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Abstract. Multi-verifier signatures generalize public-key signatures to a secret-key
setting. Just like public-key signatures, these signatures are both transferable and secure
under arbitrary (unbounded) adaptive chosen-message attacks. In contrast to public-key
signature schemes, however, we exhibit practical constructions of multi-verifier signa-
ture schemes that are provably secure and are based only on pseudorandom functions
in the plain model without any random oracles.
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1. Introduction

Public-key signatures [12,17,25] are relatively expensive to generate. Moreover, prac-
tical public-key signature schemes rely on either strong number-theoretic assumptions
[5,10] or are proven secure only in the random oracle model [25]. In contrast, mes-
sage authentication codes (MACs) are orders of magnitude faster and can be based
on pseudorandom functions. MACs, however, rely on secret-key setup and do not pro-
vide transferability—the property that signed messages accepted by one server and for-
warded to other servers will be accepted there too. Transferability is essential in many
applications of digital signature schemes (e.g., in distributed systems [7,21,30]).

A natural question, then, is if the secret-key setup used for MACs can be leveraged to
get more efficient, yet provably secure, digital signature schemes. We answer this ques-
tion in the affirmative by introducing multi-verifier signatures (MVS), which generalize
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public-key signatures to a secret-key setting with a signer and multiple verifiers, each
using different keys. We also provide two efficient MVS constructions:

• Atomic Signatures requires the signer to solve a system of linear equations. As far
as we know, Atomic Signatures constitutes the first practical and provably secure
signature scheme based only on symmetric-key primitives.

• Chain Signatures provides λ-limited transferability, the property that signatures
can be transferred at least λ − 1 times and still be accepted by receivers. Although
λ-limited transferability is weaker than transferability, it suffices in many settings
(e.g., see systems [7,21,24,30], where each message is forwarded only a fixed num-
ber of times). Furthermore, for values of λ used in practical protocols, Chain Sig-
natures outperforms the fastest implementations of public-key signature schemes
(even though these public-key signature schemes are only secure in the random
oracle model [25]).

Atomic Signatures and Chain Signatures are based only on the existence of pseudoran-
dom functions and do not assume random oracles. One-way functions (hence pseudo-
random functions) are known [22,26] to be sufficient to construct public-key signature
schemes, but existing signature constructions based on one-way functions are too inef-
ficient to be used in practice.

Our MVS constructions require an unusual secret-key setup—pairwise shared keys
distributed in such a way that the signer does not know which key corresponds to which
verifier. This prevents the signer from creating signatures that would be accepted by
some verifiers but not others. The required secret-key setup is easily implemented, for
example, in an operating system (OS) or small distributed service. Processes in an OS al-
ready trust the OS, so the OS can distribute shared keys when a process is created. Sim-
ilarly, a small distributed service (e.g., [7,21,30]) that is managed by a single adminis-
trator can distribute keys before the service begins executing. In these practical settings,
MVS schemes provide a speed advantage over common public-key signature schemes.

The idea of constructing signature schemes in a secret-key setting began with Chaum
and Roijakkers [9]. However, none of that work or its successors (e.g., [18,19,24,27,
29]) satisfies fully adaptive security—that unforgeability holds even with respect to an
adversary that can see an a priori unbounded number of signatures on messages of its
choice. In modern network environments, supporting adaptive security is important.

Although our constructions are relatively clean and simple, the proofs of security
turn out to be significantly more complicated. A major theme in both is to seemingly
weaken the construction in order to gain adaptive security. This idea goes back to the
zero-knowledge argument construction of Feige and Shamir [15], where a trapdoor is
embedded into the proof systems in order to facilitate zero-knowledge simulation. Our
schemes rely on a similar argument. However, in contrast to previous applications of this
technique, we can show in our scenario that this weakening is essential. In fact, for the
case of Chain Signatures, the most natural implementation using MACs does not yield
a scheme secure under adaptive attacks (see Remark 4.1 in Sect. 4). Yet, surprisingly, if
we slightly weaken the scheme by making public to whom a certain subset of the keys
belongs, then the scheme is provably secure.

The paper proceeds as follows. Assumptions and a game-based definition of MVS
schemes are discussed in Sect. 2. In Sect. 3 and Sect. 4, we present constructions of our
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MVS schemes and prove that they work. Finally, Sect. 5 gives performance results from
an implementation of our schemes, and related work is discussed in Sect. 6.

2. Definitions of Multi-Verifier Signature Schemes

Our constructions of MVS schemes rely on MACs, which take a message m and a key
k as input and output a tag that can be used to authenticate m given k. The traditional
model of MAC security [2] requires that it be hard for an adversary A to generate a
message m and tag τ that will be accepted by a receiver, even if A has access to a MAC
oracle (as long as A has not already requested that m be signed by the oracle). We write
Ar for an adversary A using randomness r .

We require the MAC to satisfy a stronger property (similar to Bellare, Goldreich, and
Mityagin [3]), called Chosen Tag Attack (CTA) Unforgeability, which additionally gives
adversaries access to a verification oracle VF(m, τ, k) such that

VF(m, τ, k) =
{

1 if MAC(m, k) = τ ,

0 otherwise.

If VF(m, τ, k) = 1 holds, then the tag is accepted.1

Let MACreq(A,m, k, r) be a predicate that is true if a Probabilistic Polynomial-Time
(PPT) adversary Ar requested m from its MAC oracle using key k in a given execution.
Then, for a given security parameter d , we can define the following property.

CTA Unforgeability. For every nonuniform PPT adversary A, there exists a negligible
function ε such that

Pr
[
k ← Gen

(
1d

); r ← {0,1}∞;
m,τ ← AMAC(·,k),VF(·,·,k)

r

(
1d

) :
¬MACreq(A,m, k, r) ∧ VF(m, τ, k) = 1

] ≤ ε(d).

Pseudorandom functions (see [16] for an overview) can be used to construct MACs
satisfying CTA Unforgeability.

2.1. Multi-Verifier Signatures

We define an MVS scheme to be a triple (Gen, Sign, Ver) of algorithms that depend on
a set I of n verifiers; each verifier may use a different key when calling Ver. And in an
implementation of an MVS scheme, each server would execute a verifier with a different
key. These algorithms operate as follows, where argument d is a security parameter, and
b specifies a given number of bits.

1 It might seem like an adversary given a MAC oracle can always simulate the execution of the verification
oracle for a deterministic MAC by calling the MAC oracle and checking if its output matches the given tag.
However, in some security definitions, the adversary is not allowed to call the MAC oracle on all messages,
so this simulation will not always be possible. In these cases, the verification oracle gives the adversary more
power.
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• Gen(1d,1n) is a PPT algorithm that outputs a vector k of keys for the signer and
a vector Kj of keys for each verifier j ∈ I . Key k in k or Kj (for any j ∈ I ) is an
element of {0,1}b.

• Sign(m,k) takes m ∈ {0,1}b and produces2 a tag τ .
• For each j ∈ I , Ver(m, τ,Kj ) produces a value that is either ∞, 0, an element of

N>0, or ⊥.3 If Ver(m, τ,Kj ) returns ∞, then we say that τ is accepted by j , and
if Ver(m, τ,Kj ) returns 0, then we say that τ is not accepted by j . A return value
λ ∈ N>0 means that τ is accepted by j , and also that there is a lower bound λ − 1
on the number of times this tag can be transferred and still cause verifiers at other
correct receivers to return a value in N>0. If Ver(m, τ,Kj ) returns ⊥, then j sets a
state variable vj to ⊥; verifier j thereafter believes the signer to be compromised.

Note that the above description implies that Ver is a stateful algorithm: whenever
Ver produces ⊥ for a message purporting to come from signer i, it decides that i is
compromised and remembers this fact. Thereafter, Ver will only return ⊥ for message
and tag pairs purporting to come from i.

Let λ be an element of N
∞ � N>0 ∪ {∞}, and let req(A,m,k, r) be a predicate that

is true if an adversary Ar requested m from its signing oracle using keys k in a given
execution. MVS schemes satisfy four properties: λ-Completeness, Unforgeability, Non-
Accusability, and Transferability.4

λ-Completeness stipulates that, for any Kj and any message m, a tag τ generated
by Sign(m,k) must cause Ver(m, τ,Kj ) to return a value that is greater than or equal
to λ. Note that ∞-Completeness thus requires Ver(m, τ,Kj ) to return ∞; the value
∞ means that a message and tag can be transferred an arbitrary number of times, just
like signed messages in public-key signatures. Formally, we can state this property as
follows.

λ-Completeness. There exists a negligible function ε such that for any message m and
any j ∈ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d ,1n

) : Ver
(
m,Sign(m,k),Kj

)
< λ

] ≤ ε(d,n).

As with public-key signature schemes, Unforgeability requires that no adversary A
be able to generate a message m and tag τ that will be accepted by any correct verifier if
A has not previously requested a tag for m from its signing oracle, even if A might have
compromised any set I ′ of verifiers. Formally, we can state this property as follows.

2 For simplicity of exposition, we define MVS schemes for b-bit messages only. These definitions are eas-
ily extended to arbitrary-length messages. Our constructions are described for both fixed-length and arbitrary-
length messages.

3 Assume that ∞ satisfies only the following properties: ∞ − ∞ = 0, ∀a ∈ N : ∞ > a, and ∀a ∈
N : |∞ − a| = |a − ∞| = ∞.

4 Each of these properties involves a parameter ε which represents a bound on the probability of the
property being violated. When necessary, we will refer to this bound as a parameter of the property (e.g.,
writing “Transferability with parameter ε”).
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Unforgeability. For every nonuniform PPT adversary A, there exists a negligible func-
tion ε such that for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d,1n

); r ← {0,1}∞;
(m, τ) ← ASign(·,k),{Ver(·,·,K i )}i∈I−I ′

r

(
1d,1n, {K i}i∈I ′

) :
¬req(A,m,k, r) ∧ (∃j ∈ I − I ′ : Ver(m, τ,Kj ) ∈ N

∞)] ≤ ε(d,n).

Non-Accusability requires that no adversary A be able to generate a message and tag
pair that causes any correct verifier to return ⊥ if the signer is not compromised, even
if A can request signatures on arbitrary messages and has compromised an arbitrary
subset of verifiers. Formally, we can state this property as follows.

Non-Accusability. For every nonuniform PPT adversary A, there exists a negligible
function ε such that for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d,1n

);
(m, τ) ← ASign(·,k),{Ver(·,·,K i )}i∈I−I ′ (1d ,1n, {K i}i∈I ′

) :(∃j ∈ I − I ′ : Ver(m, τ,Kj ) = ⊥)] ≤ ε(d,n).

Transferability requires that even a compromised signer is unable to create a tag on
which any pair of correct verifiers return values that differ by more than 1; this property
implies that if verification of a message m and tag τ at any correct verifier returns v,
then m and τ can be transferred between correct verifiers at least v − 1 times. A tag that
does not satisfy Transferability is said to be split.5

Our notion of Transferability is slightly different than the notion of Transferability
guaranteed by public-key signatures. In particular, a verifier j that returns a value in
N

∞ for a message m and tag τ is not guaranteed that any noncompromised verifier j ′
to which it passes m and τ will also return a value in N

∞; the other possibility is that j ′
returns ⊥—which means that j ′ has acquired proof that the signer is compromised.

Formally, we can state this property as follows.

Transferability. For every nonuniform PPT adversary A, there exists a negligible func-
tion ε such that for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d,1n

);
(m, τ) ← A{Ver(·,·,K i )}i∈I−I ′ (1d,1n,k, {K i}i∈I ′

) :(∃j, j ′ ∈ I − I ′ : Ver(m, τ,Kj ) �= ⊥ ∧ Ver(m, τ,Kj ′) �= ⊥
∧ ∣∣Ver(m, τ,Kj ) − Ver(m, τ,Kj ′)

∣∣ > 1
)] ≤ ε(d,n).

5 Verification algorithms for MVS schemes allow some verifiers to return ⊥ and conclude nothing about
the tag. Each tag divides the correct verifiers into two groups: those that accept the tag and those that find
the signer compromised. This specification is reminiscent of Crusader’s Agreement [13], where the correct
receivers are divided into those that agree on a single value and those that know the sender to be compromised.
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It might seem like Transferability is unnecessarily complex and that tags generated
to satisfy λ = 2 are always sufficient, since then the sender would find λ = 2, and all
other verifiers would find λ = 1, so the tag would be accepted at all verifiers. However,
consider a signer i that creates a message that must be sent to verifier j and then sent by
j to another verifier j ′. Signer i creates a tag that satisfies λ = 2, so i knows that j will
find the tag to satisfy at least λ = 1. But i does not know if j will be willing to forward
the message to j ′, since j ’s value of λ = 1 would lead it to believe that j ′ could find
λ = 0, hence that j ′ might not accept the tag. So, the value of λ must be chosen to be at
least the number of times the signature is to be transferred.6

An MVS scheme that satisfies λ-Completeness for λ ∈ N>0 is called a λ-MVS
scheme; tags generated by this scheme can be transferred at least λ − 1 times. An MVS
scheme that satisfies ∞-Completeness is called an ∞-MVS scheme; tags generated by
this scheme can be transferred an unlimited number of times. A stronger version of
Transferability, called Perfect Transferability, would require that ε(d,n) = 0 in the de-
finition of Transferability; Appendix C shows that ∞-MVS schemes satisfying Perfect
Transferability are essentially public-key signature schemes.7

Similar to public-key signature schemes, an MVS scheme can satisfy Strong Unforge-
ability, which requires that if A did not receive m and τ from its signing oracle, then
m and τ will not cause any verifier to return a value greater than 0 (leading this verifier
to accept the pair) or return ⊥ (leading this verifier to conclude that the signer is com-
promised). Define predicate recv(A, (m, τ),k, r) to be true if A, using randomness r ,
received m and τ from the signing oracle using keys k. Formally, the property is written
as follows:

Strong Unforgeability. For every nonuniform PPT adversary A, there exists a negligi-
ble function ε such that for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d ,1n

); r ← {0,1}∞;
(m, τ) ← ASign(·,k),{Ver(·,·,K i )}i∈I−I ′

r

(
1d,1n, {K i}i∈I ′

) :
¬recv(A, (m, τ),k, r) ∧ (∃j ∈ I − I ′ : Ver(m, τ,Kj ) �= 0

)] ≤ ε(d,n).

