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Abstract. We study the natural problem of secure n-party computation (in the com-
putationally unbounded attack model) of circuits over an arbitrary finite non-Abelian
group (G, ·), which we call G-circuits. Besides its intrinsic interest, this problem is
also motivating by a completeness result of Barrington, stating that such protocols can
be applied for general secure computation of arbitrary functions. For flexibility, we
are interested in protocols which only require black-box access to the group G (i.e. the
only computations performed by players in the protocol are a group operation, a group
inverse, or sampling a uniformly random group element). Our investigations focus on
the passive adversarial model, where up to t of the n participating parties are corrupted.

Our results are as follows. We initiate a novel approach for the construction of
black-box protocols for G-circuits based on k-of-k threshold secret-sharing schemes,
which are efficiently implementable over any black-box (non-Abelian) group G. We
reduce the problem of constructing such protocols to a combinatorial coloring prob-
lem in planar graphs. We then give three constructions for such colorings. Our first
approach leads to a protocol with optimal resilience t < n/2, but it requires exponen-
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tial communication complexity O(
(2t+1

t

)2 ·Ng) group elements and round complexity

O(
(2t+1

t

) · Ng), for a G-circuit of size Ng . Nonetheless, using this coloring recur-
sively, we obtain another protocol to t-privately compute G-circuits with communica-
tion complexity P oly(n) ·Ng for any t ∈ O(n1−ε) where ε is any positive constant. For
our third protocol, there is a probability δ (which can be made arbitrarily small) for the
coloring to be flawed in term of security, in contrast to the first two techniques, where
the colorings are always secure (we call this protocol probabilistic, and those earlier
protocols deterministic). This third protocol achieves optimal resilience t < n/2. It has
communication complexity O(n5.056(n+ log δ−1)2 ·Ng) and the number of rounds is
O(n2.528 · (n + log δ−1) · Ng).

Key words. Multiparty computation, Graph coloring, Non-Abelian group, Black-box
operations, Planar graph, Percolation theory, Word problem.

1. Introduction

Background Groups form a natural mathematical structure for cryptography. In partic-
ular, the most popular public-key encryption schemes nowadays (RSA [25] and Diffie-
Hellman/ElGamal [15,16]) operate in Abelian groups. The idea of using non-Abelian
groups in cryptography dates back to 1985 where [29] described a public-key protocol
based on the hardness of the word problem for finitely presented groups. The past few
years saw an increased interest in the cryptographic use of non-Abelian groups [22–24].
Moreover, a result due to Barrington [3] shows that computation in the non-Abelian
symmetric group S5 is complete in the sense that it can be used to perform computation
of arbitrary functions.

Motivated by the above, we study the natural problem of secure MultiParty Com-
putation (MPC), in the computationally unbounded attack model, of circuits over an
arbitrary finite group (G, ·) consisting of gates performing the group operation of G.
We call such circuits G-circuits. For flexibility, we are interested in protocols for
G-circuits which require only black-box access to the group G (i.e. the only computa-
tions performed by the players during the protocol are a group operation (x, y) → x · y,
a group inverse x → x−1, or sampling a random group element x ∈R G).

It is well known that when (G, ·) is Abelian, a straightforward 2-round black-box
n-party protocol exists for G-circuits which is t-private, i.e. secure against t passive
parties (also called semi-honest parties) for any t < n and has communication complex-
ity O(n2) group elements. This protocol is based on the concept of a homomorphic
secret-sharing scheme [5]; for a group (G, ·), these schemes have the property that, if
�v = (v1, . . . , vn) ∈ Gn is a share vector for a secret s ∈ G, and �w = (w1, . . . ,wn) ∈ Gn

is a share vector for a secret s̃ ∈ G, then �u = (v1 · w1, . . . , vn · wn) ∈ Gn is a share
vector for the secret r = s · s̃ ∈ G. For example, given an n-of-n homomorphic secret-
sharing scheme, a protocol for shared computation of a product x1 · · ·xn, where xi is
held by Pi for i = 1, . . . , n works as follows. In the first round, for each i, party Pi

computes a share vector �vi = (vi,1, . . . , vi,n) for its input xi , and for each j , sends the
j th share vi,j to party Pj . In the second round, for each j , party Pj computes the prod-
uct uj = v1,j · · ·vn,j of the shares it received in the first round, and broadcasts uj to all
parties. By the homomorphic property, �u = (u1, . . . , un) is a share vector for the desired
value x1 · · ·xn, which all parties can then compute.
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Unfortunately, when (G, ·) is non-Abelian, the above construction of a homomorphic
secret-sharing scheme fails, and in fact it is known that no homomorphic construc-
tion exists [17]. Thus, the above 2-round protocol no longer applies. Moreover, to our
knowledge, when (G, ·) is non-Abelian, no constructions of black-box protocols for G-
circuits have been designed until now. Consequently, to construct a t-private protocol
for G-circuits over some non-Abelian group G, one currently has to resort to adopting
existing non black-box methods, which may lead to efficiency problems (see ‘Related
Work’).

Our Results Our work only considers the passive attack model. We obtain the follow-
ing results. We initiate a novel approach for the construction of black-box MPC proto-
cols for G-circuits based only on k-of-k threshold secret-sharing schemes (whereas pre-
vious non black-box protocols rely on Shamir’s t-of-n threshold secret-sharing scheme
over a field and its generalization to rings). We reduce the problem of constructing
such protocols to a combinatorial coloring problem in planar graphs. Our notion of ‘t-
reliable n-coloring’ is closely related to the notion of set separability defined in [12],
and shown to be equivalent to the existence of private communication via a network
graph in which each node is assigned one of n possible colors and the adversary con-
trols all nodes with colors belonging to a t-color subset I . However, in our paper, the
behavior of colored nodes is different from [12]. Indeed, our coloring is used for MPC
both at the global level and at the node level (each node performs a sharing) while,
in [12], colored nodes are only used to transmit data. In our context, we need to ensure
a specific graph connectivity property for all t-sets of adversaries. We then give three
constructions for such graph colorings. Our first coloring construction gives a proto-
col with optimal resilience t < n/2, but it has exponential communication complexity

O(
(2t+1

t

)2 · Ng) group elements and round complexity O(
(2t+1

t

) · Ng), for a G-circuit
of size Ng (this construction also easily generalizes to general Q2-adversary structures
A as defined in [20], giving communication complexity O(|A|2 · Ng) group elements).
We show how to use it recursively to construct a protocol with polynomial communica-
tion complexity for any t ∈ O(n1−ε) where ε is any positive constant. Our last coloring
construction is probabilistic. Using arguments from percolation theory, we demonstrate
that our third construction gives a protocol with optimal resilience (t < n/2) while hav-
ing polynomial communication complexity (as low as O(t2 · Ng) group elements when
t ≤ n/(2 + ε) for any constant ε > 0). The reader can find a detailed table containing
the different parameters for our protocols in Table 1 located at the end of this paper in
Sect. 4.

Differences with [13,28] Our current paper presents the following improvements of
our earlier work.

1. We generalize our approach to MPC over non-Abelian groups by providing proto-
cols allowing the computation of any G-circuit. In [13,28], we restricted ourselves
to the case of the n-product function fG(x1, . . . , xn) = x1 · · ·xn.

2. We refine the percolation analysis performed in [28] to demonstrate the feasibility
of probabilistic MPC for any t < n/2 with polynomial communication complex-
ity.
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3. We perform an explicit analysis of the round complexity for our different proto-
cols.

4. We provide a set of graphs exhibiting a t-reliable (2t +1)-coloring for some small
values of t . Despite the fact that we were not able to generalize them, we believe
that they might show some light as to how to obtain general constructions.

Related Work There are two known non black-box methods for constructing a t-
private protocol for G-circuits for any t < n/2. They are both based on Shamir’s t-of-n
threshold secret-sharing scheme [26] and its generalizations.

The first method [4,7,18] requires representing the G-circuit C as a Boolean circuit,
and uses Shamir’s secret-sharing scheme over the field GF(p) for a prime p > 2t + 1.
This protocol has total communication complexity O(t2 log t · NAND(C)) bits, where
NAND(C) denotes the number of AND gates in the Boolean AND/NOT circuit for
computing C. Thus, this protocol is efficient only for very small groups G, for which
NAND(C) is manageable. Improvements can be found in [9,11] where the cost is re-
duced to O(d(logd)P oly(n) + NAND(C)P oly(logn)) (where d represents the depth of
the circuit) and O(n(logn)NAND(C)), respectively. However, these values still depend
linearly on NAND(C).

The second method [8] (see also [2] for earlier work) requires representing a G-
circuit as an arithmetic circuit over a finite ring R, and accordingly, uses a general-
ization of Shamir’s secret-sharing scheme to any finite ring. This protocol has total
communication complexity O(t2 log t · NM(C) · �(R)) bits, where NM(C) is the num-
ber of multiplication operations in the implementation of the G-circuit C over R and
�(R) ≥ log |R| denotes the number of bits needed for representing elements of R. If
we ‘embed’ the group G in the ring R = R(G), so that R inherits the multiplication
operation of G, then NM(C) = n − 1, and hence the protocol from [8] has total com-
munication complexity O(Ngt

2 log t · �(R(G))) bits (where Ng denotes the size of the
G-circuit C), compared to O(Ngt

2 · �(G)) bits for our probabilistic protocol, where
�(G) ≥ log |G| is the representation length of elements of G. Hence, the communica-
tion complexity of our third protocol for C is smaller than the one from [8] by a factor
Θ(

�(R(G))
�(G)

· log t). However, for this generic choice of R(G), we have �(R(G)) = |G|.
Thus, assuming �(G) = log |G|, our protocol reduces communication complexity by a
factor Θ(

|G|
log |G| · log t), which is exponentially large in the representation length log |G|.

In the worst case, we may have �(R(G)) = Θ(�(G)) and our protocol may only give a
saving factor O(log t) over the protocol from [8] as in the case for G = GL(k,2) (the
group of invertible k × k matrices over GF(2)). We remark that this O(log t) saving
factor arises essentially from the fact that Shamir’s secret sharing for 2t + 1 shares re-
quires a ring of size greater than 2t + 1, and hence, for a secret from GF(2), the share
length is greater than the secret length by a factor Θ(log t) (whereas our approach does
not use Shamir’s sharing and hence does not suffer from this length expansion). On the
other hand, for sharing a secret from GF(q) for ‘large’ q (q > 2t + 1), Shamir’s scheme
is ideal, so for specific groups such as G = GL(k, q) with q > 2t + 1, the communica-
tion cost of the protocols from [2,8] reduces to O(Ngt

2 · �(R(G))). A generalization of
the technique from [11] to rings might give another way to save a factor Θ(log t) for
circuits of low depth.
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We wish to emphasize a fundamental difference between our protocols and all pre-
vious MPC constructions discussed above. Namely, previous protocols achieve security
against t colluding parties by using a (t + 1)-of-n threshold secret-sharing scheme to
distribute the protocol inputs and intermediate protocol values. The focus is on design-
ing special threshold secret-sharing schemes that allow protocols for computations on
shares. In contrast, our protocols use only a very simple k-of-k secret-sharing scheme
with no special properties, and we achieve the security against t colluding parties by de-
signing a special protocol communication graph. Thus, our approach shifts the design
focus from secret-sharing schemes to communication graphs.

Organization The rest of the paper is organized as follows. Section 2 presents a se-
quence of reductions from the problem of designing secure MPC protocols to a specific
graph coloring problem. Following some preliminaries in Sect. 2.1, Sect. 2.2 reviews
Barrington’s reduction of general Boolean circuit computation to computation of cir-
cuits over the non-Abelian symmetric group S5. This shows that our protocols, applied
over S5, can be used for general secure MPC. Next, in Sect. 2.3, we reduce the problem
of secure MPC over a general group G to the shared 2-product problem of multiplying
two group elements, where at the start of the protocol, the parties hold shares of the
two elements to be multiplied, and at its end, they hold shares of the product. Then,
in Sect. 2.4, we reduce the shared 2-product problem to a graph coloring problem. In
Sect. 3, we show a relaxation of the coloring conditions and then we present construc-
tions meeting these new conditions. More specifically, Sect. 3.3 contains two determin-
istic coloring constructions, while Sect. 3.4 studies a probabilistic coloring technique
allowing more efficient protocols at the cost of an arbitrarily small probability of insecu-
rity. The last section of this paper concludes with some open problems. Appendices A–E
contain several proofs of results referred to in the main text.

2. From Multiparty Computation to Graph Coloring

In this section, we propose a two-step reduction from the problem of designing protocols
for t-privately computing G-circuits to the issue of obtaining a particular coloring for
some specific families of planar graphs.

2.1. Preliminaries

2.1.1. Security Model

We recall the definition of secure MPC in the passive (semi-honest), computationally
unbounded attack model, restricted to deterministic symmetric functionalities and per-
fect emulation [18]. Let [n] denote the set {1, . . . , n}.

Definition 1. Let f : ({0,1}∗)n → {0,1}∗ denote an n-input, single-output function,
and let

∏
be an n-party protocol for computing f . We denote the party input sequence

by �x = (x1, . . . , xn), the joint protocol view of parties in subset I ⊆ [n] by VIEW
∏

I (�x),
and the protocol output by OUT

∏
(�x). For 0 < t < n, we say that

∏
is a t-private pro-

tocol for computing f if there exists a probabilistic polynomial-time algorithm S, such
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that, for every I ⊂ [n] with |I | ≤ t and every �x ∈ ({0,1}∗)n, the random variables

〈
S
(
I, �xI , f (�x)

)
, f (�x)

〉
and

〈
VIEW

∏

I (�x),OUT
∏

(�x)
〉

are identically distributed, where �xI denotes the projection of the n-ary sequence �x on
the coordinates in I .

2.1.2. Black-Box Non-Abelian Group Protocols

Our protocols will treat the group G as a black-box in the sense that the only computa-
tions performed by players in our protocols will be one of the following three:

• Multiply: given x ∈ G and y ∈ G, compute x · y,
• Inverse: given x ∈ G, compute x−1,
• Random Sampling: choose a uniformly random x ∈ G.

