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Abstract. Protocols for secure two-party computation enable a pair of parties to
compute a function of their inputs while preserving security properties such as privacy,
correctness and independence of inputs. Recently, a number of protocols have been
proposed for the efficient construction of two-party computation secure in the presence
of malicious adversaries (where security is proven under the standard simulation-based
ideal/real model paradigm for defining security). In this paper, we present a proto-
col for this task that follows the methodology of using cut-and-choose to boost Yao’s
protocol to be secure in the presence of malicious adversaries. Relying on specific as-
sumptions (DDH), we construct a protocol that is significantly more efficient and far
simpler than the protocol of Lindell and Pinkas (Eurocrypt 2007) that follows the same
methodology. We provide an exact, concrete analysis of the efficiency of our scheme
and demonstrate that (at least for not very small circuits) our protocol is more efficient
than any other known today.

Key words. Secure two-party computation, Malicious adversaries, Cut-and-choose,
Concrete efficiency.

1. Introduction

1.1. Background

Protocols for secure two-party computation enable a pair of parties P1 and P2 with
private inputs x and y, respectively, to compute a function f of their inputs while pre-
serving a number of security properties. The most central of these properties are pri-
vacy (meaning that the parties learn the output f (x, y) but nothing else), correctness
(meaning that the output received is indeed f (x, y) and not something else), and in-
dependence of inputs (meaning that neither party can choose its input as a function of
the other party’s input). The standard way of formalizing these security properties is to
compare the output of a real protocol execution to an “ideal execution” in which the
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parties send their inputs to an incorruptible trusted party who computes the output for
the parties. Informally speaking, a protocol is then secure if no real adversary attacking
the real protocol can do more harm than an ideal adversary (or simulator) who inter-
acts in the ideal model [2,3,14,15,32]. An important parameter when considering this
problem relates to the power of the adversary. The two most studied models are the
semi-honest model (where the adversary follows the protocol specification exactly but
tries to learn more than it should by inspecting the protocol transcript) and the malicious
model (where the adversary can follow any arbitrary polynomial-time strategy).

In the 1980s powerful feasibility results were proven, showing that any probabilistic
polynomial-time two-party functionality can be securely computed in the presence of
semi-honest adversaries [41] and in the presence of malicious adversaries [14]. These
results showed that it is possible to achieve such secure protocols, but did not demon-
strate how to do so efficiently (where by efficiency we mean a protocol that can be im-
plemented and run in practice). To be more exact, the protocol of [41] for semi-honest
adversaries is efficient. However, achieving security efficiently for the case of malicious
adversaries is far more difficult. In fact, until recently, no efficient general protocols
were known at all, where a general protocol is one that can be used for computing any
functionality.

This situation has changed in the past few years, possibly due to increasing interest
from outside the cryptographic community in secure protocols that are efficient enough
to be used in practice. The result has been that a number of secure two-party protocols
were presented that are secure in the presence of malicious adversaries, where security
is rigorously proven according to the aforementioned ideal/real model paradigm [21,
23,28,35]. Interestingly, these protocols all take novel, different approaches and so the
secure-protocol skyline is more diverse than before, providing the potential for taking
the protocols a step closer to very high efficiency. These protocols are discussed in more
detail in Sect. 1.3.

We remark that the protocol of [28] has been implemented for the non-trivial prob-
lem of securely computing the AES block cipher (pseudorandom function), where one
party’s input is a secret key and the other party’s input is a value to be “encrypted” [38].
A Boolean circuit for computing this function was designed with approximately 33,000
gates, and the protocol of [28] was implemented for this circuit. Experiments showed
that the running-time of the protocol was between 18 and 40 minutes, depending on the
assumptions taken on the primitives used to implement the protocol. Although this is
quite a long time, for some applications it can be reasonable. In addition, it demonstrates
that it is possible to securely compute functions with large circuits, and motivates the
search for finding even more efficient protocols that can widen the applicability of such
computations in real-world settings.

1.2. Our Results

In this paper, we follow the construction paradigm of [28] and significantly simplify
and improve the efficiency of their construction. The approach of [28] is to carry out a
basic cut-and-choose on the garbled circuit construction of Yao [41]. (See also [33] for
a different protocol based on the cut-and-choose approach, but which does not provide
security according to the standard ideal/real model paradigm.) We assume familiarity
with Yao’s protocol and refer to Appendix A for those not familiar. The cut-and-choose
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approach works by party P1 constructing s copies of a garbled circuit and sending them
to P2, who then asks P1 to open half of them in order to verify that they are correctly
constructed. If all of the opened circuits are indeed correct, then it is guaranteed that a
majority of the unopened half are also correct, except with probability that is negligible
in s.1 Thus, P1 and P2 evaluate the remaining s/2 circuits, and P2 takes the output that
appears in most of the evaluated circuits. As discussed in [28], P2 cannot abort in the
case that not all of the s/2 circuits evaluate to the same value, even though in such a
case it knows that P1 is cheating. The reason for this is that P1 may construct a circuit
that computes f in the case that P2’s first bit equals 0, and otherwise it outputs random
garbage. Now, with probability 1/2 this faulty circuit is not opened and so is one of the
circuits to be evaluated. In this case, if P2 would abort when it saw random garbage then
P1 would know that P2’s first input bit equals 1. For this reason, P2 takes the majority
output and ignores minority values without aborting.

Although intuitively appealing, the cut-and-choose approach introduces a number of
difficulties which significantly affect the efficiency of the protocol of [28]. First, since
the parties need to evaluate s/2 circuits rather than one, there needs to be a mechanism
to ensure that they use the same input in all evaluations (the solution for this for P2’s
inputs is easy, but for P1’s inputs turns out to be hard). The mechanism used in [28]
required constructing and sending 2s2� commitments, where � is the length of P2’s
input. In the implementation by [38], they used s = 160 and � = 128. Thus, the overhead
due to these consistency proofs alone is the computation and transmission of 6,553,600
commitments! Another problem that arises in the cut-and-choose approach is that a
malicious P1 can input an incorrect key into one of the oblivious transfers used for P2
to obtain the keys associated with its input wires in the garbled circuit. For example,
it can set all the keys associated with 0 for P2’s first input bit to be garbage, thereby
making it impossible for P2 to decrypt any circuit if its first input bit indeed equals 0.
In contrast, P1 can make all of the other keys be correct. In this case, P1 is able to
learn P2’s first input bit, merely by whether P2 obtains an output or not. The important
observation is that the checks on the garbled circuit carried out by P2 do not detect
this because there is a separation between the cut-and-choose checks and the oblivious
transfer. This adversarial strategy is called a selective failure attack [24]. The solution to
this problem in [28] requires making the circuit larger and significantly increasing the
size of the inputs by replacing each input bit with the exclusive-or of multiple random
input bits. Finally, the analysis of [28] yields an error of 2−s/17. Thus, in order to obtain
an error level of 2−40 the parties need to exchange 680 circuits. We remark that it has
been conjectured in [38] that the true error level of the protocol is 2−s/4; however, this
has not been proven.

Our Protocol We solve the aforementioned problems in a way that is far simpler and
far more efficient than in [28]. In addition, we reduce the error probability to 2−0.311s ,
for large enough s. A concrete calculation yields that for an error of 2−40 it suffices
to send only 132 circuits. This is an important improvement because the experiments

1 The parameter s is a statistical security parameter, and it models the negligible probability that the adver-
sary is not caught in cut-and-choose type checks. Typically, this negligible probability is exponentially small,
and the exact constant in the exponent has a significant ramification on the efficiency of the protocol, because
it influences how many garbled circuits need to be sent in order to obtain a small enough error.
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of [38] demonstrate that the bottleneck in efficiency is not the exponentiations, but rather
the number of circuits and the commitments for proving consistency. Thus, in our proto-
col we moderately increase the number of exponentiations, while reducing the number
of circuits, completely removing the commitments, and also removing the need to in-
crease the size of the inputs. We remark that the price for these improvements is that our
protocol relies heavily on the decisional Diffie–Hellman (DDH) assumption, while the
protocol of [28] used general assumptions only. We now proceed to describe our two
main techniques:

1. Our solution for ensuring consistency of P1’s inputs is to have P1 determine the
keys associated with its own input bits via a Diffie–Hellman pseudorandom syn-

thesizer [34]. That is, P1 chooses values ga0
1 , ga1

1 , . . . , ga0
� , ga1

� and gr1, . . . , grs

and then sets the keys associated with its ith input bit in the j th circuit to be

ga0
i ·rj , ga1

i ·rj . Given all of the {ga0
i , ga1

i , grj } values and any subset of keys of
P1’s input generated in this way, the remaining keys associated with its input are
pseudorandom by the DDH assumption. Furthermore, it is possible for P1 to ef-
ficiently prove that it used the same input in all circuits when the keys have this
nice structure. We stress that the garbled values for the rest of the circuit are cho-
sen as usual. Thus, it is still possible to use garbled-circuit optimizations like that
presented in [25].

2. As we have described, the reason that the inputs and circuits were needed
to be made larger in [28] is due to the fact that the cut-and-choose circuit
checks were separated from the oblivious transfer. In order to solve this prob-
lem, we introduce a new primitive called cut-and-choose oblivious transfer. This
is an ordinary oblivious transfer [11,39] with the sender inputting many pairs
(x0

1 , x1
1), . . . , (x0

s , x1
s ), and the receiver inputting many bits σ1, . . . , σs . However,

the receiver also inputs a set J ⊂ [s] of size exactly s/2. Then, the receiver ob-
tains x

σi

i for every i (as in a regular oblivious transfer) along with both values
(x0

j , x1
j ) for every j ∈ J , while the sender learns nothing about σ1, . . . , σs and J .

The use of this primitive in our protocol intertwines the oblivious transfer and the
circuit checks and solves the aforementioned problem. We also show how to im-
plement this primitive in a highly efficient way, under the DDH assumption. We
believe that this primitive is of independent interest, and could be useful in many
cut-and-choose scenarios.

Efficiency Analysis Our entire protocol, including all subprotocols, is explicitly writ-
ten and analyzed in a concrete and exact way for efficiency. Considerable effort has been
made to optimize the constructions and reduce the constants throughout. We believe that
this is of great importance when the focus of a result is efficiency. See Sect. 1.3 for a
summary of the exact complexity of our protocol, and Sect. 4.3 for a complete analysis,
with optimizations in Sect. 4.4.

Variants Another advantage of our protocol over that of [28] is that we obtain a uni-
versally composable [4] variant that is only slightly less efficient than the stand-alone
version. This is because our simulator only rewinds during zero-knowledge protocols.
These protocols are also � protocols and so can be efficiently transformed into univer-
sally composable zero-knowledge. As with our basic protocol, we provide an explicit
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description of this transformation and analyze its exact efficiency. In addition, we show
how our protocol yields a more efficient construction for security in the presence of
covert adversaries [1], when high values of the deterrent factor ε are desired.

1.3. Comparison to Other Protocols

We provide an analysis of the efficiency of recent protocols for secure two-party com-
putation. Each protocol takes a different approach, and thus the approaches may yield
more efficient instantiations in the future. Nevertheless, as we will show, our protocol is
significantly more efficient than the current best instantiations of the other approaches
(at least, for not very small circuits).

• Committed input method (Jarecki-Shmatikov [23]): The secure two-party pro-
tocol of [23] works by constructing a single circuit and proving that it is correct.
The novelty of this protocol is that this can be done with only a constant num-
ber of (large modulus) exponentiations per gate of the circuit. Thus, for circuits
that are relatively small, this can be very efficient. However, an exact count gives
that approximately 720 exponentiations are required per gate. Thus, even for small
circuits, this protocol is not yet practical. For large circuits like AES with 33,000
gates, the number of exponentiations is very large (23,760,000), and is not realistic.
(The authors comment that if efficient batch proofs can be found for the languages
they require then this can be significantly improved. However, to the best of our
knowledge, no such improvements have yet been made.)

• LEGO (Nielsen-Orlandi [35]): The LEGO protocol [35] follows the cut-and-
choose methodology in a completely different way. Specifically, the circuit con-
structor first sends the receiver many gates, and the receiver checks that they are
correctly constructed by asking for some to be opened. After this stage, the parties
interact in a way that enables the gates to be securely soldered (like Lego blocks)
into a correct circuit. Since it is not guaranteed that all of the gates are correct, but
just a vast majority, a fault tolerant circuit of size O(s · |C|/ log |C|) is constructed,
where s is a statistical security parameter. The error as a function of s is 2−s and
the constant inside the “O” notation for the number of exponentiations is 32 [36].
Thus, for an error of 2−40 we find that the overall number of exponentiations car-
ried out by the parties is 1280 · |C|/ log |C|. For large circuits, like that of AES,
this is unlikely to be practical. (For example, for the AES circuit with 33,000 gates
we see that the parties need to carry out 2,816,000 exponentiations. Observe that
due to the size of the circuit, the log |C| factor is significant in making the protocol
more efficient than [23], as predicted in [35]. This protocol also relies on the DDH
assumption. It is worthy to note that exponentiations in this protocol are in a regu-
lar “Diffie–Hellman” group and so Elliptic curves can be used, in contrast to [23]
who work in Z

∗
N .)

• Virtual multiparty method (Ishai et al. [21,22]): This method works by having
the parties simulate a virtual multiparty protocol with an honest majority. The cost
of the protocol essentially consists of the cost of running a semi-honest protocol
for computing additive shares of the product of additive shares, for every multipli-
cation carried out by a party in a multiparty protocol with honest majority. Thus,
the actual efficiency of the protocol depends heavily on the multiparty protocol
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to be simulated, and the semi-honest protocols used for simulating the multiparty
protocol. An asymptotic analysis demonstrates that this method may be competi-
tive. However, no concrete analysis has been carried out, and it is currently an open
question whether or not it is possible to instantiate this protocol in a way that will
be competitive with other known protocols.

• Cut-and-choose on circuits (Lindell-Pinkas [28]): Since this protocol has been
discussed at length above, we just briefly recall that the complexity of the protocol
is O(�) oblivious transfers for input-length � (where the constant inside here is not
small because of the need to increase the number of P2’s inputs), and the construc-
tion and computation of s garbled circuits and of 2s2� commitments. In addition,
the proven error of the protocol is 2−s/17 and its conjectured error is 2−s/4. The
actual error value has a significant impact on the efficiency.