Note that Strong Unforgeability implies both Unforgeability and Non-Accusability.
An MVS scheme that satisfies Strong Unforgeability in addition to λ-Completeness and
Transferability is called a Strong λ-MVS scheme.

3. Atomic Signatures

Atomic Signatures is a Strong ∞-MVS scheme in which a signer computes a tag for a
message m by solving a system of linear equations generated over MACs of m with the
verifiers’ keys. Unlike MACs and public-key signature schemes, generation algorithm

6 This example demonstrates that our definition of Transferability is closely connected to the idea of
knowledge in knowledge logic [14]; to send the message and tag in the example, the signer must know that
the first verifier will know that the second verifier will accept the tag. And this requires a value of λ = 3.

7 Boneh, Durfee, and Franklin [4] show a related lower bound: public-key signatures are required for short
collusion-resistant multicast MAC constructions.
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GenAS for Atomic Signatures distributes disjoint, equal-sized sets of random keys to
each verifier; a verifier shares each key in each set with the signer, but the signer does
not know which keys it shares with which verifier.

More precisely, for n verifiers and security parameter d , generation algorithm
GenAS(1d ,1n) for Atomic Signatures produces dn keys k1, k2, . . . , kdn, where, for each
j such that 1 ≤ j ≤ dn, kj ∈ {0,1}b is a key for a MAC. GenAS also generates dn ran-
dom vectors zj = 〈zj,1, zj,2, . . . , zj,dn〉 (one vector for each key kj ), where for each
j and i such that 1 ≤ j ≤ dn and 1 ≤ i ≤ n, each entry zj,i is an element of {0,1}b.
GenAS then sets k to be a vector of key pairs 〈(k1, z1), (k2, z2), . . . , (kdn, zdn)〉. And
GenAS creates n vectors K1, K2, . . ., Kn that each contain a unique, randomly chosen
set of d key pairs from k such that K i and Kj are disjoint for each distinct pair i and j

of indices. Set k is called the signing key pairs, and the n vectors K1,K2, . . . ,Kn are
called the verifying key pairs. We say that a verifier j owns each key pair (k, z) in Kj .

Signing algorithm SignAS(m,k) takes message m and signing key pairs k as input8

and outputs a vector Ad(m) = A1, A2, . . ., Adn of subtags, obtained by solving the
following equation, where b-bit strings are treated as elements in the finite field GF(2b):

⎛
⎜⎜⎜⎝

MAC(m, k1)

MAC(m, k2)
...

MAC(m, kdn)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

z1,1 z1,2 · · · z1,dn

z2,1 z2,2 · · · z2,dn

...
...

...
...

zdn,1 zdn,2 · · · zdn,dn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

A1
A2
...

Adn

⎞
⎟⎟⎟⎠ . (1)

Recall that solving (1) corresponds to solving the dn instances (1 ≤ j ≤ dn) of the
following equation simultaneously:

MAC(m, kj ) =
dn∑
t=1

zj,tAt . (2)

Define predicate roweq(m,A, (kj , zj )) to be true exactly when (2) holds for m, A, and
(kj ,zj ).

Verification algorithm VerAS(·, ·,Kj ) keeps state vj to record that it has been called
with a message and tag that indicate the signer is compromised. Verification on a mes-
sage m and tag τ for verifier j operates as follows:

• If vj is set to ⊥, then VerAS(m, τ,Kj ) returns ⊥.
• Otherwise, if roweq(m, τ, (k, z)) holds for all d pairs (k, z) in Kj , then

VerAS(m, τ,Kj ) returns ∞.
• If no roweq(m, τ, (k, z)) holds for any (k, z) in Kj , then VerAS(m, τ,Kj ) returns

0.
• Otherwise, there is some key pair (k, z) ∈ Kj for which roweq(m, τ, (k, z)) holds,

and a different key pair (k′, z′) ∈ Kj for which roweq(m, τ, (k′, z′)) does not hold.
So, VerAS(m, τ,Kj ) returns ⊥ and sets vj to ⊥.

8 Atomic Signatures as described can sign arbitrary-length messages as long as the MAC can generate tags
for arbitrary-length messages.
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Remark 3.1. This verification scheme is based on the idea that it is hard for an adver-
sary that does not know a key (k, z) in k to produce a message m and tag τ that will
cause roweq(m, τ, (k, z)) to hold. The intuition behind the proof is that the MAC is hard
to forge.

This scheme also relies on it being hard for an adversary that has not compromised
the signer to produce a message and tag pair that causes any noncompromised verifier
to return ⊥. This property must hold even if the adversary can see a polynomial num-
ber of messages and tags for messages of its choice. The intuition behind the proof of
this property is that it is hard to find new solutions to underdetermined equations over
variables with randomly-chosen, unknown coefficients (the pseudorandom MAC values
and the random rows of the matrix).

However, it is easy for a compromised signer to cause one verifier to return ⊥: the
signer can create a new set of signing keys k′ by replacing one of the keys in k with
a random bit string. Then the signer uses k′ to generate and solve (1). Some verifier j

will then only find d − 1 satisfied instances of roweq(m, τ, (k, z)) and will return ⊥.
The only task that must be difficult for a compromised signer is creating a message and
tag pair that cause one noncompromised verifier to return ∞ and another to return 0.

Remark 3.2. The verification and signing algorithms for Atomic Signatures as de-
scribed above are expensive to compute: each verifier has d + d2n keys, and the signer
must solve a matrix equation at cost O(d3n3) to generate a signature. Both of these
costs can be reduced.

One way to reduce the number of keys is for each verifier j to share 2d keys with
the signer instead of d + d2n—instead of keys (k, z), a verifier shares a pair (k1, k2),
where keys k1 and k2 are elements of {0,1}b. Key k1 is used to compute MACs in
the place of k in (1), and k2 is used to generate matrix row elements zt = MAC(t, k2)

for t in {1,2, . . . , dn}; each verifier then only needs 2d keys, two for each of its d

rows. The proofs follow in the same way as with a randomly chosen matrix but with an
extra hybrid step to go from random matrix elements to matrix elements generated by a
pseudorandom function.9

The cost of generating a signature can be reduced further. GenAS can produce a pref-
actored matrix (using the LU factorization, for instance) for use by SignAS on the right-
hand side of (1). Factoring is cost-effective here, because the matrix is independent of
the message to be signed—factoring costs O(d3n3) but only needs to be done once, and
solutions to (1) can be found for a factored matrix in time O(d2n2).

3.1. Properties of Atomic Signatures

Since a Strong ∞-MVS scheme must satisfy ∞-Completeness, Strong Unforgeability,
and Transferability, we prove that Atomic Signatures is a Strong ∞-MVS by proving
two lemmas. The first establishes that Atomic Signatures satisfies ∞-Completenessand
Strong Unforgeability; the second that it satisfies Transferability.

Lemma 1. If the MAC is a pseudorandom function, then Atomic Signatures satisfies
∞-Completeness and Strong Unforgeability.

9 The adversary in this case is given oracle access to the MAC functions, so it can compute signatures
efficiently.
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Proof. ∞-Completeness. This follows from nonsingularity of the matrix in (1), since
a nonsingular matrix allows a solution Ad(m) to be found for (1). Any solution satisfies
∞-Completenessby definition, since roweq(m, Ad(m), (kj , zj )) will hold for each row
j . The probability of a random matrix of size dn×dn over a finite field of size 2b being
singular is known [8] to be 1 − ∏dn

i=1(1 − 1/2bi), which is negligible when d and n are
polynomial in b.

Strong Unforgeability. Lemmas 10–12 from Appendix A simplify the problem to
the case where all but one verifier q are compromised, adversaries are allowed no veri-
fication oracle queries, and, for all indices j representing rows for verifier q , MAC(·, k)

for row j is replaced by a random function vj (·).
For such an adversary to violate Strong Unforgeability, it must produce a message

m and tag τ ′ such that it has never received (m, τ ′) from the signing oracle, and
VerAS(m, τ ′,Kq) �= 0 holds; this occurs exactly when roweq(m, τ ′, (k, z)) holds for
at least one pair (k, z) in Kq . We consider two cases. In Case 1, m has been received
from the signing oracle, but with a different tag τ . In Case 2, m has never been received
from the signing oracle. Since the MAC for a given row i is replaced with a random
function vi , we write (vi, zi ) in the place of key information (ki, zi ).

Case 1. Consider an adversary that makes a series of signing oracle queries
m1,m2, . . . ,mp , receives responses τ1, τ2, . . . , τp and finally outputs a message mw

(where 1 ≤ w ≤ p) and tag τ ′ such that τ ′ �= τw . Note that τ ′ must not equal τw because
A cannot return a message and tag pair that it received from its signing oracle. We
show that for any choices of m1,m2, . . . ,mp , τ1, τ2, . . . , τp , the probability that τ ′ is a
valid tag for mw is negligible. In other words, we sample the space of keys and random
functions, and, for any choice of τ ′ by the adversary (who is given τ1, τ2, . . . , τp), we
compute the probability of τ ′ violating Strong Unforgeability conditional on the fact
that τ1, τ2, . . . , τp are correct responses from the signing oracle.

We consider the case where the adversary violates Strong Unforgeability for a partic-
ular message mw and produces a tag τ ′ satisfying the equation for mw for a particular
row i. We will then use the Union Bound to bound the probability for any row and any
message. Let (v, z) be the key information for row i. Recall that message m and tag τ

induce an equation for key information (v, z): v(m) = ∑dn
t=1 zt τt .

The probability that a tag τ ′ produced by an adversary satisfies the given equation
is bounded by the following conditional probability for any choice of τ ′, τ1, τ2, . . . , τp

where τ ′ �= τw:

Pr
v,z

[
v(mw) =

dn∑
t=1

zt τ
′
t

∣∣∣ ∀j ∈ {1, . . . , p} : v(mj ) =
dn∑
t=1

zt τj,t

]
.

This is the probability that a given tag τ ′ violates Strong Unforgeability using a
given row with randomly chosen coefficients, constrained by the fact that τ1 through
τp satisfy the equation for this row. And the definition of conditional probabil-
ity states that, for events A and B , Pr[A | B] = Pr[A ∧ B]/Pr[B]. For the con-
ditional probability above, event A is v(mw) = ∑dn

t=1 zt τ
′
t , and event B is ∀j ∈

{1, . . . , p} : v(mj ) = ∑dn
t=1 zt τj,t . So, the probability can be split into two com-

ponents: (i) Prv,z[∀j ∈ {1, . . . , p} : v(mj ) = ∑dn
t=1 zt τj,t ] and (ii) Prv,z[v(mw) =
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∑dn
t=1 zt τ

′
t ∧ ∀j ∈ {1, . . . , p} : v(mj ) = ∑dn

t=1 zt τj,t ]. We will consider these two
components separately. For each component, we can consider the values of τ ′ and
τ1, τ2, . . . , τp as fixed and the (v, z) as variables.

Fixing any values for the dn variables z1, z2, . . . , zdn in component (i) induces a
single solution (namely v(mi) = ∑dn

t=1 zt τi,t ) for the values of v(mi). This means that
there are 2bdn ways to choose the variables to satisfy the equations. And there are, a
priori, 2b(dn+p) ways to choose the values for dn + p variables. Since the probability
is over the random choice of variables, this probability can be computed as the quotient
2bdn/2b(dn+p) = 1/2−bp .

In component (ii), each way of setting dn − 1 of the variables leads to a unique
solution for the remaining p + 1 variables. To see why, recall that vectors τ ′ and
τw must differ. So, they must differ in at least one of their dn entries; suppose,
without loss of generality, that they differ in position a. If we set the dn − 1 vari-
ables z1, z2, . . . , za−1, za+1, . . . , zdn to any value, then we are left with p equations
of the form v(mi) = τi,aza + ci for i ∈ {1, . . . , p} and constants ci and one equation
v(mw) = τ ′

aza + c′ for some constant c′. Subtracting the equation v(mw) = τw,aza + cw

from v(mw) = τ ′
aza + c′ eliminates v(mw) and leaves an equation that uniquely deter-

mines the value of za , since τ ′
a − τw,a �= 0. This value for za then uniquely determines

the values of v(m1), v(m2), . . . , v(mp), by definition. So, there are 2b(dn−1) solutions
in total. And, as before, there are 2b(dn+p) ways to choose values for these variables.
So, the probability is 2b(dn−1)/2b(dn+p) = 2−b(p+1).