It is easy to see that these three operations are sufficient for implementing a perfect
k-of-k threshold secret-sharing scheme as described in Proposition 1. We use this k-of-k
scheme as a fundamental building block in our protocols. The following proposition is
easy to prove.

Proposition 1. Fix x ∈ G and integers k and j ∈ [k], and suppose we create an k-
of-k sharing (sx(1), sx(2), . . . , sx(k)) of x by picking the k − 1 shares {sx(i)}i∈[k]\{j}
uniformly and independently at random from G, and computing sx(j) to be the unique
element of G such that x = sx(1)sx(2) · · · sx(k). Then, the distribution of the shares
(sx(1), sx(2), . . . , sx(k)) is independent of j .

2.2. Reducing General Multiparty Computation to G-Circuit Computation

As we explained in the introduction, a strong motivation for our study of MPC over non-
Abelian groups G is the fact that it is complete for general MPC, i.e. it provides a new
method of performing secure MPC of arbitrary functions. In this section, we briefly
review a method due to Barrington [3], which shows how to efficiently transform an
arbitrary Boolean circuit C (consisting of AND and NOT gates) into a circuit C′ over
the non-Abelian group S5 (consisting of S5 multiplication gates), which computes the
same Boolean function. Our protocol can then be applied over S5 to securely compute
the S5-circuit C′ and hence the Boolean circuit C.

In the following, for a group G, we define an m-input 1-output G-circuit C as a
circuit (directed acyclic graph) with m input nodes, one output node, and two types of
gates (corresponding to all other circuit nodes):

1. Mult: Given two inputs x and y in G, the gate output is x · y ∈ G.
2. CMultα,β : Given one input x ∈ G, the gate output is α · x · β ∈ G (note that the

constants α,β ∈ G are built into the gate).

Since we work over general groups that may be non-Abelian, the order of inputs to
each Mult gate is important; accordingly, we assume that for each Mult node in the cir-
cuit C, one of its incoming edges is labeled by ‘x’, indicating that the corresponding
input is to be multiplied on the left, and we call it the ‘x-input’ edge. We call the re-
maining incoming edge the ‘y-input’ edge. For each node, we allow arbitrarily many
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outgoing edges, which all carry the same value (the gate’s output value), allowing arbi-
trary ‘fan out’.

We denote by fC : Gm → G the function computed by the G-circuit C. Let 1G

denote the identity element of G. For some fixed σ ∈ G \ {1G}, let φσ : {0,1} → G

denote the encoding function mapping 0 to 1G and 1 to σ . We say that a G-circuit
C computes a Boolean function g if there exists σ ∈ G such that g(x1, . . . , xm) =
φ−1

σ (fC(φσ (x1), . . . , φσ (xm))) for all (x1, . . . , xm) ∈ {0,1}m.
Since Barrington’s result is presented in a different context than in [3], we provide a

proof adapted from [3] for completeness.

Theorem 1 (Adapted from [3]). Let C be a Boolean circuit consisting of NA 2-input
AND gates, NN NOT gates, and depth d . Then there exists an S5-circuit C′ which com-
putes the Boolean function computed by C. The circuit C′ contains N ′

M = 3NA Mult
gates and N ′

CM = 4NA + NN CMult gates, and has depth d ′ ≤ 4d .

Proof. It suffices to show an S5-circuit for computing the AND function (using 3 Mult
gates and 4 CMult gates) and another for computing the NOT function (using 1 CMult
gate).

We recall that two elements x, y ∈ S5 are called conjugates if there exists h ∈ S5
such that x = h · y · h−1. It is easy to check that conjugacy is an equivalence rela-
tion, and hence partitions S5 into conjugacy equivalence classes. Barrington’s method
is based on the conjugacy class J of all 5-cycles of S5. In particular, J contains two
distinct elements σ1 = (12345) and σ2 = (13542) whose commutator c = [σ1, σ2] =
σ1σ2σ

−1
1 σ−1

2 = (13254) is also in J . Furthermore, it is clear that σ−1
1 is also in J .

For x ∈ {0,1}, and σ ∈ J , let xσ = φσ (x) denote the encoding relative to σ . First,
we observe that for σ,σ ′ ∈ J , we can convert an encoding of x relative to σ to an
encoding of x relative to σ ′ using one CMult gate, namely xσ ′ = hσ,σ ′xσ h−1

σ,σ ′ , where

hσ,σ ′ satisfies σ ′ = hσ,σ ′σh−1
σ,σ ′ and exists by conjugation of σ,σ ′.

The AND function z = AND(x, y) can be computed by the following S5 circuit,
relative to the encoding φσ1 . Given inputs xσ1, yσ1 ∈ S5:

• Compute by encoding conversion (using 3 CMult gates) x
σ−1

1
, yσ2 , y

σ−1
2

.

• Compute (using 3 Mult gates) zc = xσ1yσ2xσ−1
1

y
σ−1

2
(note that zc = [xσ1, yσ2] is an

encoding of z = AND(x, y) relative to c = [σ1, σ2]).
• Compute by encoding conversion (using a CMult gate) zσ1 .

The NOT function can be computed using one CMult gate because NOT(x)
σ−1

1
=

xσ1 · σ−1
1 . The composition of multiplication by σ−1

1 and the encoding conversion from
σ−1

1 to σ1 can be combined into one CMult gate. �

Remark 1. It is well known [4] that for general secure MPC in the passive setting, an
honest majority (t < n/2) is necessary. Consequently, the above result of Barrington
immediately implies that an honest majority is also necessary for MPC of G-circuits
for arbitrary groups G. An alternative proof of this necessary condition, not relying on
Barrington’s result, can be found in [13].
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2.3. Construction of a G-Circuit Protocol from a Shared 2-Product Protocol

In this section, we begin our study of MPC over G-circuits, by reducing the problem of
constructing a n-party, t-private protocol for computing a G-circuit, to the problem of
constructing a subprotocol for the Shared 2-Product function f ′

G(x, y) = x · y, where
inputs x, y and output z = x · y are shared among the parties. We define for the latter
subprotocol a so-called strong t-privacy definition, which will be needed later to prove
the (standard) t-privacy of the full G-circuit protocol. The definition of strong t-privacy
requires the adversary’s view simulator to simulate all output shares except one share
not held by the adversary, in addition to simulating the internal subprotocol view of the
adversary. Note that although the latter requirement output simulation is stronger than
the standard t-privacy requirement, the simulator here is given additional help as input,
namely the values of all input shares except one share for x and one share for y. In
this sense, strong t-privacy is a weaker requirement than the standard t-privacy: indeed,
a shared 2-product subprotocol satisfying strong t-privacy may not satisfy the standard
t-privacy definition (e.g. one of the input shares not known to the adversary may be
revealed to the adversary by the internal subprotocol view; this violates the standard
t-privacy, but not necessarily the strong t-privacy).

Definition 2 (n-Party Shared 2-Product Subprotocol). A n-party shared 2-product
subprotocol

∏
S with sharing parameter � and share ownership functions Ox, Oy, Oz :

[�] → [n] has the following features:

• Input: For j = 1, . . . , �, party POx(j) holds j th share sx(j) ∈ G of x and party
POy(j) holds j th share sy(j) ∈ G of y, where sx = (sx(1), sx(2), . . . , sx(�)) and

sy = (sy(1), sy(2), . . . , sy(�)) denote �-of-� sharing of x
def= sx(1) · sx(2) · · · sx(�)

and y
def= sy(1) · sy(2) · · · sy(�), respectively.

• Output: For j = 1, . . . , �, party POz(j) holds j th share sz(j) of output product

z
def= sz(1) · · · sz(�).

• Correctness: We say that
∏

S is correct if, for all protocol inputs sx = (sx(1), sx(2),

. . . , sx(�)) and sy = (sy(1), sy(2), . . . , sy(�)), the output shares sz = (sz(1), sz(2),

. . . , sz(�)) satisfy

z = x · y
where x

def= sx(1) ·sx(2) · · · sx(�), y def= sy(1) ·sy(2) · · · sy(�) and z
def= sz(1) · · · sz(�).

• Strong t-Privacy: We say that
∏

S achieves strong t-privacy if there exists a prob-
abilistic simulator algorithm S∏

S
such that for all I ⊂ [n] with |I | ≤ t , there exist

j∗
x , j∗

y , j∗
z ∈ [�] with j∗

z ∈ {j∗
x , j∗

y }, Ox(j
∗
x ) /∈ I , Oy(j

∗
y ) /∈ I and Oz(j

∗
z ) /∈ I , such

that for all protocol inputs sx = (sx(1), . . . , sx(�)) and sy = (sy(1), . . . , sy(�)), the
random variables

〈
S∏

S

(
I,

{
sx(j)

}
j∈[�]\{j∗

x },
{
sy(j)

}
j∈[�]\{j∗

y }
)〉

and

〈
VIEW

∏
S

I (sx, sy),
{
sz(j)

}
j∈[�]\{j∗

z }
〉
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are identically distributed (over the random coins of
∏

S ). Here, VIEW
∏

S

I (sx, sy)

denotes the view of I in subprotocol
∏

S run with input shares sx, sy , and sz(j)

denotes the j th output share. If j∗
z = j∗

x (resp. j∗
z = j∗

y ) then we say
∏

S achieves
x-preserving strong t-privacy (resp. y-preserving strong t-privacy). If j∗

z = j∗
x =

j∗
y for all I , then we say

∏
S achieves symmetric strong t-privacy.

Remark 2. The share ownership functions Ox, Oy, Oz specify for each share index
j ∈ [�], the indices Ox(j), Oy(j), Oz(j) in [n] of the party which holds the j th input
shares sx(j) and sy(j) and j th output share sz(j), respectively.

Remark 3. The adversary view simulator S∏
S

for collusion I is given all input shares
except the j∗

x th x-share sx(j
∗
x ) and j∗

y th y-share sy(j
∗
y ) (where j∗

x , j∗
y ∈ [�], which de-

pend on I , are indices of shares given to players not in I ), and outputs all output shares
except the j∗

z th share sz(j
∗) of z. The x-preserving strong t-privacy property ensures

that, for each I , the same value of index j∗
z = j∗

x is used for both x-input shares and out-
put shares. This allows multiple simulator runs to be composed, using output shares of
one subprotocol run as x-input shares in a following subprotocol run, as shown in the se-
curity proof of the following construction. If, in addition, symmetric strong t-privacy is
achieved, one can use output shares of one subprotocol run as either x-input or y-input
shares for the following subprotocol run, allowing for more efficient protocols. Alter-
natively, instead of one subprotocol

∏
S which achieves symmetric strong t-privacy, we

may use a pair of subprotocols
∏(x)

S ,
∏(y)

S which are x-preserving and y-preserving,
respectively, and are compatible in the following sense.

Definition 3 (Compatible Subprotocols). Let
∏(x)

S and
∏(y)

S denote two shared 2-
Product subprotocols which satisfy x-preserving strong t-privacy and y-preserving
strong t-privacy, respectively. We say

∏(x)
S and

∏(y)
S are compatible if:

• ∏(x)
S and

∏(y)
S have the same share ownership functions Ox, Oy .

• For each collusion I ⊂ [n] with |I | ≤ t ,
∏(x)

S and
∏(y)

S have the same j∗
x index

and the same j∗
y index (defined as in Definition 2).

The idea is that if
∏(x)

S and
∏(y)

S are compatible, we can use the output shares of a
∏(x)

S run as x-input shares to a following
∏(y)

S run, because the view simulator for the
first subprotocol run simulates all output shares except the j∗

x th one (by the x-preserving
property), while the view simulator for the second subprotocol run requires as input all
x-input shares except the j̄∗

x th one. Since j̄∗
x = j∗

x by compatibility, we can use the
output of the first simulator as input to the second simulator. Note that if

∏
S satisfies

symmetric strong t-privacy then
∏

S is compatible with itself, i.e. one can take
∏(x)

S =
∏(y)

S = ∏
S . Refer to Fig. 1(a) (resp. Fig. 1(b)) for an example of an x-preserving (resp.

y-preserving) shared 2-product subprotocol which achieves strong 2-privacy.
Next, for an arbitrary m-input G-circuit C, we construct a protocol

∏
(C,

∏(x)
S ,

∏(y)
S )

for private computation of C, using a pair of compatible shared 2-product subpro-
tocols

∏(x)
S and

∏(y)
S (see Definition 3). We assume that

∏(x)
S (resp.

∏(y)
S ) satisfy
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Fig. 1. (a) Example of a 5-party shared 2-product subprotocol
∏(x)

S
satisfying x-preserving strong

2-privacy, with sharing parameter � = 5. The source nodes on the top row are labeled with indices of par-
ties holding x-input and y-input shares, according to share ownership functions Ox, Oy . The sink nodes on
the bottom row are labeled with indices of parties holding the output shares according to share ownership
function Oz (note that Oz = Ox ). Communication is from top to bottom. At each internal node, the party
whose index labels the internal node multiplies the shares received on incoming edges, and splits the result
into shares which are sent along the outgoing edges (see Sect. 2.4.2 for more details). (b) Example of a

5-party shared 2-product subprotocol
∏(y)

S
satisfying y-preserving strong 2-privacy. Note it is identical to

∏(x)
S

, except that outputs are taken from a different set of nodes. Also note that Oz = Oy . (c) Example of a
G-circuit C for function fC(x1, . . . , x5) = x1x2x3x4x5 with m = n = 5. Input nodes correspond to the inputs
x1, . . . , x5, and each internal node corresponds to a multiplication in G. (d) Illustration of three subprotocol

runs (corresponding to the top 3 internal nodes in circuit C in (c)) in the protocol
∏

(C,
∏(x)

S
,
∏(y)

S
) for fC

constructed from circuit C in (c) and subprotocols
∏(x)

S
,
∏(y)

S
in (a), (b).
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x-preserving (resp. y-preserving) strong t-privacy, with sharing parameter � and share
ownership functions Ox, Oy and O(x)

z (resp. O(y)
z ). The basic idea of protocol

∏
is to

share the circuit inputs using an �-of-� sharing, and then apply the shared 2-product
subprotocol at each Mult gate of C, to arrive finally at a sharing of the circuit output
value, which is made public.

