J. Cryptol. (2013) 26: 102-118

DO 10.1007/500145-011-9115-0 Journal of

CRYPTOLOGY

Practical Chosen Ciphertext Secure Encryption
from Factoring*

Dennis Hofheinz

Karlsruhe Institute of Technology, Karlsruhe, Germany
Dennis.Hofheinz @kit.edu

Eike Kiltz

Ruhr-Universitdt Bochum, Bochum, Germany
eike kiltz@rub.de

Victor Shoup*

Courant Institute, New York University, New York, USA
shoup@cs.nyu.edu

Communicated by Keneth G. Paterson.

Received 26 December 2010
Online publication 20 December 2011

Abstract. We propose a practical public-key encryption scheme whose security
against chosen-ciphertext attacks can be reduced in the standard model to the assump-
tion that factoring is intractable.

Key words. Public-key encryption, Chosen-ciphertext security, Factoring.

1. Introduction

The security of almost any cryptographic primitive (such as public-key encryption
or digital signatures) has to rely on the computational hardness of a certain number-
theoretic problem. Unfortunately, since there are currently no tools available to rigor-
ously prove lower bounds on the complexity of such problems, one has to base security
on (unproven) cryptographic hardness assumptions. The only confidence we have in
such assumptions is that after a sufficiently large period of time, nobody could success-
fully refute them. The most established cryptographic hardness assumption is without
doubt the so-called factoring assumption which states that, given the product of two
distinct large primes, it is computationally infeasible to reconstruct the primes. Despite

* This paper was solicited from Eurocrypt 2009.

T Work performed while the author was with the Centrum Wiskunde en Informatica (CWI), Amsterdam
and supported by the Dutch Organization for Scientific Research (NWO).

v Shoup was supported by NSF grant CNS-0716690.

© International Association for Cryptologic Research 2011

mailto:Dennis.Hofheinz@kit.edu
mailto:eike.kiltz@rub.de
mailto:shoup@cs.nyu.edu

Practical Chosen Ciphertext Secure Encryption from Factoring 103

intensive research, no algorithm has been found that can efficiently factor composite
numbers.

Main Result 1In this paper we propose a new public-key encryption scheme that is
based on Rabin’s trapdoor one-way permutation [42]. We can prove that the security
of our scheme against adaptive chosen-ciphertext attacks (CCA security) is equivalent
to the factoring assumption. Furthermore, the scheme is practical as its encryption per-
forms only roughly two, and its decryption roughly one, modular exponentiations. This
is the first scheme that simultaneously enjoys those two properties.

History The notion of CCA security is due to Rackoff and Simon [43] and is now
widely accepted as the standard security notion for public-key encryption schemes. In
contrast to security against passive adversaries (security against chosen-plaintext attacks
aka semantic security), in a chosen-ciphertext attack the adversary plays an active role
by obtaining the decryptions of ciphertexts (or even arbitrary bitstrings) of his choosing.
The practical significance of such attacks was demonstrated by Bleichenbacher [4] by
means of a CCA attack against schemes following the encryption standard PKCS #1.

Historically, the first scheme that was provably secure against CCA attacks is due to
Dolev, Dwork, and Naor [18] (building on an earlier result by Naor and Yung [38]).
Their generic construction is based on non-interactive zero-knowledge proofs, and
therefore (using the proof systems from [21]) yields a scheme CCA secure under the
factoring assumption. However, in practice these schemes are prohibitively impractical.
The first practical schemes provably CCA secure under standard cryptographic hard-
ness assumptions were due to Cramer and Shoup [15,16]. However, their framework
of “hash proof systems” inherently relies on decisional assumptions such as the as-
sumed hardness of deciding if a given integer has a square root modulo a composite
number with unknown factorization (DQR assumption), or of deciding if a given tuple
is a Diffie-Hellman tuple or not (DDH assumption). Until today, Cramer and Shoup’s
framework of hash proof systems (with its variations from [11,20,27,31,32,34]) and
the recent concept of lossy trapdoor functions [40] yield the only known CCA secure
practical encryption schemes based on an assumption related to factoring: the DQR as-
sumption and Paillier’s decisional composite residuosity (DCR) assumption. Currently,
no practical scheme is known that is CCA secure solely under the factoring assumption
(or even under the potentially stronger RSA assumption).

