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Abstract. We propose a new composition scheme for hash functions. It is a vari-
ant of the Merkle–Damgård construction with a permutation applied right before the
processing of the last message block. We analyze the security of this scheme using the
indifferentiability formalism, which was first adopted by Coron et al. to the analysis
of hash functions. We also study the security of simple MAC constructions out of this
scheme. Finally, we discuss the random oracle indifferentiability of this scheme with a
double-block-length compression function or the Davies–Meyer compression function
composed of a block cipher.
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1. Introduction

Background Merkle–Damgård [16,26] is an iterative hash function construction.
Given a fixed-input-length (FIL) compression function, it combines the output of the
compression function in a serial fashion to produce an arbitrary-input-length (AIL) or a
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ence [18].
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variable-input-length (VIL)1 hash function. While it is a clean design with proven col-
lision resistance, it suffers from the extension property; one can compute H(M1‖M2)

from M2, H(M1), and the length of M1.
Suppose that we try to use a Merkle–Damgård (MD) hash function for message au-

thentication. There are many proposals for hash-based MACs, but currently the most
popular hash-based MAC is definitely HMAC [3,4]. It has a simple structure, and also
it has rigorous security proofs. However, given a hash function H , one of the best ways
to make a MAC out of H is the prefix construction [30]:

MK(x)
def= H(K‖x).

The above construction is more efficient than HMAC especially for short messages:
HMAC requires one more hash computation with an input of fixed length which depends
on the key length. We also know that it gives a secure MAC if H is a random oracle
rather than a concrete hash algorithm. Unfortunately, due to the extension property, the
prefix construction is not secure when the underlying hash function is an MD hash
function; given a message x and its MAC MK(x) = H(K‖x), the attacker can easily
forge another message x′, which has x as its prefix, and compute the MAC MK(x′).

The goal of HMAC was to design an efficient MAC with security proofs, out of
already widely deployed MD hash functions. Therefore, the designers of HMAC did
not modify the underlying hash function and instead designed HMAC so that it is secure
even when an MD hash function with the extension property is used.

We may consider another way, namely, to start freshly with a hash function design
without such structural flaws like the extension property. Then perhaps we may use
much simpler hash-based MACs such as the prefix construction H(K‖M). Indeed, af-
ter Wang’s attacks on many popular hash functions, there are renewed interests in the
design of hash functions. So this would be a good opportunity to consider an alternative
to the MD scheme.

In CRYPTO 2005, Coron et al. introduced a new methodology for assessing generic,
structural properties of hash function constructions [15]. They applied the notion of in-
differentiability, which was first introduced by Maurer et al. [23], to the analysis of hash
functions. Coron et al. analyzed the structural property of hash function constructions
by first swapping the underlying compression function with an FIL random oracle, then
comparing the pair of the resulting hash function and the FIL random oracle with a pair
of a VIL random oracle and a simulator of the FIL random oracle. If no efficient dis-
tinguisher can tell them apart, then the construction is considered secure, i.e., it has no
structural flaws. The notion of indifferentiability is an appropriate framework to express
these ideas rigorously. In fact, Coron et al. showed that the MD scheme is not indiffer-
entiable from a random oracle and suggested a few modifications for the MD scheme
so that all of these are indifferentiable from a random oracle.

Hence, we now have a rigorous methodology for assessing the structural flaws of a
hash function, such as the extension property of the MD scheme, which was the main
obstacle for adopting the simple constructions like the prefix construction instead of

1 Or up to some large number (264 − 1 in case of SHA-1, for example) depending on the padding and
other specific details.
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HMAC. Now all we need is an actual design for hash function composition scheme
which is efficient and structurally sound (in the sense of random oracle indifferentiabil-
ity), and which admits a direct and efficient usage as a MAC. Then in the future hash
function design, we may adopt such a construction as an alternative to the MD scheme.

Our Contribution We propose a simple and efficient hash composition scheme. We
call it Merkle–Damgård with Permutation (MDP). It is almost identical to the plain
Merkle–Damgård scheme, but just before the last message block is processed, a permu-
tation π is applied: for a message M = M1M2 · · ·Mk ,

H(M) = F
(
π

(
F

(· · ·F (
F(IV,M1),M2

) · · · ,Mk−1
))

,Mk

)

if k ≥ 2, and H(M) = F(π(IV),M1) if k = 1. IV is an initial value. Note that π should
be a permutation with at most few fixed points. We prove that it satisfies many desirable
security properties:

• It is collision-resistant if the underlying compression function is.
• It is indifferentiable from a random oracle when a FIL random oracle is used as the

compression function.
• It is a pseudorandom function (PRF) when keyed via the IV (IV is replaced by a

secret key) if the compression function is a PRF under a very mild related-key at-
tack when keyed via the chaining variable. In addition, if the compression function
is also a PRF when keyed via the input message block, then MDP yields a PRF
when the key is prepended to the message: M �→ H(K‖M) for a secret key K .

• It is unforgeable if the underlying compression function is an unforgeable FIL
MAC in a dedicated key setting. In this setting, each compression function F in
the computation of H has a secret key to H as a part of its input.

Despite the miniscule modification MDP makes to the original MD scheme, we see
that it has many benefits. MDP loses essentially none of the efficiency of the MD
scheme. As categorized above, MDP preserves collision resistance, random oracle, and
unforgeability. Furthermore it “almost” preserves PRF property, with a weak related-
key assumption. So not only it gives a strong hash function, but, as a PRF, it also gives
a secure and efficient MAC mechanism such as the prefix construction.

We also study the random-oracle indifferentiability of MDP when the underlying
compression function has some structure; we consider MDP with two specific types of
compression functions. One is a double-block-length (DBL) compression function of
the form F(s‖x) = f (s‖x)‖f (p(s)‖x), where f is a compression function, and p is a
permutation. The other is the Davies–Meyer compression function. We show that MDP
emulates a VIL random oracle if

• f is a random oracle and π and p are chosen appropriately in the DBL compres-
sion function F , or

• F is the Davies–Meyer compression function in the ideal cipher model.

Related Work A hash function composition scheme very similar to MDP was sug-
gested before; in a public comment to a FIPS 180-2 draft, Kelsey [19] proposed a sim-
ple enhancement to SHA-2 hash functions, which was originally suggested by Ferguson.
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Their scheme is a special case of MDP when the permutation π(x) = x ⊕C, where C is
a fixed and nonzero offset. Their motivation was to eliminate the extension property of
MD hash functions with least modification. But, as far as the authors know, the security
of this proposal was never rigorously proven before.

While proposing indifferentiability from a random oracle as an important security
goal for a hash function, Coron et al. also proposed four modified MD schemes which
satisfy indifferentiability from a random oracle: with prefix-free encoding, chopping off
some output bits (chop-MD), based on NMAC or HMAC [15]. Bellare and Ristenpart
also proposed a variant of the MD scheme called EMD (Enveloped MD) [7]. MDP
achieves essentially the same goals (multi-property preservation) as EMD, but there are
a few differences:

• The structure of MDP is simpler than that of EMD; this is reflected in the fact that
MDP is slightly more efficient than EMD, especially for short messages.

• When used as a MAC by key-via-IV strategy, MDP needs slightly stronger assump-
tion than EMD; assuming that the compression function is secure as a PRF under
a very weak related-key attack, we prove that the keyed MDP is secure as a PRF.
Therefore, at least for the PRF property, MDP is not a “multi-property-preserving”
transform like EMD.

• On the other hand, MDP needs only one key in the above situation, while EMD
needs two separate keys. One may consider a one-key version of EMD by em-
ploying some key derivation function similar to the case of HMAC. However, then
one would need an additional assumption on the compression function, namely
PRF security under some related-key attack, which is essentially the same type of
assumption needed for MDP.

• Given an MDP hash function H , one can use H as a black-box to obtain a PRF by
the prefix construction H(K‖M). This seems to be difficult in the case of EMD.

Chang et al. [12] further discussed the indifferentiability from a random oracle for the
MD scheme with prefix-free encoding. They considered compression functions consist-
ing of a block cipher [28] and DBL compression functions of the same form we consid-
ered. Nandi [27] introduced this formalization of a class of DBL compression functions
and discussed the collision-resistance of hash functions composed of them.

In studying MAC properties of MDP, we follow two directions. First, we show that
MDP gives a very efficient MAC by showing its pseudorandomness under the assump-
tion that the compression function is secure as a PRF against a mild form of related-
key attacks. For this, we use a restricted version of the notion of PRF security against
related-key attacks formalized and studied by Bellare and Kohno [6]. Essentially, the
proof can be considered as a related-key version of the proof for prefix-free PRF secu-
rity of the cascade construction given in [5].

We are also interested in seeing whether security of MDP as MAC can be proved un-
der weaker assumptions, similarly to the security of HMAC under a weaker-than-PRF
assumption on the compression function [3]. After An and Bellare [2] initiated such in-
vestigations, Maurer and Sjödin [24] provided several transforms and a general security
proof technique. As stated in [7], these works consider the setting where compression
functions and hash functions are families indexed by a dedicated key and only focus on
MAC preservation when the underlying compression function is a MAC itself, namely,
it is an unforgeable FIL MAC.
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Bellare and Ristenpart [8] considered several hash function constructions in the
dedicated-key setting and provided a multi-property-preservation oriented treatment of
them. Andreeva et al. [1] proposed a composition scheme called ROX which preserves
seven security properties formalized by Rogaway and Shrimpton [29].

We also mention some of the related work after the publication of the preliminary
version of this paper [18]. Hirose and Kuwakado [17] further discussed the security of a
block-cipher-based hash function using the Matyas–Meyer–Oseas (MMO) compression
function and the MDP composition. Chang and Nandi [13] improved the security bound
on indifferentiability for chop-MD. Wide-pipe construction [22] with chop-MD is quite
popular among candidates of the SHA-3 competition held by NIST. Bhattacharyya,
Mandal, and Nandi [10] presented a unified framework for indifferentiability analysis
of hash functions by providing a model of composition schemes called GDE (General-
ized Domain Extension). Actually, GDE includes MDP, and an indifferentiability result
on MDP similar to Theorem 1 in Sect. 4.2 can also be obtained with their technique.
Some multi-property-preserving double-piped composition schemes were recently pro-
posed by Yasuda [31] and by Lee and Steinberger [21]. Yasuda showed that a variant of
HMAC without the key to the outer hash function is a PRF if the underlying compres-
sion function is a PRF (when keyed via IV) with an additional reasonable property [32].

Organization of the Paper In Sect. 2, we provide basic definitions of PRFs, RKA-
secure PRFs, indifferentiability, and unforgeability. We also fix notational conventions
in this section. In Sect. 3, we formally define the MDP construction. In Sect. 4, we ana-
lyze the security of MDP. Section 4 consists of three parts; first, we prove that MDP is
indifferentiable from a random oracle, then prove that MDP gives a secure PRF under
necessary assumptions, and finally we prove that MDP yields a secure MAC under a
weaker-than-PRF assumption. In Sect. 5, we focus on the indifferentiability of MDP
based on two specific types of compression functions: one is a DBL compression func-
tion, and the other is the Davies–Meyer compression function composed of a block
cipher.

2. Preliminaries

2.1. Notation

We denote by x1‖x2 the concatenation of bitstrings x1 and x2. We will often abbreviate
x1‖x2‖ · · · ‖xk simply as x1x2 · · ·xk .

We denote by s
$← S the operation of selecting a random element from S (the uni-

form probability distribution over S is assumed). Let s1, s2, . . . , sk
$← S mean that

s1, s2, . . . , sk are selected uniformly and independently from S.
For two integers n1 and n2 such that n1 ≤ n2, let [n1, n2] be the set of integers from

n1 to n2.
We sometimes use the O-notation. This is not about asymptotics, but we use this

notation to hide unimportant small constants which are dependent on specific machine
formalisms, and whose values can be determined from the proofs.
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2.2. Definitions

Pseudorandom Functions Let F : K × D → R be a function family from D to R
indexed by keys K ∈ K. Usually we use FK(x) as a shorthand for F(K,x). Let
Maps(D, R) denote the set of all functions f : D → R. Given an adversary Ag with
access to an oracle g(·), we define its PRF-advantage over F as

Advprf
F (A) = Pr

[
AFK ⇒ 1

∣∣K
$← K

] − Pr
[
Aρ ⇒ 1

∣∣ρ
$← Maps(D, R)

]
.