We assume the default sharing of node values is an Ox -sharing, which is converted
to an Oy -sharing when required using the following conversion subprotocol:

• Subprotocol Convert (Ox to Oy Sharing Conversion): Given an Ox sharing
(sx(1), . . . , sx(�)) of x, where party POx(j) holds sx(j) for j = 1, . . . , �. P1 (or
any other arbitrary party) computes a random sharing sy(1) · · · sy(�) = 1G of the
identity element of G, and sends sy(j) to party POy(j) for j = 1, . . . , �. Then

shared 2-product subprotocol
∏(y)

S is run on the shared x value (as the x-input to
∏(y)

S ), and the shared 1G value (as the y-input to
∏(y)

S ). At the end of the subprot-
col run, for each j = 1, . . . , �, party PO(y)

z (j)
holds an output share sz(j) and sends

it to party POy(j), resulting in an Oy sharing of x.

We now present the formal specification of the protocol
∏

as Algorithm 1. In this
specification, we use the following terminology. For each node N of C, we call N an
x-node (resp. y-node) if all outgoing edges of N are x-input edges (resp. y-input edges)
of subsequent Mult nodes (by convention, we also define the output node of C as an x-
input node). Otherwise, we call N a mixed node (for simplicity, we also define N as a
mixed node if N has an outgoing edge which is an incoming edge to a CMult gate).

An example of the protocol is shown in Fig. 1.

Remark 4. As illustrated in the example on Fig. 1, the shares of a subprotocol input
(say x-input shares) may be held by a subset of only t + 1 of the n players, and some
players in this subset may hold more than one input share. This is in contrast to classical
protocols [4,7], where subprotocol inputs are shared among all n players, with each
player holding one input share.

The following lemma establishes the t-privacy of protocol
∏

(C,
∏(x)

S ,
∏(y)

S ), assum-

ing the correctness and strong t-privacy of subprotocols
∏(x)

S ,
∏(y)

S . The idea is that due
to the �-of-� sharing used for the inputs of C, the values of all but one share of each
input of C can be simulated by independent random elements, and then the internal ad-
versary view and all but one output share of each shared 2-product subprotocol run can
be simulated using the subprotocol simulator. The detailed proof is in Appendix A.

Lemma 1. For any m-input G-circuit C computing a function fC : Gm → G, if the
n-party compatible shared 2-product subprotocols

∏(x)
S (resp.

∏(y)
S ) satisfy correct-

ness and x-preserving (resp. y-preserving) strong t-privacy (see Definitions 2 and 3),
then the protocol

∏
(C,

∏(x)
S ,

∏(y)
S ) is an n-party t-private protocol for computing the

function fC .
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Algorithm 1 G-Circuit Protocol
∏

(C,
∏(x)

S ,
∏(y)

S )

Input: For i = 1, . . . ,m, party Pj(i) (for some j (i) ∈ [n]) holds input xi ∈ G at input
node Ni of C.

1. For i = 1, . . . ,m, party Pj(i) generates a uniformly random �-of-� sharing sxi
=

(sxi
(1), . . . , sxi

(�)) of xi = sxi
(1) · · · sxi

(�). If node Ni of C is an x-node (resp.
y-node), then for k = 1, . . . , �, Pj(i) sends the kth share sxi

(k) to party POx(k)

(resp. POy(k)), and we label the outgoing edges of Ni with sxi
. Otherwise, if Ni

is a mixed node, then Pj(i) generates another uniformly random �-of-� sharing
s ′
xi

= (s′
xi

(1), . . . , s′
xi

(�)) of xi = s′
xi

(1) · · · s′
xi

(�), and sends for k = 1, . . . , �, sxi
(k)

to party POx(k) and s′
xi

(k) to party POy(k), labeling the x-input outgoing edges of Ni

with sxi
and the y-input outgoing edges of Ni with s ′

xi
.

2. For each internal node N of C:

• If node N is an x-node (resp. y-node) Mult gate with x-input edge la-
beled by sharing x = sx(1) · · · sx(�) and y-input edge labeled by sharing y =
sy(1) · · · sy(�), run 2-product subprotocol

∏(c)
S with c = x (resp. c = y) on the

sharings (sx(1), . . . , sx(�)) and (sy(1), . . . , sy(�)), resulting in an O(c)
z -sharing

of node N ’s output value x · y. Then, for each j = 1 . . . , �, party PO(c)
z (j)

sends
its output share to party POx(j) (resp. party POy(j)), resulting in an Ox (resp.
Oy ) sharing of the output value. We label the outgoing x-input (resp. y-input)
edges of N with this sharing. Otherwise, if N is a mixed node Mult gate, run
subprotocol

∏(x)
S to get an Ox -sharing of output value x · y as in the case that

N is an x-node, and label all outgoing edges except the y-input edges with this
sharing. Then, run subprotocol Convert to obtain an Oy -sharing of output value
x · y, and label the y-input outgoing edges with this sharing.

• If node N is a CMultα,β gate with incoming Ox -shared value x = sx(1) · · · sx(�),
party Ox(1) replaces its input share sx(1) with α · sx(1), and party Ox(�) re-
places its input share sx(�) with sx(�) · β .

3. For each j = 1, . . . , �, party PO(x)
z (j)

broadcasts to all parties the share s∗
z (j), where

s∗
z = (s∗

z (1), . . . , s∗
z (�)) is the output sharing at the output node of C.

4. All parties compute protocol output y = s∗
z (1) · · · s∗

z (�).

Output: Every party knows the function output value fC(x1, . . . , xm).

2.4. Reducing Shared 2-Product Protocols to Graph Coloring

2.4.1. Graph Coloring Problem

Consider a Planar Directed Acyclic Graph (PDAG) G having 2� source (input) nodes
drawn in a horizontal row at the top, � sink (output) nodes drawn in a horizontal row
at the bottom, and σG nodes overall. We use the PDAG G to represent a black-box
protocol, where the input/output nodes are labeled by the protocol input/output group
elements, and the internal graph nodes are labeled by intermediate protocol values. Each
internal graph node is also assigned a color specifying the player which computes the
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internal node value. The graph edges represent group elements sent from one player to
another. The computation performed at each node is multiplication of the values on all
incoming edges (from the leftmost incoming edge to the rightmost one) and resharing
the product along the outgoing edges using a k-of-k secret-sharing scheme (see scheme
in Proposition 1 of Sect. 2.1.2). All computations in the ith round of the 2-product
subprotocol correspond to the ith row (from the top) in the PDAG. Communication
between nodes corresponds to edges between consecutive rows.

Actually, to construct a protocol for any non-Abelian group our requirement on graph
G is slightly stronger than planarity and can be precisely defined as follows.

Definition 4 (Admissible PDAG). We call graph G an Admissible PDAG with share
parameter � and size parameter m if it has the following properties.

• Nodes of G are drawn on a square m × m grid of points (each node of G is located
at a grid point but some grid points may not be occupied by nodes). Rows of the
grid are indexed from top to bottom and columns from left to right by the integers
1, . . . ,m. A node of G at row i and column j is said to have index (i, j). G has 2�

source (input) nodes on top row 1, and � sink (output) nodes on bottom row m.
• Incoming edges of a node on row i only come from nodes on row i − 1, and

outgoing edges of a node on row i only go to nodes on row i + 1.
• For each row i and column j , let η

(i,j)

1 < · · · < η
(i,j)

q(i,j) denote the ordered column

indices of the q(i,j) > 0 nodes on level i + 1 which are connected to node (i, j) by
an edge. Then, for each j = 1, . . . ,m − 1, we have

η
(i,j)

q(i,j) ≤ η
(i,j+1)

1 , (1)

i.e. the rightmost node on level i + 1 connected to node (i, j) is to the left of (or
equal to) the leftmost node on level i + 1 connected to node (i, j + 1).

We call the left � source nodes on row 1 (indexed (1,1), . . . , (1, �)) the ‘x-input’
nodes and the last � source nodes on row 1 (indexed (1, � + 1), . . . , (1,2�)) the ‘y-
input’ nodes. By ith x-input node, we mean the x-input node at position i from the left.
We define the ith y-input and ith output node similarly.

Let C : [m] × [m] → [n] be an n-coloring function that associates to each node (i, j)

of G a color C(i, j) chosen from a set of n possible colors [n]. We now define the notion
of a t-Reliable n-Coloring.

Definition 5 (t-Reliable n-Coloring). We say that C : [m] × [m] → [n] is a t-Reliable
n-Coloring for the admissible PDAG G (with share parameter � and size parameter m)
if for each t-color subset I ⊂ [n], there exist j∗

x , j∗
y , j∗

z ∈ [�] with j∗
z ∈ {j∗

x , j∗
y } such

that we have the following.

• There exists a path PATHx in G from the j∗
x th x-input node to the j∗

z th output
node, such that none of the path node colors are in subset I (we call such a path
I -avoiding), and

• There exists an I -avoiding path PATHy in G from the j∗
y th y-input node to the j∗

z th
output node.
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Fig. 2. An admissible PDAG with sharing parameter � = 3 (node colors are not indicated). For a given
collusion I , an example I -avoiding path PATHx is shown in heavy black, and an example I -avoiding path
PATHy (until the meeting with PATHx ) is shown in dashed black. Here, we have j∗

x = j∗
z = 2 and j∗

y = 3.

If j∗
z = j∗

x (resp. j∗
z = j∗

y ) then we say that C is an x-preserving (resp. y-preserving)
t-reliable n-Coloring. If j∗

z = j∗
x = j∗

y for all I , then we say that C is a Symmetric
t-Reliable n-Coloring.

Remark 5. The paths PATHx and PATHy in Definition 5 are free to move in any di-
rection along each edge of directed graph G , i.e. for this definition we regard G as an
undirected graph (throughout the paper we assume that a path is simple, i.e. free of cy-
cles; hence each node on the path is only visited once). An example of an admissible
PDAG with I -avoiding paths PATHx and PATHy is shown in Fig. 2.

The communication of our MPC protocols will be represented by the number of edges
of the admissible PDAG (see Algorithm 2). Based on the following result by Euler, we
only need to focus our interest on the number of vertices of the graph.

Theorem 2 [14]. Let G be a planar graph on V vertices. If V ≥ 3, then the number of
edges of G is at most 3V − 6.

2.4.2. Construction of a t-Private n-Party Shared 2-Product Subprotocol from a
t-Reliable n-Coloring of a Planar Graph

We are to reduce the problem of constructing a t-private n-party shared 2-product sub-
protocol

∏
S to the combinatorial problem of finding a t-reliable n-coloring of the nodes

of a planar graph. We note that our notion of a ‘t-reliable n-coloring’ is closely related
to a similar notion defined in [12], and shown to be equivalent to the existence of private
communication via a network graph in which each node is assigned one of n possible
colors and the adversary controls all nodes with colors belonging to a t-color subset I .
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Algorithm 2 Shared 2-Product Subprotocol
∏

S(G,C)

Input: An admissible PDAG G with share parameter � and size parameter m, an asso-
ciated t-reliable n-coloring C and two values x and y.

1. We define the share ownership functions Ox, Oy, Oz of
∏

S(G,C) according to
the colors assigned by C to the input and output nodes of G (i.e. Ox(j) = C(1, j),
Oy(j) = C(1, � + j), Oz(j) = C(m, j) for j = 1, . . . , �). For j = 1, . . . , �, party
POx(j) holds j th share sx(j) ∈ G of x and party POy(j) holds j th share sy(j) ∈ G

of y, where sx = (sx(1), sx(2), . . . , sx(�)) and sy = (sy(1), sy(2), . . . , sy(�)) denote

�-of-� sharing of x
def= sx(1) · sx(2) · · · sx(�) and y

def= sy(1) · sy(2) · · · sy(�), respec-
tively.

2. For each row i = 1, . . . ,m and column j = 1, . . . ,m of G , party PC(i,j) does the
following:

• PC(i,j) computes a label v(i,j) for node (i, j) of G as follows. If i = 1, PC(i,j)

defines v(i,j) = sx(j) for j ≤ � and v(i,j) = sy(j) for � + 1 ≤ j ≤ 2�. If i > 1,
PC(i,j) computes v(i,j) by multiplying the shares received from nodes at previ-
ous row i − 1 (labels of edges between a node on row i − 1 and node (i, j)),
ordered from left to right according to the sender node column index.

• If i = m, PC(m,j) sets output share j to be the label v(m,j).

• Else, if i < m, let η
(i,j)

1 < · · · < η
(i,j)

q(i,j) denote the ordered column indices of
the nodes on level i + 1 which are connected to node (i, j) by an edge. PC(i,j)

chooses q(i,j) − 1 uniformly random elements from G and computes an q(i,j)-
of-q(i,j) secret sharing s

(i,j)

1 , . . . , s
(i,j)

q(i,j) of label v(i,j) such that:

v(i,j) = s
(i,j)

1 · · · s(i,j)

q(i,j) .

• For k = 1, . . . , q(i,j), PC(i,j) sends share s
(i,j)
k to party P

C(i+1,η
(i,j)
k )

and labels

edge from node (i, j) to node (i + 1, η
(i,j)
k ) by the share s

(i,j)
k .

Output: � shares of the product z = x · y.

Denote by G a PDAG having 2� source (input) nodes drawn in a horizontal row at
the top, � sink (output) nodes drawn in a horizontal row at the bottom, and σG nodes
overall. We use G to represent a black-box protocol, where the input/output nodes are
labeled by the protocol input/output group elements, and the internal graph nodes are
labeled by intermediate protocol values. Each internal graph node is also assigned a
color specifying the player which computes the internal node value. The graph edges
represent group elements sent from one player to another. The computation performed
at each node is the multiplication of the values on all incoming edges followed by a re-
sharing of the product along the outgoing edges using the k-of-k secret-sharing scheme
in Proposition 1. All computations in the ith round of the 2-product subprotocol cor-
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respond to the ith row (from the top) in the PDAG. Communications between nodes
correspond to edges between consecutive rows.

