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Abstract. This paper presents a generic conversion from weak asymmetric and
symmetric encryption schemes to an asymmetric encryption scheme that is chosen-
ciphertext secure in the random oracle model. Our conversion is the first generic
transformation from an arbitrary one-way asymmetric encryption scheme to a chosen-
ciphertext secure asymmetric encryption scheme in the random oracle model.
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1. Introduction

Suppose that an asymmetric (aka public-key) encryption scheme is secure in a very
weak sense—an adversary cannot entirely decrypt the encryption of a random plaintext,
called one-wayness. Suppose that a symmetric (aka private-key) encryption scheme is
secure in the following weak sense—an adversary cannot distinguish the encryption of
m1 from the encryption of m2, encrypted under a one-time private key, called one-time
security. In addition, suppose that any plaintext in the message space of the asymmetric
encryption scheme has at least 2ω(logk) possible ciphertexts, called ω(log k)-spread.
Given these encryption schemes, we construct a new hybrid encryption scheme. The
(hybrid) encryption of message m is defined as

E hy
pk(m;σ) = E asy

pk

(
σ ;H(σ, c)

) ‖ E sy
G(σ)

(m),

where

• E asy
pk (message; coins) indicates the asymmetric encryption of the indicated mes-

sage using the indicated coins as random bits,

∗ This is the full version of the paper [18] by fixing bugs and providing a clean, formal proof associated
with a better security bound.
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• E sy
a (message) indicates the symmetric encryption of the indicated message using

the private key a,
• σ is a random string chosen from an appropriate domain,
• c = E sy

G(σ)(m), and
• G and H denote hash functions.

In the random oracle model (G and H are modeled as random oracles), this hybrid
encryption scheme (with an appropriate decryption algorithm) is chosen-ciphertext se-
cure, i.e., secure in the sense of indistinguishability against adaptive chosen-ciphertext
attacks [40], called IND-CCA.

Any asymmetric encryption scheme can be converted to an asymmetric encryption
scheme with ω(logk)-spread, and a one-time secure symmetric encryption scheme can
be constructed by extending private key a to a pseudo random string with the same
length of message m (via a pseudo random generator) and xoring it with m. Therefore,
the above transformation provides a generic conversion from any one-way asymmetric
encryption scheme to an IND-CCA asymmetric encryption scheme.

1.1. Security of Encryption Schemes

The fundamental security we require for asymmetric and symmetric encryption schemes
is semantic security—the asymmetric [24] and the symmetric [22] cases. Informally, it
is measured by the infeasibility of an adversary to learn nothing more about the plaintext
from the ciphertext than what is already known. Semantic security has an equivalent
notion called indistinguishability [24], which is defined as the inability of the adversary
to distinguish which of two messages is encrypted. We say that the adversary wins if
it can correctly guess the encryption of two messages with a significant probability of
more than a half.

Goldwasser and Micali [24] proved that indistinguishability of encryptions implies
semantic security in the asymmetric case. Goldreich [22] proved the equivalence of two
definitions in both asymmetric and symmetric cases.

We note that in the above notions the adversary is only allowed to take the encryp-
tion of a single message, which implies that the security guarantee of an encryption
scheme is provided only when it is used to encrypt a single plaintext per generated key.
In fact, the single-message indistinguishability does not imply the multiple-message
one in the symmetric case. Namely, a symmetric encryption scheme secure only in the
single-message sense cannot safely encrypt two messages under the same private key.
Fortunately, the single-message security implies the multiple-message version in the
asymmetric case [22]. In this paper, we use one-time security to refer to (the single-
message) indistinguishability of symmetric encryptions defined in [22].

In the asymmetric case, indistinguishability is equivalent to indistinguishability
against chosen plaintext attacks, which we call IND-CPA. Naor and Yung [33] pro-
posed a stronger security notion of asymmetric encryptions, in which the adversary is
additionally allowed to access the decryption oracle before the challenge ciphertext is
given. This notion is called IND-CCA1 (or indistinguishability against a-priori chosen-
ciphertext attacks). Rackoff and Simons [40] proposed a further stronger security no-
tion, in which an adversary may access the decryption oracle even after the challenge
ciphertext is given. The only constraint of the adversary is that it is not allowed to ask
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for the decryption of the challenge ciphertext after it was given. This security notion is
indistinguishability against (a-posteriori) chosen-ciphertext attacks, called IND-CCA2
or IND-CCA. IND-CCA is widely recognized as an appropriate requirement for public-
key (or asymmetric) encryptions.

An asymmetric encryption scheme is one-way if any adversary cannot entirely de-
crypt the encryption of a random plaintext, but this notion is too weak to protect the
privacy of messages because it only guarantees that ω(logk) bits of the plaintext is
infeasible to determine.

1.2. Contribution

This paper provides a generic secure hybrid usage of arbitrary asymmetric and sym-
metric encryption schemes in the random oracle model. In particular, this is the first
construction to convert any one-way public-key encryption scheme to an IND-CCA
secure public-key encryption scheme in the random oracle model.

1.3. Related Work

1.3.1. CCA Asymmetric Encryptions from General Assumptions

Naor and Yung [33] first proposed IND-CCA1 public-key encryption schemes and
Dolev, Dwork and Naor [16] then provided the first instantiation of IND-CCA2 (or IND-
CCA) public-key encryption schemes. Both schemes are based on general assumptions
(trap-door permutations) and need non-interactive zero knowledge proofs for proving
two encryptions under independent, distinct public-keys implies the same plaintext.
This work was later followed by Sahai [42] and Lindell [32] with simulation-sound
non-interactive zero-knowledge proofs. These constructions are generic but very ineffi-
cient because it is expensive to construct such non-interactive zero-knowledge proofs in
general.

1.3.2. Generic Constructions in Random Oracle Model

Early attempts at constructing practical IND-CCA public-key encryption schemes were
done; Damgård (IND-CCA1 under a non-standard assumption) [15], followed by Zheng
and Seberry [47] and Lim and Lee [31] (the scheme in [31] was cryptoanalyzed by
Frankel and Yung [17]). The key idea of this approach to constructing these schemes is
to create an encryption scheme in a way that the attacker cannot produce a valid cipher-
text without knowing the plaintext. We note that these schemes are based on specific
number-theoretic assumptions and do not support general assumptions.

Bellare and Rogaway formalized the above approach and introduced the notion of
plaintext-awareness, which first appeared in [6]; but revised later in [7] for incom-
pleteness. The former notion is called PA1, whereas the latter is called PA2. PA1
implies IND-CCA1, but not IND-CCA2, while PA2 implies IND-CCA2. Plaintext-
awareness [6,7] was defined in the random oracle model [5],1 which is a world where
there is a public random function to which all parties (including the adversary) can
make oracle access. We say that a cryptographic protocol designed in the real world is

1 Later, Bellare and Palacio [4] defined plaintext-awareness in the standard model, but it is off topic.
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secure in the random oracle model if it is secure when the hash functions plugged in the
cryptographic protocol are replaced by the random oracle.