Informally, we say that F is a PRF when no efficient adversary A can have any signifi-
cant PRF-advantage over F .

RKA-secure PRFs Related-key attacks were considered in cryptanalysis of block ci-
phers, and many modern block ciphers are designed against such attacks. Bellare and
Kohno [6] first gave a formal definition to related-key attacks and provided a theoretical
treatment. They extended the formal definition of PRFs to PRFs secure against related-
key attacks (RKA-secure PRFs).

According to the definition given by Bellare and Kohno, they consider a set Φ of
related-key-deriving (RKD) functions φ : K → K. As in the case of the plain PRFs,
an adversary cannot access the given secret key K directly, but she can query the PRF
with respect to other keys φ(K) by selecting an RKD function φ from Φ . The set Φ

is a parameter of the definition, and it formalizes the varying capabilities of related-key
adversaries on different situations.

In this paper, we need only very weak adversaries in terms of related-key attacks: the
RKD function set Φ consists of only two functions: Φ = {id,π}, where id : K → K
is the identity function, and π : K → K is a permutation. We will refer this type of
related-key attacks as the π -related-key attacks and formalize in the following way.
Given an adversary Ag,g′

with access to a pair of oracles g(·) and g′(·), we define its
PRF-advantage over F with respect to π -related-key attacks as

Advprf-rka
π,F (A) = Pr

[
AFK,Fπ(K) ⇒ 1 |K $← K

] − Pr
[
Aρ,ρ′ ⇒ 1 |ρ,ρ′ $← Maps(D, R)

]
.

Note that this formalism is equivalent to that of Bellare and Kohno when Φ = {id,π}
is used.

Again informally, we say that F is a π -RKA-secure PRF when no efficient adversary
A can have any significant advantage over F . Since the π -related-key attack is the only
kind of related-key attacks that we consider in this paper, sometimes we will abuse the
terminology and call F simply an RKA-secure PRF.

Indifferentiability We use the indifferentiability framework [15,23] to assess the secu-
rity of MDP. Consider a cryptosystem C with oracle access to an ideal primitive F . Also
consider an ideal primitive H and a simulator S which has oracle access to H. CF is
supposed to be a “construction” involving F . For example, F could be a FIL random or-
acle, and CF then could be the MD hash function using F as the compression function.
The goal of the simulator SH is to mimic F in order to convince an adversary that H
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is C. Let A be an adversary with access to two oracles. We define the indifferentiability
advantage of A against C with respect to S as

Advindiff
C,S (A) = Pr

[
ACF ,F ⇒ 1

] − Pr
[
AH,SH ⇒ 1

]
.

Informally, we say that CF is indifferentiable from H if there exists an efficient
simulator S such that no efficient adversary A can have any significant indifferentiability
advantage against C with respect to S.

Unforgeability A MAC is a family of functions F : K × M → C . The security of a
MAC is measured via its resistance to existential forgery under an adaptive chosen-
message attack. A forger A queries the oracle FK for adaptively chosen messages
and learns the corresponding tag values. It then returns a forgery (M, τ). The forger
A is considered successful if FK(M) = τ but M was not queried to FK . The MAC-
advantage of a forger A over F is

Advmac
F (A) = Pr

[
AFK is successful

∣∣K
$← K

]
.

Informally, a MAC is considered secure against existential forgery under an adap-
tive chosen-message attack if there is no efficient forger with any significant MAC-
advantage over F .

3. The MDP Construction

Let b and c be positive integers, and let B = {0,1}b and C = {0,1}c. Let F : C × B → C
be a compression function. Here, b is the size of the message blocks, and c is the size of
the chaining variables. As is usual with popular hash functions, we assume that c ≤ b.

Let Bi be the set of all messages of form M1M2 · · ·Mi , where Mj ∈ B for all j =
1, . . . , i. Clearly, B0 = {ε}, where ε means the null bitstring, the bitstring of length 0.
Let us define B∗ = ⋃∞

i=0 Bi , B+ = ⋃∞
i=1 Bi , and B≤k = ⋃k

i=1 Bi .
Given F : C × B → C , we define F ∗ : C × B∗ → C as follows: for s ∈ C and M =

M1M2 · · ·Mk (Mi ∈ B for all i),

F ∗(s,M)
def=

{
s if k = 0, i.e., M = ε,

F (F ∗(s,M1M2 · · ·Mk−1),Mk) otherwise.

This is the plain Merkle–Damgård iteration of F . Now we define F ◦
π : C × B+ → C as

follows:

F ◦
π (s,M1M2 · · ·Mk)

def= F
(
π

(
F ∗(s,M1 · · ·Mk−1)

)
,Mk

)
,

where π is a fixed permutation given as a parameter of the definition. We require both
π and its inverse π−1 to be efficiently computable. Often we omit π from the notation
F ◦

π and simply write F ◦.
In order to let MDP process messages of arbitrary lengths (or up to 2ν − 1 for some

integer ν satisfying 0 < ν ≤ b), we have to use a padding function pad : ⋃2ν−1
i=0 {0,1}i →
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Fig. 1. The structure of MDP. pad(M) = M1M2 · · ·Mk .

B+ with the Merkle–Damgård (MD) strengthening: the last block of pad(M) encodes
the ν-bit representation of the length |M| of M . For example, the SHA-1’s padding rule
could be used.

Finally, given a compression function F : C × B → C , a padding function pad, a
permutation π , and a fixed IV IV ∈ C , we formally define the MDP (Merkle–Damgård
with Permutation) hash function as

MDP(M)
def= F ◦

π

(
IV,pad(M)

)
.

When we want to emphasize the dependency of MDP(M) to F and π , we sometimes
use the notation MDP[F,π](M).

Figure 1 illustrates the structure of MDP. One can consider the MDP construction as
a minor variant of the MD scheme with the MD strengthening. Therefore the efficiency
of MDP is exactly the same as the Strengthened MD (SMD).

More precisely, let us write the number of compression function invocations needed
to compute the hash value of an 	-bit string as N(	). Suppose that we use the padding
function similar to the padding function of SHA-1: given a message M of length 	,
append the bit “1” to the end of the message, followed by k zero bits, where k is the
smallest nonnegative solution to the equation 	 + 1 + k ≡ b − ν (mod b). Then append
the ν-bit representation of the number 	. In case of SHA-1, we have b = 512 and ν = 64.
Then for MDP (and SMD), the following holds:

N(	) =
{

�	/b� if 	 mod b < b − ν,

�	/b� + 1 otherwise.

For comparison, this is slightly better than the efficiency of EMD; for EMD, the follow-
ing holds for 	 ≥ b:

N(	) =
{

�	/b� if 	 mod b < b − c − ν,

�	/b� + 1 otherwise.

Concretely, if we take the parameters of SHA-1, that is, b = 512, c = 160, and ν = 64,
then for messages of length 	 such that 288 ≤ 	 mod 512 ≤ 447, EMD needs one more
invocation than MDP.
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface F (s, x):

20: if F(s, x) = ⊥ then
21: if s ∈ T then

22: F(s, x)
$← C \ Cbad

23: T ← T ∪ {F(s, x)}
24: else if π−1(s) ∈ T then
25: M̃ ← getnode(π−1(s))

26: F(s, x) ← H(M̃‖x)

27: else

28: F(s, x)
$← C

29: V ← V ∪ {s}
30: return F(s, x)

Fig. 2. Pseudocode for the simulator SF . Cbad = V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ . Pπ is the set of fixed
points of π . π(T ) = {π(s) | s ∈ T }. π−1(V ∪ T ) is defined similarly.

4. Security of MDP

In this section, we study the security of MDP and prove that MDP indeed meets all the
security goals that we wanted. Actually, a padding function with the MD strengthening
is necessary only for collision resistance. Thus, without loss of generality, we assume
that the inputs to MDP is simply in B+ except for collision resistance.

4.1. Collision Resistance

Given a collision-resistant compression function F , MDP construction from F is also
collision-resistant. The proof is trivial; since the structure of MDP is very similar to the
MD scheme, we may follow the proof of collision resistance of the MD almost verbatim.

4.2. Indifferentiability from Random Oracle

We show that MDP is indifferentiable from a VIL random oracle H , when a FIL ran-
dom oracle F is used as the compression function. We need a simulator SF such that
no efficient adversary can distinguish (or rather, differentiate) the pair (MDP[F,π],F )

from the pair (H,SF ). We will use the simulator illustrated in Fig. 2.
SF maintains a structure F where it stores selected values for previous queries. Ini-

tially F(s, x) = ⊥ for all s and x, where ⊥ means undefined. SF also maintains two sets
V and T . As more queries are inquired, new elements are added to the sets. Note that
elements never leave the sets.

If we consider the labeled directed graph G whose edges are “s
x→ F(s, x)” for all

F(s, x) �= ⊥, then we can see that V denotes the set of all vertices of G with out-degree
at least one. On the other hand, T is then the set of all vertices that can be reached by
following a path from the vertex IV . The procedure getnode(v) in SF returns the labels
of the edges on the path from IV to v.

In order to prove the indifferentiability of MDP, we need a few lemmas about the
simulator SF . Since F can also be regarded as a partial function, we can define a partial
function F∗ with F similarly to F ∗ with F ; F∗(s,M‖x) = F(F∗(s,M), x) if both s′ =
F∗(s,M) and F(s′, x) are defined.
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Lemma 1. At any time during the execution of the simulator SF , if s ∈ T , then
F∗(IV,M) = s for some M . Conversely, if F∗(IV,M) �= ⊥, then F∗(IV,M) ∈ T .

Lemma 2. Suppose that both F∗(IV,M) and F∗(IV,M ′) are defined. Then, F∗(IV,M)

= F∗(IV,M ′) if and only if M = M ′.

Lemma 3. Suppose that both F∗(IV,M) and F∗(IV,M ′) are defined. Then, F∗(IV,M)

�= π(F∗(IV,M ′)) and F∗(IV,M) �= π−1(F∗(IV,M ′)).

Lemmas 1 and 2 essentially say that the subgraph T is in fact a rooted tree with IV as
the root. By keeping the tree, though it is implicit in Fig. 2, getnode(π−1(s)) trails the
edges backwards from π−1(s) to IV and returns M̃ in O(|T |) time. Note that, because
these three lemmas are about the subgraph T and it is altered only by the lines 21 to
23, the lines 24 to 28 do not affect the validity of the lemmas. Also, due to Lemmas 1
and 2, the lines 25 and 26 work correctly.

The proofs of the three lemmas are straightforward, and we will give only brief proof
sketches. First, Lemma 1 is clear because T is extended in lines 21 to 23 of Fig. 2.

Next, suppose that F∗(IV,M) �= ⊥. Let x be the tail of the message M , that is, the
last block of M . Then, we may see that, among the queries which define F∗(IV,M),
the query involving x was the last one made; suppose not and let (š, x̌) be the last
query which defines F∗(IV,M). This means that M = M̌‖x̌‖M̂ , š = F∗(IV, M̌) and
F∗(IV,M) = F∗(F(š, x̌), M̂). Since (š, x̌) is the last query, ŝ = F(š, x̌) should be al-
ready in V (note that since x̌ is not the tail, M̂ is not null). But F(š, x̌) should be chosen
from C \ Cbad, while V ⊂ Cbad, which is a contradiction.

Now we can give a proof sketch for Lemmas 2 and 3. Suppose that s = F∗(IV,M) =
F∗(IV,M ′) �= ⊥. Let x (resp. x′) be the tail of M (resp. M ′). Without loss of generality,
we may assume that the query involving x′ was made later than the one involving x. Let
this query be (s′, x′) for some s′. Then, F(s′, x′) = s, but F(s′, x′) should be chosen out
of C \ Cbad, while s ∈ T ⊂ Cbad, since there is already a query involving x with s as the
response. This contradicts the assumption and proves Lemma 2. For Lemma 3, we may
use the same argument except using π(T ) ⊂ Cbad.