In general, decisional assumptions are a much stronger class of assumptions than
computational assumptions. For example, deciding if a given integer has a modular
square root or not may be much easier than actually computing a square root (or, equiv-
alently, factoring the modulus). It is noteworthy that there are known ways to achieve
CCA security that do not inherently rely on decisional assumptions (e.g., [9,13,14,25]).
In particular, the first practical encryption scheme CCA secure under the Computational
Diffie-Hellman (CDH) assumption was only recently proposed by Cash, Kiltz, and
Shoup [14] and improved by Hanaoka and Kurosawa [25], and Haralambiev et al. [26].
On the other hand, Dan Boneh et al. [9] provided a practical encryption scheme CCA
secure under the Bilinear Computational Diffie-Hellman (BCDH) assumption.

Random Oracle Schemes 1In a different line of research, Bellare and Rogaway [2,3]
presented practical schemes for which they gave heuristic proofs of CCA security under

104 D. Hotheinz, E. Kiltz, and V. Shoup

standard computational hardness assumptions. Their proofs are in the so-called random
oracle model [2] where a hash function is treated as an ideal random function. We stress
that although a proof in the random oracle model has a certain value, it is still only a
heuristic security argument for any implementation of the scheme. In particular, there
exist cryptographic schemes that are provably secure in the random oracle model yet that
are insecure with any possible standard-model instantiation of the hash function [12].

Details of Our Construction In 1979 Rabin [42] proposed an encryption scheme based
on the “modular squaring” trapdoor permutation whose one-wayness is equivalent to the
factoring assumption. A semantically secure variant was later proposed by Goldwasser
and Micali [23]. Our construction is based on the latter scheme [23] in its more efficient
variant by Blum and Goldwasser [5] (which uses the Blum—Blum—Shub pseudorandom
generator [7] to obtain an efficient hard-core function with linear output length). The
Blum—-Goldwasser scheme can easily be shown insecure against a CCA attack. Our main
contribution consists of modifying the Blum—Goldwasser scheme such that it is prov-
ably CCA secure under the same hardness assumption yet it retains its high efficiency.
Surprisingly, it is sufficient to add one additional group element to the ciphertexts that
is then used for a consistency check in the decryption algorithm. For the consistency
check itself, we also need to add two group elements to the public key. Another impor-
tant ingrident of our scheme is that we work in the group of “signed quadratic residues”
in which the computational problem of computing square roots is as hard as factoring,
while the problem of recognizing group elements (i.e., signed quadratic residues) is
easy.

Note that Paillier and Villar [39] (building on work of Williams [45]) show that the
CCA security of schemes which only include an RSA modulus in the public key cannot
be proven (using a black-box reduction) equivalent to factoring. In particular, this ap-
plies to the Blum—Goldwasser scheme [5] from which we start, so we have to modify
the scheme’s public key (and not only the ciphertexts). And indeed, given our modifica-
tions, our scheme’s CCA security is equivalent to the factoring problem.

Proof Details At a more technical level, the additional group elements in the public
key can be set up by a simulator such that it is possible to decrypt (without the knowl-
edge of the scheme’s secret key) all consistent ciphertexts, except the ciphertext that is
used to challenge the adversary. This “all-but-one” simulation technique can be traced
back at least to [36] where it was used in the context of pseudorandom functions.! In
the encryption context, “all-but-one” simulations have been used in identity-based en-
cryption [8] and were already applied to several encryption schemes in [9,10,14,27,29].

The main novelty is that our proof makes direct use of the fact that the underlying
primitive is a trapdoor one-way permutation, rather than the Diffie—-Hellman problem.
Therefore, the scheme’s consistency check can be directly implemented by the simula-
tor without having access to some external gap-oracle (as in [9,10,29]) or using other
extrinsic rejection techniques (such as “hash proof systems” [15,16], “twinning” [14], or

1 We stress that our use of the term “all-but-one” refers to the ability to generate a secret key that can be
used to decrypt all consistent ciphertexts except for an externally given ciphertext. This is very different from
the techniques of, e.g., [16,18,38]: in these latter frameworks, the first step in the proof consists in making the
challenge ciphertext inconsistent, and then constructing a secret key that can be used to decrypt all consistent
ciphertexts. Hence, “all-but-one” really refers to an “artificially punctured” secret key.

