
J. Cryptol. (2013) 26: 39–74
DOI: 10.1007/s00145-011-9112-3

More Constructions of Lossy and Correlation-Secure
Trapdoor Functions∗

David Mandell Freeman
Stanford University, Stanford, USA

dfreeman@cs.stanford.edu

Oded Goldreich
Weizmann Institute of Science, Rehovot 76100, Israel

oded.goldreich@weizmann.ac.il

Eike Kiltz
Ruhr-Universität Bochum, Bochum, Germany

eike.kiltz@rub.de

Alon Rosen
IDC Herzliya, Herzliya, Israel

alon.rosen@idc.ac.il

Gil Segev
Microsoft Research, Mountain View, USA

gil.segev@microsoft.com

Communicated by Dan Boneh

Received 12 May 2010
Online publication 11 November 2011

Abstract. We propose new and improved instantiations of lossy trapdoor functions
(Peikert and Waters in STOC’08, pp. 187–196, 2008), and correlation-secure trapdoor
functions (Rosen and Segev in TCC’09, LNCS, vol. 5444, pp. 419–436, 2009). Our
constructions widen the set of number-theoretic assumptions upon which these primi-
tives can be based, and are summarized as follows:

• Lossy trapdoor functions based on the quadratic residuosity assumption. Our con-
struction relies on modular squaring, and whereas previous such constructions
were based on seemingly stronger assumptions, we present the first construction
that is based solely on the quadratic residuosity assumption. We also present a
generalization to higher-order power residues.

• Lossy trapdoor functions based on the composite residuosity assumption. Our
construction guarantees essentially any required amount of lossiness, where at

∗ An extended abstract of this work appears in Public Key Cryptography—PKC 2010, Springer LNCS,
vol. 6056, pp. 279–295 (2010).

© International Association for Cryptologic Research 2011

mailto:dfreeman@cs.stanford.edu
mailto:oded.goldreich@weizmann.ac.il
mailto:eike.kiltz@rub.de
mailto:alon.rosen@idc.ac.il
mailto:gil.segev@microsoft.com

40 D.M. Freeman et al.

the same time the functions are more efficient than the matrix-based approach of
Peikert and Waters.

• Lossy trapdoor functions based on the d-Linear assumption. Our construction
both simplifies the DDH-based construction of Peikert and Waters and admits a
generalization to the whole family of d-Linear assumptions without any loss of
efficiency.

• Correlation-secure trapdoor functions related to the hardness of syndrome decod-
ing.

Key words. Public-key encryption, Lossy trapdoor functions, Correlation-secure
trapdoor functions.

1. Introduction

In this paper we describe new constructions of lossy trapdoor functions and correlation-
secure trapdoor functions. These primitives are strengthened variants of the classical
notion of trapdoor functions, and were introduced with the main goal of enabling simple
and black-box constructions of public-key encryption schemes that are secure against
chosen-ciphertext attacks. At a high level, they are defined as follows.

Lossy trapdoor functions [37]: A collection of lossy trapdoor functions consists of two
families of functions. Functions in one family are injective and can be efficiently
inverted using a trapdoor. Functions in the other family are “lossy,” which means that
the size of their image is significantly smaller than the size of their domain. The only
security requirement is that a description of a randomly chosen function from the
family of injective functions is computationally indistinguishable from a description
of a randomly chosen function from the family of lossy functions.

Correlation-secure trapdoor functions [39]: The classical notion of a one-way function
asks for a function that is efficiently computable but is hard to invert given the im-
age of a uniformly chosen input. Correlation security generalizes the one-wayness
requirement by considering k-wise products of functions and any specified input dis-
tribution, not necessarily the uniform distribution. Given a collection of functions
F and a distribution C over k-tuples of inputs, we say that F is secure under C -
correlated inputs if the function (f1(x1), . . . , fk(xk)) is one-way, where f1, . . . , fk

are independently chosen from F and (x1, . . . , xk) are sampled from C .

Lossy trapdoor functions were introduced by Peikert and Waters [37], who showed that
they imply fundamental cryptographic primitives such as trapdoor functions, collision-
resistant hash functions, oblivious transfer, and CCA-secure public-key encryption. In
addition, lossy trapdoor functions have already found various other applications, in-
cluding deterministic public-key encryption [5], OAEP-based public-key encryption
[27], “hedged” public-key encryption for protecting against bad randomness [1], se-
curity against selective opening attacks [2], and efficient non-interactive string commit-
ments [34].

The notion of correlation security was introduced by Rosen and Segev [39], who
showed that any collection of injective trapdoor functions that is one-way under a nat-
ural input distribution can be used to construct a CCA-secure public-key encryption

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 41

scheme.1 They showed that any collection of lossy trapdoor functions that are suffi-
ciently lossy is in fact also correlation-secure. This result was recently refined by Mol
and Yilek [30] who showed that even lossiness of any polynomial fraction of a single
bit suffices.

These applications motivate us to investigate new constructions of lossy and
correlation-secure functions. Such constructions would enable us to widen the basis
upon which one can achieve the above cryptographic tasks in a simple and modular
way.

1.1. Our Contributions

We propose new and improved constructions of lossy and correlation-secure trapdoor
functions based on well-established number-theoretic assumptions, some of which were
previously not known to imply either of the primitives. By directly applying the re-
sults of [30,37,39], we obtain new CCA-secure public-key encryption schemes based
on these assumptions. Concretely, we present the following constructions (summarized
in Table 1):

1. Lossy trapdoor permutations based on the quadratic residuosity assumption. Our
construction relies on Rabin’s modular squaring function and is based solely on
the quadratic residuosity assumption. More precisely, the function is defined as
f (x) = x2 · δr,s(x) mod N , where N = PQ is an RSA modulus and δr,s(·) is
a function indexed by two public elements r, s ∈ ZN serving two independent
purposes. First, it extends the modular squaring function to a permutation over
ZN . Second, it causes the function f (x) to lose the information about the sign of
x if and only if s is a quadratic residue. Therefore, under the quadratic residuosity
assumption f has one bit of lossiness. We note that although a function with only
one bit of lossiness (or, more generally, with only a non-negligible amount of
lossiness) is not necessarily a (strong) one-way function, it nevertheless can be
used as a building block for constructing a CCA-secure public-key encryption
scheme (see [30,39]). In addition, we describe a generalization of the construction
to higher-order power residues that allows for more lossiness.

2. Lossy trapdoor functions based on the composite residuosity assumption. Our con-
struction is based on the Damgård–Jurik encryption scheme [14] with additional
insights by Damgård and Nielsen [15,16]. The Damgård–Jurik scheme is based on
computations in the group ZNs+1 , where N = PQ is an RSA modulus and s ≥ 1
is an integer (it contains Paillier’s encryption scheme [35] as a special case by
setting s = 1). At a high level, each function is described by a pair (pk, c), where
pk is a public key for the encryption scheme, and c is either an encryption of 1
(injective mode) or an encryption of 0 (lossy mode). By using the homomorphic
properties of the encryption scheme, given such a ciphertext c and an element x,
it is possible to compute either an encryption of x in the injective mode, or an
encryption of 0 in the lossy mode. We note that this construction was concurrently
and independently proposed by Boldyreva et al. [5]. We also give an “all-but-one”
version of the construction.

1 Any distribution where (x1, . . . , xk) are (1 − ε)k-wise independent, for a constant ε < 1, can be used in
their framework. In particular, this includes the case where x1 is uniformly distributed and x1 = · · · = xk .

42 D.M. Freeman et al.

Table 1. Overview of our different constructions.

Assumption Domain Dσ Lossiness �(n)

Quadratic residuosity Sect. 3.1 {1, . . . ,N − 1} 1
Quadratic residuosity Sect. 3.2 {0,1}n log2(4/3)

eth power residuosity Sect. 4.2 {1, . . . ,N − 1} log2(e)

eth power residuosity Sect. 4.4 {0,1}n+m (m ≥ log2(e) − 1) log2(e) − e · 2−m

Composite residuosity Sect. 5.2 ZNs × Z
∗
N

s · log2(N) − 1

Composite residuosity Sect. 5.3 {0,1}(n−1)s × {0,1}n/2−1 s · (n − 1) − n/2 − 1
d-linear assumption Sect. 6 {0,1}n (1 − ε)n (εn > d)

3. Lossy trapdoor functions based on the d-Linear assumption. Our construction
both simplifies and generalizes the DDH-based construction of Peikert and Wa-
ters [37, Sect. 5]. (Recall that DDH is the 1-Linear assumption.) Let G be a
finite group of order p and choose an n × n matrix M over Fp that has ei-
ther rank d (lossy mode) or rank n (injective mode). We “encrypt” M = (aij)

as the matrix gM = (gaij) ∈ G
n×n, where g is a generator of G. If �x is a bi-

nary vector of length n, then given gM we can efficiently evaluate the function
fM(�x) = gM �x ∈ G

n. If M has rank n, then given M we can efficiently invert fM

on the image of {0,1}n. On the other hand, if M has rank d and p < 2n/d , then
f is lossy. The d-Linear assumption implies that the lossy and injective modes
cannot be efficiently distinguished. We also give an “all-but-one” version of the
construction based on the DDH assumption.

4. Correlation-secure trapdoor functions based on the hardness of syndrome de-
coding. Our construction is based on Niederreiter’s coding-based encryption sys-
tem [33] which itself is the dual of the McEliece encryption system [29]. Our
trapdoor function is defined as f (x) = Hx, where H is a binary (n − k) × n ma-
trix (from a certain distribution that allows for embedding a trapdoor) and x is bit
string of small Hamming weight. We show that the function’s correlation secu-
rity is directly implied by a result of Fischer and Stern [18] about the pseudoran-
domness of the function f . Interestingly, the related McEliece trapdoor function
(which can be viewed as the dual of the Niederreiter function) is not correlation-
secure.2 It is, however, possible to extend the framework of correlation security in
a natural way to obtain a direct construction of a CCA-secure encryption scheme
from the McEliece trapdoor function. This was recently demonstrated by Dowsley
et al. [17] (who proposed the first coding-based encryption scheme that is CCA-
secure in the standard model) and, for the related lattice case, independently by
Peikert [36] and Goldwasser and Vaikuntanathan [20]. Our contribution is to show
that the Niederreiter function admits a simple construction of correlation-secure
trapdoor functions based on the same security assumptions as [17].3 The resulting
CCA-secure encryption scheme is as efficient as the one from [17].

2 The McEliece trapdoor function is defined as f ′
H

(x, e) := Hx ⊕ e, where H is a binary k × n matrix,
x is a k-bit string and e is a error vector of small Hamming weight. Given H1, H2 and two evaluations
y1 = H1x ⊕ e and y2 = H2x ⊕ e one can reconstruct the unique x by solving (H1 ⊕ H2)x = y1 ⊕ y2 for x.

3 We remark that our construction of a correlation-secure trapdoor function from coding theory does not
carry over to the lattice case since the “dual” of the one-way function used in [20,36] is not injective.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 43

1.2. Related Work

Most of the known constructions and applications of lossy and correlation-secure trap-
door functions are already mentioned above; here we include a few more. Besides their
construction based on DDH, Peikert and Waters [37] also present a construction of
lossy trapdoor functions based on the worst-case hardness of lattice problems. The con-
struction does not enjoy the same amount of lossiness as their DDH-based one, but it
still suffices for their construction of a CCA-secure public-key encryption scheme. The
worst-case hardness of lattice problems is also used by Peikert [36] and by Goldwasser
and Vaikuntanathan [20] to construct CCA-secure encryption schemes using a natural
generalization of correlation-secure trapdoor functions.

Kiltz et al. [27] show that the RSA trapdoor permutation is lossy under the Φ-hiding
assumption of Cachin et al. [10]. (Concretely, it has log2(e) bits of lossiness, where e

is the public RSA exponent.) Furthermore, they propose multi-prime hardness assump-
tions under which RSA has greater lossiness.

In concurrent and independent work, Mol and Yilek [30] propose a lossy trapdoor
function based on the modular squaring function. Though this construction is related
to ours, its security is based on the seemingly stronger assumption that a random two-
prime RSA modulus is indistinguishable from a random three-prime RSA modulus.
(See Appendix A for further discussion of this assumption.) In another concurrent and
independent work, Hemenway and Ostrovsky [23] generalize the framework of Peikert
and Waters [37] to rely on any homomorphic hash proof system, which is an extension
of Cramer and Shoup’s notion of hash proof systems [13]. Hemenway and Ostrovsky
then show that homomorphic hash proof systems can be constructed based on either
the quadratic residuosity assumption or the composite residuosity assumption. Their
approach is significantly different than ours, and the resulting constructions seem in-
comparable when considering the trade-off between efficiency and lossiness.

1.3. Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we review the definitions
of lossy and correlation-secure trapdoor functions. In Sect. 3 we present our construc-
tion based on the quadratic residuosity assumption, and in Sect. 4 we generalize this
construction to higher-order residues. In Sects. 5, 6, and 7 we present our construc-
tions based on the composite residuosity assumption, the d-Linear assumption, and the
hardness of syndrome decoding, respectively.

In Appendix A, we revisit the folklore that relates the distinguishability of 2-prime
and 3-prime composites to the quadratic residuosity assumption. In particular, we pro-
pose and prove a reasonable instantiation of this folklore.

2. Preliminaries

We assume familiarity with standard cryptographic objects and notions such as one-
way functions, computational indistinguishability, trapdoor permutations, public-key
encryption, and chosen-ciphertext security. The reader is referred to [19] for definitions.