We can use the definition of conditional probability and the two component proba-
bilities to compute the bound on an adversary violating Strong Unforgeability using a
particular equation and a particular message: 2−b(p+1)/2−bp = 2−b . The Union Bound
over the d equations and p possible messages then gives a general bound of pd/2b,
which is negligible.

Case 2. Now, suppose that m was never received from the signing oracle, and consider
any pair m and τ generated by adversary A. Since A never received m from the signing
oracle, no function of the values vi(m) for row i has been seen by A. So, the output
of A is independent of vi(m). Fix a key (vj , zj ) in the keys owned by verifier q and
suppose, without loss of generality, that the zj are all known to the adversary. For a
given m, there is one choice of the value of vj (m) such that vj (m) = ∑dn

t=1 zj,t τt holds,
and there are a total of 2b ways to choose the value of vj (m).

Since the choice of τ is independent of vj (m), and vj is a random function, the
probability of τ satisfying the given row equation is 1/2b. The Union Bound then gives
the probability of (m, τ) violating Strong Unforgeability for any of the d row equations
to be d/2b, which is negligible.

Then, Lemmas 10–12 give a polynomial increase in each bound to get back to the
general case. But a polynomial increase of a negligible function still leaves it negligible.
So, Atomic Signatures satisfies Strong Unforgeability. �

Proving that Atomic Signatures satisfies Transferability is more challenging. A com-
promised signer able to generate a split tag must have knowledge about which verifier
owns which keys. So, we devise a game over the signing keys, called Idealized Random
Keys, by which we show that no adversary gets enough information to divide the signing
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keys into two disjoint sets, where each set contains all the keys owned by some veri-
fier; we call this property Non-Separability. Then, given an adversary that can violate
Transferability, we produce a new adversary that can divide the signing keys into two
such disjoint sets. This shows that Non-Separability of Idealized Random Keys reduces
to Transferabilityof Atomic Signatures. And we also show that Idealized Random Keys
satisfies Non-Separability, which means that Atomic Signatures satisfies Transferability.

3.2. Idealized Random Keys

Idealized Random Keys is a game between a requester and a set I of n checkers that
each own a set of keys. The requester can only perform ownership queries: asking
checkers about the ownership of keys. Checkers return ⊥ in response to ownership
queries about keys they own. The important property of Idealized Random Keys, called
Non-Separability, is that no adversary A can use ownership queries to separate the set
of keys into two disjoint subsets, each of which contains all the keys owned by some
checker that has not already returned ⊥.

Formally, Idealized Random Keys consists of a pair (GenIR,CheckIR) of algorithms
that operate as follows:

• GenIR(1d ,1n) generates a vector k of dn keys uniformly at random and partitions
them into n disjoint sets K1,K2, . . . ,Kn of size d , each set owned by one checker
j ∈ I .

• Check algorithm CheckIR(·,Kj ) keeps state sj to record whether the requester has
ever made an ownership query to j for an element of Kj . When requester i makes
an ownership query on a given key k ∈ k, CheckIR(k,Kj ) operates as follows.
– if k ∈ Kj or sj = ⊥, then CheckIR(k,Kj ) returns ⊥ and sets sj to ⊥.
– Otherwise, CheckIR(k,Kj ) returns 1.

This behavior corresponds to information adversaries can glean from attacks on
Atomic Signatures. For instance, a compromised signer j can create a tag τ for any
message m by solving (1) using correct keys for all rows but one. Then j sends m and τ

to a verifier j ′. If j ′ owns the keys for this row, then j ′ will return ⊥. This corresponds
to a requester asking checker j ′ about a key in Kj ′ . But if j ′ does not own the keys for
this row, then j ′ will return ∞; so, j learns that j ′ does not own the keys for this row.
This corresponds to a requester asking checker j ′ about a key it does not own.

Non-Separability can be written formally as follows:

Non-Separability. For all adversaries A, there is a negligible function ε such that
for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← GenIR(
1d,1n

);
(K,K ′) ← A{CheckIR(·,K i )}i∈I−I ′ (1d,1n,k, {K i}i∈I ′

) :(∃j, j ′ ∈ I − I ′ : sj �= ⊥ ∧ sj ′ �= ⊥
∧ Kj ⊆ K ∧ Kj ′ ⊆ K ′ ∧ K ∩ K ′ = ∅)] ≤ ε(d,n).

To show that Non-Separability holds for Idealized Random Keys for a given negligi-
ble parameter ε0, we first consider the case n = 2, then provide a reduction from n = 2
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to general n. These proofs will show how to choose d for a given n so that Idealized
Random Keys satisfies Non-Separability for any ε0 > 0,

Lemma 2. Idealized Random Keys for 2 checkers satisfies Non-Separability with pa-

rameter ε = (2d
d

)−1
.

Proof. Consider a passive adversary B that never makes any ownership queries to its
CheckIR oracles but produces sets K and K ′ that violate Non-Separability for some
value of parameter ε. Keys are distributed randomly, so B has no information about
which keys correspond to which checkers. Therefore, B’s output is independent of the
distribution of keys to checkers. There are

(2d
d

)
choices for K and K ′, only one of which

violates Non-Separability. So, B’s probability of outputting this K and K ′ is ε = (2d
d

)−1
.

Now suppose that some adversary A, potentially making ownership queries to its
CheckIR oracles, violates Non-Separability with some parameter ε0. When A succeeds,
no ownership queries to its oracles can have returned ⊥, since there are only two check-
ers, j and j ′, and neither sj nor sj ′ can be ⊥ for Non-Separabilityto be violated. So, A’s
ownership queries must always have returned 1. This means that B can run A and sim-
ulate these ownership queries by always returning 1. B then returns whatever A returns.
Whenever B’s simulation would be incorrect (because CheckIR should have returned
⊥), A would have received ⊥ and failed to violate Non-Separability. So, B succeeds at

least as often as A. Then, A’s success probability ε0 is also no better than
(2d

d

)−1
, since

this is an upper bound on any passive adversary B. �

Theorem 3. Idealized Random Keys for n checkers satisfies Non-Separability with
parameter ε = (

n
2

)
/
(2d

d

)
.

Proof. We proceed by contradiction. Suppose adversary A violates Non-Separabil-
ity for n checkers for some I ′ ⊆ I with parameter ε >

(
n
2

)
/
(2d

d

)
. We construct B that

violates Non-Separability for Idealized Random Keys with 2 checkers with parameter

ε′ >
(2d

d

)−1
, which contradicts Lemma 2.

B is given k as well as CheckIR oracles for its two checkers and proceeds to construct
keys for A and simulate A’s oracles:

1. B calls GenIR(1d ,1n) to get k′ and {K i}i∈I .
2. B then chooses j and j ′ uniformly at random from I − I ′ and forms k′′ =

(k′ − (Kj ∪ Kj ′)) ∪ k. This replaces the keys for j and j ′ in k′ with the keys
in k. B assigns one of its CheckIR oracles to j and the other to j ′.

3. B calls A with 1d , 1n, k′′, and {K i}i∈I ′ and simulates A’s ownership queries as
follows:

• if i �= j and i �= j ′, then B has all the keys for K i , so B can emulate exactly
the execution of CheckIR(·,K i ), including keeping state.

• If i = j or i = j ′, then B forwards the ownership query on to B’s oracle for i.

4. When A returns K and K ′, B returns K and K ′.
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If A succeeds, then there is some pair i, i′ ∈ I − I ′ such that K i ⊆ K and K i′ ⊆ K ′
and K ∩ K ′ = ∅. Since j and j ′ were chosen uniformly at random, the probability that
the unordered pair (i, i′) is the same as the pair (j, j ′) is

(
n
2

)−1, so B succeeds with

probability greater than (n
2)/(

2d
d )

(n
2)

= (2d
d

)−1
. This contradicts Lemma 2.

So, contrary to the initial assumption, A must only be able to succeed with probability
less than or equal to

(
n
2

)
/
(2d

d

)
. �

Theorem 3 provides a way to determine the value of d for a given choice of proba-
bility ε0 of a compromised requester violating Non-Separability with parameter ε0 for
n verifiers. Theorem 3 implies that ε0 <

(
n
2

)
/
(2d

d

)
. Since

(2d
d

) ≥ 2d for d ≥ 0, this can be

simplified to ε0 <
(
n
2

)
/2d . Thus, it suffices to set d to O(log( n2

ε0
)).

3.3. Transferability of Atomic Signatures

Idealized Random Keys provides a framework for proving that Atomic Signatures sat-
isfies Transferability. We prove this in the form of a reduction, showing that Non-
Separabilityof Idealized Random Keys with a given parameter ε implies Transferability
of Atomic Signatures with the same parameter ε. Since Theorem 3 shows that Non-
Separability holds for Idealized Random Keys (hence has a negligible parameter ε), it
then follows that Transferability holds for Atomic Signatures.

Lemma 4. If Idealized Random Keys satisfies Non-Separability, then Atomic Signa-
tures satisfies Transferability.

Proof. We prove the contrapositive by constructing an adversary B that violates Non-
Separability of Idealized Random Keys using an adversary A that violates Transferabil-
ity of Atomic Signatures. B is given keys k for Idealized Random Keys.

For each key k ∈ k, B generates random values z = 〈z1, z2, . . . , zdn〉 to construct a
set of keys to pass to A for Atomic Signatures. B will respond to verification oracle
queries for A; B does not answer signing queries, since A is not given a signing oracle
(nor does it need one, since it has all the keys).

For verification queries on a message m, a tag τ , and an index j , B knows the sign-
ing keys, so B can check to see if roweq(m, τ, (k, z)) holds for each (k, z) ∈ k. If
roweq(m, τ, (k, z)) holds for all (k, z) ∈ k, then B can return ∞; and if no instance
of roweq(m, τ, (k, z)) holds for any (k, z) ∈ k, then B can return 0.

But if some instances hold and others do not, then B does not know what to return,
since B does not know which instances use keys in Kj . One way to solve this problem
would be for B to make ownership queries to CheckIR for keys for some instances—
knowing which verifiers own which keys for more keys gives B a higher probability
of answering correctly. But if CheckIR(·,Kj ) returns ⊥ on any such ownership query
when VerAS(m, τ,Kj ) would not have returned ⊥, then sj gets set to ⊥, and vj is not set
to ⊥ in Atomic Signatures. In this case, B might not be able to violate Non-Separability
using the message and tag that A returns to violate Transferability; for instance, A might
return a message and tag that violate Transferability for j and some other verifier. And
such a j could not be used to violate Non-Separability, since sj = ⊥ would hold. So,
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B needs to ensure that if an ownership query to CheckIR(·,Kj ) causes CheckIR(·,Kj )

to return ⊥ in the course of simulating a call to VerAS(m, τ,Kj ), then VerAS(m, τ,Kj )

would also have returned ⊥.
To gain more information about the values returned by VerAS, B proceeds as follows:

B randomly generates n additional known key pairs (k∗
1 , z∗

1), (k
∗
2 , z∗

2), . . . , (k
∗
n, z∗

n) and
assigns (k∗

j , z∗
j ) to verifier j for 1 ≤ j ≤ n. B adds these keys to k, creating k′, and

creates n state variables s1, s2, . . . , sn, initializing each to 1. So, B will use A on security
parameter d + 1 to violate Non-Separability on security parameter d .10

1. B calls A(1d+1,1n,k′, {K i}i∈I ′) and answers A’s queries for m, τ , and j as fol-
lows:
(a) Initialization. Set S0 and S1 to ∅.
(b) Check sj . If sj = ⊥, then return ⊥.
(c) Key Discovery. For each key pair (k, z) in k, if roweq(m, τ, (k, z)) holds, then

add k to set S1; otherwise add k to set S0.
(d) Check Opposite Keys. If roweq(m, τ, (k∗

j , z∗
j )) holds, then iterate over each

key k in S0. Otherwise iterate over keys in S1. Use oracle access to call
CheckIR(k,Kj ) on each such key k, and return ⊥ if CheckIR(·,Kj ) ever re-
turns ⊥. Set sj to ⊥ when returning ⊥.

(e) If roweq(m, τ, (k∗
j , z∗

j )) holds, then return ∞. Otherwise, return 0.

