
J. Cryptol. (2012) 25: 748–779
DOI: 10.1007/s00145-011-9109-y

Security Analysis of Randomize-Hash-then-Sign Digital
Signatures∗

Praveen Gauravaram and Lars R. Knudsen
Department of Mathematics, Technical University of Denmark, Matematiktorvet, Building S303,

2800, Kgs. Lyngby, Denmark
P.Gauravaram@gmail.com; lars@ramkilde.com

Communicated by Antoine Joux

Received 8 October 2009
Online publication 12 October 2011

Abstract. At CRYPTO 2006, Halevi and Krawczyk proposed two randomized hash
function modes and analyzed the security of digital signature algorithms based on these
constructions. They showed that the security of signature schemes based on the two
randomized hash function modes relies on properties similar to the second preimage
resistance rather than on the collision resistance property of the hash functions. One of
the randomized hash function modes was named the RMX hash function mode and was
recommended for practical purposes. The National Institute of Standards and Technol-
ogy (NIST), USA standardized a variant of the RMX hash function mode and published
this standard in the Special Publication (SP) 800-106.

In this article, we first discuss a generic online birthday existential forgery attack
of Dang and Perlner on the RMX-hash-then-sign schemes. We show that a variant
of this attack can be applied to forge the other randomize-hash-then-sign schemes. We
point out practical limitations of the generic forgery attack on the RMX-hash-then-sign
schemes. We then show that these limitations can be overcome for the RMX-hash-then-
sign schemes if it is easy to find fixed points for the underlying compression functions,
such as for the Davies-Meyer construction used in the popular hash functions such as
MD5 designed by Rivest and the SHA family of hash functions designed by the Na-
tional Security Agency (NSA), USA and published by NIST in the Federal Information
Processing Standards (FIPS). We show an online birthday forgery attack on this class
of signatures by using a variant of Dean’s method of finding fixed point expandable
messages for hash functions based on the Davies-Meyer construction. This forgery at-
tack is also applicable to signature schemes based on the variant of RMX standardized
by NIST in SP 800-106. We discuss some important applications of our attacks and
discuss their applicability on signature schemes based on hash functions with ‘built-in’
randomization. Finally, we compare our attacks on randomize-hash-then-sign schemes
with the generic forgery attacks on the standard hash-based message authentication
code (HMAC).

Key words. Collision resistance, Compression function, Davies–Meyer, Digital sig-
nature, Hash function, Merkle–Damgård, Randomized hashing, RMX, Second preim-
age resistance, SHA-3 hash function competition.

∗ This paper was solicited from EUROCRYPT 2009.

© International Association for Cryptologic Research 2011

mailto:P.Gauravaram@gmail.com
mailto:lars@ramkilde.com

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 749

1. Introduction

1.1. Hash Functions and Digital Signatures

A cryptographic hash function is a tool which processes a message of arbitrary length to
a hash value of fixed length. The length of the message and its hash value are measured
in the number of bits or bytes. In general, a hash function with t-bit hash value is called a
t-bit hash function. The fundamental security properties of a hash function are collision
resistance, second preimage resistance and preimage resistance [54]. A hash function is
collision resistant if it is computationally infeasible to find two distinct messages that
have the same hash value. A hash function is second preimage resistant if, for a given
target message, it is computationally infeasible to find a message distinct from the target
message such that the hash values of these two messages are the same. A hash function
is preimage resistant if, for a given target hash value, it is computationally infeasible to
find a message which hashes to the given target hash value. The term ‘computational
infeasibility’ means that the complexity of an algorithm to break any of these properties
is not less than that of the generic attack required to break that property. The generic at-
tack to break the collision resistance property of a t-bit hash function is called a birthday
collision attack, and it requires 2t/2 (distinct) queries to the hash function. The generic
attack to break the second preimage resistance and preimage resistance properties of a
t-bit hash function requires on average 2t (distinct) queries to the hash function. Formal
definitions for these security properties were given by Rogaway and Shrimpton [73].

Efficient digital signature generation and verification is one of the main applications
of hash functions. In this application, a signer uses a hash function H to compress a
message m, that he or she intends to sign, to a fixed size hash value H(m). The signer
then signs the hash value using the signature generation algorithm SIG to produce the
signature s = SIG(H(m)). The signer sends (m, s) to the intended receiver, who verifies
the signature s on m by using the verification algorithm VER which outputs a bit 1
upon successful verification. Digital signature algorithms that use hash functions in this
way are called hash-then-sign digital signature algorithms. When the underlying hash
function H is not collision resistant, a signature scheme SIG can be forged by asking a
signer to sign a legitimate message m and then showing SIG(H(m)) as the signature of
a fraudulent message n where m �= n and H(m) = H(n). Hence, a hash function used
in a hash-then-sign scheme must be collision resistant for the security of the scheme
against forgery attacks.

Several hash functions were designed exclusively for the digital signature application.
Some notable proposals are MD4 [71] and MD5 [72] by Rivest and the SHA family of
hash functions [60,63–65] by the National Security Agency (NSA), USA and published
by the USA’s government standards agency, the National Institute of Standards and
Technology (NIST). The SHA family includes SHA-0 published in the Federal Infor-
mation Processing Standard (FIPS 180) [63] and its successors SHA-1, SHA-224, SHA-
256, SHA-384 and SHA-512 that were published in the standard FIPS 180-3 [60].1 All
these designs are based on the Merkle–Damgård [20,55] iterated hash function design

1 The standard FIPS 180-3 was preceded by the standards FIPS 180-2 [65], which has SHA-1, SHA-256
and SHA-512, and FIPS 180-1 [64] in which SHA-1 was first published.

750 P. Gauravaram, L.R. Knudsen

paradigm with the exception that SHA-224 and SHA-384 truncate their final 256-bit
and 512-bit hash values to 224 and 384 bits respectively.

The MD4, MD5, SHA-0 and SHA-1 hash functions are no longer collision resistant,
and several collision attacks on their reduced versions [12,26,27], compression func-
tions [18,29] and full hash functions [12,28,31,52,83,84] were demonstrated. Of these
hash functions, MD5 and SHA-1 are widely implemented in many information pro-
cessing applications. Nearly a decade before collisions were found for the MD5 hash
function [85], Dobbertin [30] suggested not to implement MD5 as a collision resistant
hash function after his pseudo collision attack on MD5 [30]. Although no practical col-
lisions have been found for SHA-1, a theoretical collision attack on SHA-1 by Wang,
Yin and Yu [84] in 2005 demonstrated that SHA-1 is not collision resistant. Soon after
the formal notice of this attack, NIST announced that federal agencies must stop relying
on digital signatures that are generated using SHA-1 by the end of 2010. Considering
the wide usage of MD5 and SHA-1 in the signature algorithms such as RSA [45,74] and
DSA [61,62], there has been a growing amount of research showing how seriously these
attacks (in particular on MD5) could undermine the security of digital signatures [10,
38,49,79,80] in which these hash functions are deployed.

1.2. Randomize-Hash-then-Sign Digital Signatures

For a long time, it has been suggested to randomize each message using a fresh random
value, also called a salt, before it is hashed and signed so that the security of the digital
signatures depends on a property weaker than the collision resistance of the hash func-
tion [1,23,24,56]. Message randomization before hashing would require an attacker to
predict the random value in order to make use of collisions in a hash function to forge a
digital signature. The composition functions of message randomization transforms and
hash functions are called randomized hash functions.

Shortly after the discovery of collision attacks on several popular hash functions by
Wang et al. [81,82,84,85], Halevi and Krawczyk [40] proposed two concrete random-
ized hash function constructions to strengthen the security of digital signature schemes
against collision attacks on hash functions. These randomized hash function construc-
tions use Merkle–Damgård hash function construction as a black-box and were intended
for use with standard digital signature schemes without the need to make any changes
to either the underlying hash functions or the signature algorithms. When a message is
processed using the first randomized hash function of [40], the signature must be gen-
erated on both the hash value and the random value used to randomize the message.
However, certain standard digital signature algorithms such as DSA and RSA do not
support signing both the random value and the hash value. To overcome this practi-
cal constraint, Halevi and Krawczyk proposed another randomized hash function called
RMX [40, Appendix D], [41] which does not require the hash values generated under
it to be signed together with the random value. They also suggested RMX for adoption
into practice. An implementation of RSA based on RMX-SHA-1 was discussed in [43].
NIST standardized a variant of RMX in the special publication (SP) 800-106 [21]. In
addition, it is welcomed by NIST, that the candidate hash functions in the SHA-3 hash
function competition support randomized hashing [66].

In an RMX-hash-then-sign signature scheme, the signer computes the signature of
a message m as follows: He chooses a random value denoted r , and randomizes m by

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 751

passing the pair (r,m) as input to the RMX transform. The randomized message is given
by M = RMX(r,m). The signer processes the message M using a t-bit hash function
H and obtains the t-bit hash value H(M). The signer signs the hash value H(M) using
a signature algorithm, denoted SIG, and obtains the signature s. The signer sends the
triplet (m, r, s) to the verifier, who computes M = RMX(r,m) and provides the pair
(M, s) to the verification procedure VER to verify s. In this article, signature schemes
based on the two randomized hash functions (including the RMX hash function) pro-
posed in [40] are called randomize-hash-then-sign signature schemes and those based
on the RMX hash function are called RMX-hash-then-sign signature schemes.

1.3. Analytical Results of Halevi and Krawczyk

As noted before, security of the randomized hash functions would depend on properties
weaker than the collision resistance property of hash functions. For the first randomized
hash function proposed by Halevi and Krawczyk [40], this property was called target
collision resistance (TCR) and for the RMX hash function, the property was referred to
as enhanced target collision resistance (eTCR). Halevi and Krawczyk proved that ran-
domized hash functions are TCR and eTCR if their underlying compression functions
possess two security properties called chosen second preimage resistance and evaluated
second preimage resistance. Both these properties are related to the second preimage
resistance property of the compression function.

Finally, the analysis of [40] argues that an attacker who can break the TCR property of
the first randomized hash function and the eTCR property of the RMX hash function can
forge signature schemes based on these hash functions. It was also claimed that to break
randomize-hash-then-sign signature schemes an attacker must solve a cryptanalytical
problem close to finding second preimages, which is a much harder task than finding
collisions in a hash function. They also observed that the generic second preimage attack
of Kelsey and Schneier [46] on the Merkle–Damgård hash functions is applicable to
their two randomized hash functions. This attack breaks the TCR and eTCR properties
of the two randomized hash functions and has complexity far beyond the bound of a
birthday attack.

Definitions of two randomized hash functions and their respective TCR and eTCR
properties as well as chosen and evaluated second preimage resistance properties are
provided in Sect. 3.

1.4. Related Work

Dang and Perlner [22] showed a generic chosen message forgery attack on signature
schemes based on a t-bit RMX hash function in 2t/2 chosen messages and 2t/2 opera-
tions of the hash function and a similar amount of memory. This attack produces a col-
lision of the form H(RMX(r,m)) = H(RMX(r∗, n)) which implies SIG(m) = SIG(n),
where m is one of the chosen messages, n is the message corresponding to the forged
signature and (r,m) �= (r∗, n).

1.5. Our Results

In this article, we first note that the attack of Dang and Perlner [22] does not produce a
verifiable forgery if the signer uses the same random value for both RMX hashing and

752 P. Gauravaram, L.R. Knudsen

signing for randomized signature algorithms such as DSA [61,62], ECDSA [4,62] and
RSA-PSS [45,74]. The idea of re-using the random value present in signature schemes
for the randomized hashing to save the communication bandwidth was addressed in [21,
40,57,67]. The attack of Dang and Perlner also does not apply to signature schemes
based on the other randomized hash function analyzed by Halevi and Krawczyk wherein
both the random value and hash value are signed.

We then show a generic chosen message existential forgery attack [39] on the RMX-
hash-then-sign signature schemes when the compression function of the hash function
has fixed points that are easy to find. Our attack produces a valid forgery in the applica-
tions where the forgery attack of Dang and Perlner does not succeed. In our attack we
use a subtle variant of Dean’s method of finding fixed point expandable messages [25,
46] for hash functions based on the compression functions vulnerable to easily found
fixed points.2 Many popular hash functions, which include MD4 [71], MD5 [72], the
SHA family [65] and Tiger [2], have compression functions that use the Davies–Meyer
construction [44,68] for which fixed points can easily be found [58]. In an existen-
tial forgery attack, the attacker asks the signer for the signatures on a set of messages
of his choice and is then able to produce a valid signature on a message which was
never signed by the signer. Our forgery attack requires 2t/2 equal length chosen mes-
sages, 2t/2+1 offline operations of the compression function and has a probability of
2−24 to hit the correct bits used to pad the message according to the RMX transform.
The attack requires about 2t/2 words of memory. With this computational complexity,
we can establish a collision of the form H(RMX(r,m)) = H(RMX(r,m‖n)), where
m is one of the chosen messages and n �= m is a randomized message block which
gives a fixed point. This implies SIG(m) = SIG(m‖n) = s and therefore (m‖n,s) is the
forgery of (m,s). This attack demonstrates that the RMX hash function instantiated with
the Davies–Meyer construction gains implementation benefits at the expense of online
birthday forgery attacks on the RMX-hash-then-sign signature schemes.