44 D.M. Freeman et al.

2.1. Lossy Trapdoor Functions

A collection of lossy trapdoor functions consists of two families of functions. Functions
in one family are injective and can be efficiently inverted using a trapdoor. Functions
in the other family are “lossy,” which means that the size of their image is significantly
smaller than the size of their domain. The only security requirement is that a description
of a randomly chosen function from the family of injective functions is computationally
indistinguishable from a description of a randomly chosen function from the family of
lossy functions.

Definition 2.1 (Lossy trapdoor functions). Let m : N → N and � : N → R be two
non-negative functions, and for any n ∈ N, let m = m(n) and � = �(n). A collection of
(m, �)-lossy trapdoor functions is a 4-tuple of probabilistic polynomial-time algorithms
(G0,G1,F,F−1) such that:

1. Sampling a lossy function: G0(1n) outputs a function index σ ∈ {0,1}∗.
2. Sampling an injective function: G1(1n) outputs a pair (σ, τ) ∈ {0,1}∗ × {0,1}∗.

(Here σ is a function index and τ is a trapdoor.)
3. Evaluation: For every function index σ produced by either G0 or G1, the algorithm

F(σ, ·) computes a function fσ : {0,1}m → {0,1}∗ with one of the two following
properties:

• Lossy: If σ is produced by G0, then the image of fσ has size at most 2m−�.
• Injective: If σ is produced by G1, then the function fσ is injective.

4. Inversion of injective functions: For every pair (σ, τ) produced by G1 and every
x ∈ {0,1}m, we have F−1(τ,F(σ, x)) = x.

5. Security: The two ensembles {σ : σ ← G0(1n)}n∈N and {σ : (σ, τ) ← G1(1n)}n∈N

are computationally indistinguishable.

Note that the size m of the domain (of both types of function) and the size m − � of
the image of lossy functions depend on the security parameter n. Note also that we do
not specify the output of F−1 on inputs not in the image of fσ . In the above definition we
have assumed for simplicity that the domain is {0,1}m. More generally, one may allow
the functions to have arbitrary domains Dn (this would correspond to Dn = {0,1}m in
the definition above). In such a case, one would have to add the requirement that Dn’s
size is bounded below by 2m−1, and that the image of a lossy function is of size at
most |Dn| ·2−�. (In Definition 2.3 below we generalize the definition so that the domain
depends not only on n but also on the function index σ .)

A collection of all-but-one lossy trapdoor functions is a more general primitive. Such
a collection is associated with a set B , whose members are referred to as branches. (If
B = {0,1} then we obtain the previous notion of lossy trapdoor functions.) The sam-
pling algorithm of the collection receives an additional parameter b∗ ∈ B , and outputs a
description of a function f (·, ·) together with a trapdoor τ and a set of lossy branches β .
The function f has the property that for any branch b
∈ β the function f (b, ·) is injec-
tive (and can be inverted using τ), while the function f (b∗, ·) is lossy. Moreover, the
description of f hides (in a computational sense) the set of lossy branches β .

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 45

Our definition is slightly more general than that of Peikert and Waters [37, Sect. 3.2],
which allows only one lossy branch (i.e., β = {b∗}). We allow possibly many lossy
branches (other than b∗), and require that given a description of a function and b∗ it
is computationally infeasible to find another lossy branch. The proof of security of the
Peikert–Waters CCA-secure public-key encryption scheme [37, Sect. 4.3] can easily be
adapted to our more general context. (We are currently not aware of other applications
of all-but-one lossy trapdoor functions.)

Definition 2.2 (All-but-one lossy trapdoor functions). Let m : N → N and � : N → R

be two non-negative functions, and for any n ∈ N, let m = m(n) and � = �(n).
A collection of (m, �)-all-but-one lossy trapdoor functions is a 4-tuple of probabilis-
tic polynomial-time algorithms (B,G,F,F−1) such that:

1. Sampling a branch: B(1n) outputs a value b ∈ {0,1}∗.
2. Sampling a function: For every value b produced by B(1n), the algorithm G(1n, b)

outputs a triple (σ, τ,β) ∈ {0,1}∗ × {0,1}∗ × {0,1}∗ consisting of a function in-
dex σ , a trapdoor τ , and a set of lossy branches β with b∗ ∈ β .

3. Evaluation: For any b∗ and b produced by B(1n) and for every (σ, τ,β) produced
by G(1n, b∗), the algorithm F(σ, b, ·) computes a function fσ,b : {0,1}m → {0,1}∗
with one of the two following properties:

• Lossy: If b = b∗, then the image of fσ,b has size at most 2m−�.
• Injective: If b
∈ β , then the function fσ,b is injective.

4. Inversion of injective functions: For any b∗ and b produced by B(1n), every
(σ, τ,β) produced by G(1n, b∗), and every x ∈ {0,1}m, if b
∈ β then we have

F−1(τ, b,F(σ, b, x)
) = x.

5. Security: For any two sequences {(b∗
n, bn)}n∈N such that b∗

n and bn are distinct
values in the image of B(1n), the two ensembles {σ : (σ, τ,β) ← G(1n, b∗

n)}n∈N

and {σ : (σ, τ,β) ← G(1n, bn)}n∈N are computationally indistinguishable.
6. Hiding lossy branches: Any probabilistic polynomial-time algorithm A that re-

ceives as input (σ, b∗), where b∗ ← B(1n) and (σ, τ,β) ← G(1n, b∗), has only a
negligible probability of outputting an element b ∈ β \ {b∗} (where the probability
is taken over the randomness of B, G, and A).

We now introduce a useful generalization of lossy trapdoor functions which we call
lossy trapdoor functions with index-dependent domains. The only difference between
these functions and those defined above is that the function’s domain is no longer fixed
to be {0,1}m; instead, it may depend on the function index σ .

Definition 2.3 (Lossy trapdoor functions with index-dependent domains). Let m :
N → N and � : N → R be two non-negative functions, and for any n ∈ N, let m = m(n)

and � = �(n). A collection of (m, �)-lossy trapdoor functions with index-dependent do-
mains is a 5-tuple of probabilistic polynomial-time algorithms (G0,G1,S,F,F−1) such
that:

46 D.M. Freeman et al.

1. Sampling a lossy function: G0(1n) outputs a function index σ ∈ {0,1}∗, such that
σ also specifies a finite set Dσ with |Dσ | ≥ 2m−1.

2. Sampling an injective function: G1(1n) outputs a pair (σ, τ) ∈ {0,1}∗ × {0,1}∗,
such that σ also specifies a finite set Dσ with |Dσ | ≥ 2m−1. (Here σ is a function
index and τ is a trapdoor.)

3. Sampling an input: For every value σ produced by either G0 or G1, the algorithm
S(σ) outputs an element sampled uniformly at random from Dσ .

4. Evaluation: For every function index σ produced by either G0 or G1, the algorithm
F(σ, ·) computes a function fσ : Dσ → {0,1}∗ with one of the two following prop-
erties:

• Lossy: If σ is produced by G0, then the image of fσ has size at most |Dσ | ·
2−�.

• Injective: If σ is produced by G1, then the function fσ is injective.

5. Inversion of injective functions: For every pair (σ, τ) produced by G1 and every
x ∈ Dσ , we have F−1(τ,F(σ, x)) = x.

6. Security: The two ensembles {σ : σ ← G0(1n)}n∈N and {σ : (σ, τ) ← G1(1n)}n∈N

are computationally indistinguishable.

It is furthermore possible and straightforward to give an analogous generalization of
all-but-one lossy trapdoor functions to handle index-dependent domains.

We remark that lossy trapdoor functions with index-dependent domains do not seem
to be sufficient to construct correlated-product secure trapdoor functions or CCA-secure
public-key encryption. The difficulty is that in the constructions from [37,39], a fixed
value has to be evaluated on many independently generated instances of the trapdoor
function (with respect to the same security parameter). It is therefore crucial that the
domain stay the same for all these instances. However, lossy trapdoor functions with
index-dependent domains are sufficient for many applications. These include determin-
istic public-key encryption [5], “hedged” public-key encryption for protecting against
bad randomness [1], lossy encryption [2], security against selective opening attacks [2],
and non-interactive string commitments [34]. (In some of these applications the lossy
trapdoor function is required to have additional properties.)

3. A Construction Based on the Quadratic Residuosity Assumption

Our first construction is based on the modular squaring function x �→ x2 mod N , where
N = PQ for prime numbers P ≡ Q ≡ 3 mod 4 (i.e., Blum integers). This is a 4-to-1
mapping on Z

∗
N , and the construction is obtained by embedding additional information

in the output that reduces the number of preimages to either two (these are the lossy
functions) or one (these are the injective functions) in a computationally indistinguish-
able manner. The injective trapdoor functions in our construction can be viewed as a
permutation version of the Rabin trapdoor function [38].

In our initial construction (Sect. 3.1) the functions are defined over an index-
dependent domain Z

∗
N and have one bit of lossiness. However, lossy trapdoor functions

in a collection are required to share the same domain; i.e., the domain should depend

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 47

only on the security parameter. Our second construction (Sect. 3.2) overcomes this dif-
ficulty with a simple domain extension, which results in lossiness of log2(4/3) bits.

We start with a definition. For any odd positive integer N , we denote by JSN : Z →
{−1,0,1} the Jacobi symbol mod N . We define functions h, j : Z → {0,1} by

h(x) =
{

1, if x > N/2,

0, if x ≤ N/2,

j (x) =
{

1, if JSN(x) = −1,

0, if JSN(x) = 0 or 1.

We define h and j on ZN by representing elements of ZN as integers between 0 and
N − 1.

Fact 3.1. Let N = PQ where P ≡ Q ≡ 3 mod 4, and let y ∈ Z
∗
N be a quadratic

residue. Denote by {±x0,±x1} the distinct solutions of the equation x2 = y mod N .
Then JSP (−1) = JSQ(−1) = −1, and therefore

1. JSN(x0) = JSN(−x0) and JSN(x1) = JSN(−x1),
2. JSN(x0) = −JSN(x1).

In particular, the four square roots of y take all four values of (h(x), j (x)).

3.1. A Lossy Trapdoor Function with Index-Dependent Domains

We define a 5-tuple F = (G0,G1,S,F,F−1) (recall Definition 2.3) as follows.

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an n-bit modulus
N = PQ, where P ≡ Q ≡ 3 mod 4 are random n/2-bit prime numbers. Then it
chooses random r ∈ Z

∗
N such that JSN(r) = −1, and a random s ∈ Z

∗
N such that

JSN(s) = 1 and s is a quadratic residue. The function index is σ = (N, r, s), and
the function fσ is defined on the domain Dσ = {1, . . . ,N − 1}.

2. Sampling an injective function: On input 1n the algorithm G1 chooses an n-bit
modulus N = PQ, where P ≡ Q ≡ 3 mod 4 are random n/2-bit prime numbers.
Then it chooses random r ∈ Z

∗
N such that JSN(r) = −1, and a random s ∈ Z

∗
N

such that JSN(s) = 1 and s is a quadratic non-residue. The function index is
σ = (N, r, s), the trapdoor is τ = (P,Q), and the function fσ is defined on the
domain Dσ = {1, . . . ,N − 1}.

3. Sampling an input: Given a function index σ = (N, r, s), the algorithm S outputs
a uniformly distributed x ∈ Dσ = {1, . . . ,N − 1}.

4. Evaluation: Given a function index σ = (N, r, s) and x ∈ Dσ = {1, . . . ,N − 1},
the algorithm outputs

fN,r,s(x) = x2 · rj (x) · sh(x) mod N.

5. Inversion: Given a description of an injective function σ = (N, r, s) together with
its trapdoor τ = (P,Q) and y = fN,r,s(x), the algorithm F−1 retrieves x as fol-
lows.

48 D.M. Freeman et al.

(a) Find j (x) by computing JSN(fN,r,s(x)) (note that JSN(fN,r,s(x)) = JSN(x)).
Let y′ = yr−j (x).

(b) Find h(x) by checking whether y′ is a quadratic residue mod N (note that
h(x) = 1 if and only if y′ is not a quadratic residue). Let y′′ = y′s−h(x).

(c) Find all square roots of y′′ in ZN , and output the one that agrees with both j (x)

and h(x). (We use Fact 3.1 if y′′ ∈ Z
∗
N , and note that if 1 < gcd(y′′,N) < N ,

then y′′ has two square roots that are negatives of each other.)

We now prove that the above construction is indeed lossy based on the quadratic
residuosity assumption, which is defined as follows.

Definition 3.2. Let JN = {x ∈ Z
∗
N : JSN(x) = 1}, and let QN be the subgroup of

squares in Z
∗
N . We say that the quadratic residuosity assumption holds for N if the two

distributions obtained by sampling uniformly at random from QN or from JN \ QN are
computationally indistinguishable.

Theorem 3.3. Under the quadratic residuosity assumption, F is a collection of (n,1)-
lossy trapdoor functions with index-dependent domains.

Proof. First, it follows from the correctness of the inversion algorithm that G1 outputs
permutations on the set Dσ = {1, . . . ,N − 1}. Next, we claim that G0 outputs functions
that are 2-to-1 on {1, . . . ,N − 1}. Suppose y ∈ QN . Since s is a quadratic residue,
Fact 3.1 implies that for each (η, ι) ∈ {0,1}2 there is an xη,ι satisfying

x2
η,ι = ys−η, h(xη,ι) = η, j (xη,ι) = ι.