In contrast to the above, the complexity of our protocol is as follows. The parties need
to compute 15s� + 39� + 10s + 6 exponentiations, where � is the input length and s is
a statistical security parameter discussed below. We further show that with optimiza-
tions the 15s� component can be brought down to just 5.66s� full exponentiations, and
if preprocessing can be used then only s�/2 full exponentiations need to be computed
after the inputs become known. (We remark that with preprocessing, the protocols of
[35] and [21,22] are also much more efficient.) In addition, the protocol requires the
exchange of 7s� + 22� + 7s + 5 group elements, and has 12 rounds of communica-
tion. Finally, there are 6.5|C|s symmetric encryptions for constructing and decrypting
the garbled circuits and 4|C|s ciphertexts sent for transmitting these circuits. An im-
portant factor here is the value of s needed. The error of our protocol is 2−0.311s for
large enough s; a concrete calculation yields that for an error of 2−40 it suffices to set
s = 132. (The overhead of computing an AES circuit with |C| = 33,000, � = 128 and
s = 132, is therefore about 96,000 exponentiations, 28,300,000 symmetric encryptions,
and communicating 270 Mbytes, where about 95% of the communication is spent on
sending the garbled circuits.) Finally, we stress also that all of our exponentiations are
of the basic Diffie–Hellman type and so can be implemented over Elliptic curves, which
is much cheaper than RSA-type operations.

2. Preliminaries and Definitions

Throughout the paper we denote the computational security parameter by n, the statis-
tical security parameter by s, and the length of inputs by �. The computational security
parameter is the usual one that is used to model the security of the underlying com-
putational assumptions (e.g., the DDH assumption). In contrast, the statistical security
parameter models a probability of cheating that is not due to any computational hard-
ness, but rather holds in an information-theoretic sense. For example, the probability
that an adversary passes a “cut-and-choose test” depends on how large the test is and
how many items are opened, but does otherwise not directly depend on computational
hardness. The distinction between the two types of security parameter is important be-
cause the size of the cut-and-choose test has a dramatic effect on the efficiency of the
protocol and thus the exact probability of cheating is important to analyze. For exam-
ple, in our protocol, we prove that the error due to the statistical security parameter s
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is approximately 2−0.311s . In general, we define the notion of indistinguishability with
respect to n and s, so that the error due to s is allowed only to be 2−O(s) (if this does
not hold, then there is probably no reason to differentiate between n and s).

We consider ensembles that are indexed by integers (security parameters) n and s, and
by arbitrary strings a. Security is required to hold for all a, and this value a represents
the parties’ inputs; thus, we obtain security for all inputs, and for large enough values
of n and s. Formally, we have the following definition:

Definition 2.1. Let X = {X(a,n, s)}n,s∈N;a∈{0,1}∗ and Y = {Y(a,n, s)}n,s∈N;a∈{0,1}∗
be probability ensembles, so that for any n, s ∈ N the distribution X(a,n, s) (resp.,
Y(a,n, s)) ranges over strings of length polynomial in n+ s. We say that the ensembles

are (n,s)-indistinguishable, denoted X
n,s≡ Y , if there exists a constant 0 < c ≤ 1 such that

for every non-uniform polynomial-time distinguisher D, every a ∈ {0,1}∗, every s ∈ N,
every polynomial p(·) and all large enough n ∈ N:

∣
∣Pr

[

D(X(a,n, s), a, n, s) = 1
] − Pr

[

D(Y(a,n, s), a, n, s) = 1
]∣
∣ <

1

p(n)
+ 1

2c·s .

Observe that the above is required to hold for all s and all large enough n. This
reflects the fact that we will be concrete in s and asymptotic only in n.

Definitions of Security We refer the reader to [13, Chap. 7] for the definition of secu-
rity for two-party computation in the presence of malicious adversaries. The bulk of this
paper is in this model. The only difference is that we require (n, s)-indistinguishability
between the ideal and real distributions, rather than just regular computational indistin-
guishability. We also consider the models of universal composability and covert adver-
saries, and refer the reader to [4] and [1], respectively, for appropriate definitions.

3. Cut-and-Choose Oblivious Transfer

3.1. The Functionality and Construction Overview

Our protocol for secure two-party computation uses a new primitive that we call cut-
and-choose oblivious transfer. Loosely speaking, a cut-and-choose OT is a batch obliv-
ious transfer protocol (meaning an oblivious transfer for multiple pairs of inputs) with
the additional property that the receiver can choose a subset of the pairs (of a predeter-
mined size) for which it learns both values. This is a very natural primitive which has
clear applications for protocols that are based on cut-and-choose, as is our protocol here
for general two-party computation.

The cut-and-choose OT functionality, denoted Fccot, with parameter s, is formally
defined in Figure 3.1, together with a variant functionality that we will need, which
considers the case that R is forced to use the same choice σ in every transfer. This
variant is denoted F S

ccot.
In order to motivate the usefulness of this functionality, we describe its use in our pro-

tocol. Oblivious transfer is used in Yao’s protocol so that the party computing the gar-
bled circuit (call it P2) can obtain the keys (garbled values) on the wires corresponding
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FIGURE 3.1 The cut-and-choose OT functionalities.

The cut-and-choose OT functionality Fccot:

• Inputs:
– S inputs a vector of pairs x = {(xi

0, xi
1)}s

i=1
– R inputs σ1, . . . , σs ∈ {0,1} and a set of indices J ⊂ [s] of size exactly s/2.

• Output: If J is not of size s/2 then S and R receive ⊥ as output. Otherwise,

– For every j ∈ J the receiver R obtains the pair (x
j
0 , x

j
1 ).

– For every j /∈ J the receiver R obtains x
j
σj

.

The single-choice cut-and-choose OT functionality FS
ccot:

• Inputs: The same as above, but with R having only a single input bit σ .

• Output: The same as above, but with R obtaining the value x
j
σ for every j /∈ J .

with its input while keeping its input secret; see Appendix A. When applying cut-and-
choose, many circuits are constructed and then half of them are opened, where opening
means that P2 receives all of the input keys to the circuit. By using cut-and-choose OT,
P2 receives all of its keys in the circuits to be opened directly, in contrast to having P1
send them separately after the indices of the circuits to be opened are sent from P2 to
P1. The advantage of this approach is that P1 cannot use different keys in the OT and
when opening the circuit. See Sect. 4.1 for discussion on why this is important.

In cut-and-choose on Yao’s protocol, one oblivious transfer is needed for every bit of
P2’s input, and P2 should receive the keys associated with the bit in all of the circuits.
In order to ensure that P2 uses the same input in all circuits, we use the single-choice
variant. We present the basic variant since it is of independent interest and may be useful
in other applications.

Constructing Cut-and-Choose OT The starting point for our construction of cut-and-
choose OT is the universally composable protocol of Peikert et al. [37]; we refer only
to the instantiation of their protocol based on the DDH assumption because this is the
most efficient. However, our protocol can use any of their instantiations. The protocol
of [37] is cast in the common reference string (CRS) model, where the CRS is a tuple
(g0, g1, h0, h1) where g0 is a generator of a group of order q (in which DDH is assumed
to be hard), g1 = (g0)

y for some random y, and it holds that h0 = (g0)
a and h1 = (g1)

b

where a �= b. We first observe that it is possible for the receiver to choose this tuple itself,
as long as it proves that it indeed fulfills the property that a �= b. Furthermore, this can
be proven very efficiently by setting b = a + 1; in this case, the proof that b = a + 1
is equivalent to proving that (g0, g1, h0,

h1
g1

) is a Diffie–Hellman tuple (note that the
security of [37] is based only on a �= b and not on these values being independent of
each other). We thus obtain a highly efficient version of the protocol of [37] in the
stand-alone model.

Next, observe that the protocol of [37] has the property that if (g0, g1, h0, h1) is a
Diffie–Hellman tuple (i.e., if a = b) then it is possible for the receiver to learn both
values (of course, in a real execution this cannot happen because the receiver proves
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that a �= b). This property is utilized by [37] to prove universal composability; in their
case the simulator can choose the CRS so that a = b and then obtain both inputs of the
sender, something that is needed for proving simulation-based security. However, in our
case, we want the receiver to be able to sometimes learn both inputs of the sender. We
can therefore utilize this exact property and have the receiver choose s/2 pairs (h0, h1)

for which a �= b (ensuring that it learns only one input) and s/2 pairs (h0, h1) for which
a = b (enabling it to learn both inputs by actually running the simulator strategy of [37]).
This therefore provides the exact cut-and-choose property in the OT that is needed. Of
course, the receiver must also prove that it behaved in this way. Specifically, it proves
in zero-knowledge that s/2 out of s pairs are such that a �= b. We show that this too can
be computed at low cost using the technique of Cramer et al. [7]; see Appendix B.2 for
a full description and efficiency analysis of the zero-knowledge protocol.

3.2. Background—The OT Protocol of Peikert et al. [37]

Our cut-and-choose oblivious transfer protocol is based on the oblivious transfer of [37].
Their protocol is universally composable in the common reference string model. We
present an efficient instantiation of the protocol in the plain model, where there is no
common reference string. This protocol is secure against malicious parties, and forms
the basis for our protocol. See Protocol 3.2 for a full description.

PROTOCOL 3.2 The Oblivious Transfer Protocol of [37] – Plain-Model Variant.

• Inputs: The sender’s input is a pair (x0, x1) and the receiver’s input is a bit σ

• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where
G is an efficient representation of a group of order q with a generator g0, and q is
of length n.

• The protocol:

1. The receiver R chooses random values y,α0 ← Zq and sets α1 = α0 + 1.
R then computes g1 = (g0)y , h0 = (g0)α0 and h1 = (g1)α1 and sends
(g1, h0, h1) to the sender S.

2. R proves, using a zero-knowledge proof of knowledge, that (g0, g1, h0,
h1
g1

)

is a DH tuple; see Protocol B.1. ((g0, g1, h0, h1) is used as the common
reference string in the protocol of [37].)

3. R chooses a random value r and computes g = (gσ )r and h = (hσ )r , and
sends (g,h) to S.

4. The sender operates in the following way:
– Define the function RAND(w,x, y, z) = (u, v), where u = (w)s · (y)t and

v = (x)s · (z)t , and the values s, t ← Zq are random.
– S computes (u0, v0) = RAND(g0, g,h0, h), and (u1, v1) =

RAND(g1, g,h1, h).
– S sends the receiver the values (u0,w0) where w0 = v0 · x0, and (u1,w1)

where w1 = v1 · x1.
5. The receiver computes xσ = wσ /(uσ )r .
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In order to see that the receiver obtains the correct values in the last step, observe that

wσ

(uσ )r
= vσ · xσ

(uσ )r
= gs · ht · xσ

((gσ )s · (hσ )t )r
= gs · ht · xσ

((gσ )r )s · ((hσ )r )t
= gs · ht · xσ

gs · ht
= xσ .

Regarding security, if (g0, g1, h0, h1) is not a DH tuple, then the receiver can learn
only one of the sender’s inputs, since in that case one of the two pairs (u0,w0), (u1,w1)

is uniformly distributed and therefore reveals no information about the corresponding
input of the sender. This is due to the property of the RAND function used in Step 4:
upon receiving a non-Diffie–Hellman tuple, the output of RAND is a pair of uniformly
and independently distributed group elements. In contrast, if (g0, g1, h0, h1) is a DH
tuple, and the receiver knows y = logg0

g1, then the receiver can compute both inputs
of the server. In order to see this, assume that σ = 0 and so g = (g0)

r and h = (h0)
r .

Then, it can compute x0 = w0/(u0)
r as in the protocol. In addition, it can compute

x1 = w1/(u1)
ry−1

. This works because

w1

(u1)ry
−1 = gs · ht · x1

((g1)s · (h1)t )ry
−1 = gs · ht · x1

((g1)y
−1

)s · ((h1)y
−1

)t ·r

= gs · ht · x1

((g0)s · (h0)t )r
= gs · ht · x1

gs · ht
= x1. (1)

Similarly, if σ = 1 then x1 can be computed as in the protocol and x0 can be com-
puted as w0/(u0)

ry . In order to prevent a malicious receiver from doing this, the zero-
knowledge proof of knowledge that (g0, g1, h0,

h1
g1

) is a Diffie–Hellman tuple ensures
the tuple (g0, g1, h0, h1) is not a DH tuple, and so the receiver can only learn a single
value of the sender’s input.

The proof of security takes advantage of the fact that a simulator can extract R’s
input-bit σ because it can extract the value α0 from the zero-knowledge proof of knowl-
edge proven by R. Given α0, the simulator can compute α1 = α0 + 1 and then check if
h = gα0 (in which case σ = 0) or if h = gα1 (in which case σ = 1). For simulation in the
case that S is corrupted, the simulator sets α0 = α1 and cheats in the zero-knowledge
proof, enabling it to extract both sender inputs. For the sake of completeness, we present
a zero-knowledge proof of knowledge for DH tuples in Protocol B.1 in Appendix B.

Exact Efficiency In the OT without the zero-knowledge proof, the sender computes
eight exponentiations and the receiver computes six. The zero-knowledge proof adds
an additional five exponentiations for the prover (who is played by the receiver) and
seven for the verifier (who is played by the sender). In addition, the parties exchange 17
group elements (including the zero-knowledge proof), and the protocol takes six rounds
of communication (three messages are sent by each party). In summary, there are 26
exponentiations, 17 group elements sent and six rounds of communication.

3.3. Constructing a Cut-and-Choose OT Protocol

The idea behind the cut-and-choose OT protocol is essentially to run s copies of Pro-
tocol 3.2 in parallel, with the following important modification. Instead of requiring
that (g0, g1, h0, h1) not be a DH tuple in any of the executions, we actually allow the
receiver to choose s/2 of the executions in which it can set (g0, g1, h0, h1) to actually
be a DH tuple. This means that in these executions, the receiver obtains both of the
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sender’s inputs. Of course, this must be done without the sender knowing for which of
the executions the tuple is of the DH type and for which not. This is achieved by ap-
plying the methodology of Cramer et al. [7] for proving a compound statement to the
basic DH zero-knowledge proof. The result is surprisingly efficient, and is described
in Protocol B.2 in Appendix B. The construction of cut-and-choose OT is described in
Protocol 3.3.

PROTOCOL 3.3 Cut-and-Choose Oblivious Transfer.

• Inputs: The sender’s input is a vector of s pairs (x
j
0 , x

j
1 ) and the receiver’s input

is comprised of s bits σ1, . . . , σs and a set J ⊂ [s] of size exactly s/2.
• Auxiliary input: Both parties hold a security parameter 1n and (G, q, g0), where

G is an efficient representation of a group of order q with a generator g0, and q is
of length n.

• Setup phase:

1. R chooses a random y ← Zq and sets g1 = (g0)y .

2. For every j ∈ J , R chooses a random αj ← Zq and computes h
j
0 = (g0)αj

and h
j
1 = (g1)αj .

3. For every j /∈ J , R chooses random αj ← Zq and computes h
j
0 = (g0)αj

and h
j
1 = (g1)αj +1.