Variants of our forgery attacks as well as those of [22] on the randomize-hash-then-
sign signature schemes require less than 2t/2 queries to the signer and less than 2t/2

memory at the expense of more than 2t/2+1 (but still less than 2t) offline compression
function computations. Our attacks also apply to signature schemes that use a variant
of RMX published by NIST in SP 800-106 [21]. They also apply to signature schemes
based on the randomized hashing for some of the variants of the Merkle–Damgård con-
struction, such as HAIFA [13] and the construction with split padding [87].

Finally, to develop an understanding of the differences between the generic attacks
on randomized hash functions and those applied on the standard keyed hash functions
such as hash-based message authentication code (HMAC), we compare the generic at-
tack models used to forge randomize-hash-then-sign signature schemes presented in this
article to those applied on HMAC [7,8].

1.6. Comparison of Our Analysis with that of Halevi and Krawczyk

In [40] it was formally shown that for the randomized hash functions to be TCR and
eTCR, it is sufficient for the compression functions to have chosen second preimage

2 Fixed point expandable messages were used to mount long message second preimage attacks in the
Merkle–Damgård hash function [25,46] and some of its variants [3,34,35].

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 753

resistance and evaluated second preimage resistance properties. As noted before, both
these properties are related to the second preimage resistance of the compression func-
tion. In other words, the analysis of Halevi and Krawczyk shows a relation between
second preimage resistance of the compression function of a given hash function and
the difficulty of breaking TCR and eTCR properties in the corresponding randomized
hashing schemes. Breaking these properties of randomized hash functions is much
harder than finding collisions for a hash function. An attacker who breaks the TCR
(resp. eTCR) property of the first randomized hashing scheme (resp. RMX) can then
forge the digital signature based on this hash function by making one query to the sig-
nature algorithm. We remark that the analysis of [40] does not provide any explicit
security bounds required to break the TCR and eTCR properties of two randomized
hash functions when their compression functions are chosen second preimage resistant
and evaluated second preimage resistant. It also does not provide any explicit security
bounds required to forge randomize-hash-then-sign signature schemes when the under-
lying randomized hash functions are TCR and eTCR. Since it was claimed that to break
randomize-hash-then-sign signature schemes an attacker must solve a cryptanalytical
problem close to finding second preimages, one may observe that the complexity of
breaking TCR and eTCR properties of a t-bit randomized hash function is close to 2t

hash function computations, which is a much harder task than finding collisions in a
hash function by a birthday attack in about 2t/2 complexity. The analysis of [40] also
observes that the application of a Kelsey–Schneier [46] second preimage attack on t-bit
randomized hash functions for a target message of length 2d blocks leads to an exis-
tential forgery attack on the corresponding randomize-hash-then-sign signature scheme
in 2t−d offline operations of the compression function and one query to the signer of a
randomize-hash-then-sign signature algorithm.

Our analysis aims to present an upper bound of security for the randomize-hash-then-
sign schemes against the adversaries who make several queries over online to the signer.
As shown by our attacks, an attacker who can make about 2t/2 queries to the signer of a
randomize-hash-then-sign signature algorithm, can mount existential forgery attacks on
the randomize-hash-then-sign signatures with a similar amount of offline computations
and memory, where t is the size of the hash value. This result illustrates the exact secu-
rity of the randomize-hash-then-sign schemes with respect to online attacks and shows
that the security of these schemes does not necessarily rely on the properties similar to
the second preimage resistance of the hash functions, as better attacks can be found in
an online model. Our analysis also shows that compression functions with easily found
fixed points, such as the Davies–Meyer construction, can be exploited in the RMX hash
function setting to forge digital signature algorithms that can use the same random value
for both RMX hashing and signing, as noted in Sects. 1.5 and 4.1.1.

In summary, our analysis of randomize-hash-then-sign schemes follows an attack-
oriented approach in comparison to the proof-oriented approach pursued by Halevi and
Krawczyk. In addition, we analyzed the security of these schemes against adversaries
who make several queries with the same or different messages to the signer, whereas
Halevi and Krawczyk analyzed the security of randomized hash function modes against
an adversary who makes only one message query to the signer. Both these analytical
results show that it is not possible to forge randomize-hash-then-sign signatures by em-
ploying only offline birthday collision attacks on the hash functions. As shown by our

754 P. Gauravaram, L.R. Knudsen

analysis, collision attacks must be online and with about birthday attack complexity one
can forge randomize-hash-then-sign algorithms. Thus, our analysis complements the
analysis of Halevi and Krawczyk by showing that randomized hash functions achieve
an essential security improvement over the offline birthday collision attacks by forc-
ing these attacks to work online (e.g. requiring 2t/2 messages signed by the legitimate
signer and similar amount of memory).

1.7. Impact of Our Results

Our generic forgery attacks on the randomize-hash-then-sign signature schemes using
fixed points in the compression functions are totally impractical for a typical hash value
size of 256 bits. Moreover, our attacks cannot be parallelized, as they require a real
signer to sign a very large set of messages. Our analytical results are in no contradiction
to those of Halevi and Krawczyk [40] for the reasons stated in Sect. 1.6. Although vari-
ants of our forgery attacks require less than 2t/2 legitimate signatures and memory, they
require more than 2t/2+1 (but less than 2t) offline compression function computations.
The forgery attack of [22] on the RMX-hash-then-sign signature schemes has a similar
complexity, though its application is more limited.

1.8. Guide to the Article

In Sect. 2, we define the notation and fundamentals of hash functions and digital signa-
tures. In Sect. 3, we define randomized hash functions of [40] and the variant of RMX
hash function mode standardized by NIST [21]. In Sect. 4, we present the forgery at-
tack of [22] on the RMX-hash-then-sign schemes and discuss its limitations. In Sect. 5,
we show how to apply Dean’s method of building fixed point expandable messages
to forge hash-then-sign signatures. In Sect. 6, we argue that offline birthday collision
attacks are not useful to forge randomize-hash-then-sign digital signatures. In Sect. 7,
we describe our forgery attack on the RMX-hash-then-sign signature algorithms and
discuss variants of this attack. In Sect. 8, we present some important applications of
our forgery attacks. In Sect. 9, we discuss the applicability of our analysis to signature
schemes based on hash functions with a ‘built-in’ randomization feature. In Sect. 10,
we compare the generic attack models on randomize-hash-then-sign schemes to those
on HMAC. Section 11 holds the conclusion.

2. Preliminaries

2.1. Notation

For a t ∈ Z
+, {0,1}t defines the set of all bit strings of length t . For two bit strings a and

b, a‖b defines the concatenation of a and b. For example, if a = 000 and b = 11 then
a‖b = 000‖11 = 00011. For a bit string a, the left most bit of a is its most significant
bit (MSB) and the right most bit of a is its least significant bit (LSB). For α ∈ N, the
first α bits of a are called the first α MSBs of a and the last α bits of a are called the last
α LSBs. For example, for a = 10100010, the bit 1 is the MSB and the bit 0 is the LSB
and the bits 1010 are the first four MSBs of a and the bits 0010 are the last four LSBs.
For α ∈ N and e ∈ {0,1}, eα defines the concatenation of e bit for α times. For example,

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 755

14 = 1‖1‖1‖1 = 1111. For a bit string a and α ∈ N, a[α] defines consecutive α bits of a

starting from its MSB. For example, if a = 1011011001 then a[4] = 1011. Similarly, for
ab ∈ Z

+, (ab)[α] defines consecutive α bits of ab starting from its MSB. The number of
bits in a bit string a is denoted by |a|. For example, if a = 0256‖1128 then |a| = 384.

2.2. Merkle–Damgård Hash Function Construction

The Merkle–Damgård construction [20,55] is a popular hash function mode of operation
which has been used in the design of popular hash functions such as MD5, the SHA
family and the Whirlpool hash functions. A compression function which takes a fixed
input length value and outputs a fixed length hash value is the core component of this
construction. Let h : {0,1}b × {0,1}t → {0,1}t be a compression function which takes
a b-bit message block and a t-bit chaining value as inputs and produces a t-bit output
chaining value. Let H : {0,1}∗ → {0,1}t be the Merkle–Damgård construction built by
iterating the compression function h in order to process a message of arbitrary length.
Often, an upper bound on the length of the message which can be hashed is specified for
H . Let this length be 2l bits. A message m to be processed using H is always padded
in a manner such that the length of the padded message is a multiple of the block length
b of h. Let |m| be the l-bit binary representation of the length of the message m. The
message m is padded as follows:

Divide m into b-bit blocks mi for i = 1 to L and let q be the number of message bits
in the last block mL where q ≤ b.

– If q ≤ b − l − 1 then the message m is padded with 1‖0b−l−q−1‖|m|.
– If q > b − l − 1 then the message m is padded with 1‖0b−q−1 and an additional

b-bit block 0b−l‖ |m| is concatenated to the padded message m‖1‖0b−q−1.

Every message block mi is processed by iterating h as defined by the expression Hi =
h(Hi−1,mi), where H0 is the initial value (IV) of H , Hi is the intermediate chaining
value of H at the ith iteration of h and HL is the hash value of H . In this article, the
Merkle–Damgård hash function with H0 as the IV is denoted by HH0 .

2.3. Fundamental Security Properties

Some fundamental security properties of an iterated hash function HH0 (e.g. Merkle–
Damgård) instantiated with an ideal compression function h and an ideal compression
function h that are essential for the analysis presented in this article are listed below.

2.3.1. Properties of an Iterated Hash Function HH0

1. Collision resistance (CR): It should take 2t/2 operations of HH0 to find two mes-
sages m and n such that m �= n and HH0(m) = HH0(n).

2. Second preimage resistance (SPR): For a challenged target message m and its hash
value under HH0 , it should take 2t operations of HH0 to find another message n

such that n �= m and HH0(m) = HH0(n). We recall that for a target message of 2d

blocks, a second preimage for a Merkle–Damgård hash function can be found in
2t−d operations of the compression function [46].

756 P. Gauravaram, L.R. Knudsen

Fig. 1. Illustration of fixed point attack for the Davies–Meyer compression function.

2.3.2. Properties of an Ideal Compression Function h

1. Collision resistance: It should take 2t/2 operations of h to find two different pairs
(Hi−1,mi) and (H ∗

i−1, ni) such that h(Hi−1,mi) = h(H ∗
i−1, ni).

2. Second preimage resistance: For a challenged pair (Hi−1,mi), it should take
2t operations of h to find a pair (H ∗

i−1, ni) such that (Hi−1,mi) �= (H ∗
i−1, ni)

and h(Hi−1,mi) = h(H ∗
i−1, ni). This property is also called random-SPR (r-

SPR) [40].

2.4. Compression Functions with Fixed Points

The Davies–Meyer compression function construction is one of the twelve single block
length block cipher-based compression functions that were proved to be collision resis-
tant and (second) preimage resistant in the ideal cipher model [17,68]. This construction
has been used in the design of many popular hash functions such as MD4, MD5 and the
SHA family and recently in SHAvite-3 [14], a second round candidate of the NIST’s
SHA-3 hash function competition. Let h be the Davies–Meyer compression function;
then h is defined by h(Hi−1,mi) = Emi

(Hi−1) ⊕ Hi−1 = Hi , where mi is the message
block which is used as a key to the block cipher E, the input chaining value Hi−1 is the
plaintext to E and ⊕ is the feed-forward operation.

A fixed point for a compression function h is a pair (Hi−1,mi) such that
h(Hi−1,mi) = Hi−1. A fixed point for h can be easily found by evaluating the ex-
pression E−1

mi
(0) for some message block mi [58], [46, Appendix A.1] as illustrated in

Fig. 1. Note that, for every unique message block mi , there exists one and only one fixed
point for the Davies–Meyer compression function. Fixed points can also be found for a
variant of this compression function with addition modulo 2t as the feed-forward oper-
ation. Similarly, it is easy to find fixed points for three other provably collision resistant
and second preimage resistant single block length compression functions [17,68].