Practical Chosen Ciphertext Secure Encryption from Factoring 105

authenticated symmetric encryption [27,32]%). Thus, our proof technique is fundamen-
tally different from all known approaches to obtain CCA security. This also includes the
recent class of schemes based on lossy trapdoor functions [40].

Efficiency The resulting encryption scheme (which is actually a key encapsulation
mechanism, see [16]) is very efficient: encryption needs roughly two, and decryption
roughly one, modular exponentiations; the public key contains the modulus plus two
group elements. (The modulus and one element can be viewed as system parameters
shared among all parties.) To the best of our knowledge this is much more efficient than
all known CCA-secure schemes based on an assumption related to factoring, even the
ones based on a decisional assumption.

Follow-up Work Cramer et al. [17] explain our construction as a hard algebraic set
system; Wee [44] explains our construction as an extractable hash proof system. Both
works give abstractions of the “all-but-one” decryption in our simulation. In particular,
both [17] and [44] provide an abstraction of the extra group elements in our ciphertext
that enable us to set up decryption keys that can be used to decrypt all ciphertexts, except
the challenge ciphertext. Mei et al. [35] propose a variant of our scheme with improved
efficiency.

2. Preliminaries

2.1. Notation

We write [N] = {1, ..., N}. For group elements g, s, we denote by dloggh the dis-

crete logarithm of 4 to the base g, i.e., the smallest i > 0 with 4 = g’. A probabilistic
polynomial-time (PPT) algorithm is a randomized algorithm which runs in strict poly-
nomial time. If A is a probabilistic algorithm, we write y <— A(x) to denote that the
random variable y is defined as the output of A when run on input x and with fresh
random coins. On the other hand, if S is a set, then s <— S defines s as being uniformly
and independently sampled from S. By k we denote the security parameter, which indi-
cates the “amount of security” we desire. Typically, an adversarial advantage should be
bounded by 2%, and a typical value for k is 80.

2.2. Key Encapsulation Mechanisms

Instead of a public-key encryption scheme we consider the conceptually simpler KEM
framework. It is well known that an IND-CCA secure KEM combined with a (one-time)
IND-CCA secure symmetric cipher (DEM) yields an IND-CCA secure public-key en-
cryption scheme [16]. Efficient one-time IND-CCA secure DEMs can be constructed
even without computational assumptions by using an encrypt-then-MAC paradigm [16]
(or, alternatively, using computational assumptions such as strong pseudorandom per-
mutations [41]).

A key encapsulation mechanism (KEM) KEM = (Gen, Enc, Dec) consists of three
PPT algorithms. Via (pk, sk) <— Gen(1¥), the key generation algorithm produces pub-
lic/secret keys for security parameter k € N; via (K, C) < Enc(pk), the encapsulation

2 As opposed to generic CCA-secure symmetric encryption, a potentially weaker primitive.

106 D. Hotheinz, E. Kiltz, and V. Shoup

algorithm creates a symmetric key> K € {0, 1}< together with a ciphertext C; via K <«
Dec(sk, C), the possessor of secret key sk decrypts ciphertext C to get back a key K
which is an element in {0, 1}k or a special reject symbol L. For correctness, we require
that for all possible k € N, and all (K, C) < Enc(pk), we have Pr[Dec(sk,C) = K] =1,
where the probability is taken over the choice of (pk, sk) < Gen(1%), and the coins of
all the algorithms in the expression above.