Given an admissible PDAG G (with share parameter � and size parameter m) and an
associated t-reliable n-coloring C : [m] × [m] → [n], we construct a t-private n-party
shared 2-product subprotocol

∏
S(G,C) as represented in Algorithm 2.

Note that the correctness of
∏

S follows from the fact that the product of node values
at each row of PDAG G is preserved and hence equal to x · y, thanks to Condition (1)
in Definition 4. The full proof of the security claim of Lemma 2 can be found in Ap-
pendix B. Here, we only explain the main idea by considering the case when the I -
avoiding paths PATHx and PATHy only have downward edges. Consider PATHx from
the j∗

z th x-input node to the j∗
x th output node. At the first node PATHx(1) on the path,

although the node value v(1) = sx(j
∗
x ) is not known to the view simulator S∏

S
, we may

assume, by Proposition 1, that in the real subprotocol
∏

S , when node PATHx(1) shares
out its node label among its q outgoing edges, it sends new random elements (labels)
ri on each of the q − 1 outgoing edges not on PATHx . Thus simulator S∏

S
can easily

simulate all outgoing edge values of PATHx(1) which are not on PATHx . The same ar-
gument shows that for all kth nodes PATHx(k) and PATHy(k) on PATHx and PATHy,

respectively, simulator S∏
S

can simulate all values on outgoing edges of PATHx(k) and
PATHy(k) which are not on PATHx or PATHy by independent random elements. The
values on edges along PATHx or PATHy depend on the inputs sx(j

∗
x ) and sy(j

∗
y ) which

are not known to simulator S∏
S
, but since the paths PATHx and PATHy are I -avoiding,

these values are not in the view of I and need not be simulated by S∏
S
. Since S∏

S

knows all inputs to
∏

S it can compute all other edge values in the
∏

S , including all
outputs except the j∗

z th one (which is on PATHx and PATHy ), as required.

Lemma 2. If G is an admissible PDAG and C is an x-preserving (resp. y-preserving)
t-reliable n-coloring for G then

∏
S(G,C) achieves x-preserving (resp. y-preserving)

strong t-privacy. Moreover, if C is a symmetric t-reliable n-coloring, then
∏

S(G,C)

achieves symmetric strong t-privacy.

3. Graph Coloring Problem and Constructions

3.1. A Family of PDAGs

In our coloring constructions, we focus on a particularly simple admissible PDAG
Gtri(�

′, �) defined as follows. This graph has sharing parameter � and has �′ × � nodes.
It is shown in Fig. 3. The nodes of Gtri(�

′, �) are arranged in an �′ × � node grid. Let
(i, j) denote the node at row i ∈ [�′] (from the top) and column j (from the left). There
are three types of edges in directed graph Gtri(�

′, �):

• [horizontal edges] for i ∈ [�′] and for j ∈ [� − 1], there is a directed edge from
node (i, j + 1) to (i, j),

• [vertical edges] for i ∈ [�′ − 1] and for j ∈ [�], there is a directed edge from node
(i, j) to node (i + 1, j),

• [diagonal edges] for i ∈ [�′ − 1] and for j ∈ {2, . . . , �}, there is a directed edge
from node (i, j) to node (i + 1, j − 1).



Graph Coloring Applied to Secure Computation in Non-Abelian Groups 573

Fig. 3. The PDAG Gtri(�
′, �).

Remark 6. The � nodes on the top row (row 1) of Gtri are the x-input nodes, indexed
from left to right. The top � nodes on the rightmost column of Gtri (column �) are the
y-input nodes, indexed from top to bottom.

Remark 7. The reader may notice that the above specification of Gtri does not formally
satisfy the convention for drawing an admissible PDAG as exposed in Definition 4, due
to the horizontal edges and the fact that the y-input nodes are arranged along a column,
rather than along the same row as the x-input nodes. However, it is easy to see that Gtri

can also be drawn strictly according to Definition 4. Namely, by rotating the drawing of
Gtri in Fig. 3 by 45 degrees anticlockwise, the horizontal edges become diagonal edges,
and x-inputs and y-inputs can be formally put on the same row by adding appropriate
‘connecting’ nodes of the same color as the corresponding input nodes of Gtri. These
are only formal changes in drawing conventions, and there is no change in the protocol
itself. In this section, we use the drawing convention in Fig. 3 for clarity.

Remark 8. All diagonal edges in the definition of Gtri above are parallel (with a ‘pos-
itive slope’, when using the drawing convention in Fig. 3). However, it is clear that the
admissible PDAG requirements are still satisfied if we remove from Gtri some ‘positive
slope’ diagonal edges and add some ‘negative slope’ diagonal edges (connecting a node
(i, j) to node (i + 1, j + 1), for some i ∈ [�′] \ {�′}, j ∈ [�] \ {�}), as long as planarity of
G is preserved (no two diagonal edges intersect). We denote such ‘generalized’ PDAGs
by Ggtri.
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3.2. Relaxing the Coloring Conditions

As a first step toward our constructions, we relax the properties required from the col-
oring in Definition 5 to slightly simpler requirements for the square graph Gtri(�, �) (i.e.
�′ = �), as follows.

Definition 6 (Weakly t-Reliable n-Coloring). We say that C : [�] × [�] → [n] is a
Weakly t-Reliable n-Coloring for graph Gtri(�, �) if for each t-color subset I ⊂ [n]:

• There exists an I -avoiding path Px in G from a node on the top row (row 1) to
a node on the bottom row (row �). We call such a path an I -avoiding top-bottom
path.

• There exists an I -avoiding path Py in G from a node on the rightmost column
(column �) to a node on the leftmost column (column 1). We call such a path an
I -avoiding right–left path.

Remark 9. In the above definition of weak t-reliability, the index of the starting node
of path Px in the top row need not be the same as the index of the exit node of Px in
the bottom row (whereas in the definition of t-reliability, PATHx must exit at the same
position along the output row as the position in the top row where PATHx begins).

The following lemma shows that finding a weakly t-reliable n-coloring for the square
graph Gtri(�, �) is sufficient for constructing a (standard) t-reliable n-coloring for a rect-
angular graph Ggtri(2�−1, �). The idea is to add �−1 additional rows to Gtri(�, �) by ap-
pending a ‘mirror image’ (reflected about the last row) of itself, as shown in Fig. 4. Note

Fig. 4. Illustration of the two Versions of Ggtri(2� − 1, �).
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that we define two versions of Ggtri(2�−1, �) called G(x)
gtri(2�−1, �) and G(y)

gtri(2�−1, �).
The difference between them is only in the choice of output nodes: the bottom row �

nodes are used as output nodes for G(x)
gtri(2� − 1, �) as shown in Fig. 4(a) (giving an

x-preserving coloring) and the last � nodes on the rightmost column are used as out-
put nodes for G(y)

gtri(2� − 1, �) as shown in Fig. 4(b) (giving an y-preserving coloring).
Note that the color of the input and output nodes is identical to the color of the nodes
connected to them.

Lemma 3. Let C : [�]× [�] → [n] be a weakly t-reliable n-coloring (see Definition 6)
for square admissible PDAG Gtri(�, �). Then, we can construct an x-preserving (resp. y-
preserving) t-reliable n-coloring (see Definition 5) for a rectangular admissible PDAG
G(x)

gtri(2�−1, �) (resp. G(y)

gtri(2�−1, �)). Moreover, the 2-product subprotocols
∏(x)

S ,
∏(y)

S

constructed from G(x)
gtri(2� − 1, �) and G(y)

gtri(2� − 1, �) (using Lemma 2) are compatible
(see Definition 3).

Proof. For each t-color subset I , let Px and Py denote the top-bottom and right–left
I -avoiding paths in Gtri(�, �) for the given coloring C. By planarity, it is clear that Px

and Py must cross over (intersect) on at least one node. Let n∗ denote the first node on
Py which is also on Px (see Fig. 5(a)). We can modify right–left path Py into a path P ′

y

that follows Py until reaching the cross over node n∗, and then follows Px to the exit.
Hence, we obtain a path P ′

y that begins at a node on the rightmost column of Gtri(�, �)

Fig. 5. Example of paths in a square PDAG with parameter � for a given weakly t -reliable n-coloring (Px

(heavy black) and Py (dashed black) intersect at node n∗) and in its corresponding rectangular grid.
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and exits at a node on the bottom row, namely the same bottom row node index j∗
where Px exits. We let j∗

x denote the index of the top row node where Px begins (it is
possible that j∗

x �= j∗).

We construct a rectangular admissible PDAG G(x)
gtri(2� − 1, �) as follows. The first

� rows of G(x)
gtri(2� − 1, �) and interconnecting edges are identical to Gtri(�, �). For the

bottom � − 1 rows of G(x)
gtri(2� − 1, �), we take the ‘mirror image’ reflection of the top �

rows and their interconnecting edges, reflected about the �th row. The outputs are taken
from the bottom � nodes (see Fig. 5(b)).

Note that each ‘positive slope’ diagonal edge between two rows among the first �,
give rise to ‘negative slope’ diagonal edges between two rows among the last �. We
construct the n-coloring C′ : [2�−1]×[�] → [n] of G(x)

gtri(2�−1, �) similarly, i.e. the top

� rows of G(x)
gtri(2�−1, �) are colored using C, i.e. C′(i, j) = C(i, j) for (i, j) ∈ [�]×[�],

and the last � − 1 rows of G(x)
gtri(2� − 1, �) are colored by a ‘mirror image’ of the first

� − 1 rows, i.e. C′(� + i, j) = C(� − i, j) for i ∈ [� − 1] and j ∈ [�].
We claim that C′ is an x-preserving t-reliable n-coloring for G(x)

gtri(2� − 1, �). Indeed,

thanks to the ‘mirror symmetry’ of C′ and G(x)
gtri(2� − 1, �) about the �th row, the I -

avoiding path Px from node (1, j∗
x ) to node (�, j∗) can be extended by its ‘mirror image’

to an I -avoiding path PATHx that exits at output node (2� − 1, j∗
x ) of G(x)

gtri(2� − 1, �).
Since it also reaches node (�, j∗), the I -avoiding path P ′

y evidently can also be extended
along the same ‘mirror image’ path to an I -avoiding path PATHy that exits at output
node (2� − 1, j∗

x ), as shown in Fig. 4(b). Thus, C′ satisfies the requirements of an x-

preserving t-reliable n-coloring for G(x)
gtri(2� − 1, �).

The PDAG G(y)

gtri(2� − 1, �) is identical to G(y)

gtri(2� − 1, �) except that the outputs are
taken from the � bottom nodes of the last column as shown in Fig. 5(b). It is easy to
see by adapting the above argument (with PATHx and PATHy now leaving at the mirror

image of the j∗
y th node, i.e. output node (2� − j∗

y , �) of G(y)

gtri(2� − 1, �)) that C′ is a

y-preserving t-reliable n-coloring for G(y)

gtri(2�−1, �). Moreover, since for all collusions

PATHx and PATHy are identical in the top half of G(y)

gtri(2� − 1, �) and G(x)
gtri(2� − 1, �),

we see that j∗
x and j∗

y are the same in the two graphs so the corresponding subprotocols

�
(x)
S and �

(y)
S are compatible, as claimed. �

3.3. Deterministic Constructions

We now present two constructions of t-reliable n-colorings of planar graphs which can
be used to build t-private n-party protocols for the n-product function in any finite group
as explained in Sects. 2.3 and 2.4.2. Our first deterministic construction achieves opti-
mal collusion security (t < n/2) but has exponential complexity (� = (

n
t

)
). However,

when used recursively, it will lead to a deterministic scheme with polynomial commu-
nication complexity for any t ∈ O(n1−ε) where ε is any positive constant.

First Construction Ccomb (t < n/2 and � = (
n
t

)
) We now present an explicit construc-

tion of a t-reliable n-coloring Ccomb of the square graph Gtri(�, �). The construction
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applies for all n ≥ 2t + 1 (i.e. t ≤ �n−1
2 
), and hence the n-product protocol constructed

from it by the method of Sects. 2.3 and 2.4.2 achieves �n−1
2 
-privacy (which is optimal

since honest majority is needed as argued in Sect. 2.2).

Lemma 4. For n ≥ 2t + 1, the coloring Ccomb is a symmetric t-reliable n-coloring
for the graph Gtri(�, �), with � = (

n
t

)
.

Proof. Given each t-color subset I ⊆ [n], let j∗ denote the index of I in the sequence
I1, . . . , I� of all t-color subsets used to construct Ccomb, i.e Ij∗ = I . By construction of
Ccomb, none of the nodes of Gtri(�, �) along column j∗ have colors in Ij∗ = I . Hence
one can take column j∗ of Gtri(�, �) as PATHx . Similarly, we also know that none of
the nodes of Gtri(�, �) along row j∗ have colors in Ij∗ = I , so one can take PATHy to
consist of all nodes on row j∗ which are on columns j ≥ j∗, followed by all nodes on
column j∗ which are on rows i ≥ j∗. Thus, Ccomb is a symmetric t-reliable n-coloring
for graph Gtri(�, �), as required. �

Remark 10. The coloring Ccomb remains a symmetric t-reliable n-coloring even if
we remove all diagonal edges from Gtri(�, �) (since the paths PATHx and PATHy only
contain vertical and horizontal edges).

Combining Lemma 4 (applied to a subset of n′ = 2t + 1 ≤ n colors from [n]) with
Lemma 1 in Sect. 2.3 and Lemma 2 in Sect. 2.4.2, we have the following.

Corollary 1. For any t < n/2, there exists a black-box t-private protocol for G-

circuits with communication complexity O(
(2t+1

t

)2
Ng) group elements. This protocol

runs in 4
(2t+1

t

)
(Ng − 1) rounds.

Proof. It remains to argue about the round complexity. The admissible PDAG used
for this protocol is Ggtri(2� − 1, �) where � = (2t+1

t

)
. By construction, the top � rows of

Ggtri(2�−1, �) represent Gtri(�, �). As said in the second paragraph of Sect. 2.4.2, the set
of directed arrows outgoing a given node N represents a secret-sharing scheme whose
dealer is the player corresponding to the color of N . Thus, no node/player can perform
such a sharing before receiving information from its all parent nodes represented by the
incoming edges of N . In the case of Gtri(�, �), every node has at most three parents and
the only node without parents is the top-right node.