Bellare and Rogaway suggested (without providing a rigorous proof) a conversion
from any trap-door permutation to an IND-CCA2 public-key encryption scheme in the
random oracle model [5]. They also presented a method, called Optimal Asymmetric
Encryption Padding (OAEP), that converts any trap-door permutation f into an IND-
CCA1 public-key encryption scheme in the random oracle model [6]. Later, Shoup [44]
reported that the OAEP conversion is not sufficient to provide IND-CCA2 security.
Shoup proved that f -OAEP only meets PA1 for trap-door permutation f . He also illus-
trated a specific trap-door permutation f such that f -OAEP is not IND-CCA2. Fujisaki,
Okamoto, Pointcheval, and Stern [20] showed a sufficient condition that OAEP provides
IND-CCA2 security, where f -OAEP is IND-CCA2 if f meets partial one-wayness.
They also proved that the RSA function is partial one-way under the RSA assumption.
Thus, RSA-OAEP is IND-CCA2 in the random oracle model.

Although both schemes proposed in [5,6] support arbitrary trap-door permutations,
they cannot be applied to public-key encryption schemes. We note that assuming the
existence of (one-way) public-key encryptions is weaker than assuming that of trap-
door permutations.

We presented a generic conversion from an arbitrary IND-CPA public-key encryption
scheme (with a long enough message space) to an IND-CCA2 one in the random oracle
model [19]. Although IND-CPA public-key encryptions can be constructed from one-
way public-key encryptions by using hard core predicates [23], the direct construction
from one-way public-key encryptions is more preferable in the sense of efficiency. Inde-
pendently of us, Pointcheval [39] proposed a generic conversion from an arbitrary one-
way public-key encryption scheme to an IND-CCA2 one in the random oracle model.
His conversion is, however, slightly less efficient than our conversion. Okamoto and
Pointcheval [34] presented another generic construction, but the starting public-key en-
cryption schemes are required to be stronger than ours.

1.3.3. Constructions in Standard Model

Cramer and Shoup [11] presented the first practical IND-CCA public-key encryption
scheme without random oracles under the decisional Diffie–Hellman (DDH) assump-
tion. They then introduced hash proof systems [12,13], generalizing the heart of their
design methodology. Hash proof systems have been implicitly or explicitly used or ex-
tended in many papers for designing practical IND-CCA public-key encryptions on
specific number-theoretic assumptions, e.g., [10,14,25,26,29,30,46]. Boneh, Canetti,
Halevi, and Katz [8,9] presented another pass by proposing generic conversions from
a selective ID secure identity-based encryption scheme to an IND-CCA public-key en-
cryption scheme. Peikert and Waters [37] and subsequently Rosen and Segev [41] re-
cently proposed another method for designing IND-CCA public-key encryptions via
so-called lossy/correlated trap-door functions. So far, practical IND-CCA public-key
encryption schemes have been based on specific hard problems associated with specific
(algebraic) structures such as hash proof systems.
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1.3.4. Hybrid Usage of Asymmetric and Symmetric Encryptions

Asymmetric encryption schemes are usually used only for secretly transmitting a ses-
sion key of a symmetric encryption scheme for message encryption. In fact, the hybrid
usage of asymmetric and symmetric encryption schemes is very common in practice.
However, this subject had not been well studied, when [18] was published. Only a few
papers addressed this topic, for instance that by Abdalla, Bellare, and Rogaway [2],
and to the best of our knowledge, no generic construction of secure hybrid usage of
asymmetric and symmetric encryption schemes had been proposed.

Abdalla et al. presented a hybrid encryption scheme based on the Diffie–Hellman
key-distribution system, first called DHAES [2] and later referred to as DHIES [1].

Shoup presented a framework for generic construction of hybrid encryption schemes,
called the KEM/DEM framework [45]. A notable difference from ours is that it enables
the sender to create the encrypted session key independent of messages (called the on-
the-fly property). However, symmetric encryption schemes, called the data encryption
mechanism (DEM) in [45], is required to meet a stronger condition than ours. Abe,
Gennaro, and Kurosawa [3] proposed another framework for hybrid usages, called the
Tag-KEM/DEM framework. Tag-KEM/DEM does not support the on-the-fly property,
and the security requirement of DEM is the same as that of our starting symmetric
encryption schemes.

1.4. Refinement

In this paper we slightly modify the conference version [18] by replacing “m” with “c”
in the second argument of hash H , i.e., H(σ,m) with H(σ, c). In [18] the starting sym-
metric encryption scheme should be deterministic and bijective, but such restrictions
have been removed in this full version. We note that it is not written in [18] that the
starting symmetric encryption scheme should be limited to bijection, but it is an obvi-
ous bug. A counter example is as follows: Let Π = (E , D) be a OT-secure deterministic
symmetric encryption scheme derived from a random permutation over {0,1}k . Then
define E ′

a(x) := Ea(x) for x ∈ {0,1}k and D′
a(y) := Da([y]k) for y ∈ {0,1}∗, where [y]k

denotes the first k-bit string of y. Π ′ = (E ′, D′) is still deterministic and OT-secure, but
the resulting hybrid encryption scheme is not IND-CCA. For completeness, we give the
formal proof to the conference version [18] in Appendix B, if starting with a bijective
symmetric encryption scheme. We note that the hybrid encryption scheme obtained in
[18] is PA2, whereas the hybrid encryption scheme obtained in this full version does not
meet even PA1.

2. Preliminary

Let {0,1}k (k ∈ N ) be the set of all the k-bit strings. Let {0,1}∗ be the set of all finite
strings. Conventionally, we include the empty string (denoted ε) in {0,1}∗. For x ∈
{0,1}∗, |x| denotes the bit length of string x. In particular, |ε| = 0.

We write x := a to denote the operation of assigning the value of a to the vari-
able x. Let X be a probability space on finite set S(⊂ {0,1}∗). We denote by x ← X

as the operation of sampling an element of S according to the distribution of X,
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and assigning the result of this experiment to the variable x. We also write, for a fi-
nite set S , x ←R S to denote the operation of sampling an element of S uniformly,
and assigning the result of this experiment to the variable x. For probability spaces,
X1, . . . ,Xk , and k-ary predicate φ, we write Pr[x1 ← X1;x2 ← X2; · · · : φ(x1, . . . , xk)]
to denote the probability that predicate φ(x1, . . . , xk) is true after the experiments,
“x1 ← X1;x2 ← X2; · · ·”, are executed in that order. In this case, it is important that
x1, . . . , xk are sampled in that order. For probability space X, we write Pr[X = a] to
denote the probability that Pr[x ← X : x = a]. For probability spaces, X1, . . . ,Xk , and
X, we write Pr[x1 ← X1;x2 ← X2; · · · : X(x1, . . . , xk) = a] to denote Pr[x1 ← X1;
x2 ← X2; · · · ;x ← X : x = a].