4. R sends (g1, h1
0, h1

1, . . . , hs
0, hs

1) to S

5. R proves using a zero-knowledge proof of knowledge to S that s/2 of the

tuples (g0, g1, h
j
0,

h
j
1

g1
) are DH tuples. (R must actually prove that s/2 of the

tuples (g0, g1, h
j
0, h

j
1) are not DH tuples. In order to do this, it proves that the

corresponding tuples (g0, g1, h
j
0, h

j
1/g1) are Diffie–Hellman tuples.) See

Protocol B.2 in Appendix B. If S rejects the proof then it outputs ⊥ and
halts.

• Transfer phase (repeated in parallel for every j ):

1. The receiver chooses a random value rj ← Zq and computes g̃j =
(gσj )

rj , h̃j = (h
j
σj

)rj . It sends (g̃j , h̃j ) to the sender.
2. The sender operates in the following way:

– Define the function RAND(w,x, y, z) = (u, v), where u = (w)s · (y)t and
v = (x)s · (z)t , and the values s, t ← Zq are random.

– S sets (u
j
0, v

j
0 ) = RAND(g0, g̃j , h

j
0, h̃j ), and (u

j
1, v

j
1 ) =

RAND(g1, g̃j , h
j
1, h̃j ).

– S sends the receiver the values (u
j
0,w

j
0 ) where w

j
0 = v

j
0 ·xj

0 , and (u
j
1,w

j
1 )

where w
j
1 = v

j
1 · xj

1 .

• Output:

1. For every j (both j ∈ J and j /∈ J ), the receiver computes x
j
σj

= w
j
σj

(u
j
σj

)
rj

.

2. For every j ∈ J , the receiver also computes x
j
1−σj

=
w

j
1−σj

(u
j
1−σj

)
rj ·z , where

z = y−1 mod q if σ = 0, and z = y if σ = 1; see Eq. (1).
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The security of the protocol is stated in the following proposition.

Proposition 3.4. If the Decisional Diffie–Hellman assumption holds in the group G,
then Protocol 3.3 securely realizes the Fccot functionality in the presence of malicious
adversaries.

Proof. Let A be an adversary that controls R. We construct a simulator S that invokes
A on its input and works as follows:

1. S receives g1 and (h1
0, h

1
1, . . . , h

s
0, h

s
1) from A and verifies the zero-knowledge

proof as the honest sender would.
(a) If the verification fails, S sends ⊥ to the trusted party computing Fccot and

halts.
(b) Otherwise, S runs the extractor that is guaranteed to exist for the proof of

knowledge, and extracts a witness set {(ij , αij )} such that for every ij it holds

that h
ij
0 = (g0)

αij and h
ij
1 = (g1)

αij
+1. S defines the set J to be all of the

indices not in the obtained witness set. (Note that when a pair h
ij
0 , h

ij
1 is as

above, then A can obtain only one of the strings. Thus, the set J of the indices
where A receives both strings are those that are not included in this witness
set.)

(We remark that the above procedure does not guarantee that S runs in expected
polynomial-time. Thus, formally S runs the witness-extended emulator of [26]
that achieves the above effect.)

2. S receives (g̃1, h̃1), . . . , (g̃s , h̃s) from A.
3. For every j /∈ J , simulator S has obtained αj . S then sets σj = 0 if h̃j = (g̃j )

αj ,
and otherwise sets σj = 1.

4. For every j ∈ J , S sets σj arbitrarily; say to equal 0.
5. S sends J and σ1, . . . , σs to the trusted party. Then,

(a) For every j ∈ J , S receives back a pair (x
j

0 , x
j

1 ).

(b) For every j /∈ J , S receives back x
j
σj

.
6. S concludes the execution by computing RAND as the honest sender would.

Then,
(a) For every j ∈ J , S computes (u

j

0,w
j

0) and (u
j

1,w
j

1) exactly like the honest

sender (it can do this because it knows both x
j

0 and x
j

1 ).

(b) For every j /∈ J , S computes (u
j
σj

,w
j
σj

) like the honest sender using x
j
σ , and

sets (u
j

1−σj
,w

j

1−σj
) to be random elements of G.

7. S sends all of these values to A and outputs whatever A outputs.

If the extraction of the witness set succeeds whenever A succeeds in proving the
zero-knowledge proof, the output of the ideal execution with S is identical to the out-
put of a real execution with A and an honest sender. This is due to the fact that the
only difference is with respect to the way the (u

j

1−σj
,w

j

1−σj
) are formed. However, if

(g0, g1, h
j

0,
h

j
1

g1
) is a Diffie–Hellman tuple, then (g0, g1, h

j

0, h
j

1) is not a Diffie–Hellman

tuple. Now, if σj = 0 then h̃j = (g̃j )
αj where h

j

0 = (g0)
αj . This therefore implies that
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(g1, g̃j , h
j

1, h̃j ) is also not a Diffie–Hellman tuple and so RAND applied to this tuple

yields a uniformly distributed pair (u
j

1,w
j

1). (Likewise, if σ = 1 we find that RAND

applied to (u
j

0,w
j

0) is uniformly distributed.) We conclude that the uniform choice of

the pair (u
j

1−σj
,w

j

1−σj
) by S yields exactly the same distribution as in a real execution.

The proof of this corruption case is concluded by noting that the probability that S does
not succeed in extracting a witness when A successfully proves is negligible.

We now proceed to the case that A controls the sender. We construct a simulator S
as follows:

1. S computes g1 = (g0)
y for a random y ← Zq , and chooses random values

(h
j

0, h
j

1) so that (g0, g1, h
j

0, h
j

1) is a Diffie–Hellman tuple for every j , and sends
the values to A.

2. S runs the simulator for the zero-knowledge proof of knowledge with the residual
A as the verifier.

3. For every j , S computes g̃j = (g0)
rj and h̃j = (h0)

rj and sends the pairs (g̃j , h̃j )

to A.

4. Upon receiving back pairs (u
j

0,w
j

0) and (u
j

1,w
j

1), S computes x
j

0 = w
j
0

(u
j
0)

rj
and

x
j

1 = w
j
1

(u
j
1)

rj ·z where z = y−1 mod q; see (1).

5. S sends all pairs (x
j

0 , x
j

1 ) to the trusted party, outputs whatever A outputs, and
halts.

There are two main observations regarding the simulation. First, since all the
(g0, g̃j , h0, h̃j ) and (g1, g̃j , h1, h̃j ) tuples are Diffie–Hellman tuples, S learns all of

the correct (x
j

0 , x
j

1 ) values that the honest receiver would receive in a real execution.
Second, by the Decisional Diffie–Hellman assumption, the output of a simulated exe-
cution with S in the ideal model is indistinguishable from the output of a real execution
between A and an honest receiver. Formally, we begin with a real execution between the
receiver R and A. Then, we modify R to be a simulator S1 that works exactly as R does
except that instead of honestly proving the zero-knowledge proof, it runs the simulator
instead. By the zero-knowledge property, the outcome of the two executions is indistin-
guishable. Next, we modify S1 to S2 by having S2 work in the same way except that
it generates all of the h

j

0, h
j

1 pairs so that h
j

0 = (g0)
αj and h

j

1 = (g1)
αj (for all j ). The

fact that these executions are indistinguishable is due to the DDH assumption. In par-
ticular, since the receiver only uses the knowledge of αj to prove the zero-knowledge
proof, both S1 and S2 can run their executions without knowing the αj values at all,

and even when they receive all of the h
j

0, h
j

1 values as external input. A direct reduction
to the DDH problem is then straightforward, and is thus omitted. Finally, we modify
S2 to S3 who instead of outputting the values as the receiver would compute them, it
extracts the pair (x

j

0 , x
j

1 ) as the simulator S would and sets the receiver’s output to be

x
j
σj

. Since S extracts the values in the same way as the honest receiver, this makes no
difference to the output. Finally, we modify S3 to S4 by having it compute g̃j = (g0)

rj

and h̃j = (h0)
rj irrespective of the real input σj . The output distribution generated by

S4 is indistinguishable to that generated by S3 by another direct reduction to the DDH
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FIGURE 3.5 Single-Choice Cut-and-Choose OT.

The inputs of the sender are depicted below. The values learned by the receiver are

marked in bold. For every j ∈ J the receiver learns both values (x
j
0 , x

j
1 ). In all pairs,

the receiver learns one of the values, depending on σ . In the example here σ = 0 and so
the zero-values are in bold in all pairs.

(

(x1
0 , x1

1 ) (x2
0 , x2

1 ) . . . (x
j
0 ,x

j
1 ) . . . (xs

0, xs
1)

)

An example where j ∈ J and σ = 0.

problem. We conclude by noting that the distribution generated by S4 is identical to that
generated by S in an ideal execution; specifically, it makes no difference if (x

j

0 , x
j

1 ) are

sent to the trusted party who then sends x
j
σj

to the receiver, or if S4 sets the receiver’s

output directly to x
j
σj

. �

Exact Efficiency The setup phase requires 2s + 1 exponentiations and the exchange of
2s + 1 group elements, plus the zero-knowledge proof that adds an additional 7s + 4
exponentiations and 3s + 4 group elements sent; see Appendix B.2. Overall, the setup
requires 9s +5 exponentiations and the exchange of 5s +5 group elements. The transfer
phase requires 11.5s exponentiations and the exchange of 6s group elements. Finally,
the number of rounds remains unchanged at six. In summary, there are 20.5s + 5 expo-
nentiations, 11s + 5 group elements sent and six rounds of communication.

3.4. Single-Choice Cut-and-Choose Oblivious Transfer

The protocol for achieving the single-choice cut-and-choose OT functionality F S
ccot im-

plements the functionality that is defined formally in Figure 3.1; an intuitive description
is provided in Figure 3.5.

The protocol F S
ccot is achieved by modifying Protocol 3.3 above in Step 1 of the

transfer phase so that the receiver R proves that it used the same σ in every tuple. In
order to enable this proof to be carried out efficiently, we modify Step 1 of the transfer
phase of Protocol 3.3 as follows:

The receiver chooses a (single) random value r ← Zq and computes g′ =
(gσ )r . Then, for every j , it computes hj = (h

j
σ )r . It sends (g′, h1, . . . , hs)

to the sender, and proves in zero-knowledge that it computed this correctly.

The required zero-knowledge proof is that there exists an r ∈ Zq such that either

g′ = (g0)
r and hj = (h

j

0)
r for every 1 ≤ j ≤ s, or g′ = (g1)

r and hj = (h
j

1)
r

for every 1 ≤ j ≤ s. Equivalently, the required zero-knowledge proof is that either
all of {(g0, g

′, hj

0, hj )}sj=1 are Diffie–Hellman tuples, or all of {(g1, g
′, hj

1, hj )}sj=1
are Diffie–Hellman tuples. Thus, the zero-knowledge proof of Protocol B.4 in Ap-
pendix B.3 can be used at the exact additional cost of s + 18 exponentiations and the
exchange of 10 group elements (no additional rounds are needed because this proof can
be carried out in parallel to the proof in the setup phase). By the soundness of the zero-
knowledge proof, R must use the same σ in every transfer. The other difference in the
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protocol is that instead of sending a different (gj , hj ) pair for every j , the receiver sends
a single value g′. In the proof below, we show that this does not leak any information to
the sender.

Proposition 3.6. If the Decisional Diffie–Hellman assumption holds in the group G,
then the modified protocol for single-choice cut-and-choose oblivious transfer, securely
realizes the F S

ccot functionality in the presence of malicious adversaries.

Proof. The proof is identical to the proof of Proposition 3.4, except for the following
modification. When analyzing the case that the adversary controls the sender, the proof
of Proposition 3.4 describes a sequence of simulators S1, . . . , S4, which replace the
operation of the receiver. We use the same simulators except for simulator S4. This
simulator now replaces the message (g′, h1, . . . , hs) = ((gσ )r , (h1

σ )r , . . . , (hs
σ )r )), with

the message ((g0)
r , (h1

0)
r , . . . , (hs

0)
r )), regardless of the value of σ . It must be shown

that the distributions of these two messages are indistinguishable by the sender. Note
that the sender also receives the values of the set S = (g0, g1, h

1
0, h

1
1, . . . , h

s
0, h

s
1), where

∀j h
j

0 = (g0)
αj , h

j

1 = (g1)
αj . (In the original protocol, hj

1 can also be equal to (g1)
αj +1,

but in simulators S2 and S3 the input distribution is as we describe here.)
Reordering the items in S, we can define it as S = S0 ∪S1 where Sb = (gb, (gb)

α1 , . . . ,

(gb)
αs ), for b = 0,1. Let us denote by Sr

b the set Sr
b = ((gb)

r , (gb)
α1r , . . . , (gb)

αsr ).
Note that Sr

0 and Sr
1 have exactly the same distribution when r is chosen at random. The

sender receives either 〈S,Sr
0〉 or 〈S,Sr

1〉, and therefore cannot distinguish between these
two options. �

Exact Efficiency The efficiency of this protocol is the same as above except for the
following two changes: (1) There is no need to compute s different gj values (a single
g′ is computed), and therefore s − 1 exponentiations are eliminated. (2) An additional
s +18 exponentiations and the exchange of 10 additional group elements are needed for
the zero-knowledge protocol. We therefore have 20.5s + 24 exponentiations, 11s + 15
group elements sent and six rounds of communication.

3.5. Batch Single-Choice Cut-and-Choose OT

In our protocol we need to carry out cut-and-choose oblivious transfers for all wires in
the circuit. Furthermore, it is crucial that the subset of indices for which the receiver
obtains both pairs is the same in all transfers. We call a functionality that achieves
this “batch single-choice cut-and-choose OT” and denote it F S,B

ccot . The functionality is
formally defined in Figure 3.7, and an example is given in Figure 3.8.

In order to realize this functionality it suffices to run the setup phase of Protocol 3.3
once, and then the transfer phase of the protocol with single choice � times in parallel
(with receiver inputs σ1, . . . , σ� where σi is the receiver’s choice in execution i). This
ensures that the same set J is used in all transfers, since J depends only on the val-
ues sent in the setup phase. We remark that parallel composition holds here because
the simulation only rewinds in the transfer phase for the zero-knowledge protocol, and
Protocol B.2 that forms the basis of the zero-knowledge proof is zero-knowledge under
parallel composition (as stated in Proposition B.3).
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FIGURE 3.7 The Batch Single-Choice Cut-and-Choose OT Functionality F S,B
ccot .

• Inputs:
– S inputs � vectors of pairs �xi of length s, for i = 1, . . . , �. (Every vector is a

row of s pairs. There are � such rows. This can be viewed as an � × s matrix of
pairs; see Figure 3.8.)

– R inputs σ1, . . . , σ� ∈ {0,1} and a set of indices J ⊂ [s] of size exactly s/2. (For
every row the receiver chooses a bit σi . It also chooses s/2 of the s “columns”.)

