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Abstract. In the current paper we consider the following properties of filters: per-
fect balancedness of a filter function (i.e. preserving pure randomness of the input
sequence) and linearity of a filter function in the first or the last essential variable. Pre-
vious results on this subject are discussed, including misleading statements in Gouget
and Sibert (LNCS, vol. 4876, 2007) about the connection between perfect balanced-
ness and resistance to Anderson conditional correlation attack; the incorrectness of
two known results, the sufficient condition of perfect balancedness in Golić (LNCS,
vol. 1039, 1996) and the necessary condition of perfect balancedness in Dichtl (LNCS,
vol. 1267, 1997), is demonstrated by providing counterexamples.

We present a novel method of constructing large classes of perfectly balanced func-
tions that are nonlinear in the first and the last essential variable and obtain a new lower
bound of the number of such functions.

Golić conjecture (LNCS, vol. 1039, 1996) states that the necessary and sufficient
condition for a function to be perfectly balanced for any choice of a tapping sequence
is linearity of a function in the first or the last essential variable. In the second part of
the current paper we prove the Golić conjecture.

Key words. Boolean function, Perfectly balanced function, Keystream generator, Fil-
ter, Golić conjecture

1. Introduction

Golić [3] studied cryptographic properties of keystream generators consisting of a shift
register and a filter function which is connected to the register according to some tapping
sequence. He considered a model of a keystream generator as a filter with a fixed filter
function and an arbitrary choice of a tapping sequence. By proposing the inversion
attack on the filter he showed a cryptographic weakness of keystream generators in such
model in the case of a filter function being linear either in the first or the last variable.

Golić pointed out that even if the input sequence of the filter is purely random and
the filter function is balanced, the output sequence is not necessarily such. The prop-
erty of a Boolean function to preserve pure randomness of the input sequence (when
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used as a filter function with consecutive choice of taps; it is not necessary that all vari-
ables are essential) is called perfect balancedness. The pure randomness requirement
for nonlinear filter generators was introduced independently in [3,11].

Independently in [3,11] it was pointed out that all Boolean functions that are linear
in the first or the last variable are perfectly balanced. But keystream generators with
such functions are vulnerable to the inversion attack [3] in case of an inappropriate
choice of a tapping sequence and thus perfectly balanced functions which are nonlinear
in the first and the last essential variable are of primary interest (though the inversion
attack in its generalized form [5] is still applicable). Examples of such functions were
provided by Sumarokov in [11] and by Dichtl in [2], many examples can be found in
a full description of perfectly balanced Boolean functions of four and five variables
that was provided in [9]. Some other examples can be obtained using a construction
proposed in [7] by Logachev and discussed in [10]. However, two important questions
about obtaining lower bounds of the number of such functions and some large classes
of such functions were still unanswered.

In the current paper we solve both of these problems by proposing a novel approach,
based on the results of Sumarokov and Logachev. We construct large classes of perfectly
balanced functions that are nonlinear in the first and the last essential variable and obtain
a new lower bound of the number of such functions.

A sufficient condition from [3] and a necessary condition from [2] are shown to be
incorrect in the current paper by providing counterexamples together with technical ex-
planations. A criterion of perfect balancedness from [2] stated that a filter preserves
pure randomness of an input binary sequence if and only if a vectorial Boolean function
corresponding to M + 1 consecutive output bits of this filter is balanced. Only the suf-
ficient condition (not the necessary condition) does not hold, because it is not sufficient
to consider only M + 1 consecutive output bits, despite the finite input memory of M

bits, but all of them, which is another characterization also given in [3].
Earlier Anderson [1] proposed a conditional correlation attack and showed a corre-

sponding cryptographic weakness of filters in case of an inappropriate choice of both
the tapping sequence and the filter function. The main point of [1] is that the correla-
tions conditioned on the output segments (for linear functions of input bits) are stronger
than those conditioned on single output bits only, provided that the tapping sequence
consists of consecutive integers (which is the only case analyzed in [1]).

One of important contributions in [3] was that the conditional correlation attack de-
pends on the choice of the tapping sequence and that it is preferable that the tapping
sequence corresponds to a full positive difference set (PDS) or to a small-order PDS (if
this order is 1, this is a full PDS). In this case the interactions between different phases
of the filter function can be minimized. Mathematical arguments provided in [3, Sect. 3]
were that a controllable resistance level to the conditional correlation attack can be en-
sured by choosing the tapping sequence according to a small-order PDS in combination
with a correlation-immune filter function of appropriate correlation-immunity order.

In [6] there was a misleading consideration that in the case of pure random input se-
quence pure randomness of the output sequence of filter (i.e. perfect balancedness of the
filter function) implies resistance to Anderson conditional correlation attack. As it was
clearly pointed out in [1], as well as in [3,4], Anderson conditional correlation attack
is about the correlations conditioned on the output, not about the pure randomness of
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the output sequence, despite the fact that in the given examples in [1] the output seg-
ments are not balanced. Perfect balancedness of the filter function does not imply that
the conditional correlation attack is impossible. For example, for a perfectly balanced
filter function x1x2 ⊕ x3, if two consecutive output bits are (0,1), then the binary sum
of the last two input bits is equal to 1 with probability 1, whereas the maximum prob-
ability of linear functions of input bits when conditioned on single output bits is 3/4.
The paper [6] incorrectly states that it is dealing with the conditional correlation attack
from [1], while it is dealing with the pure randomness of the output sequence, in both
probabilistic and deterministic models. The so-called quasi-immune filter functions are
weakened first-order correlation-immune functions, where it is allowed that the function
is correlated to at most one input. Proposition 5 from [6] states that if such a function
is applied by using a tapping sequence corresponding to a full PDS, then any output
segment influenced by any single input bit is balanced and vice versa, in the probabilis-
tic model. This property is weaker than (i.e., does not imply) the sufficient condition
from Lemma 1 [3] for perfect balancedness, pointed out to be incorrect in the current
paper. Accordingly, this result is relevant neither for perfect balancedness nor for the
conditional correlation attack. The authors of [6] do not refer to [3, Sect. 3], although
they use the underlying concepts of full PDS and correlation-immune filter functions.

Perfect balancedness of a Boolean function is in fact a property of a filter with this
function and consecutive taps to preserve pure randomness of input binary sequences.
Sometimes it is more reasonable to consider only essential variables of a filter function
and fix a tapping sequence according to positions of ones which are not essential. For
example, the filter with a Boolean function x1x3 and the consecutive choice of taps
(with a tapping sequence (0,1,2)) can be described as a filter with a Boolean function
x1x2 and a tapping sequence (0,2).

An important problem is to describe the set of all Boolean functions such that a
filter with any of these functions with an arbitrary choice of tapping sequence preserves
pure randomness of an input binary sequence. This set contains all functions which are
linear in the first or the last variable, but are there any other functions? This question
was considered by Golić in [3]; importance of this problem is implied by the fact that
all filters with functions linear in the first or the last variable are vulnerable to Golić
inversion attack in case of tapping sequence not being spread all over the LFSR length.

Golić conjectured that in his model (with fixed Boolean function and an arbitrary
choice of taps in the filter) a filter with a filter function f preserves pure randomness of
an input binary sequence if and only if f is linear either in the first or the last variable.
Golić proved an easier part of this conjecture, namely sufficiency, and noted that neces-
sity remained unproven due to a “subtle underlying combinatorial problem remaining
to be solved”. According to Golić conjecture, the necessary condition for a function
to be perfectly balanced (i.e. preserving pure randomness of an input binary sequence
when used as a filter function) for any choice of a tapping sequence is linearity of a
function in the first or the last essential variable. Golić conjecture implies that in the
model being considered (with independent choice of a tapping sequence and a Boolean
function) there are no functions both invulnerable to the inversion attack and preserving
pure randomness.