The common requirement for a KEM is indistinguishability against chosen-ciphertext
attacks (IND-CCA) [16], where an adversary is allowed to adaptively query a decapsu-
lation oracle with ciphertexts to obtain the corresponding key. We are using the slightly
simpler but equivalent one-phase definition from [30]. Formally:

Definition 1 (IND-CCA Security of a KEM). Let KEM = (Gen, Enc, Dec) be a
CCA-real

KEM. For any PPT algorithm A, we define the following experiments Expggya- and
ExpRgi e |
Experiment ExpZiy i@ (k) Experiment Expg&ya™ (k)
(pk, sk) < Gen(1%) (pk, sk) < Gen(1%)
R < {0, 1}
(K*, C*) < Enc(pk) (K*, C*) < Enc(pk)

Return ARGk (pk, K*, C*) Return ARGk (pk R, C*)

In the above experiments, the decryption oracle Dec(sk, -), when queried with a cipher-
text C # C*, returns K < Dec(sk, C). (Dec(sk, -) ignores queries C = C*.) We define
A’s advantage in breaking KEM’s IND-CCA security as

1) N
AGE) 00 1= 1 PrEXGEE 0 = 1] — PE R 70 = 1]|

A (tkem, €kem)-breaks KEM’s IND-CCA security (short: A (tkem, €kem)-breaks KEM) if
A runs in time at most fxgm = fkem (k) and we have Advﬁg,\A,L a(k) > exem(k). We say that
KEM has indistinguishable ciphertexts under chosen-ciphertext attacks (short: KEM is
IND-CCA secure) if for all PPT A, the function Advigy A (k) is negligible in k.

2.3. Target-Collision Resistant Hashing

Informally, we say that a function T: X — Y is a target-collision resistant (TCR) hash
function (aka universal one-way hash function [37]), if, given a random preimage x € X,
it is hard to find x" # x with T(x") = T(x).

Definition 2 (TCR Hash Function). Let T: X — Y be a function. For an algorithm B,
define

AdVIE (k) :=Pr[x < X,x" < B(x) : X' #x AT(x) =T()].

We say that B (1, €1)-breaks T’s TCR property (short: B (t1, €1)-breaks T) iff B’s run-
ning time is at most #7(k) and AdvicBR(k) > er(k). We say that T is target-collision
TCR

resistant if for all PPT B, the function Advy 5* (k) is negligible in k.

s

3 For simplicity we assume that the KEM’s keyspace are bitstrings of length £k.

Practical Chosen Ciphertext Secure Encryption from Factoring 107

3. The Group of Signed Quadratic Residues

3.1. Factoring Assumption

A prime number P is called a safe prime iff P =2p+ 1 for a prime p. We assume a PPT
algorithm IGen that, on input of a security parameter k in unary, generates two random
safe primes P =2p+1 and Q = 2¢g + 1 with bitlength(p) = bitlength(¢) = ¢n(k)/2—1.
We assume that p and g are odd, such that P and Q are congruent 3 modulo 4 and
N = PQ is a Blum integer. IGen returns N along with P and Q. Here £y(k) denotes a
function that represents, for any given security parameter k, the recommended (bit-)size
of the composite modulus N. For simplicity, we will assume that €n(k) > 2k, so that
In(k)/2 > k. For the rest of the paper, we assume that N is generated by the factoring
instance generator IGen.

Definition 3 (Factoring Assumption). For an algorithm F, we define its factoring ad-
vantage as

Advigen (k) := PI[(N, P, Q) < 1Gen(1¥) : F(N) = (P, 0}].

We say that F (tiac, €1ac)-factors composite integers if F runs in time t,c; and
Adv{écen,,:(k) > €(k). The factoring assumption (with respect to IGen) states that
Adv%cenyF(k) is negligible in k for every PPT F.

The best algorithms currently known for factoring N = PQ of length ¢y =
bitlength(N) =log N have (heuristic) running time

Ly (1/3, (64/9)1/3) = 1927V log w2,

(See, e.g., [33].) Therefore, if we want k bits of security, we need to choose the function
¢ (k) such that the above term is lower-bounded by 2%. As an example, one commonly
uses £n(80) = 1024.

3.2. Quadratic Residues

The group Zj, consists of all elements of Zy that have an inverse modulo N. Z},
has order ¢p(N) = (P — 1)(Q — 1), where ¢(N) is Euler’s totient function. By Jy
we denote the subgroup of all elements from Z3, with Jacobi symbol 1. Jy has in-
dex 2 in Zj;, and has order (P — 1)(Q — 1)/2. Since N is Blum, —1 € Jy. The set
QRy C ZY, of quadratic residues modulo N is defined as QR y := {x € Z}, : Iy € Z,
with y? = x mod N}. Since Ly =Zn X Lo X Lipg, QR is a cyclic group of order pq.
Note that this implies that a uniformly chosen element of QR y is a generator (of QR y)
with overwhelming probability. Computations in QR y are computations modulo N. If
it is implied by context, we omit writing explicitly “ mod N for calculations modulo N.
Note that QR is a subgroup of Jy with index 2 and has order (P — 1)(Q — 1)/4. We
remark that distinguishing random QR y -elements from random J y -elements is gener-
ally believed to be a hard problem (the quadratic residuosity problem).