Then for each η ∈ {0,1} we have fN,r,s(xη,0) = y and fN,r,s(xη,1) = ry. Thus each
element in the set QN ∪ rQN has at least two preimages in Z

∗
N , and since this set has

cardinality half that of Z
∗
N we deduce that fN,r,s is 2-to-1 on Z

∗
N . A similar argument

shows that every square in the ideal PZN has two preimages in PZN , and the same for
the ideal QZN . Since {1, . . . ,N −1} = Z

∗
N ∪PZN ∪QZN , the function fN,r,s is 2-to-1

on Dσ = {1, . . . ,N − 1}.
Descriptions of lossy functions and injective functions differ only in the element s,

which is a random element of the subgroup of Z
∗
N with Jacobi symbol 1 that is a

quadratic residue in the lossy case and a quadratic non-residue in the injective case.
Therefore, the quadratic residuosity assumption implies that lossy functions are compu-
tationally indistinguishable from injective functions. �

Note that since security does not depend on the distribution of r , the size of the
function index σ can be reduced by choosing r to be the smallest positive integer such
that JSN(r) = −1.

3.2. A Lossy Trapdoor Function

We now show how to extend our previous construction to be defined over a com-
mon domain that only depends on the security parameter. We define a 4-tuple F =
(G0,G1,F,F−1) (recall Definition 2.1) as follows:

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 49

1. Sampling a lossy function is done as in Sect. 3.1, with the difference that now the
function fσ is defined on the domain {0,1}n.

2. Sampling an injective function is done as in Sect. 3.1, with the difference that now
the function fσ is defined on the domain {0,1}n.

3. Evaluation: Given a function index σ = (N, r, s) and x ∈ {0,1}n, the algorithm F
interprets x as an integer in the set {1, . . . ,2n} and outputs

fN,r,s(x) =
{

x2 · rj (x) · sh(x) mod N, if 1 ≤ x < N,

x, if N ≤ x ≤ 2n.

4. Inversion: Given a description of an injective function σ = (N, r, s) together with
its trapdoor τ = (P,Q) and y = fN,r,s(x), the algorithm F−1 retrieves x as fol-
lows. If N ≤ y ≤ 2n, then the algorithm outputs y. Otherwise, it uses the method
described in the inversion algorithm from Sect. 3.1.

Theorem 3.4. Under the quadratic residuosity assumption, F is a collection of
(n, log2(4/3))-lossy trapdoor functions.

Proof. First, it follows from the correctness of the inversion algorithm that G1 outputs
permutations on the set {1, . . . ,2n}. Next, as already shown in the proof of Theorem 3.3,
G0 outputs functions that are 2-to-1 on the set {1, . . . ,N − 1}. Since N is an n-bit
modulus (i.e., 2n−1 < N < 2n), the lossy functions are 2-to-1 on at least half of their
domain, which implies that their image is of size at most 3/4 ·2n = 2n−log2(4/3). Finally,
as in the proof of Theorem 3.3, the quadratic residuosity assumption implies that lossy
functions are computationally indistinguishable from injective functions. �

4. A Construction Based on the eth Power Residuosity Assumption

In this section we generalize the construction of Sect. 3 to higher-order power residues.
Instead of using the squaring function mod N , we use the powering function x �→
xe mod N , where N is a product of two primes congruent to 1 mod e. This is an e2-to-1
mapping on Z

∗
N , and the construction is obtained by embedding additional informa-

tion in the output that reduces the number of preimages to either e (these are the lossy
functions) or 1 (these are the injective functions) in a computationally indistinguishable
manner, resulting in log2(e) bits of lossiness.

The security of our construction follows from the eth power residuosity assumption,
which is a generalization of the standard quadratic residuosity assumption. This as-
sumption, as well as our system, requires us to define the eth power residue symbol,
a generalization of the Legendre and Jacobi symbols. We review the basic facts here;
for further details see [26, Chap. 14] for the number theory context or [6,25] for cryp-
tographic applications.

4.1. Mathematical Background

Let e ≥ 2 be an integer, and let N = pq be a product of two primes congruent to 1
mod e. We say that x ∈ Z

∗
N is an eth power residue mod N if there is a y ∈ Z

∗
N such that

50 D.M. Freeman et al.

ye ≡ x mod N . Let ζe ∈ Q be a primitive eth root of unity, let K be the number field
Q(ζe), and let OK = Z[ζe] be the ring of integers in K . For an ideal a ⊂ OK , the norm
of a is N (a) = [OK : a]. We define the eth power residue symbol as follows:

Definition 4.1. Let e and K be as above, and let p be a prime ideal of OK not con-
taining e. For x ∈ OK , the eth power residue symbol of x mod p, denoted by (x

p
)e , is

defined to be
(

x

p

)

e

:=
{

0, if x ∈ p,

ζ i
e , if x
∈ p,

where i is the unique integer mod e such that ζ i
e ≡ x(N (p)−1)/e (mod p). One can show

that this definition is independent of the choice of the root of unity ζe [41, §III.1].
We extend to non-prime ideals and single elements in the obvious way: if a = ∏

i pi

is any ideal of OK not containing any prime factor of e, and a is any element of OK ,
we define

(
x

a

)

e

:=
∏

i

(
x

pi

)

e

and

(
x

a

)

e

:=
(

x

aOK

)

e

.

The power residue symbol shares some important properties with the Jacobi symbol
that it generalizes. First, if p is prime, then (x

p
)e = 1 if and only if x is an eth power

mod p. Second, the symbol is multiplicative in both components: for x, y ∈ OK and
ideals a,b ⊂ OK , we have

(
xy

a

)

e

=
(

x

a

)

e

(
y

a

)

e

and

(
x

ab

)

e

=
(

x

a

)

e

(
x

b

)

e

. (4.1)

For any x ∈ OK and ideal a relatively prime to e, Squirrel [41] gives an algorithm for
computing (x

a
)e that runs in time polynomial in log(N (a)), log(N (x)), and e. Boneh

and Horwitz [6,25] give an alternative polynomial-time algorithm for the case where a

is principal. Both algorithms use Eisenstein reciprocity [26, p. 207], a generalization of
quadratic reciprocity.

To define our lossy trapdoor function, we generalize the functions h(x) and j (x) of
Sect. 3 to higher residues. These functions will allow us to recover unique preimages of
the eth powering map mod N .

When trying to generalize the function j (x), we are immediately confronted with
an obstacle: if x is an integer, then (x

N
)e is always 1 when e is odd and is ±1 when

e is even, so if e > 2 the symbol does not contain enough information about x. To get
around this problem, we find ideals ai ⊂ OK of norm N such that N OK = ∏

ai , and
use the symbol (x

a1
)e. The following lemma shows that these ideals can be computed

easily, given an element μ ∈ Z
∗
N that is a primitive eth root of unity mod p and mod q .

Such a μ is said to be a nondegenerate primitive eth root of unity mod N . It is believed
that revealing such a μ does not make factoring N any easier. This is clearly the case
when e = 2, since the only such μ is −1. (See [6,9,25] for other contexts where this
assumption is used.)

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 51

Lemma 4.2. Let e be a positive integer, N = pq be a product of two primes p,q with
p ≡ q ≡ 1 mod e, and OK = Z[ζe]. Let μ ∈ Z

∗
N be a nondegenerate primitive eth root

of unity. For each i in 1, . . . , e with gcd(i, e) = 1, let ai = N OK + (ζe − μi)OK . Then
N (ai) = N for all i, and we have

N OK =
∏

(i,e)=1

ai . (4.2)

Proof. Since p ≡ q ≡ 1 (mod e), the primes p and q split completely in OK [32,
Corollary I.10.4]. Specifically, if pi = pOK + (ζe − μi)OK and qi = qOK + (ζe −
μi)OK , then we have [32, Proposition I.8.3]

pOK =
∏

(i,e)=1

pi and qOK =
∏

(i,e)=1

qi . (4.3)

Furthermore, we have N (pi) = p and N (qi) = q for all i. It follows immediately that

piqi = N OK + (
ζe − μi

)(
p + q + ζe − μi

)
OK ⊂ ai

and that ai ⊂ pi ∩ qi . Since pi and qi are relatively prime, we have pi ∩ qi = piqi ,
and thus ai = piqi for all i. The decomposition of N in (4.2) now follows from the
decompositions of p and q in (4.3), and we have N (ai) = N (pi)N (qi) = N . �

Note that when e = 2 we have μ = −1, K = Q, and a1 = NZ.
We now define a function J (x) : Z → Ze that generalizes the function j (x) of Sect. 3.

Since the function will depend on our choice of a primitive eth root of unity μ, we make
this dependence explicit in the notation. For a fixed μ, let a = N OK + (ζe − μ)OK be
the ideal a1 from Lemma 4.2, and define

Jμ(x) =
{

0, if gcd(x,N)
= 1,

i, if gcd(x,N) = 1 and (x
a
)e = ζ i

e .

It follows from (4.1) that if x, y ∈ Z
∗
N , then Jμ(xy) = Jμ(x) + Jμ(y) (mod e). If a

is principal, then a generator can be computed in time polynomial in logN and the
discriminant of K = Q(ζe) (using e.g. [11, Algorithm 6.5.10]), and thus the algorithm
of Boneh and Horwitz ([6, Appendix B] or [25, Sect. 4.2.1]) can be used to compute
(x
a
)e in this case.
The function H(x) generalizes the function h(x) of Sect. 3 and is used to distinguish

eth roots that have the same value of J (x). Specifically, we define Hμ(x) : Z → Ze by

Hμ(x) := (
i ∈ Ze such that xμi mod N has minimal representative in [0,N − 1]).

If e = 2, then since μ = −1 the function simply determines whether x mod N is greater
than or less than N/2.

The fact that Jμ and Hμ can be used to distinguish preimages of the eth powering
map is a consequence of the following proposition, which generalizes Fact 3.1.

52 D.M. Freeman et al.

Proposition 4.3. Let e be a positive square-free integer and OK = Z[ζe]. Let N = pq

where p ≡ q ≡ 1 mod e. Suppose that for every prime f | e we have p,q
≡ 1 mod f 2.
Then there is a μ ∈ Z such that

1. μ is a nondegenerate primitive eth root of unity mod N ,
2. (

μ
ai

)e = 1 for every ideal ai ⊂ OK as in Lemma 4.2.

Furthermore, if y ∈ Z
∗
N is an eth power residue and μ has properties (1) and (2), then

the e2 solutions to y = xe mod N take on all e2 values of (Hμ(x), Jμ(x)).

Proof. The assumption p ≡ 1 (mod e) implies that there is a primitive eth root of
unity μp ∈ Fp . For any prime f | e, the assumption p
≡ 1 (mod f 2) implies that xf −
μp has no solutions in Fp , for such a solution would be a primitive ef th root of unity
in Fp , which doesn’t exist. It follows that (

μp

p1
)e is a primitive eth root of unity ζ a

e

(with (a, e) = 1). Similarly, there is a primitive eth root of unity μq ∈ Fq such that
(
μq

q1
)e = ζ b

e , with (b, e) = 1. Let a′, b′ be such that aa′ ≡ bb′ ≡ 1 (mod e). Then by
(4.1) we have

(
μa′

p

p1

)

e

= ζe,

(
μ−b′

q

q1

)

e

= ζ−1
e .

By the Chinese remainder theorem, there is an integer μ that is congruent to μa′
p mod p

and μ−b′
q mod q , and it follows from the above argument that (

μ
a1

)e = 1. To show the
same holds for all ai , we note that for each i there is some automorphism σ of K

fixing Q such that ai = aσ
1 . Since μ ∈ Z, the result (

μ
ai

)e = 1 now follows from Galois-
equivariance of the power residue symbol.

For the “furthermore” statement, let μ be as constructed above, and let α1, . . . , αe be
integers such that {αiμ

j }ei,j=1 is a complete set of solutions to y = xe mod N . Then it is

easy to see that for fixed i we have Jμ(αiμ
j) = Jμ(αiμ

j ′
) for all j, j ′, and Hμ(αiμ

j)
=
Hμ(αiμ

j ′
) for all j
= j ′. It thus suffices to show that Jμ(αi)
= Jμ(αi′) for i
= i′.

Suppose that i
= i′, and let a = pq be the prime factorization of a in OK . Then there
are unique k, l ∈ Ze such that αi′ = αiμ

k mod p and αi′ = αiμ
l mod q . We thus have

(
αi′

a

)

e

=
(

αi

a

)

e

(
μ

p

)k

e

(
μ

q

)l

e

=
(

αi

a

)

e

(
μ

q

)l−k

e

.

If (
αi′
a

)e = (
αi

a
)e then k = l (mod e) and thus αi′ = αiμ

k mod N , which contradicts our
assertion that {αiμ

j }ei,j=1 is a complete set of solutions to y = xe mod N . We conclude
that Jμ(αi)
= Jμ(αi′) for i
= i′. �

4.2. A Lossy Trapdoor Function with Index-Dependent Domains

We assume that the square-free integer e and a primitive eth root of unity ζe ∈ Q

are fixed, and we let K = Q(ζe) and OK = Z[ζe]. We define a 5-tuple F =
(G0,G1,S,F,F−1) (recall Definition 2.3) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an n-bit mod-
ulus N = pq , where p and q are random n/2-bit prime numbers with p,q ≡ 1

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 53

(mod e) and p,q
≡ 1 mod f 2 for all primes f | e. It chooses a random nondegen-
erate primitive eth root of unity μ ∈ ZN such that (

μ
a
)e = 1, where a ⊂ OK is the

ideal N OK + (ζe − μ)OK . Then it chooses random r ∈ Z
∗
N such that Jμ(r) = 1,

and a random s ∈ Z
∗
N such that Jμ(s) = 0 and s is an eth power mod N . The

function index is σ = (N,μ, r, s) and the function fσ is defined on the domain
Dσ = {1, . . . ,N − 1}.