To prove Golić conjecture, it suffices to find for an arbitrary Boolean function which
is nonlinear in the first and the last essential variable a tapping sequence, such that
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the Boolean function which describes input-output behavior of the corresponding filter
does not satisfy the conditions of the Sumarokov criterion of perfect balancedness [11].
The trivial case of a function with no linear variables was considered in [8]. In the gen-
eral case, all linear variables of a function have to be handled in a special way to con-
struct a particular tapping sequence and two binary sequences required by Sumarokov
criterion. This in fact solves an underlying combinatorial problem mentioned by Golić.

Organization of the Paper In Sects. 2 and 3 we describe our notation and provide
necessary definitions and previous results.

In Sect. 4 we propose a new approach that can be used to construct large classes
of perfectly balanced functions which are essential and nonlinear in the first and the
last variable; using this approach we demonstrate an error in a necessary condition of
perfect balancedness from [2] by providing a counterexample. In the end of Sect. 4 we
demonstrate that a sufficient condition of perfect balancedness from [3] is incorrect and
provide a necessary counterexample.

In Sect. 5 we provide our proof of Golić conjecture, proofs of technical lemmas are
provided in appendices.

2. Definitions

As usual, F2 denotes the finite field with two elements. For any n ∈ N Vn denotes F
n
2, Fn

is the set of all Boolean functions in n variables. A variable xi is called essential for the
function f (x1, x2, . . . , xn) ∈ Fn if there exists (α1, α2, . . . , αi−1, αi+1, . . . , αn) ∈ Vn−1
such that f (α1, α2, . . . , αi−1,0, αi+1, . . . , αn) �= f (α1, α2, . . . , αi−1,1, αi+1, . . . , αn).
A variable xi is called linear for the function f (x1, x2, . . . , xn) ∈ Fn if for any
(α1, α2, . . . , αi−1, αi+1, . . . , αn) ∈ Vn−1 inequality f (α1, α2, . . . , αi−1,0, αi+1, . . . , αn)

�= f (α1, α2, . . . , αi−1,1, αi+1, . . . , αn) holds. By Φn, Φn ⊂ Fn, we denote the set of all
Boolean functions with both the first and the last variables being essential. The subset
of Fn composed by all functions linear in the first (resp. the last) variable is denoted
by Ln (resp. Rn).

Let r ∈ N. A Boolean function g ∈ FN , N ∈ N, induces a mapping gr : Vr+N−1 �→ Vr

of the form

gr(z1, z2, . . . , zr+N−1)

= (
g(z1, . . . , zN), g(z2, . . . , zN+1), . . . , g(zr , . . . , zr+N−1)

)
. (2.1)

Let γ = (γ1, . . . , γn) be a tuple of nonnegative integers such that γ1 = 0; γi+1 > γi ,
i = 1,2, . . . , n−1, and let N = γn +1. From now on we consider tuples γ of this form.
For γ of the above form and arbitrary f ∈ Φn we denote f (xN−γn, xN−γn−1 , . . . , xN−γ1)

by f γ (x1, . . . , xN).
A filter with a tapping sequence γ , and a filter function f is a mapping of the set⋃∞
i=γn+1 Vi to

⋃∞
i=1 Vi , defined by (2.1) with m = 1,2, . . . and g = f γ (see Fig. 1).

Definition 2.1 (Sumarokov [11]). A Boolean function f ∈ Fn is said to be perfectly
balanced if for any r ∈ N and any y ∈ Vr

∣∣f −1
r (y)

∣∣ = 2n−1,

where | · | denotes cardinality.



468 S.V. Smyshlyaev

Fig. 1. A filter with a filter function f γ .

Using Definition 2.1 is easy to acquire [3,11] necessary and sufficient condition for
an r-tuple in the right-hand side of (2.1) to be distributed uniformly in Vr given the
uniform distribution of the vector Xr = (x1, . . . , xr+n−1).

Statement 2.2. Let n ∈ N and f ∈ Fn. Let {Xr = (x1, . . . , xr+n−1)}∞r=1 be a sequence
of random vectors with distribution

Pr
{
Xr = (a1, . . . , ar+n−1)

} = 2−(r+n−1)

for any (a1, . . . , ar+n−1) ∈ Vr+n−1. Random vector Yr = fr(Xr) is distributed uni-
formly for each r ∈ N iff f is perfectly balanced.

I.e., the output sequence of a filter with function f is purely random given that the
input sequence is such if and only if f is perfectly balanced.

3. Preliminaries

We denote the set of all perfectly balanced n-variable functions by P Bn, P Bn ⊆ Fn.
From cryptographic applications point of view the subset (Φn ∩ P Bn) \ (Ln ∪ Rn) is
of primary importance.

Theorem 3.1 (Sumarokov [11]). A Boolean function f ∈ Fn is perfectly balanced iff
there is no pair of distinct binary sequences

x = (x1, x2, . . . , xr ), z = (z1, z2, . . . , zr ) ∈ Vr, r ≥ 2n + 1, (3.1)

such that

x1 = z1, x2 = z2, . . . , xn = zn, xr−n+1 = zr−n+1, . . . , xr = zr ;
(3.2)
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Fig. 2. A filter with a filter function f = Ξm,n(g,h) = g[h].

x �= z; (3.3)

f (xi, xi+1, . . . , xi+n−1) = f (zi, zi+1, . . . , zi+n−1), i = 1,2, . . . , r − n + 1. (3.4)

The proof of Theorem 3.1 can be found in Appendix A.

Example 3.2. Let n = 3, f (x1, x2, x3) = x1x3 ⊕ x2.
Since f −1

2 (0,1) = {(0,0,1,0), (0,0,1,1), (1,1,1,0)} and |f −1
2 (0,1)| = 3 �=

2n−1 = 4, f /∈ P B3.
On the other hand, f4(0,0,1,0,0,1,0,0) = f4(0,0,1,1,1,1,0,0) and f /∈ P B3 fol-

lows from Theorem 3.1.

Remark 3.3. It is easy to see that all functions in Ln ∪ Rn satisfy the conditions of
Theorem 3.1 and thus Ln ∪ Rn ⊆ P Bn.

For any integers m and n consider a mapping Ξm,n : Fm × Fn �→ Fm+n−1 of the form

Ξm,n(g,h) = g[h] = f ∈ Fm+n−1, g ∈ Fm, h ∈ Fn,

where (see Fig. 2)

f (x1, x2, . . . , xm+n−1) = g[h](x1, x2, . . . , xm+n−1) = g(hm(x1, x2, . . . , xm+n−1))

= g(h(x1, x2, . . . , xn), h(x2, x3, . . . , xn+1), . . . , h(xm,xm+1, . . . , xm+n−1)).

Example 3.4. Let g,h ∈ F3, h(x1, x2, x3) = x1x3 ⊕ x2, g(z1, z2, z3) = z1z2 ⊕ z3, f =
Ξ(3,3)(g,h) ∈ F5. Then f (x1, x2, x3, x4, x5) = g[h](x1, x2, x3, x4, x5) = (x1x3 ⊕x2) ·
(x2x4 ⊕ x3) ⊕ (x3x5 ⊕ x4) = x1x2x3x4 ⊕ x1x3 ⊕ x2x4 ⊕ x2x3 ⊕ x3x5 ⊕ x4.