• Output: If J is not of size s/2 then S and R receive for output ⊥. Otherwise,
– For every i = 1, . . . , � and for every j ∈ J , the receiver R obtains the j th pair

in vector �xi . (For every column in J , the receiver obtains the two items of every
pair, in all rows.)

– For every i = 1, . . . , �, the receiver R obtains the σi value in every pair of the
vector �xi . (For every column not in J , the receiver obtains its choice σi of the
two items in the pair, where σi is the same for all entries in a row.)

FIGURE 3.8 Batch Single-Choice Cut-and-Choose OT.

Let the matrix below denote the inputs of the sender. Then, for j ∈ J the receiver learns
both values in the j th column (values in bold). Furthermore, in each row, the receiver
learns one of the values, depending on the receiver input associated with that row. For
example, in the ith row in the example here σi = 0 and so the zero-values are in bold in
the ith row.
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1 ) . . . (x

�,j
0 ,x

�,j
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

An example where j ∈ J and σi = 0.

Proposition 3.9. Assuming that the Decisional Diffie–Hellman assumption holds in
G, the above-described protocol securely realizes F S,B

ccot in the presence of malicious
adversaries.

Exact Efficiency The setup phase here remains the same, and including the zero-
knowledge costs 9s + 5 exponentiations and the exchange of 5s + 5 group elements.
The transfer phase is repeated � times, where each transfer incurs a cost of 11.5s + 19
exponentiations and the exchange of 5s + 11 group elements. We conclude that there
are 11.5s� + 19� + 9s + 5 exponentiations, 5s� + 11� + 5s + 5 group elements sent
and six rounds of communication. In Sect. 4.4 we observe that 9.5s� of the exponentia-
tions are “fixed-base” and thus this can actually be reduced to the equivalent of 5.166s�

exponentiations.
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4. The Protocol for Secure Two-Party Computation

4.1. Protocol Description

Before describing the protocol in detail, we first present an intuitive explanation of the
different steps, and their purpose.

Step 1: P1 constructs s copies of a Yao garbled circuit for computing the function.
The keys (garbled values) on the wires of the s copies of the circuit are all random,
except for the keys corresponding to P1’s input wires, which are chosen in a spe-
cial way. Namely, P1 chooses random values a0

1, a1
1, . . . , a0

� , a
1
� (where the length

of P1’s input is �) and r1, . . . , rs , and sets the keys on the wire associated with

its ith input in the j th circuit to be ga0
i ·rj and ga1

i ·rj . Note that the 2� + s val-

ues ga0
1 , ga1

1 , . . . , ga0
� , ga1

� , gr1, . . . , grs constitute commitments to all 2�s keys.2 (The
keys are actually a pseudorandom synthesizer [34], and therefore if some of the keys
are revealed, the remaining keys remain pseudorandom.)

Step 2: The parties execute batch single-choice cut-and-choose OT. P1 inputs the key-
pairs for all wires associated with P2’s input, and P2 inputs its input and a random set
J ⊂ [s] of size s/2. The result is that P2 learns all the keys on the wires associated
with its own input for s/2 of the circuits as indexed by J (called check circuits),
and in addition learns the keys corresponding to its actual input in these wires in the
remaining circuits (called evaluation circuits).

Step 3: P1 sends P2 the garbled circuits, and the values ga0
1 , ga1

1 , . . . , ga0
� , ga1

� ,

gr1, . . . , grs which are commitments to all the keys on the wires associated with
P1’s input. At this stage P1 is fully committed to all s circuits, but does not yet know
which circuits are to be opened.

Step 4: P2 reveals to P1 its choice of check circuits and proves that this was indeed its
choice by sending both values on the wire associated with P2’s first input bit in each
check circuit. Note that P2 can know both these values only for circuits that are check
circuits.

Step 5: To completely decrypt the check circuits in order to check that they were cor-
rectly constructed, P2 also needs to obtain all the keys on the wires associated with
P1’s input. Therefore, if the j th circuit is a check circuit, P1 sends rj to P2. Given all

of the ga0
i , ga1

i values and rj , P2 can compute all of the keys ga0
i ·rj , ga1

i ·rj in the j th
circuit by itself (and P1 cannot change the values). Furthermore, this reveals nothing
about the keys in the evaluation circuits.

Step 6: Given all of the keys on all of the input wires, P2 checks the validity of the s/2
check circuits. This ensures that P2 will catch P1 with high probability if many of the
garbled circuits generated by P1 do not compute the correct function. Thus, unless
P2 detects cheating, it is ensured that a majority of the evaluation circuits are correct.

2 The actual symmetric keys used are derived from the g
a0
i
·rj , g

a1
i
·rj values using a randomness extractor;

a universal hash function suffices for this [6,18]. The only subtlety is that P1 must be fully committed to the
garbled circuits, including these symmetric keys, before it knows which circuits are to be checked. However,
randomness extractors are not 1-1 functions. This is solved by having P1 send the seed for the extractor

before Step 4 below. Observe that the {ga0
i , g

a1
i , g

rj } values and the seed for the extractor fully determine the
symmetric keys, as required.
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Step 7: All that remains is for P1 to send P2 the keys associated with its actual input,
and then P2 will be able to compute the evaluation circuits. This raises a problem as
to how P2 can be sure that P1 sends keys that correspond to the same input in all
circuits. This brings us to the way that P1 chose these keys (via the Diffie–Hellman
pseudorandom synthesizer). Specifically, for every wire i and evaluation-circuit j ,

party P1 sends P2 the value ga
xi
i ·rj where xi is the ith bit of P1’s input. P1 then

proves in zero-knowledge that the same a
xi

i exponent appears in all of the values sent.
Essentially, this is a proof that the values constitute an “extended” Diffie–Hellman
tuple and thus this statement can be proven very efficiently.

Step 8: Finally, given the keys associated with P1’s inputs and its own inputs, P2 eval-
uates the evaluation circuits and obtains their output values. Recall, however, that the
checks above only guarantee that a majority of the circuits are correct, and not that
all of them are. Therefore, P2 outputs the value that is output from the majority of
the evaluation circuits. We stress that if P2 sees different outputs in different circuits,
and thus knows for certain that P1 has tried to cheat, it must ignore this observation
and output the majority value (or otherwise it might leak information to P1, as in the
example described in Sect. 1.2).

4.2. Proof of Security

Before providing the full proof of security, we give some intuition regarding the security
of the protocol. We first show that the selective failure attack discussed in [24,28] cannot
be carried out here. The concern there was that P1 would use correct keys for all of P2’s
input bits when opening the check circuit, but would use incorrect keys in some of
the oblivious transfers. This is problematic because if P1 input incorrect keys for the
zero value of P2’s first input bit, and correct keys for all other values, then P2 would
not detect any misbehavior if its first input bit equals 1. However, if its first input bit
equals 0 then it would have to abort (because it would not be able to decrypt any of the
evaluation circuits). This results in P1 learning P2’s first input bit with probability 1. In
order to solve this problem in [28] it was necessary to split P2’s input bits into random
shares, thereby increasing the size of the input to the circuit and the size of the circuit
itself. In contrast, this attack does not arise here at all because P2 obtains all of the keys
associated with its input bits in the cut-and-choose oblivious transfer, and the values
are not sent separately for check and evaluation circuits. Thus, if P1 attempts a similar
attack here for a small number of circuits then it will not be the majority and so does
not matter, and if it does so for a large number of circuits then it will be caught with
overwhelming probability.

Observe also that in Steps 3–5 P2 checks that half of the circuits, the check circuits,
and their corresponding input garbled values, were correctly constructed. This is done
by first having P1 commit to all circuits and then having P2 choosing half of them. P2

is therefore ensured that with high probability the majority of the remaining circuits,
and their input garbled values, are also correct. Consequently, the result output by the
majority of the remaining circuits must be correct.

The security of the protocol is expressed in the following theorem:
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PROTOCOL 4.1 Computing f (x, y).

Inputs: P1 has input x ∈ {0,1}� and P2 has input y ∈ {0,1}�.

Auxiliary input: a statistical security parameter s, the description of a circuit C such that
C(x, y) = f (x, y), and (G, q, g) where G is a cyclic group with generator g and prime order
q , and q is of length n.

The protocol:

1. INPUT KEY CHOICE AND CIRCUIT PREPARATION:

(a) P1 chooses random values a0
1 , a1

1 , . . . , a0
�
, a1

�
∈R Zq and r1, . . . , rs ∈R Zq .

(b) Let w1, . . . ,w� be the input wires corresponding to P1’s input in C, and denote by wi,j

the instance of wire wi in the j th garbled circuit, and by kb
i,j

the key associated with bit
b on wire wi,j . Then, P1 sets the keys for its input wires to

k0
i,j = H(g

a0
i
·rj ) and k1

i,j = H(g
a1
i
·rj )

where H is a suitable randomness extractor [6,18]; see also [9].
(c) P1 constructs s independent copies of a garbled circuit of C, denoted GC1, . . . ,GCs ,

using random keys except for wires w1, . . . ,w� for which the keys are as above; see
Appendix A.

2. OBLIVIOUS TRANSFERS: P1 and P2 run batch single-choice cut-and-choose oblivious
transfer (Protocol 3.7), with parameters � (the number of parallel executions) and s (the
number of pairs in each execution):
(a) P1 defines vectors �z1, . . . , �z� so that �zi contains the s pairs of random symmetric keys

associated with P2’s ith input bit yi in all garbled circuits GC1, . . . ,GCs .
(b) P2 inputs a random subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . , σ� ∈ {0,1},

where σi = yi for every i.
(c) P2 receives all the keys associated with its input wires in all circuits GCj for j ∈ J ,

and receives the keys associated with its input y on its input wires in all other circuits.
3. SEND CIRCUITS AND COMMITMENTS: P1 sends P2 the garbled circuits (i.e., the gate and

output tables), the “seed” for the randomness extractor H , and the following “commitment”
to the garbled values associated with P1’s input wires:

{

(i,0, g
a0
i ), (i,1, g

a1
i )

}�
i=1 and

{

(j, g
rj )

}s
j=1.

4. SEND CUT-AND-CHOOSE CHALLENGE: P2 sends P1 the set J along with the pair of keys
associated with its first input bit y1 in every circuit GCj for j ∈ J . If the values received by
P1 are incorrect, it outputs ⊥ and aborts. Circuits GCj for j ∈ J are called check circuits,
and for j /∈ J are called evaluation-circuits.

5. SEND ALL INPUT GARBLED VALUES IN CHECK CIRCUITS: For every check circuit GCj ,
party P1 sends the value rj to P2, and P2 checks that these are consistent with the pairs
{(j, grj )}j∈J received in Step 3. If not, P2 aborts outputting ⊥.

6. CORRECTNESS OF CHECK CIRCUITS: For every j ∈ J , P2 uses the g
a0
i , g

a1
i values

it received in Step 3, and the rj values it received in Step 5, to compute the values

k0
i,j

= H(g
a0
i
·rj ), k1

i,j
= H(g

a1
i
·rj ) associated with P1’s input in GCj . In addition it sets

the garbled values associated with its own input in GCj to be as obtained in the cut-and-
choose OT. Given all the garbled values for all input wires in GCj , party P2 decrypts the
circuit and verifies that it is a garbled version of C. If there exists a circuit for which this
does not hold, then P2 aborts and outputs ⊥.

7. P1 SENDS ITS GARBLED INPUT VALUES IN THE EVALUATION-CIRCUITS:

(a) P1 sends the keys associated with its inputs in the evaluation circuits: For every j /∈ J
and every wire i = 1, . . . , �, party P1 sends the value k′

i,j
= g

a
xi
i

·rj ; P2 sets ki,j =
H(k′

i,j
).
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(b) P1 proves that all input values are consistent: For every input wire i = 1, . . . , �, party P1 uses
Protocol B.4 to prove in parallel that there exists a value σi ∈ {0,1} such that for every j /∈ J ,

k′
i,j

= g
a
σi
i

·rj . (Namely, it proves that all garbled values of a wire are of the same bit.) If any of
the proofs fail, then P2 aborts and outputs ⊥.

8. CIRCUIT EVALUATION: P2 uses the keys associated with P1’s input obtained in Step 77 and the
keys associated with its own input obtained in Step 22 to evaluate the evaluation circuits GCj for
every j /∈ J . If a circuit decryption fails, then P2 sets the output of that circuit to be ⊥. Party P2
takes the output that appears in most circuits, and outputs it.

Theorem 4.2. Assume that the decisional Diffie–Hellman assumption is hard in G,
that the protocol used in Step 2 securely computes the batch single-choice cut-and-
choose oblivious transfer functionality, that the protocol used in Step 7b is a zero-
knowledge proof of knowledge, and that the symmetric encryption scheme used to gen-
erate the garbled circuits is secure. Then, Protocol 4.1 securely computes the function
f in the presence of malicious adversaries.

Proof. We prove Theorem 4.2 in a hybrid model where a trusted party is used to
compute the batch single-choice cut-and-choose oblivious transfer functionality and the
zero-knowledge proof of knowledge of Step 7b. We separately prove the case that P1 is
corrupted and the case that P2 is corrupted.

P1 Is Corrupted Intuitively, P1 can only cheat by constructing some of the circuits in
an incorrect way. However, in order for this to influence the outcome of the computation,
it has to be that a majority of the evaluation circuits, or equivalently over one quarter
of them, are incorrect. Furthermore, it must hold that none of these incorrect circuits
are check circuits. The reason why this bad event occurs with such small probability is
that P1 is committed to the circuits before it learns which circuits are check circuits and
which are evaluation circuits. In order to see this, observe that in the cut-and-choose
oblivious transfer, P2 receives all of the keys associated with its own input wires for
the check circuits in J (while P1 knows nothing about J ). Furthermore, P1 sends all

of the {(i,0, ga0
i ), (i,1, ga1

i )} and {(j, grj } values, and the garbled circuit tables, before
learning J . Thus, it can only succeed in cheating if it successfully guesses over s/4
circuits which all happen to not be in J . As we will show, this occurs with probability
of approximately 2−s/4. (Recall also that P1 is required to prove that all its inputs to the
evaluation circuits are consistent, and therefore changing the circuits is its only option to
changing the computed functionality.) We remark that it is also crucial that if P2 aborts
by detecting cheating by P1, then this occurs independently of P2’s input. However,
this follows immediately from the protocol description. We now proceed to the formal
proof.