Let A be a probabilistic algorithm. We write y ← A(x1, . . . , xn) to denote the ex-
periment of running A for given (x1, . . . , xn), picking r uniformly from an appro-
priate domain, and assigning the result of this experiment to the variable y, i.e.,
y = A(x1, . . . , xn; r). Hence, for given fixed input (x1, . . . , xn), we may think of
A(x1, . . . , xn) as a probability space. The running time of A denotes the worst-case
running time in which algorithm A halts for the same length of input. Algorithm A

being t-time means that its running time is t .
Let ε, τ : N → [0,1] (⊂ R) be positive [0,1]-valued functions. We say that ε(k) is

negligible in k if, for any constant c, there exists a constant, k0 ∈ N, such that ε(k) <

(1/k)c for any k > k0. Let f,g : N → R. We say that f = O(g) if limk→∞ f (k)/g(k) =
c for some fixed constant c, and that f = ω(g) if limk→∞ f (k)/g(k) = ∞. We note that
k−f (k) is negligible if f = ω(1).

3. Syntax of Encryption Schemes

We recall the syntax of asymmetric and symmetric encryption schemes, basically fol-
lowing [7,24].

3.1. Asymmetric Encryption

An asymmetric (aka public-key) encryption scheme is given by a triple of algorithms,
Π = (K, E , D), where for every sufficiently large k ∈ N,

• K, the key-generation algorithm, is a probabilistic polynomial-time (in k) algo-
rithm which on input 1k outputs a pair of strings, (pk, sk), called the public and
secret keys, respectively. This experiment is written as (pk, sk) ← K(1k).

• E , the encryption algorithm, is a probabilistic polynomial-time (in k) algorithm
that takes public key pk and message x ∈ MSP, draws coins r uniformly from coin
space COIN, and produces ciphertext y := Epk(x; r). This experiment is written
as y ← Epk(x). The message and coin spaces, MSP and COIN, are uniquely deter-
mined by pk.

• D, the decryption algorithm, is a deterministic polynomial-time (in k) algo-
rithm that takes secret key sk and ciphertext y ∈ {0,1}∗, and returns message
x := Dsk(y).

We require that an asymmetric encryption scheme should satisfy the following correct-
ness condition: For every sufficiently large k ∈ N, every (pk, sk) generated by K(1k)

and every x ∈ MSP, we always have Dsk(Epk(x)) = x.
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3.2. Symmetric Encryption

A symmetric (aka private-key) encryption scheme is given by a pair of algorithms, Π =
(E , D), where for every sufficiently large k ∈ N,

• E , the encryption algorithm, is a probabilistic polynomial-time (in k) algorithm that
takes secret key a ∈ KSP and message x ∈ MSP, draws coins r uniformly from coin
space COIN, and produces ciphertext y := Ea(x; r). This experiment is written as
y ← Ea(x). The key, message, and coin spaces, KSP, MSP and COIN, are uniquely
determined by k.

• D, the decryption algorithm, is a deterministic polynomial-time (in k) algorithm
that takes secret key a ∈ KSP and ciphertext y ∈ {0,1}∗, and outputs message x :=
Da(y).

We require that a symmetric encryption scheme should satisfy the correctness condi-
tion: For every sufficiently large k ∈ N, every a ∈ KSP and every x ∈ MSP, we always
have Da(Ea(x)) = x.

In the preliminary version [18], the symmetric encryption schemes utilized for the
conversion should be deterministic and bijective, but the restriction is now removed.

4. Generic Conversion

Let Πasy = (Kasy, E asy, Dasy) and Πsy = (E sy, Dsy) be asymmetric and symmetric en-
cryption schemes, respectively, (pk, sk) be a pair of public and secret keys generated
by Kasy(1k), MSPasy and COINasy be the message and coin spaces of Πasy with respect
to pk, and KSPsy and MSPsy be the key and message spaces of Πsy (with respect k).
We define two hash functions.

G : {0,1}∗ → KSPsy and H : {0,1}∗ × {0,1}∗ → COINasy.

Given Πasy and Πsy, we construct a hybrid encryption scheme Πhy = (Khy, E hy, Dhy).
We write COINhy and MSPhy to denote the coin and message spaces of Πhy. This hybrid
encryption scheme is specified as follows:

Key-generation Khy, the key-generation algorithm, takes 1k as input. It selects
(pk, sk) ← Kasy(1k) and returns (pk, sk) as the output of Khy(1k). We write the exper-
iment as (pk, sk) ← Khy(1k).

Encryption E hy, the encryption algorithm, takes public key pk and message m ∈
MSPhy(:= MSPsy) as input. It selects σ ←R COINhy(:= MSPasy), computes c ←
E sy

a (m), where a := G(σ), and computes e := E asy
pk (σ ;h) where h := H(σ, c). It fi-

nally outputs e ‖ c as E hy
pk(m;σ). As described above, the coin and message spaces of

Πhy with respect to pk are defined as COINhy := MSPasy and MSPhy := MSPsy.

Decryption Dhy, the decryption algorithm, takes secret key sk and ciphertext e ‖ c ∈
{0,1}∗ as input. It runs as follows.
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1. Parse e ‖ c appropriately as (e, c); otherwise, output ε and halt.
2. Compute σ̂ := Dasy

sk (e).
3. If σ̂ ∈ COINhy,

(a) then compute â := G(σ̂ ).
(b) otherwise, set Dhy

sk(e ‖ c) := ε and go to Step 6.

4. Set ĥ := H(σ̂ , c).
5. If e = E asy

pk (σ̂ ; ĥ),

(a) then set Dhy
sk(e ‖ c) := Dsy

â
(c).

(b) otherwise, Dhy
sk(e ‖ c):= ε.

6. Return Dhy
sk(e ‖ c).

4.1. Remarks on Decryption

We stress that the error symbol (e.g., ε) used in Step 3 must be the same as that in
Step 5; otherwise, the decryption algorithm might reveal crucial information—actu-
ally, when the conversion is applied to Okamoto–Uchiyama encryption [35], called
EPOC [36], it is crucial, which is reported by Joye, Quisquater, and Yung [27]. Based on
the technique [27], Sakurai and Takagi [43] proposed a side-channel attack on EPOC.
The essence of the attack is to detect in which of the two steps invalid ciphertexts
are rejected, by observing the difference between their computational times. Galindo
et al. [21] presented a remedy that modifies the decryption algorithm of EPOC so that it
always executes Step 5 and spends almost the same computational time for decryption.

We note that the error symbol in Step 1 can be an arbitrary public symbol. In addition,
the error symbol of Dsy can be arbitrary (but we remark the error symbol of Dsy can
depend only on its inputs and its own description given beforehand).

5. Security Definitions

In this section we define several security notions for asymmetric and symmetric encryp-
tion schemes.

5.1. One-way Asymmetric Encryption

We give a weak security notion for an asymmetric encryption. Let Π be an asymmetric
encryption scheme. We consider the following game of Π against adversary A: Run K
on input 1k and obtain (pk, sk) ← K(1k). Then pick up x ←R MSP uniformly to com-
pute y ← Epk(x). Run adversary A on input (pk, y) to output a string as the decryption
of y with pk. The advantage of A is denoted by the probability that A succeeds in de-
crypting a given encryption of a random plaintext. A is assumed to be passive, i.e., A is
not allowed to access the decryption oracle.