2.5. Existential Forgery Attack on the Digital Signature Schemes

In this article, we consider an adversary who tries to make an existential forgery at-
tack on a digital signature scheme SIG under a generic adaptive chosen message attack
model [39]. In this attack, an attacker first queries the signer (also called the challenger)
adaptively for signatures on several chosen messages. The attacker then outputs a new
message which was not queried to the signer and its signature as the forgery. The attack
is adaptive, as the adversary can choose queries that depend on both the challenger’s
public key and signatures obtained for the previous queries. This attack is regarded as

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 757

the most severe natural attack an adversary can mount on the signature scheme [39].
The sequence of steps associated with this attack are outlined below:

1. The challenger generates a public and a private key pair (Pk,Sk) using a key
generation algorithm. An attacker receives the public key Pk.

2. The attacker queries a list of q messages m1, . . . ,mq to the challenger, and the
attacker can choose these queries adaptively.

3. The challenger generates the signatures si for the messages mi by using his private
key Sk and the signature algorithm SIG, where i = 1, . . . , q . The challenger sends
the signatures si to the attacker.

4. The attacker is considered to have existentially forged the signature scheme SIG
by returning a pair (m, s) satisfying:
(a) (m, s) /∈ {(m1, s1), . . . , (m

q, sq)}; and
(b) The triplet (Pk,m, s) produces a valid verification. That is, the verification

algorithm VER(Pk,H(m), s) outputs a bit 1.

Let Adv be the probability that the adversary succeeds in this attack, taken over the
coin tosses made by it and the challenger. The adversary is said to (t, q, ε)-existentially
forge the signature scheme SIG if it runs in at most t time, makes at most q queries and
Adv ≥ ε.

3. Randomized Hashing

The notion of universal one-way hash functions (UOWHFs) was introduced by Naor and
Yung [59], who showed how to construct UOWHF primitives based on any 1-1 one-way
function and proposed digital signature schemes based on UOWHFs. The UOWHFs
were called target collision resistant (TCR) hash functions by Bellare and Rogaway [9],
a notion which was also adopted by Halevi and Krawczyk [40]. Bellare and Rogaway [9]
and later Shoup [78] proposed and analyzed composition constructions to build TCR
hash functions from TCR compression functions.

3.1. TCR Hash Function Mode

A family of hash functions {Hr}r∈R for some set R is TCR [9,40,59,78] if no efficient
attacker can win the following game except with negligible probability:

1. First choose a message m and then receive a salt or random value r ∈R R.
2. Find a second message n such that m �= n and Hr(m) = Hr(n).

A signature scheme based on a TCR hash function is called a TCR-hash-then-sign
signature scheme [9,78]. Halevi and Krawczyk [40] proposed a TCR hash function
mode Hr for the Merkle–Damgård hash function HH0 . In this scheme, every block
mi of the message m is mixed with a b-bit random value r by using an exclusive-or
operation before it is processed with the hash function HH0 . The scheme Hr with H0

as the IV and a hash value of size t bits is formally defined as follows:

HH0
r (m) = HH0

r (m1‖ . . .‖mL)
def= HH0(m1 ⊕ r‖m2 ⊕ r‖ . . .‖mL ⊕ r).

758 P. Gauravaram, L.R. Knudsen

Fig. 2. Illustration of RMX hash function mode.

To sign a message m, a user of the TCR-hash-then-sign scheme first chooses a salt
r and then invokes the underlying digital signature scheme to sign the pair (r,Hr(m)).
However, signing this pair requires modifications to some of the standard digital signa-
ture schemes, similar to the schemes proposed in [9,78], which is undesirable in practice
as a general solution. For instance:

– Signature algorithms such as DSA [61,62] and ECDSA [4] do not accommodate
for the signing of both r and Hr(m) as they are designed to compute signatures
only for the hash value Hr(m) and do not have a field to accommodate r .

– Signature schemes such as the traditional deterministic RSA encoding of PKCS#1
v1.5 [45,74] can accommodate both r and Hr(m) under the signed block (since
RSA moduli are long enough) [40]. However, the PKCS#1 standard does not ac-
commodate the random value r but only the hash value [40]; to accommodate r ,
explicit changes to this standard are required, which is possible but difficult [48].

3.2. eTCR Hash Function Mode

To solve the problem of signing both r and Hr(m) in the TCR-hash-then-sign schemes,
Halevi and Krawczyk introduced an improved notion for the TCR hash function family
called the enhanced TCR (eTCR) hash function family [40]. A hash function family
{H̃r}r∈R for some set R is eTCR if there exists no efficient attacker who can win the
following game except with negligible probability:

1. First choose a message m and then receive a salt or random value r ∈R R.
2. Find a second message n and a salt r∗ such that (r∗, n) �= (r,m) and H̃r (m) =

H̃r∗(n).

Halevi and Krawczyk [40] proposed an eTCR hash function mode, denoted H̃r , as
a suitable randomized hash function mode for use in digital signatures, as it does not
require explicit signing of the salt r . The eTCR hash function H̃r with H0 as the IV and
a hash value of size t bits is formally defined as follows:

H̃H0
r (m) = H̃H0

r (m1‖ . . .‖mL)
def= HH0(r‖m1 ⊕ r‖m2 ⊕ r‖ . . .‖mL ⊕ r).

Figure 2 depicts the eTCR hash function mode H̃r assuming that the last message
block mL of m is complete (i.e. the message m is a multiple of b bits). Hence, an

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 759

additional padding block mL+1 which contains the bits 1‖0b−l−1‖|m| is appended to
m. The designers proposed a concrete specification of H̃r called RMX together with its
implementation details [40, Appendix D], [41,43]. The major focus of this article is the
analysis of signature schemes based on the RMX hash function mode.

3.2.1. RMX Specification

The RMX hash function randomizes an input message m of at most 2l −b bits by using a
random value r of size between 128 and b bits and outputs a message M . Following [40,
Appendix D], [41,43], we define the RMX algorithm as below:

1. Compute three random values r0, r1 and r2 from r as follows:
(a) r0 = r‖0b−|r| such that |r0| = b bits.
(b) r1 = r‖r‖ . . .‖r

︸ ︷︷ ︸

b bits

such that |r1| = b and the last repetition of r is truncated if

needed.
(c) r2 = r

[b−l−8]
1 (i.e. the first b − l − 8 MSBs of r1 are assigned to r2).

2. Divide the input message m into equal size b-bit blocks. Assume that the size of
m is L − 1 × b + b′ bits, where L − 1 × b bits are divided into L − 1 b-bit blocks
m1,m2, . . . ,mL−1 and the last b′ LSBs of m are placed in a block mL of length
b′ where 1 ≤ b′ ≤ b.

3. Assign M0 = r0.
4. For i = 1 to L − 1:

(a) Mi = mi ⊕ r1.
5. Let lpad, which means the last block pad, be a 16-bit string representing the bit

length b′ of mL in big-endian notation. Let lpad0 and lpad1 be the first and second
bytes of lpad respectively, and each of these bytes represents a number between 0
and 255. This implies that b′ = 256 × lpad1 + lpad0.
(a) If b′ ≤ b − l − 24 then assign M∗

L = mL‖0k‖lpad where k = b − b′ − 16 − l.
Assign ML = M∗

L ⊕ r2.
(b) If b′ > b − l − 24 then assign M∗

L = mL‖0b−b′
and M∗

L+1 = 0b−l−24‖lpad.
Assign ML = M∗

L ⊕ r1 and ML+1 = M∗
L+1 ⊕ r2.

6. Output the randomized message M , where M = RMX(r,m) = M0‖ . . .‖ML in
the case of (5) and M = RMX(r,m) = M0‖ . . .‖ML‖ML+1 in the case of (5).

7. Process M with HH0 to obtain a t-bit hash value.

Remark 1. We note that when b′ ≤ b − l − 24 with k = b − b′ − 16 − l, an additional
b-bit block must be appended to ML to accommodate the padding and message length
encoding bits of size at least l + 1 required by the hash function HH0 to process M . We
illustrate this observation in Appendix A. In addition, when b′ ≤ b− l−24, |M∗

L| = b− l

and hence |r2| = b − l bits which means r2 = r
[b−l]
1 . For example, when |mL| = b′ =

b − l − 24 bits, k = b − b′ − l − 16 = 8 bits. Now M∗
L = mL‖08‖lpad and |M∗

L| =
b − l − 24 + 8 + 16 = b − l bits. Hence, r2 must also be of size b − l bits. Therefore, in
this article, we assign r2 = r

[b−l]
1 for b′ ≤ b − l − 24 bits.

Remark 2. Instead of k = b − b′ − 16 − l, if one assigns k = b − b′ − 24 − l for
b′ ≤ b − l − 24 bits, then the padding and message length encoding bits required by

760 P. Gauravaram, L.R. Knudsen

HH0 to process M can be accommodated in the last block of M itself, as illustrated
in Appendix A. When k = b − b′ − 24 − l with b′ ≤ b − l − 24, |M∗

L| = b − l − 8

bits and hence |r2| = b − l − 8 bits, which means r2 = r
[b−l−8]
1 which is the same as

in the RMX specification. For example, let |mL| = b′ = b − l − 24 bits. Then k = 0
bits. Now M∗

L = mL‖00‖lpad and |M∗
L| = b − l − 24 + 0 + 16 = b − l − 8 bits; hence

|r2| = b − l − 8 and one must have assigned r2 = r
[b−l−8]
1 .

3.2.2. Standardization of RMX

NIST standardized a variant of RMX in SP 800-106 [21]. We denote this variant of
RMX by RMXSP; its specification is placed in Appendix B. We observe the following
differences between these two transforms:

1. RMX and RMXSP differ in the padding rule defined to randomize the messages.
2. In RMX, the prepended random value of r is extended to a block of b bits by

padding it with 0 bits (i.e. r0 = r‖0b−|r| such that |r0| = b bits). However, in
RMXSP, the prepended random value is directly concatenated with the exclusive-
or of the message bits and the random value bits.

3.3. Security Properties of TCR and eTCR Hash Functions

The hash functions H̃r and Hr are eTCR and TCR respectively if their underlying com-
pression function h is either chosen-SPR (c-SPR) or evaluated-SPR (e-SPR) [40]. Let t

be the output size of h. These properties are defined below:

1. c-SPR: For a given message block mi , find (Hi−1,H
∗
i−1, ni) such that

h(Hi−1,mi) = h(H ∗
i−1, ni).

2. e-SPR: Choose u ≥ 1 values Δ1, . . . ,Δu each of length b bits. Receive a random
value r ∈ {0,1}b and then define mi = r ⊕ Δu and Hi−1 = HH0(r ⊕ Δ1‖ . . .‖r ⊕
Δu−1). Find (H ∗

i−1, ni) such that h(Hi−1,mi) = h(H ∗
i−1, ni).

Both these properties of h are related to its r-SPR property [40]. A generic birthday
attack can be mounted on the c-SPR property of an ideal h, as an attacker can use the
freedom in both the chaining values Hi−1 and H ∗

i−1 as well as in the message block
ni to find a collision. Hence, the expected security level of the c-SPR property of h is
about 2t/2. Due to the lack of freedom in varying (Hi−1,mi), this attack does not apply
to the r-SPR property of h (defined in Sect. 2.2). Therefore, the expected security level
of r-SPR for an ideal h is about 2t . Since an attacker has no control over the random
value r used to compute the pair (Hi−1,mi) in the e-SPR property of h, he also does
not have the freedom to vary the pair (Hi−1,mi) to apply a birthday attack on the e-SPR
property of h. Therefore, the e-SPR property of h is much closer to the r-SPR property
of h in its meaning, as noted in [40]. Therefore, one would expect that for an ideal h the
security level of the e-SPR property is similar to the r-SPR property of h.

4. Generic Forgery Attacks on Randomize-Hash-then-Sign Signature Schemes

In Sect. 4.1, we present a generic existential forgery attack on the RMX-hash-then-sign
signatures by Dang and Perlner [22] and discuss its limitations. In Sect. 4.2, we present
a generic existential forgery attack on signature schemes based on Hr .

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 761

4.1. Forgery Attack on the RMX-Hash-then-Sign Signature Schemes

The online birthday forgery attack of [22] on signature schemes based on a t-bit RMX
hash function requires 2t/2 chosen messages, 2t/2 offline hash function operations and
a similar amount of memory. This attack is outlined below:

– Online phase:

1. Query the signer for the signatures of 2t/2 adaptive chosen messages mi

where i = 1, . . . ,2t/2. Store every mi in a Table L1.
2. The signer chooses a random value ri to compute the signature si of every

message mi using SIG. The signer first computes RMX(mi) and then com-
putes SIG(HH0(RMX(mi))) = si . The signer returns the pair (ri , si) where
i = 1, . . . ,2t/2. Store these pairs of values in L1 corresponding to the chosen
messages mi .