The basic intuition involved in the pseudocode of SF is this: the permutation π dis-
rupts the extension property of the MD scheme if it has only a small number of fixed
points and IV is not a fixed point. Now, the best strategy of an adversary seems to be
computing F ∗(IV,M) for various messages M (by querying the FIL oracle), until one
of the following happens:

• The adversary finds two distinct messages M , M ′ such that F ∗(IV,M) =
F ∗(IV,M ′): in this case, we have H(M‖P) = H(M ′‖P) for any message block
P if H is MDP. On the other hand, the probability of this equality is very low if H

is a true random oracle.
• The adversary finds two distinct messages M , M ′ such that F ∗(IV,M) =

π(F ∗(IV,M ′)): in this case, we have H(M‖P ‖Q) = F(π(H(M ′‖P)),Q) for
any message block P and Q if H is MDP. However, the probability of this equal-
ity is very low if H is a true random oracle, because the simulator which selects the
value F(π(H(M ′‖P)),Q) has information about Q, but it does not have access
to the adversarial choice of P .
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: M1M2 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface F (s, x):

20: SF(s, x)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C

203: if F(s, x) ∈ Cbad then � For G1 only
204: bad ← true � For G1 only

205: F(s, x)
$← C \ Cbad � For G1 only

206: T ← T ∪ {F(s, x)}
207: else if π−1(s) ∈ T then

208: F(s, x)
$← C

209: else

210: F(s, x)
$← C

211: V ← V ∪ {s}
212: return F(s, x)

Fig. 3. The games G0 and G1. M1M2 · · ·Mk ← parse(M) means that M = M1‖M2‖ · · · ‖Mk and
|Mi | = b for all i = 1, . . . , k. The lines 203, 204, and 205 are active only in G1. Cbad = V ∪ T ∪
π−1(V ∪ T ) ∪ π(T ) ∪ Pπ .

Other minor strategy is to find a message M such that F ∗(IV,M) is a fixed point of π

or a part of a previous query to F .
The simulator SF is designed so that the three Lemmas 1, 2, and 3 hold, which delays

the above failing situations as late as possible. This is achieved by careful expansion
of the tree T at the lines 22 and 23. Note that by the birthday attack, eventually the
attacker can find the message pair M , M ′ such that F ∗(IV,M) equals F ∗(IV,M ′) or
π(F ∗(IV,M ′)). Therefore, MDP can be indifferentiable from a random oracle only up
to the birthday bound.

Now, the indifferentiability of MDP is expressed in the next theorem.

Theorem 1. Let A be an adversary distinguishing the pairs (MDP[F,π],F ) and
(H,SF ), where the simulator SF is defined in Fig. 2. Let π be a permutation on C
and Pπ be the set of its fixed points such that IV �∈ Pπ . Suppose that A makes at most
qF queries to the FIL oracle and qV queries to the VIL oracle and that each VIL query
has at most 	 message blocks. Let q = 	qV + qF. Then,

Advindiff
MDP[F,π],SF

(A) ≤ 3q2 + (2 |Pπ | + 3) q

2c+1
+ 2	qVqF

2c − 3q − |Pπ | .

The total number of queries of the simulator SF is at most qF, and the total running
time of SF is O(qF

2).

Proof. The proof uses the code-based game-playing technique [9]. Each game Gi

exposes two interfaces H(M) and F (s, x) to the adversary A. AGi means that A has
oracle access to the interfaces in the game Gi. Without loss of generality, we can assume
that A makes no repeated queries to H and F .

The proof starts with the game G0 given in Fig. 3. It is clear that G0 is a faithful
implementation of MDP with a FIL random oracle. Although it updates V and T , these
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: M1M2 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: else if π−1(s) ∈ T then
205: M̃ ← getnode(π−1(s))

206: F(s, x) ← SH(M̃‖x)

207: else

208: F(s, x)
$← C

209: V ← V ∪ {s}
210: return F(s, x)

Fig. 4. The game G2.

sets do not affect the uniform and random choices of F(s, x) made at lines 202, 208,
and 210. In effect, F implements a FIL random oracle by lazy sampling. Therefore,

Pr
[
AG0 ⇒ 1

] = Pr
[
AMDP[F,π],F ⇒ 1

]
.

(G0 → G1). Since G0 and G1 are identical until bad gets true in G1, from Lemma 1
in [9],

Pr
[
AG0 ⇒ 1

] − Pr
[
AG1 ⇒ 1

] ≤ Pr
[
AG1 sets bad

]
.

Pr[AG1 sets bad] can be estimated as follows: the line 203 of G1 is satisfied with prob-
ability

|V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ |
|C| ≤ 2 |V ∪ T | + |T | + |Pπ |

2c
.

Let Vi and Ti be the sets V and T , respectively, at the line 203 in the ith invocation of
SF for i ≥ 1. Then, it is easy to see that |Vi ∪ Ti | ≤ i and |Ti | ≤ i. SF is invoked at most
q = 	qV + qF times in total. Thus,

Pr
[
AG1 sets bad

] ≤
q∑

i=1

2 |Vi ∪ Ti | + |Ti | + |Pπ |
2c

≤
q∑

i=1

3 i + |Pπ |
2c

= 3q2 + (2 |Pπ | + 3) q

2c+1
.

(G1 → G2). The game G2 is presented in Fig. 4. The line 202 of G2 and the lines
202 to 205 of G1 correspond to the line 22 of the simulator SF in Fig. 2. Therefore,
Lemmas 1, 2, and 3 hold for G1 and G2. Then, the line 205 of G2 works properly;
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Initialize:

1: V ← ∅
2: T ← {IV}
3: TA ← {IV}

Interface H(M) for G3:

10: M1M2 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface H(M) for G4:

10: SH(M)

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: if (s, x) is from F then
205: if s ∈ TA then
206: TA ← TA ∪ {F(s, x)}
207: else
208: bad ← true
209: else if π−1(s) ∈ T then
210: M̃ ← getnode(π−1(s))

211: F(s, x) ← SH(M̃‖x)

212: if (s, x) is from F and π−1(s) �∈ TA then
213: bad ← true
214: else

215: F(s, x)
$← C

216: V ← V ∪ {s}
217: else if (s, x) is from F then
218: if s ∈ TA then
219: TA ← TA ∪ {F(s, x)}
220: else if π−1(s) �∈ TA then
221: bad ← true
222: return F(s, x)

Fig. 5. The games G3 and G4.

there exists one-to-one correspondence between π−1(s) ∈ T and M̃ via F∗(IV, M̃) =
π−1(s).

The difference between G1 and G2 is the selection of F(s, x) in case π−1(s) ∈ T .
In G1, F(s, x) is randomly chosen at the line 208. In G2, F(s, x) ← SH(M̃‖x), where
F∗(IV, M̃) = π−1(s), and the actual random selection is deferred by the subroutine SH.
SH maintains a structure H, which is initially ⊥ for every M . Due to Lemmas 1 and 2,
there is a one-to-one correspondence between (s, x) and M̃‖x. Therefore, in essence,
G2 simply selects F(s, x) randomly. Thus,

Pr
[
AG1 ⇒ 1

] = Pr
[
AG2 ⇒ 1

]
.

(G2 → G3). The game G3 is given in Fig. 5. In G3, a new set TA is introduced, which
is initially {IV}. Some operations on TA are also added to SF: from 204 to 208, from
212 to 213, and from 217 to 221. However, these differences between G2 and G3 do not
affect the outputs by H and F . Actually, the new lines introduced in G3 only change TA

and the variable bad, and the outputs by H and F are chosen independently of them.
Thus,

Pr
[
AG2 ⇒ 1

] = Pr
[
AG3 ⇒ 1

]
.

(G3 → G4). The game G4 is also given in Fig. 5. The difference between G3 and G4
is the implementation of H(M). In G3, H(M) is implemented as the MDP iteration,
while H(M) is just a random oracle in G4.
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We will first confirm that the return values of H are always determined by SH in G3.
From this viewpoint, there is no difference between G3 and G4.

Suppose that A asks M to H in G3. Then, H invokes SF with (si−1,Mi) for 1 ≤ i ≤
k − 1 and (π(sk−1),Mk). Notice that each of them may be asked before. In any case,
however, SF receives (s0,M1), . . . , (sk−2,Mk−1), (π(sk−1),Mk) in this order.

Suppose that SF receives (si−1,Mi) at the αi th invocation for 1 ≤ i ≤ k − 1 and
(π(sk−1),Mk) at the αk th invocation for the first time in G3. We will show that α1 <

α2 < · · · < αk . Since s0 = IV ∈ T , s1 is selected at the line 202 and added to T at the
line 203. Thus, α1 < α2 since s1 �∈ Vα1 . Similarly, α2 < α3 < · · · < αk−1 and si ∈ T
for 2 ≤ i ≤ k − 1. Moreover, αk−1 < αk since sk−1 �∈ π−1(Vαk−1). Thus, at the αk th
invocation with (π(sk−1),Mk), SF invokes SH with M . Notice that H(M) is undefined
before this invocation.

There is still a difference between G3 and G4. H calls SF in G3, while H does not
in G4. In G4, since SF is invoked only by F and A makes no repeated queries, the
lines from 217 to 221 are never executed. Moreover, at the time of each invocation of
SF, T = TA. Thus, bad never gets true in G4. In G3, on the other hand, bad may get
true. A may accidentally find an intermediate part of the paths made by H without
starting from IV . Thus,

Pr
[
AG3 ⇒ 1

] − Pr
[
AG4 ⇒ 1

] ≤ Pr
[
AG3 sets bad

]
.

Now, we will evaluate Pr[AG3 sets bad]. If bad gets true

• at 208, then s ∈ T and s �∈ TA,
• at 213, then π−1(s) ∈ T and π−1(s) �∈ TA,
• at 221, then F(s, x) has already been set by H, s �∈ TA, and π−1(s) �∈ TA.

Even in the last case, s ∈ T or π−1(s) ∈ T . Thus, in any case, if bad gets true, then it
implies that A successfully asks the value of s′ or π(s′) to F for some s′ ∈ T without
having access to s′ using F from IV . Since the number of elements in T fixed by H is
at most 	qV and they are chosen from C \ Cbad,

Pr
[
AG3 sets bad

] ≤ 2	qVqF

2c − 3q − |Pπ | .

(G4 → G5). The game G5 is presented in Fig. 6. It is a faithful implementation of a
true random oracle and the simulator SF . Thus,

Pr
[
AG5 ⇒ 1

] = Pr
[
AH,SF ⇒ 1

]
.

G5 is obtained from G4 by removing TA in the initialization, and the operations
related to TA in SF: lines 204 to 208, 212 to 213, and 217 to 221. These modifications
do not affect the outputs by H and F . Thus,

Pr
[
AG4 ⇒ 1

] = Pr
[
AG5 ⇒ 1

]
.
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: SH(M)

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: else if π−1(s) ∈ T then
205: M̃ ← getnode(π−1(s))

206: F(s, x) ← SH(M̃‖x)

207: else

208: F(s, x)
$← C

209: V ← V ∪ {s}
210: return F(s, x)

Fig. 6. The game G5.

Combining all of the above, we get

Advindiff
MDP[F,π],SF

(A) ≤ Pr
[
AG1 sets bad

] + Pr
[
AG3 sets bad

]

≤ 3q2 + (2 |Pπ | + 3) q

2c+1
+ 2	qVqF

2c − 3q − |Pπ | . �

4.3. MDP Yields a Secure PRF

In this section, we show that when the compression function F is a PRF secure against
a π -related-key attack, then MDP yields a secure PRF. This construction could be used
as an alternative to HMAC or NMAC.

In order to use MDP as a PRF, we need to provide a keying strategy to MDP. We may
consider at least two straightforward such approaches.

• Keyed-MDP: We may use a secret key K
$← C instead of the fixed IV and define a

MAC scheme out of MDP by KMDPK(M) = F ◦(K,pad(M)).

• Prefix-MDP: Given a message M and a key K
$← B, we define PMDPK(M) =

MDP(K‖M), i.e., the secret prefix construction. Note that PMDPK(M) =
KMDPF(IV,K)(M). Although less efficient than Keyed-MDP, this has a benefit that
it may use the underlying hash function as a black-box.