Definition 5.1 (OWE). Let Π be an asymmetric encryption scheme. Let A be a t-time
adversary. For k ∈ N, define the advantage of A as

Advowe
A,Π(k) � Pr

[
(pk, sk) ← K

(
1k

);x ← MSP;y ← Epk(x) : A(pk,y) = Dsk(y)
]
.
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We say that Π is (t, ε)-OWE secure if, for every t-time adversary A, Advowe
A,Π(k) < ε. In

particular, if t is bounded by some polynomial in k and ε is negligible in k, we say that
Π is one-way.

5.2. Well-Spread Encryption

Let ‖X‖ be the infinity norm of probability space X on a finite set S, i.e., ‖X‖ =
maxa∈S {Pr[x ← X : x = a]}. The min-entropy of X is − log‖X‖.

Definition 5.2 (γ -spread). Let Π = (K, E , D) be an asymmetric encryption scheme.
For pk and x ∈ MSP, define the min-entropy of Epk(x) by γ (pk, x) = − log‖Epk(x)‖,
where

∥∥Epk(x)
∥∥ = max

y∈{0,1}∗
Pr

[
h ←R COIN : y = Epk(x,h)

]
.

We say that Π is γ -spread (for k ∈ N), if, for every pk generated by K(1k) and x ∈ MSP,
γ (pk, x) ≥ γ . In particular, we say that Π is well-spread in k if γ = ω(log(k)).

5.3. Random Oracle

We only treat random oracles mapping its inputs to bit strings of a fixed length. For a
random oracle, H : {0,1}∗ → {0,1}n, we write H ← Ω to denote the following imag-
inary experiment: For each finite string x as a query, sample a uniformly random k-bit
string, and assign it to each variable H(x). Without loss of generality, a single random
oracle can be treated as multiple, mutually independent random oracles, by appending
a fixed distinct bit string to the beginning of each x, i.e., Hi(x) := H(i‖x).

We often require random oracles mapping to a specific finite space, say K , which
may depend on the result of executing a specific algorithm. Formally in the random
oracle model, the random oracle is chosen beforehand. We implicitly assume that we
only treat K such that we can appropriately convert a true random oracle into a pseudo
random oracle mapping to K . For example, let K be a finite cyclic group with order
q and generator g. We define H ′ : {0,1}∗ → K as H ′(x) := gH(x) mod q . Then, the
output distribution of H ′ is statistically close to that of a random oracle mapping to K

if n = logK + ω(logk).
For simplicity, we allow ourselves to see such a pseudo random oracle as a true ran-

dom oracle.

5.4. Chosen-Ciphertext Security (IND-CCA)

We recall the chosen-ciphertext security, denoted as IND-CCA or IND-CCA2, for
asymmetric encryption [7,40]. In this security notion, we consider a game of asymmet-
ric encryption scheme Π against adversary A = (A1,A2) as follows: A1 takes public
key pk and queries decryption oracle Dsk(·). A1 finally returns two distinct messages,
m0,m1, as well as some state information s. We pick up random bit b ∈ {0,1} and com-
pute the encryption of mb , denoted as c∗ = Epk(mb). Then A2 takes as input c∗ and the
above state information s. A2 can query decryption oracle Dsk(·) with the only restric-
tion that it cannot query the oracle on the challenge ciphertext c∗, and finally guesses b.
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The advantage of A is meant by how well it can determine value b by a probability of
more than 1

2 . In the random oracle version of IND-CCA, A is allowed to access random
oracles in the course of the attack.

Definition 5.3 (IND-CCA in RO). Let Π = (K, E , D) be an asymmetric encryption
scheme, and A = (A1,A2) be an adversary for Π . For k ∈ N, define the following
advantage:

Advind-cca
A,Π (k) = 2 · Pr

[
H ← Ω; (pk, sk) ← K

(
1k

); (m0,m1, s) ← A
H,Dsk

1 (pk);
b ←R {0,1}; c∗ ← Epk(mb) : A

H,Dsk

2

(
c∗, s

) = b
] − 1.

We say that Π is (t, qhash, qdec, ε)-IND-CCA secure in the random oracle model if,
for every (t , qhash, qdec)-adversary A, Advind-cca

A,Π (k) < ε, where A is called a (t , qhash,
qdec)-adversary if it is a t-time adversary that accesses the random oracle at most qhash
times and the decryption oracle at most qdec times. In particular, we say that Π is
chosen-ciphertext secure in the random oracle model if (t, qhash, qdec) are bounded by
some polynomial in k and ε is negligible in k.

5.5. One-Time Secure Symmetric Encryption

We introduce a weak security notion for symmetric encryption, called one-time secu-
rity, which is the symmetric encryption version of indistinguishability against passive
attacks. In the preliminary version [18], it is referred to as find–guess security.

Let Π = (E , D) be a symmetric-key encryption scheme, and A = (A1,A2) be an
adversary against Π . We consider a game of Π against adversary A as follows:

1. Pick up key a ← KSP.
2. Run A1 on input 1k . Finally, A1 outputs two distinct messages, m0,m1 ∈ MSP

with some state information s.
3. Pick up random bit b ←R {0,1} and compute c ← Ea(mb).
4. Run A2 on input c and s. A2 finally outputs b′ ∈ {0,1}.

The advantage of A indicates how much better it can determine the value b by a prob-
ability of more than 1

2 , namely 2 Pr[b = b′] − 1. A is just passive, i.e., not allowed to
access any encryption or decryption oracle.

Definition 5.4 (OT). Let Π = (E , D) be a symmetric-key encryption scheme and let
A be an adversary that works on Π . For k ∈ N, define the advantage of A, by

Advot
A,Π(k) = 2 · Pr

[
a ←R KSP(k); (m0,m1, s) ← A1

(
1k

);b ←R {0,1};
c ← Ea(mb) : A2(c, s) = b

] − 1.

We say that Π is (t, ε)-OT secure if, for every t-time adversary A, Advot
A,Π(k) < ε. In

particular, if t is bounded by some polynomial in k and ε is negligible in k, we say that
Π is one-time secure.
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6. Security Results

Let Πasy be a γ -spread (tasy, εasy)-OWE secure asymmetric encryption scheme. Let
Πsy be a (tsy, εsy)-OT secure symmetric encryption scheme. T asy(k) denotes the worst
case of the running time of E asy

pk for every pk generated by Kasy(1k). Let Πhy be the
hybrid encryption scheme obtained by our conversion. We then have the following the-
orem.

Theorem 6.1. Πhy is (thy, qhash, qdec, ε
hy)-IND-CCA secure in the random oracle

model where

thy = min
(
tasy, tsy) − (qdec + 1)T asy(k) − qhashO(k) and

εhy = 2qhashε
asy + εsy + 2qdec2−γ .

The proof is given in Sect. 7.
Suppose that Πsy is a one-time pad based symmetric encryption scheme defined over

{0,1}k . Namely,

• KSPsy = MSPsy = {0,1}k .
• For m ∈ {0,1}k , E sy

a (m) := a ⊕ m.
• For c ∈ {0,1}k , Dsy

a (c) outputs a ⊕ c.