Let A be an adversary controlling P1 in an execution of Protocol 4.1 where a trusted
party is used to compute the cut-and-choose OT functionality F S,B

ccot and the zero-
knowledge proof of knowledge of Step 7b. We construct a simulator S who runs in
the ideal model with a trusted party computing f . S runs A internally and simulates
the honest P2 for A as well as the trusted party computing the oblivious transfer and
zero-knowledge functionalities. In addition, S interacts externally with the trusted party
computing f . S works as follows:
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1. S invokes A upon its input and auxiliary input and receives the inputs that A sends
to the trusted party computing the cut-and-choose OT functionality. These inputs
constitute an n × s matrix of pairs {(zi,j

0 , z
i,j

1 )} for i = 1, . . . , n and j = 1, . . . , s.
2. S receives from A the s garbled circuits GC1, . . . ,GCs and values {(i,0, u0

i )},
(i,1, ui

1)} and {(j, hj )} (consistent with Step 3 of the protocol).
3. S chooses a subset J ⊂ [s] of size s/2 uniformly at random amongst all such

subsets. For every j ∈ J , S hands A the values {(z1,j

0 , z
1,j

1 )}, as it expects to
receive from the honest P2 in Step 4 of the protocol.

4. S receives the set {rj }j∈J from A, and checks that for every j ∈ J it holds that
hj = grj . If not, it sends ⊥ to the trusted party, simulates P2 aborting, and outputs
whatever A outputs.

5. S verifies that all garbled circuits GCj for j ∈ J are correctly constructed (it does
this in the same way that an honest P2 would). If not, it sends ⊥ to the trusted party,
simulates P2 aborting, and outputs whatever A outputs.

6. S receives keys k′
i,j from A, for every j /∈ J and i = 1, . . . , �.

7. S receives the witnesses that S sends to the trusted party computing the zero-
knowledge proof of knowledge functionality of Step 7b. Thus, for every i =
1, . . . , �, S receives a value ai such that k′

i,j = (hj )
ai for every j /∈ J , and ei-

ther u0
i = gai or u1

i = gai (this is the witness).
(a) If for some i, S does not receive a valid witness, then it sends ⊥ to the trusted

party, simulates P2 aborting, and outputs whatever A outputs.
(b) Otherwise, for every i = 1, . . . , �, if u0

i = gai then S sets xi = 0, and if u1
i =

gai then S sets xi = 1.
8. S sends x = x1 · · ·x� to the trusted party computing f , outputs whatever A out-

puts and halts.

Denoting Protocol 4.1 by π , we now show that for every A corrupting P1 and every
s it holds that

{

IDEALf,S (x, y, z, n, s)
}

x,y,z∈{0,1}∗;n,s∈N

n,s≡ {

REALπ,A(x, y, z, n, s)
}

x,y,z∈{0,1}∗;n,s∈N

where |x| = |y|. (Note that here we prove (n, s)-indistinguishability, and so the prob-
ability of distinguishing must be at most μ(n) + 2−O(s) for some negligible function
μ.)

We begin by defining the notion of a bad circuit. For a garbled circuit GCj we define
the circuit input keys as follows:

1. Circuit input keys associated with P1’s input: Let (i,0, ga0
i ), (i,1, ga1

i ), (j, grj ) be
the values sent by P1 to P2 in Step 3 of the protocol. Then, the circuit input keys

associated with P1’s input in GCj are the keys (ga0
1 ·rj , ga1

1 ·rj ), . . . , (ga0
� ·rj , ga1

� ·rj ).
2. Circuit input keys associated with P2’s input: Let (z

1,j

0 , z
1,j

1 ), . . . , (z
�,j

0 , z
�,j

1 ) be
the set of symmetric keys input by P1 to the cut-and-choose oblivious transfer of
Step 2. (These keys are the j th pair in each vector �z1, . . . , �z�.) These values are
called the circuit input keys associated with P2’s input in GCj .
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Before proceeding, we stress that all of the above circuit keys are fully determined after
Step 3 of the protocol, as are the garbled circuits GCj . This is because P1 sends the

{ga0
i , ga1

i , grj } values, the garbled circuits and the seed to the randomness extractor in
this step (note that once the seed to the randomness extractor is fixed, the symmetric
keys derived from the Diffie–Hellman values are fully determined). Now, simply stated,
a garbled circuit GCj is bad if the circuit keys associated with both P1’s and P2’s input
do not open it to the correct circuit C. We stress again that after Step 3 of the protocol,
each circuit is either “bad” or “not bad”, and this is fully determined.

Our aim is now to bound the probability that P2 does not abort and yet the majority of
the evaluation circuits are bad. In order to do this, note first that the set J is completely
hidden in an information-theoretic sense from P1 until Step 4 of the protocol (this holds
in an information-theoretic sense in the hybrid model where a trusted party computes
the cut-and-choose oblivious transfer, which is the model in which we carry out our
analysis). Thus, for the sake of computing the probabilities we can consider the case
that J is chosen randomly after Step 3. Now, let badMaj denote the event that at least
s/4 of the garbled circuits are bad, and let noAbort denote the event that P2 does not
abort in Step 6 of the protocol. We now bound the probability of the event that both
badMaj and noAbort occur.

Claim 4.3. For every s ∈ N it holds that

Pr[noAbort ∧ badMaj] =

(3s
4 + 1
s
2 + 1

)

(
s

s/2

) <
1

2s/4−1
,

and for large enough s (depending on Stirling’s approximation), it holds that

Pr[noAbort ∧ badMaj] ≈ 1

20.311s
.

Proof. Let badTotal be the number of bad circuits. First observe that

Pr[noAbort ∧ badMaj] =
s/2
∑

i=s/4

Pr[noAbort ∧ badTotal = i]

because if badTotal > s/2 then P2 always aborts, and if badTotal < s
4 then badMaj is

false. Recall that |J | = s/2 and so if i circuits are bad and no abort takes place, then it
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must be that s/2 of the s − i not-bad circuits were chosen to be checked. Thus,

s/2
∑

i=s/4

Pr[noAbort ∧ badTotal = i] =
s/2
∑

i=s/4

(
s − i

s/2

)

(
s

s/2

)

= 1
(

s

s/2

)

s/2
∑

i=s/4

(
s − i

s/2

)

= 1
(

s

s/2

)

s/4
∑

i=0

(
s/2 + i

s/2

)

= 1
(

s

s/2

)

3s/4
∑

i=0

(
i

s/2

)

= 1
(

s

s/2

) ·
(
3s/4 + 1
s/2 + 1

)

,

where the second last equality is due to the fact that for i < s/2 it holds that
( i

s/2

) = 0,
and the last equality can be found in [17, Page 174]. We now bound this last value:

(3s
4 + 1
s
2 + 1

)

(
s
s
2

) = ( 3s
4 + 1)!

( s
2 + 1)!( s

4 )! · ( s
2 )!( s

2 )!
s! = ( 3s

4 + 1)!
s! · ( s

2 )!
( s

4 )! · ( s
2 )!

( s
2 + 1)!

= ( s
2 )( s

2 − 1) · · · ( s
4 + 1)

s(s − 1) · · · ( 3s
4 + 2)

· 1
s
2 + 1

= ( s
2 )

s
· ( s

2 − 1)

s − 1
· · · ( s

4 + 2)

( 3s
4 + 2)

· ( s
4 + 1)

( s
2 + 1)

.

Letting t = s/4, we find that the above equals

2t

4t
· 2t − 1

4t − 1
· · · t + 2

3t + 2
· t + 1

2t + 1
=

( t
∏

i=2

t + i

3t + i

)

· t + 1

2t + 1
.

Now, for every i < t it holds that t+i
3t+i

< 1
2 and thus the above is upper bound by 1

2t−1 .
Stated directly, we have for every s,

Pr[noAbort ∧ badMaj] <
1

2s/4−1
(2)

completing the first part of the claim. We now proceed to the second part by using
approximations that hold for values of s that are not too small. (Note that the above
bound is quite wasteful because t+2

3t+2 is close to 1/3 and we bounded it by 1/2.) Writing

t
∏

i=2

(t + i) = (2t)!
(t + 1)! and

t
∏

i=2

(3t + i) = (4t)!
(3t + 1)!
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we have
t

∏

i=2

t + i

3t + i
= (2t)!

(t + 1)! · (3t + 1)!
(4t)! .

By Stirling’s approximation t ! ≈ √
2πt( t

e
)t . Thus,

(2t)!
(t + 1)! ≈

√
2π2t( 2t

e
)2t

√
2π(t + 1)( t+1

e
)t+1

=
√

2t

t + 1
· (2t)2t

(t + 1)t+1
· et+1

e2t

and

(3t + 1)!
(4t)! ≈

√

3t + 1

4t
· (3t + 1)3t+1

(4t)4t
· e4t

e3t+1
.

Putting the above together we have

t
∏

i=2

t + i

3t + i
≈

√

2t

4t
· 3t + 1

4t
· (2t)2t

(4t)4t
· (3t + 1)3t+1

(t + 1)t+1
· e4t

e2t
· et+1

e3t+1

≈ 22t

28t
· t2t

t4t
· (3t)3t

t t
· e5t+1

e5t+1
= 1

26t
· 1

t2t
· 33t · t3t

t t

= 1

26t
· 1

t2t
· 33t · t2t = 33t

26t

=
(

3

4

)3t

≈ 1

21.245t

where the second “approximate equality” is just due to removing the value in the square-
root (which equals exactly

√
3/8) and some “+1” terms. Recalling that t = s/4 we

conclude that

Pr[noAbort ∧ badMaj] ≈ 1

21.245t
= 1

20.311s
(3)

completing the proof of the claim. �

We stress that the approximate bound is significantly better than 2−s/4. In particular,
in order to obtain security of 2−40, it suffices to set s = 128 rather than s = 160 (based
on the fact that 0.311 × 128 = 39.81). Nevertheless, we proved the exact bound that
holds for all s in order to later analyze a covert version of our protocol; see Sect. 5.2.
Finally, before proceeding with the proof we remark that we checked the accuracy of
this approximation by calculating the exact result. For s = 128 we have

(3s
4 + 1
s
2 + 1

)

(
s
s
2

) = 1

238.975
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which is very close to what we expect. We stress that for an error of 2−40 using the exact
bound, we find that s must actually be set to 132.

We now use Claim 4.3 to prove that the result of an ideal-model execution with S is
(n, s)-indistinguishable from a real execution of the protocol with adversary A. Specif-
ically, we claim that as long as the event (noAbort ∧ badMaj) does not occur, the result
of the ideal and hybrid executions (where the oblivious transfer and zero-knowledge are
ideal) are identically distributed. In order to see this, observe that if less than s/4 cir-
cuits are bad, then the majority of circuits evaluated by P2 compute the correct circuit
C which in turn computes f . In addition, by the ideal zero-knowledge and the fact that

the ga0
i , ga1

i , grj values fully determine the garbled values associated with P1’s input
bits, the input x derived by the simulator S and sent to the trusted party computing f

corresponds exactly to the input x in the computation of every not-bad garbled circuit
GCj . Thus, in every not-bad circuit P2 outputs f (x, y), and these are a majority of
the evaluation circuits. We conclude that as long as an abort does not occur, P2 outputs
f (x, y) in both the real and ideal executions, and this corresponds exactly to the view
of A in the executions. Finally, we observe that S sends ⊥ to the trusted party whenever
P2 would abort and output ⊥. (One subtlety to note is that an honest P2 also outputs
⊥ if circuit decryption fails for a majority of the evaluation circuits. However, this can
only occur in the event of noAbort ∧ badMaj which we are assuming does not occur.)
This completes the proof of this corruption case.

P2 Is Corrupted The intuition behind the security in this corruption case is simple. P2
receives s/2 opened check circuits and s/2 evaluation circuits. For each of the evalua-
tion circuits it receives only a single set of keys for decrypting the circuit. Furthermore,
the keys that it receives for each of the s/2 evaluation circuits are associated with the
same pair of inputs x and y. Regarding x, this is due to the fact that P1 is honest. Re-
garding y, this is due to the fact that the oblivious transfer enforces “single choice” for
the receiver. The above implies that P2 can do nothing but decrypt s/2 circuits, where
in each it obtains the same value f (x, y) and learns nothing else. We stress one subtlety
which is due to the fact that P2 can try and send P1 a different set J ′ to the set J that
it input to the cut-and-choose oblivious transfer. If it succeeds in doing this, then there
will be at least one evaluation circuit for which P2 knows all of the keys associated
with its input wires. In such a case, it could compute f (x, y) for multiple values of y,
and thus learn more than allowed about x. However, in order to successfully do this, a
corrupt P2 must send P1 both of the keys associated with the input bit y1 for a circuit
GCj where j /∈ J . Since both of these keys are random, and P2 only learns one of them
in the oblivious transfer (in the hybrid model the other key is completely unknown), it
follows that it succeeds in doing this with only negligible probability. We now proceed
to the formal proof.

Let A be an adversary controlling P2 in an execution of Protocol 4.1 where a trusted
party is used to compute the cut-and-choose OT functionality F S,B

ccot and the zero-
knowledge proof of knowledge of Step 7b. We construct a simulator S for the ideal
model with a trusted party computing f as follows:

1. S invokes A upon its input and auxiliary input and receives the inputs that A
sends to the trusted party computing the cut-and-choose OT functionality. These
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inputs consist of a subset J ⊂ [s] of size exactly s/2 and bits σ1, . . . , σ�. (If J
is not of size exactly s/2 then S simulates P1 aborting, sends ⊥ to the trusted
party computing f , and halts outputting whatever A outputs.)

2. S chooses an � × s matrix of random pairs of garbled values of length n:
(x0

i,j , x
1
i,j ) for i = 1, . . . , � and j = 1, . . . , s. Then, S hands A the appropri-

ate values as its output from the oblivious transfers. Specifically, for every
i = 1, . . . , � and j ∈ J the simulator S hands A the pair (x0

i,j , x
1
i,j ), and for

every i = 1, . . . , � and j /∈ J the simulator S hands A the value x
σi

i,j .
3. S sends y = σ1 · · ·σ� to the trusted party computing f and receives back an

output z.
4. For every j ∈ J , S constructs GCj as a correct garbled circuit, in the same way

that an honest P1 would construct it.
5. For every j /∈ J , S uses Lemma A.1 to construct a fake garbled circuit G̃Cj

which always outputs z (where z is the output that S received from the trusted
party). The keys associated with P1’s inputs in these fake garbled circuits are

consistent with the ga0
i , ga1

i , grj values, as an honest party would use them.

6. S sends the garbled circuits and (i,0, ga0
i ), (i,1, ga1

i ) and (j, grj ) values to A.
7. S receives back a set J ′ along with a pair of values (x0

1,j , x
1
1,j ) for every j ∈ J :

(a) If J ′ �= J and yet the values received are all correct then S outputs fail and
halts. (This event happens with negligible probability.)

(b) If J ′ = J and any of the values received are incorrect, then S sends ⊥ to the
trusted party, simulates P1 aborting, and halts outputting whatever A outputs.