2. When A returns m and τ , run Key Discovery as before to get S0 and S1. Return
K = S1 and K ′ = S0.

It remains to show that this algorithm correctly simulates the operation of
VerAS(m, τ,Kj ) and that K and K ′ jointly violate Non-Separability. There are only
three possible return values from the verification oracle VerAS(m, τ,Kj ): 0, ∞, and ⊥.
We consider each case in turn:

• VerAS(m, τ,Kj ) = 0. In this case, the definition of VerAS states that, for all key
pairs (k, z) in Kj , roweq(m, τ, (k, z)) will not hold. So, all of j ’s keys will
be placed in S0. Further, roweq(m, τ, (k∗

j , z∗
j )) will also fail to hold, so Check

Opposite Keys will iterate over S1. Thus, none of j ’s keys will be passed to
CheckIR(·,Kj ), so CheckIR(·,Kj ) will not return ⊥, which means the simula-
tion will not return ⊥. Since roweq(m, τ, (k∗

j , z∗
j )) does not hold, the simulation

returns 0, as required.
• VerAS(m, τ,Kj ) = ∞. In this case, the definition of VerAS states that, for all key

pairs (k, z) in Kj , roweq(m, τ, (k, z)) holds. So, all of j ’s keys will be placed
in S1. Further, roweq(m, τ, (k∗

j , z∗
j )) must hold, so Check Opposite Keys will

iterate over S0. Thus, none of j ’s keys will be passed to CheckIR(·,Kj ), so
CheckIR(·,Kj ) will not return ⊥, which means that the simulation will not return
⊥. Since roweq(m, τ, (k∗

j , z∗
j )) holds, the simulation returns ∞, as required.

• VerAS(m, τ,Kj ) = ⊥. The definition of VerAS provides two cases in which a veri-
fier might return ⊥.

First, it might be that vj �= ⊥. In this case, the definition of VerAS states that there
must be some key pairs (kr , zr ) and (kr ′, zr ′) in Kj such that roweq(m, τ, (kr , zr ))

10 The security parameter is now d + 1 instead of d , because there are now dn + n = (d + 1)n keys.
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holds and roweq(m, τ, (kr ′ , zr ′)) does not hold. So, (kr , zr ) is put in S1, and
(kr ′, zr ′) is put in S0.

If roweq(m, τ, (k∗
j , z∗

j )) holds, then Check Opposite Keys will iterate over

S0, which contains kr ′ , so CheckIR(kr ′ ,Kj ) will be called and will return ⊥.
If not, then Check Opposite Keys will iterate over S1, which contains kr , so
CheckIR(kr ,Kj ) will be called and will return ⊥. Either way, the simulation re-
turns ⊥, as required. And in both cases, the simulation sets sj to ⊥.

Second, it might be that vj = ⊥. By definition of VerAS, this means that
VerAS(·, ·,Kj ) must have previously returned ⊥. This means that sj has already
been set to ⊥, by induction. So, the simulation returns ⊥ in the step Check sj , as
required.

Thus, B simulates A’s oracle calls correctly. When A succeeds, the definition of
Transferability implies that there is some pair j, j ′ ∈ I − I ′ such that the values of m

and τ returned by A satisfy VerAS(m, τ,Kj ) = ∞ and VerAS(m, τ,Kj ′) = 0. There-
fore, roweq(m, τ, (k, z)) must hold for every (k, z) ∈ Kj and for no (k, z) ∈ Kj ′ , which
means that Kj ⊆ S1 = K and Kj ′ ⊆ S0 = K ′, as required. And K ∩ K ′ = ∅ holds by
definition. Values sj and sj ′ are not set to ⊥, since VerAS(·, ·,Kj ) and VerAS(·, ·,Kj ′)
never returned ⊥. B succeeds with the same nonnegligible probability as A. �

Note that the constructed adversary B in the proof of Lemma 4 needs the known key
pairs to simulate the operation of the verification function. But known key pairs are not
needed in the construction itself. The lack of known keys in the construction leads to the
difference in security parameters between B and A: the constructed adversary B needs
d keys, but A needs d + 1.

The following theorem uses the previous results to show that Atomic Signatures is a
Strong ∞-MVS scheme.

Theorem 5. If the MAC is a pseudorandom function, then Atomic Signatures is a
Strong ∞-MVS scheme.

Proof. Lemma 1 shows that Atomic Signatures satisfies ∞-Completeness and Strong
Unforgeability if the MAC is a pseudorandom function. And Lemma 4 and Theorem 3
together imply that Atomic Signatures satisfies Transferability. So, Atomic Signatures
is a Strong ∞-MVS scheme. �

The reduction in Lemma 4 adds one key per verifier to the set of keys used in Atomic

Signatures. So, the value d = O(log( n2

ε0
)) computed in Sect. 3.2 using the probability

ε0 of a compromised signer being able to create a split tag gives a value of d that is 1
lower than the value needed for Atomic Signatures. But this does not affect the asymp-
totic complexity of the scheme: if we assume that computing the MAC of a message
m takes time O(|m|), then Atomic Signatures can be computed by generating a vec-
tor of dn MACs in time O(|m|dn) and solving the factored matrix equation in time

O(n2d2) = O(n2 log2( n2

ε0
)). So, the total asymptotic complexity of generating a tag is

O(|m|n log( n2

ε0
) + n2 log2( n2

ε0
)).
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4. Chain Signatures

Chain Signatures is a λ-MVS scheme that creates tags consisting of vectors of subtags.
Each subtag contains the output of a MAC on the concatenation of previous subtags.

Key generation algorithm GenCS(1d,1n) produces n known keys k1 = k∗
1 , k∗

2 , . . . , k∗
n

and dn unknown keys k2 = 〈k1, k2, . . . , kdn〉, where each key is an element of {0,1}b.
GenCS(1d ,1n) then sets k = (k1,k2) and creates n vectors K1,K2, . . . ,Kn. A vector
Kj contains k∗

j as well as a set of d keys chosen uniformly at random from k2 such that
vectors K1,K2, . . . ,Kn are disjoint.

SignCS(m,λ,k) produces11 a vector Cλ,d(m) consisting of λ sections, each divided
into two components: we call component 1 the known-key component and component 2
the unknown-key component. Component 1 contains n subtags, and component 2 con-
tains dn subtags, so each section contains (d + 1)n subtags. We write Cλ,d(m)[r, c, s]
for the sth subtag in the cth component of the r th section of the tag generated by Chain
Signatures for m and λ.12 We use the natural lexicographic ordering on triples (r, c, s)

used to index the subtags of Chain Signatures.13 The value of a subtag is computed
recursively as the MAC of the concatenation of m with the subtags in all previous com-
ponents:

Cλ,d(m)[r, c, s] � MAC
(
m ||

(t,t ′,t ′′)<(r,c,1)

Cλ,d(m)[t, t ′, t ′′],kc[s]
)
. (3)

Subtag s in component c of section r is said to be supported if the value of this subtag
is identical to the MAC of the message and all previous components under key kc[s].
Figure 1 shows the structure of a signed message using Chain Signatures.

Verification algorithm VerCS(·, ·,Kj ) keeps state vj to record whether it has ever
been called with a message and tag that indicate that the signer is compromised. When
called with a message m and tag τ , the verification algorithm checks all the subtags of

Fig. 1. The structure of a signed message using Chain Signatures.

11 The definition of MVS schemes does not allow signing algorithm SignCS(·,k) to take three parameters.
To get around this difficulty, when Chain Signatures is considered as a λ-MVS scheme for some λ ∈ N, we
define SignCS(m,k) to mean SignCS(m,λ,k).

12 Note that we can compute the offset of Cλ,d (m)[r, c, s] in this tag as (d +1)n(r −1)+ (c−1)n+ s −1.
13 Note that sections, components, and subtags indexed by our triples are numbered starting at 1 rather

than the more customary value of 0.
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j in τ to see if there is a supported subtag that follows a nonsupported subtag. If so,
then verification concludes that the signer is compromised. And if not, then verification
returns the value of the highest section in which it found a supported subtag.

More precisely, the verification algorithm works as follows, where λ′ is the value of
the highest section in which verification found a supported subtag for j , and c is the
highest component in λ′ in which a supported subtag was found:

• If vj = ⊥, then return ⊥.
• Otherwise, if each known-key component below c contains exactly one supported

subtag for j , and each unknown-key component below c contains d supported
subtags for j , then return λ′.

• If no component contains supported subtags for j , then return 0.
• Otherwise, some component below c contains a nonsupported subtag for j , so

return ⊥ and set vj to ⊥.

Remark 4.1. The alternation of known-key and unknown-key components in tags
generated by Chain Signatures is critical to the security of the algorithm. If a supported
subtag t in one component follows a nonsupported subtag t ′ in another component, then
there must be some pair of adjacent components c and c′ such that c′ comes before c,
there is a nonsupported subtag in c′, and there is a supported subtag in c. Since known-
key and unknown-key components alternate, exactly one of c and c′ must be a known-
key component. So, whenever verification returns ⊥, there is a known-key component
and an adjacent unknown-key component that justify this return value.

A simpler—but wrong—version of Chain Signatures would not include known-key
components. This would give a compromised signer an easy way to violate Transfer-
ability. For example, suppose that compromised signer i creates a tag τ in which all
subtags in the first λ − 1 sections are supported. However, in section λ of tag τ , only
one subtag is supported. The key for this subtag is owned by some verifier, say j . So,
verification at j will return λ, and all other verifiers will return λ − 1. This reveals that
j owns the key for this subtag. And i can perform this attack on each key to learn its
attribution; i can create split tags once it knows the attribution of enough keys.

This attack fails in Chain Signatures due to the known-key components. Suppose that
compromised signer i creates a tag τ in which all subtags in the first λ − 1 sections
are supported. The first component in section λ is a known-key component. So, if i

makes one of the subtags in the known-key component supported and all other subtags
in section λ nonsupported, then j will return λ, and all other verifiers will return λ − 1.
This reveals the attribution of j ’s known key. But the attribution of j ’s known key is
known, so the adversary does not learn anything new about the keys.

Another variant on the same attack would be for the compromised signer to make all
the subtags in the known-key component supported. But then, no matter which subtags
are supported in the unknown-key component of section λ, all verifiers will return λ,
since all find a supported subtag in this section.

A more complex variant of this attack would be to make some subtags in the known-
key component supported and some nonsupported. Also, at least one subtag in the
unknown-key component of section λ must be made supported (otherwise, the adver-
sary learns nothing, as discussed above). But now there is some probability that there is
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a verifier j ′ that has a nonsupported tag in the known-key component and a supported
tag in the unknown-key component. This verifier will return ⊥ on τ . So, if the adversary
requests verification of τ from a verifier j ′, and j ′ does not return ⊥, then the adversary
learns that j ′ does not own the key used for the subtag in the unknown-keys.

Attacks in which some verifiers might return ⊥ yield information to the adversary,
but they also risk revealing to verifiers that the signer is compromised. If too many
verifiers learn that the signer is compromised, then Transferability cannot be violated,
since violations m and τ depend on verifiers j and j ′ such that Ver(m, τ,Kj ) �= ⊥ and
Ver(m, τ,Kj ′) �= ⊥. Our reduction below from Idealized Random Keys shows how to
choose a value of d such that, with high probability, compromised signers never learn
enough information to create split tags without revealing themselves as compromised
to too many verifiers.

Remark 4.2. Chain Signatures as described above is expensive to compute; gener-
ating a tag costs O(dnλ(|m| + dnλ)), since inputs to the MAC grow linearly in the
length of the tag. Figure 9 in Appendix D gives an algorithm that reduces the cost
to O(|m| + dnλ logλ) using collision-resistant hash functions. Modified proofs of λ-
Completeness, Unforgeability, and Non-Accusabilityfollow the description of this more
efficient version.

A λ-MVS scheme must satisfy λ-Completeness, Unforgeability, Non-Accusability,
and Transferability. We prove that Chain Signatures is a λ-MVS scheme for λ ∈ N>0
using two lemmas. The first shows that Chain Signatures satisfies λ-Completeness, Un-
forgeability, and Non-Accusability; the second reduces Non-Separability of Ideal Ran-
dom Keys to Transferability of Chain Signatures. Then, Theorem 3, along with the
second lemma, implies that Chain Signatures satisfies Transferability.

Note that Chain Signatures does not satisfy Strong Unforgeability. Any adversary that
receives a tag τ for message m that causes verifier j to return λ > 1 can produce a new
tag τ ′ that causes verifier j to return λ − 1. All the adversary needs to do is to remove
the last section, since tags for earlier sections do not depend on the last section. The
previous λ − 1 sections consist entirely of supported subtags, so verifier j will return
λ − 1 for m and τ ′. But the adversary never received τ ′ from its signing oracle, so m

and τ ′ together violate Strong Unforgeability.

Lemma 6. For any λ ∈ N>0, if the MAC satisfies CTA Unforgeability, then Chain
Signatures satisfies λ-Completeness, Unforgeability, and Non-Accusability.

Proof. λ-Completeness. This follows directly from the definition: all subtags are sup-
ported by construction, so VerCS(m,SignCS(m,λ,k),Kj ) = λ.

Unforgeability. We prove the contrapositive. Suppose that adversary A violates Un-
forgeability for some I ′ ⊆ I with probability ε0. We construct an adversary B that
violates CTA Unforgeability of the MAC (for some key k′) with probability ε0/n. B
chooses a key k∗

t uniformly at random from the n known keys and generates a new
instance of Chain Signatures by calling GenCS and replacing calls to MAC(·, k∗

t ) with
(i) calls to B’s MAC oracle when signing and (ii) B’s verification oracle when verifying.
When A succeeds, returning m and τ , the definition of Unforgeability states that there
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is some j ∈ I − I ′ for which VerCS(m, τ,Kj ) > 0. This means j must have (at least) a
supported subtag in component 1 of section 1.