2. Sampling an injective function: On input 1n the algorithm G1 chooses an n-bit
modulus N = pq and a primitive eth root of unity μ mod N as above. Then it
chooses random r ∈ Z

∗
N such that Jμ(r) = 1, and a random s ∈ Z

∗
N such that

Jμ(s) = 0 and s is not an f th power mod N for all primes f dividing e. The
function index is σ = (N,μ, r, s), the trapdoor is τ = (p, q), and the function fσ

is defined on the domain Dσ = {1, . . . ,N − 1}.
3. Sampling an input: Given a function index σ = (N,μ, r, s), the algorithm S out-

puts a uniformly distributed x ∈ Dσ = {1, . . . ,N − 1}.
4. Evaluation: Given a function index σ = (N,μ, r, s) and nonzero x ∈ Dσ =

{1, . . . ,N − 1}, the algorithm F outputs

fN,μ,r,s(x) = xe · rJμ(x) · sHμ(x) mod N.

5. Inversion: Given a description of an injective function σ = (N,μ, r, s) together
with its trapdoor τ = (p, q) and y = fN,μ,r,s(x), the algorithm F−1 retrieves x as
follows.
(a) Find Jμ(x) by computing Jμ(fN,μ,r,s(x)) (note that Jμ(fN,μ,r,s(x)) =

Jμ(x)). Let y′ = yr−Jμ(x).
(b) Find Hμ(x) by computing the integer i such that y′s−i is an eth power residue

mod N (note that this i is equal to Hμ(x)). Let y′′ = y′s−Hμ(x).
(c) Find all solutions to xe = y′′ in ZN , and output the one that agrees with both

Jμ(x) and Hμ(x). (We use Proposition 4.3 if y′′ ∈ Z
∗
N , and note that if 1 <

gcd(y′′,N) < N , then there are e solutions, indexed by Hμ(x).)

We will show that this construction is indeed lossy based on the eth power residuosity
assumption. We first state this assumption, and then give the theorem.

Definition 4.4. Let N,μ be as computed by G0 or G1 above. Let JN = {x ∈ Z
∗
N :

Jμ(x) = 0}, and let EN be the subgroup of eth powers in Z
∗
N . We say that the eth power

residuosity assumption holds for (N,μ) if the two distributions obtained by sampling
uniformly at random from EN or from JN are computationally indistinguishable, where
the adversary has access to both N and μ.

One can show that the set JN is independent of the choice of ζe and of μ, given the
constraint that μ satisfies the conditions of Proposition 4.3.

The following proposition relates the eth power residuosity assumption as defined
above to the two distributions of s ∈ ZN in our lossy and injective sampling algorithms.

Proposition 4.5. Let N,μ be as computed by G0 or G1 above. Let JN = {x ∈ Z
∗
N :

Jμ(x) = 0}, let EN be the subgroup of eth powers in Z
∗
N , and let HN be the set of

54 D.M. Freeman et al.

elements in JN that are not an f th power mod N for all primes f dividing e. Suppose
that one of the following holds:

(a) An element ρ ∈ HN is known.
(b) The number factors of e is O(logn) = O(log logN).

If the eth power residuosity assumption holds for (N,μ), then the two distributions
obtained by sampling uniformly at random from EN or from HN are computationally
indistinguishable.

Specifically, suppose that e has k prime factors. If there is an efficient algorithm A
that can distinguish EN from HN with probability greater than ε, then there is an effi-
cient algorithm B that can break the eth power residuosity assumption with probability
at least ε′, where

• ε′ = ε/2k if hypothesis (a) holds, and
• ε′ = ε/3k if hypothesis (b) holds.

Proof. To prove the lemma we induct on the number of prime factors of e. To simplify

notation, for a set S let ΓA(S) denote Pr[A(x) = 1 : x
R← S]. First, let e be prime and

suppose there is an algorithm A such that

∣∣Pr
[

A(x) = 1 : x R← EN

] − Pr
[

A(x) = 1 : x R← HN

]∣∣ = ∣∣ΓA(EN) − ΓA(HN)
∣∣ > ε.

Since e is prime, a uniformly random element of JN is in EN with probability 1/e and
in HN with probability (e − 1)/e. It follows that

∣∣ΓA(EN) − ΓA(JN)
∣∣ =

∣∣∣∣ΓA(EN) −
(

1

e
· ΓA(EN) + e − 1

e
· ΓA(HN)

)∣∣∣∣ >
e − 1

e
· ε.

Thus A itself is an algorithm that breaks the eth power residuosity assumption with
probability at least e−1

e
· ε ≥ ε/2, which proves the lemma in this case. (Note that since

e is prime, hypothesis (b) holds.)
Now let e1, e2 be coprime square-free integers with k1 and k2 prime factors, respec-

tively. We will show that the lemma holds for e1 and e2, then it holds for e = e1e2. We
first set some notation: for i = 1,2, let E i

N be the subgroup of ei th powers in Z
∗
N , and

let Hi
N be the set of elements in JN that are not an f th power mod N for all primes f

dividing ei .
Suppose that there is an algorithm A such that (using the notation ΓA(S) defined

above) we have
∣∣ΓA(EN) − ΓA(HN)

∣∣ > ε.

This can be rewritten as

∣∣ΓA
(

E 1
N ∩ E 2

N

) − ΓA
(

E 1
N ∩ H2

N

) + ΓA
(

E 1
N ∩ H2

N

) − ΓA
(

H1
N ∩ H2

N

)∣∣ > ε.

Choose any α,β ∈ (0,1) such that α + β = 1. Then one of the following two properties
holds for A:

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 55

Case 1: A can distinguish between random elements of E 1
N ∩ E 2

N and E 1
N ∩ H2

N with
probability at least ε · α.

Case 2: A can distinguish between random elements of E 1
N ∩ H2

N and H1
N ∩ H2

N with
probability at least ε · β .

We now consider in turn each of the two hypotheses of the theorem. First, suppose
hypothesis (a) holds. Let α = k2/(k1 + k2) and β = k1/(k1 + k2).

• If case 1 holds, then given an element x that is uniform in either E 2
N or H2

N , running
A(xe1) distinguishes these two cases with probability ε · α = ε · k2/(k1 + k2). By
the inductive hypothesis for e2, this implies that there is an algorithm B that can
break the eth power residuosity assumption with probability at least ε · α/2k2 =
ε/2(k1 + k2).

• If case 2 holds, then given an element x that is uniform in either E 1
N or H1

N ,
the following algorithm distinguishes these two cases with probability ε · β =
ε · k1/(k1 + k2):

1. Choose a random � ∈ [0, e2] coprime to e2.
2. Choose a random y ∈ Z

∗
N .

3. Run A(xe2 · ye1e2 · ρe1�).

(The element ye1e2 · ρe1� is a uniformly random element of E 1
N ∩ H2

N .) By the
inductive hypothesis for e1, this implies that there is an algorithm B that can
break the eth power residuosity assumption with probability at least ε · β/2k1 =
ε/2(k1 + k2).

Since e = e1e2 has k1 + k2 prime factors, we conclude that the lemma holds for
e = e1e2.

Now suppose hypothesis (b) holds, and furthermore that e2 is prime (i.e., k2 = 1). Let
α = 1/3 and β = 2/3.

• If case 1 holds, given an element x that is uniform in either E 2
N or H2

N , running
A(xe1) distinguishes these two cases with probability ε · α. Since e2 is prime, the
base case of the induction implies that there is an algorithm B that can break the eth
power residuosity assumption with probability at least ε · α/2 = ε/6 ≥ ε/3k1+1.

• Suppose case 2 holds. Since e2 is a prime not dividing e1, a uniformly random
element of E 1

N is in E 2
N with probability 1/e2 and in H2

N with probability (e2 −
1)/e2, and similarly for a random element of H2

N . It follows that

∣
∣ΓA

(
E 1

N

) − ΓA
(

H1
N

)∣∣

=
∣∣∣∣

1

e2

(
ΓA

(
E 1

N ∩ E 2
N

) − ΓA
(

H1
N ∩ E 2

N

))

+ e2 − 1

e2

(
ΓA

(
E 1

N ∩ H2
N

) − ΓA
(

H1
N ∩ H2

N

))
∣∣∣∣. (4.4)

The hypothesis of case 2 is that

∣∣ΓA
(

E 1
N ∩ H2

N

) − ΓA
(

H1
N ∩ H2

N

)∣∣ ≥ ε · β.

56 D.M. Freeman et al.

Without loss of generality, we may assume e2 ≥ 3 and therefore e2−1
e2

≥ 2
3 . It fol-

lows from (4.4) and the triangle inequality (in the form |x + y| + |x| ≥ |y|) that
one of the following holds:

(i) |ΓA(E 1
N) − ΓA(H1

N)| ≥ 1
2 · ε · β , or

(ii) 1
e2

|ΓA(E 1
N ∩ E 2

N) − ΓA(H1
N ∩ E 2

N)| ≥ 1
6 · ε · β .

In case (i), the inductive hypothesis for e1 implies that there is an algorithm B that
breaks the eth power residuosity assumption with probability at least 1

2 ·ε ·β/3k1 =
ε/3k1+1. In case (ii), the same argument as in case 1 of hypothesis (a) shows that
there is an algorithm B that breaks the eth power residuosity assumption with
probability at least e2/6 · ε · β/3k1 ≥ ε/3k+1.

We conclude that the lemma holds for e = e1e2. �

Note that hypothesis (b) ensures that the factor lost in the security reduction is a
polynomial in the security parameter n.

Theorem 4.6. Suppose that one of the hypotheses (a) or (b) of Lemma 4.5 holds.
Then under the eth power residuosity assumption, F is a collection of (n, log2(e))-lossy
trapdoor functions with index-dependent domains.

The proof of Theorem 4.6 is entirely analogous to the proof of Theorem 3.3; we do
not repeat the details.

4.3. Extending to Large Values of e

Our description of the functions Jμ and Hμ above suggests that computing these func-
tions always takes time polynomial in e. If this is the case, then the lossy trapdoor
function defined above can only be efficiently computed when e is logarithmic in N ,
and the lossiness is limited to being logarithmic in the security parameter n. However,
if e is a product of many small primes, then we can modify the function to achieve
lossiness that is a constant fraction of the security parameter n.

Suppose f is a prime dividing e. To compute the eth power residue symbol we use the
following “compatibility” identity that holds for any ideal a ⊂ Z[ζe] (see Appendix B
for a proof):

(
x

a ∩ Z[ζf]
)

f

=
(

x

a

)e/f

e

. (4.5)

While the power residue symbol is independent of the choice of ζe used to compute it,
the function Jμ depends on this choice. We thus create a system of compatible roots of

unity by fixing ζe and setting ζf = ζ
e/f
e for each f | e. If we use Jμ(x, r) to denote the

function Jμ defined above relative to the r th power residue symbol, then the identity
(4.5) and our system of compatible roots of unity implies that

Jμ(x, e) ≡ Jμ(x,f) mod f.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 57

It follows that if e is square-free, then we can compute Jμ(x, e) by computing Jμ(x,f)

for each prime f | e and applying the Chinese remainder theorem.
We cannot use similar techniques to compute the function Hμ, but we can define a

modified function Ĥμ that has the necessary properties and can be computed via the
Chinese remainder theorem. We first let Hμ(x, r) denote the function Hμ defined rela-
tive to the r th power residue symbol, and then define

Ĥμ(x, e) := (
c ∈ Ze such that for all prime powers f | e, c ≡ Hμ(x,f) mod f

)
.

It is straightforward to show that the result of Proposition 4.3 still holds when we replace
Hμ with Ĥμ.

We can thus carry out the construction of Sect. 4.2, replacing the function Hμ with
Ĥμ, to obtain lossy trapdoor function with index-dependent domains and log2(e) bits
of lossiness. When e is a product of many small primes, the lossiness can be a constant
fraction of the security parameter n. Note that since e is a publicly known factor of
ϕ(N), we require e ≤ N1/4−ε in order to ensure that Coppersmith’s method [12] for
finding small roots of a univariate polynomial modulo an unknown divisor of N cannot
be used to efficiently factor N .

Note that when e is a product of ω(logn) primes, the reduction under hypothesis (b)
of Lemma 4.5 loses a factor that is superpolynomial in the security parameter n. In this
case we can obtain a polynomial loss by using hypothesis (a) instead: we have G0 and
G1 output an additional element ρ in JN that is an f th power non-residue for all primes
f dividing e. (If p ≡ q ≡ 3 (mod 4) and e = 2 we can take ρ = −1.) If we include ρ

in the function index σ , then the security of our construction reduces to the eth power
residuosity assumption where the adversary is given ρ in addition to N and μ.

Alternatively, one could simply assume that EN and HN are indistinguishable; we
have no evidence that this assumption is any easier to break than the eth power residu-
osity assumption as defined in Definition 4.4. Indeed, we chose our definition primarily
to be consistent with prior works in the literature.

4.4. Lossy Trapdoor Functions

We can apply the technique of Sect. 3.2 to define functions with domain {1, . . . ,2n},
i.e., depending only on the security parameter. The same analysis as in the case e = 2
shows that we obtain log2(2e/(e + 1)) bits of lossiness, which is never greater than 1
even for large e.

We can do better by fixing some m and defining the functions over {1, . . . ,2n+m}. We
apply the modified powering function x �→ xe ·rJμ(x) ·sHμ(x) mod N to each copy of ZN

in this domain, i.e., to the sets {aN +1, . . . , (a+1)N −1} for a = 0, . . . , �2n+m/N�−1.
For the remainder of the domain we let the function be the identity. It is easy to see that
for sufficiently large m these functions are e-to-1 on almost all of the domain, so we can
obtain almost log2(e) bits of lossiness. (In fact, one can show that if m ≥ log2(e) − 1,
then we obtain a collection of (n, log2(e) − e · 2−m)-lossy trapdoor functions.)