– Offline phase:

1. Using ri compute the hash values HH0(RMX(ri ,m
i)) for i = 1, . . . ,2t/2 and

store them together with (ri , si) in L1.
2. Choose random pairs (rj ,mj) where j is in increments of 1 such that

(rj ,mj) �= (ri ,m
i) and compute the hash values HH0(RMX(rj ,mj)). While

computing each of these hash values, check whether any of these hash values
collide with any of the hash values in the Table L1. After about 2t/2 trials,
with a good probability, we can find a collision. Let that random pair be
(ry,my). That is, we can find (rx,m

x,Hx, sx) from L1 where (rx,m
x) �=

(ry,my) such that Hx = HH0(RMX(ry,my)) = HH0(RMX(rx,m
x)) and

VER(ry,my,Hy, sx) outputs 1 where x, y ∈ {1, . . . ,2t/2}. Hence, SIG(mx) =
SIG(my).

3. Output (my, ry, sx) as the forgery.

4.1.1. Limitations of the Forgery Attack

For extremely limited bandwidth applications, it is possible to save on the communi-
cation bandwidth by re-using the random value meant for the signing purposes as in
RSA-PSS and DSS algorithms also as a salt for the RMX hash function mode. In the
case of RSA-PSS, randomness used internally by the signature can be recovered by the
recipient of the signature by using the RSA verification algorithm. In the case of DSS
signatures, the random value used for the signature generation purpose is transmitted to
the verifier along with the signature. These applications were also noted in [22,40].

We note that the generic forgery attack on the RMX-hash-then-sign signature scheme
discussed in Sect. 4.1 does not succeed in these signature applications during the forgery
verification step, as the random value used by the signer for RMX hashing and signing
matches that of the arbitrary value chosen by the attacker with a negligible probability.

4.2. Forgery Attack on Signature Schemes Based on Hr

The offline phase of the generic forgery attack on the RMX-hash-then-sign signature
schemes from Sect. 4 can be modified to forge signature schemes based on Hr . In the
offline phase, the attacker computes hash values for some chosen messages under HH0

762 P. Gauravaram, L.R. Knudsen

until he finds a candidate message, say N , whose hash value HH0(N) collides with the
randomized hash value of one of the queried messages, say mx , computed during the
online phase of the attack. Let this randomized hash value be Hrx (m

x) and the signature
of Hrx (m

x) be sx . The attacker then computes m∗ = N ⊕rx and produces (m∗, rx, sx) as
the forgery. This attack does not produce a meaningful message as the forgery because
m∗ is random and does not render any meaning.

Remark 3. The number of queries to the signer required for the generic forgery attacks
in Sects. 4.1 and 4.2 can be reduced by increasing offline compression function compu-
tations such that the product of the number of offline computations and online queries
is equal to 2t . In addition, these attacks are independent of the size of the random value
used in the randomized hashing and length of the messages queried to the signer.

Remark 4. The online phase of the forgery attacks outlined in Sects. 4.1 and 4.2 is
also possible in the known message attack model, leading to more powerful forgery
attacks. That is, an attacker can use only known messages and their signatures instead
of adaptively querying chosen messages to the signer for signatures.

5. Application of Fixed Point Expandable Message to Forge Hash-then-Sign
Signature Schemes

5.1. Fixed Point Expandable Message

Dean [25] showed that if it is easy to find fixed points (see Sect. 2.4) for a compression
function, then a multicollision based on several distinct length messages can be con-
structed for the hash function in about twice as much as the work required to build a
birthday collision attack. Kelsey and Schneier [46] called a multicollision where mes-
sages of different lengths collide to the same hash value an expandable message. An
expandable message does not yield a collision to the full hash function due to the pro-
vision of the encoding of the length of the messages in the last block. This expandable
message attack on the hash function HH0 based on the Davies–Meyer compression
function h and without message length encoding is outlined below:

1. For i = 1, . . . ,2t/2, construct 2t/2 random fixed points (Hi−1, ni) for h. That is,
h(Hi−1, ni) = Hi−1. Store these fixed points in a Table L1.

2. Build 2t/2 hash values from the initial state H0 of HH0 by processing that many
message blocks and store these blocks and hash values in a Table L2.

3. Find a match between the hash values stored in Tables L1 and L2 and let n and m

be the corresponding message blocks. This implies a collision of form HH0(m) =
HH0(m‖n).

4. Output (m,m‖n) as the expandable message where two messages of lengths 1 and
2 blocks produced a collision.3

The complexity of this attack is about 2t/2+1 compression function computations and
a similar amount of memory.

3 An expandable message of desired size can be obtained by appending a desired number of copies of the
fixed point message block n to m‖n.

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 763

5.2. Forgery Attack on Hash-then-Sign Signatures

We show a forgery attack on hash-then-sign signature schemes by employing a variant
of Dean’s technique of finding fixed point expandable messages. In this attack we ensure
that the encoding of the length of the message to be produced as a forgery is integrated in
the fixed point block and build a collision of form HH0(m) = HH0(m‖n). We then query
the signer for a signature on m and show that SIG(m‖n) = SIG(m), thereby showing
m‖n as the forgery of m. The complexity of the attack is 2t/2+1 computations of HH0

and one query to the signer. Let h be the Davies–Meyer compression function. This
forgery attack is outlined below:

1. Consider 2t/2 messages mi where i = 1, . . . ,2t/2. Let these messages contain c

number of b-bit blocks and let the length of these messages in bits be (c × b) −
(l +1). Pad each mi with a bit 1 followed by l bits that represent the binary format
of the length (c × b) − (l + 1) bits. Compute the hash values Hi for each of these
padded messages under HH0 . Store mi and Hi in a Table L1.

2. For j = 1, . . . ,2t/2, compute 2t/2 fixed points for h such that h(H ∗
j , nj) = H ∗

j

where the last l + 1 bits of every block nj are fixed with a padding bit 1 and l bits
that represent the binary format of the length of the message mi‖pad‖(nj)[b−(l+1)]
where (nj)[b−(l+1)] represents the first b − (l + 1) bits of nj . Let the last l + 1 bits
of nj be a string called padf which means padding bits in the fixed point block.
Store H ∗

j and (nj)[b−(l+1)] in a Table L2.
3. Due to the birthday paradox, with a significant probability we can find a hash

value Hx from the Table L1 and a hash value H ∗
y from the Table L2 such

that HH0(mx‖pad) = Hx = H ∗
y = h(H ∗

y , ny) for some x ∈ {1, . . . ,2t/2} and

y ∈ {1, . . . ,2t/2}.
This implies HH0(mx‖pad‖ny) = HH0(mx‖pad) = Hx . Let m = mx and

n = (ny)[b−(l+1)]. Therefore, HH0(m‖pad‖n‖padf) = HH0(m‖pad). Recall that
padf bits are the padding bits of the message m‖pad‖n under HH0 .

4. Query the signer for the signature on the message m. The signer hashes the mes-
sage m‖pad using HH0 and then signs the hash value HH0(m‖pad) using the
signature algorithm SIG to obtain the signature s = SIG(m).

5. Since HH0(m‖pad‖n‖padf) = HH0(m‖pad), SIG(m‖pad‖n) = SIG(m).
6. Output (m‖pad‖n, s) as the forgery.

Remark 5. Our attack technique subtly differs from Dean’s method [25], as we exert
control over the fixed point message blocks by integrating the padding and length en-
coding bits that represent the length of the forgery message in the last few bits of the
fixed point block. This is in contrast to Dean’s method of finding expandable messages
where all bits in the fixed point block are random. In addition, our forgery attack does
not use an expandable message, as our attack requires a collision for two distinct length
messages for the full RMX hash function. Therefore, our attack technique is stronger
than the one used by Dean; hence our technique would also be applicable to build ex-
pandable messages for the hash functions when the message inputs are exclusive-ored
with a random value as in RMX.

764 P. Gauravaram, L.R. Knudsen

6. Offline Collision Attacks Are not Useful to Forge Randomize-Hash-then-Sign
Signatures

We argue that offline collision attacks that are used to forge hash-then-sign digital sig-
natures such as the one outlined in Sect. 5 are not useful ‘as is’ to forge the RMX-
hash-then-sign digital signatures. The reason is that a signer who uses the RMX-hash-
then-sign signature algorithm to sign the message m chooses a salt r and signs the hash
value H̃

H0
r (m) to obtain the signature s. The signer then sends the triplet (m, r, s) to

the receiver. Therefore, to forge an RMX-hash-then-sign algorithm, we must satisfy the
condition that the offline birthday collision obtained for the hash function HH0 in Step 3
of the forgery attack in Sect. 5 would also produce a collision for the RMX hash function
mode H̃

H0
r . That is, we must obtain a condition H̃

H0
r (m‖pad‖n‖padf) = H

H0
r (m‖pad)

to claim m‖pad‖n as the forgery message of m under the signature algorithm SIG.
However, this condition holds with a probability of 2−t , as the collision obtained in
the offline phase of the attack would no longer exist once the two colliding messages
m‖pad‖n and m are randomized with the salt r . Hence, we have to find a collision
for the messages that have already been randomized with the salt r to be able to forge
RMX-hash-then-sign signatures. Since the signer chooses a fresh salt at random for ev-
ery signature generation, we must be able to predict this salt to find a collision for the
messages randomized with the salt. This is an improbable event for a salt r with a typ-
ical size such as |r| ∈ [128, b] where b = 512 bits for compression functions such as
those in the MD5 and SHA-1 hash functions.

These security arguments also apply when one attempts to forge TCR-hash-then-
sign signatures by using offline collision attacks. Therefore, offline collision attacks
are not useful to forge randomize-hash-then-sign algorithms. These attacks must be
inherently online, as shown in the generic forgery attacks on the randomize-hash-then-
sign algorithms in Sect. 4 and on some RMX-hash-then-sign algorithms in Sect. 7.

7. Existential Forgery Attack on Some RMX-Hash-then-Sign Signatures

We extend the technique presented in Sect. 5 to provide a new existential forgery attack
on the RMX-hash-then-sign signatures that use compression functions for which fixed
points can be easily found. The significance of this new attack is that it can be used to
forge RMX-hash-then-sign signature schemes (e.g. RSA-PSS and DSS schemes based
on RMX hash) when the same salt is used for both RMX hashing and signing; thus
overcoming the limitation of the generic forgery attack on the RMX-hash-then-sign
signatures presented in Sect. 4.1. We first provide an outline of the attack and then
provide its pseudocode.

7.1. Outline of the Forgery Attack

In this attack, we first determine the lengths of the messages to be forged and to be
produced as a forgery. We then compute 2t/2 fixed point message blocks for the com-
pression function by integrating padding bits (including length-encoded bits) required
for the forgery message into the fixed point blocks. We then query the signer to sign 2t/2

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 765

Fig. 3. Illustration of birthday collision attack between the hash values of RMX hash mode H̃r and
fixed point chaining values of the compression function h. RMX hash values and fixed points are built for
i = 1, . . . ,2t/2. The message block mx under the RMX hash mode H̃r with the hash value Hx is shown as
colliding with the chaining value H∗

y of a fixed point block Nz .

equal length adaptive chosen messages4 and collect their signatures and random values
used for the generation of the signatures. We use these 2t/2 random values and mes-
sages to compute 2t/2 RMX hash values and find an RMX hash value which collides
with one of the 2t/2 pre-computed fixed point hash values. This attack is illustrated in
Fig. 3. Due to the birthday paradox, with a good probability, we can find a chosen mes-
sage (along with its random value and signature) whose RMX hash value collides with
the hash value of one of the fixed point message blocks. This technique is illustrated
in Fig. 3 and in Fig. 4(a) and (b). We then use the exclusive-or operation to mix the
fixed point block and the random value used to sign the chosen message to obtain a new
block as shown in Fig. 4(c). Finally, we concatenate this block to the chosen message
and produce this concatenated message as the forgery of the chosen message. The attack
involves some subtleties due to the fact that the RMX hash function has a padding layer
as specified in Sect. 3.2.1 and, hence, the attack has an additional negligible complex-

4 Although we must make queries of the same length, they may still be chosen adaptively respecting this
length constraint.

766 P. Gauravaram, L.R. Knudsen

Fig. 4. Illustration of the forgery attack on the RMX-hash-then-sign scheme based on Davies–Meyer.

ity of 224 which adds to the complexity of 2t/2 adaptive chosen messages and 2t/2+1

operations of the compression function.

7.2. Pseudocode of the Forgery Attack

The pseudocode for the existential forgery attack on the signature scheme SIG which
uses the RMX hash function H

H0
r based on the Davies–Meyer compression function h

is given below:

– Pre-computation phase:

1. Determine the length of the message to be forged. Let m be a message whose
signature has to be forged and let the size of m be 2b − l − 24 bits. Let m∗ be
the forgery of m to be produced whose length can be pre-determined using
|m|. That is, |m∗| = |m| + l + 24 + b + (b − l − 24 − 1) = 4b − l − 25 bits.