Let us number the rows of Gtri(�, �) from top to bottom and its columns from left
to right. The player corresponding to the node at row 1 and column � is to initiate the
sharing process. This phenomenon is to propagate throughout Gtri(�, �). After one round
of communication, nodes (1, � − 1) and (2, �) have received information from all their
parents. After two rounds, nodes (1, � − 2), (2, � − 1) and (3, �) are ready to share in
turn. One can see that using 2� rounds results in covering all of Gtri(�, �).

The previous propagation phenomenon moves diagonally from right to left. When
we consider the bottom � rows of Ggtri(2� − 1, �), they constitute a mirror of the upper
part Gtri(�, �). Thus, another propagation phenomenon occurs from left to right. Thus,
4� rounds are enough perform the computation represented by an instance of Ggtri(2� −



578 Y. Desmedt et al.

1, �). This grid is to be used (Ng − 1) times to perform the computation of the G-circuit
which implies at total of 4�(Ng − 1) rounds. �

Remark 11. The previous round complexity analysis is unchanged if Gtri(�, �) has no
diagonal edges.

Remark 12. One may also consider more general adversary structures in place of the
t-threshold structure. This construction immediately generalizes to the case of a Q2-
adversary structure A, in which no pairwise union of collusions in A covers all n par-
ties [20], and gives a coloring for the graph Gtri(�, �) with � = |A|.

Second Construction (t = O(n1−ε) and � = poly(n)) We will use the previous scheme
as a building block. As noticed in the Remark 10, even if we remove the diagonal edges
from Gtri(�, �), we still had the existence of I -avoiding top-bottom and right–left paths.
Thus, we can assume that Grec(�) has no such edges so that Grec(�) is a square grid the
side length of which is � nodes. Grec(�) is an admissible PDAG.

First, we will focus on particular pairs (t, n). Second, we generalize our result to any
(t, n) with t = O(n1−ε).

We recursively construct our admissible PDAG Grec and its coloring Crec. Let d ∈
N \ {0,1} be a constant. Denote by Bd the binomial coefficient

(2d−1
d−1

)
.

Theorem 3. For any positive integer k, there is a weakly tk-reliable nk-coloring
Crec(�k) for the square admissible PDAG Grec(�k) with ek edges and vk vertices, where
the parameters are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk = dk − 1,

nk = (2d − 1)k,

�k = Bk
d(Bd + 1)k−1,

ek = 2(Bd − 1)B2k−1
d + 8B3

d−4B2
d−Bd

4 B2k−3
d

∑k−1
i=1 (4Bd)i ,

vk = 22k−2 B3k−1
d .

Proof. We prove the theorem by induction on k.
k = 1: We have t1 = d − 1, n1 = 2d − 1 and �1 = Bd . We set Grec(�1) := Gtri(�1, �1).

We define Crec(�1) as being the combinatorial coloring Ccomb (see Algorithm 3). Since
there are no diagonal edges in Gtri(�1, �1), we have e1 = 2(�1 − 1)�1 = 2(Bd − 1)Bd

and v1 = �2
1 = B2

d .
k ≥ 1: Suppose we already have the construction and coloring for k, we recursively

construct Grec(�k+1) from Grec(�k).
We first build the block grid B by copying 4Bd times Grec(�1) and representing those

copies as the external rows and columns of an (Bd + 1) × (Bd + 1) grid. Note that,
on this ‘large’ grid, each node is in fact a copy of Grec(�1). The connections between
two copies of Grec(�1) are as follows. Horizontally (top and bottom rows), we draw a
directed edge from node (i,1) in the right-hand side copy to node (i, �1) in the left-hand
side copy for i ∈ [�1] (i.e. we horizontally connect nodes at the same level). Vertically
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Algorithm 3 Coloring Ccomb

Input: An � × � grid where � = (
n
t

)
and n = 2t + 1.

1. Let I1, . . . , I� denote the sequence of all t-color subsets of [n] (in some ordering).
2. For each (i, j) ∈ [�] × [�], define the color C(i, j) of node (i, j) in the grid to be
any color in the set Si,j := [n] \ (Ii ∪ Ij ).

Output: A n-coloring of the grid.

Fig. 6. Block B when d = 2.

(left and right columns), we draw a directed edge from node (�1, j) in the top-side copy
to node (1, j) in the bottom side copy for j ∈ [�1] (i.e. we vertically connect nodes at
the same level). This is illustrated as Fig. 6 in the case d = 2.

The block B is an (Bd(Bd + 1)) × (Bd(Bd + 1)) grid with 4Bdv1 vertices. It exhibits
the following property.

Proposition 2. The block grid B admits an (2d −1)-coloring (just use the same Ccomb

for each copy of Grec(�1)), such that for any (d − 1)-color subset I ⊂ [2d − 1], there
are Bd + 1 horizontal (vertical) I -avoiding path in B .

Remark 13. We need to explain the meaning of horizontal and vertical I -avoiding
paths in B . This block is represented over an (Bd(Bd + 1)) × (Bd(Bd + 1)) grid of
nodes. Thus, we can number every node of B by a pair (i, j) ∈ [Bd(Bd + 1)]2. Note
that not all these values are used since B only has 4B3

d nodes (EMPTY space on
Fig. 6). A horizontal I -avoiding path is a path starting at a node (i,1) (leftmost col-
umn of block B) and finishing at node (i, Bd(Bd + 1)) (rightmost column of block B).
The reader may notice that such a path is not unique. However, we abusively identify
the (non-unique) path to the pair of nodes {(i,1), (i, Bd(Bd + 1))}. Thus, the previous
proposition should rather be stated as the number of pairs {(i,1), (i, Bd(Bd + 1))} (re-
spectively, {(1, j), (Bd(Bd + 1), j)}) being equal to Bd + 1. We used this abuse in order
to simplify the following demonstrations.
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After this vocabulary explanation, the demonstration of Proposition 2 becomes
straightforward.

Proof. As said in Remark 10, we considered for our recursive construction that
Gtri(�, �) had no diagonal edges. Let I be a (d − 1)-color subset of [2d − 1]. By
Lemma 4, there exist a I -avoiding top-bottom path and a I -avoiding right–left path
in Grec(�1) which are straight lines.

Since B is a-(Bd + 1) × (Bd + 1)-copy of Grec(�1) and, due to the vertical/horizontal
connections of these copies, we deduce that there are (Bd + 1)I -avoiding top-bottom
paths and (Bd + 1)I -avoiding right–left paths in B . Moreover, each of these paths is a
horizontal/vertical line with the abuse of terminology explained in the previous remark.
(End of proof of Proposition 2.) �

Now, we construct Grec(�k+1) and its coloring Crec(�k+1) as follows. We replace
each node in Grec(�k) by a copy of B . If the node of Grec(�k) was colored by the color
c ∈ [nk], then we color B with the set of colors {(2d − 1)(c − 1)+ 1, (2d − 1)(c − 1) +
2, . . . , (2d − 1)c}, using Ccomb. All the edges within each copy of B remain identical
in Grec(�k+1). We deduce from this constructing technique that the number of edges
vk+1 of Grec(�k+1) is equal to (4Bdv1)vk . In other words: vk+1 = 4Bdv122k−2 B3k−1

d =
22k B3k+2

d .
Now, we show how to connect two copies of B . We first focus on vertical connec-

tions. Consider an edge in Grec(�k) from a node in the ith row to another node in the
(i + 1)th row. Since these two nodes have been replaced by two copies of B , we de-
note the nodes on the top copy (i.e. those corresponding to the nodes of the ith row
in Grec(�k)) by v1,1, . . . , v1,Bd

, v2,1, . . . , vBd+1,Bd
and the nodes on the bottom copy as

w1,1, . . . ,w1,Bd
,w2,1, . . . ,wBd+1,Bd

.
For each (i, j) ∈ [Bd ] × [Bd ], we add a directed edge (vi,j ,wi,j+i−1) in Grec(�k+1).

If the index (j + i −1) is greater than Bd , wi,j+i−1 is the node wi+1,j+i−1−Bd
. Figure 7

gives the example for d = 2. The connection process works similarly for two consecu-
tive columns where we replace each horizontal edge from Grec(�k) by B2

d different edges
in Grec(�k+1).

It is clear that the number of nodes on each side of the square Grec(�k+1) is:

�k+1 = Bd(Bd + 1)�k = Bk+1
d (Bd + 1)k

and the number of colors used in Crec(�k+1) is nk+1 = (2d − 1)nk = (2d − 1)k+1. The
grid Grec(�k+1) obtained by this recursive process is also an admissible PDAG due to
the horizontal/vertical connection processes between two copies of B (as well as two
copies of Grec(�1) inside B).

Let us focus on the value of ek+1. Each edge of Grec(�k) is turned into B2
d edges in

Grec(�k+1) and each node in Grec(�k) becomes of block B in Grec(�k+1).
A way to look at B is to consider a cycle of 4Bd nodes (each of them being a copy

of Grec(�1)) where every consecutive pair of nodes is linked Bd times. Based on this
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Fig. 7. How to vertically connect two copies of B when d = 2.

observation, we deduce that each block B contains (8B3
d − 4B2

d − Bd) edges. We get

ek+1 = B2
dek + (

8B3
d − 4B2

d − Bd

)
vk

= 2(Bd − 1)B2k+1
d + 8B3

d − 4B2
d − Bd

4
B2k−1

d

×
k−1∑

i=1

(4Bd)i + (
8B3

d − 4B2
d − Bd

)22k

4
B3k−1

d

= 2(Bd − 1)B2k+1
d + 8B3

d − 4B2
d − Bd

4
B2k−1

d

[
k−1∑

i=1

(4Bd)i + 4k Bk
d

]

= 2(Bd − 1)B2k+1
d + 8B3

d − 4B2
d − Bd

4
B2k−1

d

k∑

i=1

(4Bd)i .

The last point to prove is that for any tk+1-color subset I ⊂ [nk+1], there is an I -
avoiding top-bottom (and right–left) path in Grec(�k+1). We only prove the existence of
a top-bottom path in this paper as the demonstration of the existence for a right–left
path is similar. For each j ∈ [nk], we define the set Ij as:

Ij := I ∩ {
(2d − 1)(j − 1) + 1, (2d − 1)(j − 1) + 2, . . . , (2d − 1)j

}
.
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Since

|I1| + · · · + |Ink
| = |I | = tk+1 = dk+1 − 1 (2)

and each |Ij | ≤ 2d − 1, there are at least (nk − tk) subsets having at most (d − 1)

elements. Indeed, in the opposite case, we would have

|I1| + · · · + |Ink
| ≥ d

(
nk − (nk − tk − 1)

) = d × dk = dk+1,

which would contradict equality (2). Assume that S ⊆ [nk] is the set of these indices
(i.e. for each j ∈ S, |Ij | ≤ d − 1). We have |[nk] \ S| ≤ tk . By the induction hypothesis,
there is an ([nk] \ S)-avoiding top-bottom path in Grec(�k), i.e., the colors used on this
path all belong to S. Let v1, . . . , vm be the vertices of the path and denote the color of
node vj by cj ∈ S (j ∈ [m]).

Now, we show there is an I -avoiding top-bottom path in Grec(�k+1). In Grec(�k+1),
each node vj has been replaced by a copy Bvj

with colors in {(2d − 1)(cj − 1) +
1, (2d − 1)(cj − 1) + 2, . . . , (2d − 1)cj }. Since the color set Icj

satisfies |Icj
| ≤ d − 1,

by Proposition 2 we deduce that there are Bd horizontal and Bd vertical Icj
-avoiding

paths in Bvj
.

One can show that this property involves the existence of an I -avoiding top-bottom
path in Grec(�k+1). This top-bottom path is the connection of an Ic1 -avoiding path (from
Bv1 ), an Ic2 -avoiding path (from Bv2), . . . , an Icm -avoiding path (from Bvm ). The idea
to connect these different paths is to focus on the respective positions of pairs of consec-
utive blocks. Roughly speaking, it works as follows. The I -avoiding top-bottom path in
Grec(�k+1) originates from a node N1 located on the top side of Bv1 . Assume that Bv2

is located on the bottom of Bv1 . Due to Proposition 2, there are (Bd + 1) nodes on the
bottom side of Bv1 which are connected to N1 by an Ic1 -avoiding path. The key point
is that all these (Bd + 1) nodes are at the bottom of the same column in their respective
copy of Grec(�1). Because of the wiring structure between Bv1 and Bv2 (vertical con-
nections as depicted on Fig. 7), one of these bottom nodes is adjacent to a top-side node
N2 of Bv2 belonging to an Ic2 -avoiding path. This allows the phenomenon to propagate
in the whole graph Grec(�k+1). The reader can find the details in Appendix C. A sim-
ilar demonstration leads to the existence of an I -avoiding right–left path in Grec(�k+1)

which achieves the demonstration of our theorem. (End of proof of Theorem 3.) �
We can simplify the formula for ek from the previous theorem as follows. We have

Bd ≥ 2d − 1 > 1. Therefore:

k−1∑

i=1

(4Bd)i = (4Bd)k − 4Bd

4Bd − 1
.

Using this equality, we obtain

ek = 2(Bd − 1)B2k−1
d + 8B3

d − 4B2
d − Bd

4
B2k−3

d

(4Bd)k − 4Bd

4Bd − 1
.

Remark 14. We would like to point out the main difference with the recursive con-
struction appearing in [28]. In that paper, the block B consists of (Bd + 1)2 copies
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of Grec(�1). A similar analysis to what was performed above would show an identical
formula for ek with the exception that the factor (8B3

d − 4B2
d − Bd) would have been

substituted by the larger value 2Bd(B3
d − 2B2

d + 4Bd − 1).