5. A Construction Based on the Composite Residuosity Assumption

Our construction is based on the Damgård–Jurik encryption scheme [14] with additional
insights by Damgård and Nielsen [15,16]. We begin with a brief description of the

58 D.M. Freeman et al.

Damgård–Jurik scheme, and then present our constructions of lossy trapdoor functions
and all-but-one lossy trapdoor functions.

5.1. The Damgård–Jurik Encryption Scheme

Damgård and Jurik [14] proposed an encryption scheme based on computations in the
group ZNs+1 , where N = PQ is an RSA modulus and s ≥ 1 is an integer (it contains
Paillier’s encryption scheme [35] as a special case by setting s = 1). Consider a mod-
ulus N = PQ where P and Q are odd primes and gcd(N,φ(N)) = 1 (when P and Q

are sufficiently large and randomly chosen, this will be satisfied except with negligible
probability). We call such a modulus N admissible in the following discussion. For such
an N , the multiplicative group Z

∗
Ns+1 is a direct product G × H , where G is cyclic of

order Ns and H is isomorphic to Z
∗
N .

Theorem 5.1 [14]. For any admissible N and s < min{P,Q}, the map ψs : ZNs ×
Z

∗
N → Z

∗
Ns+1 defined by ψs(x, r) = (1 + N)xrNs

mod Ns+1 is an isomorphism of
abelian groups. In particular, we have

ψs

(
x1 + x2 mod Ns, r1r2 mod N

) = ψs(x1, r1) · ψs(x2, r2) mod Ns+1.

Given λ(N) = lcm(P − 1,Q − 1), there is a polynomial-time algorithm that inverts the
function ψs .

The following describes the Damgård–Jurik encryption scheme:

• Key generation: On input 1n choose an admissible n-bit modulus N = PQ. The
public key is (N, s) and the secret key is λ = lcm(P − 1,Q − 1).

• Encryption: Given a message m ∈ ZNs and the public key (N, s), choose a random
r ∈ Z

∗
N and output E (m) = (1 + N)mrNs

mod Ns+1.
• Decryption: Given a ciphertext c ∈ ZNs+1 and the secret key λ, apply the inversion

algorithm of Theorem 5.1 to compute ψ−1
s (c) = (m, r) and output m.

The semantic security of the scheme (for any s ≥ 1) is based on the decisional com-
posite residuosity assumption: namely, that any probabilistic polynomial-time algorithm
that receives as input an n-bit RSA modulus N cannot distinguish a random element in
Z

∗
N2 from a random N th power in Z

∗
N2 with probability a non-negligible function of n.

We refer the reader to [14] for a more formal statement of the decisional composite
residuosity assumption and for the proof of security.

5.2. A Lossy Trapdoor Function with Index-Dependent Domains

Each function in our construction is described by a pair (N, c), where N is an n-bit
modulus as above, and c ∈ ZNs+1 . For the injective functions c is a random Damgård–
Jurik encryption of 1, and for the lossy functions c is a random encryption of 0. The
semantic security of the encryption scheme guarantees that the two collections of func-
tions are computationally indistinguishable. In order to evaluate a function f(N,c) on an
input (x, y) ∈ ZNs × Z

∗
N we compute f(N,c)(x) = cxyNs

mod ZNs+1 . For an injective
function f(N,c) it holds that f(N,c)(x, y) is an encryption of x (where the randomness
of this ciphertext depends on x and y), and using the secret key it is possible to retrieve

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 59

both x and y. For a lossy function f(N,c) it holds that f(N,c)(x, y) is an encryption of 0,
and in this case most of the information in the input is lost.

Given any polynomial s = s(n) we define a 5-tuple Fs = (G0,G1,S,F,F−1) (recall
Definition 2.3) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an admis-
sible n-bit modulus N = PQ. Then it chooses a random r ∈ Z

∗
N and lets

c = rNs
mod Ns+1. The function index is σ = (N, c) and the function fσ is de-

fined on the domain Dσ = ZNs × Z
∗
N .

2. Sampling an injective function: On input 1n the algorithm G1 chooses an ad-
missible n-bit modulus N = PQ. Then, it chooses a random r ∈ Z

∗
N and lets

c = (1 + N)rNs
mod Ns+1. The function index is σ = (N, c), the trapdoor is

τ = (λ, r), where λ = lcm(P − 1,Q − 1), and the function fσ is defined on the
domain Dσ = ZNs × Z

∗
N .

3. Sampling an input: Given a function index (N, c) the algorithm S outputs a uni-
formly distributed pair (x, y) ∈ ZNs × Z

∗
N .

4. Evaluation: Given a function index (N, c) and an input (x, y) ∈ ZNs × Z
∗
N , the

algorithm F outputs cxyNs
mod Ns+1.

5. Inversion: Given function index for an injective function (N, c), a trapdoor (λ, r),
and an element z ∈ ZNs+1 , the algorithm F−1 invokes the inversion algorithm pro-
vided by Theorem 5.1 to compute ψ−1

s (z) = (x, rxy), and then recovers x and y.

Theorem 5.2. Under the decisional composite residuosity assumption, for any poly-
nomial s = s(n) it holds that Fs is a collection of ((n − 1)(s + 1), (n − 1)s − 1)-lossy
trapdoor functions with index-dependent domains.

Proof. Theorem 5.1 guarantees that the injective functions can be efficiently inverted
using their trapdoor information. The semantic security of the Damgård–Jurik encryp-
tion scheme guarantees that the descriptions of injective and lossy functions are com-
putationally indistinguishable. Thus it only remains to give an upper bound for the size
of the lossy functions’ images.

Let (N, c) be a function index for a lossy function, where c = rNs
mod Ns+1 for

some r ∈ Z
∗
N . We have |Dσ | = Ns(N − p − q + 1) ≥ 1

2Ns+1 ≥ 2(n−1)(s+1)−1. Using
the isomorphism ψs described in Theorem 5.1 we can bound the size of the function’s
image as follows:

∣∣Image(fN,c)
∣∣ ≤ ∣∣{cx · yNs

mod Ns+1 : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

= ∣∣{(rx · y)Ns

mod Ns+1 : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

= ∣∣{ψs

(
0, rx · y mod N

) : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

< N.

Therefore the amount of lossiness is at least �(n) = log2(|Dσ |/|Image(N, c)|) ≥
log2(

1
2Ns−1N) ≥ (n − 1)s − 1. �

60 D.M. Freeman et al.

The above construction can easily be extended to a collection of all-but-one lossy
trapdoor functions. We describe the extension here; the proof of security is essentially
identical to the proof of Theorem 5.4 and is therefore omitted.

Given an integer s ≥ 1 we define a 4-tuple F ABO
s = (B,G,F,F−1) (recall Defini-

tion 2.2, and here we consider only one lossy branch as defined in [37]) as follows:

1. Sampling a branch: On input 1n the algorithm B outputs a uniformly distributed
b ∈ {0, . . . ,2n/2−1}.

2. Sampling a function: On input 1n and a lossy branch b∗ the algorithm G chooses
an admissible n-bit modulus N = PQ. Then it chooses a random r ∈ Z

∗
N and

lets c = (1 + N)−b∗
rNs

mod Ns+1. The function index is (N, c) and the trapdoor
consists of λ = lcm(P − 1,Q − 1), b∗, and r .

3. Evaluation: Given a function index (N, c), a branch b, and an input (x, y) ∈ ZNs ×
Z

∗
N , and outputs ((1 + N)bc)x · yNs

mod Ns+1.
4. Inversion: Given a function index (N, c), a trapdoor (λ, b∗, r), a branch b
= b∗,

and an element z ∈ ZNs+1 , the algorithm F−1 applies the inversion algorithm pro-
vided by Theorem 5.1 to compute ψ−1

s (z) = ((b − b∗)x, rx · y). Note that the
restriction b, b∗ ∈ {0, . . . ,2n/2 − 1} implies that b − b∗ is relatively prime to N

(since 2n/2−1 < min{P,Q}), and therefore the algorithm F−1 can recover x by
computing (b − b∗)x · (b − b∗)−1 mod Ns , and then recover y.

Theorem 5.3. Under the decisional composite residuosity assumption, for any poly-
nomial s = s(n) it holds that F ABO

s is a collection of ((n− 1)(s + 1), (n− 1)s − 1)-all-
but-one lossy trapdoor functions with index-dependent domains.

5.3. A Lossy Trapdoor Function

We now extend the above construction to a lossy trapdoor function. In order to guar-
antee that all the functions in the collection share the same domain, we define the
functions over the domain {0,1}(n−1)s × {0,1}n/2−1. That is, the domain is {0,1}m,
for m = m(n) = (n − 1)s + n/2 − 1. We observe that: (a) the fact that N is an n-bit
modulus implies that any x ∈ {0,1}(n−1)s can be interpreted as an element of ZNs since
2(n−1)s < N ; and (b) the fact that P and Q are n/2-bit prime numbers implies that if
y ∈ {0,1}n/2−1 is interpreted as an integer between 1 and 2n/2−1, then y ∈ Z

∗
N (since

2n/2−1 < min{P,Q} and thus gcd(N,y) = 1).
Given any polynomial s = s(n) we define a 4-tuple Fs = (G0,G1,F,F−1) (recall

Definition 2.1) as follows:

1. Sampling a lossy function: On input 1n the algorithm G0 chooses an admissi-
ble n-bit modulus N = PQ. Then it chooses a random r ∈ Z

∗
N and lets c =

rNs
mod Ns+1. The function index is σ = (N, c).

2. Sampling an injective function: On input 1n the algorithm G1 chooses an ad-
missible n-bit modulus N = PQ. Then it chooses a random r ∈ Z

∗
N and lets

c = (1 + N)rNs
mod Ns+1. The function index is σ = (N, c) and the trapdoor

is τ = (λ, r), where λ = lcm(P − 1,Q − 1).
3. Evaluation: Given a function index (N, c) and an input (x, y) ∈ {0,1}(n−1)s ×

{0,1}n/2−1, the algorithm F interprets the input as an element of ZNs × Z
∗
N and

outputs cxyNs
mod Ns+1.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 61

4. Inversion: Given a function index for an injective function (N, c), a trapdoor
(λ, r), and an element z ∈ ZNs+1 , the algorithm F−1 invokes the inversion algo-
rithm provided by Theorem 5.1 to compute ψ−1

s (z) = (x, rxy), and then recovers
x and y.

Theorem 5.4. Under the composite residuosity assumption, for any polynomial s =
s(n) it holds that Fs is a collection of ((n − 1)s + n/2 − 1, (n − 1)s − n/2 − 1)-lossy
trapdoor functions.

Proof. Similar to the proof of Theorem 5.2, we can express the image of the function
as follows:

∣∣Image(N, c)
∣∣ ≤ ∣∣{cx · yNs

mod Ns+1 : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

= ∣∣{(rx · y)Ns

mod Ns+1 : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

= ∣∣{ψs

(
0, rx · y mod N

) : x ∈ ZNs , y ∈ Z
∗
N

}∣∣

< N

< 2n.

Therefore the amount of lossiness is at least �(n) = ((n − 1)s + n/2 − 1) − n = (n −
1)s − n/2 − 1. �

The above construction can easily be extended to a collection of all-but-one lossy
trapdoor functions. We describe the extension here; the proof of security is essentially
identical to the proof of Theorem 5.4 and is therefore omitted.

Given an integer s ≥ 1 we define a 4-tuple F ABO
s = (B,G,F,F−1) (recall Defini-

tion 2.2, and here we consider only one lossy branch as defined in [37]) as follows:

1. Sampling a branch: On input 1n the algorithm B outputs a uniformly distributed
b ∈ {0, . . . ,2n/2−1}.

2. Sampling a function: On input 1n and a lossy branch b∗ the algorithm G chooses
an admissible n-bit modulus N = PQ. Then it chooses a random r ∈ Z

∗
N and

lets c = (1 + N)−b∗
rNs

mod Ns+1. The function index is (N, c) and the trapdoor
consists of λ = lcm(P − 1,Q − 1), b∗, and r .

3. Evaluation: Given a function index (N, c), a branch b, and an input (x, y) ∈
{0,1}(n−1)s × {0,1}n/2−1, the algorithm F interprets (x, y) as an element of
ZNs × Z

∗
N , and outputs ((1 + N)bc)x · yNs

mod Ns+1.
4. Inversion: Given a function index (N, c), a trapdoor (λ, b∗, r), a branch b
= b∗,

and an element z ∈ ZNs+1 , the algorithm F−1 applies the inversion algorithm pro-
vided by Theorem 5.1 to compute ψ−1

s (z) = ((b − b∗)x, rx · y). Note that the
restriction b, b∗ ∈ {0, . . . ,2n/2 − 1} implies that b − b∗ is relatively prime to N

(since 2n/2−1 < min{P,Q}), and therefore the algorithm F−1 can recover x by
computing (b − b∗)x · (b − b∗)−1 mod Ns , and then recover y.

Theorem 5.5. Under the decisional composite residuosity assumption, for any poly-
nomial s = s(n) it holds that F ABO

s is a collection of ((n − 1)s + n/2 − 1, (n − 1)s −
n/2 − 1)-all-but-one lossy trapdoor functions.