B returns m as its message and τ [1,1, t] as its tag. With probability 1/n, we
have t = j , since t was chosen uniformly at random and independently of j . And
MAC(m, k′) = τ [1,1, t], because τ [1,1, t] = τ [1,1, j ] is the only subtag for j in com-
ponent 1 of section 1, so it must be supported. The unique length of inputs to MACs for
each component implies the only component for which B could have requested m from
its MAC oracle is the very first. This request could only have been made if A requested
m from its signing oracle, which does not occur by definition.

So, B never requested m from its MAC oracle, and B succeeds in violating CTA
Unforgeability with probability ε0/n.

Non-Accusability. We prove the contrapositive. Suppose that some adversary A vi-
olates Non-Accusability for some I ′ ⊆ I with probability ε0. Similar to the proof of
Unforgeability, we construct a B that violates CTA Unforgeability of the MAC by build-
ing a new instance of Chain Signatures and calling A. Instead of choosing a key at ran-
dom from the known keys, however, B chooses a key kt from the union of the known
keys and the unknown keys. When A succeeds and returns m and τ , the definition of
Non-Accusability states that there must be some j in I − I ′ such that VerCS(m, τ,Kj )

returns ⊥, which means that there is some supported subtag for j that takes as input a
nonsupported subtag for j in some component r .

With probability 1/((d + 1)n), key kt was used to compute this supported subtag,
since t was chosen uniformly at random and independently of the choice of the nonsup-
ported subtag. In this case, B returns this supported subtag in component r as tag τ ′ and
the message m concatenated with all components before component r as message m′.
The length of m′ means that it could only have been input to B’s MAC oracle in compo-
nent r . But since it contains a nonsupported subtag, it never would have been input to
a MAC in B’s simulation of the signing oracle, since only concatenations of supported
subtags are input to the MAC oracle in B’s simulation, by construction. So, m′ has never
been requested from B’s MAC oracle.

Thus, m′ and τ ′ violate CTA Unforgeability of the MAC with probability
ε0/((d + 1)n), which is nonnegligible. �

To prove that Chain Signatures satisfies Transferability, we reduce from Non-
Separability of Idealized Random Keys. This reduction relies on the following char-
acterization of tags: for each verifier j , message m, and tag pair τ , there is a highest
known-key component of τ containing a supported subtag; we call this known-key com-
ponent highSup(m, τ, j,k). And there is a lowest known-key component containing a
nonsupported subtag for j ; we call this known-key component lowNonSup(m, τ, j,k).
Verification returns ⊥ when a supported subtag follows a nonsupported subtag for a
given verifier. As argued in Remark 4.1, at least one such pair of supported and non-
supported subtags in this case always involves a known-key component. The following
lemma shows that these special known-key components indicate when to return ⊥.

Lemma 7. For verifier j , if the state vj is not ⊥, then VerCS(m, τ,Kj ) returns
⊥ if and only if there is, in τ , a nonsupported subtag for j in a component be-
low highSup(m, τ, j,k) or there is a supported subtag for j in a component above
lowNonSup(m, τ, j,k).
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Proof. The “if” direction trivially follows from the definition of VerCS: if a supported
subtag for verifier j , message m, and tag τ follows a nonsupported subtag for j , then
VerCS(m, τ,Kj ) returns ⊥.

We prove the “only if” direction by the contrapositive. Let λHS be set to
highSup(m, τ, j,k), and let λLN be set to lowNonSup(m, τ, j,k). Suppose that all non-
supported subtags for j are in λHS or higher components—in fact, all nonsupported
tags for j must be in higher components, since there is only one subtag for j in λHS,
and this subtag is supported. Suppose further that all supported tags for j are in λLN or
lower components—by the same argument as for λHS, all supported subtags for j must
actually be in lower components than λLN.

We will show that VerCS(m, τ,Kj ) cannot return ⊥. For the sake of contradiction,
suppose that it does. Then, since vj is not ⊥, the definition of VerCS states that there is
a pair of keys k1 and k2 associated with j and components rN and rS such that rN < rS

holds, the subtag generated with k1 in component rN is not supported, and the subtag
generated with k2 in component rS is supported. This happens because the verification
algorithm returns ⊥ only if a nonsupported subtag occurs in a lower component than a
supported subtag.

By the argument above, rN > λHS and rS < λLN both hold. So, λHS < rN < rS <

λLN holds; see Fig. 2 for a depiction of these components. This means that there are at
least two distinct components rN and rS between λHS and λLN, so one of the compo-
nents between λHS and λLN, say rK , must be a known-key component. Since rK < λLN

holds, the definition of λLN requires that j ’s subtag in rK be supported. But, since
rK > λHS holds, the definition of λHS requires that j ’s subtag in rK not be supported.
This is a contradiction, since rK only has one subtag for j , so VerCS(m, τ,Kj ) cannot
return ⊥. �

We now proceed to show the following lemma.

Lemma 8. If Idealized Random Keys satisfies Non-Separability, then Chain Signatures
satisfies Transferability.

Proof. We prove the contrapositive: we construct an adversary B that violates Non-
Separability of Idealized Random Keys using an adversary A that violates Transferabil-
ityof Chain Signatures. The reduction for Transferabilityof Atomic Signatures relies on
known keys that are added for the proof. For Chain Signatures, however, known keys
are already part of the construction, so they do not need to be added for the proof.

B is given k for Idealized Random Keys and generates n keys to serve as the known
keys for Chain Signatures. B then forms k′ consisting of k and these known keys to

Fig. 2. Components used in the proof of Lemma 7.
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pass to A. In the following simulation, B keep state sj for each simulated verifier j (as
in the reduction for Atomic Signatures) and returns ⊥ when sj = ⊥. Similarly, B sets
sj to ⊥ when it returns ⊥ for a query for verifier j .

Since B knows all the keys, B can check each subtag in each component to see if it
is supported. B divides the keys into two sets for each component c based on whether
or not the MAC using a key in c is supported; we call these sets supported and non-
supported, respectively. B then uses the known keys to decide on which sets to call
CheckIR(·,Kj ) to simulate a given call to VerCS(m, τ,Kj ), as follows.

1. B finds lowNonSup(m, τ, j,k) and calls CheckIR(·,Kj ) on all keys in all sup-
ported sets for higher components.

2. Similarly, B finds λ = highSup(m, τ, j,k) and calls CheckIR(·,Kj ) on all keys in
all nonsupported sets for lower components.

3. If any of the calls to CheckIR(·,Kj ) return ⊥, then B returns ⊥.
4. Otherwise, B returns λ, since verification for j returns the value of the highest

section that contains a supported subtag for j .

This strategy simulates VerCS(m, τ,Kj ) perfectly. To see why, we consider the pos-
sible return values of VerCS(m, τ,Kj ). When VerCS(m, τ,Kj ) returns 0, there are no
supported subtags for j , so the simulation will also return 0.

When VerCS(m, τ,Kj ) returns λ > 0, there must be some supported subtag for j

in section λ, and no supported subtags in higher sections. And since verification did
not return ⊥, all subtags for j in lower components must also be supported. Since the
known-key subtag for j is the first subtag for j in section λ, it must also be supported;
this means that the simulation will return λ.14

By Lemma 7, the simulation is also correct when VerCS(m, τ,Kj ) returns ⊥. Note
that Lemma 7 implies that CheckIR(·,Kj ) in B’s simulation will only return ⊥ when
VerCS(·, ·,Kj ) does, since the simulation calls CheckIR(·,Kj ) only on keys for subtags
that match the description in the hypothesis of Lemma 7.

When A succeeds, returning a message m and tag τ , the definition of Transfer-
ability implies that there is some pair j, j ′ ∈ I − I ′ and a section λ′ such that
VerCS(m, τ,Kj ) = λ′ and VerCS(m, τ,Kj ′) < λ′ − 1. B finds j , j ′, and λ′ by simu-
lating the verification function as before for each verifier. Then B returns the keys for
the supported subtags in the unknown-key component of section λ′ − 1 as K and the
keys for the nonsupported subtags in the unknown-key component of section λ′ − 1 as
K ′. This strategy always succeeds, since a violation of Transferability in section λ′ for
verifiers j and j ′ means that the subtags for j must be supported in the unknown-key
component of section λ′ − 1 and the subtags for j ′ must not be supported. Thus, B
succeeds with the same probability as A. �

Just as in the proof of Lemma 4 for Atomic Signatures, the adversary B in the proof
of Lemma 8 depends critically on the known keys in its simulation of the verification
oracle. But, unlike Atomic Signatures, the known keys are essential to the construction
of Chain Signatures, as shown in Lemma 7.

14 Note that no subtags in unknown components in section λ + 1 or higher could be supported, since the
known subtag for j in section λ + 1 is not supported; having supported subtags in unknown components in
section λ + 1 or higher would mean that verification would have to return ⊥, not λ.
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Remark 4.3. It might seem like a more natural construction for Chain Signatures
would make the input to the MAC for each subtag be the concatenation of the message
and all previous subtags, instead of the message and all subtags in previous components.
But Lemma 7 no longer holds in this version of Chain Signatures. The problem is that a
nonsupported subtag for some verifier j could be followed by a supported subtag for j

in the same unknown-key component. In this case, there is no contradiction in the proof
of Lemma 7. This means that the highest known-key component with a supported subtag
and the lowest known-key component with a nonsupported subtag are not sufficient to
simulate verification in the simpler version of Chain Signatures; Lemma 7 is critical
in the reduction from Non-Separability of Idealized Random Keys to Transferability of
Chain Signatures.

We are not aware of any attacks on this version of Chain Signatures despite the fact
that the proof does not work. However, this version is less efficient than the version we
prove secure, so we do not discuss it further.

The following theorem uses the previous results to show that Chain Signatures is a
λ-MVS scheme.

Theorem 9. For any λ ∈ N>0, if the MAC satisfies CTA Unforgeability, then Chain
Signatures is a λ-MVS scheme.

Proof. Lemma 6 shows that Chain Signatures satisfies λ-Completeness, Unforgeabil-
ity, and Non-Accusability if the MAC satisfies CTA Unforgeability. Lemma 8 shows that
Non-Separability of Idealized Random Keys implies Transferability of Chain Signa-
tures. Since Theorem 3 shows that Non-Separability of Idealized Random Keys holds,
it follows that Chain Signatures satisfies Transferability. �

The reduction in Lemma 8 shows that the value of the security parameter d is set to
d + 1 for Chain Signatures to have the same security as Idealized Random Keys has for

d . However, the asymptotic complexity of d is the same, so the value d = O(log(n2

ε0
))

computed in Sect. 3.2 using the probability ε0 of a compromised signer being able to
create a split tag is the same for Chain Signatures as for Idealized Random Keys. Using
the running-time formula from Appendix D, we calculate that Chain Signatures can be

generated in time O(|m| + dnλ logλ) = O(|m| + nλ log( n2

ε0
) logλ).

5. Performance

We implemented Atomic Signatures (AS) and Chain Signatures (CS) in C using
OpenSSL 0.9.8e [23]. Using a hash function h, we compute a MAC for a message m

and key k by setting MAC(m, k) = h(h(m) || k), as suggested by Canetti et al. [6] for
cases where many MACs must be computed for the same message. In our implementa-
tion, h is SHA-1 [28].15 All shared keys comprise 160 bits, and the output of the MAC is

15 Under the assumption that SHA-1 is pseudorandom, this MAC satisfies the properties required for our
proof, according to Bellare et al. [3].
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also 160 bits, so parameter b = 160.16 We use all optimizations described in the paper
and the appendices: pseudorandom functions are used to generate a factored matrix for
Atomic Signatures, and hashing is used as in the pseudo-code of Fig. 9 in Appendix D
to reduce the running time of Chain Signatures. The probability ε0 that a compromised
signer will be able to create a split tag is set to 2−64, except where otherwise stated.
Parameter λ is considered up to λ = 3, since this is a common value for protocols used
in implementing distributed services.17

All tests were run on a 2.13-GHz Pentium M over Gentoo Linux kernel 2.6.22-
gentoo-r9. RSA and DSA measurements were made for OpenSSL by running the com-
mands openssl speed rsa and openssl speed dsa on this system. Each
value represents a mean over 1000 runs; the error gives the sample standard deviation
around this mean.

The performance of signature algorithms depends on three factors: the execution time
for generating and checking tags, the tag size, and the key infrastructure required. Fig-
ures 3 and 4 show the execution time for generating and checking Chain Signatures.
In Fig. 3, for λ = 3, Chain Signatures can generate tags faster than 1024-bit RSA for
n ≤ 50 and faster than 2048-bit RSA for all n < 100, which is more than sufficient
for many applications. Figure 4 shows that checking Chain Signatures (for λ = 3 and

Fig. 3. Execution time for generating Chain Signatures (ε = 2−64).

Fig. 4. Execution time for checking Chain Signatures (ε = 2−64).