We note that for m �∈ {0,1}k or c �∈ {0,1}k , the encryption and decryption algorithms
can be specified in an arbitrary way, as long as Πsy is secure in the sense of OT.

Corollary 6.2. Let the underlying symmetric encryption scheme be “one-time pad-
ding” defined above. Let G : {0,1}∗ → {0,1}k and H : {0,1}∗ × {0,1}∗ → {0,1}k . The
hybrid encryption scheme is (thy, qhash, qdec, εhy)- IND-CCA secure in the random
oracle model where

thy = tasy − (qdec + 1)T asy(k) − qhashO(k) and

εhy = 2qhashε
asy + 2qdec2−γ .

Proof. The above one-time pad based symmetric encryption scheme is (∞,0)-OT
secure. It straightforwardly implies the corollary. �

Note that any γ -spread asymmetric encryption scheme Πasy can be transformed to
(γ + γ ′)-spread asymmetric encryption scheme ˆΠasy for any γ ′ by appending random
r ′ ∈ {0,1}γ ′

to the end of the encryption of a message:

Ê asy
pk

(
m; (r‖r ′)) = E asy

pk (m; r) ‖ r ′.

The new asymmetric encryption scheme is OWE if so is the original one. Thus, we have
the following statement.

Corollary 6.3. There exists an efficient transformation from any one-way asymmetric
encryption into an asymmetric encryption scheme that is secure in the sense of IND-
CCA in the random oracle model.
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7. Proof of Theorem 6.1

7.1. Outline of Proof

Let Ahy be a (thy, qhash, qdec)-adversary with advantage εhy that attacks Πhy in the
sense of IND-CCA. We refer to the attack game as Game G0.

We simply adopt the so-called game-hopping or game-playing technique used by
Cramer and Shoup [13]. (Prior the work of [13], a similar framework is used in [28] and
these techniques have the origin in the earliest hybrid argument.) We define a sequence
of modified attack games, G1, . . . ,Gl . Each game operates on the same probability
space determined by the following mutually independent random variables:

1. the choices of random oracles, G,H ∈ Hash;
2. the contents of random tapes of Ahy = (A

hy
1 ,A

hy
2 ), denoted rAhy

;
3. the random variables in the environment: (pk, sk) ∈ Kasy(1k), b ∈ {0,1}, σ ∗ ∈

MSPasy and r∗ ∈ COINsy; and
4. the following imaginary random variables: a∗ ∈ KSPsy and h∗ ∈ COINasy.

Among the above games, the probability spaces are identical. Only some of the
rules defining how the environment responds to oracle queries differ from game to
game. We write (e∗, c∗) to denote the challenge ciphertext and b′ to denote the final
output of the adversary (i.e., the output of A

hy
2 ) in the above games. In Game G0,

the challenge ciphertext (e∗, c∗) is generated by computing c∗ := E sy
G(σ ∗)(mb; r∗) and

e∗ := E asy
pk (σ ∗;H(σ ∗, c∗)), where (b, σ ∗, r∗) are the above random variables.

For any 0 ≤ i ≤ l, we write Si to denote the event that b = b′ in game Gi . Since
the rules of the environment responses are generally different among the above games,
Event Si ’s are different in general. By definition, εhy = 2 Pr[S0] − 1. The final goal is
to evaluate εhy by some upper-bound. Our strategy for the proof is that we will change
Event Si step by step, by clarifying the upper-bound of Pr[Si−1] − Pr[Si]. When we
have the exact value of Pr[Sl] for some l, we achieve the final goal to bound εhy.

For any 0 ≤ i ≤ l, we write Askσ ∗
i to denote the event in Game Gi such that

• Ahy submits to random oracle G the query σ ∗ or
• Ahy submits to random oracle H a query with the form of (σ ∗, c∗).

Here is the road map of the games and how the proof is going on.

1. Game G1 is the same game as Game G0, except that we change the rule of the
decryption oracle. We simulate the decryption oracle without using secret key sk.
This simulation is described later. Then, we see that Pr[S0] − Pr[S1] ≤ qdec2−γ .

2. Game G2 is the same game as Game G1, except that we replace the values of
G(σ ∗) and H(σ ∗, c∗) with a∗ and h∗, respectively. This change is only concep-
tual. So, Pr[S1] − Pr[S2] = 0.

3. Game G3 is the same game as Game G2, except that we replace a∗ and h∗
with G(σ ∗) and H(σ ∗, c∗), again, whereas we use the same challenge cipher-
text (e∗, c∗) as in Game G2, i.e., e∗ = E asy

pk (σ ∗;h∗) and c∗ = E sy
a∗(mb). Then, we

have Askσ ∗
2 = Askσ ∗

3 and Pr[S2] − Pr[S3] ≤ Pr[Askσ ∗
3 ].
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4. Game G4 is the same as Game G3, except that we change the rule of select-
ing random oracles. This change is only conceptual. Thus, we have S3 = S4 and
Askσ ∗

3 = Askσ ∗
4 .

Then, we see that Pr[Askσ ∗
4 ] ≤ qhashε

asy, if tasy is enough large. We also see that
Pr[S4] = Pr[SuccAsy], if tsy is enough large, where we let SuccAsy be the event in
game G3s that

a ←R KSP(k); (m0,m1, s) ← A
sy
1

(
1k

); b ←R {0,1};
c ← E sy

a (mb) : Asy
2 (c, s) = b.

Tracing through the above steps, we can see that Pr[S0] ≤ Pr[SuccAsy]+qhashε
asy +

qdec2−γ . Hence,

εhy ≤ 2qhashε
asy + εsy + 2qdec2−γ , (1)

where εsy = 2 Pr[SuccAsy] − 1.
Before proceeding the detail, we prepare the following lemma.

Lemma 7.1 [13]. Let A,B,F1,F2 be events defined on the same probability space.
Suppose that Pr[F1] = Pr[F2] and Pr[A ∧ ¬F1] = Pr[B ∧ ¬F2]. Then we have Pr[A] −
Pr[B] ≤ Pr[F1](= Pr[F2]).

Proof. By the condition we have Pr[A] − Pr[B] = Pr[A ∧ F1] − Pr[B ∧ F2]. Since
Pr[A ∧ F1] ≤ Pr[F1] and Pr[B ∧ F2] ≥ 0, we have Pr[A] − Pr[B] ≤ Pr[F1]. �

7.2. Details of Reduction

We now provide details.

Game G1 Game G1 is identical to game G0 except for changing the rule of how to
reply for decryption queries. Let G and H be the query/answer record lists for random
oracles, G and H , respectively.

For fresh query (e, c) to the decryption oracle, we proceed as follows:

1. Search tuple (σ, c,h) in H such that σ ∈ MSPasy and e = E asy
pk (σ ;h). If such a

tuple is not recorded in H, return ε; otherwise.
2. Query oracle G on σ to obtain a = G(σ).
3. Return Dsy

a (c).