2. Compute 2t/2 fixed points for the compression function h by using mes-
sage blocks Nj , each of size b bits, such that H ∗

j−1 = h(H ∗
j−1,N

j) for

j = 1, . . . ,2t/2. While finding fixed points, fix the last l + 1 bits of each mes-
sage block Nj with the pad bit 1 and l bits to represent the pre-determined
length encoding of the message m∗ of length 4b − l − 25 bits to be produced
as the forgery. Let these l + 1 bits be padf bits. Store the pairs (Nj ,H ∗

j−1)

in a Table L1 where j = 1, . . . ,2t/2.

– Online phase:

1. For i = 1, . . . ,2t/2, query the signer with equal length adaptive chosen mes-
sages5 mi . Let |mi | = b + b − l − 24 bits. Every message mi can be repre-
sented as mi = mi

1‖mi
2 where |mi

1| = b bits and |mi
2| = b − l − 24 bits. Store

these 2t/2 messages in a Table L2.

5 All queried messages can also be the same. Since the signer always chooses a fresh salt to randomize
each queried message independently of the value of the message, all randomized messages are distinct.

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 767

For i = 1, . . . ,2t/2, the signer computes the signatures si on the equal-
length messages mi as follows:
(a) The signer chooses a fresh random value ri for every ith query inde-

pendent of the message mi . The signer calculates three random values
r0,i , r1,i and r2,i for every chosen random value ri following the RMX
specification in Sect. 3.2.1 and Remark 1 as follows:

i. r0,i = ri‖0b−|ri |
ii. r1,i = ri‖ri‖ . . .‖ri such that |r1,i | = b bits and the last repetition of

ri is truncated if needed.
iii. r2,i = r

[b−l]
1,i (as noted in Remark 1).

(b) The signer divides every message mi as mi = mi
1‖mi

2 where |mi
1| = b

bits and |mi
2| = b − l − 24 bits.

(c) The signer randomizes every message mi as follows:
i. Mi

0 = r0,i

ii. Mi
1 = mi

1 ⊕ r1,i

iii. Mi
2 = (mi

2‖08‖lpad) ⊕ r2,i

(d) Let padm represent the l-bit binary encoded format of the length of the
message Mi

0‖Mi
1‖Mi

2. For every randomized message Mi
0‖Mi

1‖Mi
2, the

signer computes the hash value by passing this message as an input to
the hash function HH0 . The hash value for every randomized message is
H̃

H0
ri (mi) = HH0(Mi

0‖Mi
1‖(Mi

2‖1‖0l−1)‖(0b−l‖padm)). The signer re-

turns the signature si = SIG(H̃
H0
ri (mi)) of every message mi .

2. For every queried message mi where i = 1, . . . ,2t/2, the signer returns the
pair (ri , si).

– Offline phase:

1. Add the received pair (ri , si) to the Table L2.
2. Using the random value ri , compute three random values r0,i , r1,i and r2,i

following the RMX specification in Sect. 3.2.1 and Remark 1.
3. Randomize the message mi as follows:

(a) Mi′
0 = r0,i

(b) Mi′
1 = mi

1 ⊕ r1,i

(c) Mi′
2 = (mi

2‖08‖lpad) ⊕ r2,i

4. Let Mi′ = Mi′
0 ‖Mi′

1 ‖Mi′
2 . The validity of the signatures si returned by the

signer during the online phase of the attack ensures that Mi′
0 ‖Mi′

1 ‖Mi′
2 =

Mi
0‖Mi

1‖Mi
2.

5. Compute H̃
H0
ri (mi) = HH0(Mi

0‖Mi
1‖(Mi

2‖1‖0l−1)‖(0b−l‖padm)) and add

the hash values H̃
H0
ri (mi) to the Table L2. Let H̃

H0
ri (mi) = Hi for i =

1, . . . ,2t/2. Now the Table L2 contains the values (mi, ri , si ,Hi).
6. Find a collision between the 2t/2 hash values stored in the Tables L1 and

L2. This step is illustrated in Fig. 3. With a good probability, we can find a
hash value Hx from the Table L2 and a hash value H ∗

y from the Table L1

768 P. Gauravaram, L.R. Knudsen

such that:

HH0
(

Mx
0

∥

∥Mx
1

∥

∥

(

Mx
2 ‖1‖0l−1)

∥

∥

(

0b−l
∥

∥padm
)) = Hx = h

(

H ∗
y ,Ny+1) = H ∗

y

where
(a) Mx

0 = r0,x and |Mx
0 | = b

(b) Mx
1 = mx

1 ⊕ r1,x and |Mx
1 | = b

(c) Mx
2 = (mx

2‖08‖lpad) ⊕ r2,x and |Mx
2 | = b − l

(d) Ny+1 = (Ny+1)[b−l−1]‖padf
and x ∈ {1, . . . ,2t/2}, y ∈ {0, . . . ,2t/2 − 1}. This step is illustrated in Fig. 3
and in Fig. 4(a) and 4(b). Let y + 1 = z.

7. Let r ′
2,x be the last l bits of r1,x . Then r1,x = r2,x‖r ′

2,x .

Note that |r2,x | = b − l. Let padr = r ′
2,x ⊕ (1‖0l−1).

Let padr1 = (r
[b−l]
1,x ⊕ 0b−l)‖(r ′

2,x ⊕ padm). Note that |padr1| = b bits.

8. Calculate (Nz)[b−l−1]⊕r
[b−l−1]
1,x = nz as shown in Fig. 4(c). The probability

that the last 24 bits of nz are 08‖lpad is 2−24. These 24 bits represent the
padding bits of the message randomized by RMX.

9. Let m∗ = mx
1‖(mx

2‖08‖lpad‖padr)‖padr1‖(nz)[|nz|−24] and m = mx
1‖mx

2 .
Note that |m| = 2b − l − 24 bits and m∗ = 4b − l − 25 bits, which is the
same as determined in Step (1) of the Pre-computation phase of the attack.
The signature SIG(m) on the message m is also valid on m∗ as H̃

H0
r (m) =

H̃
H0
r (m∗). Let SIG(m) = s.

10. Finally, output (m∗, r, s) as the forgery.

7.2.1. Complexity

It takes 2t/2 operations of h to compute the fixed points, 2t/2 adaptive chosen message
queries to the signer during the online phase, 2t/2 operations of h and 2t/2 exclusive-
or operations during the offline phase and a probability of 2−24 to match the correct
padding bits of the RMX transform. Therefore, the computational complexity of the
attack is approximately 2t/2+1 operations of the compression function and 2t/2 chosen
messages. The memory requirements of the attack are as follows assuming that the size
of the signature is four times the security level of t/2 bits of a t-bit hash (which is
possible for the DSA algorithm): b × 2t/2 + t × 2t/2 bits in the pre-computation phase,
2b × 2t/2 bits in the online phase and |r| × 2t/2 + t × 2t/2 + 2t × 2t/2 bits in the offline
phase. The memory required for the attack is equal to (3b + 4t + |r|) × 2t/2 bits. This
is approximately 2t/2+3 memory of t-bit values.

7.3. Practical Security

Here we illustrate with an example the practical security offered by the RMX-hash-then-
sign signature algorithms. Our attack can be used to forge a signature scheme based on
RMX-SHA-256 in about 2129 operations of the SHA-256 compression function, 2128

chosen messages and a probability of 2−24 for the forged message to contain the 24
padding bits used in the RMX transform and a memory of about 2131. In addition, our
attack is independent of the size of the random value r . Note that in our attack we

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 769

assumed that b′ = b− l −24 bits. The attack also applies for about the same complexity
when b′ < b − l − 24 bits. However, when b′ > b − l − 24 bits, the padding bits of the
RMX transform are placed in the last two blocks ML and ML+1. Since the last block
ML+1 does not contain any message bits, it is not possible to generate a fixed point
block which can represent this block; hence the attack does not apply.

In comparison, as remarked in [40], forging a signature scheme based on RMX-SHA-
256 by using the long message second preimage attack of [25,46] requires about 2201

offline operations of the SHA-256 compression function, more than 255 memory and
one chosen message of size about 255 message blocks each of 512 bits. We briefly
outline this attack by assuming |r| = b bits for an easy description.

1. Query the signer with a long message m = m1‖ . . . ,mL−1 where L = 255,
|mi | = 512 bits and the block mL is reserved for the padding bits required by
the SHA-256 algorithm. The signer produces the signature s for the hash value
HH0(RMX(r,m)) by using the signature algorithm SIG and sends (r, s) to us.

2. Compute HH0(r).
3. Use HH0(r) as the starting state of the hash function and find a second preimage

for m by following the Kelsey–Schneier [46] long message second preimage at-
tack algorithm. Let n = n1‖n2, . . . ,‖nL−1 be the second preimage which has the
same size as m.

4. Compute m∗ = n1 ⊕ r‖n2 ⊕ r, . . . ,‖nL−1 ⊕ r .
5. Now, HH0(RMX(m, r)) = HH0(RMX(m∗, r)) and produce m∗ as the second

preimage of m under the hash function HH0(RMX(.)). Therefore, the signature s

computed for the message m by using SIG based on RMX-SHA-256 is also valid
for m∗.

6. Output (m∗, r, s) as the forgery.

The time complexity of this attack increases when we desire to produce forgeries for
messages of size less than 255 blocks. For example, the complexity of this attack to
produce a forgery message of size 512 bits will be the same as the brute force attack
complexity of 2256 SHA-256 operations.

Remark 6. We can also derive trade-offs between the online and offline time com-
plexities for the forgery attack in Sect. 7 similar to the generic forgery attack on the
RMX-hash-then-sign algorithms discussed in Sect. 4. In addition, a variant of our at-
tack is possible wherein an attacker can query several signers but with less than 2t/2

queries to each of them and finally forge the signature of one of the signers, one of
whose randomized hash values collides with one of the pre-computed hash values.

Remark 7. Unlike the generic forgery attacks of Sect. 4, the forgery attack of Sect. 7 is
not applicable in the known message attack model unless the lengths of all 2t/2 known
messages are the same.

7.4. Attack on the e-SPR Property of the Compression Functions

Our forgery attack on the RMX-hash-then-sign signature schemes translates into a birth-
day collision attack on the e-SPR property of the compression function h for which

770 P. Gauravaram, L.R. Knudsen

fixed points can be easily found. Recall that in the e-SPR game, we choose u ≥ 1 val-
ues Δ1, . . . ,Δu, each of length b bits. We then receive a random value r ∈ {0,1}b and
define mi = r ⊕Δu and Hi−1 = HH0(r ⊕Δ1‖ . . .‖r ⊕Δu−1). Finally, we aim to find a
pair (H ∗

i−1, ni) such that (H ∗
i−1, ni) �= (Hi−1,mi) and h(Hi−1,mi) = h(H ∗

i−1, ni). The
attack is outlined below:

1. Find 2t/2 fixed points (Hi−1,m
i) for h where i = 1, . . . ,2t/2 and store them in a

Table L.
2. Play the e-SPR game for 2t/2 times with u = 2 where Δ1 = Δ2 = 0. For every

call to the e-SPR game, we receive a fresh random value rj for j = 1, . . . ,2t/2.
3. Due to the birthday paradox, we can find Hi−1 = HH0(rj‖rj) for some i and j

with a good probability. Let this rj = r and mi in the fixed point (Hi−1,m
i) be

mi for some i.
4. Let H ∗

i−1 = HH0(r), ni = r , Hi−1 = HH0(r‖r).
Now, we have h(H ∗

i−1, ni) = HH0(r‖r) = HH0(r‖r‖mi) = h(Hi−1,mi).

Thus, after 2t/2 games, we expect to win one game. Note that the forgery attack in
Sect. 4.1 also translates into an e-SPR attack on any compression function after 2t/2

e-SPR games.
These attacks on the e-SPR property of the compression function illustrate that the

security level of e-SPR is not as high as expected (i.e. similar to the second preimage
resistance) when an attacker plays the e-SPR game for 2t/2 times. In contrast, the se-
curity reduction of [40] from the e-TCR property of the RMX hash function mode to
the e-SPR property of the compression function considers an attacker who plays the
e-SPR game only once (i.e. the attacker receives random value r only once). Hence, our
analysis complements the analysis of [40] by considering an attacker who can play the
e-SPR game more than once.

8. Applications of Our Forgery Attack

In this section, we discuss some interesting applications of our forgery attack on the
RMX-hash-then-sign digital signatures.

8.1. Meaningful Forgeries

The method used to forge RMX-hash-then-sign schemes provided in Sect. 7 may be
used to produce an ‘almost’ meaningful forgery message by querying meaningful mes-
sages to the signer during the online phase of the attack. Then all bits in the forgery
message except those in the fixed point block convey the meaning, and all bits in the
fixed point block except the padding bits are random. In addition, this method is also
applicable to forge signature schemes based on the TCR hash function mode on which
the generic attack of Sect. 4.2 does not produce a meaningful forgery.