62 D.M. Freeman et al.

6. A Construction Based on the d-Linear Assumption

The d-Linear assumption [24,40] is a generalization of the decision Diffie–Hellman
assumption that may hold even in groups with an efficiently computable d-linear map.
The 1-Linear assumption is DDH, while the 2-Linear assumption is also known as the
Decision Linear assumption [7]. The assumption is as follows:

Definition 6.1. Let d ≥ 1 be an integer, and let G be a finite cyclic group of order q .
We say the d-Linear assumption holds in G if the distributions

{(
g1, . . . , gd, g

r1
1 , . . . , g

rd
d , h,hr1+···+rd

) : g1, . . . , gd, h
R← G, r1, . . . , rd

R← Zq

}
,

{(
g1, . . . , gd, g

r1
1 , . . . , g

rd
d , h,hs

) : g1, . . . , gd, h
R← G, r1, . . . , rd , s

R← Zq

} (6.1)

are computationally indistinguishable.

For any d ≥ 1, the d-linear assumption implies the (d + 1)-linear assumption [24,
Lemma 3].

Peikert and Waters [37, Sect. 5] give lossy and all-but-one lossy trapdoor functions
based on the DDH assumption. In the Peikert–Waters construction, the function index
is an ElGamal encryption of an n × n matrix M which is either the zero matrix (lossy
mode) or the identity matrix (injective mode) using a finite cyclic group G of order p.
The DDH assumption in G implies that these two encryptions cannot be distinguished.
The construction can be generalized to d-linear assumptions using generalized ElGamal
encryption, but such schemes are less efficient since ElGamal based on the d-Linear
assumption produces d + 1 group elements per ciphertext (see e.g. [40]).

Our construction is based on the following basic observation from linear algebra: if M

is an n × n matrix over a finite field Fp and �x is a length-n column vector, then the map
fM : �x �→ M �x has image of size pRk(M), where Rk(M) is the rank of M . If we restrict
the domain to only binary vectors (i.e., those with entries in {0,1}), then the function
fM is injective when Rk(M) = n, and its inverse can be computed by f −1

M : �y �→ M−1 �y.
If on the other hand we have Rk(M) < n/ log2(p), then fM is not injective even when
the domain is restricted to binary vectors, since the image is contained in a subgroup of
size less than 2n.

By performing the above linear algebra “in the exponent” of a group of order p, we
can create lossy trapdoor functions based on DDH and the related d-Linear assumptions.
In particular, for any n the size of the function index is the same for all d .

We will use the following notation: we let Fp denote a field of p elements and
Rkd(Fn×n

p) the set of n×n matrices over Fp of rank d . If we have a group G of order p,

an element g ∈ G, and a vector �x = (x1, . . . , xn) ∈ F
n
p , then we define g �x to be the col-

umn vector (gx1 , . . . , gxn) ∈ G
n. If M = (aij) is an n × n matrix over Fp , we denote by

gM the n × n matrix over G given by (gaij). Given a matrix M = (aij) ∈ F
n×n
p and a

column vector g = (g1, . . . , gn) ∈ G
n, we define gM by

gM =
(

n∏

j=1

g
a1j

j , . . . ,

n∏

j=1

g
anj

j

)

.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 63

Similarly, given a matrix S = (gij) ∈ G
n×n and a column vector �x = (x1, . . . , xn) ∈ F

n
p ,

we define S�x by

S�x =
(

n∏

j=1

g
xj

1j , . . . ,

n∏

j=1

g
xj

nj

)

.

With these definitions, we have (gM)�x = (g �x)M = g(M �x).

The Construction. For any positive integer d and any real number ε ∈ (0,1), we define
a 4-tuple F = (G0,G1,F,F−1) (recall Definition 2.1) as follows:

1. Sampling a lossy function: On input 1n, the algorithm G0 chooses at random a
�εn/d�-bit prime p, a group G of order p, and a generator g of G. Then it chooses

a matrix M
R← Rkd(Fn×n

p) and computes S = gM ∈ G
n×n. The function index is

σ = S.
2. Sampling an injective function: On input 1n, the algorithm G1 chooses at random a

�εn/d�-bit prime p, a group G of order p, and a generator g of G. Then it chooses

a matrix M
R← Rkn(F

n×n
p) and computes S = gM ∈ G

n×n. The function index is
σ = S, and the trapdoor is τ = (g,M).

3. Evaluation: Given a function index S and �x = (x1, . . . , xn) ∈ {0,1}n, the algo-
rithm F computes the function fS(x) = S�x .

4. Inversion: Given a function index S, a trapdoor τ = (g,M), and a vector g ∈ G
n,

we define F−1(τ,g) as follows:
(a) Compute h = (h1, . . . , hn) ← gM−1

.
(b) Let xi = logg(hi) for i = 1, . . . , n.
(c) Output �x = (x1, . . . , xn).

Theorem 6.2. Suppose εn > d . If the d-Linear assumption holds for G, then the above
family is a collection of (n, (1 − ε)n)-lossy trapdoor functions.

Proof. We first note that in the lossy case, when M is of rank d , the image of fS
is contained in a subgroup of G

n of size pd < 2εn. The condition εn > d guarantees
p ≥ 3, so when M is of rank n the function fS is in fact injective. It is straightforward
to verify that the inversion algorithm performs correctly for injective functions. Finally,
by [31, Lemma A.1], the d-Linear assumption implies that the matrix S when M is of
rank n is computationally indistinguishable from the matrix S when M is of rank d . �

Note that the system’s security scales with the bit size of p, i.e., as εn/d . In addi-
tion, note that the discrete logarithms in the inversion step can be performed efficiently
when �x is a binary vector. (Here we take advantage of the fact that the output of F−1 is
unspecified on inputs not in the image of F.)

We now describe the extension of the system to all-but-one lossy trapdoor functions,
in the case where the parameter d in the above construction is equal to 1. Let In denote
the n × n identity matrix. For any real number ε ∈ (0,1), we define a 4-tuple F =
(G0,G1,F,F−1) (recall Definition 2.2) as follows:

64 D.M. Freeman et al.

1. Sampling a branch: On input 1n, the algorithm B outputs a uniformly distributed
b ∈ {1, . . . ,2�εn�}.

2. Sampling a function: On input 1n and a lossy branch b∗, the algorithm G chooses
at random a �εn�-bit prime p, a group G of order p, and a generator g of G. Then

it chooses a matrix A
R← Rk1(F

n×n
p). Let M = A − b∗In ∈ F

n×n
p and S = gM ∈

G
n×n. The function index is σ = S, the trapdoor is τ = (g,M), and the set of

lossy branches is β = {b∗, b∗ − Tr(A)}, where Tr(A) is the trace of A.
3. Evaluation: Given a function index S, a branch b, and an input x ∈ {0,1}n, we

interpret x as a binary column vector �x = (x1, . . . , xn). The algorithm F computes
the function fS,b(�x) = S�x ∗ gb�x , where ∗ indicates the componentwise product of
elements of G

n.
4. Inversion: Given a function index S, a trapdoor τ = (g,M), a branch b, and a

vector g ∈ G
n, we define F−1(τ, b,g) as follows:

(a) If M + bIn is not invertible, output ⊥.
(b) Compute h = (h1, . . . , hn) ← g(M+bIn)−1

.
(c) Let xi = logg(hi) for i = 1, . . . , n.
(d) Output �x = (x1, . . . , xn).

Theorem 6.3. Suppose εn > 1. If the DDH assumption holds for G, then the above
family is a collection of (n, (1 − ε)n)-all-but-one lossy trapdoor functions.

Proof. We first observe that if A is the rank 1 matrix computed by G(1n, b∗), then

fS,b(�x) = g(A−(b∗−b)In)�x. (6.2)

We now verify each property of Definition 2.2. Properties (1) and (2) are immediate.
To verify property (3) for lossy functions, note that (6.2) implies that fS,b∗(�x) = gA�x .
Since A has rank 1, the image of fS,b∗ is contained in a subgroup of G

n of size p < 2εn.
To check property (3) for injective functions, we observe that the condition εn > 1

guarantees p ≥ 3, so when A − (b∗ − b)In is invertible the function fS,b is injective.
The condition A − (b∗ − b)In being not invertible is equivalent to (b∗ − b) being an
eigenvalue of A. Since A has rank 1, its eigenvalues are 0 and Tr(A). Thus (b∗ − b) is
an eigenvalue of A if and only if b ∈ β , and fS,b is injective for all b
∈ β . It is straight-
forward to verify that the inversion algorithm performs correctly whenever b /∈ β , so
property (4) holds.

Properties (5) and (6) follow from the DDH assumption for G. We show property (5)
by constructing a sequence of games:

Game0: This is the real security game. The adversary is given b0, b1, and gA−bωIn for

ω
R← {0,1} and A

R← Rk1(F
n×n
p), and outputs a bit ω′. The adversary wins if ω′ = ω.

Game1: The same as Game0, except the challenge is gA′−bωIn for some full-rank matrix

A′ R← Rkn(F
n×n
p).

Game2: The same as Game1, except the challenge is gU−bωIn for some uniform matrix

U
R← F

n×n
p .

Game3: The same as Game2, except the challenge is gU .

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 65

Since the Game3 challenge is independent of ω, the advantage of any adversary playing
Game3 is zero. We now show that if the DDH assumption holds for G, then for i =
0,1,2, no polynomial-time adversary A can distinguish Gamei from Gamei+1 with
non-negligible advantage.

i = 0: Any algorithm that distinguishes Game0 from Game1 can be used to distin-

guish the distributions {gA : A
R← Rk1(F

n×n
p)} and {gA′ : A′ R← Rkn(F

n×n
p)}. By

[8, Lemma 1], any algorithm that distinguishes these distributions can solve the DDH
problem in G.

i = 1: Since the proportion of full-rank matrices to all matrices in F
n×n
p is (p − 1)/p,

even an unbounded adversary can distinguish Game1 from Game2 with probability
at most 1/p.

i = 2: Since the matrix U is uniform in F
n×n
p , the matrix U − bωIn is also uniform in

F
n×n
p , so Game2 and Game3 are identical.

We conclude that for any b0, b1, no polynomial-time adversary can win Game0 with
non-negligible advantage.

Finally, to demonstrate property (6) we show that any adversary A that produces an
element of β given S and b∗ can be used to compute discrete logarithms in G, contra-

dicting the DDH assumption. Choose a matrix A
R← Rk1(F

n×n
p), and let A′(X) be the

n×n matrix over Fp[X] that is the matrix A with the first row multiplied by X. For any
value X = t
= 0, the matrix A′(t) is uniformly distributed in Rk1(F

n×n
p).

Let (g, gt) be a discrete logarithm challenge for G. For any b∗ we compute the matrix
S = gA′(t)−b∗In and give (S, b∗) to the adversary A. If the adversary outputs b ∈ β with
b
= b∗, then we can compute Tr(A′(t)) since this is the only nonzero eigenvalue λ of
A′(t). If aii is the ith diagonal entry of A, this gives us an equation

a11t + a22 + · · · + ann = λ. (6.3)

Since a11 = 0 with probability 1/p, we can solve for t with all but negligible probabil-
ity. �

If we choose any integer d ≥ 2 and repeat the above construction with p a �εn/d�-
bit prime and A a rank d matrix, then we expect to obtain an all-but-one lossy trapdoor
function under the d-Linear assumption. Indeed, the proofs of properties (1)–(6) carry
through in a straightforward way. However, the above proof of property (7) does not
seem to generalize. In particular, the generalization of (6.3) is the equation det(A′(t) −
λIn) = 0, which can be written as ut + v = 0 for some (known) u,v ∈ Fp . When d = 1
the element u = a11 is independent of λ, so we can conclude that it is nonzero with high
probability; however, when d ≥ 2 this is not necessarily the case. We thus leave as an
open problem the completion of the proof for d ≥ 2.

7. Correlated Input Security from Syndrome Decoding

7.1. Correlation-Secure Trapdoor Functions

A collection of efficiently computable functions is a pair of algorithms F = (G,F),
where G is a key-generation algorithm used for sampling a description of a function,

66 D.M. Freeman et al.

and F is an evaluation algorithm used for evaluating a function on a given input. The
following definition formalizes the notion of a k-wise product, which is a collection Fk

consisting of all k-tuples of functions from F .

Definition 7.1 (k-wise product). Let F = (G,F) be a collection of efficiently com-
putable functions. For any integer k, we define the k-wise product Fk = (Gk,Fk) as
follows:

• The key-generation algorithm Gk on input 1n invokes k independent instances of
G(1n) and outputs (σ1, . . . , σk). That is, a function is sampled from Fk by inde-
pendently sampling k functions from F .

• The evaluation algorithm Fk on input (σ1, . . . , σk, x1, . . . , xk) invokes F to eval-
uate each function σi on xi . I.e., Fk(σ1, . . . , σk, x1, . . . , xk) = (F(σ1, x1), . . . ,

F(σk, xk)).

A one-way function is a function that is efficiently computable but is hard to invert
given the image of a uniformly chosen input. This notion extends naturally to one-
wayness under any specified input distribution, not necessarily the uniform distribution.
Specifically, we say that a function is one-way with respect to an input distribution I if
it is efficiently computable but hard to invert given the image of a random input sampled
according to I . More formally:

Definition 7.2 (One-way functions). Let F = (G,F) be a collection of efficiently com-
putable functions with domain {Dn}n∈N, and let I be a distribution where I(1n) is dis-
tributed over Dn. We say that F is one-way with respect to the input distribution I if
for every probabilistic polynomial-time algorithm A and polynomial p(·), it holds that

Pr
[

A
(
1n, σ,F(σ, x)

) ∈ F−1(σ,F(σ, x)
)]

<
1

p(n)
,

for all sufficiently large n, where σ ← G(1n) and x ← I(1n).