If query (e, c) is not new, we just return the same value as before. Note that this proce-
dure does not require the secret key.

We say that (e, c) is almost-valid with respect to pk on Πhy, if and only if we have

e = E asy
pk

(
σ ;H(σ, c)

)
, where σ := Dasy

sk (e). (2)

We note that an almost-valid ciphertext (e, c) is valid (w.r.t. pk on Πhy) if σ ∈ MSPasy.
Consider the case that “Ahy submits almost-valid ciphertext (e, c) to the decryption

oracle, whereas there is no (σ, c,h) in H such that σ ∈ MSPasy and e = E asy
pk (σ ;h).” Let
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Bad0 and Bad1 be the events that the case occurs in games, G0 and G1, respectively.
Conditioned on Event Bad1, the ciphertext is always rejected in Game G1, whereas
conditioned on Event Bad0, it is not rejected in Game G0 if the almost-valid ciphertext
is valid.

By construction, games, G0 and G1, proceed identically until the above case occurs.
This implies that Bad0 = Bad1 and S0 ∧ ¬Bad0 = S1 ∧ ¬Bad1. Hence, by Lemma 7.1,
we have Pr[S0] − Pr[S1] ≤ Pr[Bad0].

We consider the probability that Event Bad0 occurs. Remember that (e∗, c∗) denotes
the challenge ciphertext. Since challenge ciphertext (e∗, c∗) is valid, we always have
σ ∗ = Dasy

sk (e∗).
• Suppose that e is a valid ciphertext of Πasy with respect to pk, i.e., there exists σ ∈
MSPasy and r ∈ COINasy such that e = E asy

pk (σ ; r). Then we always have σ �= σ ∗ or
c �= c∗: If e = e∗ (which implies σ = σ ∗), we must have c �= c∗, because (e, c) �=
(e∗, c∗). If e �= e∗, must have c �= c∗ or σ �= σ ∗; otherwise, H(σ, c) = H(σ ∗, c∗).
Thus, we have e = e∗ = E asy

pk (σ ;H(σ, c)), which contradicts the condition. Hence,
given ciphertext (e, c) with valid e, the value H(σ, c) is independent of the value
H(σ ∗, c∗), because (σ, c) �= (σ ∗, c∗). Therefore, the probability of Bad0 on this
condition is at most qdec2−γ because Πasy is assumed to be γ -spread.

• On the contrary, if e is an invalid ciphertext of Πasy with respect to pk, we
should consider the event that σ = σ ∗ and c = c∗ both occurs, despite the
fact (e, c) �= (e∗, c∗)—we cannot immediately deny the possibility that we have
Dasy

sk (e) = Dasy
sk (e∗) for some invalid e, with e �= e∗, because the decryption of

asymmetric encryption on an invalid ciphertext is not specified. However, this
event never occurs, because if it occurs then σ ∈ MSPasy and H(σ, c) ∈ COINasy

(because H(σ, c) = H(σ ∗, c∗)), which contradicts that e is invalid. So if e is in-
valid, (2) never holds and Bad0 never occurs.

Hence, Pr[Bad0] ≤ qdec2−γ . Therefore, Pr[S0] − Pr[S1] ≤ qdec2−γ .

Game G2 Game G2 is the same as Game G1 except that we replace values, G(σ ∗)
and H(σ ∗, c∗), with a∗ and h∗, respectively. We create the challenge ciphertext (e∗, c∗)
such that e∗ = E asy

pk (σ ∗;h∗) and c∗ = E sy
a∗(mb), and reply with a∗ and h∗ if σ ∗ and

(σ ∗, c∗) is submitted to G and H , respectively. This means that after we fix G and H ,
we replace them with G′ and H ′, respectively, where G′ and H ′ are identical to G and
H except for the above queries. However, it is clear that the distribution on (G,H) is
identical to that of (G′,H ′). Hence, Pr[S1] = Pr[S2].
Game G3 Game G3 is the same as Game G2, except that we replace G′ and H ′
with G and H , again, but still use the same challenge ciphertext (e∗, c∗) such that
e∗ = E asy

pk (σ ∗;h∗) and c∗ = E sy
a∗(mb). Games, G2 and G3, proceed identically, until the

adversary asks G for σ ∗ to obtain G(σ ∗) or H for (σ ∗, c∗) to obtain H(σ ∗, c∗). Thus,
we see that Askσ ∗

2 = Askσ ∗
3 and S2 ∧ ¬Askσ ∗

2 = S3 ∧ ¬Askσ ∗
3 . By Lemma 7.1, we

have Pr[S2] − Pr[S3] ≤ Pr[Askσ ∗
3 ].

Game G4 In Game G4, we modify the rule of selecting random oracles. Instead of
selecting random functions, G and H , in advance, we select their values step by step as
follows.



94 E. Fujisaki and T. Okamoto

• Let G be the query/answer list for oracle G. G is initially empty. For a fresh query
σ to G, select a ∈R KSPsy to reply with. Add (σ, a) to G .

• Let H be the query/answer list for oracle H . H is initially empty. For a fresh query
(σ, c) to H , pick up h ∈R COINasy to reply with. Then add the tuple (σ, c,h) to H.

In the above, if the query is not fresh, then simply reply with the same value as that has
already been in the list G or H. It is clear that this change is only conceptual. Therefore,
Pr[S3] = Pr[S4] and Pr[Askσ ∗

3 ] = Pr[Askσ ∗
4 ].

We now have Pr[S0] − Pr[S4] ≤ qdec2−γ + Pr[Askσ ∗
4 ].

Lemma 7.2. Let Πasy be (tasy, εasy)-OWE, where tasy ≥ thy + qdecT
asy(k) +

qhashO(k). Then Pr[Askσ ∗
4 ] ≤ qhashε

asy.

Proof. Suppose that Aasy is a tasy-time adversary to attack Πasy in the sense of
OWE with advantage εasy, where tasy = thy + qdecT

asy(k) + qhashO(k). The advan-
tage of Aasy is the probability that “(pk, sk) ← Kasy(1k);x ← MSPasy;y ← E asy

pk (x) :
Aasy(pk, y) = Dasy

sk (y).” We construct Aasy by using Ahy = (A
hy
1 ,A

hy
2 ) in Game G4 as

follows:

1. Aasy takes (pk, y) as input, where y is the challenge ciphertext.
2. Aasy selects a∗ ←R KSPsy and runs A

hy
1 on input pk.

3. When A
hy
1 submits queries to the oracles, G,H and Dhy

sk , Aasy simulates them as

described above in Game G4. It waits until A
hy
1 outputs (m0,m1, s).

4. Aasy selects b ←R {0,1} and sets e∗ := y and c∗ ← E sy
a∗(mb). Aasy provides

(e∗, c∗, s) for A
hy
2 and runs A

hy
2 .

5. When A
hy
2 submits queries to the oracles, G,H and Dhy

sk , Aasy simulates them as
described above in Game G4.

6. When A
hy
2 halts, Aasy selects i ←R {1, . . . , qhash} and outputs σ in the ith query

to the random oracles.