(c) Otherwise, S proceeds as below.
8. S hands A the values {rj }j∈J , where rj is as chosen above.

9. S hands A the keys k′
i,j = ga0

i ·rj for every j /∈ J and i = 1, . . . , �, and proves
in zero-knowledge that all these keys are consistent with a single input. (Ob-
serve that these are the keys that A expects to receive in Step 77 of the proto-
col. However, instead of being the keys corresponding to x—which S does not
know—they are the zero keys.)

10. After concluding, S outputs whatever A outputs and halts.

Denoting Protocol 4.1, we now show that for every A corrupting P2 and every s it
holds that
{

IDEALf,S (x, y, z, n, s)
}

x,y,z∈{0,1}∗;n,s∈N

c≡ {

REALπ,A(x, y, z, n, s)
}

x,y,z∈{0,1}∗;n,s∈N

where |x| = |y|. (Note that here we prove standard indistinguishability in n, which holds
for all values of s. That is, the value of s has no effect on the ability to distinguish.) We
first remark that the probability that S outputs fail is negligible because for every j /∈ J
the adversary A receives only one of x0

1,j , x
1
1,j and these are random keys (note that

the garbled circuits contain encryptions under these keys; however, by the security of
encryption the probability that such a key can be obtained is negligible). We therefore
ignore this event from now on and show that the ideal and real distributions are compu-
tationally indistinguishable conditioned on the event not happening.

Observe that the only difference with respect to A’s view between the simulation and
a real execution is regarding the construction of the garbled circuits GCj for j /∈ J : in
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the simulation these are fake garbled circuits G̃Cj outputting z (as received from the
trusted party) and in the real execution these are real garbled circuits GCj computing
f (x, y). Thus, by Lemma A.1 indistinguishability follows as long as in a real execu-
tion A obtains the garbled values corresponding to x for P1’s input wires and to y for
P2’s input wires, where z = f (x, y). Regarding y, this follows directly from the fact
that S defines y to be the values σ1 · · ·σ� which define exactly which garbled values A
receives from the oblivious transfers. However, the case for x is more problematic since

A receives all of the ga0
i , ga1

i , grj values which fully determine the garbled values cor-
responding to all of P1’s input wires. We therefore first modify S to S ′ so that in every

G̃Cj for j /∈ J , S ′ uses ga0
i ·rj to derive the value k′

i,j that S hands A in Step 9 of the
simulation, but uses a completely random value for the other key on that wire. The in-
distinguishability of these two simulations follows via a straightforward reduction to the
decisional Diffie–Hellman problem. Once the simulation is with the modified S ′ we can
apply Lemma A.1 and complete the proof. (Formally a hybrid argument is required for
this step because here there are s/2 fake garbled circuits whereas Lemma A.1 refers to
a single fake garbled circuit. Nevertheless observing that indistinguishability must hold
even given x and y, this is a completely standard hybrid argument and so is omitted.)
We stress that in order for the proof to hold, it must be that in every evaluation circuit
A learns the garbled value associated with the same bit, for every input wire associ-
ated with P2’s input. However, this is guaranteed by the security of the single-choice
cut-and-choose oblivious transfer. This completes the proof. �

4.3. Exact Efficiency

An analysis of the protocol yields the following number of exponentiations: (1) 2s� +
s +2� for the input-key preparation and commitments to the ga and gr values in Step 1,
(2) 11.5s�+ 19�+ 9s + 5 for the oblivious transfer of Step 2 (see analysis in Sect. 3.5),
(3) s� for P2 to recompute in Step 6 the input keys associated with P1’s input, and (4)
s�/2 + 18� for the 2� proofs of consistency for P1’s input bits in Step 7 (see analysis in
Appendix B.3). Overall, we have 15s� + 39� + 10s + 5 exponentiations.

Regarding the bandwidth, a similar count yields the exchange of 7s� + 22� + 7s +
5 group elements and s copies of the garbled circuit. Finally, the protocol takes 12
rounds of communication (including the oblivious transfer and zero-knowledge proof).
We conclude that there are 15s� + 39� + 10s + 5 exponentiations, 7s� + 22� + 7s + 5
group elements sent and 12 rounds of communication. In addition, there are 6.5|C|s
symmetric encryptions, comprised of 4|C|s encryptions for constructing all s garbled
circuits, 4|C|0.5s encryptions for P2 to check s/2 of them, and |C|0.5s encryptions for
P2 to compute the s/2 evaluation circuits. Finally, there are 4|C|s ciphertexts sent for
transmitting these circuits.

We stress that this analysis describes the overhead of the basic protocol. The overhead
can be substantially improved by different optimizations, as shown in Sect. 4.4 below.

4.4. Optimizations

Fixed-Base Exponentiations Exponentiations are commonly computed by repeated
squaring, which for a group of order q of length n bits requires on average 1.5n mul-
tiplications for a full exponentiation. If multiple exponentiations of the same base are
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computed, then the repeated binary powers of the base can be computed once for all
exponentiations, reducing the amortized overhead of an exponentiation on average to
0.5n multiplications (see [31], 14.6.3). Let us examine how this affects the overhead of
the protocol (taking into account only the s� component of the overhead, which is the
most significant): (1) P1 preparing its input keys in Step 1 requires 2s� exponentiations
which are fixed-base. Their amortized overhead is therefore equivalent to that of about
2/3s� exponentiations. (2) Of the 11.5s� exponentiations of the batch single-choice
cut-and-choose OT of Step 2, 10.5s� exponentiations are performed with fixed bases
(these are the exponentiations in the RAND operation, the computation of hj by the
receiver and half of the exponentiations in the zero-knowledge protocol in the transfer
phase of the single-choice cut-and-choose oblivious transfer). Therefore the amortized
overhead is equivalent to that of about (10.5/3 + 1)s� = 4.5s� exponentiations. (3) In
Step 6, P2 uses s� exponentiations to compute P1’s input keys in check circuits. They
are all fixed-base and therefore are equivalent to about s�/3 exponentiations. (4) P1

proving the consistency of its inputs in Step 7 takes about s�/2 exponentiations which
are all fixed-base. They are therefore equivalent to s�/6 full exponentiations. The over-
all overhead of the exponentiations is therefore equivalent to that of about 5.66s� full
exponentiations.

Reducing the Computation of P2 in Step 6 In Step 6 of Protocol 4.1, P2 performs
s� exponentiations in order to compute the garbled values associated with P1’s input

in the check circuits. Namely, given the (i,0, ga0
i ), (i,1, ga1

i ) tuples and rj for every

j ∈ J , party P2 computes ga0
i ·rj , ga1

i ·rj for all i = 1 . . . � and j ∈ J . This step costs
s� exponentiations (2� exponentiations for each of the s/2 check circuits). As we will

see, we can reduce this to about a quarter by having P1 send the ga0
i ·rj , ga1

i ·rj values to
P2 and prove that they are correct (not in zero-knowledge). We remark that P1 has to
compute these values in order to construct the circuit and so this results in no additional
computation overhead by P1 (the only addition is in communication bandwidth).

The protocol is modified by changing Step 6 as follows (recall that P2 already has all

of the (i,0, ga0
i ), (i,1, ga1

i ) tuples and rj values):

1. P1 sends P2 all of the values k′0
i,j = ga0

i ·rj and k′1
i,j = ga1

i ·rj for i = 1, . . . , � and
j ∈ J .

2. P2 chooses random values γ 0
i , γ 1

i ∈ [1,2L] for i = 1, . . . , �.
3. For every j ∈ J , party P2 computes the two values

αj =
(

�
∏

i=1

(

ga0
i
)γ 0

i · (ga1
i
)γ 1

i

)rj

and βj =
�

∏

i=1

(

k′0
i,j

)γ 0
i · (k′1

i,j

)γ 1
i .

Note that computing αj requires only a single full exponentiation since the value

(ga0
i )γ

0
i · (ga1

i )γ
1
i can be computed once for all j .

4. P2 accepts P1’s input if and only if αj = βj for all j ∈ J .

We first prove that this method is secure.
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Claim 4.4. The probability that P2 accepts if there exists an i ∈ {1, . . . , �} and j ∈ J
such that k′0

i,j �= ga0
i ·rj or k′1

i,j �= ga1
i ·rj is at most s

2 · 2−L.

Proof. Assume there exists an i∗ ∈ {1, . . . , �} and j ∈ J such that k′0
i∗,j �= ga0

i∗ ·rj or

k′1
i∗,j �= ga1

i∗ ·rj . Let

α¬i∗
j =

(
∏

i �=i∗

(

ga0
i
)γ 0

i · (ga1
i
)γ 1

i

)rj

and β¬i∗
j =

∏

i �=i∗

(

k′0
i,j

)γ 0
i · (k′1

i,j

)γ 1
i

implying that

αj = α¬i∗
j · (ga0

i∗ ·γ 0
i∗ · ga1

i∗ ·γ 1
i∗

)rj = α¬i∗
j · (ga0

i∗ ·rj )γ 0
i∗ · (ga1

i∗ ·rj )γ 1
i∗

and

βj = β¬i∗
j · (k′0

i∗,j
)γ 0

i∗ · (k′1
i∗,j

)γ 1
i∗ .

Now, αj = βj if and only if

α¬i∗
j · (ga0

i∗ ·rj )γ 0
i∗ · (ga1

i∗ ·rj )γ 1
i∗ = β¬i∗

j · (k′0
i∗,j

)γ 0
i∗ · (k′1

i∗,j
)γ 1

i∗

which in turn holds if and only if

(
ga0

i∗ ·rj

k′0
i∗,j

)γ 0
i∗ ·

(
ga1

i∗ ·rj

k′1
i∗,j

)γ 1
i∗ = β¬i∗

j

α¬i∗
j

.

Assume now that ga0
i∗ ·rj �= k′0

i∗,j . Equality holds if and only if

(
ga0

i∗ ·rj

k′0
i∗,j

)γ 0
i∗ = β¬i∗

j

α¬i∗
j

·
(

k′1
i∗,j

ga1
i∗ ·rj

)γ 1
i∗

.

Fixing all of the γ values first, and then choosing γ 0
i∗ at random, we see that this holds

with probability at most 2−L. (Note that this assumes that ga0
i∗ ·rj /k′0

i∗,j is a generator.
However, in a group of prime order, all elements apart from the unity are generators.)
Applying the union bound for all j ∈ J we obtain the claim. �

We now analyze the efficiency improvement gained by this method. The communi-
cation overhead is slightly increased over the basic version of the protocol, since s�

values, namely all garbled values of P1’s inputs in the check circuits, are sent. This is
not significant when the circuit is not very small. Regarding the computation overhead,
we find that P2 now has to perform s� exponentiations in order to compute the βj values
(2� exponentiations for s/2 values of j ) with an exponent which is only L bits long.
(Unfortunately, these exponentiations are not fixed-base.) Assuming that exponentia-
tions are carried out in an elliptic curve group of order 2160 and that L = 40, we see that
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the cost of the exponentiations is reduced by a factor of 4. Thus, instead of s� exponen-
tiations, we effectively have s�/4 exponentiations. This is a mild improvement over the
s�/3 cost when using the fixed-base optimization.

Preprocessing The bulk of the exponentiations performed in the protocol can be pre-
computed. Step 1 of the protocol, where P1 computes its input keys, can clearly be
computed before P1 receives its inputs. Step 2 executes the oblivious transfers. It can
be slightly changed to be run before P2 receives its inputs: P2 can execute this step with
random inputs σ1, . . . , σ�. Then, when it receives its input bits y1, . . . , y�, it sends P1 a
string of correction bits y1 ⊕ σ1, . . . , y� ⊕ σ�. P1 exchanges the roles of the two keys of
input wires of P2 for which it receives a correction bit with the value 1. (The security
proof can be easily adapted for this variant of the protocol.) Given this change, both
Steps 1 and 2 can be precomputed. These steps account for 13.5s� of the 15s� exponen-
tiations of the protocol, where the remaining 1.5s� exponentiations are fixed-base. This
means that if preprocessing is used, then after receiving their inputs the parties need to
effectively compute only s�/2 full exponentiations.

Parallel Computation by the Two Parties Many of the computations can be carried
out in parallel by the different parties. For example, in the oblivious transfer protocol
(Protocol 3.3), after the sender receives the g0, g1, h

j

0, h
j

1 values from the receiver in
Step 4 of the setup phase it can begin carrying out half of the RAND computations
while the receiver continues its other computations. Similarly, in each transfer phase
the sender can send its messages to the receiver one by one, as it computes them. The
receiver can begin decrypting the first message immediately as it arrives, in parallel to
the sender computing the following messages.

Bandwidth vs. Computation It was shown in [16] that it is possible to reduce the band-
width of sending the circuits by about 50%, in the following way: P1 generates each cir-
cuit as a deterministic function of a different seed; P1 first commits to the circuits, and
then, instead of sending the tables of check circuits, it only sends the seeds from which
these circuits were computed. This reduction in communication comes at the cost of P2
having to generate long pseudo-random strings from seeds, and repeating P1’s task of
generating the circuits. This optimization might be useful, though, in settings in which
communication is expensive (e.g., for a roaming cellular user).

5. Variants—Universal Composability and Covert Adversaries

5.1. Universally Composable Two-Party Computation

We observe that the simulators in the proof of Theorem 4.2 carry out no rewinding, and
likewise the intermediate simulators used to prove the reductions. Thus, if the proto-
cols used to compute the batch cut-and-choose oblivious transfer functionality and the
zero-knowledge proof of knowledge of Step 7b are universally composable, then so is
Protocol 4.1. Furthermore, the protocol for computing the oblivious transfer is univer-
sally composable if the zero-knowledge proof carried out by the receiver in the setup
phase is universally composable. Both that proof and the proof of Step 7b are essentially
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the proof of Protocol B.2. Thus, all we need is a universally composable variant of the
zero-knowledge proof of Protocol B.2 and the entire protocol is universally composable.
In order to do this, we need an efficient transformation from � protocols to universally
composable zero-knowledge proofs of knowledge. Efficient constructions of universally
composable zero-knowledge have been considered in [10,12,30], but do not work effi-
ciently for all � protocols. Another approach was presented recently in [20]. We use this
protocol, and for the sake of completeness (and to facilitate an exact complexity analy-
sis) we present it in Appendix C. As we will see below, the cost of the exponentiations is
dominated by 2s2 Diffie–Hellman group exponentiations. We summarize the above in
the following theorem (the number of rounds is fewer here because the zero-knowledge
protocol has fewer rounds in the model of universal composability):

Theorem 5.1. Assume that the decision Diffie–Hellman assumption holds. Then, for
every efficiently computable two-party function f with inputs of length �, there exists a
universally composable protocol that securely computes f in the presence of malicious
adversaries in the common reference string model, with eight rounds of computation
and O(s� + s2) exponentiations.