16 Atomic Signatures requires that an adversary only be able to violate Strong Unforgeability with a given

probability ε′
0. The proof of Lemma 1 bounds ε′

0 by poly(d,n)/2b , but the exact value of the polynomial
factor poly(d,n) depends on Lemmas 10–12, which provide asymptotic, rather than concrete, bounds. So, we
instead choose b to satisfy ε′

0 < 1/2b , since the polynomial factor will make only a small difference in the
choice of b for small values of n and d .

17 Note that the probability of a compromised signer generating a split tag is statistical rather than com-
putational; the proofs of Non-Separability of Idealized Random Keys rely only on the randomness of key
distribution and not on any computational assumption.
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Fig. 5. Execution time to generate Atomic Signatures for six verifiers and different probabilities of generat-
ing a split tag.

Fig. 6. Execution time to check Atomic Signatures for six verifiers and different probabilities of generating
a split tag.

ε = 2−64) is faster than 2048-bit RSA for n < 75. Higher probabilities of split tags may
be acceptable in some contexts and lead to faster generation and checking of signatures.

Atomic Signatures costs O(d2n2), so tags that use many random keys are more ex-
pensive to generate; the efficiency depends on the probability that a signer can generate
split tags. Figures 5 and 6 show how generating and checking times vary for six veri-
fiers and different probabilities of creating a split tag. Atomic Signatures can generate
tags for six verifiers faster than 2048-bit RSA for probabilities down to about 2−55.
But checking tags generated by Atomic Signatures is more expensive for probabilities
below about 2−25.

Even though execution time for generating and checking tags based on the schemes
in this paper is sometimes lower than RSA and DSA, tag size for our signature algo-
rithms is significantly larger. Chain Signatures and Atomic Signatures require signifi-
cant space even for small n, since the size of the signature depends linearly on d . For
instance, in Chain Signatures with six verifiers, ε = 2−64, and λ = 3, generating sig-
natures takes about 581 μs, which is fast, but the size of a tag is 13680 bytes. These
sizes are acceptable in circumstances where signature transfer time is negligible—for
instance, between processes in operating systems, or across local-area networks using
Gigabit Ethernet switches.

Key-management infrastructure costs for Chain Signatures and Atomic Signatures
are also relatively high, since each verifier must store O(dn) keys. For instance, with
n = 4 and ε = 2−64, each verifier must share d = 36 keys with the signer. And if n =
36 with the same value of ε, then d becomes 40. Rekeying requires that signer i not
learn with which verifier it shares a given key. If the keys for a single verifier j were
replaced without replacing keys for other verifiers, then i would learn which of its keys
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correspond to j . Even if keys for some subset of the verifiers were replaced, then signer
i would gain some information about which keys correspond to which verifiers. Thus,
all keys must be replaced simultaneously.

These performance results show that in some contexts, MVS schemes have com-
parable, and sometimes even better, performance than public-key signature schemes.
Unlike these schemes, however, MVS schemes are proven secure only assuming the
existence of pseudorandom functions, whereas these public-key signature schemes are
only known to be secure in the heuristic random oracle model. The results of our ex-
periments show that it is possible to have provable security and efficiency for signature
schemes.

6. Related Work

Many authentication schemes use symmetric message authentication codes and try to
achieve properties similar to public-key signature schemes. But none is able to handle
an unbounded number of adaptive queries. We succeed by using a unusual secret-key
setup along with state kept by verifiers. Previous work achieves different properties.

λ-Limited Transferability Chaum and Roijakkers [9] were the first to suggest con-
structing tags that could be transferred a finite number of times. Their scheme allows
signed messages to be transferred only once. Pfitzmann and Waidner [24] followed with
a construction, called pseudosignatures, that is somewhat similar to Chain Signatures:
it creates tags that can be transferred an arbitrary fixed number of times. Both the work
of Chaum and Roijakkers and Pfitzmann and Waidner provide unconditional security.

Like MVS schemes, pseudosignatures depend on a secret-key setup; multiple keys
are shared between the signer and each verifier, and the signer cannot attribute keys to
verifiers. However, pseudosignature tag size is directly proportional to the number of
queries an adversary can submit to a verification oracle. Even if pseudosignatures were
implemented with computationally-secure MACs, they would only be able to tolerate a
fixed number of verification queries.

Arbitrary Transferability with Unconditional Security Many schemes have been pro-
posed for tags that are both unconditionally secure and can be transferred an arbitrary
number of times. For instance, recent work [18,27,29] generalizes Multi-Receiver Au-
thentication (MRA) codes (invented by Desmedt et al. [11]) to unconditionally-secure
polynomial codes that satisfy similar properties to Transferability. These constructions
are called MRA3 codes. MRA3 codes constrain the number of signing and verification
oracle queries as well as the number of possible signatures that a signer can create, since
each signature leaks information.

Johansson [19] proposes a different authentication scheme that also satisfies uncondi-
tional security properties; it is similar in form to Atomic Signatures: signers and verifiers
each have secret keys that are used to solve a matrix equation. But unlike Atomic Sig-
natures, each signature in Johansson’s scheme provides a set of linear equations over
the signer’s secret keys, so keys must be refreshed after a fixed number of signatures.
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Computational Security Other schemes similar to MVS have been designed for par-
ticular protocols in the computational model. For instance, MACs are sometimes con-
sidered shared-key signatures, despite not satisfying Transferability. And in some fault-
tolerant distributed systems (e.g., Practical Byzantine Fault Tolerance (PBFT) [7]), vec-
tors of MACs are used to improve protocol speed over public-key signatures.

Aiyer et al. [1] present schemes in which servers use MACs to generate tags hav-
ing similar properties to public-key signatures. Unlike public-key signatures and MVS
schemes, however, their construction relies on communication between clients and
servers to produce and verify signed messages. And they also require that no more
than 1/3 of the servers in the system be compromised.

In a distributed setting where at most t signers may be compromised, Lamport [20]
suggests (in a set of slides on Byzantine Paxos) collecting (λ + 1)t + 1 tags from dif-
ferent signers. A signer in the scheme creates λ vectors consisting of n subtags each,
where each subtag of each vector contains a MAC of all the vectors before it, along with
the message. This scheme does not provide adaptive security, since an adversary with
oracle access to the signing functionality can create a split tag by the following proce-
dure. The adversary requests a tag for m and receives τ . Then the adversary corrupts τ

to τ ′ by overwriting some subtags with random strings and requests a tag for m || τ ′,
receiving a tag τ ′′. The tag τ ′ || τ ′′ is split for m, since all subtags in τ ′′ are supported,
but some subtags in τ ′ are not supported.

Canetti et al. [6] propose a multicast MAC scheme that is closely related to the
schemes in this paper. In this scheme, a collection of keys is associated with each ver-
ifier; keys are chosen randomly from a large set. Signers create a tag for a message m

by generating a MAC of m for each key they know. The algorithm distributes keys at
random with probability 1

t+1 if up to t verifiers may collude to try to forge tags. Keys

in this protocol may thus be shared by more than one verifier.18 Canetti et al. show that
given ε > 0, having e(t + 1) log( 1

ε
) keys in total suffices to guarantee that tags can be

forged only with probability less than ε. However, these tags do not satisfy Transferabil-
ity, since an adversary can create a new tag from a correctly signed tag by corrupting
one subtag. This new tag will be accepted by some verifiers and not by others.

7. Summary

This paper shows that MVS schemes provide lower-cost authentication than public-key
signature schemes while guaranteeing similar properties. Achieving these properties in
Atomic Signatures and Chain Signatures requires implementing a specialized secret-key
setup. The setup encodes an asymmetric relationship between the signer and verifiers,
since verifiers know which keys are owned by which signers, but signers do not know
which keys are owned by which verifiers; the proof of Transferability depends critically
on this asymmetry. Asymmetry in knowledge about keys thus appears to be fundamental
for achieving Transferability, both in public-key signature schemes and MVS schemes.

18 Atomic Signatures and Chain Signatures are closely related in key distribution to Canetti et al., but each
key is only shared between a pair of servers, so compromised relays are forced to guess keys to forge tags for
messages.
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Appendix A. Lemmas for Strong Unforgeability of Atomic Signatures

We prove several lemmas that together simplify the proof of Strong Unforgeability of
Atomic Signatures to the case where all but one verifier are compromised, no verifier
queries are allowed for an adversary, and MAC(·, k) is replaced by a random function
vk(·).

Lemma 10. If Atomic Signatures satisfies Strong Unforgeability when all but one ver-
ifier are compromised, then Atomic Signatures satisfies Strong Unforgeability.

Proof. Suppose A violates Strong Unforgeabilityusing an arbitrary set I ′ ⊆ I of com-
promised verifiers. We construct an adversary B that violates Strong Unforgeability
when all but one verifier, say verifier j , are compromised. B is given the keys for all
verifiers but j and is given oracle access to a verification oracle for j as well as a sign-
ing oracle. B maps its verifiers randomly to verifiers in the simulation for A; this does
not change the view of A, since keys are chosen uniformly at random. B runs A and
simulates its oracle queries as follows.

1. B calls A(1d ,1n, {K i}i∈I ′).
2. When A makes a signing oracle query, B passes the query to its signing oracle

and returns its response.
3. When A makes a verification oracle query for verifier j ′, B calls its verification

oracle if j ′ = j and otherwise uses its knowledge of the keys for j ′ to perform
verification for j ′ and return the result.

4. When A returns m and τ , B checks that VerAS(m, τ,Kj ) �= 0. If so, then B returns
m and τ , and otherwise, B aborts.

When A returns m,τ , there is some j ′ ∈ I − I ′ such that VerAS(m, τ,Kj ′) �= 0,
and there is a 1/n chance that j = j ′, since the position of j in I − I ′ was chosen
independently of the view of A. So, B succeeds with probability ε/n if A succeeds
with probability ε. �

Note that Lemma 10 is not entirely trivial: the act of compromising more verifiers
does not necessarily make it easier for the adversary to violate Strong Unforgeability,
since the adversary must find a noncompromised verifier that will accept its forged
tag. So, the availability of more noncompromised verifiers might in principle make the
adversary’s task easier.

Lemma 11. If Atomic Signatures satisfies Strong Unforgeability when no verifier
queries are allowed to an adversary and all but one verifier are compromised, then
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Atomic Signatures satisfies Strong Unforgeability when all but one verifier are compro-
mised.

Proof. Given an adversary A that succeeds with nonnegligible probability with poly-
nomial bound p(n) on its number of verification queries, we can construct a new adver-
sary B that succeeds with nonnegligible probability without using any verifier queries.
Assume, without loss of generality, that A always makes a verifier query for the pair m

and τ that it outputs.19

B simulates verifier queries from A for a message–tag pair m, τ as follows: if m has
been requested already from the signing oracle, which returned τ , then return ∞. If m

has not been requested from the signing oracle, or the signing oracle returned anything
but τ , then return 0. B stores each verification query. When A outputs m and τ , B
chooses one of the stored verification queries m′, τ ′ uniformly at random and outputs it.

A either uses more than one verification query (the final one), or it does not. If it does
not, then B succeeds every time A does, since B always chooses the one query that A
made. And this is the value that A returned.

If A uses more than one verification query, then either some verification queries
(other than the last) that were not received from the signing oracle should have re-
turned a value other than 0, or all verification queries (other than the last) that were not
received from the signing oracle should have returned 0. If all except the last should
return 0, then B succeeds only when it returns the m and τ from the last query. A suc-
ceeds with nonnegligible probability ε and makes at most p(n) queries, so B succeeds,
in this case, with probability greater than or equal to ε/p(n), which is nonnegligible.

If some queries not received from the signing oracle should return a value other than
0, then there is no guarantee about the success probability of A, since B no longer
simulates all of the verification queries correctly. But there is still a maximum bound of
p(n) on the number of verification queries, and there is at least one query that caused
B to fail to simulate the verification queries correctly. The definition of B guarantees
that this query violates Strong Unforgeability, since the query was not received from
the signing oracle. This means that the probability of B returning a query m and τ that
violates Strong Unforgeability is at least 1/p(n), which is nonnegligible.

So, B always succeeds in violating Strong Unforgeability with nonnegligible proba-
bility. �

For simplicity in stating the next lemmas, call the version of Atomic Signatures in
the hypothesis of Lemma 11 verifier-free Atomic Signatures, and call Atomic Signa-
tures when no verifier queries are allowed, all but one verifier are compromised, and
MAC(·, k) is replaced by a random function vk(·) verifier-free random Atomic Signa-
tures.

Lemma 12. If MAC is a pseudorandom function, then if verifier-free random Atomic
Signatures satisfies Strong Unforgeability, then verifier-free Atomic Signatures satisfies
Strong Unforgeability.

19 If this is not the case, then there is another adversary D that succeeds with the same probability as A but
performs the extra query. D runs A, and when A returns m and τ , D queries m and τ from the verification
oracle before returning them.
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Proof. Suppose, on the contrary, that verifier-free random Atomic Signatures satisfies
Strong Unforgeability, but verifier-free Atomic Signatures does not. This means that
there is an adversary A that succeeds with nonnegligible probability ε when interacting
with oracles that use MAC(·, k) to answer signing queries, and, by assumption, suc-
ceeds with only negligible probability ε′ when interacting with oracles that use random
functions vk(·) to answer signing queries.