We note that, conditioned on the event that Ahy submits σ ∗ to G or (σ ∗, ·) to H , Aasy

outputs σ ∗ with probability q−1
hash.

In order to simulate G and H , Aasy should select random values from KSPsy and
COINasy qhash times in total, which costs qhashO(k). Hence, the running time of Aasy

is thy + qdecT
asy(k) + qhashO(k). By construction, it is obvious that the view of Ahy

is identical to that of G4, if

tasy ≥ thy + qdecT
asy(k) + qhashO(k). (3)

Then, thanks to (tasy, εasy)-OWE Πasy, the probability that Aasy outputs σ ∗
(:= Dasy

sk (c∗)) is bounded by εasy. Therefore, we have Pr[Askσ ∗
4 ] ≤ qhashε

asy, because
Event Askσ ∗

4 implies the event that Ahy submits σ ∗ or (σ ∗, ·) to G or H in Game 4. �

Lemma 7.3. Let Πsy be (tsy, εsy)-OT, where tsy ≥ thy + (qdec + 1)T asy(k) +
qhashO(k). Then, we have Pr[S4] ≤ Pr[SuccAsy]; hence, 2 Pr[S4] − 1 ≤ εsy.
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Proof. Suppose that Asy is tsy-time adversary to attack Πsy in the sense of OT
with advantage εsy, where tsy = thy + (qdec + 1)T asy(k) + qhashO(k). Remember
that SuccAsy is the event that “a ← KSPsy; (m0,m1, s) ← A

sy
1 (1k);b ←R {0,1}; c ←

E sy
a (mb) : Asy(c, s) = b.” The advantage of Asy, εsy, is 2 Pr[SuccAsy]−1. We construct

Asy by using Ahy in Game G4 as follows.

1. A
sy
1 is given 1k .

2. A
sy
1 runs Kasy on input 1k to take (pk, sk). A

sy
1 then runs A

hy
1 on the public key

pk.
3. When A

hy
1 submits queries to the oracles, G,H and Dhy

sk , A
sy
1 simulates them as

described above in Game G4. It waits until A
hy
1 outputs (m0,m1, s).

4. A
sy
2 takes the challenge ciphertext c∗ = E sy

a∗(mb) and state s, where b ∈R {0,1}.
5. A

sy
2 selects σ ∗ ←R MSPasy and h∗ ←R COINasy. It then sets e∗ = E asy

pk (σ ∗;h∗).
A

sy
2 runs A

hy
2 on input (e∗, c∗, s).

6. When A
hy
2 submits queries to the oracles, G,H, Dhy

sk , A
sy
2 simulates them as de-

scribed above in Game G4.
7. When Ahy outputs bit b′ and halts, A

sy
2 outputs the same b′.

By construction, the view of Ahy is identical to that of Game G4, if

tsy ≥ thy + (qdec + 1)T asy(k) + qhashO(k). (4)

Thus, Pr[S4] = Pr[SuccAsy]. �

To satisfy both (3) and (4), we requires that

thy ≤ min
(
tasy, tsy) − (qdec + 1)T asy(k) − qhashO(k).

By the lemmas above, when both (3) and (4) hold, εhy, εasy, εsy obey Inequality (1).
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Appendix A. Notes on PA

The notion of plaintext-awareness was first formalized in [6] and later revised in [7] for
incompleteness. To distinguish the two definitions, we call the former PA1 and the latter
PA2. PA1 implies IND-CCA1 [6], whereas PA2 implies IND-CCA2 [7]. The main prop-
erty of the notion of plaintext-awareness is informally that the adversary cannot produce
a new ciphertext without knowing the corresponding plaintext. In PA1, the adversary
cannot do so before it takes the challenge ciphertext, whereas in PA2 it cannot even af-
ter taking the challenge ciphertext. We say that an asymmetric encryption scheme is PA1
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(resp. PA2) if it is IND-CPA, in addition to satisfying the above property. The proofs
of the statement that PA1 (resp. PA2) implies IND-CCA1 (resp. IND-CCA2) comes
from the following intuitive idea: If the target encryption scheme is PA1 (resp. PA2),
an adversary is aware of the decryption of the ciphertexts submitted to the decryption
oracle. Hence, it cannot obtain any additional information from the decryption oracle
because it already knows the corresponding plaintexts. Therefore, we can transform
a-priori (resp. a-posteriori) chosen-ciphertext attacks against the target encryption
scheme into a chosen plaintext attack against the same encryption scheme. Hence, if
the encryption scheme is IND-CPA, it would be IND-CCA1 (resp. IND-CCA2).

The opposite directions do not hold. An artificial counter example appeared in [7],
that meets IND-CCA2, but not PA1. Therefore, IND-CCA1 (resp. IND-CCA2) does not
imply PA1 (resp. PA2), because PA2 implies PA1 and IND-CCA2 implies IND-CCA1.
A more natural counter example was shown by Phan and Pointcheval [38], where OAEP
3-round [38] does not meet PA1, but still remains IND-CCA2. The hybrid encryption
scheme obtained in this paper is another natural counter example, which does not meet
PA1, but still IND-CCA2 (we note that the hybrid encryption scheme in the conference
version [18] is PA2 if the starting symmetric encryption scheme is deterministic and
bijective).

Let f : {0,1}k → {0,1}k be a trap-door permutation. Consider asymmetric encryp-
tion scheme Π induced by the following encryption function: For plaintext m ∈ {0,1}k ,
to encrypt it as

E hy
pk(m;σ) = f (σ )‖H(σ, c)‖G(σ) ⊕ m, (A.1)

where G : {0,1}k → {0,1}k and c = G(σ) ⊕ m. This encryption scheme is a special
case of our hybrid encryption scheme. This scheme is IND-CCA2, but not PA1. We
let the reader refer to [6,7] for the formal definitions of PA1, but the proof intuitively
is as follows: Consider plaintext creator B for Π that takes public-key pk and outputs
a ciphertext, after asking queries to the random oracles. It can produce a ciphertext
(f,h, c), without knowing the corresponding plaintext in the following way—B just
picks up any σ, c ∈ {0,1}k and submits (σ, c) to H to obtain h = H(σ, c). It then com-
putes f = f (σ ), using pk = {f }, and submits, not asking G with σ , the ciphertext
(f,h, c) to the decryption oracle. The decryption for this ciphertext, G(σ) ⊕ c, is un-
predictable, because G(σ) is unpredictable. Hence, B cannot be aware of the decryption
for this ciphertext without accessing the decryption oracle. In other words, one cannot
construct a knowledge extractor that outputs the value Dhy,G,H

sk (f,h, c) on the transcript
{(σ, c,h), (f,h, c)}. If such a knowledge extractor exists for Πhy, it contradicts the un-
predictability of G(σ). We have the following claim.

Claim A.1. Let Π be the above encryption scheme. There exists a polynomial-time
bounded plaintext creator B so that there is no knowledge extractor for Π such that
Advke

K,B,Π(k) > 2−k .