In [28], we studied the communication complexity of the recursive construction by
upper bounding �k . Here, we can obtain a tighter bound directly from ek . Indeed, the
communication complexity of the protocol to tk-privately compute the G-circuit using
the previous admissible PDAG is O(ekNg) group elements. We have

ek ≤ 2(Bd − 1)B2k−1
d + 2B3

d B2k−3
d

(4Bd)k

3Bd

≤ 2B2k
d + 22k+1

3
B3k−1

d ≤ 22k+2

3
B3k−1

d .

It should be remembered that nk = (2d − 1)k , in other words: 2k = n
1/log2 (2d−1)

k . We
can simplify the upper bound on ek even further.

ek ≤ 4

3
× n

2/log2(2d−1)

k × 2(2d−1)(3k−1)

≤ 4

3
× n

2/log2(2d−1)

k × (
2k

)6d−3 × 21−2d

≤ 1

3 × 22d−3
× n

6d−1/log2(2d−1)

k . (3)

When d is a constant, the right hand side of inequality (3) is a polynomial in nk .
Now, we generalize our result to any (t, n) where t = O(n1−ε) for any fixed posi-

tive ε. The class O(n1−ε) is the set of all functions f such that

∃τf > 0 ∃n0 > 0 : ∀n ≥ n0 f (n) ≤ τf n1−ε.

In our case, the function f is the privacy level t . Our main result is stated as follows.

Theorem 4. For any fixed ε > 0, for any fixed τ > 0, there exists a constant nε,τ ∈ N,
such that for any n ≥ nε,τ , if t ≤ τn1−ε , then there exists a black-box t-private protocol
for G-circuits with polynomial communication complexity O(n6d−1/log2(2d−1)Ng) using
O(n6d−1/log2(2d−1)Ng) rounds where d = 2�2/ε�−1. Moreover, there is a deterministic
polynomial-time algorithm to construct the protocol.

Proof. We fix ε > 0 and τ > 0. We set d = 2�2/ε�−1 and k = �log(2d−1) n
. We have
d ≥ 2. If n ≥ 2d − 1 then k ≥ 1. In such a condition, we can apply Theorem 3 for the
pair (k, d). There exists a tk-private protocol for nk participants to compute the G-circuit
using O(ekNg) group elements where tk, nk, ek are defined as in Theorem 3. It is clear
that the construction also t ′-privately computes the G-circuit for any (t ′, n′) such that
t ′ ≤ tk and n′ ≥ nk . So, we only need to show τn1−ε ≤ tk , n ≥ nk and �k = P oly(n).
Due to our choice of d and k, we have

nk ≤ (2d − 1)�log(2d−1) n
 ≤ (2d − 1)log(2d−1) n ≤ n.
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And:

tk ≥ d�log(2d−1) n
 − 1 ≥ d log(2d−1) n−1 − 1 ≥ nlog2 d/log2(2d−1)

d
− 1 ≥ nlog2 d/log2 2d

d
− 1.

Since d = 2�2/ε�−1, we get

tk ≥ n�2/ε�−1/�2/ε�

2�2/ε�−1
− 1 ≥ n1−ε/2

2�2/ε�−1
− 1 ≥ nε/2

2�2/ε�−1
n1−ε − 1.

Since ε is a fixed positive constant, the mapping n �→ nε/2

2�2/ε�−1 has an infinite limit.

Therefore: ∃̃nε,τ > 0 : ∀n ≥ ñε,τ
nε/2

2�2/ε�−1 ≥ τ + 1
n1−ε .

Remember that we early required n ≥ 2d − 1 in order to use Theorem 3. If we set
nε,τ := max(2d − 1, ñε,τ ) then

∀n ≥ nε,τ

{
nk ≤ n,

tk ≥ τn1−ε ≥ t.

It remains to argue about ek . Since 1 ≤ nk ≤ n and 1 ≤ 6d−1
log2(2d−1)

, we have ek ≤
1

3×22d−3 ×n6d−1/log2(2d−1). Since d is independent from n, the value ek is upper bounded
by a polynomial in n.

Concerning the number of rounds, due to the recursive construction process, the grid
Grec(�k) can be regarded as a grid Grec(�k−1) where each node is a block B . More
precisely, Grec(�k) can be decomposed into vk−1 blocks B . Let us focus on a single
block B . Such a block is a (4Bd)-copy over a (Bd + 1) × (Bd + 1) grid of Grec(�1).
Assume that we number the nodes of this (Bd + 1) × (Bd + 1) grid from right to left
and from top to bottom. In other words, the top right node is assigned the position
(1,1) and the bottom left node is located at (Bd + 1, Bd + 1). Due to the construction
process, the only nodes of this grid occupied by a copy of Grec(�1) are on the extremal
rows (topmost and bottommost) and columns (leftmost and rightmost) (see Fig. 6 as
example). We identify a copy to its location and we pair these copies of Grec(�1) as
follows.

{
Pi := (

(1, i), (i,1)
) : i ∈ {2, . . . , Bd + 1}}

∪{
P

′
i := (

(i, Bd + 1), (Bd + 1, i)
) : i ∈ {2, . . . , Bd}}.

The only two copies without a match are located at (1,1) (top right) and (Bd +1, Bd +1)

(bottom left).
Due to the edge orientation, the computation over the block B works as follows.

First, we perform the computation for the top right copy of Grec(�1). Second, when this
computation if done, we simultaneously process the computation corresponding to the
pair of copies P2. Third, we sequentially repeat this for P3, . . . ,PBd+1,P

′
2, . . . ,P

′
Bd

.
Finally, we execute the computation of the last remaining copy of Grec(�1) located at
(Bd + 1, Bd + 1) (bottom left).
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Applying our reasoning from the proof of Corollary 1, the computation represented
by a single copy of Grec(�1) takes 2�1 = 2Bd rounds. As a consequence, with our ap-
proach, the number of rounds needed to perform all computations over a block B is
2�1[1 + (Bd + 1 − 2 + 1) + (Bd − 2 + 1) + 1] = 2Bd(2Bd + 1) rounds.

The number of rounds needed for the computation represented by the PDAG Grec(�k)

is at most 2Bd(2Bd + 1)vk−1. Since Grec(�k) has to be mirrored to obtain a PDAG for
the nk-party shared 2-product computation (see Sect. 3.2), the number of rounds needed
to tk-securely compute the G-circuit is at most

4Bd(2Bd + 1)vk−1(Ng − 1).

We have

4Bd(2Bd + 1)vk−1 ≤ 4Bd(2Bd + 1)22k−4 B3k−4
d

≤ 3

4
B3k−2

d

(
2k

)2

≤ 3

4
n

2/log2(2d−1)

k

(
2k

)6d−322−4d

≤ 3

24d
n

6d−1/log2(2d−1)

k .

Since nk ≤ n and d is constant, we get our result.

3.4. Probabilistic Construction

It is natural to ask whether the exponentially large sharing parameter � = (
n
t

)
can be

reduced to polynomial size while allowing t to be a constant fraction of n. In this section,
we will provide a positive answer to this question, in fact our construction will allow an
optimal t < n/2, but only probabilistically.

For our construction, we use the ‘probabilistic method’ [1]. Namely, we choose the
color of each node in the square graph Gtri(�, �) independently and uniformly at random
from [n]. Although there is a finite error probability δ that such a random n-coloring
will not be weakly t-reliable, we show that for t < n/2 with sufficiently large sharing
parameter � (still polynomial in n), the error probability δ can be made arbitrarily small.
Moreover, δ decreases exponentially fast with �, so δ can be easily made negligible. We
also show that for t = n/(2 + ε) for any constant ε > 0, it is sufficient to take a linear
sharing parameter � = O(n) for arbitrarily small constant error probability δ.

Remark 15. Although our results allow one to efficiently generate colorings for
Gtri(�, �) which are weakly t-reliable except for a negligible error probability, it is nat-
ural to ask whether one can efficiently generate colorings which we are certain to be
weakly t-reliable. In this connection, we note that for any given t-collusion I , and a
coloring C, there exists an efficient algorithm (with run time linear in the number of
nodes �2) to verify that the colored graph contains I -avoiding top-bottom/right–left
paths Px and Py . However, the naive approach to verify that C is weakly t-reliable re-
quires running this algorithm

(
n
t

)
times (once for every possible I ), giving a run time
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Algorithm 4 Coloring Crand

Input: A grid Gtri(�, �).
1. For each (i, j) ∈ [�] × [�], choose the color C(i, j) of node (i, j) independently
and uniformly at random from [n].

Output: A n-coloring of the grid.

Fig. 8. The triangle T (5).

exponential in t . We do not know whether there is an efficient algorithm to verify that a
given a given coloring C of Gtri(�, �) is weakly t-reliable.

We use the random coloring Crand for the grid Gtri(�, �) described as Algorithm 4.

Our analysis will be based on percolation theory. We first introduce the following
definition which is illustrated in Fig. 8.

Definition 7. The triangular lattice of depth � denoted T (�) is a directed graph drawn
over an � × (3� − 2) grid such that

• [horizontal edges] for i ∈ [�] and for j ∈ [�−1], there is a directed edge from node
(i, i + 2j) to (i, i + 2(j − 1)),

• [right downwards edges] for i ∈ [� − 1] and for j ∈ {0, . . . , � − 1}, there is a di-
rected edge from node (i, i + 2j) to node (i + 1, i + 2j + 1),

• [left downwards edges] for i ∈ [� − 1] and for j ∈ [� − 1], there is a directed edge
from node (i, i + 2j) to node (i + 1, i + 2j − 1).

Proposition 3. For any positive integer �, we have a graph isomorphism between
Gtri(�, �) and T (�).

Theorem 5. For any ε > 0 and δ > 0, there exists a constant cε such that if t ≤ n
2+ε

and � ≥ cε(n + log δ−1), then there exists a weakly t-reliable n-coloring for Gtri(�, �),
and Algorithm 4 returns such a coloring with probability at least 1 − δ. Furthermore,
if n = 2t + 1, then for any ν > 0 and δ > 0, there exists a constant cν such that for
� ≥ cνn

91/36+ν(n + log δ−1), Algorithm 4 returns a weakly t-reliable n-coloring for
Gtri(�, �) with probability at least 1 − δ.
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Proof. The demonstration of this theorem requires some results on percolation theory
which can be found in Appendix D.

We prove that the coloring Crand will work with high probability. Let tε = � n
2+ε



where �·
 denotes the floor function, and ε is either a constant (for the first part of the
theorem), or ε = 2/(n − 1) (for the second part). Instead of considering the probability
that Crand is a weakly tε -reliable n-coloring for Gtri(�, �), we study the complementary
event. A suitable value for � will be given at the end of this demonstration.

The coloring Crand is called bad if there exists a color set I ⊂ [n] with |I | = tε , such
that either there are no I -avoiding top-bottom paths or there are no I -avoiding right–left
paths. By the union bound, we obtain the following upper bound on Pr(Crand is bad):

2 Pr
(∃I ⊂ [n], |I | = tε, there are no I -avoiding top-bottom paths in Gtri(�, �)

)

≤ 2
∑

I⊂[n],|I |=tε

Pr
(
there are no I -avoiding top-bottom paths in Gtri(�, �)

)
. (4)

The factor 2 in inequality (4) comes from the fact the top-bottom probability is equal
to the right–left probability due to the symmetry of the grid Gtri(�, �) and the coloring
Crand.

Next, we demonstrate that for a fixed color set I ⊂ [n] with |I | = tε , the probability
that there are no I -avoiding top-bottom paths in Crand is exponentially small. Let us fix
the color set I . We call a vertex closed if its color belongs to I . Otherwise, the vertex
is called open. The random coloring Crand of each vertex is equivalent to opening it
independently and randomly with probability p := 1 − tε

n
. An I -avoiding path is simply

an open path. Therefore, we get

Pr
(
there are no I -avoiding top-bottom paths in Gtri(�, �)

)

= Prp
(
there are no open top-bottom paths in Gtri(�, �)

)

= 1 − Prp
(
there is an open top-bottom path in Gtri(�, �)

)
. (5)

When we combine Lemma 5 (Appendix D), Proposition 3 and equality (5), we obtain

Pr
(
there is no I -avoiding top-bottom path in Gtri(�, �)

)

= Prp
(
there is a closed right–left path in T (�)

)

= Pr1−p

(
there is an open right–left path in T (�)

)
. (6)

In equality (6), Pr1−p(·) means that we open each vertex with probability 1 − p. In
our case, we have 1 − p = tε

n
≤ 1

2+ε
< ps

c(T (�)) where ps
c(T (�)) denotes the critical

probability of site percolation for T (�). Using Lemma 7 (Appendix D), we get

Pr1−p

(
there is an open right–left path in T (�)

) ≤ �Pr1−p

(
0

�−1−→) ≤ �e−c(�−1). (7)

The first inequality is due to the fact that any right–left path has length at least (� − 1)

in T (�). Combining (4) to (7), we obtain

Pr(Crand is bad) ≤ 2

(
n

tε

)
�e−c(�−1).
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Thus, if we choose � := cε(n + log δ−1) for some large enough constant cε , we have
Pr(Crand is bad) ≤ δ, as required. This proves the first part of the theorem for constant
ε > 0.

For the second part of the theorem, with ε = 2/(n − 1), we need Lemma 8 (Ap-
pendix D) representing a quantitative version of Lemma 7. As in the proof of the first
part of the theorem, we apply this result with opening probability 1 − p = tε

n
= 1

2+ε
<

ps
c(T (�)) with ε = 2/(n−1) approaching zero with increasing n. Note that 1−p ≥ 1/3.

Using Lemma 8 and the parameters from Theorem 6 (Appendix D), we get

Pr1−p

(
there is an open right–left path in T (�)

) ≤ �Pr1−p

(
0

�−1−→) ≤ �e−�(�−1)/r(1−p)


with r(1 −p) = cξ(1 −p)
√

χ(1 − p) = c(p − 1/2)−(4/3+43/36)+o(1) as p tends to 1/2.
Using p − 1/2 = 1/(2n), we get r(n) = c′n91/36+o(1) for some absolute constant c′.
Following the same union bound argument as in the first part of the theorem, this leads
to a coloring failure probability at most δ if � ≥ r(n)(n + log(δ−1)), as claimed. �

Combining Theorem 5 and with Remark 11, Lemmas 1 and 2, we get the following.