8.2. RMXSP is Weaker than RMX

NIST standardized a variant of the RMX hash function in SP 800-106 [21]. We called
this variant RMXSP in Sect. 3.2.2 and it is defined in Appendix B. Our forgery attack

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 771

on the RMX-hash-then-sign algorithms also extends to those based on RMXSP that use
fixed point compression functions. When |m| + 1 ≥ |r| for RMXSP, the complexity of
our forgery attack on the SIG based on RMXSP is similar to the one on the SIG based on
RMX with the exception that it requires a success probability of 1/2 to hit the correct
padding bit ‘1’ used to pad the message by RMXSP. Note that RMX uses 24 bits for
padding; hence our attack requires 2−24 success probability to match the padding bits of
RMX correctly. Hence, RMXSP is weaker than RMX due to its weak padding compared
to the one in RMX.

8.3. Variants of Merkle–Damgård

Our forgery attack is also applicable on signature schemes based on a variant of the
eTCR hash function mode HH0(r‖HH0

r (m)) proposed by Halevi and Krawczyk [40]. It
is also applicable to signature schemes that use the RMX hash function together with the
split padding [87] technique used to pad the message input to the hash function. The split
padding employed for a hash function ensures that a minimum number of message bits
are used in every block including the padding and message length encoding blocks. The
forgery attacks on the RMX-hash-then-sign algorithms outlined in Sect. 7 and in Sect. 4
are also applicable to signature schemes based on the hash functions with sequential
counters (for example, HAIFA hash function mode [13]) as the counter inputs can be
controlled in both the attacks. However, sequential counters for the RMX hash function
would still prevent the attempts to forge RMX-hash-then-sign schemes by using the
long message second preimage attack of Kelsey-Schneier [46] as recalled in Sect. 7.3.

Remark 8. Our online birthday forgery attacks are not useful to forge signature
schemes that use the randomized setting of the wide-pipe hash construction [51] with
an internal state size w ≥ 2t as the attack requires at least 2t chosen messages and 2t+1

operations of the compression function. This remark also holds even if it is easy to find
fixed points for the compression functions used in the wide-pipe hash function. For ex-
ample, the online birthday forgery attacks do not apply to the signatures based on the
RMX hash mode of Grøstl [36], a finalist in the NIST’s SHA-3 hash function compe-
tition, which uses a compression function for which many fixed points can be easily
found but has w ≥ 2t for a t-bit hash value.

9. On the Applicability of Our Analysis to the Hash Functions with ‘Built-in’
Randomization

Consider a Merkle–Damgård hash construction in which salt is mixed with the input
state and message block inside the compression function at every iteration. Such con-
structions are called hash functions with ‘built-in’ randomization. This method of ran-
domizing hash functions is different from the setting we have analyzed in this paper.
The generic forgery attack on the RMX-hash-then-sign schemes presented in Sect. 4.1
is also applicable to signature schemes based on this randomized hash function setting.
However, the applicability of the forgery attack on signature schemes using TCR col-
lisions as presented in Sect. 4.2 to those based on these functions depends on how the
random value is mixed with the message and state. For the same reason, even if the

772 P. Gauravaram, L.R. Knudsen

compression functions have fixed points, the techniques presented in Sect. 7 are not
directly applicable to forge signature schemes based on hash functions with ‘built-in’
randomization. Hash function designs such as LAKE [6], BLAKE [5] and ECHO [11]
have this kind of ‘built-in’ support for randomization. Moreover, constructing an eTCR
attack using certain types of collision attacks on the hash functions with ‘built-in’ ran-
domization that rely on the fixed difference in the salt inputs as well as on their actual
values such as on LAKE [15] depends on the distribution of the salt inputs used in the
collision attack. The reason is that the choice of one of the salts in the eTCR attack on
a randomized hash function is determined by the signer and is not under the control
of the attacker. Analyzing eTCR and TCR properties of hash functions with built-in
support for randomization requires analysis of the c-SPR and e-SPR properties of the
compression functions.

10. Randomize-Hash-then-Sign Signatures Versus HMAC

Recall that the random value chosen by the signer is unknown to the attacker who tries
to break the TCR/eTCR properties of the randomized hash functions, and the signer
chooses a fresh random value for each query. This property is similar to the security
requirement of message authentication codes (MACs) in which the task of an attacker
is to forge a MAC function without knowledge of the secret key. Moreover, the standard
MAC function HMAC [7,8] has been proposed as a safety net for the MAC functions
that depend on the hashing strength as little as possible [42], just like randomized hash
functions. These similarities in the design goals and security properties of randomized
hash functions and HMAC makes it interesting to compare the attack models on them
when they are instantiated with the same ideal compression function.

Offline birthday collision attacks on the hash functions do not help to forge
HMAC [8]. The best known forgery attack on HMAC is the online birthday colli-
sion attack [8]. In this attack on a t-bit HMAC, the attacker first finds two distinct
messages m and m∗ such that HMAC(m) = HMAC(m∗) by querying the HMAC or-
acle with at most 2t/2 chosen messages. Then he queries the HMAC oracle for the
tag of the message m‖n and produces the message m∗‖n as the forgery of m‖n since
HMAC(m‖n) = HMAC(m∗‖n) due to the length extension property of the Merkle–
Damgård hash functions. It is not possible to derive online and offline computation time
trade-offs for this attack, unlike for the forgery attacks presented on randomize-hash-
then-sign schemes. While it is possible to generate multiple forgeries for HMAC after
querying its oracle with 2t/2 chosen messages [16,53], an online birthday attack on the
randomize-hash-then-sign signature does not lead to more than one forgery.

The cryptanalytic (second) preimage attacks on the hash functions such as those
on MD4 [50], MD5 [77], AURORA-512 [32,75,76] and the reduced round version of
SHAvite-3-512 [37] directly extend to finding second preimages for their randomized
hash function modes; hence these attacks lead to forgery attacks on signature schemes
based on these hash functions with just one chosen message. However, the possibility
of the forgery or key recovery attacks on HMAC using cryptanalytic (second) preim-
age attacks on the hash functions depends on the subtle details of the attacks and does
not extend to the attacks on HMAC with just one chosen message query. Moreover,
some cryptanalytic collision attacks on the hash functions can be extended to forge

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 773

HMAC and its derivative NMAC functions; of course, this depends on the subtle details
of the collision attacks. See [19,33,47,69,70,86] for the analytical techniques used in
the forgery and key recovery attacks on HMAC and NMAC functions based on some
popular hash functions such as MD5 and SHA-1.

11. Conclusion and Open Questions

In this article, we presented several existential forgery attacks in an online setting on
the digital signatures based on the two randomized hash functions proposed by Halevi
and Krawczyk [40] and the signatures based on the RMX variant standard of NIST in
SP 800-106. All our attacks require a large number of queries to the message signer as
in a traditional birthday attack on the size of the hash value. Our analysis shows that
the randomized hash function standardized by NIST is slightly weaker than the RMX
hash mode proposed by Halevi and Krawczyk. However, there has been no change to
the standard since the discovery of our attacks.

Our results are in no contradiction with the previous analysis of Halevi and
Krawczyk [40], who proved that the problem of forging these signatures reduces to
a problem similar to that of finding second preimages for the underlying hash function
in these algorithms. However, our results demonstrate that the security of randomize-
hash-then-sign signature algorithms does not necessarily rely on the second preimage
resistance of the hash functions, as better attacks can be found in an online model. It
is clear from our attacks and those of [25,46] that it is well worth investigating the
second preimage resistance properties of the compression functions to identify possible
weaknesses that may affect the randomized hashing setting.

Our work opens an interesting research problem on how to improve the design of
randomized hash function modes so that the signatures based on these modes provide
about 2t security in the online setting and require no changes to the current standard
hash functions (e.g. SHA family) and signature schemes. It is also interesting to design
novel block cipher-based compression function structures that can avoid attacks on hash
functions and their applications through undesirable properties such as fixed points. For
instance, it is an interesting research problem to design and formally analyze block
cipher-based compression functions that are indifferentiable in the ideal cipher model
from a random oracle whose inputs are of fixed length.

Acknowledgements

1. Praveen Gauravaram is sponsored by the Danish Council for Independent
Research – Technology and Production Sciences (FTP) grant number 09-
066486/FTP.

2. The research work presented in this paper has been supported in part by the Euro-
pean Commission through the ICT programme under contract ICT-2007-216676
ECRYPT II.

3. We thank the anonymous reviewers of the Journal of Cryptology for their sev-
eral valuable comments and suggestions to improve the presentation, technical
reasoning and editorial quality of the submitted version of the article. We also

774 P. Gauravaram, L.R. Knudsen

thank anonymous reviewers of EUROCRYPT 2009 for comments on the version
submitted to the EUROCRYPT 2009 conference. We also thank Quynh Dang,
Pierre-Alain Fouque, Choudary Gorantla, Shai Halevi, Guo Jian, Hugo Krawczyk,
Gregor Leander, Chris Mitchell, Ray Perlner, Yu Sasaki and Erik Zenner for dis-
cussions on the subject of randomized hash functions.

Appendix A. Observation in the Padding Rule of RMX

Recall from Sect. 3.2.1 that the RMX transform appends k zero bits and a 16-bit string
called lpad to the message bits in a block mL of size b′ which is less than the block
size b of the compression function. We noted that when b′ ≤ b − l − 24, the value
of k determines whether an additional b-bit block mL+1 must be appended to mL to
accommodate the padding and l-bit binary encoding of the true length of the message.
Here we illustrate this property for the RMX-SHA-256 construction.

Consider hashing of a message m using RMX-SHA-256. For SHA-256, b = 512
bits. Let |m| = 512 + 424 = 936 bits, where |m1| = 512 and |m2| = 424 bits. Following
RMX specification from Sect. 3.2.1, b′ = b − l − 24 = 512 − 64 − 24 = 424 bits and
k = b − b′ − 16 − l = 512 − 424 − 16 − 64 = 8 bits. Let |r| = 128 bits. Now the
randomized message M is defined as follows:

1. M0 = r0
2. M1 = m1 ⊕ r1
3. Calculation of M2:

(a) M∗
2 = m2‖08‖lpad where |M∗

2 | = 448 bits
(b) M2 = M∗

2 ⊕ r2

Therefore, RMX(r,m) = M = M0‖M1‖M2. A hash function HH0 used to process M

requires at least l + 1 bits for padding and encoding the length of the message. For
SHA-256, l = 64 bits, and hence it requires at least 65 bits for padding and message
length encoding. It is difficult to accommodate more than 64 bits in the remaining l-
bit positions in the last block M2, as it already has 448 bits. Therefore, to process M

using SHA-256, M is padded as follows: M = M0‖M1‖(M2‖1‖063
︸ ︷︷ ︸

512 bits

)‖ (0448‖l)
︸ ︷︷ ︸

512 bits

where l

represents the 64-bit binary encoded format of the length of M . Similarly, if b′ = 423
bits, then k = 9 bits and M∗

2 = m2‖09‖lpad. So, if b′ ≤ b − l − 24 then HH0 requires
an extra block to pad and to encode the length of M .

Alternatively, when b′ ≤ b − l − 24 bits, we could define k = b − b′ − 24 − l bits.
Then the hash function HH0 does not require an extra block to encode the length of
the message M . In the above illustration, when |m| = 936 bits, M∗

2 = m2‖00‖lpad and
M2 = M∗

2 ⊕ r2 where |M∗
2 | = 440 bits and M = M0‖M1‖M2. To process M using a

hash function HH0 , M is padded as follows: M = M0‖M1‖ (M2‖1‖07‖l)
︸ ︷︷ ︸

440+72 bits

.

Appendix B. Message Randomization Technique RMXSP

Let m be the input message, r be a message independent random bit string of size at
least 128 bits and at most 1024 bits and M be the randomized message. Let zpad be a

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 775

string of zero bits, which has a single zero or more 0 bits. Let λ denote zero 0 bits or
an empty string. Let pad = 1‖zpad. Let rpad be the 16-bit binary representation of |r|.
The input message m is encoded to the form m‖pad and this encoded message is then
randomized (transformed to M) as specified below:

1. If |m| + 1 ≥ |r|:
(a) pad = 1‖λ = 1.
Else
(a) pad = 1‖0|r|−|m|−1.

2. m′ = m‖pad.
3. If |r| > 1024 then stop and output an error.
4. rem = |m′| mod |r|
5. Concatenate �|m′|/|r|� copies of r to the rem left most bits of r to obtain R, such

that |R| = |m′|. Now let

R = r‖r‖ . . .‖r
︸ ︷︷ ︸

�|m′|/|r|� times

‖r [rem]

6. The randomized output of m is given by

M = RMXSP(r,m) = r‖(m′ ⊕ R)‖rpad

B.1. Illustration

Let |r| = 128 and |m| = 927 bits. Now |m| + 1 ≥ |r|, therefore zpad = λ and pad = 1.
Now m′ = m‖pad = m‖1 and |m′| = 928 bits. The random value R = r‖ . . .‖r

︸ ︷︷ ︸

7 times

‖r [32].