470 S.V. Smyshlyaev

4. Construction of Perfectly Balanced Functions

Golić and Sumarokov showed independently in [3,11] that all Boolean functions that
are linear in the first or the last variable are perfectly balanced, i.e. preserving pure
randomness of the input sequence when used as a filter function. On the other hand,
Golić demonstrated a cryptographic weakness of filters with such functions if the tap-
ping sequence is not spread all over the LFSR length. As it was shown in [5], in case
of inappropriate choice of the tapping sequence the generalized inversion attack is still
applicable even if the filter function f ∈ Fn is linear in neither the first nor the last input
variable. However, it is less effective, since in this case a minimum of fractions p+

f =
|{(x2, x3, . . . , xn) ∈ Vn−1|f (0, x2, x3, . . . , xn) = f (1, x2, x3, . . . , xn)}|/2n and p−

f =
|{(x1, x2, . . . , xn−1) ∈ Vn−1|f (x1, x2, . . . , xn−1,0) = f (x1, x2, . . . , xn−1,1)}|/2n is
nonzero. As it was conjectured in [3] and proven in the current paper in Sect. 5, there are
no functions that are nonlinear in the first and the last variable and preserving pure ran-
domness of the input sequence when used as a filter function with an arbitrary tapping
sequence (i.e. such that f γ ∈ (P BN ∩ ΦN) \ (LN ∪ RN) for any possible γ ).

In [2,7,9,11] the examples of perfectly balanced Boolean functions of four and five
variables that are nonlinear in the first and the last variable were provided. However,
nothing was known about such functions except these examples—nor lower bounds of
the number of such functions for arbitrary n, nor even any methods to construct such
functions for any n > 6. In the current section we propose an approach (based on the
construction from [7]) that can be used to construct large classes of such functions and
obtain a new lower bound of the cardinality of the set (P Bn ∩ Φn) \ (Ln ∪ Rn) for an
arbitrary n.

First, we demonstrate some auxiliary statements.

Lemma 4.1 (Logachev [7]). Let g ∈ Fm, h ∈ Fn. The function f = g[h] ∈ Fm+n−1 is
perfectly balanced iff both functions g and h are perfectly balanced.

Proof. Sufficiency. Let g ∈ P Bm, h ∈ P Bn. For any l ∈ N and for any y ∈ Vl

∣∣f −1
l (y)

∣∣ =
∣∣∣∣

⋃

z∈g−1
l (y)

h−1
l+m−1(z)

∣∣∣∣ =
∑

z∈g−1
l (y)

∣∣h−1
l+m−1(z)

∣∣ = 2m−1 · 2n−1 = 2m+n−2,

thus f is perfectly balanced.
Necessity. Let h /∈ P Bn. As follows from Theorem 3.1, for some r ≥ 2n + 1 there

exists a pair of distinct tuples x, z ∈ Vr such that (x1, x2, . . . , xn) = (z1, z2, . . . , zn),
(xr−n+1, xr−n+2, . . . , xr ) = (zr−n+1, zr−n+2, . . . , zr ), hr−n+1(x) = hr−n+1(z). Thus

fr+m−n(0,0, . . . ,0︸ ︷︷ ︸
m−1

, x1, x2, . . . , xr ,0,0, . . . ,0︸ ︷︷ ︸
m−1

)

= fr+m−n(0,0, . . . ,0︸ ︷︷ ︸
m−1

, z1, z2, . . . , zr ,0,0, . . . ,0︸ ︷︷ ︸
m−1

)

and, as follows from Theorem 3.1, f /∈ P Bm+n−1.
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Let h ∈ P Bn, g /∈ P Bm. In this case there exists l ∈ N and y ∈ Vl such that |g−1
l (y)| =

A �= 2m−1. Hence

∣∣f −1
l (y)

∣∣ =
∑

z∈g−1
l (y)

∣∣h−1
l+m−1(z)

∣∣ = A · 2n−1 �= 2m+n−2

and f /∈ P Bm+n−1.
Thus if f = g[h] ∈ P Bm+n−1 then g ∈ P Bm, h ∈ P Bn. �

Lemma 4.2. Let n ∈ N, h ∈ P Bn. Then for any integer m ∈ N and any pair of distinct
Boolean functions g(1), g(2) ∈ Fm inequality g(1)[h] �= g(2)[h] holds.

Proof. Let h ∈ P Bn, m ∈ N, g(1), g(2) ∈ Fm, g(1) �= g(2) and f (1) = g(1)[h], f (2) =
g(2)[h]. Fix a tuple z ∈ Vm such that g(1)(z) �= g(2)(z). Function h is perfectly bal-
anced, hence there exists a tuple x ∈ Vm+n−1 such that hm(x) = z. Thus f (1)(x) =
g(1)(hm(x)) = g(1)(z) �= g(2)(z) = g(2)(hm(x)) = f (2)(x) and f (1) �= f (2). �

Lemma 4.3. Let m ∈ N, g ∈ P Bm. Then for any integer n ∈ N and any pair of dis-
tinct Boolean functions h(1), h(2) ∈ Fn such that h(1)(0,0, . . . ,0) = h(2)(0,0, . . . ,0)

inequality g[h(1)] �= g[h(2)] holds.

Proof. Let f (1) = g[h(1)], f (2) = g[h(2)]. Since h(1) �= h(2), there exists a tuple
x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Vn such that h(1)(x̃) �= h(2)(x̃). Consider a tuple x ∈ V2m+3n−4,
x = (0,0, . . . ,0︸ ︷︷ ︸

m+n−2

, x̃1, x̃2, . . . , x̃n,0,0, . . . ,0︸ ︷︷ ︸
m+n−2

). It suffices to show that f
(1)
m+2n−2(x) �=

f
(2)
m+2n−2(x).

By contradiction, let f
(1)
m+2n−2(x) = f

(2)
m+2n−2(x). Then the following system is solv-

able:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(h(1)(0,0, . . . ,0), h(1)(0,0, . . . ,0), . . . , h(1)(0,0, . . . ,0), h(1)(0,0, . . . ,0, x̃1))

= g(h(2)(0,0, . . . ,0), h(2)(0,0, . . . ,0), . . . , h(2)(0,0, . . . ,0), h(2)(0,0, . . . ,0, x̃1));
g(h(1)(0,0, . . . ,0), . . . , h(1)(0,0, . . . ,0, x̃1), h

(1)(0,0, . . . ,0, x̃1, x̃2))

= g(h(2)(0,0, . . . ,0), . . . , h(2)(0,0, . . . ,0, x̃1), h
(2)(0,0, . . . ,0, x̃1, x̃2));

. . .

g(h(1)(0,0, . . . ,0), . . . , h(1)(0, x̃1, x̃2, . . . , x̃n−1), h
(1)(x̃1, x̃2, . . . , x̃n))

= g(h(2)(0,0, . . . ,0), . . . , h(2)(0, x̃1, x̃2, . . . , x̃n−1), h
(2)(x̃1, x̃2, . . . , x̃n));

. . .

g(h(1)(x̃n,0, . . . ,0), h(1)(0,0, . . . ,0), . . . , h(1)(0,0, . . . ,0))

= g(h(2)(x̃n,0, . . . ,0), h(2)(0,0, . . . ,0), . . . , h(2)(0,0, . . . ,0));
h(1)(0,0, . . . ,0) = h(2)(0,0, . . . ,0);
h(1)(x̃1, x̃2, . . . , x̃n) �= h(2)(x̃1, x̃2, . . . , x̃n).

(4.1)
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As follows from Theorem 3.1, system (4.1) cannot be solvable in case of perfectly
balanced function g. �

Corollary 4.4. Let n ∈ N, h(1), h(2), h(3) ∈ Fn; h(i) �= h(j), i �= j . Let m ∈ N,
g ∈ P Bm, f (i) = g[h(i)], i = 1,2,3. Then at least two of functions f (1), f (2), f (3) are
distinct.

Remark 4.5. It is important to note that perfect balancedness of Boolean function g

and inequality h(1) �= h(2) do not necessary imply g[h(1)] �= g[h(2)]. To show this, it
suffices to consider functions g(x1, x2) = x1 ⊕ x2 ∈ P B2 and h(2) = h(1) ⊕ 1 (for any
h(1)).