108 D. Hotheinz, E. Kiltz, and V. Shoup

3.3. Signed Quadratic Residues

For x € Zy we define |x| as the absolute value of x, where x is represented as a signed
integer in the set {—(N —1)/2, ..., (N —1)/2}. We define the group of signed quadratic
residues as

QRY = {|x| DX EQRN},

where the group operation o in QR; is defined through |x| o |y| := |xy|. Henceforth, all
computations will take place in QR;, and hence we will omit the absolute values from
the notation and simply write xy or x - y for x o y. Note that taking the absolute value
is a surjective homomorphism from QR to QR; with trivial kernel. (This is since N
is a Blum integer and hence —1 & QR .) The following basic facts have already been
noted in earlier works such as [1,19,24].

Lemma 1. Ler N be a Blum integer. Then:

1. (QRY, o) is a group of order ¢(N)/4.

2. Ifwelet Jh :={|x| : x € In}, then J}, = QR;{,. In particular, QR; is efficiently
recognizable (given only N).

3. If QRy is cyclic, so is QR?{,.

Proof. First, note that |- | : (Zy,) — (Z}, o) is a group homomorphism so (QR};, o)
is a group. Since —1 ¢ QRy, the map QRy — QR;{, has kernel {1}, and so
ord(QRE) =ord(QRy) = ¢ (N)/4. On the other hand, the map Jy — JX‘, has kernel
{£1}, and so ord(J},) = ord(Jy)/2 = #(N)/4. Since QRy Jy, we have QR}, € I,
SO ord(QR;) =ord(J ',’\',) implies QR = J ; Elements in QR; can be efficiently rec-
ognized since (@RE = v]]; =Jy NN —1)/2]. If QRy is cyclic, a generator g of QR
is mapped to a generator |g| of QR so QR; is a cyclic group. (]

4. Chosen-Ciphertext Security from Factoring

4.1. The Scheme

In this section, we will present our KEM construction.* We will make use of two build-
ing blocks: a target-collision resistant hash function, and the Blum—Blum—Shub (BBS)
pseudorandom number generator [7].

Concretely, for a Blum integer N = PQ and u € Zy, we establish the following
notation: LSBy (1) = u mod 2 the least significant bit of u, where u is interpreted as a
signed integer with —(N — 1)/2 <u < (N — 1)/2. Furthermore, let

-1

BBSy (1) = (LSBy (), LSBy (i), ..., LSBy (12) € {0, 1}

4 Compared to the construction from the conference version [28], we work in the group of signed quadratic
residues. Since the signed quadratic residues are efficiently recognizable, no extra protection against trivial
malleability attacks (such as sign-flipping attacks) need to be added to our schemes.

Practical Chosen Ciphertext Secure Encryption from Factoring 109

denote the BBS generator applied to u € QR; and modulo N.° We stress that we use
the BBS generator in the group QR ; this does not affect its security [19].

Furthermore, for N as above, let T : QRE — {1, R 1} be a target-collision
resistant hash function.

The Scheme We are ready to define the following key encapsulation mechanism
KEM = (Gen, Enc, Dec):

Key Generation. Gen(1%) chooses uniformly at random

e amodulus N=PQ=Q2p+ 1)(2g + 1) (using IGen(lk), cf. Sect. 3.1),
e asigned quadratic residue g € QR?{,,
e an exponent « € [(N — 1)/4].

a2tk +eT

Genthensets X =g and outputs a public key pk and a secret key sk, where

pk=(N, g, X), sk=(N,g,a).
Encapsulation. Enc(pk) chooses uniformly r € [(N — 1) /4], sets
R=g¢™"", i=T®efl,...27—1}, S=(g'x)

and outputs the key K = BBSy(g"27) € {0, 1}’ and the ciphertext C = (R, S) €
QR}, x QRY,.