In the context of k-wise products, a straightforward argument shows that for any
collection F which is one-way with respect to some input distribution I , the k-wise
product Fk is one-way with respect to the input distribution that samples k independent
inputs from I . The following definition formalizes the notion of one-wayness under
correlated inputs, where the inputs for Fk may be correlated.

Definition 7.3 (One-wayness under correlated inputs). Let F = (G,F) be a collection
of efficiently computable functions with domain {Dn}n∈N, and let C be a distribution
where C(1n) is distributed over Dk

n = Dn × · · · × Dn (i.e. the Cartesian product of
Dn with itself k times) for some integer k = k(n). We say that F is one-way under
C -correlated inputs if Fk is one-way with respect to the input distribution C .

For the special case that distribution C is the uniform k-repetition distribution (i.e.,
C samples a uniformly random input x ∈ Dn and outputs k copies of x), we say that
F is one-way under k-correlated inputs. Rosen and Segev [39, Theorem 3.3] show that

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 67

a collection of (m, �)-lossy trapdoor functions can be used to construct a collection F
that is one-way under k-correlated inputs for any k <

m−ω(logm)
m−�

.

7.2. The Construction

Our construction is based on Niederreiter’s coding-based encryption system [33] which
itself is the dual of the McEliece encryption system [29]. Let 0 < ρ = ρ(n) < 1 and 0 <

δ = δ(n) < 1/2 be two functions in the security parameter n. We set the domain Dn,δ

to be the set of all n-bit strings with Hamming weight δn. Note that Dn,δ is efficiently
samplable (see e.g. [18]). The Niederreiter trapdoor function F = (G,F,F−1) is defined
as follows.

• Key generation: On input 1n the algorithm G chooses at random a non-singular
binary ρn × ρn matrix S, an (n,n − ρn, δn)-linear binary Goppa code capable of
correcting up to δn errors (given by its ρn × n binary parity check matrix G),4

and an n × n permutation matrix P . It sets H := SGP , which is a binary ρn × n

matrix. The function index is σ = H , the trapdoor is τ = (S,G,P).
• Evaluation: Given a function index H and x ∈ {0,1}n with Hamming weight δn,

the algorithm F computes the function fH (x) = Hx ∈ {0,1}ρn.
• Inversion: Given a trapdoor (S,G,P) and y = Hx, the algorithm F−1 computes

S−1y = GPx, applies a syndrome decoding algorithm for G to recover ŷ = Px,
and computes x = P −1ŷ.

The Niederreiter trapdoor function can be proved one-way under the indistinguishability
and syndrome decoding assumptions, which are indexed by the parameters 0 < ρ < 1
and 0 < δ < 1/2.

Indistinguishability assumption. The binary ρn × n matrix H output by G(1n) is com-
putationally indistinguishable from a uniform matrix of the same dimensions.

Syndrome decoding assumption. The collection of functions which is defined as
fU(x) := Ux for a uniform ρn × n binary matrix U is one-way on the domain Dn,δ .

Choosing the weight δ to be close to the Gilbert–Warshamov bound is commonly be-
lieved to give hard instances of the syndrome decoding problem (see e.g., [18]). The
Gilbert–Warshamov bound for an (n, k, δn)-linear code with δ < 1/2 is given by the
equation k/n ≤ 1 − h2(δ), where h2(δ) := −δ log2 δ − (1 − δ) log2(1 − δ). It is there-
fore assumed that the syndrome decoding assumption holds for all 0 < δ < 1/2 satisfy-
ing h2(δ) < ρ [18]. Note that one-wayness also implies that the cardinality of Dn,δ is
super-polynomial in n. The following theorem was proved in [18].

Theorem 7.4 [18]. If the syndrome decoding assumption holds for ρ̃ and δ, then

the ensembles {(M,Mx) : M
R← {0,1}ρ̃n×n; x

R← Dn,δ)}n∈N and {(M,y) : M
R←

{0,1}ρ̃n×n; y
R← {0,1}ρ̃n}n∈N are computationally indistinguishable.

This theorem implies that the Niederreiter trapdoor function is one-way under k-
correlated inputs.

4 Binary Goppa codes [21,22] are a subclass of alternant codes over F2. See [3] and [28] (Chap. 12) for
details.

68 D.M. Freeman et al.

Theorem 7.5. Suppose ρ, δ, and k are chosen such that ρ̃ := ρk < 1, and the indis-
tinguishability and the syndrome decoding assumptions hold for parameters ρ̃ and δ.
Then the Niederreiter trapdoor function is one-way under k-correlated inputs.

Proof. Fix a probabilistic polynomial-time adversary A that plays the security game
for one-wayness under k-correlated inputs. Define

ε = Pr
[

A
(
H1, . . . ,Hk,H1(x), . . . ,Hk(x)

) = x
]
,

where Hi
R← G(1n) and x

R← Dn,δ . We now exchange all the matrices Hi for uniform
matrices Ui of the same dimension. By the indistinguishability assumption and a hybrid
argument, we have

∣∣Pr
[

A
(
H1, . . . ,Hk,H1(x), . . . ,Hk(x)

) = x
]

− Pr
[

A
(
U1, . . . ,Uk,U1(x), . . . ,Uk(x)

) = x
]∣∣ ∈ negl(n).

For ρ̃ := ρk, define the ρ̃n × n matrix U by concatenating the columns of the matrices
Ui . Then the distributions (U1, . . . ,Uk,U1(x), . . . ,Uk(x)) and (U,Ux) are identical.
Since h2(δ) ≤ ρ/k = ρ̃ we can apply Theorem 7.4 to obtain

∣∣Pr
[

A(U,Ux) = x
] − Pr

[
A(U,uρ̃n) = x

]∣∣ ∈ negl(n),

where uρ̃n is a uniform bit string in {0,1}ρ̃n. Observing that Pr[A(U,uρ̃n) = x] =
1/|Dn,δ| ∈ negl(n) (since x ∈ Dn,δ is independent of A’s view) implies that ε is negli-
gible. �

We remark that the above proof implies that the Niederreiter trapdoor function has
linearly many hard-core bits, which greatly improves efficiency of the CCA-secure en-
cryption scheme obtained by using the construction from [39].

Acknowledgements

We thank Ivan Damgård and Chris Peikert for useful discussions. We thank Dan Boneh
for showing us references [6] and [41].

Part of David Mandell Freeman’s research was conducted at CWI and Universiteit
Leiden, Netherlands, and supported by a National Science Foundation International Re-
search Fellowship, with additional support from the Office of Multidisciplinary Activi-
ties in the NSF Directorate for Mathematical and Physical Sciences. The remainder was
supported by an NSF Mathematical Sciences Postdoctoral Fellowship.

Oded Goldreich is partially supported by the Israel Science Foundation (grant
No. 1041/08).

Eike Kiltz is supported by a Sofja Kovalevskaja Award of the Alexander von Hum-
boldt Foundation, funded by the German Federal Ministry for Education and Research.
Part of this research was conducted at CWI and Universiteit Leiden, Netherlands.

Alon Rosen is partially supported by the Israel Science Foundation (grant No. 334/08).
Part of Gil Segev’s research was conducted at the Weizmann Institute of Science,

Israel, and supported by the Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 69

Appendix A. A Note on the Relationship Between the 2vs3Primes and QR
Assumptions

Folklore dating to the 1980s (see, e.g., [4]) asserts that if it is hard to distinguish 2-prime
composites from 3-prime composites, then it is hard to distinguish quadratic residues
from quadratic non-residues (modulo a composite). As is often the case with folklore, it
is not clear what exactly is meant by this assertion. Specifically, the folklore observation
is that a quadratic residuosity oracle allows one to distinguish a 2-prime composites
N from 3-prime composites N (by sampling random integers modulo N and count-
ing the fraction of quadratic residues modulo N), but this observation presumes that
the quadratic residuosity oracle works well for both 2-prime and 3-prime composites.5

Note, however, that the existence of such an oracle does not follow from the negation of
the standard quadratic residuosity assumption, which only refers to 2-prime composites.
Indeed, the (standard) quadratic residuosity assumption asserts that for random 2-prime
composites N = PQ such that | log2 P − log2 Q| ≤ 1 (and P ≡ Q ≡ 3 (mod 4)) it is
infeasible to distinguish random quadratic residues modulo N from random quadratic
non-residues modulo N that have Jacobi symbol 1, where in both cases the potential
distinguisher is also given the composite N . The negation of this assumption is that a
corresponding distinguisher does exist, but it is unclear how such a distinguisher be-
haves when given pairs (x,N) when N is a 3-prime composite.

Let Gen2(·) be a probabilistic polynomial-time algorithm that on input 1n samples
two n/2-bit prime numbers P and Q from some distribution D2 such that N = PQ is an
n-bit number, and outputs N . Similarly, let Gen3(·) be a probabilistic polynomial-time
algorithm that on input 1n samples three n/3-bit prime numbers P , Q, and R from some
distribution D3 such that N = PQR is an n-bit number, and outputs N . In both cases
the primes may be subject to additional constraints, in the form of congruence relations.
For example, for most applications the algorithm Gen2(·) is required to choose P and
Q such that P ≡ Q ≡ 3 mod 4 (i.e., Blum integers).

For any odd positive integer N we denote by JSN : Z → {−1,0,1} the Jacobi symbol
modulo N . We define JN = {x ∈ Z

∗
N : JSN(x) = 1} and QN = {x2 : x ∈ Z

∗
N }. Using

this notation, the quadratic residuosity (QR) assumption asserts that, for N generated
by Gen2(·), the uniform distribution over QN is computationally indistinguishable from
the uniform distribution over JN \ QN . (In both cases, the sample of ZN is accompanied
by N itself.) As for the 2vs3Primes assumption, it asserts that the output distributions
of Gen2(·) and Gen3(·) are computationally indistinguishable.

In what follows we prove that under a reasonable restriction on the primes that are
sampled by Gen2(·) and Gen3(·), the 2vs3Primes assumption implies the QR assump-
tion. The restriction that we require is that given an integer N that is the output of either
Gen2(·) or Gen3(·), it is possible to efficiently sample from the uniform distribution
over the set JN \ QN . That is, we need to be able to efficiently produce a uniformly
distributed element that has Jacobi symbol 1 (modulo N), and is not a square mod-
ulo N . We denote this restriction by (R1), and we demonstrate below that it is implied
by enforcing simple congruence relations on the primes that compose N .

5 Furthermore, the straightforward argument seems to presume that, in the case of 3-prime composites, the
oracle is correct with probability greater than 3/4.

70 D.M. Freeman et al.

Theorem A.1. Subject to restriction (R1), the 2vs3Primes assumption implies the QR
assumption.

Proof. We show how to reduce distinguishing between 2-prime and 3-prime com-
posites to predicting the quadratic residuosity character of residues modulo 2-prime
composites. Let A be an arbitrary algorithm, and let ε(n) denote the advantage of A in
guessing the quadratic character of a random x ∈ JN , where N ← Gen2(1n). Denoting
the quadratic character of x modulo N by QCN(x) (i.e., QCN(x) = 1 if and only if x is
a square mod N), we have

ε(n)
def= 2 ·

(
Pr

[
A(x,N) = QCN(x) : N ← Gen2

(
1n

)
, x ← JN

] − 1

2

)

= Pr
[

A(x,N) = 1 : N ← Gen2
(
1n

)
, x ← QN

]

− Pr
[

A(x,N) = 1 : N ← Gen2
(
1n

)
, x ← JN \ QN

]
.

Assuming that A is efficient and that ε(n) is non-negligible, we derive a distinguisher
A′ between 2-prime and 3-prime composites. For any n ∈ N and i ∈ {2,3} define

αi(n) = Pr
[

A(x,N) = 1 : N ← Geni

(
1n

)
, x ← JN

]
,

βi(n) = Pr
[

A(x,N) = 1 : N ← Geni

(
1n

)
, x ← QN

]
,

γi(n) = Pr
[

A(x,N) = 1 : N ← Geni

(
1n

)
, x ← JN \ QN

]
.

Using the fact that for N = PQ the quotient group JN/QN consists of two cosets
whereas for N = PQR it consists of four cosets, we infer that

α2(n) = 1

2
· β2(n) + 1

2
· γ2(n),

α3(n) = 1

4
· β3(n) + 3

4
· γ3(n),

and therefore

α2(n)−α3(n) = 1

4
·(β2(n)−β3(n)

)+ 3

4
·(γ2(n)−γ3(n)

)+ 1

4
·(β2(n)−γ2(n)

)
. (A.1)

The term β2(n) − γ2(n) is equal to ε(n), which is non-negligible by our hypothesis.
Thus at least one of the three other terms in (A.1) (i.e., α2(n) − α3(n), β2(n) − β3(n),
and γ2(n) − γ3(n)) must also be non-negligible. In all three of these cases we can con-
struct an algorithm A′ that has a non-negligible advantage in distinguishing between
the output distributions of Gen2(·) and Gen3(·):

• If α2(n) − α3(n) is non-negligible, then let A′ be the algorithm that on input N

samples x ← JN , and invokes A(x,N). Such an x can be sampled, for example,
by sampling a uniform x ∈ Z

∗
N , computing its Jacobi symbol, and repeating the

process until we find an element with Jacobi symbol 1.

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 71

• If β2(n) − β3(n) is non-negligible, then let A′ be the algorithm that on input N

samples x ← QN , and invokes A(x,N). Such an x can be sampled by sampling a
uniform x ∈ Z

∗
N and outputting x2 mod N .