We may consider Keyed-MDP as analogous to NMAC, and Prefix-MDP as analogous
to HMAC.

Remark 1. If KMDPK(M) were a secure PRF whenever F is a secure PRF, then we
may say that MDP preserves the PRF property in the sense of Bellare and Ristenpart [7].
Unfortunately this is not the case; if, for example, F satisfies FK(x) = Fπ(K)(x) for any
K and x, then the MDP construction reduces to the plain Merkle–Damgård scheme,
which is vulnerable to the extension attack.
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4.3.1. Related-Key Multioracles

In order to prove the security of the two MAC schemes, first we need to introduce the
notion of multioracle distinguishers. This was first given in [5] in order to prove that, if
the MD scheme is keyed via IV, then the resulting iterated construction is a PRF with
respect to prefix-free adversaries. What we actually need is not this notion itself, but an
extension of it, which we call the related-key multioracle distinguisher.

Given a π -RKA-secure PRF F , consider the problem of distinguishing a 2m-tuple
of instances of F from a 2m-tuple of independent random functions. For the 2m-
tuple of F , we choose m of the keys K1, . . . ,Km randomly and independently and
use π(K1), . . . , π(Km) as the other m keys. That is, we would like to distinguish the
distribution of the following 2m-tuple of functions:

(FK1 ,Fπ(K1), . . . ,FKm,Fπ(Km))

from that of a 2m-tuple of independent random functions.
We define the advantage of a distinguisher A with access to 2m oracles g1, g′

1, g2,
g′

2, . . . , gm, g′
m as follows:

Advm-prf-rka
π,F (A) = Pr

[
AFK1 ,Fπ(K1),...,FKm,Fπ(Km) ⇒ 1

∣∣K1, . . . ,Km
$← C

]

− Pr
[
Aρ1,ρ

′
1,...,ρm,ρ′

m ⇒ 1
∣∣ρ1, ρ

′
1, . . . , ρm,ρ′

m

$← Maps(B, C)
]
.

Lemma 4 (Related-Key Multioracle Lemma). Let A be a distinguisher with access to
2m oracles g1, g

′
1, . . . , gm,g′

m as above. Suppose that A has time-complexity at most t

and makes at most q queries. Then, we can construct an adversary Bg,g′
attacking the

π -RKA-security of F such that

Advm-prf-rka
π,F (A) = m · Advprf-rka

π,F (B).

B makes at most q queries, and the running time of B is bounded by t + O(q ·
Time(F ) + q(b logq + c) + mc), where Time(F ) is the time required to compute F .

Proof. Given such a distinguisher A, for i = 0, . . . ,m, let us define

Pi = Pr
[
AFK1 ,Fπ(K1),...,FKi

,Fπ(Ki )
,ρi+1,ρ

′
i+1,...,ρm,ρ′

m ⇒ 1
]
,

where K1, . . . ,Ki are randomly and independently chosen from C , and ρi+1, ρ′
i+1, . . . ,

ρm, ρ′
m are randomly and independently chosen from Maps(B, C). Note that

Advm-prf-rka
π,F (A) = Pm − P0.

Using the distinguisher A, let us define an adversary B[i] for i = 1, . . . ,m, attacking the
RKA-secure PRF F as follows: B[i] is given two oracles g and g′. B[i] then prepares
the following sequence of 2m functions to feed A:

FK1,Fπ(K1), . . . ,FKi−1 ,Fπ(Ki−1), g, g′, ρi+1, ρ
′
i+1, . . . , ρm,ρ′

m,
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where K1, . . . , Ki−1 are randomly and independently chosen from C , and ρi+1, ρ′
i+1,

. . . , ρm, ρ′
m are randomly and independently chosen from Maps(B, C). Note that B[i]

“implements” these independent random functions ρj , ρ′
j by lazy sampling: initially,

B[i] sets all values of ρj , ρ′
j as undefined, and when A queries one of the random

functions, for example, ρj (x), then B[i] first checks whether ρj (x) �= ⊥ and if so,
simply returns ρj (x), and if ρj (x) = ⊥, then defines ρj (x) randomly and returns ρj (x).

B[i] runs A in its simulated environment and, whenever A makes a query, answers
the query using the above 2m functions. Then it is clear that

Pr
[
B[i]FK,Fπ(K) ⇒ 1

∣∣K
$← C

] = Pi

and

Pr
[
B[i]ρ,ρ′ ⇒ 1

∣∣ρ,ρ′ $← Maps(B, C)
] = Pi−1.

Finally, let us define another adversary B attacking F , by combining all B[i] as

follows: when B runs, it first chooses i
$← [1,m] and then behaves identically to B[i].

Then,

Pr
[
BFK,Fπ(K) ⇒ 1

∣∣K
$← C

] = 1

m

m∑

i=1

Pi

and

Pr
[
Bρ,ρ′ ⇒ 1

∣∣ρ,ρ′ $← Maps(B, C)
] = 1

m

m−1∑

i=0

Pi.

Therefore,

Advprf-rka
π,F (B) = Pm − P0

m
.

We can see that B has to query q times at the worst case. The running time is that of
A plus the time to pick the extra keys, which is O(mc), and to record and respond to
queries by A, which is O(q · Time(F ) + q(b logq + c)). �

4.3.2. Security of Keyed-MDP

Now that we have Lemma 4, we prove the following lemma which connects the PRF-
security of the Keyed-MDP with the related-key multioracles:

Lemma 5 (Reduction to the Related-Key Multioracle). Let A be a PRF-adversary
against KMDP. Suppose that A has time-complexity at most t and makes at most q

queries and that each query has at most 	 message blocks. Then, we can construct a
related-key multioracle distinguisher B with access to 2q oracles such that

Advprf
KMDP(A) = 	 · Advq-prf-rka

π,F (B).

B makes at most q queries, and the running time of B is bounded by t +O(	q(Time(F )

+ b logq) + qc).
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Proof. For i ∈ [0, 	] and two functions α : B≤i → C and β : Bi → C , we define I
α,β
i :

B≤	 → C as follows:

I
α,β
i (M1M2 · · ·Mk) =

{
α(M1 · · ·Mk) if k ≤ i,

F ◦(β(M1 · · ·Mi),Mi+1 · · ·Mk) if k > i.

Define Pi as

Pi = Pr
[
AI

α,β
i ⇒ 1

∣∣α
$← Maps

(
B≤i , C

)
, β

$← Maps
(

Bi , C
)]

.

Then

Advprf
KMDP(A) = P0 − P	.

Notice that α and β are simply random elements in C if i = 0.
Using A as a subroutine, we construct a related-key multioracle distinguisher

Bg1,g
′
1,...,gq ,g′

q taking 2q oracles. For i ∈ [1, 	], we first define a distinguisher
B[i]g1,g

′
1,...,gq ,g′

q .

B[i] first picks a random function ρ
$← Maps(B≤i−1, C). (Again, this means that

B[i] implements ρ via lazy sampling.) Then B[i] runs A in its simulated environ-
ment. B[i] has to answer the q queries of A appropriately. In order to do that, B[i]
maintains a counter idx, which is initially set to 0. When B[i] is given the j th query
Mj = M

j

1 M
j

2 · · ·Mj
k of A, B[i] answers it as follows:

• If k < i, then return ρ(M
j

1 · · ·Mj
k ).

• If k = i, then return g′
idx(M

j
1 ···Mj

i−1)
(M

j
i ).

• If k > i, then return F ◦(g
idx(M

j
1 ···Mj

i−1)
(M

j
i ),M

j

i+1 · · ·Mj
k ).

In the above, idx(M
j

1 · · ·Mj

i−1) is a unique integer in [1, q] which depends on the query

M
j

1 · · ·Mj

i−1. It can be defined using the counter idx; if there was a previous query

Mp (p < j ) such that M
p

1 · · ·Mp

i−1 = M
j

1 · · ·Mj

i−1, then define idx(M
j

1 · · ·Mj

i−1) =
idx(M

p

1 · · ·Mp

i−1), and otherwise increase idx by 1 and define idx(M
j

1 · · ·Mj

i−1) = idx.
Now, suppose that B[i] is given oracles FK1,Fπ(K1), . . . ,FKq ,Fπ(Kq) with K1, . . . ,

Kq
$← C . Then, when A makes the j th query Mj = M

j

1 M
j

2 · · ·Mj
k , the response A will

get from B[i] will be:

• If k < i, then ρ(M
j

1 · · ·Mj
k ).

• If k = i, then F(π(K
idx(M

j
1 ···Mj

i−1)
),M

j
i ).

• If k > i, then F ◦(F (K
idx(M

j
1 ···Mj

i−1)
,M

j
i ),M

j

i+1 · · ·Mj
k ), which is equal to

F ◦(K
idx(M

j
1 ···Mj

i−1)
,M

j
i M

j

i+1 · · ·Mj
k ).
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Since K
idx(M

j
1 ···Mj

i−1)
is a random function of M

j

1 · · ·Mj

i−1, the view that A sees is iden-

tical to I
α,β

i−1 with α
$← Maps(B≤i−1, C), β

$← Maps(Bi−1, C). Therefore,

Pr
[
B[i]FK1 ,Fπ(K1),...,FKq ,Fπ(Kq ) ⇒ 1

] = Pi−1.

Next, suppose that B[i] is given ρ1, ρ
′
1, . . . , ρq, ρ′

q

$← Maps(B, C). Then, the re-
sponse A will get from B[i] will be:

• If k < i, then ρ(M
j

1 · · ·Mj
k ).

• If k = i, then ρ′
idx(M

j
1 ···Mj

i−1)
(M

j
i ).

• If k > i, then F ◦(ρ
idx(M

j
1 ···Mj

i−1)
(M

j
i ),M

j

i+1 · · ·Mj
k ).

Since ρ
idx(M

j
1 ···Mj

i−1)
(M

j
i ) and ρ′

idx(M
j
1 ···Mj

i−1)
(M

j
i ) are independent random functions

of M
j

1 · · ·Mj

i−1M
j
i , the view that A sees is identical to I

α,β
i with α

$← Maps(B≤i , C),

β
$← Maps(Bi , C). Therefore,

Pr
[
B[i]ρ1,ρ′

1,...,ρq ,ρ′
q ⇒ 1

] = Pi.

Finally, let us define the distinguisher B , by combining all B[i] as follows: when B

runs, it first chooses i
$← [1, 	], then behaves identically to B[i]. Then

Advprf-rka
π,F (B) = Pr

[
B

FK1 ,Fπ(K1),...,FKq ,Fπ(Kq ) ⇒ 1
∣∣K1, . . . ,Kq

$← C
]

− Pr
[
Bρ1,ρ

′
1,...,ρq ,ρ′

q ⇒ 1
∣∣ρ1, ρ

′
1, . . . , ρq, ρ′

q

$← Maps(B, C)
]

= 1

	

	−1∑

i=0

Pi − 1

	

	∑

i=1

Pi = P0 − P	

	
.

�

Combining Lemmas 4 and 5, we obtain the following theorem:

Theorem 2 (PRF-Security of Keyed-MDP). Let A be a PRF-adversary against
KMDP. Suppose that A has time-complexity at most t , makes at most q queries, and each
query has at most 	 message blocks. Then, we can construct an adversary B against F

such that

Advprf
KMDP(A) = 	q · Advprf-rka

π,F (B).

B makes at most q queries, and the running time of B is bounded by t +O(	q(Time(F )

+ b logq) + qc).
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4.3.3. Security of Prefix-MDP

We prove the security of the Prefix-MDP scheme by lifting the security proof for the
Keyed-MDP. Recall that

PMDPK(M) = MDP(K‖M) = KMDPF(IV,K)(M).

Hence, here we have to regard F(s, x) as a function family indexed by the data input x.
We express this formally by defining a dual function family F̄ : B × C → C of F :

F̄ (K,x)
def= F(x,K).

In order to prove the security of the Prefix-MDP, in addition to the previous assump-
tion that F is a π -RKA-secure PRF, we also need to assume that F is a PRF when keyed
by its data input, i.e., F̄ is a PRF. Then we have:

Lemma 6. Let A be a PRF-adversary against PMDP that has time-complexity at
most t . Then, we can construct a PRF-adversary BF̄ against the dual F̄ such that

Advprf
PMDP(A) = Advprf

KMDP(A) + Advprf
F̄

(BF̄ ).