Corollary 2. For any δ > 0, if t < n/2, we can construct a probabilistic algorithm,
with run-time polynomial in n and log(δ−1), which outputs a black-box protocol

∏
for

G-circuits such that the communication complexity of
∏

is O(n5.056(n + log δ−1)
2
Ng)

group elements, the protocol requires O(n2.528(n + log δ−1)Ng) rounds and the proba-
bility that

∏
is not t-private is at most δ. Moreover, if t ≤ n/(2 + ε) for some constant

ε > 0, the communication complexity is O((n + log δ−1)
2
Ng) group elements and the

protocol needs O((n + log δ−1)Ng) rounds.

4. Conclusion

In this paper, we showed how to design black-box t-private protocols for performing
the secure evaluation of an arbitrary circuit over a finite group. This result was ob-
tained by reducing the cryptographic problem of performing MPC over (non-Abelian)
groups to a combinatorial graph coloring problem, using tools from communication
security [12]. We then gave two deterministic solutions to the problem. Our first con-
struction achieves optimal resilience t < n/2 but it has exponential complexity. Our
second construction is a recursive technique which demonstrates the existence of a t-
secure protocol to compute G-circuits using polynomial communication complexity for
any t ∈ O(n1−ε) where ε is any positive constant. We also present a probabilistic con-
struction with communication complexity polynomial in n and achieving an optimal
collusion security t < n/2. All these results, holding for the passive adversarial model,
are summarized in Table 1.

Open Problems Our work raises some interesting combinatorial questions. For exam-
ple, what is the largest collusion resistance achievable with an admissible PDAG of size
polynomial in n, and what kind of PDAG achieves this optimum? Theorem 5 partly
answers this question. Indeed, it states that optimal collusion resistance (t = (n − 1)/2)
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Type of Coloring Communication Number of Number of
construction complexity adversaries rounds

Deterministic Ccomb O(
(2t+1

t

)2
Ng) t ≤ � n

2 � − 1 O(
(2t+1

t

)
Ng)

(optimal)

Recursion O(n6d−1/log2 (2d−1)Ng) t = O(n1−ε) O(n6d−1/log2(2d−1)Ng)

from Ccomb where d = 2�2/ε�−1 (ε constant) where d = 2�2/ε�−1

Probabilistic Crand O(n5.056(n + log(δ−1))
2
Ng) t ≤ � n

2 � − 1 O(n2.528(n + log(δ−1))Ng)

(failure δ) (optimal)

Crand O((n + log(δ−1))
2
Ng) t ≤ n

2+ε
O((n + log(δ−1))Ng)

(ε constant)

Table 1. Comparative summary of protocols for computing G-circuits in the passive adversarial model.

is achievable with a polynomial size admissible PDAG at the cost of using a coloring
which is not t-reliable with probability δ > 0. There are also interesting cryptographic
questions. First, can the communication complexity of our protocols be reduced fur-
ther? Second, does there exist an efficient (running-time polynomial in n) deterministic
algorithm to generate a weakly t-reliable n-coloring of Gtri(�, �) (or some other ad-
missible PDAG) given n, t as input for any t < n? Can such a coloring be generated
recursively as our second deterministic construction? During our research, we obtained
several suitable pairs of colorings/graphs for small values of n and �. Our most represen-
tative outcomes can be found in Appendix E. Although we were not able to generalize
those examples, these structures might be of interest for future investigations in this
area.

Since all our constructions only provide security in the passive adversary case, one
may wonder if these techniques can be extended to deal with active adversaries.

In MPC, the number of rounds is an important efficiency measure. One may ask
whether one can design an admissible PDAG implying a protocol running in a constant
number of rounds such as [10]. Unfortunately, this is impossible to achieve if we want
optimal security (i.e. when n = 2t + 1). Indeed, a constant number of rounds would
imply the graph diameter to be constant. However, if the diameter is less than n/2 then
there is a path containing less than n/2 colors which can disconnect the graph (top-
bottom/left-right wise). More generally, to ensure the security against t adversaries, the
graph diameter must be at least t +1. As a consequence, one needs to tackle the problem
of MPC over a non-Abelian group in a different way to get a protocol with a constant
number of rounds (if possible).

The reader may notice that associativity is a fundamental property used in our pro-
tocols. Indeed, an invariant property is the fact that, at every row of our PDAGs, the
left-to-right product of the � shares is constant. This implies that our approach cannot
be used to perform MPC over structures for which the law of composition is not asso-
ciative such as quasigroups. In this situation, one may wonder what technique should
be used to perform secure MPC.
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Appendix A. Proof of Lemma 1

The correctness of
∏(x)

S and
∏(y)

S implies that the protocol output at each internal Mult
node α in C′ is an �-of-� sharing of the product of the two values whose sharings are the
labels of the incoming edges to α. If α is a CMult node, it is clear that its protocol value
is an Ox sharing of αxβ , where x is the Ox -shared input value. It follows easily by
induction that the protocol value computed at the output node of C′ is an �-of-� sharing
of fC′(x1, . . . , xn), establishing correctness.

To establish the t-privacy, we construct a simulator algorithm S for the view of a t-
collusion I ⊂ [n]. Given I , {xi}i∈I and protocol output y = fC′(x1 · · ·xn), the algorithm
S runs as follows.

1. For each input node i of C′, S chooses �−1 independent uniformly random group
elements to simulate the � − 1 shares {sxi

(j)}j∈[�]\{j∗} of xi sent out by party Pi

to parties POx(j) for j ∈ [�] \ {j∗
x }, where j∗

x ∈ [�] (which depends on I ) is the
share indices which are not simulated/input by/to simulator S∏

S
of subprotocols

∏(x)
S and

∏(y)
S (see Definition 2). S labels leaf node i with {sxi

(j)}j∈[�]\{j∗
x }.
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2. For each internal node i of C′, if i is a CMult node with input shares
{sx(j)}j∈[�]\{j∗

x }, S computes and labels i with the output shares (except the j∗
x th)

{s(i)
z (j)}j∈[�]\{j∗

x } for node i by following the protocol (i.e. s
(i)
z (1) = α · s

(i)
x (1),

s
(i)
z (�) = α · s(i)

x (�) · β and s
(i)
z (j) = s

(i)
x (j) for j �∈ {1, �}).

If i is a Mult node with input shares {sx(j)}j∈[�]\{j∗
x }, and {sy(j)}j∈[�]\{j∗

x },
S first runs simulator S∏(y)

S

of subprotocol
∏(y)

S on input (I, {sy(j)}j∈[�]\{j∗
x },

{s1(j)}j∈[�]\{j∗
y }), where {s1(j)}j∈[�]\{j∗

y }, is a random sharing of 1S5 . Simulator
S∏(y)

S

outputs a simulation of the internal view of I in the Convert subproto-

col run at node i, along with simulated output shares for Convert (except the
j∗
y th) {s′

y(j)}j∈[�]\{j∗
y }. Then S runs simulator S∏(x)

S

of subprotocol
∏(x)

S on input

(I, {sx(j)}j∈[�]\{j∗
x }, {s′

y(j)}j∈[�]\{j∗
y }). Simulator S∏(x)

S

outputs a simulation of the

internal view of I in the
∏(x)

S subprotocol run at node i, along with simulated out-

put shares {s(i)
z (j)}j∈[�]\{j∗

x } of
∏(x)

S . S labels node i of C′ with {s(i)
z (j)}j∈[�]\{j∗

x }.
3. After labeling all nodes of C′, S has a complete simulation of the view of I in∏

(C′,
∏(x)

S ), except for the j∗
x th share s∗

z (j∗
x ) of output node label, broadcast by

party POz(j∗
x ) in the last round. However, we know that the output node shares

satisfy s∗
z (1) · · · s∗

z (�) = y. Accordingly, from the known value of y and the sim-
ulated shares {sz(j)}j∈[�]\{j∗}, s∗

z (j∗) can be uniquely determined and simulated
by S.

For each internal node of C′, the perfect simulation of the protocol view and output at
the node given the view so far follows inductively from the strong t-privacy of

∏(x)
S and

∏(y)
S . This completes the proof of Lemma 1.

Appendix B. Proof of Lemma 2

The correctness of
∏

S(G,C) is immediate from the fact that, due to the ordering con-
dition (1) in Definition 4, the product of node labels at each row of G is preserved to be
equal to x · y.

To establish the strong t-privacy of
∏

S(G,C), let I ⊆ [n] denote an arbitrary t-color
collusion. Since C is t-reliable there exists an I -avoiding path PATHx in G from j∗

x th
x-input node to the j∗

z th output node, and an I -avoiding path PATHy from the j∗
y th

y-input to the j∗
z th output node. On input (I, {sx(j)}j∈[n]\{j∗

x }, {sy(j)}j∈[�]\{j∗
y }), the

simulator S∏
S

runs as follows:

• For each i = 1, . . . ,m and j = 1, . . . ,m:
– If node (i, j) is not on PATHx or PATHy , follow the protocol

∏
S to label node

(i, j) and all its outgoing edges (using the product of incoming edge values if
i > 1 or with appropriate simulator input if i = 1).

– If node (i, j) is on PATHx or PATHy , label all outgoing edges of node (i, j)

which go to nodes not on PATHx or PATHy by independent random elements
of G.
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Since PATHx and PATHy are I -avoiding, the edge values simulated by S∏
S

contain
the view of I , and S∏

S
also simulates the values of all output nodes except the j∗

z th
output (which is the only output node on PATHx or PATHy ).

Let V denote a fixed value for the labels of edges NOT on PATHx or PATHy which
are incoming edges to a node on PATHx or PATHy . We show that, in the real subprotocol∏

S , for each fixed choice of the ‘missing inputs’ sx(j
∗
x ) and sy(j

∗
y ) there exists a unique

value for the random group elements {ri} chosen at nodes on PATHx and PATHy , which
is consistent with the view V . Thus the simulation is perfect, as required.

To each outgoing edge of a node on PATHx or PATHy (we call such a node a ‘path
node’ from now on) in the real subprotocol

∏
S we associate an edge equation relating

the label of the edge to the random elements {ri} chosen by path nodes, the fixed view
V , and the values sx(j

∗
x ) and sy(j

∗
y ). For an outgoing edge of a node on the path, we

say that its edge equation is a view edge equation if the edge is not on the path.
Our problem is therefore to show that the collection of view edge equations always

has a unique solution for the {ri} (for any fixed values of V , sx(j
∗
x ) and sy(j

∗
y )). To do

this, we show that one can order the view edge equations {Ei} and the random elements
{ri} chosen by path nodes, so that for all i, the following ‘good ordering’ condition is
satisfied:

• Good Ordering Condition: The ith view edge equation Ei is of the form

α1riα2 = α3, (B.1)

where ri is new (i.e. ri does not appear in any of the first i − 1 view edge equations
E1, . . . ,Ei−1), while α1, α2, α3 are group elements determined by ‘old’ ri ’s (i.e.
r1, . . . , ri−1) and the fixed values V , sx(j

∗
x ) and sy(j

∗
y ).

If such a good ordering exists, it is clear that a unique solution for the {ri} exists
(where for all i, the ith view equation Ei uniquely determines ri = α−1

1 α3α
−1
2 in terms

of already determined previous rj ’s and fixed values).
We now construct a good ordering of the view edge equations {Ei} and path random

values {ri}.
First observe that since PATHx and PATHy both exit at output node j∗

z , the two
paths must meet at some node, and then continue along the same path to output j∗

z .
Except for the unique meeting node where PATHx and PATHy meet, we will regard the
common nodes as belonging to PATHx . Apart from the meeting node, we can classify
the nodes on PATHx and PATHy into three classes: minimum path nodes (which have
two incoming edges on the path and no outgoing edges on the path), maximum path
nodes (which have no incoming edges on the path and two outgoing edges on the path)
and middle path nodes (which have one incoming and one outgoing edge on the path,
or are input/output nodes). Refer to Fig. 9 for an example.

Let us first consider the nodes on PATHy . By Proposition 1, we may assume (with-
out changing the protocol distribution) that in the real subprotocol

∏
S , when a middle

PATHy node shares out its node label v among its q outgoing edges, it sends new ran-
dom elements (labels) ri on each of the q − 1 outgoing edges NOT on PATHy . We take
the view edge equations corresponding to those nodes to be the first edge equations in
our good ordering. It is clear that the good ordering condition (B.1) is trivially satisfied,
since these equations have the form ri = α, where ri is new and α is fixed by V .
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Fig. 9. Example of an admissible PDAG with sharing parameter � = 3 (node colors are not indicated). For
a given collusion I , an example I -avoiding path PATHx is shown in heavy black, and an example I -avoiding
path PATHy (until the meeting with PATHx ) is shown in dashed black. Minimum path nodes are marked by a
triangle with a horizontal edge above the node, whereas maximum path nodes are marked by a triangle with
a horizontal edge below the node. In this example, we have j∗

x = 2 and j∗
y = 3, PATHx has 3 maximum and

3 minimum nodes, and PATHy has 1 maximum and 1 minimum node.

Suppose there are k minimum/maximum nodes on the PATHy (since each minimum
node is always followed by a maximum node, the number of maxima and minima is
always equal). Note that if the meeting node at the intersection between PATHx and
PATHy has an outgoing (downward) edge along PATHy , we regard it here as the last
maximum node of PATHy . For each j = 1, . . . , k, applying Proposition 1 again to the
j th maximum path node having q ≥ 2 outgoing edges, we can assume that the q − 2
outgoing edges NOT on the path are labeled with new random elements ri . We take
the corresponding view edge equations as the next ones in our ordering, again trivially
satisfying (B.1). Of the two outgoing edges on the path from the j th maximum node,
one of them goes to an earlier node on the path (toward the j th ‘minimum’ path node),
and we may assume that this edge is labeled with a new (q − 1)th random element r∗

j

(note that r∗
j does NOT appear in any view edge equation so far and is left undetermined

for now). The remaining outgoing edge on the path from the j th maximum therefore
has a label of the form α1(r

∗
j )−1α2, where α1 and α2 are fixed by V and the old ri ’s.