References

[1] S.G. Akl, On the security of compressed encodings, in Advances in Cryptology: Proceedings of
CRYPTO 83, ed. by D. Chaum (Plenum Press, New York, 1983), pp. 209–230

[2] R. Anderson, E. Biham, Tiger: a fast new hash function, in Fast Software Encryption, ed. by D. Gollman.
Lecture Notes in Computer Science, vol. 1039 (Springer, Berlin, 1996), pp. 89–97

[3] E. Andreeva, C. Bouillaguet, P.-A. Fouque, J.J. Hoch, J. Kelsey, A. Shamir, S. Zimmer, Second preim-
age attacks on dithered hash functions, in Advances in Cryptology—EUROCRYPT 2008, ed. by N.P.
Smart. Lecture Notes in Computer Science, vol. 4965 (Springer, Berlin, 2008), pp. 270–288

[4] ANSI. ANSI X9.62:2005: Public key cryptography for the financial services industry, the elliptic curve
digital signature algorithm (ECDSA) (2005)

[5] J.-P. Aumasson, L. Henzen, W. Meier, R.C.-W. Phan, SHA-3 proposal BLAKE. A finalist of NIST’s
SHA-3 cryptographic hash function competition, 2010. Available at http://131002.net/blake/ (Accessed
on 16/08/2011)

[6] J.-P. Aumasson, W. Meier, R.C.-W. Phan, The hash function family LAKE, in Fast Software Encryption,
ed. by K. Nyberg. Lecture Notes in Computer Science, vol. 5086 (Springer, Berlin, 2008), pp. 36–53

[7] M. Bellare, New proofs for NMAC and HMAC: security without collision-resistance, in Advances in
Cryptology-CRYPTO 2006, ed. by C. Dwork. Lecture Notes in Computer Science, vol. 4117 (Springer,
Berlin, 2006), pp. 602–619

[8] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authentication, in Advances in
Cryptology—CRYPTO’96, ed. by N. Koblitz. Lecture Notes in Computer Science, vol. 1109 (Springer,
Berlin, 1996), pp. 1–15

http://131002.net/blake/

776 P. Gauravaram, L.R. Knudsen

[9] M. Bellare, P. Rogaway, Collision-resistant hashing: towards making UOWHFs practical, in Advances
in Cryptology—CRYPTO’97, ed. by B.S. Kaliski Jr. Lecture Notes in Computer Science, vol. 1294
(Springer, Berlin, 1997), pp. 470–484

[10] S. Bellovin, E. Rescorla, Deploying a new hash algorithm, in Proceedings of the Symposium on
Network and Distributed Systems Security (NDSS) (Internet Society, Reston, 2006). Available at
http://www.isoc.org/isoc/conferences/ndss/06/proceedings/ (Accessed on 16/08/2011)

[11] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, Y. Seurin, SHA-3 pro-
posal:ECHO. Second round of NIST’s SHA-3 competition, 2009. Version 1.5 is available at http://
crypto.rd.francetelecom.com/echo/ (Accessed on 16/08/2011)

[12] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, W. Jalby, Collisions of SHA-0 and reduced
SHA-1, in Advances in Cryptology—EUROCRYPT 2005, ed. by R. Cramer. Lecture Notes in Computer
Science, vol. 3494 (Springer, Berlin, 2005), pp. 36–57

[13] E. Biham, O. Dunkelman, A framework for iterative hash functions—HAIFA. Cryptology ePrint
archive, Report 2007/278, 2007. Available at http://eprint.iacr.org/2007/278 (Accessed on 16/08/2011)

[14] E. Biham, O. Dunkelman, The SHAvite-3 hash function. A second round candidate of NIST’s SHA-
3 cryptographic hash function competition, 2009. Available at http://www.cs.technion.ac.il/~orrd/
SHAvite-3/ (Accessed on 6/03/2011)

[15] A. Biryukov, P. Gauravaram, J. Guo, D. Khovratovich, S. Ling, K. Matusiewicz, I. Nikolic, J. Pieprzyk,
H. Wang, Cryptanalysis of the LAKE hash family, in Fast Software Encryption, ed. by O. Dunkelman.
Lecture Notes in Computer Science, vol. 5665 (Springer, Berlin, 2009), pp. 156–179

[16] J. Black, M. Cochran, MAC reforgeability, in Fast Software Encryption, ed. by O. Dunkelman. Lecture
Notes in Computer Science, vol. 5665 (Springer, Berlin, 2009), pp. 345–362

[17] J. Black, P. Rogaway, T. Shrimpton, Black-box analysis of the Block-Cipher-based hash-function con-
structions from PGV, in Advances in Cryptology—CRYPTO 2002, ed. by M. Yung. Lecture Notes in
Computer Science, vol. 2442 (Springer, Berlin, 2002), pp. 320–335

[18] F. Chabaud, A. Joux, Differential collisions in SHA-0, in Advances in Cryptology—CRYPTO ’98, ed.
by H. Krawczyk. Lecture Notes in Computer Science, vol. 1462 (Springer, Berlin, 1998), pp. 56–71

[19] S. Contini, Y.L. Yin, Forgery and partial key-recovery attacks on HMAC and NMAC using hash col-
lisions, in ASIACRYPT 2006, ed. by X. Lai, K. Chen. Lecture Notes in Computer Science, vol. 4284
(Springer, Berlin, 2006), pp. 37–53

[20] I. Damgård, A design principle for hash functions, in Advances in Cryptology—CRYPTO’89, ed. by
G. Brassard. Lecture Notes in Computer Science, vol. 435 (Springer, Berlin, 1989), pp. 416–427

[21] Q. Dang, Randomized hashing for digital signatures. NIST’s special publications (800 Series). Available
at http://csrc.nist.gov/publications/PubsSPs.html (Accessed on 16/08/2011), 2009

[22] Q. Dang, R. Perlner, Personal communication, October 2008
[23] D. Davies, W. Price, Security for Computer Networks (Wiley, New York, 1984)
[24] D.W. Davies, W.L. Price, The application of digital signatures based on public-key cryptosystems, in

Proc. Fifth Intl. Computer Communications Conference (1980), pp. 525–530
[25] R.D. Dean, Formal aspects of mobile code security. Ph.D. thesis, Princeton University, USA, 1999
[26] B. den Boer, A. Bosselaers, An attack on the last two rounds of MD4, in Advances in Cryptology—

CRYPTO ’91, ed. by J. Feigenbaum. Lecture Notes in Computer Science, vol. 576 (Springer, Berlin,
1991), pp. 194–203

[27] B. den Boer, A. Bosselaers, Collisions for the compression function of MD5, in Advances in
Cryptology—EUROCRYPT ’93, ed. by T. Helleseth. Lecture Notes in Computer Science, vol. 765
(Springer, Berlin, 1994), pp. 293–304

[28] H. Dobbertin, Cryptanalysis of MD4, in Fast Software Encryption, ed. by D. Grollman. Lecture Notes
in Computer Science, vol. 1039 (Springer, Berlin, 1996), pp. 53–69

[29] H. Dobbertin, Cryptanalysis of MD5 compress. Presented at the Rump Session of EUROCRYPT ’96,
1996

[30] H. Dobbertin, The status of MD5 after a recent attack. CryptoBytes 2(2), 1–6 (1996)
[31] H. Dobbertin, Cryptanalysis of MD4. J. Cryptol. 11(4), 253–271 (1998)
[32] N. Ferguson, S. Lucks, Attacks on AURORA-512 and the double-mix Merkle–Damgaard transform.

Cryptology ePrint archive, Report 2009/113, 2009. Available at http://eprint.iacr.org/2009/113 (Ac-
cessed on 16/08/2011)

http://www.isoc.org/isoc/conferences/ndss/06/proceedings/
http://crypto.rd.francetelecom.com/echo/
http://crypto.rd.francetelecom.com/echo/
http://eprint.iacr.org/2007/278
http://www.cs.technion.ac.il/~orrd/SHAvite-3/
http://www.cs.technion.ac.il/~orrd/SHAvite-3/
http://csrc.nist.gov/publications/PubsSPs.html
http://eprint.iacr.org/2009/113

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 777

[33] P.-A. Fouque, G. Leurent, P.Q. Nguyen, Full key-recovery attacks on HMAC/NMAC-MD4 and NMAC-
MD5, in Advances in Cryptology—CRYPTO 2007, ed. by A. Menezes. Lecture Notes in Computer
Science, vol. 4622 (Springer, Berlin, 2007), pp. 13–30

[34] P. Gauravaram, J. Kelsey, Linear-XOR and additive checksums don’t protect Damgård–Merkle hashes
from generic attacks, in Topics in Cryptology—CT-RSA 2008, ed. by T. Malkin. Lecture Notes in Com-
puter Science, vol. 4964 (Springer, Berlin, 2008), pp. 36–51

[35] P. Gauravaram, J. Kelsey, L.R. Knudsen, S.S. Thomsen, On hash functions using checksums. Int. J. Inf.
Secur. 9(2), 137–151 (2010)

[36] P. Gauravaram, L.R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schläffer, S.S. Thomsen,
Grøstl—a SHA-3 candidate. A finalist of NIST’s SHA-3 cryptographic hash function competition, 2010.
Available at http://www.groestl.info/ (Accessed on 16/08/2011)

[37] P. Gauravaram, G. Leurent, F. Mendel, M. Naya-Plasencia, T. Peyrin, C. Rechberger, M. Schläffer,
Cryptanalysis of the 10-round hash and full compression function of SHAvite-3-512, in Progress in
Cryptology—AFRICACRYPT 2010, ed. by D.J. Bernstein, T. Lange. Lecture Notes in Computer Sci-
ence, vol. 6055 (Springer, Berlin, 2010), pp. 419–436

[38] P. Gauravaram, A. McCullagh, E. Dawson, Collision attacks on MD5 and SHA-1: is this the “Sword of
Damocles” for electronic commerce? In AusCERT Conference Refereed R & D Stream, ed. by A. Clark,
M. McPherson, G. Mohay (2006), pp. 1–13

[39] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive Chosen—
message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

[40] S. Halevi, H. Krawczyk, Strengthening digital signatures via randomized hashing, in Advances in
Cryptology—CRYPTO 2006, ed. by C. Dwork. Lecture Notes in Computer Science, vol. 4117 (Springer,
Berlin, 2006), pp. 41–59. Full version of this paper is available at http://www.ee.technion.ac.il/~
hugo/rhash/rhash.pdf (Accessed on 16/08/2011)

[41] S. Halevi, H. Krawczyk, The RMX transform and digital signatures, 2006. Available at http://
www.ee.technion.ac.il/~hugo/rhash/rhash-nist.pdf (Accessed on 16/08/2011)

[42] S. Halevi, H. Krawczyk, Update on randomized hashing. Technical report, 2006. Slides are available at
http://csrc.nist.gov/groups/ST/hash/second_workshop.html (Accessed on 16/08/2011)

[43] S. Halevi, W. Shao, H. Krawczyk, D. Boneh, M. McIntosh, Implementing the Halevi–
Krawczyk randomized hashing scheme, 2007. Available at http://www.ee.technion.ac.il/~hugo/rhash/
implementation.pdf (Accessed on 19/11/2010)

[44] W. Hohl, X. Lai, T. Meier, C. Waldvogel, Security of iterated hash functions based on block ciphers, in
Advances in Cryptology—CRYPTO ’93, ed. by D.R. Stinson. Lecture Notes in Computer Science, vol.
773 (Springer, Berlin, 1993), pp. 379–390

[45] J. Jonsson, B. Kaliski, Public-key cryptography standards (PKCS) #1:RSA Cryptography specifica-
tion Version 2.1. Network working group request for comments 3447, Internet Engineering Task Force
(IETF), 2003. This document is available at http://www.ietf.org/rfc/rfc3447.txt (Accessed on 16/08/
2011)

[46] J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than 2n work, in Ad-
vances in Cryptology—EUROCRYPT 2005, ed. by R. Cramer. Lecture Notes in Computer Science, vol.
3494 (Springer, Berlin, 2005), pp. 474–490

[47] J. Kim, A. Biryukov, B. Preneel, S. Hong, On the security of HMAC and NMAC based on HAVAL,
MD4, MD5, SHA-0 and SHA-1, in Security and Cryptography for Networks, ed. by R.D. Prisco,
M. Yung. Lecture Notes in Computer Science, vol. 4116 (Springer, Berlin, 2006), pp. 242–256