BF̄ has time-complexity at most t and makes only 1 query.

Proof. Using A, BF̄ can be constructed as follows. BF̄ is given an oracle g : C → C .
At the beginning, BF̄ picks a random key K ′ ∈ C by K ′ ← g(IV). Then, BF̄ runs A in
its simulated environment. If A makes a query M , then BF̄ answers it by KMDPK ′(M).
Clearly,

Pr
[
BF̄

F̄K ⇒ 1
∣
∣K

$← B
] = Pr

[
APMDPK ⇒ 1

∣
∣K

$← B
]
,

and

Pr
[
BF̄

ρ ⇒ 1
∣∣ρ

$← Maps(C, C)
] = Pr

[
AKMDPK ′ ⇒ 1

∣∣K ′ $← C
]
.

Therefore,

Advprf
F̄

(BF̄ ) = Pr
[
BF̄

F̄K ⇒ 1
∣∣K

$← B
] − Pr

[
BF̄

ρ ⇒ 1
∣∣ρ

$← Maps(C, C)
]

= Pr
[
APMDPK ⇒ 1

∣∣K
$← B

] − Pr
[
AKMDPK ′ ⇒ 1

∣∣K ′ $← C
]

= Advprf
PMDP(A) − Advprf

KMDP(A). �

Theorem 3 (PRF-Security of Prefix-MDP). Let A be a PRF-adversary against PMDP.
Suppose that A has time-complexity at most t , makes at most q queries, and each query
has at most 	 message blocks. Then, we can construct an adversary BF against F and
an adversary BF̄ against the dual F̄ such that

Advprf
PMDP(A) = 	q · Advprf-rka

π,F (BF ) + Advprf
F̄

(BF̄ ).
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BF has time-complexity at most t +O(	q(Time(F )+ b logq)+ qc) and makes at most
q queries. BF̄ has time-complexity at most t and makes only 1 query.

Remark 2. Even if F is a secure PRF, it could be vulnerable to a π -related-key attack.
For example, Contini and Yin [14] exhibited a related-key distinguishing attack on the
keyed MD5 compression function using pseudo-collisions of MD5 [11]. This attack
shows that the keyed MD5 compression function is not a good π -RKA-secure PRF
when π is bitwise addition of a nonzero constant.

Remark 3. Kim et al. [20], and also Contini and Yin [14], showed how to construct
various attacks on HMAC and NMAC using weakness of keyed compression functions
like MD4. The same attacks will work against PMDP under the same keyed compres-
sion functions.

4.4. Unforgeability Preservation

We may use MDP as a MAC under a different keying strategy from the above sections.
Now, we consider MDP in the dedicated-key setting, where a compression function is a
MAC F : K × C × B → C with a dedicated key input.

Theorem 4. Let π be a permutation on C , and Pπ be the set of its fixed points such
that IV �∈ Pπ . Let A be a forger of MDP[F,π]. Suppose that A has time-complexity at
most t and the total number of message blocks of its queries and forgery is at most μ.
Then, we can construct a forger B of the FIL MAC F such that

Advmac
MDP[F,π](A) ≤

(
3

2
μ2 +

(
|Pπ | + 3

2

)
μ + 1

)
Advmac

F (B).

B has time-complexity at most t + O(μ(b + c)) and makes at most μ queries.

Proof. A forger B against the FIL MAC F has a MAC oracle FK . Invoking the oracle,
it can easily simulate the MAC oracle MDP[FK,π] required by a forger A. Under this
simulation environment, we make use of the proof technique of [24]. Let (zi, yi) denote
the ith MAC query made by B and the corresponding answer from FK .

In the simulation process of MDP[FK,π], B takes the following strategy: stop the
simulation at some MAC query zi just before asking it to FK , and return a forgery
(zi, τ

′) for FK . So the forger B is characterized by the time i when it stops and the
way producing a forgery. Our security reduction requires to find a set of strategies S
such that whenever A is successful, there is at least one strategy s ∈ S with which B is
successful. If B simply picks its strategy uniformly at random from S , then

Advmac
F (B) = Advmac

MDP[F,π](A)

|S| .

The naive strategy sna of B is to return (z, τ ) as a forgery, where (M, τ) is a forgery
of A, and z is the input to the last FK in the computation of MDP[FK,π](M). B is
successful with sna whenever A is successful and z is new. So, we need a set of strategies
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such that whenever z is not new, there exists at least one strategy s in it with which B is
successful. We consider the following sets of deterministic strategies:

• Sy = {si,y | i ∈ [1,μ]}. si,y is a strategy of stopping at the query zi and returning
(zi, y). |Sy | ≤ μ.

• Scol = {scol,i,j | i, j ∈ [1,μ], i > j}. scol,i,j is a strategy of stopping at the query zi

and returning (zi, yj ). |Scol| ≤ μ(μ − 1)/2.
• Sπ-col = {sπ-col,i,j | i, j ∈ [1,μ], i > j}. sπ-col,i,j is a strategy of stopping at the

query zi and returning (zi,π(yj )). |Sπ-col| ≤ μ(μ − 1)/2.
• Sπ−1-col = {sπ−1-col,i,j | i, j ∈ [1,μ], i > j}. sπ−1-col,i,j is a strategy of stopping at

the query zi and returning (zi,π
−1(yj )). |Sπ−1-col| ≤ μ(μ − 1)/2.

Let S ′ = Scol ∪ Sπ-col ∪ Sπ−1-col ∪ SIV ∪ Sπ(IV) ∪ Sπ−1(IV) ∪ ⋃
y∈Pπ

Sy . Then,

∣∣S ′ ∪ {sna}
∣∣ ≤ 3

2
μ2 +

(
|Pπ | + 3

2

)
μ + 1.

We will confirm that there exists at least one strategy s ∈ S ′ with which B is successful
whenever z is not new.

Let z̃1, . . . , z̃t denote the sequence of queries to FK resulting from the forgery mes-
sage M of A. Note that M is new. Since z̃t = z is not new, z̃t must be an earlier query
to FK , resulting from some query M ′ to MDP[FK,π]. Let z̃′

1, . . . , z̃
′
t ′ denote the se-

quence of queries to FK in the computation of MDP[FK,π](M ′). Then, z̃t = z̃′
i for

some i ∈ [1, t ′]. We consider two cases, t = 1 and t > 1.
Suppose that t = 1. Then, t ′ > 1 since M is new. It is impossible to have z̃1 = z̃′

1 since
z̃1 = π(IV)‖v and z̃′

1 = IV‖v′ for some v, v′ ∈ B, and π(IV) �= IV . So z̃1 = z̃′
i for some

i ∈ [2, t ′]. If z̃1 = z̃′
t ′ , then π(IV) = π(FK(z̃′

t ′−1)), and so FK(z̃′
t ′−1) = IV . Otherwise,

we have π(IV) = FK(z̃′
i−1).

Suppose that t > 1. If t ′ = 1, then z̃t = z̃′
1 and π(FK(z̃t−1)) = π(IV). Thus,

FK(z̃t−1) = IV . Suppose that t ′ > 1. If z̃t = z̃′
1, then we have π(FK(z̃t−1)) = IV . Thus,

FK(z̃t−1) = π−1(IV). If z̃t = z̃′
i for some i ∈ [2, t ′ − 1], then we have π(FK(z̃t−1)) =

FK(z̃′
i−1). If FK(z̃t−1) ∈ Pπ , then both z̃t−1 and z̃′

i−1 are preimages of a fixed point
of π . Otherwise, z̃t−1 �= z̃′

i−1, and it implies a kind of collision of FK with respect to π .
Let z and z′ be the earliest occurrences of z̃t−1 and z̃′

i−1 in the queries made by B to
FK , respectively. Let y and y′ be the corresponding replies. If z′ precedes z, then stop-
ping at z and returning (z,π−1(y′)) is a successful strategy. Otherwise, stopping at z′
and returning (z′,π(y)) is a successful strategy. If z̃t = z̃′

t ′ , then we have M �= M ′ sat-
isfying MDP[FK,π](M) = MDP[FK,π](M ′). Without loss of generality, we assume
that t ′ ≥ t . Then, either there exists an index j ∈ [1, t − 1] such that z̃t−j �= z̃′

t ′−j
and

z̃t−j+1 = z̃′
t ′−j+1, or z̃1 = z̃′

t ′−t+1. The former implies that a nontrivial collision of FK

occurs since FK(z̃t−j ) = FK(z̃′
t ′−j

), and the latter implies that FK(z̃t ′−t ) = IV with
t ′ − t ≥ 1. �

Note that the security loss of roughly μ2 in Theorem 4 is unavoidable for iterative
constructions of this nature [24].
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Remark 4. If IV ∈ Pπ , then we can show that MDP does not preserve unforgeability.
The following example is very similar in structure to the result of An and Bellare [2] for
the CBC MAC construction.

Assume that we have a secure FIL MAC G : K × C 2 × B → C . Using G, we define
another FIL MAC F : K × C 2 × B → C 2 as follows:

FK

(
x‖y‖M) def= π−1(GK(x‖y‖M)‖x)

,

where x, y ∈ C and M ∈ B.
It is easy to see that F is at least as secure as G. But the composition of F with MDP

is completely insecure; an adversary can succeed in forgery with probability 1 after only
a single query.

The attack can be described as follows. An attacker chooses an arbitrary 2b-bit string
M1‖M2, where M1,M2 ∈ B, and queries the value of the iteration for M1‖M2. By the
definition of MDP, after the first application of the compression function, the state value
is equal to π−1(τ1‖v) = π−1(GK(IV‖M1)‖v), where v is the first half of IV ∈ C 2,
and after the second application, to π−1(GK(τ1‖v‖M2)‖τ1). From the response of the
query for M1‖M2, we can obtain τ1 easily. Then the attacker can forge the message-
tag pair (M1,π

−1(τ1‖v)) because MDP[FK ](M1) = FK(π(IV)‖M1) = FK(IV‖M1) =
π−1(τ1‖v), so this attack always succeeds.

If we put π as an identity function, our attack also provides an example to show that
the (strengthened) MD construction does not preserve unforgeability which is different
from that of Bellare and Ristenpart [8].

5. Further Results on Indifferentiability

5.1. MDP with a Double-Block-Length Compression Function

A compression function F is called double-block-length (DBL) if it is composed of a
compression function f and the output length of F is twice as large as that of f . We
consider a DBL compression function of the form defined in the following definition.

Definition 1. Let c be an even integer, and f : C × B → {0,1}c/2. F : C × B → C
is a DBL compression function such that F(s, x) = f (s, x)‖f (p(s), x), where s ∈ C ,
x ∈ B, and p is an involution on C with no fixed points.

The following theorem states that MDP[F,π] is indifferentiable from a VIL random
oracle if f is a FIL random oracle and π is chosen appropriately.

Theorem 5. Let F be a DBL compression function defined in Definition 1. Let π be a
permutation on C and Pπ,p = {u | (u ∈ C)∧ ((π(u) = u)∨ (π(u) = p(u)))}. Let A be an
adversary distinguishing the pairs (MDP[F,π],F ) and (H,SF ), where the simulator
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface F (s, x):

20: if F(s, x) = ⊥ then
21: if s ∈ T then

22: F(s, x)
$← C \ Cbad

23: T ← T ∪ {F(s, x)}
24: F(p(s), x) ← swap(F(s, x))

25: else if p(s) ∈ T then

26: F(p(s), x)
$← C \ Cbad

27: T ← T ∪ {F(p(s), x)}
28: F(s, x) ← swap(F(p(s), x))

29: else if π−1(s) ∈ T then
30: M̃ ← getnode(π−1(s))

31: F(s, x) ← H(M̃‖x)

32: F(p(s), x) ← swap(F(s, x))

33: else if π−1(p(s)) ∈ T then
34: M̃ ← getnode(π−1(p(s)))

35: F(p(s), x) ← H(M̃‖x)

36: F(s, x) ← swap(F(p(s), x))

37: else

38: F(s, x)
$← C

39: F(p(s), x) ← swap(F(s, x))

40: V ← V ∪ {s,p(s)}
41: return F(s, x)

Fig. 7. Pseudocode for the simulator SF . swap(t1‖t2) = t2‖t1 for every t1, t2 ∈ {0,1}c/2. Cbad = V ∪ T ∪
p(T ) ∪ π−1(V ∪ T ∪ p(T )) ∪ π(T ) ∪ p(π(T )) ∪ Pπ,p .