Efficiency of the UC Variant of Protocol 4.1 We begin by translating the above into
the cost of running a universally composable zero-knowledge protocol for subset DH
tuples (see Protocol B.2). However, note that we only need to obtain security of 2−s/4

and therefore we use L = s/4 in the transformation of Appendix C. Now, the number
of exponentiations in the s/2 out of s variant Protocol B.2 without the verifier commit-
ment (because we only need the basic � protocol portion of it) is exactly 7s. As we
have seen in Appendix C, the cost of converting this to a universally composable zero-
knowledge protocol, using the UC commitment scheme of [27], is L times the cost of
the � protocol plus 57L group exponentiations. Thus, with L = s/4 we find that the
zero-knowledge protocols costs 7sL + 57L = 7

4 · s2 + 57
4 · s exponentiations.

Our protocol for two-party computation also uses a 1-out-of-2 variant of Protocol B.2.
In this case, the cost is 14 group exponentiations for a single execution of the � protocol.
Setting L = s/4 we have 14L + 57L = 71L = 71s

4 < 18s group exponentiations. In
Protocol 4.1 the s/2 out of s variant is run once, while the 1-out-of-2 variant is run �

times. We therefore conclude that the universally composable version of Protocol 4.1
has an additional 7

4 · s2 + 57
4 · s + 18s� group exponentiations, beyond the cost of the

basic version that is only secure in the stand-alone model. Although this is certainly
not “for free” it is not overly prohibitive. We remark that the universally composable
zero-knowledge proofs require three rounds of communication, rather than five rounds
for the stand-alone versions. Since two of these are run at separate phases, we have see
that this takes four rounds off the round complexity of Protocol 4.1, yielding a total of
eight rounds.

5.2. Covert Security

In the model of security in the presence of covert adversaries [1], the requirement is
that any cheating by an adversary will be caught with some probability ε. The value of
ε taken depends on the application, the ramifications to an adversary being caught, the
value to an adversary when it cheats successfully (if not caught) and so on. The analysis
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of our protocol shows that for every value of s (even if s is very small) the probability
that an adversary can cheat without being caught is at most 2− s

4 +1; see Claim 4.3 and
a discussion below. This immediately yields a protocol that is secure in the presence of
covert adversaries, as stated in the following theorem.

Theorem 5.2. Assume that the decisional Diffie–Hellman assumption is hard in G,
that the protocol used in Step 2 securely computes the batch single-choice cut-and-
choose oblivious transfer functionality, that the protocol used in Step 7b is a zero-
knowledge proof of knowledge, and that the symmetric encryption scheme used to gen-
erate the garbled circuit is secure. Then, for any integer s > 4, Protocol 4.1 securely
computes the function f in the presence of covert adversaries with ε-deterrent (under
the strong explicit cheat formulation), for ε = 1 − 2− s

4 +1.

We stress that our protocol is significantly more efficient than the protocols of [1]
and [16] when values of ε that are greater than 1/2 are desired. For example, in order
to obtain an ε-deterrent of 0.99, the protocol of [1] requires using 100 garbled circuits.
However, taking s = 30 in our protocol here yields an ε-deterrent of about 0.99, and so
it suffices to send 30 circuits and not 100, reducing the cost by more than a factor of 3.

A Tighter Analysis As we saw in the proof of Claim 4.3, the probability of cheating is
actually significantly lower than 2−s/4+1. For small values of s the exact probability of
cheating, given in Claim 4.3, is

( 3s/4+1
s/2+1

)

/
( s

s/2

)

. Based on this formula, with s = 24 we
obtain an ε-deterrent of 0.99, and so the cost is actually less than 1/4 of the protocol
of [1], which is very significant.
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Appendix A. Yao’s Protocol—Semi-honest Adversaries

We describe here the construction of secure two-party computation (for semi-honest
adversaries) which is described in [41]. This construction is based on Yao construction.
It is proved in [29] to be secure against semi-honest adversaries.

Let C be a Boolean circuit that receives two inputs x, y ∈ {0,1}� and outputs
C(x, y) ∈ {0,1}� (for simplicity, we assume that the input length, output length and
the security parameter are all of the same length �). We also assume that C has the
property that if a circuit output wire comes from a gate g, then gate g has no wires that
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are input to other gates.3 (Likewise, if a circuit input wire is itself also a circuit output,
then it is not input into any gate.)

We begin by describing the construction of a single garbled gate g in C. The circuit
C is Boolean, and therefore any gate is represented by a function g : {0,1} × {0,1} →
{0,1}. Now, let the two input wires to g be labeled w1 and w2, and let the output wire
from g be labeled w3. Furthermore, let k0

1, k1
1, k0

2, k1
2, k0

3, k1
3 be six keys obtained by

independently invoking the key-generation algorithm G(1�); for simplicity, assume that
these keys are also of length �. Intuitively, we wish to be able to compute k

g(α,β)

3 from kα
1

and k
β

2 , without revealing any of the other three values k
g(1−α,β)

3 , k
g(α,1−β)

3 , k
g(1−α,1−β)

3 .
The gate g is defined by the following four values:

c0,0 = Ek0
1

(

Ek0
2

(

k
g(0,0)

3

))

, c0,1 = Ek0
1

(

Ek1
2

(

k
g(0,1)

3

))

,

c1,0 = Ek1
1

(

Ek0
2

(

k
g(1,0)

3

))

, c1,1 = Ek1
1

(

Ek1
2

(

k
g(1,1)

3

))

where E is from a private key encryption scheme (G,E,D) that has indistinguishable
encryptions for multiple messages, and has an elusive efficiently verifiable range. Infor-
mally, this means (1) that for any two (known) messages x and y, no polynomial-time
adversary can distinguish between the encryptions of x and y, and (2) that there is a neg-
ligible probability that an encryption under one key falls into the range of encryptions
under another key, and given a key k it is easy to verify whether a certain ciphertext is
in the range of encryptions with k. See [29] for a detailed discussion of these properties,
and for examples of easy implementations satisfying them. For example, the encryp-
tion scheme could be Ek(m) = 〈r, fk(r)⊕m0n〉, where fk is a pseudo-random function
keyed by k whose output is |m| + n bits long, and r is a randomly chosen value.

Now, the actual gate is defined by a random permutation of the above values, denoted
as c0, c1, c2, c3; from here on we call them the garbled table of gate g. Notice that given
kα

1 and k
β

2 , and the values c0, c1, c2, c3, it is possible to compute the output of the gate

k
g(α,β)

3 as follows. For every i, compute D
k
β
2
(Dkα

1
(ci)). If more than one decryption

returns a non-⊥ value, then output abort. Otherwise, define k
γ

3 to be the only non-⊥
value that is obtained. (Notice that if only a single non-⊥ value is obtained, then this
will be k

g(α,β)

3 because it is encrypted under the given keys kα
1 and k

β

2 . Later we will
show that except with negligible probability, only one non-⊥ value is indeed obtained.)

We are now ready to show how to construct the entire garbled circuit. Let m be the
number of wires in the circuit C, and let w1, . . . ,wm be labels of these wires. These
labels are all chosen uniquely with the following exception: if wi and wj are both
output wires from the same gate g, then wi = wj (this occurs if the fan-out of g is
greater than one). Likewise, if an input bit enters more than one gate, then all circuit
input wires associated with this bit will have the same label. Next, for every label wi ,
choose two independent keys k0

i , k
1
i ← G(1�); we stress that all of these keys are chosen

independently of the others. Now, given these keys, the four garbled values of each gate

3 This requirement is due to our labeling of gates described below, which does not provide a unique label
to each wire (see [29] for more discussion). We note that this assumption on C increases the number of gates
by at most �.
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are computed as described above and the results are permuted randomly. Finally, the
output or decryption tables of the garbled circuit are computed. These tables simply
consist of the values (0, k0

i ) and (1, k1
i ) where wi is a circuit output wire. (Alternatively,

output gates can just compute 0 or 1 directly. That is, in an output gate, one can define
cα,β = Ekα

1
(E

k
β
2
(g(α,β))) for every α,β ∈ {0,1}.)

The entire garbled circuit of C, denoted GC, consists of the garbled table for each
gate and the output tables. We note that the structure of C is given, and the garbled
version of C is simply defined by specifying the output tables and the garbled table that
belongs to each gate. This completes the description of the garbled circuit.

Let x = x1 · · ·x� and y = y1 · · ·y� be two �-bit inputs for C. Furthermore, let
w1, . . . ,w� be the input labels corresponding to x, and let w�+1, . . . ,w2� be the in-
put labels corresponding to y. It is shown in [29] that given the garbled circuit GC and
the strings k

x1
1 , . . . , k

x�

� , k
y1
�+1, . . . , k

y�

2�, it is possible to compute C(x, y), except with
negligible probability. The way that these values are obtained is as follows. For every
bit of P1’s input, party P1 just sends P2 the appropriate keys k

x1
1 , . . . , k

x�

� . Furthermore,
for every bit yi of P2’s input, the parties run an oblivious transfer protocol where P1

inputs (k0
�+i , k

1
�+i ) and P2 inputs yi . The result is that P2 obtains the keys k

y1
�+1, . . . , k

y�

2�

and can therefore compute the garbled circuit. The crucial observation is that P1 learns
nothing of P2’s input by the security of the oblivious transfer, and P2 learns nothing but
the output because the circuit is encrypted and the keys k

x1
1 , . . . , k

x�

� keep the identity of
the bits x1, . . . , x� secret.

A Useful Lemma In [28], the following lemma is proven (that is actually implicit al-
ready in [29]). The lemma states that it is possible to build a fake garbled circuit that
outputs a fixed value z = f (x, y), and this is indistinguishable to an adversary who has
only a single set of keys that correspond to the inputs x and y. The simulator that we
construct in order to prove the security of our protocol constructs such “fake” circuits,
and we therefore rely on this lemma in our proof.

Lemma A.1. Given a circuit C and an output value z (of the same length as the output
of C) it is possible to construct a garbled circuit G̃C such that we have the following.

1. The output of G̃C is always z, regardless of the garbled values that are provided
for P1 and P2’s input wires, and

2. If z = f (x, y), then no non-uniform prob. polynomial-time adversary A can dis-
tinguish between the distribution ensemble consisting of G̃C and a single arbi-
trary garbled value for every input wire, and the distribution ensemble consisting
of a real garbled version of C, together with garbled values that correspond to x

for P1’s input wires and to y for P2’s input wires.

Appendix B. Zero-Knowledge Proofs of Knowledge

In this section we present zero-knowledge proofs that we need in our protocols. The
reason for presenting the protocols in full detail is to facilitate an exact efficiency anal-
ysis.
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B.1. Zero-Knowledge Proof of Knowledge—Diffie–Hellman Tuples

A zero-knowledge proof of knowledge of Diffie–Hellman tuples is presented in Fig-

ure B.1. The fact that this is a proof of knowledge (and not just a zero-knowledge proof

system) has been proven in [19, Chap. 6].

PROTOCOL B.1 ZK Proof of Knowledge of Diffie–Hellman Tuples.

• Joint statement: The values (G, g0, g1, u, v) that are elements of a group G of
known order q , and g is the generator.

• Auxiliary input for the prover: A witness w such that u = (g0)w and v = (g1)w .

• The protocol:

1. P chooses a random a ∈ {1, . . . , q}, computes α = (g0)a and sends α to V .
2. The verifier V chooses random s, t ∈ {1, . . . , q}, computes c = (g0)s ·αt and

sends c to P (this is a perfectly hiding commitment to s).
3. P chooses a random r ∈ {1, . . . , q} and computes A = (g0)r and B = (g1)r .

It then sends (A,B) to V .
4. V sends s and t as above to P .
5. P verifies that c = (g0)s ·αt . If no, it aborts. Otherwise, it sends z = s ·w+ r

to V . In addition, it sends a as chosen above.
6. V accepts if and only if α = (g0)a , A = (g0)z/us and B = (g1)z/vs .

Exact Efficiency The overall number of exponentiations in the protocol is 12. How-

ever, eight of these are of the form xa · yb (observe that the verification of A and B by

V in the last step is actually also of this form). Each of these double exponentiations

costs only 1.25 the cost of a standard exponentiation [31, Alg. 14.88], and thus we con-

clude that the protocol requires nine exponentiations overall. In addition, it takes five

rounds of communication and involves the exchange of 8 group elements (where we

count s, t, z, a as group elements even though they are actually smaller).

B.2. Zero-Knowledge for Subset DH

The protocol below uses the technique of [7] in order to prove that half of a given set of

values are of the Diffie–Hellman form. We assume familiarity with the technique of [7]

here. We remark that in Protocol B.2, it is possible to use any perfect secret sharing with

the properties that are defined in [7]. The secret-sharing scheme of Shamir [40] works

for example, but [7] have a more efficient scheme based on matrix multiplication. The
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following proposition is common knowledge and follows from [7], and the proof is
therefore omitted.

PROTOCOL B.2 ZK Proof of Knowledge of Subset of Diffie–Hellman Tuples.

[The set I that is used here is the complement of the set J in Protocol 3.3.]

• Joint statement: The description G of a group of order q with generators g0, g1.
In addition, s pairs (h1

0, h1
1), . . . , (hs

0, hs
1)

• Auxiliary input for the prover: A witness set of s/2 values W = {(ij ,wij )}
where the set of indices ij , denoted I , are such that for every ij ∈ I it holds that

h
ij
0 = (g0)

wij and h
ij
1 = (g1)

wij .

• The protocol:

1. Set up commitment to verifier challenge:
(a) The prover P chooses a random a ← Zq , computes α = (g0)a and sends

α to V .
(b) The verifier V chooses random t, c ← Zq , computes C = (g0)c · αt and

sends C to P (this is a perfectly hiding commitment to c).
2. Prover message 1:

(a) For every i /∈ I , the prover P chooses random values ci ← Zq and zi ←
Zq and sets Ai = (g0)

zi

(hi
0)

ci
and Bi = (g1)

zi

(hi
1)

ci
.

(b) For every i ∈ I , the prover chooses random ρi ← Zq and sets Ai =
(g0)ρi and Bi = (g1)ρi .

(c) P sends (A1,B1), . . . , (As,Bs) to V .
3. Verifier query: V sends t, c as above.
4. Prover message 2:

(a) P checks that C = (g0)c · αt and aborts if not. Otherwise, it takes c as
the verifier query.

(b) The values {ci}i /∈I and the verifier query c are interpreted as s/2 shares
{ci} and a secret c in a secret sharing scheme with s participants and
threshold s/2+1. Thus, these values fully define all shares for all partic-
ipants (when an appropriate secret sharing scheme is used). The prover
computes these shares c1, . . . , cs and sends them to the verifier V .