Proof. Suppose that K is a knowledge extractor for Π . We construct B as above. We
then run K on B’s transcript. If K outputs m′, then we return m′ ⊕ c as the value of
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G(σ). Since G is a random oracle and K is not allowed to access G, the chance of
G(σ) = m′ ⊕ c is at most 2−k for any K . Therefore, Advke

K,B,Π(k) ≤ 2−k . �

By this claim, Π does not meet PA1.

Appendix B. Security Proof of [18]

We briefly provide the formal proof of the conversion [18], assuming that the underly-
ing symmetric encryption scheme is deterministic and bijective, in order to complete
the statement and show a better security bound than [18]. We say that a symmetric en-
cryption scheme, Π = (E , D), is deterministic if E is a deterministic algorithm. We say
that a deterministic symmetric encryption scheme, Π = (E , D) is bijective if, for any
a ∈ KSP and any y �∈ Ea(MSP), Da rejects y as an invalid ciphertext, where Ea(MSP)

denotes the image of Ea , namely Ea(MSP) � {Ea(x)|x ∈ MSP}.
Let Πasy = (Kasy, E asy, Dasy) be an asymmetric encryption scheme, and let Πsy =

(E sy, Dsy) be a deterministic and bijective symmetric encryption scheme. The confer-
ence version of the conversion is obtained by replacing “c” with “m” in H in this ver-
sion. Namely,

E hy
pk(m;σ) = E asy

pk

(
σ ;H(σ,m)

) ‖ E sy
G(σ)(m).

The coin and message spaces of Πhy with respect to pk are defined as COINhy :=
MSPasy and MSPhy := MSPsy. The decryption procedure of Dhy

sk is the same as that for
this version except for replacing c with m̂ and rejecting the ciphertext if m̂ �∈ MSPasy in
Step 5. Namely, Dhy

sk takes ciphertext e ‖ c ∈ {0,1}∗ as input and runs as follows.

1. Parse e ‖ c appropriately as (e, c); otherwise, output ε and halt.
2. Compute σ̂ := Dasy

sk (c).
3. If σ̂ ∈ COINhy,

(a) then compute â := G(σ̂ ).
(b) otherwise, output ε and halt.

4. If Dsy
â

rejects c, then output ε and halt; otherwise, set m̂ := Dsy
â

(c).

5. Set ĥ := H(σ̂ , m̂).
6. If e = E asy

pk (σ̂ ; ĥ),

(a) then set Dhy
sk(e ‖ c) := m̂.

(b) otherwise, set Dhy
sk(e ‖ c) := ε.

7. Return Dhy
sk(e ‖ c).

We stress that the error symbol in Step 3 must be the same as that in Step 6. However,
it is not necessary to use the same error symbol in other steps.

Theorem B.1. Πhy is (thy, qhash, qdec, ε
hy)-IND-CCA2 secure in the random oracle

model where

thy = min
(
tasy, tsy) − (qdec + 1)T asy(k) − qhashO(k) and

εhy = 2qhashε
asy + εsy + 2qdec2−γ ,
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where Πasy is a γ -spread (tasy, εasy)-OWE secure asymmetric encryption scheme and
Πsy is a (tsy, εsy)-OT secure bijective symmetric encryption scheme.

Proof. The proof is almost the same as the proof of Theorem 6.1, except for Game G1.
In the other games, it is enough to appropriately replace c with m. The analysis of
reduction is not affected by this replacement except for Game G1.

In Game G1, we reply for a decryption query as follows: Let G and H be the
query/answer record lists for random oracles, G and H , respectively.

For fresh query (e, c) to the decryption oracle, we proceed as follows.

1. Search tuple ((σ,m),h) in H such that σ ∈ MSPasy and e = E asy
pk (σ ;h). If such a

tuple is not recorded in H return ε, otherwise
2. Query oracle G on σ to obtain a = G(σ).
3. If there is a m in the above tuples such that Dsy

a (c) = m return m, otherwise ε.

Consider the case that “Ahy submits almost-valid ciphertext (e, c) to the decryption
oracle, whereas there is no (σ,m,h) in H such that σ ∈ MSPasy and e = E asy

pk (σ ;h).”
Let Bad0 and Bad1 be the events that the case occurs in G0 and G1, respectively. We
say that (e, c) is an “almost-valid” ciphertext of Πhy with respect to pk, if and only if
we have

e = E asy
pk

(
σ ;H(σ,m)

)
, where σ := Dasy

sk (e) and m := Dsy
G(σ)

(c). (B.1)

An almost-valid ciphertext (e, c) is valid if σ ∈ MSPasy. Conditioned on Event Bad1,
the ciphertext is always rejected in Game G0, whereas conditioned on Event Bad0, it is
not rejected in G1 if the almost-valid ciphertext is valid.

By construction, games, G0 and G1 proceeds identically until the above case occurs.
Hence, we have Bad0 = Bad1 and S0 ∧ ¬Bad0 = S1 ∧ ¬Bad1. By Lemma 7.1, we see
that Pr[S0] − Pr[S1] ≤ Pr[Bad0].

We now evaluate Event Bad0. Since challenge ciphertext (e∗, c∗) is valid, we always
have σ ∗ = Dasy

sk (e∗) and m∗ = Dsy
G(σ ∗)(c

∗).

• Suppose that e is a valid ciphertext of Πasy with respect to pk. Namely, there
exists σ ∈ MSPasy and r ∈ COINasy such that e = E asy

pk (σ ; r). Then we always
have σ �= σ ∗ or m �= m∗: If e = e∗ (which implies σ = σ ∗), we must have
m �= m∗, otherwise c = c∗ since Πsy is bijective. We note that it is not suffi-
cient only that Πsy is deterministic, because there is the case that c �= c∗ with
Dsy

G(σ)(c) = Dsy
G(σ ∗)(c

∗). If e �= e∗, we must have σ �= σ ∗ or m �= m∗, otherwise

H(σ, Dsy
G(σ)(m)) = H(σ ∗, Dsy

G(σ ∗)(m
∗)) and hence e = e∗ = E asy

pk (σ ;H(σ,m)),
which contradicts the condition.

Hence, given ciphertext (e, c) with valid e, the value H(σ,m) is independent of
the value H(σ ∗,m∗), because (σ,m) �= (σ ∗,m∗). Then consider the probability of
Bad0 on this condition. G(σ) is uniquely determined by e (through G) and hence,
m is uniquely determined by (e, c). Therefore, the conditional probability is at
most qdec2−γ .

• On the contrary, in case e is an “invalid” ciphertext of Πasy with respect to pk,
we consider the possibility that the event that σ = σ ∗ and m = m∗ occurs, despite
the fact (e, c) �= (e∗, c∗). However, this event never occurs, because if it occurs
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then σ ∈ MSPasy and H(σ,m) ∈ COINasy (because H(σ,m) = H(σ ∗,m∗)), which
contradicts that e is invalid. So if e is invalid, (B.1) never holds and Bad0 never
occurs.

Hence, Pr[Bad0] ≤ qdec2−γ . Therefore, Pr[S0] − Pr[S1] ≤ qdec2−γ . �
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