Therefore, it is easy to see that for each j = 1, . . . , k the label vj,j on any path edge
between the j th minimum and the j th maximum is of the form

vj,j = α1r
∗
j α2, (B.2)

where α1 and α2 are fixed by V . Similarly, for j = 1, . . . , k − 1, the label vj,j+1 on any
path edge between the j th maximum and the (j + 1)th minimum is of the form

vj,j+1 = β1
(
r∗
j

)−1
β2, (B.3)

where β1 and β2 are fixed by V .
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Suppose we have visited the first j − 1 minimum nodes and consider the j th mini-
mum node. Applying Proposition 1 to the j th ’minimum’ path node for j = 1, . . . , k,
we see that out of the q outgoing edges not on the path of the j th minimum node, we
can assume that q −1 of those outgoing edge labels are new random elements ri , giving
q − 1 new edge view equations trivially satisfying (B.1), and it remains to consider the
view edge equation corresponding to the qth outgoing edge label, which is determined
from all other incoming and outgoing edges of the j th minimum node. This equation
has the form

γ1v
±1
j−1,j γ2v

±1
j,j γ3 = γ4, (B.4)

where γi ’s are fixed by V , vj−1,j is the label on the path edge entering the j th minimum
node, and vj,j is the value on the path edge exiting the j th minimum node.

For j = 1, the label v0,1 on the incoming path edge to the first minimum node from
an earlier node on the path (i.e. toward the input node) has the form v0,1 = β1sy(j

∗
y )β2,

with β1, β2 fixed by V . Using (B.2), the label v1,1 on the incoming path edge to the first
minimum node from the next node on the path (i.e. toward the first maximum node) has
the form v1,1 = α1r

∗
1 α2, with α1, α2 fixed by V . Plugging these expressions for v0,1 and

v1,1 into (B.4), we see that since r∗
1 is ‘new’ (recall that r∗

1 has only appeared in equa-
tions of edges on the path so far, and not in any view edge equation), the condition (B.1)
is satisfied for j = 1.

For j > 1, using (B.3), we have vj−1,j = β1(r
∗
j−1)

−1β2 with β1, β2 fixed by V , while
using (B.2), we have vj,j = α1r

∗
j αj , with α1, α2 fixed by V . Plugging these expressions

for vj−1,j and vj,j into (B.4), and noting that r∗
j−1 is ‘old’ (has appeared in a view edge

equation for an outgoing edge of the (j − 1)th minimum node) while r∗
j is ‘new’, we

see that condition (B.1) is also satisfied for 1 < j ≤ k.
This completes the description of the good ordering of all view edge equations of

nodes on PATHy . We now apply the same argument as above to add the view edge
equations of nodes on PATHx in a good ordering. The only differences in this case are
that (1) sx(j) takes the place of sy(j

∗
y ), and (2) the effect of the ‘meeting’ node of

PATHx and PATHy . The only effect of (2) on the above argument is that in the qth view
edge (B.4) for the first minimum node on PATHx that follows the meeting node, one of
the αi ’s will depend also on the r∗

k random value which appeared in the PATHy view
edge equations. Since the r∗

k is ‘old’, the good ordering condition (B.1) is still satisfied.
We conclude that all random values of path nodes are determined uniquely, for any

fixed values of sx(j
∗
x ),sy(j∗

y ) and view V, which completes the proof of the Lemma 2.

Appendix C. Connection of Color Avoiding Paths

It was shown in the proof of Theorem 3 that each block Bci
had Bd horizontal and Bd

vertical Ici
-avoiding paths. In this Appendix, we show how to construct a I -avoiding

top-bottom path in Grec(�k+1). Our path will start at the top of Bv1 and ends at the
bottom of Bvm .

Every grid from the family (Grec(�λ))λ≥1 is a square grid. Thus, the sequence of
blocks Bv1 , . . . ,Bvm in Grec(�k+1) is determined by the position of Bv1 as well as the
m-tuple of letters from {L,R,T,B} (Left, Right, Top, Bottom) indicating the output
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side of the block Bvi
for i ∈ [m]. Note that the last letter of the tuple is always B since

the I -avoiding top-bottom path ends at the bottom of Bvm .
This tuple has the property the two consecutive letters cannot be opposite to each

other (i.e., one cannot have (L,R), (R,L), (T,B) or (B,T)). This means that you
leave a block on a different side that you entered it. The reader can check the correct-
ness of this claim by a simple recursive process on the parameter k. This property is
trivially true for k = 1 since Grec(�1) = Gtri(�1). The recursion follows from the path
construction that we will design below.

Proposition 4. Let i be any element of [m]. Assume that N is any node on a side
of Bvi

belonging to a Ici
-avoiding straight line path. For each other side Si of Bvi

, we
can construct a Ici

-avoiding path from N to any of the (Bd + 1) nodes on Si belonging
to a Ici

-avoiding straight line path.

Proof. We only provide a proof when N is on the top side of Bvi
(the three other

cases are similar). The three possible output sides are B,L and R. The block Bvi
is

a-(Bd + 1) × (Bd + 1)-copy of the original grid Grec(�1). Thus, Bvi
can be treated as a

(Bd + 1) × (Bd + 1) array of grids Grec(�1). Based on this observation, we will use the
terminology grid-row (respectively, grid-column) to denote a set of Bd + 1 horizontal
(respectively, vertical) grids Grec(�1) in Bvi

.
1. Si = B. The vertical Ici

-avoiding path starting at node N intersects the horizontal
Ici

-avoiding path located within the bottom grid-row of Bvi
at node I . That horizontal

path intersects each of the Bd + 1 vertical Ici
-avoiding paths (one within each grid-

column) at I1, . . . , IBd+1. Note that I = Iμ for some μ ∈ [Bd + 1]. Once we are at one
of the Ij ’s, we simply go vertically downwards to the node N ′

j located at the bottom
side of the block Bvi

.
Thus, we can construct a path from N to each of the Bd + 1 output nodes on

the bottom side of Bvj
belonging to the vertical Ici

-avoiding paths. Those paths are
(N , I, Ij , N ′

j ) for j ∈ [Bd + 1].
2. Si = R. The vertical Ici

-avoiding path starting at node N intersects the horizontal
Ici

-avoiding path located within the top grid-row of Bvi
at node I . That horizontal

path intersects the vertical Ici
-avoiding path located within the rightmost grid-column

of Bvi
at node Ĩ . This vertical path intersects each of the Bd + 1 horizontal Ici

-avoiding
paths (one within each grid-row) at Ĩ1, . . . , ĨBd+1. As before, we get Ĩ = Ĩμ for some
μ ∈ [Bd + 1]. Once we are at one of the Ĩj ’s, we horizontally go rightwards to the node
N ′

j located on the right hand side of the block Bvi
.

Thus, we can construct a path from N to each of the Bd + 1 output nodes on the
right hand side of Bvj

belonging to the horizontal Ici
-avoiding paths. Those paths are

(N , I, Ĩ, Ĩj , N ′
j ) for j ∈ [Bd + 1].

3. Si = L. This is analogous to the previous case. �

We can finally construct a I -avoiding top-bottom path in Grec(�k+1). We denote the
m-tuple of output sides as (S1, . . . ,Sm). As previously said, we have Sm = B.

We start at any node N1 located on the top side of Bv1 and on a vertical Ic1 -avoiding
path. Using Proposition 4, we can connect N1 to any of the Bd + 1 nodes on side S1
of Bv1 using a Ic1 -avoiding path. An important remark is that each block of the whole
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grid Grec(�k+1) is a set of (Bd + 1) × (Bd + 1) identical copies of Grec(�1) (including
the coloring). As a consequence, these Bd + 1 nodes have the same location in their
respective copies of Grec(�1). Given the connection process between any pair of blocks
within Grec(�k+1), one of these Bd + 1 nodes must be connected to a node N2 from
block Bv2 belonging to a Ic2 -avoiding straight line path. Similarly, N2 is connected via
a Ic2 -avoiding path in Bv2 to a node N3 from Bv3 belonging to a Ic3 -avoiding straight
line path. If we repeat this process for each of the remaining blocks, we obtain a set of
m − 1 nodes N1, . . . ,Nm−1. The last node Nm−1 can be connected to a node Nm on
the bottom side of Bvm using a Icm -avoiding path. Thus, N1 (top side of Grec(�k+1)) is
connected to Nm (bottom side of Grec(�k+1)) using a I -avoiding path which achieves
the demonstration of our theorem.

Remark 16. As claimed above, this construction involves that the two consecutive side
letters of the m-tuple cannot be opposite to each other.

Appendix D. Selected Results on Percolation Theory

In this Appendix, we recall some existing results on percolation theory and we present
some additional properties. These are needed to demonstrate Theorem 5.

Lemma 5 [6]. The triangular lattice T (�) (Definition 7) has the following property:

Prp
(
there is an open top-bottom path in T (�)

)

+
Prp

(
there is a closed right–left path in T (�)

)

= 1.

Lemma 6 [21]. Let T be the triangular lattice in the plane. Then, the critical proba-
bility of site percolation ps

c(T ) is equal to 1
2 .

When the open probability is less than the critical probability, the percolation has the
following properties (see for example Chap. 4, Theorem 9 in [6]).

Lemma 7 [19]. If p < ps
c(T ), then there is a constant c = c(p),

Prp
(
0

n−→)
< e−cn,

where {x n−→} is the event that there is an open path from x to a point in Sn(x) with
Sn(x) := {y : d(x, y) = n} and d(x, y) denotes the distance between x and y.

Remark 17. The value 0 from Lemma 7 represent the zero element of Z × Z when the
graph is represented as a lattice over that set. In the case of the triangular lattice depicted
as Fig. 8, the value 0 can be identified to the node (1,1).
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Lemma 8. Suppose 1/3 ≤ p < ps
c(T ), and define random variable N as the cardi-

nality of the open cluster of nodes C0 in T containing the origin. Let χ(p) and ξ(p)

denote the following expected values:

χ(p) = Ep(N),

and

ξ(p) = (
Ep(L)/χ(p)

)1/2
, where L =

∑

y∈C0

‖y‖2
2.

Here, ‖y‖2 denotes the Euclidean distance of node y from the origin. Then, there exists
an absolute constant c such that

Prp
(
0

n−→)
< e−�n/r(p)
,

with r(p) = cξ(p)
√

χ(p), and {x n−→} is defined as in Lemma 7.

Proof. For r ≥ 1, let B+
r denote the set of nodes of T at graph distance at most r

from the origin. Also, define the random variable N+
r to be the number of nodes in

T at graph distance exactly r from the origin, which may be reached by an open path
in B+

r starting at a node neighboring the origin. It is shown in Sect. 4.4, Lemma 8
of [6] that, for any r ≥ 1, any n ≥ 1 and any real γ < 1, if Ep(N+

r ) ≤ γ then we

have Prp(0
n−→) ≤ pγ �n/r
. Thus our lemma immediately follows once we show that

Ep(N+
r ) ≤ e−1 for r ≥ r(p).

Let Nr be defined equal to N+
r except that we set Nr = 0 if the origin node is closed.

Notice that Nr = N+
r X, where X = 1 if the origin is open, and X = 0 otherwise. Since

the random variables N+
r and X are independent, we have Ep(Nr) = pEp(N+

r ). Hence,
if p ≥ 1/3, it suffices to show that Ep(Nr) ≤ e−1/3 for r ≥ r(p).

For this, we observe first that for any node x, we have ‖x‖2 ≥ d(0, x)/
√

3. This
follows by elementary geometry, where we assume the standard scaling of the lattice T

(see [6], Sect. 5.3) in which the triangles are equilateral with side length 1 and the points
(0,0) and (1,0) are in T . With this representation, a basis for T is formed by vectors
b1 = (1,0) and b2 = (1/2,

√
3/2). Therefore, each node x among the Nr nodes at graph

distance r from the origin, is at Euclidean distance at least r/
√

3 from the origin, and is
in the open cluster C0 containing the origin. It follows that L ≥ Nr(r/

√
3)2, and hence

Ep(Nr) ≤ (3/r2)Ep(L). Using Ep(L) = ξ(p)2χ(p), we conclude that it is sufficient to
take r ≥ 3

√
eχ(p)ξ(p) to get Ep(Nr) ≤ e−1/3, as claimed. �

The following celebrated result of Smirnov and Werner [27] gives an asymptotic
‘power law’ behavior for the parameters χ(p) and ξ(p) of the triangular lattice, as p

approaches the critical value 1/2 from below.

Theorem 6 [27]. As p approaches 1/2 from below, the following asymptotic behavior
holds:

χ(p) = (1/2 − p)−43/18+o(1) and ξ(p) = (1/2 − p)−4/3+o(1).
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Appendix E. A Collection of Suitable PDAGs and Their Colorings for Small
Group Size

In this Appendix (Figs. 10, 11, 12), we present the PDAGs with smallest number of
edges (e) and vertices (v) we obtained for t ∈ {1,2,3}. Surprisingly, for those values
of t , the graphs with the smallest number of edges were also those with the smallest
number of vertices. However, we were not able either to prove or disprove this fact in
the general case.

Fig. 10. n = 3, t = 1, e = 5, v = 4.

Fig. 11. n = 5, t = 2, e = 22, v = 11.

Fig. 12. n = 7, t = 3, e = 84, v = 35.
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Remark 18. The graph obtained for t = 1 is optimal since any PDAG must have at
least four vertices to allow paths to exist. It can also be seen that such a graph must have
at least five edges.

We also performed some implementations using the square grid Gtri(�, �). In the case,
t = 2 and � = 4, we obtained 36084 different colorings (each of them generating 120
similar colored grids by permuting over the set of five colors). Out of these 36084 solu-
tions, 89 were symmetric (i.e. the colored grid was its own transposed). We were able
to extend these 89 symmetric solutions into 4820 symmetric solutions for the case t = 3
and � = 6 by adding two rows below and two columns on the right hand side of the
original (t = 2, � = 4) symmetric grid.
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