SF is defined in Fig. 7. Suppose that IV /∈ Pπ,p . Then,

Advindiff
MDP[F,π],SF

(A) ≤ 5q2 + (|Pπ,p| + 1) q

2c
+ 4	qVqF

2c − 10q − |Pπ,p| − 4
,

where q = 	qV +qF. qV is the number of queries to the VIL oracle, and qF is the number
of queries to the FIL oracle. 	 is the maximum number of message blocks for each VIL
query. SF makes at most qF queries and runs in time O(qF

2).

Proof. First of all, it should be justified that a simulator is prepared for F instead
of f . Actually, since f is a FIL random oracle, F is completely indifferentiable from
a function chosen uniformly at random from {R |R ∈ Maps(C × B, C) ∧ R(s, x) =
swap(R(p(s), x))}. Let p̂ be a permutation on C × B such that p̂(s, x) = (p(s), x).
Since p has no fixed points and p ◦ p is an identity permutation, so does p̂. Since
p̂ ◦ p̂ is an identity permutation, f (s, x) and f (p̂(s, x)) are only used for F(s, x) and
F(p̂(s, x)) for every (s, x) ∈ C × B. Thus, F(s, x) and F(s′, x′) are random and inde-
pendent of each other if (s′, x′) �= p̂(s, x), since f is a random oracle. Moreover, since
p̂ has no fixed points and F(s, x) = f (s, x)‖f (p̂(s, x)), the first half and the second
half of F(s, x) are also random and independent of each other.

This proof also uses the game-playing technique, and it is similar to that of The-
orem 1. Each game exposes two interfaces H(M) and F (s, x) to the adversary A.
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: M1M2 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface F (s, x):

20: SF(s, x)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C

203: if F(s, x) ∈ Cbad then � For G1 only
204: bad ← true � For G1 only

205: F(s, x)
$← C \ Cbad � For G1 only

206: T ← T ∪ {F(s, x)}
207: F(p(s), x) ← swap(F(s, x))

208: else if p(s) ∈ T then

209: F(p(s), x)
$← C

210: if F(p(s), x) ∈ Cbad then � For G1 only
211: bad ← true � For G1 only

212: F(p(s), x)
$← C \ Cbad � For G1 only

213: T ← T ∪ {F(p(s), x)}
214: F(s, x) ← swap(F(p(s), x))

215: else if π−1(s) ∈ T then

216: F(s, x)
$← C

217: F(p(s), x) ← swap(F(s, x))

218: else if π−1(p(s)) ∈ T then

219: F(p(s), x)
$← C

220: F(s, x) ← swap(F(p(s), x))

221: else

222: F(s, x)
$← C

223: F(p(s), x) ← swap(F(s, x))

224: V ← V ∪ {s,p(s)}
225: return F(s, x)

Fig. 8. The games G0 and G1. The lines 203 to 205 and 210 to 212 are active only in G1.

Without loss of generality, we can assume that A makes no repeated queries to H
and F .

The first game is given in Fig. 8. Since G0 is a faithful implementation of MDP with
a FIL random oracle, we have

Pr
[
AG0 ⇒ 1

] = Pr
[
A

(
MDP[F,π],F ) ⇒ 1

]
.

(G0 → G1). Since G0 and G1 are identical until bad gets true in G1, we have

Pr
[
AG0 ⇒ 1

] − Pr
[
AG1 ⇒ 1

] ≤ Pr
[
AG1 sets bad

]
.

Pr[AG1 sets bad] can be estimated as follows: each of the lines 203 and 210 of G1 is
satisfied with probability

|Cbad|
|C| ≤ 2 |V | + 6 |T | + |Pπ,p|

2c

since Cbad = V ∪ T ∪ p(T ) ∪ π−1(V ∪ T ∪ p(T )) ∪ π(T ) ∪ p(π(T )) ∪ Pπ,p . Let Vi

and Ti be the sets V and T , respectively, at 203 or 210 in the ith invocation of SF. Then,
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: M1M2 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: F(p(s), x) ← swap(F(s, x))

205: else if p(s) ∈ T then

206: F(p(s), x)
$← C \ Cbad

207: T ← T ∪ {F(p(s), x)}
208: F(s, x) ← swap(F(p(s), x))

209: else if π−1(s) ∈ T then
210: M̃ ← getnode(π−1(s))

211: F(s, x) ← SH(M̃‖x)

212: F(p(s), x) ← swap(F(s, x))

213: else if π−1(p(s)) ∈ T then
214: M̃ ← getnode(π−1(p(s)))

215: F(p(s), x) ← SH(M̃‖x)

216: F(s, x) ← swap(F(p(s), x))

217: else

218: F(s, x)
$← C

219: F(p(s), x) ← swap(F(s, x))

220: V ← V ∪ {s,p(s)}
221: return F(s, x)

Fig. 9. The game G2.

it is easy to see that |Vi | ≤ 2(i − 1) and |Ti | ≤ i. SF is invoked at most q = 	qV + qF
times in total. Thus,

Pr
[
AG1 sets bad

] ≤
q∑

i=1

2 |Vi | + 6 |Ti | + |Pπ,p|
2c

≤
q∑

i=1

10 i + |Pπ,p| − 4

2c

= 5q2 + (|Pπ,p| + 1) q

2c
.

(G1 → G2). The game G2 is presented in Fig. 9. The difference between G1 and G2
is the selection of F(s, x) or F(p(s), x) in case π−1(s) ∈ T or π−1(p(s)) ∈ T . In G1,
F(s, x) and F(p(s), x) are randomly chosen at the lines 216 and 219, respectively. In
G2, F(s, x) ← SH(M̃‖x), where F∗(IV, M̃) = π−1(s), and the actual random selection
is deferred by the subroutine SH. There is a one-to-one correspondence between (s, x)

and M̃‖x via F∗(IV, M̃) = π−1(s) ∈ T . There is also a one-to-one correspondence
between (p(s), x) and M̃‖x via F∗(IV, M̃) = π−1(p(s)) ∈ T . Therefore, in essence
G2 simply selects F(s, x) and F(p(s), x) randomly. Thus,

Pr
[
AG1 ⇒ 1

] = Pr
[
AG2 ⇒ 1

]
.

(G2 → G3). The game G3 is given in Fig. 10. In G3, a new set TA is introduced,
which is initially {IV}. Some operations on TA are also added to SF: 205 to 209, 214 to
218, 223 to 224, 229 to 230, and 235 to 241. However, these differences between G2
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Initialize:

1: V ← ∅
2: T ← {IV}
3: TA ← {IV}

Interface H(M) for G3:

10: M1 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SF(si−1,Mi)

14: sk ← SF(π(sk−1),Mk)

15: return sk

Interface H(M) for G4:

10: SH(M)

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: F(p(s), x) ← swap(F(s, x))

205: if (s, x) is from F then
206: if s ∈ TA then
207: TA ← TA ∪ {F(s, x)}
208: else
209: bad ← true
210: else if p(s) ∈ T then

211: F(p(s), x)
$← C \ Cbad

212: T ← T ∪ {F(p(s), x)}
213: F(s, x) ← swap(F(p(s), x))

214: if (s, x) is from F then
215: if p(s) ∈ TA then
216: TA ← TA ∪ {F(p(s), x)}
217: else
218: bad ← true
219: else if π−1(s) ∈ T then
220: M̃ ← getnode(π−1(s))

221: F(s, x) ← SH(M̃‖x)

222: F(p(s), x) ← swap(F(s, x))

223: if (s, x) is from F and π−1(s) �∈ TA then
224: bad ← true
225: else if π−1(p(s)) ∈ T then
226: M̃ ← getnode(π−1(p(s)))

227: F(p(s), x) ← SH(M̃‖x)

228: F(s, x) ← swap(F(p(s), x))

229: if (s, x) is from F and π−1(p(s)) �∈ TA then
230: bad ← true
231: else

232: F(s, x)
$← C

233: F(p(s), x) ← swap(F(s, x))

234: V ← V ∪ {s,p(s)}
235: else if (s, x) is from F then
236: if s ∈ TA then
237: TA ← TA ∪ {F(s, x)}
238: else if p(s) ∈ TA then
239: TA ← TA ∪ {F(p(s), x)}
240: else if π−1(s) �∈ TA and π−1(p(s)) �∈ TA then
241: bad ← true
242: return F(s, x)

Fig. 10. The games G3 and G4.
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and G3 do not affect the outputs by H and F . Thus,

Pr
[
AG2 ⇒ 1

] = Pr
[
AG3 ⇒ 1

]
.

(G3 → G4). The difference between G3 and G4 is the implementation of H(M). In
G3, H(M) is implemented as the MDP iteration, while in G4, H(M) is just a random
oracle.

We will first confirm that the return values of H are always determined by SH in G3.
From this viewpoint, there is no difference between G3 and G4.

Suppose that A asks M to H. Then, H invokes SF with (si−1,Mi) for 1 ≤ i ≤ k − 1
and (π(sk−1),Mk). Notice that each of them may be asked before. In any case, how-
ever, SF receives (t0,M1), (t1,M2), . . . , (tk−2,Mk−1), (tk−1,Mk) in this order, where
ti equals si or p(si) for 0 ≤ i ≤ k − 2, and tk−1 equals π(sk−1) or p(π(sk−1)).

Suppose that SF receives (ti−1,Mi) at the αi th invocation for the first time in G3 for
1 ≤ i ≤ k. We will show that α1 < α2 < · · · < αk . Since t0 equals IV or p(IV), t0 ∈ T ,
or p(t0) ∈ T . Thus, s1 = F(IV,M1) is selected at 202 or 211 and added to T . Thus,
α1 < α2 since s1 /∈ Vα1 . Similarly, α2 < α3 < · · · < αk−1 and si ∈ T for 2 ≤ i ≤ k − 1
and αk−1 < αk since sk−1 �∈ π−1(Vαk−1). Thus, at the αk th invocation with (tk−1,Mk),
SF invokes SH with M . Notice that H(M) is undefined before this invocation.

There still be difference between G3 and G4. H calls SF in G3, while H does not in
G4. In G4, after a query M to H, A obtains the path from IV to H(M) in T only by
successive queries (t0,M1), . . . , (tk−2,Mk−1), (tk−1,Mk). Thus, bad never gets true
in G4.

In G3, on the other hand, bad may get true. A may accidentally find an intermediate
part of the paths made by H without starting from IV . Thus,

Pr
[
AG3 ⇒ 1

] − Pr
[
AG4 ⇒ 1

] ≤ Pr
[
AG3 sets bad

]
.

Now, we will evaluate Pr[AG3 sets bad]. If bad gets true

• at 209, then s ∈ T and s �∈ TA,
• at 218, then p(s) ∈ T and p(s) �∈ TA,
• at 224, then π−1(s) ∈ T and π−1(s) �∈ TA,
• at 230, then π−1(p(s)) ∈ T and π−1(p(s)) �∈ TA,
• at 241, then F(s, x) has already been set by H, s �∈ TA, p(s) �∈ TA, π−1(s) �∈ TA,

and π−1(p(s)) �∈ TA.

Even in the last case, s ∈ T , p(s) ∈ T , π−1(s) ∈ T , or π−1(p(s)) ∈ T . Thus, in any
case, if bad gets true, then it implies that A successfully asks the value of s′, p(s′),
π(s′), or p(π(s′)) to F for some s′ ∈ T without having access to s′ using F from IV .
Since the number of elements in T fixed by H is at most 	qV and they are chosen from
C \ Cbad,

Pr
[
AG3 sets bad

] ≤ 4	qVqF

2c − 10q − |Pπ,p| − 4
.