• If γ2(n) − γ3(n) is non-negligible, then let A′ be the algorithm that on input N

samples x ← JN \ QN , and invokes A(x,N). Such an x can be sampled due to
restriction (R1). �

We conclude by presenting a second restriction (R2) that is easy to satisfy and implies
restriction (R1). As pointed out in the proof of Claim A.1, the quotient group JN/QN

consists of two cosets for N = PQ and of four cosets for N = PQR. More specifically,
for N = PQ it holds that JN/QN = {QN, QN ·e} for any e ∈ JN \ QN . In addition, for
N = PQR it holds that JN/QN = {QN, QN · e1, QN · e2, QN · e3} for any e1, e2, e3 ∈
JN such that e1 is a square modulo P and not modulo Q or R, e2 is a square modulo Q

and not modulo P or R, and e3 is a square modulo R and not modulo P or Q.
In restriction (R2) we require that there exist three fixed elements e1, e2, e3 ∈ ZN

such that for N = PQ it holds that e1, e2, e3 ∈ JN \ QN , and for N = PQR it holds
that JN/QN = {QN, QN ·e1, QN ·e2, QN ·e3}. Given this restriction, the algorithm that
samples x uniformly in Z∗

N and e uniformly in {e1, e2, e3}, and outputs x2 · e mod N ,
produces, in both cases, a uniformly distributed element in the set JN \ QN .

Using the fact that for any odd prime P
= 3, it holds that

JSP(−1) =
{

1, if P ≡ 1 mod 4,

−1, if P ≡ 3 mod 4,

JSP (2) =
{

1, if P ≡ 1 or 7 mod 8,

−1, if P ≡ 3 or 5 mod 8,

JSP (−3) =
{

1, if P ≡ 1 mod 3,

−1, if P ≡ 2 mod 3,

we see that restriction (R2) is satisfied with e1 = −1, e2 = 2, and e3 = −3, provided
that Gen2(·) chooses P and Q such that P ≡ Q ≡ 11 mod 24, and that Gen3(·) chooses
P , Q and R such that P ≡ 5 mod 24, Q ≡ 23 mod 24, and R ≡ 19 mod 24.

Note that these congruence restrictions may make the problem of distinguishing 2-
prime composites from 3-primes composites easier than in the general case. In partic-
ular, the distinguishing task given the above choice of ei would be extremely easy if it
were the case that 11 · 11
≡ 5 · 19 · 23 mod 24, but “luckily” this is not the case.6

For larger values of ei there are in fact choices of congruences for P,Q in Gen2(·)
and P,Q,R in Gen3(·) such that the ei always have the desired Jacobi symbols, but
N mod e1e2e3 is different in the 2-primes case and the 3-primes case.

6 Actually, this is no coincidence, since in both cases it holds that JSN(−1) = JSN(2) = JSN(−3) = 1 if
and only if N ≡ 1 mod 24.

72 D.M. Freeman et al.

Appendix B. Compatibility of Power Residue Symbols

Proposition B.1. Let e, f be integers with f | e. Let x ∈ Z[ζf], let A be an ideal of
Z[ζe] relatively prime to e, and let a = A ∩ Z[ζf]. Then

(
x

a

)

f

=
(

x

A

)e/f

e

.

Proof. By multiplicativity of the power residue symbol, it suffices to prove the state-
ment when A is a prime P of Z[ζe]. Let p = P ∩ Z[ζf]. If we let α be an eth root of x

and β be an f th root of x, then we have (see [32, §V.3] and [41, §III])

(
x

P

)

e

= ασ

α
and

(
x

p

)f

= βτ

β
,

where σ ∈ Gal(Q(ζe)/Q) is the Frobenius automorphism of Q(ζe) at P and τ ∈
Gal(Q(ζf)/Q) is the Frobenius automorphism of Q(ζf) at p. Since these power residue
symbols are independent of the choice of α and β , we can without loss of generality take
β = αe/f . Furthermore, since P is a prime over p, the restriction of σ to Q(ζf) is the
automorphism τ . It follows that

(
x

p

)f

= βτ

β
= (ασ)e/f

αe/f
=

(
x

P

)e/f

e

. �

References

[1] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev, H. Shacham, S. Yilek, Hedged public-key
encryption: How to protect against bad randomness, in Advances in Cryptology—ASIACRYPT 2009.
LNCS, vol. 5912 (Springer, Berlin, 2009), pp. 232–249

[2] M. Bellare, D. Hofheinz, S. Yilek, Possibility and impossibility results for encryption and commit-
ment secure under selective opening, in Advances in Cryptology—EUROCRYPT 2009. LNCS, vol. 5479
(Springer, Berlin, 2009), pp. 1–35

[3] D.J. Bernstein, List decoding for binary goppa codes, in International Workshop on Coding and
Cryptology—IWCC 2011. LNCS, vol. 6639 (Springer, Berlin, 2011), pp. 62–80

[4] M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications, in Proceedings
of the 20th Annual ACM Symposium on Theory of Computing (1988), pp. 103–112

[5] A. Boldyreva, S. Fehr, A. O’Neill, On notions of security for deterministic encryption, and efficient
constructions without random oracles, in Advances in Cryptology—CRYPTO 2008. LNCS, vol. 5157
(Springer, Berlin, 2008), pp. 335–359

[6] D. Boneh, J. Horwitz, Weak trapdoors from the r th-power-residue symbol. Unpublished manuscript
(2002)

[7] D. Boneh, X. Boyen, H. Shacham, Short group signatures, in Advances in Cryptology—CRYPTO 2004.
LNCS, vol. 3152 (Springer, Berlin, 2004), pp. 41–55

[8] D. Boneh, S. Halevi, M. Hamburg, R. Ostrovsky, Circular-secure encryption from decision Diffie-
Hellman, in Advances in Cryptology—CRYPTO 2008. LNCS, vol. 5157 (Springer, Berlin, 2008),
pp. 108–125

[9] D. Boneh, K. Rubin, A. Silverberg, Finding composite order ordinary elliptic curves using the Cocks-
Pinch method. J. Number Theory 131, 832–841 (2011)

More Constructions of Lossy and Correlation-Secure Trapdoor Functions 73

[10] C. Cachin, S. Micali, M. Stadler, Computationally private information retrieval with polylogarithmic
communication, in Advances in Cryptology—EUROCRYPT 1999. LNCS, vol. 1592 (Springer, Berlin,
1999), pp. 402–414

[11] H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, vol.
138 (Springer, Berlin, 1993)

[12] D. Coppersmith, Small solutions to polynomial equations, and low exponent RSA vulnerabilities.
J. Cryptol. 10(4), 233–260 (1997)

[13] R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption, in Advances in Cryptology—EUROCRYPT 2002 (2002), pp. 45–64

[14] I. Damgård, M. Jurik, A generalisation, a simplification and some applications of Paillier’s prob-
abilistic public-key system, in Public Key Cryptography—PKC 2001. LNCS, vol. 1992 (Springer,
Berlin, 2001), pp. 119–136. Full version (with additional co-author J.B. Nielsen) available at
http://www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps

[15] I. Damgård, J.B. Nielsen, Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor, in Advances in Cryptology—CRYPTO 2002. LNCS, vol. 2442
(Springer, Berlin, 2002), pp. 581–596

[16] I. Damgård, J.B. Nielsen, Universally composable efficient multiparty computation from threshold ho-
momorphic encryption, in Advances in Cryptology—CRYPTO 2003. LNCS, vol. 2729 (Springer, Berlin,
2003), pp. 247–264

[17] R. Dowsley, J. Müller-Quade, A.C.A. Nascimento, A CCA2 secure public key encryption scheme based
on the McEliece assumptions in the standard model, in Topics in Cryptology—CT-RSA 2009. LNCS, vol.
5473 (Springer, Berlin, 2009), pp. 240–251

[18] J.-B. Fischer, J. Stern, An efficient pseudo-random generator provably as secure as syndrome decoding,
in Advances in Cryptology—EUROCRYPT 1996. LNCS, vol. 1070 (Springer, Berlin, 1996), pp. 245–
255

[19] O. Goldreich, Foundations of Cryptography II: Basic Applications (Cambridge University Press, Cam-
bridge, 2004)

[20] S. Goldwasser, V. Vaikuntanathan, New constructions of correlation-secure trapdoor functions and
CCA-secure encryption schemes. Manuscript (2008)

[21] V.D. Goppa, A new class of linear correcting codes. Probl. Inf. Transm. 6(3), 207–212 (1970)
[22] V.D. Goppa, Rational representation of codes and (L,g)-codes. Probl. Inf. Transm. 7(3), 223–229

(1971)
[23] B. Hemenway, R. Ostrovsky, Lossy trapdoor functions from smooth homomorphic hash proof systems.

Electronic Colloquium on Computational Complexity, Report TR09-127 (2009)
[24] D. Hofheinz, E. Kiltz, Secure hybrid encryption from weakened key encapsulation, in Advances in

Cryptology—CRYPTO 2007. LNCS, vol. 4622 (Springer, Berlin, 2007), pp. 553–571
[25] J. Horwitz, Applications of Cayley graphs, bilinearity, and higher-order residues to cryptology. Ph.D.

thesis, Stanford University (2004). Available at http://math.scu.edu/~jhorwitz/pubs/horwitz-phd.pdf
[26] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory, 2nd edn. Graduate Texts in

Mathematics, vol. 84 (Springer, New York, 1990)
[27] E. Kiltz, A. O’Neill, A. Smith, Instantiability of RSA-OAEP under chosen-plaintext attack, in Advances

in Cryptology—CRYPTO 2010. LNCS, vol. 6223 (Springer, Berlin, 2010), pp. 295–313
[28] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes (North-Holland, Amsterdam,

1983)
[29] R.J. McEliece, A public-key cryptosystem based on algebraic coding theory. DSN Prog. Rep., Jet Prop.

Lab., pp. 114–116, Jan 1978
[30] P. Mol, S. Yilek, Chosen-ciphertext security from slightly lossy trapdoor functions, in Public Key

Cryptography—PKC 2010. LNCS, vol. 6056 (Springer, Berlin, 2010), pp. 296–377. Full version avail-
able at http://eprint.iacr.org/2009/524

[31] M. Naor, G. Segev, Public-key cryptosystems resilient to key leakage, in Advances in Cryptology—
CRYPTO 2009. LNCS, vol. 5677 (Springer, Berlin, 2009), pp. 18–35. Full version available at
http://eprint.iacr.org/2009/105

[32] J. Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences], vol. 322 (Springer, Berlin, 1999). Translated from the German
by N. Schappacher

http://www.daimi.au.dk/~ivan/GenPaillier_finaljour.ps
http://math.scu.edu/~jhorwitz/pubs/horwitz-phd.pdf
http://eprint.iacr.org/2009/524
http://eprint.iacr.org/2009/105

74 D.M. Freeman et al.

[33] H. Niederreiter, Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory
15, 159–166 (1986)

[34] R. Nishimaki, E. Fujisaki, K. Tanaka, Efficient non-interactive universally composable string-
commitment schemes, in Provable Security—ProvSec’09. LNCS, vol. 5848 (Springer, Berlin, 2009),
pp. 3–18

[35] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in Advances in
Cryptology—EUROCRYPT 1999. LNCS, vol. 1592 (Springer, Berlin, 1999), pp. 223–238

[36] C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem, in 41st ACM Sympo-
sium on Theory of Computing (2009), pp. 333–342

[37] C. Peikert, B. Waters, Lossy trapdoor functions and their applications, in 40th ACM Symposium on
Theory of Computing (2008), pp. 187–196. Full version available at http://eprint.iacr.org/2007/279

[38] M. Rabin, Digitalized signatures and public-key functions as intractable as factorization. Technical Re-
port MIT/LCS/TR-212, MIT Laboratory for Computer Science (1979)

[39] A. Rosen, G. Segev, Chosen-ciphertext security via correlated products, in Theory of Cryptography
Conference—TCC 2009. LNCS, vol. 5444 (Springer, Berlin, 2009), pp. 419–436

[40] H. Shacham, A Cramer-Shoup encryption scheme from the Linear assumption and from progres-
sively weaker Linear variants. Cryptology ePrint Archive, Report 2007/074 (2007). Available at
http://eprint.iacr.org/2007/074

[41] D. Squirrel, Computing reciprocity symbols in number fields. Undergraduate thesis, Reed College
(1997)

http://eprint.iacr.org/2007/279
http://eprint.iacr.org/2007/074

	More Constructions of Lossy and Correlation-Secure Trapdoor Functionsthanks
	Abstract
	Introduction
	Our Contributions
	Related Work
	Paper Organization

	Preliminaries
	Lossy Trapdoor Functions

	A Construction Based on the Quadratic Residuosity Assumption
	A Lossy Trapdoor Function with Index-Dependent Domains
	A Lossy Trapdoor Function

	A Construction Based on the eth Power Residuosity Assumption
	Mathematical Background
	A Lossy Trapdoor Function with Index-Dependent Domains
	Extending to Large Values of e
	Lossy Trapdoor Functions

	A Construction Based on the Composite Residuosity Assumption
	The Damgård-Jurik Encryption Scheme
	A Lossy Trapdoor Function with Index-Dependent Domains
	A Lossy Trapdoor Function

	A Construction Based on the d-Linear Assumption
	The Construction.

	Correlated Input Security from Syndrome Decoding
	Correlation-Secure Trapdoor Functions
	The Construction

	Acknowledgements
	Appendix A. A Note on the Relationship Between the 2vs3Primes and QR Assumptions
	Appendix B. Compatibility of Power Residue Symbols
	References