Lemma 4.6. Let m,n ∈ N, g ∈ Fm, h ∈ Fn. If g �= 0, g �= 1, h ∈ Rn, then g[h] �= 0,
g[h] �= 1.

Proof. h(x1, x2, . . . , xn) = h′(x1, x2, . . . , xn−1) ⊕ xn and g(z1, z2, . . . , zm) =
zi · g′(z1, z2, . . . , zi−1) ⊕ g′′(z1, z2, . . . , zi−1) for some integer i, 1 ≤ i ≤ n, and some
g′, g′′ ∈ Fi−1, g′ �= 0.

If i = 1 then g′ = 1 and g[h] = h or g[h] = h ⊕ 1, hence g[h] �= 0, g[h] �= 1.
If i ≥ 2 then

g[h](x1, x2, . . . , xm+n−1)

= xi+n−1 · g′[h](x1, x2, . . . , xi+n−2)

⊕h′(xi, xi+1, . . . , xi+n−2) · g′[h](x1, x2, . . . , xi+n−2)

⊕g′′[h](x1, x2, . . . , xi+n−2).

Using induction, it is easy to show that g′[h] �= 0.
Thus g[h] �= 0, g[h] �= 1. �

Lemma 4.7. Let m,n ∈ N, m ≥ 3, n ≥ 3, g ∈ Fm, h ∈ Fn. If g ∈ Φm ∩ (Lm \ Rm) and
h ∈ Φn ∩ (Rn \ Ln), then g[h] ∈ Φm+n−1 \ (Lm+n−1 ∪ Rm+n−1).

Proof. g(z1, z2, . . . , zm) = z1 ⊕ zm · g′(z2, z3, . . . , zm−1) ⊕ g′′(z2, z3, . . . , zm−1),
h(x1, x2, . . . , xn) = x1 · h′(x2, x3, . . . , xn−1) ⊕ h′′(x2, x3, . . . , xn−1) ⊕ xn for some
g′, g′′ ∈ Fm−2 and h′, h′′ ∈ Fn−2 such that g′ �= 0, g′ �= 1, h′ �= 0, h′ �= 1.

Then g[h](x1, x2, . . . , xm+n−1) = x1 · h′(x2, x3, . . . , xn−1) ⊕ h′′(x2, x3, . . . , xn−1) ⊕
xn⊕xm ·h′(xm+1, xm+2, . . . , xm+n−2)·g′[h](x2, x3, . . . , xm+n−2)⊕h′′(xm+1, xm+2, . . . ,

xm+n−2) · g′[h](x2, x3, . . . , xm+n−2)⊕ xm+n−1 · g′[h](x2, x3, . . . , xm+n−2)⊕ g′′[h](x2,

x3, . . . , xm+n−2). h′ �= 0, h′ �= 1 and, as follows from Lemma 4.6, g′[h] �= 0, g′[h] �= 1.
Thus g[h] ∈ Φm+n−1 \ (Lm+n−1 ∪ Rm+n−1). �

The following theorem is a consequence of Lemmas 4.1 and 4.7.

Theorem 4.8. Let m,n ∈ N, m ≥ 3, n ≥ 3, g ∈ Φm ∩ (Lm \ Rm), h ∈ Φn ∩ (Rn \ Ln),
f = g[h]. Then f ∈ (P Bm+n−1 ∩ Φm+n−1) \ (Lm+n−1 ∪ Rm+n−1).
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I.e., the composition of a function linear in the first variable and nonlinear in the last
variable and a function linear in the last variable and nonlinear in the first variable is a
perfectly balanced function that is linear neither in the first nor the last variable.

Let n ≥ 5. Consider the sets Q′
n = {f = g[h] | h(x1, x2, x3) = x1x2 ⊕ x3, g ∈ Φn−2 ∩

(Ln−2 \ Rn−2)}, Q̃n = {f = g[h] | g(z1, z2, z3) = z1 ⊕ z2z3, h ∈ Φn−2 ∩ (Rn−2 \
Ln−2), h(0,0, . . . ,0) = 0}, Q′′

n = Q̃n ∪ {f = f ′ ⊕ 1 | f ′ ∈ Q̃n} and Qn = Q′
n ∪ Q′′

n.

Lemma 4.9. Let n ≥ 5. Then |Q′
n| = |Q′′

n| = 22n−4 · (22n−4 − 2), Qn ⊆ (P Bn ∩ Φn) \
(Ln ∪ Rn).

Proof. From Theorem 4.8 it follows that Q′
n ⊆ (P Bn∩Φn)\(Ln∪ Rn), Q̃n ⊆ (P Bn∩

Φn) \ (Ln ∪ Rn). From Lemma 4.2 it follows that |Q′
n| = |Φn−2 ∩ (Ln−2 \ Rn−2)| =

22n−4 · (22n−4 − 2) and from Lemma 4.3 it follows that |Q̃n| = |{h ∈ Φn−2 ∩ (Rn−2 \
Ln−2) | h(0,0, . . . ,0) = 0}| = 1

2 · 22n−4 · (22n−4 − 2).
It is evident that a Boolean function f is perfectly balanced if and only if the function

f ⊕ 1 is perfectly balanced. Thus Q′′
n ⊆ (P Bn ∩ Φn) \ (Ln ∪ Rn) and Qn ⊆ (P Bn ∩

Φn)\ (Ln ∪ Rn). If f ∈ Q̃n, then f = g[h], g(z1, z2, z3) = z1 ⊕z2z3, h(0,0, . . . ,0) = 0
and f (0,0, . . . ,0) = 0. Thus Q̃n ∩ {f = f ′ ⊕ 1 | f ′ ∈ Q̃n} = ∅, |Q′′

n| = 2 · |Q̃n| =
22n−4 · (22n−4 − 2). �

Lemma 4.10. Let n ≥ 5. Then |Qn| ≥ 22n−3+1 − 5 · 22n−4
.

Proof. Let f ∈ Q′
n ∩ Q′′

n. Then f (x1, x2, . . . , xn) = h(x1, x2, . . . , xn−2) ⊕ h(x2,

x3, . . . , xn−1) · h(x3, x4, . . . , xn) ⊕ b = g(x1x2 ⊕ x3, x2x3 ⊕ x4, . . . , xn−2xn−1 ⊕ xn),
where h ∈ Φn−2 ∩ (Rn−2 \ Ln−2), h(0,0, . . . ,0) = 0, g ∈ Φn−2 ∩ (Ln−2 \ Rn−2),
b ∈ F2.

Let h(x1, x2, . . . , xn−2) = x1 · h′(x2, x3, . . . , xn−3) ⊕ h′′(x2, x3, . . . , xn−3) ⊕ xn−2,
h′′(0,0, . . . ,0) = 0, g(z1, z2, . . . , zn−2) = z1 ⊕ g̃(z2, z3, . . . , zn−2). Then

f (x1, x2, . . . , xn)

= x1 · h′(x2, x3, . . . , xn−3)

⊕ [h′′(x2, x3, . . . , xn−3) ⊕ xn−2 ⊕ h(x2, x3, . . . , xn−1) · h(x3, x4, . . . , xn) ⊕ b]
= x1x2 ⊕ x3 ⊕ g̃(x2x3 ⊕ x4, x3x4 ⊕ x5, . . . , xn−2xn−1 ⊕ xn),

hence h′(x2, x3, . . . , xn−3) = x2, h(x1, x2, . . . , xn−2) = x1x2 ⊕ h′′(x2, . . . , xn−3) ⊕
xn−2, h′′(0,0, . . . ,0) = 0 and |Q′

n ∩ Q′′
n| ≤ |{h′′ ∈ Fn−4 | h′′(0,0, . . . ,0) = 0}| ·

|{b ∈ F2}| = 22n−4−1 · 2 = 22n−4
.

