] ≤ ε < c − 11ε.

Assuming the above to be the case, Arthur will reject in step 4 with probability at most ε.
Taken together, this means that Arthur rejects in step 4 with probability at most 2ε.

Summing the probabilities of rejection in steps 3 and 4, we see that, overall, Arthur
rejects with probability at most 1 − c+5ε, or accepts with probability at least c−5ε. �

5. Future Directions

Coupled with the obvious fact that bbCZK(4) ⊆ AM, this work shows that bbCZK(4) ⊆
AM ∩ coMA. Due to the similarity with the fact that SZK ⊆ AM ∩ coAM [1,19], as well
as the fact that the only languages known to be in bbCZK(4) (under any assumption) are
also in SZK, it is natural to conjecture that bbCZK(4) ⊆ SZK.

Another interesting direction would be to show any broad positive results for
bbCZK(4): say, proving that NP ∩ coNP ⊆ bbCZK(4).

Finally, is it possible to extend the techniques from [28] to show that there are no
black-box constructions of constant-round (black-box) zero-knowledge proofs for NP
based on one-way functions? Some recent progress on this question is reported in
[26,36].
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