(c) For every i /∈ I , P sends zi as chosen above.
(d) For every i ∈ I , P sends zi = ci · wi + ρi .
(e) Finally, P sends a as chosen in the first step.

5. Verifier validation: V accepts if and only if all the following hold:
(a) α = ga

(b) The shares c1, . . . , cs define the secret c

(c) For all i = 1, . . . , s it holds that Ai = (g0)
zi

(hi
0)

ci
and Bi = (g1)

zi

(hi
1)

ci
.

Proposition B.3. Protocol B.2 is a zero-knowledge proof of knowledge that is secure
under parallel composition, for the relation

R = {(

G, q, g0, g1,
(

h1
0, h

1
1

)

, . . . ,
(

hs
0, h

s
1

))}



716 Y. Lindell and B. Pinkas

where G is a group of order q with generators g0, g1, and there exists a set of at least

s/2 values wi1, . . . ,wis/2 such that for every j = 1, . . . , s/2 it holds that h
ij
0 = (g0)

wij

and h
ij
1 = (g1)

wij .

A One-Out-of-Two Variant We also need to prove that one out of two tuples is a Diffie–
Hellman tuple. The idea is basically as in Protocol B.2 with s = 2. This case is simpler
since instead of using a secret sharing scheme the parties work in the following way:

1. The prover chooses ci as it wishes for the statement i whose proof it wants to
forge;

2. The verifier sends the receiver a random c;
3. The prover sets c2−i = ci + c.

Exact Efficiency The overall cost of the protocol is 7s + 4 exponentiations and the
exchange of 3s + 4 group elements. In addition, it takes five rounds of communication
(note that the first and last round of communication can be combined with messages
from the calling protocol). In the one-out-of-two variant, the count is identical by setting
s = 2.

B.3. ZK Proof for Extended Diffie–Hellman Tuples

A zero-knowledge proof of an extended Diffie–Hellman tuple is given in Proto-
col B.4. The input is a tuple (g0, g1, h0, h1, u1, v1, . . . , uη, vη) such that either all
{(g0, h0, ui, vi)}ηi=1 are Diffie–Hellman tuples, or all {(g1, h1, ui, vi)}ηi=1 are Diffie–
Hellman tuples. This zero-knowledge proof is used twice; once in the single-choice
cut-and-choice oblivious transfer protocol in Sect. 3.4, and once in the main protocol
itself (Protocol 4.1 in Sect. 4.1). In the latter use (in Protocol 4.1), the same g is used in
all tuples. That is, one sets g = g0 = g1 in Protocol B.4 below.

PROTOCOL B.4 ZK Proof of Knowledge of Extended Diffie–Hellman Tuple.

• Common input: (g0, g1, h0, h1, u1, v1, . . . , uη, vη) where g0 and g1 are genera-
tors of a group of prime order q .

• Prover witness: a such that either h0 = (g0)a and vi = (ui)
a for all i, or h1 =

(g1)a and vi = (ui)
a for all i.

• The protocol:

1. The verifier V chooses γ1, . . . , γη ∈R {0,1}L where 2L < q , and sends the
values to the prover.

2. The prover and verifier locally compute

u =
η

∏

i=1

(ui)
γi and v =

η
∏

i=1

(vi)
γi

3. The prover proves in zero-knowledge that either (g0, h0, u, v) or
(g1, h1, u, v) is a Diffie–Hellman tuple, and V accepts if and only it accepts
in this subproof. (This subproof is the 1-out-of-2 variant of Protocol B.2.)
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The zero-knowledge property of the protocol follows directly from the zero-
knowledge property of the subprotocol for proving Diffie–Hellman. The soundness
follows from the following claim.

Claim B.5. If there exists an index 1 ≤ j ≤ η such that (g,h,uj , vj ) is not a Diffie–
Hellman tuple, then for every choice of {γi}i �=j there exists at most one value γj such
that (g,h,u, v) is a Diffie–Hellman tuple.

The proof of this claim is almost identical to the proof of Claim 4.4 and is therefore
omitted.

Corollary B.6. The soundness error of Protocol B.4 is 2−L +μ(n), where μ(n) is the
soundness error of the Diffie–Hellman tuple subproof.

Exact Efficiency The cost of this protocol is exactly the cost of the 1-out-of-2 variant
of Protocol B.2 (which costs 18 exponentiations and the exchange of 10 group elements)
together with an additional 2η “short” 40-bit exponentiations by each party. Under the
assumption that we work in an elliptic curve group with order q of length 160 bits, we
find that this is equivalent to η/2 exponentiations by each party. Thus, the result is η

additional exponentiations overall. We remark that no additional rounds are needed be-
cause the γ values can be sent together with the verifier’s first message (this is because
the prover’s first message is independent of the input statement). We conclude that there
are η + 18 exponentiations, the exchange of 10 group elements and five rounds of com-
munication. When this zero-knowledge protocol is used in Protocol 4.1, we see that
η = s/2 and so there are s/2 + 18 exponentiations; when it is used in Sect. 3.4 then
η = s and so there are s + 18 exponentiations.

Remark Recall that this zero-knowledge proof is called � times in Protocol 4.1, each
time proving an extended Diffie–Hellman tuple of η = s/2 pairs. Specifically, for every

i = 1, . . . , �, party P1 proves that (g, grj , ga0
i , k′

i,j ) is a Diffie–Hellman tuple for all
j /∈ J . The cost of this is therefore s� + 18� exponentiations. However, an alternative
and equivalent way of carrying out these proofs is for P1 to prove that for every j =
1, . . . , s it holds that (g, ga0

i , grj , k′
i,j ) is a Diffie–Hellman tuple for all 1 ≤ i ≤ �. In

this case, each proof costs 2� + 18 exponentiations and so the overall cost is 2s� + 18s

exponentiations. Thus, the way these proofs should be carried out depends on the values
of � and s (recall that � is the length of P2’s input and s is the number of circuits sent).

Appendix C. Simple UC Zero-Knowledge from any � Protocol

For the sake of completeness, we present the simple general transformation from �

protocols [8] to universally composable zero-knowledge arguments [4], as appearing
in [20]. This transformation is applied to the � protocol underlying Protocol B.2 (as
described, Protocol B.2 is a stand-alone zero-knowledge proof of knowledge derived by
applying a general transformation to a � protocol). Loosely speaking, a � protocol π

for a relation R is a 3-round public-coin proof with the following two properties:
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FIGURE C.1 The Fcom Multiple-Commitment Functionality.

Fcom proceeds as follows, running with parties P1 and P2, and an adversary S :

1. Upon receiving a value (Commit, sid, cid,Pi ,Pj ,w) from Pi (i ∈ {1,2})
where w ∈ {0,1}n, record the tuple (cid,Pi ,Pj ,w) and send the mes-
sage (Receipt, sid, cid) to Pj and S (where j = 3 − i). Ignore subsequent
(Commit, sid, cid,Pi ,Pj , . . .) values.

2. Upon receiving a value (Open, sid, cid,Pi ,Pj ) from Pi , proceed as fol-
lows. If the tuple (cid,Pi ,Pj , b) is recorded then send the message
(Open, sid, cid,Pi ,Pj ,w) to Pj and S . Otherwise, do nothing.

1. For any x in the language defined by R, and any pair of accepting conversations
(α,β, γ ), (α,β ′, γ ′) with the same first prover message α, it is possible to effi-
ciently compute w such that (x,w) ∈ R.

2. There exists a simulator Sπ who upon input x and β generates a transcript
(α,β, γ ) that is indistinguishable from a real proof with a verifier who replies
with β upon receiving α.

A universally composable protocol is one that remains secure under arbitrary compo-
sition. Essentially, it suffices here to present a straight-line simulator and extractor in
order to demonstrate universal composability. We omit a formal definition of � pro-
tocols and universal composability and refer to [8] and [4], respectively, for details.
Our transformation uses universally composable commitment schemes [5] which can
be constructed efficiently. Using the scheme of [27] that is secure under the DDH as-
sumption and in the common reference string model, the cost of committing to n bits
is five Diffie–Hellman group exponentiations and the cost of decommitting is 21 such
exponentiations (where the size of the group is at least 2n). The universally composable
(multiple) commitment functionality Fcom is formally defined in Figure C.1.

The Idea Behind the Transformation Let π be a �-protocol for a relation R. Then, in
order to achieve simulation in the case of a corrupted verifier, we need to know the ver-
ifier query β before sending α. Although this may seem impossible it is easily achieved
by having the verifier first commit to β using the universally composable commitment
functionality Fcom. Then, the prover sends α, the verifier decommits to β , and the prover
answers with γ . Now, in the simulation, the simulator is able to learn β before the com-
mitment is opened and thus before it sends α. Thus, it is possible to use Sπ to simulate
the proof after β has been committed to. This takes care of the problem of simulating in
the case of a corrupted verifier. However, in the case of a corrupted prover, we need to
extract the witness used by the prover without rewinding. This is difficult because the �

protocol only provides a method for extraction when two different accepting conversa-
tions with the same first-prover message are observed. This seems to require rewinding.
We solve this problem as follows. Assume for now that β is a single bit. Then, for any
α, define γ0 to be an accepting prover response when β = 0, and define γ1 analogously
for β = 1. Then, after receiving the verifier’s commitment to β , the prover sends α to-
gether with a commitment to γ0 and a commitment to γ1. After the verifier reveals β ,
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the prover reveals γβ . Now, if the prover indeed sent commitments to two accepting
responses γ0 and γ1 it follows that the simulator can extract the witness without any
rewinding (recall that the simulator can open all commitments). This yields soundness
of one half; in order to improve this, we repeat L times and obtain a soundness error of
2−L. Observe that if the original � protocol had soundness of 1/2, then the transfor-
mation is extraordinarily efficient. However, if it had negligible soundness—which is
often the case—then the transformation costs L times the original protocol. Neverthe-
less, since the error is 2−L, the value of L can be set to be quite small. We remark that if
β comes from a large domain, then we arbitrarily fix two values from the domain to be
used in the protocol. Finally, we note that once the prover commits first to its γ values,
there is no need to have the verifier commit to β ahead of time. See Protocol C.2 for a
formal description.

PROTOCOL C.2 Transformation from �-Protocols to UC-ZK.

Let π be a 3-round � protocol for a relation R. Let β0, β1 be two arbitrary distinct
values in the domain of verifier queries. Denote by � the protocol as follows:

• Inputs: The prover P and verifier V both hold a common statement x; the prover
P has a witness w such that (x,w) ∈ R.

• Session identifier: Both parties have the same sid

• The protocol:

1. First prover message:
(a) P runs the prover instructions L times for the � protocol π in order to

obtain L first prover message α1, . . . , αL. The prover P commits to all
of these values by sending (Commit, sid, i,P ,V,αi) to Fcom, for every
i.

(b) For every i = 1, . . . ,L, the prover P computes the second prover mes-
sage in the case that the verifier query after αi is β0 and in the case that
it is β1; we denote these messages by γ 0

i
and γ 1

i
, respectively.

(c) P commits to all of the γ 0
i
, γ 1

i
values by sending

(Commit, sid, i‖0,P,V, γ 0
i
) and (Commit, sid, i‖1,P,V, γ 1

i
) to

Fcom, for every i = 1, . . . ,L.
2. Verifier message: Upon receiving (Receipt, sid, i), (Receipt, sid, i‖0) and

(Receipt, sid, i‖1) from Fcom for every i = 1, . . . ,L, the verifier V chooses
L independent random values β1, . . . , βL ∈ {β0, β1} and sends them to P .

3. Second prover message: Upon receiving β1, . . . , βL from V , the prover P

decommits to all αi values, as well as the appropriate γ
βi

i
values, for every

i. Formally, P sends (Open, sid, i,P ,V ) to Fcom for every i. In addition,
let σi be such that βi = βσi . Then P sends (Open, sid, i‖σi,P,V ) to Fcom
for every i = 1, . . . ,L.

4. Accept/reject decision: Upon receiving (Open, sid, i,P ,V,αi) and
(Open, sid, i‖σi,P,V, γi) for every i = 1, . . . ,L, the verifier V checks that
for every i the value σi is such that βi = βσi and that (αi , βi , γi) is an
accepting transcript according to the � protocol π . V accepts if and only if
this holds for every i.

We have the following theorem.
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Theorem C.3. If π is a � protocol for a relation R, then the protocol � obtained
by applying the transformation of Protocol C.2 to π is a universally composable zero-
knowledge proof of knowledge for R with soundness error 2−L.

Proof Sketch. In the case that the adversary A controls the prover P , the simulator
S receives (Commit, sid, i, αi), (Commit, sid, i‖0, γ 0

i ), (Commit, sid, i‖1, γ 1
i ) from A.

Then, S chooses random β1, . . . , βL, hands them to A as if coming from V , and verifies
that for every i the transcript (αi, βi, γ

βi

i ) is accepting; if not, it sends an invalid witness
w′ to Fzk (i.e., w′ such that (x,w′) /∈ R). Otherwise, if for every i, at most one of
(αi,0, γ 0

i ) and (αi,1, γ 1
i ) is an accepting transcript in the � protocol, then S outputs

fail and halts. Otherwise, it uses the extractor of the � protocol to obtain a witness w

such that (x,w) ∈ R and sends this to Fzk. In addition, S sends all messages that it
receives from the environment Z to A, and vice versa. The fact that this simulation is
indistinguishable follows from the fact that the only difference between the real and
ideal executions is when S outputs fail, which occurs in the case that all (αi, βi, γ

βi

i ) are
accepting (and so V would accept), and yet at most one of all (αi,0, γ 0

i ) and (αi,1, γ 1
i )

is accepting (and so S does not obtain a valid witness). However, this event occurs with
probability at most 2−L, which is negligible.

In the case that the adversary A controls the verifier V , the simulator S works
by handing the appropriate Receipt messages to A. Then, S receives from A values
β1, . . . , βL. S then hands the � protocol simulator all of the βi messages and obtains
accepting transcripts (αi, βi, γi). Finally, S hands A all of the commitment openings to
be to the αi, γi values generated by the simulator. As above, it also sends all messages
that it receives from the environment Z to A, and vice versa. The indistinguishabil-
ity here follows immediately from the indistinguishability of the � protocol simulated
transcripts. �

Exact Efficiency of the Transformation The complexity of the universally composable
zero-knowledge protocol is the cost of the initial � protocol plus 3L universally com-
posable commitments, 2L of which are opened. As we have mentioned, the commitment
scheme of [27] is such that a commitment to n bits requires five exponentiations and a
decommitment requires 21. Thus, the cost of Protocol C.2 is L times the initial � pro-
tocol plus (3 × 5 + 2 × 21) · L = 57L regular Diffie–Hellman group exponentiations.
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