Thus |Qn| = |Q′
n|+ |Q′′

n|− |Q′
n ∩Q′′

n| ≥ 2 · (22n−4 · (22n−4 − 2))− 22n−4 = 22n−3+1 −
5 · 22n−4

. �

Using Lemmas 4.9 and 4.10 it is easy to obtain the following lower bound of the
number of perfectly balanced Boolean functions which are nonlinear in the first and the
last variable.
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Corollary 4.11. |(P Bn ∩ Φn) \ (Ln ∪ Rn)| ≥ 22n−3+1 − 5 · 22n−4
.

Using the set Q′
n it is possible to show that the necessary condition of perfect bal-

ancedness from [2] is incorrect.

Theorem 1 (Dichtl [2]). Let f ∈ Fn (n ∈ N) be the filter function of a nonlinear
filter generator. If the outputs of the filter function are random independent bits with
probability 1/2 of being 0 and 1 (assuming that input bits are random independent bits
with probability 1/2 of being 0 and 1) (i.e. f ∈ P Bn), then there exists at most one index
j (1 ≤ j ≤ n) such that the function f j ∈ Fn−1 with f j (x1, . . . , xj−1, xj+1, . . . , xn) =
f (x1, . . . , xj−1,0, xj+1, . . . , xn), that is, the function for which the j th input bit of f is
fixed to 0, is not balanced.

Example 4.1. Let g(z1, z2, z3) = z1 ⊕ z2z3 and h(x1, x2, x3) = x1x2 ⊕ x3. Then f =
g[h] ∈ Q′

5 ⊆ P B5, however Boolean functions f 3(x1, x2, x4, x5) = f (x1, x2,0, x4, x5)

and f 5(x1, x2, x3, x4) = f (x1, x2, x3, x4,0) are both of weight 6 and thus are not bal-
anced that contradicts considered theorem.

Remark 4.2. The problem with the proof of considered theorem presented in [2] is that
for a perfectly balanced function it is not necessary that output bits yj and yk are still
independent (as they are when an input sequence is purely random, with no fixed bits)
in case when one input bit b is fixed to zero.

Another incorrect result about perfectly balanced Boolean functions is the sufficient
condition presented in [3].

Lemma 1 (Golić [3]). For a nonlinear filter generator with function f and input mem-
ory size M , the output sequence is purely random given that the input sequence is such
(i.e. f ∈ P BM+1) if and only if fM+1 is balanced.

Example 4.3. Let f (x1, x2, x3, x4) = x1 ⊕ x4 ⊕ x1x3 ⊕ x1x4 ⊕ x1x2x4, M = 3. Then
fM+1 = f4 is balanced but f5 is not and thus f /∈ P B4, which contradicts the consid-
ered lemma.

Example 4.4. Let f (x1, x2, x3, x4, x5) = x2 ⊕ x3 ⊕ x5 ⊕ x1x4 ⊕ x1x5 ⊕ x2x4 ⊕ x2x5 ⊕
x3x5 ⊕ x1x4x5 ⊕ x2x4x5, M = 4. Then fM+1 = f5 is balanced and even fM+2 = f6 is
balanced but f7 is not and thus f /∈ P B5 that contradicts considered lemma and even
its weaker version (with fM+2 instead of fM+1).

Remark 4.5. The problem with the proof of considered lemma presented in [3] is
that (for f ∈ Fn,M = n − 1) balancedness of output bit yt = f (xt , xt+1, . . . , xt+M)

for any fixed value of preceding M = n − 1 output bits (yt−M,yt−M+1, . . . , yt−1) =
fM(xt−M,xt−M+1, . . . , xt+M−1) does not necessary imply balancedness of yt for any
fixed value of preceding t − 1 output bits y1, y2, . . . , yt−1.
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5. Proof of Golić Conjecture

Theorem 5.1 (Golić [3]). For a filter with a filter function f for any choice of a
tapping sequence γ the output sequence is purely random given that the input se-
quence is such if (and only if [not proven]) f (z1, . . . , zn) is balanced for each value
of (z2, z3, . . . , zn) (i.e. f is linear in the first variable) or f (z1, . . . , zn) is balanced for
each value of (z1, z2, . . . , zn−1) (i.e. f is linear in the last variable).

For completeness, first we provide the proof of sufficient condition.1

Proof of sufficiency. Let f ∈ Ln ∪ Rn. It is evident that for any γ = (γ1, γ2, . . . , γn),
N = γn + 1 it follows that f γ ∈ LN ∪ RN and thus (see Remark 3.3) f γ ∈ P BN .
Sufficiency follows from Statement 2.2. �

According to Dichtl [2], unproven necessary condition in Theorem 5.1 is referred to
as Golić conjecture. Statement 2.2 implies that Golić conjecture can be stated in the
following form.

Conjecture 5.2. If f γ is perfectly balanced for every possible choice of γ , then f is
linear in the first or the last variable.

Example 5.3. Boolean function f (x1, x2, x3, x4) = x2 ⊕ x1x3 ⊕ x1x3x4 ∈ F4, consid-
ered in [2], is perfectly balanced (this can be verified by applying Theorem 3.1, since
the system f3(x1, x2,0, x4, x5, x6) = f3(z1, z2,1, x4, x5, x6) is not solvable) and it is
not linear neither in the first nor the last variable. According to Conjecture 5.2, there
must exist tapping sequence γ , such that f γ is not perfectly balanced.

Consider γ = (0,2,3,4), N = 5, f γ (x1, x2, x3, x4, x5) = x2 ⊕ x1x3 ⊕ x1x3x5. To
prove that f γ /∈ P B5 it suffices to consider x = (0,1,0,0,1,0,0,1,0,0,1,0), z =
(0,1,0,0,1,1,1,1,0,0,1,0) and to verify that all conditions of Theorem 3.1 are satis-
fied.

To prove Golić conjecture it suffices to construct for arbitrary f ∈ Φn \ (Ln ∪ Rn)

a particular tapping sequence making function f γ not perfectly balanced. The key idea
is to force γi increase exponentially in i. After choosing appropriate γ we construct
two different binary sequences of the special form required by Sumarokov criterion
(Theorem 3.1) to prove that f γ is not perfectly balanced.

Theorem 5.4. For any f ∈ Φn \(Ln ∪ Rn) there exists a tuple γ such that f γ /∈ P BN.

Proof. Let f ∈ Φn \ (Ln ∪ Rn). Suppose that f depends on each variable essentially
(this is w.l.o.g. since we are free to choose any tuple γ ) and exactly l variables are linear
for f . Thus f is of the following form:

f (x1, x2, . . . , xn) =
⊕

j=1,2,...,l

xi0
j
⊕ g(xi1

1
, xi1

2
, . . . , xi1

n−l
),

1 Although the proof given in [3] formally invokes Lemma 1, the proof technique is essentially correct.
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Fig. 3. Example of γ .

where g ∈ Fn−l depends on each variable essentially and nonlinearly, {i0
1 , i0

2 , . . . , i0
l } ∪

{i1
1 , i1

2 , . . . , i1
n−l} = {1,2, . . . , n}, i0

1 < i0
2 < · · · < i0

l , 1 = i1
1 < i1

2 < · · · < i1
n−l = n.

Let m0 = i1
n−l − i1

n−l−1,m1 = i1
n−l−1 − i1

n−l−2, . . . ,mn−l−2 = i1
2 − i1

1 ,m =
maxk=0,...,n−l−2 mk . Then

f (x1, x2, . . . , xn) = g(x1, xmn−l−2+1, . . . , xmn−l−2+mn−l−3+···+m0+1)

⊕
⊕

j=2,3,...,mn−l−2

xj ⊕
⊕

j=mn−l−2+2,...,mn−l−2+mn−l−3

xj ⊕ · · ·

⊕
⊕

j=mn−l−2+mn−l−3+···+m1+2,...,mn−l−2+mn−l−3+···+m0

xj .