Now construct a sequence of hybrids as follows: Hi uses vkj
(·) instead of MAC(·, kj )

for keys kj such that 1 ≤ j ≤ i, then uses MAC(·, kj ) for the remaining keys kj such that
i + 1 ≤ j ≤ dn. Note that H0 is verifier-free Atomic Signatures, and Hdn is verifier-free
random Atomic Signatures.

A standard hybrid argument shows that there must be an i such that A succeeds
with nonnegligible probability on hybrid Hi and succeeds with negligible probability
on hybrid Hi+1. But then there exists an algorithm D that can distinguish a random
function from MAC, since the only difference between hybrids Hi and Hi+1 is that Hi

uses MAC in its i + 1st position, whereas Hi+1 uses a random function in this position.
D sets up an instance of the hybrid Atomic Signatures scheme using its oracle (which

is either a pseudorandom or a random function) in the (i + 1)st position. Then D calls
A on this instance and returns 1 if A succeeds and 0 if A fails. Since A succeeds
with nonnegligible probability when there is a pseudorandom function in the (i + 1)st
position and succeeds only with negligible probability when there is a random function
in the (i + 1)st position, D succeeds in distinguishing pseudorandom from random
functions with nonnegligible probability. This contradicts the hypothesis that MAC is a
pseudorandom function. �

Appendix B. Noncompromised Signers

The constructions of MVS schemes in this paper allow the signer to be compromised.
But there are places where it is reasonable to make stronger assumptions. For instance,
when it is sound to assume that the signer is not compromised, we can simplify our
constructions significantly. This assumption holds in some common contexts: for exam-
ple, in operating systems, the OS itself is trusted by the processes and sometimes signs
messages (e.g., capabilities) to processes.

When the signer is not compromised, Transferability can be weakened to the follow-
ing:

Weak Transferability. For every nonuniform PPT adversary A, there exists a
negligible function ε such that for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d,1n

);
(m, τ) ← ASign(·,k),{Ver(·,·,K i )}i∈I−I ′ (1d , {K i}i∈I ′

) :(∃j, j ′ ∈ I − I ′ : ∣∣Ver(m, τ,Kj ) − Ver(m, τ,Kj ′)
∣∣ > 1

)] ≤ ε(d,n).

Weak Transferability implies that even an adversary that controls an arbitrary subset
of verifiers and has signing and verification oracles (for the other verifiers) cannot pro-
duce message and tag pair on which two correct verifiers will produce values that differ
by more than one. Notice that the adversary in this case does not control the signer.
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We call a λ-MVS scheme that satisfies λ-Completeness, Unforgeability, and Weak
Transferability a Weak λ-MVS scheme.

B.1. Known-Key Atomic Signatures

Known-Key Atomic Signatures (KA) is a Weak ∞-MVS scheme based on Atomic Sig-
natures, and it only uses one key for each verifier. KA follows exactly the algorithms
for Atomic Signatures for the case d = 1. But this means that verifiers can never return
⊥, since either their single instance of (2) is satisfied, or it is not.

Theorem 13. If the MAC is a pseudorandom function, then Known-Key Atomic Sig-
natures is a Weak ∞-MVS scheme.

Proof. ∞-Completeness. Same reasons as Atomic Signatures.
Strong Unforgeability. This follows from exactly the same proof as for Atomic Sig-

natures. The only difference is that the Union Bound does not include a factor of d ,
since each verifier only has 1 key rather than d .

Weak Transferability. We show that Strong Unforgeability implies Weak Transfer-
ability. As we have already shown that Known-Key Atomic Signatures satisfies Strong
Unforgeability, this implies that it also satisfies Weak Transferability.

We prove the contrapositive. Suppose that there is an adversary A that can violate
Weak Transferabilitywith nonnegligible probability ε. A uses access to a signing oracle
and verification oracles to produce a message m and tag τ such that for some pair
j, j ′ ∈ I − I ′, it holds that |VerKA(m, τ,Kj ) − VerKA(m, τ,Kj ′)| > 1. This means that
one verifier must return ∞ and the other must return 0. Without loss of generality,
assume that j returns ∞ and j ′ returns 0.

We now produce an adversary B that violates Strong Unforgeability. B is given the
same signing and verification oracles as A and must produce a message and tag that it
has never received from the signing oracle but causes some verifier j ∈ I −I ′ to produce
a value that is not 0. B simply calls A, simulates A’s oracle calls by passing them to
B’s oracles, and returns the values of m and τ returned by A.

Since verification for j returns ∞, the values m and τ will suffice to violate Strong
Unforgeability as long as m and τ were never received from B’s signing oracle. But the
same values of m and τ also cause j ′ ∈ I −I ′ to return 0. And ∞-Completeness implies
that no message and tag returned from the signing oracle ever cause a correct verifier
to return 0. So, m and τ were not received from the signing oracle, and B succeeds in
violating Strong Unforgeability. So, Strong Unforgeabilityimplies Weak Transferability.

And since we proved above that Known-Key Atomic Signatures satisfies Strong Un-
forgeability, it follows that Known-Key Atomic Signatures also satisfies Weak Trans-
ferability. �

B.2. Known-Key Chain Signatures

Known-Key Chain Signatures (KC) is a Weak λ-MVS scheme obtained by simplifying
Chain Signatures—it does not use unknown-key components in tags. So, each verifier
shares exactly one key with the signer. Its algorithms operate as follows
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Fig. 7. The structure of Known-Key Chain Signatures.

• GenKC(1n) simply sets up pairwise shared keys. The signer is given a vector k of
keys, and each verifier j is given k[j ].

• SignKC(m,λ,k) performs exactly the same operations as in Chain Signatures but
only uses the known-key components. We index subtag s in section r by a pair
(r, s) with the natural lexicographic ordering. This subtag is computed for the tag
Cλ(m) as follows:

Cλ(m)[r, s] � MAC
(
m ||

(t,t ′)<(r,1)

Cλ,d(m)[t, t ′],k[s]
)
. (4)

• VerKC(m, τ,Kj ) finds the highest section λ for which j ’s subtag is supported, and
returns λ. If there is no such section, then it returns 0. Verification never returns ⊥,
since the signer cannot be compromised.

Figure 7 shows the structure of KC, where we write kp for k[p mod n].
Generating a signature requires nλ steps: the tag contains nλ subtags, and each step

produces one subtag by computing the MAC of a vector that is of size at most |m| +
nλ. Thus the total cost of generating a tag is O(nλ(|m| + nλ)). The total cost can be
significantly reduced, as explained in Appendix D.

Theorem 14. For any λ ∈ N>0, if the MAC satisfies CTA Unforgeability, then KC is a
Weak λ-MVS scheme.

Proof. λ-Completeness. This follows trivially from the definition of KC, just as for
Chain Signatures.

Unforgeability. The proof is the same as for Chain Signatures when the adversary
causes some verifier to return a value in N>0: an adversary B is constructed that violates
CTA Unforgeability of the MAC.

Weak Transferability. The proof is almost identical to the proof of Non-Accusability
of Chain Signatures: if an adversary violates Weak Transferability, then by definition,
some subtag will be supported that takes as input a subtag that is not supported. The
probability of success for our construction in this case, however, is ε

n
rather than ε

(d+1)n
,

since the constructed adversary that violates CTA Unforgeability of the MAC guesses a
key kt from a set of size n rather than (d + 1)n. �
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Appendix C. Impossibility of Avoiding Split Tags

Transferability asserts that, except with negligible probability, even compromised sign-
ers cannot find split tags. But for public-key signatures, it is impossible to have split tags,
since all verifiers use the same function to check tags. A natural question is whether such
perfect transferability can be achieved in our MVS setting.

We can prove that an ∞-MVS scheme must contain a public-key signature scheme to
avoid split tags perfectly. Start with an ∞-MVS scheme (Gen,Sign,Ver) that satisfies
∞-Completeness, Unforgeability, and Non-Accusability. Now strengthen Transferability
to the following.

Perfect Transferability. For any PPT A and for any choice of I ′ ⊆ I ,

Pr
[(

k, {K i}i∈I

) ← Gen
(
1d,1n

);
(m, τ) ← A{Ver(·,·,K i )}i∈I−I ′ (1d ,1n,k, {K i}i∈I ′

) :(∃j, j ′ ∈ I − I ′ : Ver(m, τ,Kj ) �= ⊥ ∧ Ver(m, τ,Kj ′) �= ⊥
∧ ∣∣Ver(m, τ,Kj ) − Ver(m, τ,Kj ′)

∣∣ > 1
)] = 0.

Note that the only difference between the definition of Transferability (see page 314)
and Perfect Transferability is that ε(d,n) is set to 0 in the definition of Perfect Transfer-
ability.

Perfect Transferability implies that there are no split tags under any choice of keys,
because if a split tag existed, then an adversary that guessed message and tag pairs at
random would have some nonzero probability of choosing it. Also note that we can re-
move the restriction on verifiers j and j ′ being noncompromised: if there is any pair of
verifiers for which a split tag can be created, then an adversary can choose not to com-
promise those verifiers and guess the message and split tag with nonzero probability.
We can thus rewrite Perfect Transferability as follows:

∀d,n,∀k, {K i}i∈I ∈ Range
(
Gen

(
1d,1n

))
,∀m,τ,∀j, j ′ ∈ I :(

Ver(m, τ,Kj ) �= ⊥ ∧ Ver(m, τ,Kj ′) �= ⊥) =⇒∣∣Ver(m, τ,Kj ) − Ver(m, τ,Kj ′)
∣∣ ≤ 1.

To simplify the statement of Perfect Transferabilityfurther, we must consider a restricted
class of ∞-MVS schemes.

Given any ∞-MVS scheme Σ = (Gen,Sign,Ver), we can define a new ∞-MVS
scheme Σ ′ = (Gen,Sign,Ver′), in which the verifier only returns 0, ∞, and ⊥. To do
so, Ver′(m, τ,Kj ) calls Ver(m, τ,Kj ) and gets a reply v. Then Ver′ returns v if v is
one of 0, ∞, or ⊥. Otherwise, Ver′ returns 0. Note that Ver′ satisfies ∞-Completeness
if Ver does, since ∞-Completeness for Σ guarantees that Ver always returns ∞ on
message and tag pairs generated by Sign. And it is trivial to see that Σ ′ satisfies each
of Unforgeability, Non-Accusability, Strong Unforgeability, Perfect Transferability, and
Transferability if Σ does. We call Σ ′ a normalized ∞-MVS scheme from Σ .
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Since verifiers that do not return ⊥ in a normalized ∞-MVS scheme either return 0
or ∞, and |∞ − 0| > 1 holds, Perfect Transferability can be rewritten for normalized
∞-MVS schemes as follows:

∀d,n,∀k, {K i}i∈I ∈ Range
(
Gen

(
1d,1n

))
,∀m,τ,∀j, j ′ ∈ I :(

Ver(m, τ,Kj ) �= ⊥ ∧ Ver(m, τ,Kj ′) �= ⊥) =⇒
Ver(m, τ,Kj ) = Ver(m, τ,Kj ′).

Perfect Transferability interacts with Unforgeability, since verifiers in a normalized
∞-MVS scheme that satisfies Perfect Transferability can all simulate the actions of
other verifiers perfectly; a tag that violates Unforgeability must do so for all verifiers at
once.

For public-key signature schemes, the property corresponding to Unforgeability is
Chosen Message Attack (CMA) security [17]. A public-key signature scheme is se-
cure under CMA if no adversary A can produce a message m and tag τ that cause the
verification algorithm to return ∞, even if A can see tags for messages of its choice.
Naturally, as in Unforgeability, the adversary cannot return a message it requested from
its signing oracle.

The following theorem says that any normalized ∞-MVS scheme that satisfies
Perfect Transferability instead of Transferability is effectively a public-key signature
scheme secure under CMA [17].20 The intuition behind the theorem is that Perfect
Transferability effectively makes all verifiers use the same algorithm: access to one
verifier allows perfect simulation of the actions of any other verifier.

Given a normalized ∞-MVS scheme Σ = (Gen, Sign, Ver) that satisfies ∞-
Completeness, Unforgeability, Non-Accusability, and Perfect Transferability, we can
define a public-key signature scheme ΣD

j = (GenD , SignD , VerD) as follows for any

j in I . Let GenD(1d) call Gen(1d,1n) to produce public key K = Kj and secret key
k = k. Then SignD(·, k) just calls Sign(·,k). And VerD(·, ·,K) calls Ver(·, ·,Kj ), get-
ting response v. VerD returns v if v is 0 or ∞, and VerD returns 0 if v is ⊥, since all
verifiers use the same verification function in ΣD

j , hence never disagree about its return
value.

Theorem 15. If (Gen, Sign, Ver) is a normalized ∞-MVS scheme satisfying ∞-
Completeness, Unforgeability, Non-Accusability, and Perfect Transferability, then, for
any j ∈ I , ΣD

j is a public-key signature secure under CMA.