(G4 → G5). The game G5 is presented in Fig. 11. It is a faithful implementation of a
true random oracle and the simulator SF . Thus,

Pr
[
AG5 ⇒ 1

] = Pr
[
AH,SF ⇒ 1

]
.
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Initialize:

1: V ← ∅
2: T ← {IV}

Interface H(M):

10: SH(M)

Interface F (s, x):

20: SF(s, x)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SF(s, x):

200: if F(s, x) = ⊥ then
201: if s ∈ T then

202: F(s, x)
$← C \ Cbad

203: T ← T ∪ {F(s, x)}
204: F(p(s), x) ← swap(F(s, x))

205: else if p(s) ∈ T then

206: F(p(s), x)
$← C \ Cbad

207: T ← T ∪ {F(p(s), x)}
208: F(s, x) ← swap(F(p(s), x))

209: else if π−1(s) ∈ T then
210: M̃ ← getnode(π−1(s))

211: F(s, x) ← SH(M̃‖x)

212: F(p(s), x) ← swap(F(s, x))

213: else if π−1(p(s)) ∈ T then
214: M̃ ← getnode(π−1(p(s)))

215: F(p(s), x) ← SH(M̃‖x)

216: F(s, x) ← swap(F(p(s), x))

217: else

218: F(s, x)
$← C

219: F(p(s), x) ← swap(F(s, x))

220: V ← V ∪ {s,p(s)}
221: return F(s, x)

Fig. 11. The game G5.

G5 is obtained from G4 by removing TA in the initialization and all the operations
related to TA in SF. These modifications do not affect the outputs by H and F . Thus,

Pr
[
AG4 ⇒ 1

] = Pr
[
AG5 ⇒ 1

]
.

Combining all of the above, we get

Advindiff
MDP[F,π],SF

(A) ≤ Pr
[
AG1 sets bad

] + Pr
[
AG3 sets bad

]

≤ 5q2 + (|Pπ,p| + 1) q

2c
+ 4	qVqF

2c − 10q − |Pπ,p| − 4
. �

5.2. MDP with the Davies–Meyer Compression Function

In this section, we consider the case that F is the Davies–Meyer compression func-
tion [25] composed of a block cipher. We show that MDP[F,π] is indifferentiable from
a VIL random oracle under the assumption that the underlying block cipher is ideal.
Before presenting the theorem, we introduce the ideal cipher model.

Ideal Cipher Model A block cipher with the block length c and the key length b is
called a (c, b) block cipher. Let E : B × C → C be a (c, b) block cipher. Then, E(K, ·)
is a permutation for every K ∈ B, and D(K, ·) = E(K, ·)−1. E(K, ·) and D(K, ·) are
simply denoted by EK(·) and DK(·), respectively.
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A (c, b) block cipher E is called an ideal cipher if EK is a truly random permutation
for every K ∈ B. The encryption oracle E first receives a pair of a key and a plaintext as
a query, and returns a randomly selected ciphertext. On the other hand, the decryption
oracle D first receives a pair of a key and a ciphertext as a query, and returns a randomly
selected plaintext. The oracles E and D share a table of triplets of keys, plaintexts, and
ciphertexts, which are produced by the queries and the corresponding replies. Refer-
ring to the table, they select a reply to a new query under the restriction that EK is a
permutation for every K .

The following theorem states the indifferentiability of MDP with the Davies–Meyer
compression function in the ideal cipher model.

Theorem 6. Let F : C × B → C be the Davies–Meyer compression function with an
ideal (c, b) block cipher E, that is, F(s, x) = Ex(s) ⊕ s. Let π be a permutation on C ,
and Pπ be the set of its fixed points such that IV �∈ Pπ . Let A be an adversary that asks
at most qV queries to the VIL oracle, qe queries to the FIL encryption oracle, and qd
queries to the FIL decryption oracle. Let 	 be the maximum number of message blocks
for each VIL query. Suppose that 	qV ≥ 1, qe ≥ 1, and qd ≥ 1. Then,

Advindiff
MDP[F,π],SE,SD

(A) ≤ 7q2 + (20qd + 4 |Pπ | + 5) q

2c+1
+ 2	qV(qe + qd)

2c − 4q − 3qd − |Pπ | + 1
,

where q = 	qV + qe. The simulators SE and SD are given in Fig. 12. SE is a simulator
for the encryption oracle, and SD for the decryption oracle. SE makes at most qe queries
and runs in time O(qe(qe + qd)). SD makes at most qeqd queries and runs in time
O(qd(qe + qd)).

Proof. The proof starts with the game G0 given in Fig. 13. Each game exposes three
interfaces H(M), E (x, s), and D(x,u) to the adversary A. Without loss of generality,
we can assume that A makes no repeated queries to them.

G0 is a faithful implementation of MDP with the DM compression function com-
posed of an ideal block cipher: SE and SD implements an ideal block cipher by lazy
sampling. Actually, SE always chooses the response Ex(s) uniformly at random from
Q(x) if it is undefined. SD also chooses the response Dx(u) uniformly at random from
P (x) if it is undefined. Therefore,

Pr
[
AG0 ⇒ 1

] = Pr
[
AMDP[F,π],E,D ⇒ 1

]
.

(G0 → G1). The game G1 is presented in Fig. 14. G0 and G1 are different at the lines
202 and 302, and the lines 206 to 208 in G1 correspond to 206 in G0. Let

P1 = Pr
[
Ex(s) is selected from Cbad at 202 in G0

]
,

P2 = Pr
[
Dx(u) is selected from T ∪ π(T ) at 302 in G0

]
,

P3 = Pr
[
Ex(s) is selected from C \ Q(x) at 206 in G1

]
.

Then,

Pr
[
AG0 ⇒ 1

] − Pr
[
AG1 ⇒ 1

] ≤ P1 + P2 + P3.
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C

Interface E (x, s):

200: if s ∈ T then

201: Ex(s)
$← Q(x) \ Cbad

202: T ← T ∪ {Ex(s) ⊕ s}
203: else if π−1(s) ∈ T then
204: M̃ ← getnode(π−1(s))

205: Ex(s) ← H(M̃‖x) ⊕ s

206: if Ex(s) �∈ Q(x) then
207: return fail
208: else

209: Ex(s)
$← Q(x)

210: V ← V ∪ {s}
211: P (x) ← P (x) \ {s}
212: Q(x) ← Q(x) \ {Ex(s)}
213: return Ex(s)

Interface D(x,u):

300: S ← ∅
301: for every s ∈ T do
302: M̃ ← getnode(s)

303: if u = H(M̃‖x) ⊕ π(s) then
304: S ← S ∪ {s}
305: if |S| ≥ 2 then
306: return fail
307: if S = {s∗} then
308: if π(s∗) �∈ P (x) then
309: return fail
310: else
311: Dx(u) ← π(s∗)

312: else

313: Dx(u)
$← P (x) \ (T ∪ π(T ))

314: V ← V ∪ {Dx(u)}
315: P (x) ← P (x) \ {Dx(u)}
316: Q(x) ← Q(x) \ {u}
317: return Dx(u)

Fig. 12. Pseudocode for the simulators SE and SD . P (x) and C(x) are the sets of plaintexts and ci-
phertexts, respectively, available as a reply to a query with the key x. E and D store values set by pre-
vious queries and replies. Initially, Ex(s) = ⊥ and Dx(u) = ⊥ for every x, s and u. Let (xi , si , ui )

be the values set by the ith query and the corresponding reply. Then, Exi
(si ) = ui and Dxi

(ui ) = si .

Cbad = {u |u ∈ C ∧ u ⊕ s ∈ V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ }.

For P1, since Cbad = {u |u ∈ C ∧ u ⊕ s ∈ V ∪ T ∪ π−1(V ∪ T ) ∪ π(T ) ∪ Pπ },
|Cbad|
|Q(x)| ≤ 2 |V ∪ T | + |T | + |Pπ |

|Q(x)| .

Let Vi , Ti , and Qi (xi) be the sets V , T , and Q(x), respectively, in the ith invocation of
SE. Then, it is easy to see that |Vi ∪ Ti | ≤ i+qd, |Ti | ≤ i, and |Qi (xi)| ≥ 2c −(i−1)−qd

at the line 202. SE is invoked at most q = 	qV + qe times in total. Thus,

P1 ≤
q∑

i=1

2 |Vi ∪ Ti | + |Ti | + |Pπ |
|Qi (xi)| ≤

q∑

i=1

3 i + 2qd + |Pπ |
2c − (i + qd − 1)

≤ 3q2 + (4qd + 2 |Pπ | + 3) q

2 (2c − (q + qd − 1))
.

For P2, let Tj and Pj (xj ) be the sets T and P (x), respectively, in the j th invocation
of SD. Then, |Tj | ≤ q , and |Pj (xj )| ≥ 2c − (j − 1) − q at the line 302. SD is invoked
at most qd times in total. Thus,

P2 ≤
qd∑

j=1

2 |Tj |
|Pj (xj )| ≤ 2q qd

2c − (q + qd − 1)
.
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C

Interface H(M):

10: M1 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SE(Mi, si−1) ⊕ si−1

14: sk ← SE(Mk,π(sk−1)) ⊕ π(sk−1)

15: return sk

Interface E (x, s):

20: SE(x, s)

Interface D(x,u):

30: SD(x,u)

Function SE(x, s):

200: if s ∈ T then
201: if Ex(s) = ⊥ then

202: Ex(s)
$← Q(x)

203: T ← T ∪ {Ex(s) ⊕ s}
204: else if π−1(s) ∈ T then
205: if Ex(s) = ⊥ then

206: Ex(s)
$← Q(x)

207: else
208: if Ex(s) = ⊥ then

209: Ex(s)
$← Q(x)

210: V ← V ∪ {s}
211: P (x) ← P (x) \ {s}
212: Q(x) ← Q(x) \ {Ex(s)}
213: return Ex(s)

Function SD(x,u):

300: if Dx(u) �= ⊥ then
301: else

302: Dx(u)
$← P (x)

303: V ← V ∪ {Dx(u)}
304: P (x) ← P (x) \ {Dx(u)}
305: Q(x) ← Q(x) \ {u}
306: return Dx(u)

Fig. 13. The game G0.

For P3, since |Qi (xi)| ≥ 2c − (i − 1) − qd at the line 206,

P3 ≤
q∑

i=1

|C \ Qi (xi)|
|C| ≤ q2 + (2qd − 1) q

2c+1
.

(G1 → G2). The game G2 is presented in Fig. 15. The difference between G1 and
G2 is the selection of Ex(s) in case π−1(s) ∈ T in SE. In G1, it is randomly chosen
at the line 206. In G2, SH is newly introduced, and Ex(s) ← SH(M̃‖x) ⊕ s, where
M̃ ← getnode(π−1(s)). There is a one-to-one correspondence between (s, x) and M̃‖x.
Therefore, if Ex(s) = ⊥, then H(M̃‖x) = ⊥. Namely, G2 simply selects Ex(s) randomly
in SH. Thus,

Pr
[
AG1 ⇒ 1

] = Pr
[
AG2 ⇒ 1

]
.

(G2 → G3). The game G3 is presented in Fig. 15. There exists difference only in SD.
Since A makes no repeated queries, if Dx(u) �= ⊥, then it has been set by a query to H.
Namely, Dx(u) ∈ T ∪ π(T ). Thus,

Pr
[
AG2 ⇒ 1

] = Pr
[
AG3 ⇒ 1

]
.