Let τ0 = 0, τ1 = m0, τk+1 > (4m2 + 1)τk, k = 1, . . . , n − l − 2 and τk+1 − τk be a
multiple of mk ; let δk = τk+1−τk

mk
, k = 1,2, . . . , n − l − 2. Choose γ as follows:

γ = (
τ0, τ0 + δ0, . . . , τ0 + (m0 − 1)δ0, τ1, . . . , τk, τk + δk, . . . ,

τk + (mk − 1)δk, τk+1, . . . , τn−l−1
)
. �

Example 5.5. Let f (x1, x2, x3, x4, x5, x6, x7) = x1x4x5x6x7 ⊕ x2 ⊕ x3. One has
n = 7, l = 2, m0 = m1 = m2 = 1, m3 = 3, m = 3 and τ0 = 0, τ1 = 1, τ2 = 38,
τ3 = 1407, τ4 = 52062, δ3 = 16885. Thus N = 52063 and f γ (x1, x2, . . . , x52063) =
f (x1, x16886, x33771, x50656, x52025, x52062, x52063) (see Fig. 3).

Consider two binary sequences x = (x0, x1, . . . , xM), z = (z0, z1, . . . , zM),
M = 2N + ∑l′

j=1 δkj
, where kj are indices such that mkj

> 1 (l′ denotes the
total number of these indices). Fix certain bits of these sequences as follows:
x
N+∑l′

j=1 aj δkj

= 0, z
N+∑l′

j=1 aj δkj

= 1, ∀aj ∈ {0,1}, j = 1, . . . , l′.

Indices of the form N + ∑l′
j=1 aj δkj

are referred to as B-indices and all the others as
A-indices. It is easy to conclude, using Theorem 3.1, that to prove the theorem it suffices
to show that one can set all yet unfixed bits of x so that f γ

M−N+2(y) = f γ
M−N+2(z)

and xj = zj holds for any A-index j . Thereby we have distinct binary sequences
x, z with coinciding leading as well as tailing N -bit subsequences and such that
f γ

M−N+2(x) = f γ
M−N+2(z). Then, using Theorem 3.1, one concludes that γ is re-

quired tapping sequence, f γ /∈ P BN and the theorem follows.
First, we demonstrate some simple relations.

1. δk = τk+1−τk

mk
>

(1+4m2)τk−τk

mk
≥ 4mτk.
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2. If mk−1 > 1, then τk = τk−1 + mk−1δk−1 ≥ 2δk−1.

3. δk > δk−1. From 1 and 2 it follows that if mk−1 > 1, then δk > 8mδk−1.

4. From 3 it follows that
∑l′

j=j ′ δkj
<

∑l′
j=j ′ δkl′

1
(8m)l

′−j
<

∑∞
i=0 δkl′

1
(8m)i

= δk
l′

1− 1
8m

=
δkl′

8m
8m−1 .

5. δk = τk+1−τk

mk
<

τk+1
mk

≤ τk+1 if k ≥ 1; δ0 ≤ τ1.

According to Theorem 3.1, to prove the theorem it suffices to prove solvability of the
following system of equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

f γ (x0, . . . , xN−1) = f γ (z0, . . . , zN−1);
. . .

f γ (xM−N+1, . . . , xM) = f γ (zM−N+1, . . . , zM);
⎧
⎪⎪⎨

⎪⎪⎩

x
N+∑l′

j=1 aj δkj

= 0, ∀aj ∈ {0,1}, j = 1, . . . , l′;
z
N+∑l′

j=1 aj δkj

= 1, ∀aj ∈ {0,1}, j = 1, . . . , l′;
xt = zt , t �= N + ∑l′

j=1 aj δkj
, ∀aj ∈ {0,1}, j = 1, . . . , l′.

(5.1)

Now we fix variables involved in the second subsystem of (5.1) and consider ith equa-
tion (i = 0, . . . ,M − N + 1) of the first subsystem. Three cases are possible.

Case 1. Each B-index variable, which is essential for f
γ

(i) ≡ f γ (xi, . . . , xi+N−1), is

linear for f
γ

(i).

In Lemma 5.6 (the proof can be found in Appendix B) we prove that in this case f
γ

(i)

depends on exactly two such variables. Then, from definition of linear dependence and
from our fixation of B-index variables, we see that the ith equation of the first subsystem
turns out to be identity.

Lemma 5.6. Let the set of B-index variables that are essential for f
γ

(i) be nonempty,

and let f
γ

(i) be linear in any B-index variable. Then f
γ

(i) is linear in exactly two B-index
variables.

Case 2. f
γ

(i) depends essentially on no B-index variable.

In this case we have a trivial equality, since variables with equal A-indices are equal,
i.e. xj = zj , j �= N + ∑l′

j=1 aj δkj
.

Case 3. f
γ

(i) depends essentially and nonlinearly on some B-index variable xji_ .

Lemma 5.7 (the proof is in Appendix C) states that in this case f
γ

(i) is nonlinear in
exactly one essential B-index variable. In other words, if any other B-index variable is
essential for f

γ

(i), then the latter is linear essential variable of f
γ

(i).

Lemma 5.7. If f
γ

(i) depends essentially and nonlinearly on some B-index variable,
then there is exactly one such (nonlinear, essential, B-index) variable.
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Therefore, the ith equation of the system could be written in the form

φ(xji
1
, xji

2
, . . . , x _

j i−1
,0, x _

j i+1
, . . . , xj i

n−l
)

= φ(xji
1
, xji

2
, . . . , x _

j i−1
,1, x _

j i+1
, . . . , xj i

n−l
) ⊕ ζi,

where φ is the function constructed from f by setting all linear essential variables to
zero; (xji

1
, xji

2
, . . . , x _

j i−1
, x _

j i+1
, . . . , xj i

n−l
) are yet unfixed variables and ζi is a constant.

The variable x _
j i

is essential and nonlinear for φ, thus there exists at least one setting

of variables (xji
1
, xji

2
, . . . , x _

j i−1
, x _

j i+1
, . . . , xj i

n−l
), which turns ith equation of the first

subsystem of system (5.1) to identity. The Theorem is proven if one shows that no in-
dices j i

m appear in any other equation whose function satisfies conditions of the Case 3.
In other words, each index of a nonlinear essential variable of f

γ

(i) appears in at most one

equation with function f
γ

(i) depending essentially and nonlinearly on a B-index variable.
This fact is proven in Lemma 5.8 (the proof is in Appendix D).

Lemma 5.8. There is no index of a nonlinear essential variable of f
γ

(j) (for any j ) that

occurs in at least two equations with functions f
γ

(i) satisfying conditions of the Case 3.

Also, each variable that is present in the equations corresponding to Case 3 is present
only in one such equation. Equations which correspond to Case 1 and Case 2 turn into
trivial equalities, and each equation corresponding to Case 3 is solvable. So, we can
conclude that the whole system is solvable, and that fact directly implies statement of
the theorem.

Remark 5.9. Proof of Theorem 5.4 is much easier in the case of f without linear essen-
tial variables. In this case one has l = 0, mk = 1, k = 0, . . . , n− 2; γ = (γ1, γ2, . . . , γn),
where γ1 = 0 and γi = 6i−2, i = 1,2, . . . , n; N = 6n−2 +1. The pair of sequences (x, z)
is the solution of the following system of equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
γ

2N+1(x) = f
γ

2N+1(z);
xN+1 = 0, zN+1 = 1;
xi = zi, i = 1,2, . . . ,N;
xi = zi, i = N + 2,N + 3, . . . ,2N + 1.