[48] H. Krawczyk, Personal communication, November 2010
[49] A. Lenstra, B. de Weger, On the possibility of constructing meaningful hash collisions for public keys,

in ACISP 2005, ed. by C. Boyd, J.M.G. Nieto. Lecture Notes in Computer Science, vol. 3574 (Springer,
Berlin, 2005), pp. 267–279

[50] G. Leurent, MD4 is not one-way, in Fast Software Encryption, ed. by K. Nyberg. Lecture Notes in
Computer Science, vol. 5086 (Springer, Berlin, 2008), pp. 412–428

[51] S. Lucks, A failure-friendly design principle for hash functions, in Advances in Cryptology—
ASIACRYPT 2005, ed. by B. Roy. Lecture Notes in Computer Science, vol. 3788 (Springer, Berlin,
2005), pp. 474–494

[52] S. Manuel, T. Peyrin, Collisions on SHA-0 in one hour, in Fast Software Encryption, ed. by K. Nyberg.
Lecture Notes in Computer Science, vol. 5086 (Springer, Berlin, 2008), pp. 16–35

http://www.groestl.info/
http://www.ee.technion.ac.il/~hugo/rhash/rhash.pdf
http://www.ee.technion.ac.il/~hugo/rhash/rhash.pdf
http://www.ee.technion.ac.il/~hugo/rhash/rhash-nist.pdf
http://www.ee.technion.ac.il/~hugo/rhash/rhash-nist.pdf
http://csrc.nist.gov/groups/ST/hash/second_workshop.html
http://www.ee.technion.ac.il/~hugo/rhash/implementation.pdf
http://www.ee.technion.ac.il/~hugo/rhash/implementation.pdf
http://www.ietf.org/rfc/rfc3447.txt

778 P. Gauravaram, L.R. Knudsen

[53] D.A. McGrew, S.R. Fluhrer, Multiple forgery attacks against message authentication codes. Cryptol-
ogy ePrint Archive, Report 2005/161, 2005. Available at http://eprint.iacr.org/2005/161 (Accessed on
16/08/2011)

[54] A.J. Menezes, P.C. Van Oorschot, S.A. Vanstone, In Handbook of Applied Cryptography, The CRC
Press Series on Discrete Mathematics and Its Applications (CRC Press, Boca Raton, 1997), pp. 321–
383, Chap. 9

[55] R. Merkle, One way hash functions and DES, in Advances in Cryptology: CRYPTO ’89, ed. by G. Bras-
sard. Lecture Notes in Computer Science, vol. 435 (Springer, Berlin, 1989), pp. 428–446

[56] R.C. Merkle, Secrecy, authentication, and public key systems. Ph.D. thesis, Dept. of Electrical Engi-
neering, Stanford University, USA, 1979

[57] I. Mironov, Collision-resistant no more: hash-and-sign paradigm revisited, in Public Key Cryptogra-
phy, ed. by M. Yung, Y. Dodis, A. Kiayias, T. Malkin. Lecture Notes in Computer Science, vol. 3958
(Springer, Berlin, 2006), pp. 140–156

[58] S. Miyaguchi, K. Ohta, M. Iwata, Confirmation that some hash functions are not collision free, in Ad-
vances in Cryptology—EUROCRYPT ’90, ed. by I.B. Damgård. Lecture Notes in Computer Science,
vol. 473 (Springer, Berlin, 1990), pp. 326–343

[59] M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications, in Proceed-
ings of the 21st Annual ACM Symposium on Theory of Computing (STOC) (ACM, New York, 1989),
pp. 33–43

[60] National Institute of Standards and Technology. Federal information processing standard (FIPS
PUB 180-3) secure hash standard, 2008. Available at http://csrc.nist.gov/publications/fips/fips180-3/
fips180-3_final.pdf (Accessed on 16/08/2011)

[61] National Institute of Standards and Technology (NIST). FIPS PUB 186-2: digital signature standard
(DSS). 2000. Available at http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf (Ac-
cessed on 16/08/2011)

[62] National Institute of Standards and Technology (NIST). FIPS PUB 186-3: digital signature standard
(DSS), 2009. Available at http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf (Accessed on
16/08/2011)

[63] National Institute of Standards and Technology (NIST). FIPS publication 180: secure hash standard
(SHS), 1993

[64] National Institute of Standards and Technology (NIST). FIPS publication 180-1: secure hash standard
(SHS), 1995. Available at http://www.itl.nist.gov/fipspubs/fip180-1.htm (Accessed on 16/08/2011)

[65] National Institute of Standards and Technology (NIST). FIPS PUB 180-2: secure hash standard, 2002.
Available at http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf (Accessed on 16/08/2011)

[66] NIST. Announcing request for candidate algorithm nominations for a new cryptographic hash algorithm
(SHA-3) Family. Docket No: 070911510-7512-01, 2007

[67] S. Pasini, S. Vaudenay, Hash-and-sign with weak hashing made secure, in ACISP 2007, ed. by
J. Pieprzyk, H. Ghodosi, E. Dawson. Lecture Notes in Computer Science, vol. 4586 (Springer, Berlin,
2007), pp. 338–354

[68] B. Preneel, R. Govaerts, J. Vandewalle, Hash functions based on block ciphers: a synthetic approach, in
Advances in Cryptology–CRYPTO ’93, ed. by D.R. Stinson. Lecture Notes in Computer Science, vol.
773 (Springer, Berlin, 1993), pp. 368–378

[69] C. Rechberger, V. Rijmen, On authentication with HMAC and non-random properties, in Financial
Cryptography, ed. by S. Dietrich, R. Dhamija. Lecture Notes in Computer Science, vol. 4886 (Springer,
Berlin, 2007), pp. 119–133

[70] C. Rechberger, V. Rijmen, New results on NMAC/HMAC when instantiated with popular hash func-
tions. J. Univers. Comput. Sci. 14(3), 347–376 (2008)

[71] R. Rivest, The MD4 message digest algorithm, in Advances in Cryptology—CRYPTO’90, ed. by
A. Menezes, S.A. Vanstone. Lecture Notes in Computer Science, vol. 537 (Springer, Berlin, 1991),
pp. 303–311

[72] R. Rivest, The MD5 message-digest algorithm. Internet request for comment RFC 1321, Internet engi-
neering task force, 1992

[73] P. Rogaway, T. Shrimpton, Cryptographic hash-function basics: definitions, implications, and separa-
tions for preimage resistance, second-preimage resistance, and collision resistance, in Fast Software
Encryption, ed. by B.K. Roy, W. Meier. Lecture Notes in Computer Science, vol. 3017 (Springer, Berlin,
2004), pp. 371–388

http://eprint.iacr.org/2005/161
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

Security Analysis of Randomize-Hash-then-Sign Digital Signatures 779

[74] R.S.A. Laboratories, PKCS #1 v2.1: RSA cryptography standard. RSA data security, Inc., 2002. Avail-
able at ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf (Accessed on 16/08/2011)

[75] Y. Sasaki, Cryptanalyses of narrow-pipe mode of operation in AURORA-512 hash function, in Selected
Areas in Cryptography, ed. by M.J. Jacobson Jr., V. Rijmen, R. Safavi-Naini. Lecture Notes in Computer
Science, vol. 5867 (Springer, Berlin, 2009), pp. 36–52

[76] Y. Sasaki, Cryptanalyses of double-mix Merkle–Damgård mode in the original version of AURORA-
512. IEICE Trans. A 94(1), 121–128 (2011)

[77] Y. Sasaki, K. Aoki, Finding preimages in full MD5 faster than exhaustive search, in Advances in
Cryptology—EUROCRYPT 2009, ed. by A. Joux. Lecture Notes in Computer Science, vol. 5479
(Springer, Berlin, 2009), pp. 134–152

[78] V. Shoup, A composition theorem for universal one-way hash functions, in Advances in Cryptology—
EUROCRYPT 2000, ed. by B. Preneel. Lecture Notes in Computer Science, vol. 1807 (Springer, Berlin,
2000), pp. 445–452

[79] M. Stevens, A.K. Lenstra, B. de Weger, Chosen-prefix collisions for MD5 and colliding X.509 certifi-
cates for different identities, in Advances in Cryptology—EUROCRYPT 2007, ed. by M. Naor. Lecture
Notes in Computer Science, vol. 4515 (Springer, Berlin, 2007), pp. 1–22

[80] M. Stevens, A. Sotirov, J. Appelbaum, A. Lenstra, D. Molnar, D.A. Osvik, B. de Weger, Short chosen-
prefix collisions for MD5 and the creation of a rogue CA certificate, in Advances in Cryptology—
CRYPTO 2009, ed. by S. Halevi. Lecture Notes in Computer Science, vol. 5677 (Springer, Berlin, 2009),
pp. 55–69

[81] X. Wang, D. Feng, X. Lai, H. Yu, Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD.
Cryptology ePrint archive, Report 2004/199, 2004. Available at http://eprint.iacr.org/2004/199 (Acces-
sed on 16/08/2011)

[82] X. Wang, X. Lai, D. Feng, H. Chen, X. Yu, Cryptanalysis of the hash functions MD4 and RIPEMD, in
Advances in Cryptology—EUROCRYPT 2005, ed. by R. Cramer. Lecture Notes in Computer Science,
vol. 3494 (Springer, Berlin, 2005), pp. 1–18

[83] X. Wang, Y.L. Yin, H. Yu, Efficient collision search attacks on SHA-0, in Advances in Cryptology—
CRYPTO 2005, ed. by V. Shoup. Lecture Notes in Computer Science, vol. 3621 (Springer, Berlin, 2005),
pp. 1–16

[84] X. Wang, Y.L. Yin, H. Yu, Finding collisions in the full SHA-1, in Advances in Cryptology—CRYPTO
2005, ed. by V. Shoup. Lecture Notes in Computer Science, vol. 3621 (Springer, Berlin, 2005), pp.
17–36

[85] X. Wang, H. Yu, How to break MD5 and other hash functions, in Advances in Cryptology—
EUROCRYPT 2005, ed. by R. Cramer. Lecture Notes in Computer Science, vol. 3494 (Springer, Berlin,
2005), pp. 19–35

[86] X. Wang, H. Yu, W. Wang, H. Zhang, T. Zhan, Cryptanalysis of HMAC/NMAC-MD5 and MD5-MAC,
in Advances in cryptology-EUROCRYPT 2009, ed. by A. Joux. Lecture Notes in Computer Science, vol.
5479 (Springer, Berlin, 2009), pp. 121–133

[87] K. Yasuda, How to fill up Merkle–Damgård hash functions, in Advances in Cryptology—ASIACRYPT
2008, ed. by J. Pieprzyk. Lecture Notes in Computer Science, vol. 5350 (Springer, Berlin, 2008), pp.
272–289

ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://eprint.iacr.org/2004/199

	Security Analysis of Randomize-Hash-then-Sign Digital Signaturesn1
	Abstract
	Introduction
	Hash Functions and Digital Signatures
	Randomize-Hash-then-Sign Digital Signatures
	Analytical Results of Halevi and Krawczyk
	Related Work
	Our Results
	Comparison of Our Analysis with that of Halevi and Krawczyk
	Impact of Our Results
	Guide to the Article

	Preliminaries
	Notation
	Merkle-Damgård Hash Function Construction
	Fundamental Security Properties
	Properties of an Iterated Hash Function HH0
	Properties of an Ideal Compression Function h

	Compression Functions with Fixed Points
	Existential Forgery Attack on the Digital Signature Schemes

	Randomized Hashing
	TCR Hash Function Mode
	eTCR Hash Function Mode
	RMX Specification
	Standardization of RMX

	Security Properties of TCR and eTCR Hash Functions

	Generic Forgery Attacks on Randomize-Hash-then-Sign Signature Schemes
	Forgery Attack on the RMX-Hash-then-Sign Signature Schemes
	Limitations of the Forgery Attack

	Forgery Attack on Signature Schemes Based on Hr

	Application of Fixed Point Expandable Message to Forge Hash-then-Sign Signature Schemes
	Fixed Point Expandable Message
	Forgery Attack on Hash-then-Sign Signatures

	Offline Collision Attacks Are not Useful to Forge Randomize-Hash-then-Sign Signatures
	Existential Forgery Attack on Some RMX-Hash-then-Sign Signatures
	Outline of the Forgery Attack
	Pseudocode of the Forgery Attack
	Complexity

	Practical Security
	Attack on the e-SPR Property of the Compression Functions

	Applications of Our Forgery Attack
	Meaningful Forgeries
	RMXSP is Weaker than RMX
	Variants of Merkle-Damgård

	On the Applicability of Our Analysis to the Hash Functions with `Built-in' Randomization
	Randomize-Hash-then-Sign Signatures Versus HMAC
	Conclusion and Open Questions
	Acknowledgements
	Appendix A. Observation in the Padding Rule of RMX
	Appendix B. Message Randomization Technique RMXSP
	Illustration

	References