(G3 → G4). The game G4 is also presented in Fig. 15. There is difference in SD
between G3 and G4. The line 302 of G3 is replaced by 302 to 310 of G4. In the case
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C

Interface H(M):

10: M1 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SE(Mi, si−1) ⊕ si−1

14: sk ← SE(Mk,π(sk−1)) ⊕ π(sk−1)

15: return sk

Interface E (x, s):

20: SE(x, s)

Interface D(x,u):

30: SD(x,u)

Function SE(x, s):

200: if s ∈ T then
201: if Ex(s) = ⊥ then

202: Ex(s)
$← Q(x) \ Cbad

203: T ← T ∪ {Ex(s) ⊕ s}
204: else if π−1(s) ∈ T then
205: if Ex(s) = ⊥ then

206: Ex(s)
$← C

207: if Ex(s) �∈ Q(x) then
208: return fail
209: else
210: if Ex(s) = ⊥ then

211: Ex(s)
$← Q(x)

212: V ← V ∪ {s}
213: P (x) ← P (x) \ {s}
214: Q(x) ← Q(x) \ {Ex(s)}
215: return Ex(s)

Function SD(x,u):

300: if Dx(u) �= ⊥ then
301: else

302: Dx(u)
$← P (x) \ (T ∪ π(T ))

303: V ← V ∪ {Dx(u)}
304: P (x) ← P (x) \ {Dx(u)}
305: Q(x) ← Q(x) \ {u}
306: return Dx(u)

Fig. 14. The game G1.

of Dx(u) ∈ π(T ), SD of G4 simply tries to identify the unique node s ∈ T such that
Dx(u) = π(s). Thus, G3 and G4 are equivalent unless u = SH(M̃‖x) ⊕ π(s) for some
s ∈ T such that M̃‖x is not given to H by A. Let us call this event Hit. Notice that the
condition at the line 307 gets true only if Hit gets true. Thus, since |T | ≤ q ,

Pr
[
AG3 ⇒ 1

] − Pr
[
AG4 ⇒ 1

] ≤ Pr
[
Hit gets true

] ≤ q qd

2c
.

(G4 → G5). The game G5 is presented in Fig. 16. In G5, a new set TA is introduced,
which is initially {IV}. Some operations on TA are added to SE: from 204 to 208, from
210 to 211. The line 301 is also added to SD. However, these differences do not affect
the outputs by H, E , and D. Thus,

Pr
[
AG4 ⇒ 1

] = Pr
[
AG5 ⇒ 1

]
.

(G5 → G6). The game G6 is also given in Fig. 16. The difference between G5 and
G6 is the implementation of H(M). In G5, H(M) is implemented as the MDP iteration,
while in G6, H(M) is just a random oracle.

We will first confirm that the return values of H are always determined by SH in G5.
From this viewpoint, there is no difference between G5 and G6.
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C

Interface H(M):

10: M1 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SE(Mi, si−1) ⊕ si−1

14: sk ← SE(Mk,π(sk−1)) ⊕ π(sk−1)

15: return sk

Interface E (x, s):

20: SE(x, s)

Interface D(x,u):

30: SD(x,u)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SE(x, s):

200: if s ∈ T then
201: if Ex(s) = ⊥ then

202: Ex(s)
$← Q(x) \ Cbad

203: T ← T ∪ {Ex(s) ⊕ s}
204: else if π−1(s) ∈ T then
205: if Ex(s) = ⊥ then
206: M̃ ← getnode(π−1(s))

207: Ex(s) ← SH(M̃‖x) ⊕ s

208: if Ex(s) �∈ Q(x) then
209: return fail
210: else
211: if Ex(s) = ⊥ then

212: Ex(s)
$← Q(x)

213: V ← V ∪ {s}
214: P (x) ← P (x) \ {s}
215: Q(x) ← Q(x) \ {Ex(s)}
216: return Ex(s)

Function SD(x,u) for G2:

300: if Dx(u) �= ⊥ then
301: else

302: Dx(u)
$← P (x) \ (T ∪ π(T ))

303: V ← V ∪ {Dx(u)}
304: P (x) ← P (x) \ {Dx(u)}
305: Q(x) ← Q(x) \ {u}
306: return Dx(u)

Function SD(x,u) for G3:

300: if Dx(u) ∈ T then
301: else
302: if Dx(u) ∈ π(T ) then
303: else

304: Dx(u)
$← P (x) \ (T ∪ π(T ))

305: V ← V ∪ {Dx(u)}
306: P (x) ← P (x) \ {Dx(u)}
307: Q(x) ← Q(x) \ {u}
308: return Dx(u)

Function SD(x,u) for G4:

300: if Dx(u) ∈ T then
301: else
302: S ← ∅
303: for all s ∈ T do
304: M̃ ← getnode(s)

305: if u = SH(M̃‖x) ⊕ π(s) then
306: S ← S ∪ {s}
307: if |S| ≥ 2 then
308: return fail
309: if S = {s∗} then
310: Dx(u) ← π(s∗)

311: else

312: Dx(u)
$← P (x) \ (T ∪ π(T ))

313: V ← V ∪ {Dx(u)}
314: P (x) ← P (x) \ {Dx(u)}
315: Q(x) ← Q(x) \ {u}
316: return Dx(u)

Fig. 15. The games G2, G3 and G4.

Suppose that A asks M to H. Then, H invokes SE with (Mi, si−1) for 1 ≤ i ≤ k − 1
and (Mk,π(sk−1)). Notice that each of them may be asked before. In any case, however,
SE receives (M1, s0), (M2, s1), . . . , (Mk−1, sk−2), (Mk,π(sk−1)) in this order.

Suppose that SE receives (Mi, si−1) at the αi th invocation for 1 ≤ i ≤ k − 1
and (Mk,π(sk−1)) at the αk th invocation for the first time in G5. We will show
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C
5: TA ← {IV}

Interface H(M) for G5:

10: M1 · · ·Mk ← parse(M)

11: s0 ← IV
12: for i = 1 to k − 1 do
13: si ← SE(Mi, si−1) ⊕ si−1

14: sk ← SE(Mk,π(sk−1)) ⊕ π(sk−1)

15: return sk

Interface H(M) for G6:

10: SH(M)

Interface E (x, s):

20: SE(x, s)

Interface D(x,u):

30: SD(x,u)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SE(x, s):

200: if s ∈ T then
201: if Ex(s) = ⊥ then

202: Ex(s)
$← Q(x) \ Cbad

203: T ← T ∪ {Ex(s) ⊕ s}
204: if (x, s) is from E then
205: if s ∈ TA then
206: TA ← TA ∪ {Ex(s) ⊕ s}
207: else
208: bad ← true
209: else if π−1(s) ∈ T then
210: if (x, s) is from E and π−1(s) �∈ TA then
211: bad ← true
212: if Ex(s) = ⊥ then
213: M̃ ← getnode(π−1(s))

214: Ex(s) ← SH(M̃‖x) ⊕ s

215: if Ex(s) �∈ Q(x) then
216: return fail
217: else
218: if Ex(s) = ⊥ then

219: Ex(s)
$← Q(x)

220: V ← V ∪ {s}
221: P (x) ← P (x) \ {s}
222: Q(x) ← Q(x) \ {Ex(s)}
223: return Ex(s)

Function SD(x,u):

300: if Dx(u) ∈ T then
301: bad ← true
302: else
303: S ← ∅
304: for all s ∈ T do
305: M̃ ← getnode(s)

306: if u = SH(M̃‖x) ⊕ π(s) then
307: S ← S ∪ {s}
308: if |S| ≥ 2 then
309: return fail
310: if S = {s∗} then
311: if π(s∗) �∈ P (x) then � For G6 only
312: return fail � For G6 only
313: else � For G6 only
314: Dx(u) ← π(s∗)

315: else

316: Dx(u)
$← P (x) \ (T ∪ π(T ))

317: V ← V ∪ {Dx(u)}
318: P (x) ← P (x) \ {Dx(u)}
319: Q(x) ← Q(x) \ {u}
320: return Dx(u)

Fig. 16. The games G5 and G6.
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that α1 < α2 < · · · < αk . Since s0 = IV ∈ T , EM1(s0) is selected at 202, and s1(=
EM1(s0) ⊕ s0) is added to T at 203. Thus, α1 < α2 since s1 �∈ Vα1 . Similarly, α2 <

α3 < · · · < αk−1 and si ∈ T for 2 ≤ i ≤ k − 1. αk−1 < αk since sk−1 �∈ π−1(Vαk−1).
Thus, at the αk th invocation with (Mk,π(sk−1)), SE invokes SH(M). Notice that
(M1, s0), (M2, s1), . . . , (Mk−1, sk−2), (Mk,π(sk−1)) cannot be set by SD because of the
line 316.

There still be difference between G5 and G6. H calls SE in G5, while it does not in
G6. In G6, SE is called only by E , and A makes no repeated queries. Therefore, bad
never gets true at 208, 211, and 301.

In G5, on the other hand, bad may get true. If bad gets true

• at 208, then s ∈ T and s �∈ TA,
• at 211, then π−1(s) ∈ T and π−1(s) �∈ TA,
• at 301, then Dx(u) has already been set by H and u ∈ T .

In any case, if bad gets true, then it implies that A successfully asks the value of s′ or
π(s′) for some s′ ∈ T without having access to s′ using E from IV . Since the number
of elements in T fixed by H is at most 	qV and they are chosen from Q(x) \ Cbad,

Pr
[
AG5 sets bad

] ≤ 2	qV(qe + qd)

2c − 4q − 3qd − |Pπ | + 1
.

G5 and G6 are identical until bad gets true in G5 since the lines 311 to 313 in G6 cor-
respond to the lines 215 to 216, which has already been considered in the transformation
from G0 to G1. Thus,

Pr
[
AG5 ⇒ 1

] − Pr
[
AG6 ⇒ 1

] ≤ Pr
[
AG5 sets bad

]
.

(G6 → G7). The game G7 is presented in Fig. 17. It is obtained from G6 by removing
TA in the initialization, the operations related to it in SE: 204 to 208 and 210 to 211.
Moreover, since Ex(s) = ⊥ for every query (x, s) to E , the lines 201, 212, and 218 are
removed from SE. The lines 300 to 302 are also removed from SD. These modifications
do not affect the outputs by H, E and D. Thus,

Pr
[
AG6 ⇒ 1

] = Pr
[
AG7 ⇒ 1

]
.

G7 is a faithful implementation of a true random oracle and the simulators SE and SD .
Thus,

Pr
[
AG7 ⇒ 1

] = Pr
[
AH,SE,SD ⇒ 1

]
.

Combining all of the above, we get

Advindiff
MDP[F,π],SE,SD

(A) ≤ 3q2 + (8qd + 2 |Pπ | + 3) q

2 (2c − (q + qd − 1))
+ q2 + (4qd − 1) q

2c+1

+ 2	qV(qe + qd)

2c − 4q − 3qd − |Pπ | + 1
.
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Initialize:

1: V ← ∅
2: T ← {IV}
3: P (x) ← C
4: Q(x) ← C

Interface H(M):

10: SH(M)

Interface E (x, s):

20: SE(x, s)

Interface D(x,u):

30: SD(x,u)

Function SH(M):

100: if H(M) = ⊥ then

101: H(M)
$← C

102: return H(M)

Function SE(x, s):

200: if s ∈ T then

201: Ex(s)
$← Q(x) \ Cbad

202: T ← T ∪ {Ex(s) ⊕ s}
203: else if π−1(s) ∈ T then
204: M̃ ← getnode(π−1(s))

205: Ex(s) ← SH(M̃‖x) ⊕ s

206: if Ex(s) �∈ Q(x) then
207: return fail
208: else

209: Ex(s)
$← Q(x)

210: V ← V ∪ {s}
211: P (x) ← P (x) \ {s}
212: Q(x) ← Q(x) \ {Ex(s)}
213: return Ex(s)

Function SD(x,u):

300: S ← ∅
301: for every s ∈ T do
302: M̃ ← getnode(s)

303: if u = SH(M̃‖x) ⊕ π(s) then
304: S ← S ∪ {s}
305: if |S| ≥ 2 then
306: return fail
307: if S = {s∗} then
308: if π(s∗) �∈ P (x) then
309: return fail
310: else
311: Dx(u) ← π(s∗)

312: else

313: Dx(u)
$← P (x) \ (T ∪ π(T ))

314: V ← V ∪ {Dx(u)}
315: P (x) ← P (x) \ {Dx(u)}
316: Q(x) ← Q(x) \ {u}
317: return Dx(u)

Fig. 17. The game G7.

If q + qd ≤ 2c−1, then the first term on the right side is less than or equal to

3q2 + (8qd + 2 |Pπ | + 3) q

2c
.

If 	qV ≥ 1, qe ≥ 1, qd ≥ 1, and q + qd ≥ 2c−1, then it is greater than 1. Thus,

Advindiff
MDP[F,π],SE,SD

(A) ≤ 7q2 + (20qd + 4 |Pπ | + 5) q

2c+1
+ 2	qV(qe + qd)

2c − 4q − 3qd − |Pπ | + 1
.

�
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