6. Conclusion and Open Questions

The property of preserving pure randomness of an input binary sequence (perfect bal-
ancedness) is one of the most important for filter functions. However, there was a num-
ber of incorrect results in the previous works on this subject [2,3]. We demonstrate
errors in the incorrect proofs in [2,3] and provide necessary counterexamples.

In Sect. 4 we present a new approach that can be used to construct large classes of
perfectly balanced functions which are essential and nonlinear in the first and the last
variable. Using this approach we obtain a new lower bound (22n−3+1 − 5 · 22n−4

) of the
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cardinality of the set (P Bn ∩ Φn) \ (Ln ∪ Rn). Interesting open problems are obtaining

upper bounds (tighter than trivial ones such as
( 2n

2n−1

) − 2
(2n−1

2n−2

) + (2n−2

2n−3

) − 22n−1+1 + 3 ·
22n−2

) and tighter lower bounds of the cardinality of this set.
Theorem 5.4 implies the negative answer to the question of existence (in Golić model)

of keystream generators without undesirable properties mentioned in introduction. But
our proof is based on a register whose size exponentially grows with the number of
taps. Thus, though theoretically the question with Golić conjecture is now closed, there
remains the following open question: whether it is possible to prove a similar statement
without forcing a sequence γ increase exponentially (e.g. in the model where the size
of a register is bounded by some polynomial).
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Appendix A

Proof of Theorem 3.1 (Sumarokov [11]). Denote by γ (f, l) the maximum possible
(over all (y1, y2, . . . , yl) ∈ Vl) number of solutions to the system

{
f (xs, xs+1, . . . , xs+n−1) = ys;
s = 1,2, . . . , l.

(A.1)

It is evident that if for some f there are no sequences x, z such that (3.1)–(3.4)
hold, then the output sequence (y1, y2, . . . , yr−n+1) = fr−n+1(x) and x1, x2, . . . , xn;
xr−n+1, xr−n+2, . . . , xr determine the whole input sequence x = (x1, x2, . . . , xn, xn+1,

. . . , xr ), and thus for any integer l inequality γ (f, l) ≤ 22n−2 holds. In the opposite case
(i.e. there exists a pair of distinct sequences x̃ = (x̃1, x̃2, . . . , x̃r̃ ), z̃(z̃1, z̃2, . . . , z̃r̃ ) such
that fr̃−n+1(x̃) = fr̃−n+1(z̃) and (x̃1, x̃2, . . . , x̃n) = (z̃1, z̃2, . . . , z̃n), (x̃r̃−n+1, x̃r̃−n+2,

. . . , x̃r̃ ) = (z̃r̃−n+1, z̃r̃−n+2, . . . , z̃r̃ )) there are at least 2t solutions to the system

{
f (xs, xs+1, . . . , xs+n−1) = ys;
s = 1,2, . . . , t · r̃ − n + 1;

where ys = f (x̃s mod r̃ , x̃(s+1) mod r̃ , . . . , x̃(s+n−1) mod r̃ ), s = 1,2, . . . , t · r̃ − n + 1, and
thus γ (f, l) is unbounded as a function of l with l → ∞.

In the remaining part of the proof it is shown that γ (f, l) is bounded (with l → ∞)
iff f is perfectly balanced.
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By definition, for any f ∈ P Bn and any natural l γ (f, l) = 2n−1, i.e. γ (f, l) is not
unbounded with l → ∞. Let f /∈ P Bn. Then there is an integer l and a tuple ỹ =
(ỹ1, ỹ2, . . . , ỹl) ∈ Vl , such that there exist 2n−1 + α solutions to (A.1), where α ≥ 1.

For the tuple ỹ ∈ Vl construct the set of all possible sequences of length (k + 1)l +
k(n − 1) of the following form:

ỹ1, . . . , ỹl , yl+1, . . . , yl+n−1, ỹ1, . . . , ỹl , y2l+n−1, . . . , y2l+2(n−1), . . . ,

ykl+(k−1)(n−1)+1, . . . , ykl+k(n−1), ỹ1, . . . , ỹl , (A.2)

k = 1,2, . . . , where yi ∈ F2, i = l + 1, l + 2, . . . , l + n − 1;2l + n − 1,2l + n − 2, . . . .
Let μk denote the average number of inputs of f(k+1)l+k(n−1) that correspond to one
output of the form (A.2) (including unreachable outputs, if they exist). In this case,

μk = 2n−1
(

1 + α

2n−1

)k+1

,

so μk → ∞ with k → ∞. That is, for any integer M there is an integer k = k(M)

such that μk(M) > M , i.e. preimage of one of the sequences (A.2) of length t (M) =
(k(M)+1)l+k(M)(n−1) is of cardinality greater than M . This means that for arbitrary
M there exists t (M) such that γ (f, t (M)) > M and thus γ (f, l) is unbounded as a
function of l. �

Appendix B

Proof of Lemma 5.6. Consider the set of all essential B-index variables of f
γ

(i) and
let the variable in this set with the maximal B-index correspond to the (N − τk − rδk)th
variable of f γ , 1 ≤ r ≤ mk − 1. It is evident that in this case there is another B-index
variable corresponding to (N − τk − (r + 1)δk)th variable of f γ . According to condi-
tions of Case 1, this variable is linear as well. Therefore 1 ≤ r ≤ mk − 2,mk ≥ 3. Next
one has to prove that no other B-index variable is essential for f

γ

(i)
.

It suffices to show that variables of f γ with indices N − τk − rδk − ∑l′
j=1 bj δkj

,
bj ∈ {−1,0,1}, j = 1, . . . , l′ are not essential for f γ except for two trivial cases

(
∑l′

j=1 bj δkj
= δk and

∑l′
j=1 bj δkj

= 0).
Let kj∗ = k. Two cases are possible.
(1) ∃j◦ > j∗ : bj◦ �= 0 and let j◦ be the maximal index j such that bj �= 0. Evi-

dently, it suffices to consider the case of bj◦ = 1. Then N − τk − rδk − ∑l′
j=1 bj δkj

≤
N − τk − rδk − δkj◦ + ∑j◦−1

j=1 δkj
< N − τk − rδk − 4m(1 − 1

8m−1 )τkj◦ < N − τkj◦ .

Also, the following inequality holds. N − τk − rδk − ∑l′
j=1 bj δkj

= N − (τk+1 −
(mk − r)δk) − ∑l′

j=1 bj δkj
≥ N − (τk+1 − 2δk) − ∑l′

j=1 bj δkj
≥ N − (τk+1 − 2δk) −

∑j◦
j=1 δkj

> N − (τk+1 − 2δk) − δkj◦−1
8m

8m−1 − δkj◦ . If kj◦ − 1 = k, then kj◦−1 = k

and one can estimate the last expression as follows: N − (τk+1 − 2δk) − δkj◦−1
8m

8m−1 −
δkj◦ = N − τk+1 + δk − δk

8m−1 − δk+1 > N − τk+1 − δk+1 = N − τkj◦ − δkj◦ . Else
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N − (τk+1 − 2δk) − δkj◦−1
8m

8m−1 − δkj◦ > N − τk+1 − δkj◦−1
8m

8m−1 − δkj◦ ≥ N − τk+1 −
δkj◦−1

8m
8m−1 − δkj◦ ≥ N − τkj◦−1 − δkj◦−1

8m
8m−1 − δkj◦ > N − δkj◦−1(

1
4m

+ 8m
8m−1 ) −

δkj◦ = N − τkj◦ −τkj◦−1

mkj◦ ( 1
4m

+ 8m
8m−1 ) − δkj◦ > N − τkj◦

mkj◦ ( 1
4m

+ 1 + 1
8m−1 ) − δkj◦ ≥ N −

τkj◦
mkj◦ ( 1

12 + 1 + 1
23 ) − δkj◦ ≥ N − τkj◦

2 ( 1
12 + 1 + 1

23 ) − δkj◦ > N − τkj◦ − δkj◦ . This

implies that all the variables with indices j◦ > j∗, bj◦ = 1 occur in the interval (N −
τkj◦ − δkj◦ ,N − τkj◦ ) and thus could not be essential for f γ .