Proof. By the contrapositive. Suppose that we are given a nonuniform PPT adversary
A that violates CMA security of ΣD

j with nonnegligible probability ε.
We will construct a PPT B that violates Unforgeability of the MVS scheme for any

I ′ ⊆ I such that j ∈ I ′ and ∃j ′ ∈ I − I ′, as follows. B is given 1d ,1n, {K i}i∈I ′ , and
oracle access to Sign(·,k) = SignD(·, k) and {Ver(·, ·,K i )}i∈I−I ′ , so in particular, B
knows Kj . B proceeds as follows:

• B calls A(1d ,Kj )

20 Note that there is a normalized ∞-MVS scheme for every ∞-MVS scheme.
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– When A requests SignD(m,k), B calls the signing oracle Sign(m,k) and returns
its response.

– A evaluates Ver(m, τ,Kj ) to compute VerD(m, τ,K).
• When A returns m and τ , B returns m and τ .

When A succeeds, m and τ satisfy Ver(m, τ,Kj ) = VerD(m, τ,K) = ∞. In
this case, Perfect Transferability and Non-Accusability , taken together, imply that
Ver(m, τ,Kj ′) = ∞ with all but negligible probability: Non-Accusability implies
that Ver(m, τ,Kj ′) �= ⊥ with all but negligible probability, and Perfect Transferabil-
ity (in its rewritten form for normalized ∞-MVS schemes) states that in this case,
Ver(m, τ,Kj ′) = Ver(m, τ,Kj ) = ∞ always holds. This violates Unforgeability. B has
never requested m from its signing oracle, because A is required by assumption never
to request m of its signing oracle. B succeeds with the same nonnegligible probability
ε as A.

Thus, (Gen,Sign,Ver(·, ·,Kj )) is a public-key signature secure under CMA if (Gen,
Sign, Ver) is a normalized ∞-MVS scheme that satisfies ∞-Completeness, Unforge-
ability, Non-Accusability, and Perfect Transferability. �

Appendix D. Efficient Chain Signatures

To make Chain Signatures and Known-Key Chain Signatures more efficient, we employ
a different implementation that uses a family of collision-resistant hash functions to
keep the size of the input to the MAC constant. The algorithm for generating tags using
Known-Key Chain Signatures is presented in Fig. 8. There, h is chosen from H , a
family of collision-resistant hash functions, operator || is concatenation as before, and
we define x || y = x if y = NULL. Key generation algorithm Gen provides the chosen
h to the signer and each verifier. To generate a tag, a signer follows the same algorithm
as before, except that the input to the MAC in a given section is now the section number,
along with the hash of the concatenation of two values: (1) the input to the previous
section and (2) the hash of the previous section.

To check a subtag in section p, a verifier must use each subtag in each section that
precedes section p and build up wp(m), the input to the MACs in section p. Verifiers
follow the algorithm in Fig. 8 to build up wp(m) and use it to compute the MACs corre-
sponding to the subtags they are checking.

To calculate the time needed to compute a tag, we assume that both the hash and the
MAC execute in time linear in the length of their input. We also assume that both the
hash and the MAC produce a constant-size output.

The loop over p in Fig. 8 has λ iterations, and each iteration involves a hash of a value
of constant length, followed by a loop with n iterations and a hash computation over data
of size O(n). Since p has size logλ and wp(m) has constant size, the loop over p′ takes
time O(n logλ). There is also an initial cost of time O(|m|) to compute w1(m). So, the
total time to generate Known-Key Chain Signatures is O(|m| + λ + nλ logλ + n) =
O(|m| + nλ logλ).

This more efficient algorithm for Known-Key Chain Signatures is generalized to
Chain Signatures in Fig. 9. Similar to Known-Key Chain Signatures, the input to the
MAC for a given component is a number indexing the component, along with the hash
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w0(m) := m;
v0(m) := NULL;
for p := 1 to λ

wp(m) := h
(
wp−1(m) || vp−1(m)

)
;

for p′ := 1 to n

Cλ(m)[p,p′] := MAC
(
p || wp(m), kp

)
;

vp(m) := h

(
n||

t=1
Cλ(m)[p, t]

)

Fig. 8. The hashing version of Known-Key Chain Signatures.

w′
0(m) := m;

v′
0(m) := NULL

for p := 1 to λ

wp(m) := h
(
w′

p−1(m) || v′
p−1(m)

)
for p′ := 1 to n

Cλ,d(m)[p,1,p′] := MAC
(
2(p − 1) || wp(m),k0[p′])

vp := h

(
n||

t=1
Cλ,d(m)[p,1, t]

)
w′

p(m) := h
(
wp(m) || vp(m)

)
for p′ := 1 to dn

Cλ,d(m)[p,2,p′] := MAC
(
(2(p − 1) + 1) || w′

p(m),k1[p′])
v′
p(m) := h

(
dn||
t=1

Cλ,d(m)[p,2, t]
)

Fig. 9. The hashing version of Chain Signatures.

of the concatenation of two values: (1) the input to the previous component and (2) the
hash of the previous component.

We can calculate the running time of the algorithm of Fig. 9 as follows. The loop over
p has λ iterations. And each iteration has a hash over data of constant size, followed by
a loop with n iterations (each performing a MAC of data of size O(logλ)) and a hash of
data of size O(n). Then there is a hash of data of constant size, a loop with dn iterations
(each performing a MAC of data of size O(logλ)), and a hash of data of length O(dn).
And, as before, there is an initial cost of O(|m|) to compute w1(m). So, the time needed
to compute Chain Signatures using the algorithm of Fig. 9 is O(|m| + λ(n logλ + n +
dn logλ + dn)) = O(|m| + dnλ logλ).

To use the algorithms of Figs. 8 and 9 in Known-Key Chain Signatures and Chain
Signatures, we must modify the proofs of Unforgeability and Non-Accusability for
Chain Signatures, and Weak Transferability for Known-Key Chain Signatures, since
arguments based on unique input sizes to the MACs of each section no longer work.
Instead, the unique prefix p in the computation of the value MAC(p || wp(m), kp) in
the algorithm guarantees that the signing oracle would only have performed a given
computation for a subtag in the pth section.

In these new versions of Chain Signatures and Known-Key Chain Signatures, we say
that a subtag is supported if it is identical to the MAC of the hash value using wp or w′

p
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defined recursively in Figs. 8 and 9 over all previous components and the message. So, a
verifier can determine if its subtags are supported by computing the hashes of previous
components and the message and computing the MAC of this value.

Lemma 16. If MAC satisfies CTA Unforgeability and H is a family of collision-
resistant hash functions, then Chain Signatures using the algorithm described in Fig. 9
satisfies λ-Completeness, Unforgeability, and Non-Accusability.

Proof. λ-Completeness. As before, the proof of λ-Completeness follows by construc-
tion: signing and verification use the same algorithms to generate and check tags, so the
evaluation of the verification function VerCS(m,SignCS(m,λ,k),Kj ) returns λ for any
λ and any choice of j .

Unforgeability. We prove the contrapositive. Suppose that adversary A violates Un-
forgeability for some I ′ ⊆ I with probability ε. We construct an adversary B that
attempts to violates CTA Unforgeability of the MAC (for some key k′) or collision-
resistance of the family H . B is given MAC and VF oracles and is given the description
of a hash function h chosen randomly from H .

B chooses a key k∗
t uniformly at random from the n known keys and generates a new

instance of Chain Signatures by calling GenCS and replacing calls to MAC(·, k∗
t ) with

calls to B’s MAC oracle when signing and B’s verification oracle when verifying. B uses
h as its hash function in the execution of signing and verification. When A succeeds,
returning m and τ , the definition of Unforgeability states that there is some j ∈ I − I ′
for which VerCS(m, τ,Kj ) > 0. This means j must have (at least) a supported subtag
in component 1 of section 1.

B returns 0 || h(m) as its message and τ [1,1, t] as its tag. With probability 1/n, it
holds that t = j , since t was chosen uniformly at random and independently of j . And
MAC(0 || h(m), k′) = τ [1,1, t] in this case, because τ [1,1, t] = τ [1,1, j ] is the only
subtag for j in component 1 of section 1, so it must be supported. The prefix 0 in the
MAC computation guarantees that this MAC could only have been computed for the first
component of the first section. There are two possible cases.

In the first case, A requested some m′ �= m from its signing oracle such that h(m) =
h(m′). Then 0 || h(m) = 0 || h(m′), so this message was requested of the MAC ora-
cle, and CTA Unforgeability is not violated. But m′ and m are a collision for the hash
function, so B returns m and m′ and violates collision resistance of H .

In the second case, A did not request any m′ such that h(m) = h(m′), so B never
requested 0 || h(m) from its MAC oracle, since A never requested m, by assumption.
So, B succeeds in violating CTA Unforgeability.

So, either B violates CTA Unforgeability or returns a collision. And at least one case
must occur with nonnegligible probability if A succeeds with nonnegligible probability.
So, B succeeds with nonnegligible probability, and Chain Signatures satisfies Unforge-
ability.

Non-Accusability. We prove the contrapositive. Suppose that some adversary A vi-
olates Non-Accusability for some I ′ ⊆ I with probability ε. Similar to the proof of Un-
forgeability, we construct a B that attempts to violates CTA Unforgeability of the MAC
and collision resistance of the family H by building a new instance of Chain Signatures
and calling A. Instead of choosing a key at random from the known keys, however, B
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chooses a key kt from the union of the known keys and the unknown keys. When A
succeeds and returns m and τ , the definition of Non-Accusability states that there must
be some j in I − I ′ such that VerCS(m, τ,Kj ) returns ⊥, which means that there is
some supported subtag for j in a component r that takes as input a nonsupported subtag
for j . Without loss of generality, let the component for the nonsupported subtag for j

immediately precede the component for the supported subtag for j . And let this be the
lowest position in the tag at which a supported subtag for j in one component follows a
nonsupported subtag for j in the previous component.

There is a 1/((d + 1)n) probability that kt is the key used to compute this supported
subtag, since t was chosen uniformly at random and independently of choice of the
nonsupported subtag. Suppose that the nonsupported subtag for t is in component 2 of
section r −1, followed by a supported subtag for t in component 1 of section r (the same
argument applies for a nonsupported subtag in component 1 of some section r followed
by a supported subtag in component 2 of section r , but the indices differ accordingly).
B returns as a message m′ the input for the supported subtag in component 1 of section
r : 2(r − 1) || h(w′

r−1(m) || v′′
r−1(m)), where w′

r−1(m) is the normal computed value
for component 2 of section r − 1 in the signing algorithm of Fig. 9, and v′′

r−1(m) =
h(||dn

p=1τ [r − 1,2,p]). This is the normal algorithm for computing the v′ value in the
pseudo-code, but v′′ contains a nonsupported subtag for j from τ . B returns as its tag
τ ′ the corresponding supported subtag for j in component 1 of section r .

By the definition of Non-Accusability, when A succeeds, the MAC of the message m′
returned by B is the value of the tag τ ′ returned by B. So, the only question is whether
or not m′ was ever requested from the MAC oracle. If m′ was never requested from the
MAC oracle, then the proof is complete.

So, assume that m′ was requested from the MAC oracle. Since m′ starts with 2(r −1),
it could only be requested from the MAC oracle in an execution of the signing algorithm
for component 1 of section r . There are two possible cases.

In the first case, m′ was requested in an execution of the signing algorithm for mes-
sage m (the message on which m′ and τ ′ are based). Note, however, that m′ was formed
by taking the hash of a nonsupported subtag, and this cannot occur in the execution of
the signing algorithm for m; the nonsupported subtag must differ from the supported
subtag that would be computed in section r − 1 for m. So, the only way that m′ could
have been requested in the signing algorithm for m is if there were a collision in the
hash function, either in the outer hash in computing m′ or the hash in computing v′′.

In the second case, m′ was requested in an execution of the signing algorithm for
some message m′′ that is not equal to m. Note that m′ contains the output of the hash
on the concatenation of w′

r−1(m) with the hash of an adversarially chosen value. For
m′ to be input to the MAC oracle in the computation of component 1 of section r dur-
ing the signing of m′′, it would have to be the case that h(w′

r−1(m) || v′′
r−1(m)) =

h(w′
r−1(m

′′) || v′
r−1(m

′′)) holds. And w′ is constructed from concatenations of hashes
of its input message (m or m′′ in this case) with other values. Since m and m′′ differ,
and the two values h(w′

r−1(m) || v′′
r−1(m)) and h(w′

r−1(m
′′) || v′

r−1(m
′′)) have identi-

cal lengths and recursive structure, the only way that these two hash values could be the
same is if there were a hash collision. In both cases, B can find the hash collision by
comparing all the hashes computed during the simulation.
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Thus, either m′ and τ ′ violate CTA Unforgeability of the MAC with nonnegligible
probability, or a collision is found with nonnegligible probability. So, B succeeds with
nonnegligible probability, and Chain Signatures satisfies Non-Accusability. �

As before, Weak Transferability of Known-Key Chain Signatures follows from a par-
allel argument to Non-Accusability of Chain Signatures, but with a success probability
of ε/n instead of ε/(d + 1)n.
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