(2) ∀j > j∗ ⇒ bj = 0; ∃j◦ < j∗ : bj◦ �= 0 (if there are multiple such j◦, we choose
the largest one).

If bj∗ = 1, then N − τk − rδk − ∑l′
j=1 bj δkj

> N − τk − rδk − 8m
8m−1δk > N − τk −

(r + 2)δk ; N − τk − rδk − ∑l′
j=1 bj δkj

< N − τk − rδk,N − τk − rδk − ∑l′
j=1 bj δkj

�=
N − τk − (r + 1)δk.

If bj∗ = 0, then N −τk −rδk −∑l′
j=1 bj δkj

> N −τk −rδk − 1
8m−1δk > N −τk −(r +

1)δk ; N − τk − rδk −∑l′
j=1 bj δkj

< N − τk − (r − 1)δk,N − τk − rδk −∑l′
j=1 bj δkj

�=
N − τk − rδk.

Thus, in this case variables are not essential too. �

Appendix C

Proof of Lemma 5.7. By contradiction, let for some f
γ

(i)
two B-index variables cor-

respond to the (N − τk)th and (N − τp)th variables of f γ , p > k. Then

τp − τk =
l′∑

j=1

bj δkj
, bj ∈ {−1,0,1}. (C.1)

(1) Let the set K = {j |kj ≥ p,bj = 1} be nonempty and let j◦ be the maxi-

mum element of this set. Then
∑l′

j=1 bj δkj
≥ δkj◦ − ∑j◦−1

j=1 δkj
> δkj◦ − 8m

8m−1δkj◦−1 >

δkj◦ (1 − 1
8m−1 ) > 4m(1 − 1

8m−1 )τp > τp − τk.

(2) Let K be empty, i.e. bj◦ ≤ 0, kj◦ ≥ p. Then
∑l′

j=1 bj δkj
≤ ∑jp

j=1 δkj
< 8m

8m−1δkjp
,

where kjp ≤ p − 1. 8m
8m−1δkjp

= 8m
8m−1

τkjp
+1−τkjp

mkjp

≤ 8
7

τkjp
+1−τkjp

2 ≤ 8
7

τp−τp−1
2 < τp −

τp−1 ≤ τp − τk.

Hence, (C.1) is impossible and this concludes the proof of the lemma. �

Appendix D

Proof of Lemma 5.8. We have to prove that the equality

τa − τb +
l′∑

j=1

a′
j δkj

= τc − τd +
l′∑

j=1

a′′
j δkj

(D.1)
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does not hold if conditions
⎧
⎨

⎩

τa = τc;
τb = τd;
a′
j = a′′

j , j = 1, . . . , l′
(D.2)

are not satisfied.
First, we prove that equality

∑l′
j=1 a′

j δkj
= ∑l′

j=1 a′′
j δkj

holds only if a′
j = a′′

j ,
j = 1, . . . , l′. Let a′

j◦ �= a′′
j◦ , a′

j◦ = 1, a′′
j◦ = 0 and let j◦ be the largest index such that

a′
j �= a′′

j . Then

l′∑

j=1

a′
j δkj

−
l′∑

j=1

a′′
j δkj

= δkj◦ +
j◦−1∑

j=1

a′
j δkj

−
j◦−1∑

j=1

a′′
j δkj

≥ δkj◦ −
j◦−1∑

j=1

a′′
j δkj

≥ δkj◦ −
j◦−1∑

j=1

δkj
> δkj◦ − 1

8m − 1
δkj◦ > 0.

Consider indices a, b, c, d, e + 1, e = kj◦ , where j◦ is the largest index such that

a′
j �= a′′

j . One can transform (D.1) as follows: τa − τb = τc − τd + ∑j◦
j=1 bj δkj

, bj =
a′′
j − a′

j , j = 1, . . . , j◦.
Let q = max{a, b, c, d, e + 1}. We have (up to equivalence) five possibilities.
(1) q = a, q > b,q > c,q > d,q > e + 1. Then τa = τq > (4m2 + 1)τq−1 ≥ 5τq−1 ≥

τb + (τc − τd)+ 3τq−1 ≥ τb + τc − τd + 3δq−2 > τb + τc − τd + δq−2
8m

8m−1 > τb + τc −
τd + ∑j◦

j=1 δkj
≥ τb + τc − τd + ∑j◦

j=1 bj δkj
, hence equality (D.1) does not hold.

(2) q = e + 1, a ≤ e, b ≤ e, c ≤ e, d ≤ e. Let bj◦ = 1 (the case of bj◦ = −1 is
treated along the same lines). δe > 4mτe > 2τe + 2δe−1 > (τa − τb + τd − τc) + δe−1 +

1
8m−1δe−1 > τa − τb + τd − τc + ∑j◦−1

j=1 δkj
≥ τa − τb + τd − τc + ∑j◦−1

j=1 bj δkj
, thus

equality (D.1) does not hold.
(3) q = a = c. Then (D.1) can be transformed into τd = τb + ∑j◦

j=1 bj δkj
. If b = d ,

then (D.1) turns into
∑j◦

j=1 bj δkj
= 0, which holds only if bj = 0, j = 1, . . . , j◦.

If d > b (or d < b, that can be treated similarly), we denote q ′ = max{b, d, e + 1}
and consider three subcases.

• d = q ′ > e + 1. Then τd > (4m2 + 1)τq ′−1 > τb + 4m2τq ′−1 > τb + 4m2δe >

τb + 8m
8m−1δe > τb + ∑j◦

j=1 δkj
≥ τb + ∑j◦

j=1 bj δkj
.

• q ′ = e + 1 > d . Then
∑j◦

j=1 bj δkj
> 4mτq ′−1 − ∑j◦−1

j=1 δkj
≥ τd + τb + 2τq ′−1 −

∑j◦−1
j=1 δkj

> τd + τb + 2δq ′−2 − ∑j◦−1
j=1 δkj

= τd + τb + 2δe−1 − ∑j◦−1
j=1 δkj

>

τd + τb + 8m
8m−1δkj◦−1 − ∑j◦−1

j=1 δkj
> τd + τb .

• q ′ = e + 1 = d . Then τd > 3
4τd + m2τq ′−1 ≥ 3τe+1

2mj◦ + τb > 8m
8m−1δe + τb > τb +

∑j◦
j=1 δkj

≥ τb + ∑j◦
j=1 bkj

δkj
.

In fact, other subcases are possible but each of them is equivalent to one of the above.
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(4) q = a = d, b < q, c < q. Then e + 1 ≤ q and hence τa + τd > (4m2 + 1)τq−1 +
τq > τc + τb + τq ≥ τc + τb + 2δe > τc + τb + 8m

8m−1δe > τc + τb + ∑j◦
j=1 bj δkj

, thus
(D.1) does not hold in this case either.

(5) q = a = e + 1, b < q, c < q,d < q. Then τa = 3τa

4 + τa

4 >
3τe+1

4 + m2τq−1. e =
kj◦ , so me ≥ 2,m ≥ 2. Then 3τe+1

4 + m2τq−1 >
3τe+1
2me

+ 3τq−1 > 3
2δe + 3τq−1 > (1 +

1
8m−1 )δe + τb + (τc − τd) >

∑j◦
j=1 δkj

+ τb + (τc − τd) ≥ ∑j◦
j=1 bj δkj

+ τb + τc − τd .

This implies that (D.1) does not hold in this case either. �
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