Decapsulation. Dec(sk, (R, S)) verifies that (R, S) € QR?\} X QR; and rejects if not.
Then, Dec computes t =T(R) € {1, ..., 26t 1}, checks whether

L+ 2 L +eT

holds, and rejects if not. If (1) holds, Dec computes a, b, ¢ € Z such that
2¢ = ged(t, 25%HT) = ar 4 p25TET, 2)

Note that ¢ < €1 since 0 <t < 24T Then, Dec derives

T = (Sa . Rb—aa)zzT_C (3)

and from this K =BBSy (T) € {0, 1}, which is the output.

We remark that decapsulation (or, rather, generation of the secret keys) does not require
knowledge about the factorization of N. Indeed, the modulus N as well as the generator
g can be viewed as global system parameter shared by many parties. Then pk only
contains the value X € QR; and sk only contains « € [(N — 1) /4].

Our scheme uses an RSA modulus N that consists of safe primes. In Sect. 6 we show
how to avoid this assumption and allow N to be an arbitrary Blum integer.

5 For efficiency, and at the price of a worse reduction, one can even simultaneously extract [log, log, N1

bits of each u2i instead of only the least significant bit [1,19]. However, our analysis treats the original BBS
generator for simplicity.

110 D. Hotheinz, E. Kiltz, and V. Shoup

Correctness The correctness of the scheme might not be obvious, so we prove it
here. Fix a public key pk and a secret key sk as produced by Gen(1%), and assume
that (R, S) is a ciphertext for a key K as generated by Enc(pk). We have to show that
Dec(sk, (R, S)) outputs K. First, it is clear that (R, S) € QR; X Q]Rj\',. Also,

SzZK+ZT _ ((th)r)leJrzT — g(t+a2(K+€T)r2(K+lT (;) Rl+0(2ZK+£T

(where (%) uses R = g"2%"T), so (1) holds. Hence, (R, S) is not rejected by Dec. Now
(1) implies

o2tk HT t
S= R WUkt — R2£K+ZT

- @)
where the division in the exponent is computed modulo pg = |QRy| = |QR;|. This
gives

T &) (Sa . Rb—aa)#T_C _ ((SR_“)H) Rb)sz—f @ ((RW)Q _ Rb)sz—c

ar+b2'KHT

—c 2 Ay 1
= (R 2kFeT)2lT ‘ (é) ez AL ik W2t

R25K+(T' — RZZK i g , (5)

where, again, (*) uses R = g’2(K+(T. But (5) shows that Dec outputs BBSy(T) =
BBSy (g"27) = K as desired.

Theorem 1 (IND-CCA Security of KEM). Assume T is a target-collision resistant hash
function and the factoring assumption holds. Then KEM is IND-CCA secure in the sense
of Definition 1.

The proof of Theorem 1 will be given in Sect. 5.

Efficiency We claim that, with some trivial optimizations, encapsulation uses roughly
two exponentiations, and decapsulation roughly one exponentiation. Namely, encapsu-
lation can first compute A = g” and B = X", which are two full exponentiations. Then,
the remaining computations require only multiplications or exponentiations with very
small exponents: K = BBSy (AzeT), R = AZZKHT, and S = A’B. (In fact, R is a by-
product of computing K .) Similarly, decapsulation can first compute D = §/R*, which

requires one full exponentiation. From D, (1) can be checked with D2*™T 2 R’ which
requires only two exponentiations with very small exponents. The key K can then be
computed as BBSy (T') for T = (RbD“)sz_E , which requires three exponentiations with
small exponents (note that the bit-length of a and b is at most £k + £1).

For concreteness let us assume that one regular exponentiation with an exponent of
length ¢ requires 1.5 - £ modular multiplications and that one squaring takes the same
time as one multiplication. Let us further assume that £y := bitlength(N) = 1024 and
fx = £1 = 80. Then encapsulation requires 3¢y + £k + 2.5¢1 = 3352 multiplications;
decapsulation requires 1.5¢N + 44k + 6.5¢1 = 2376 multiplications.

We remark that, by adding the prime factors P and Q to the secret key, we can further
improve the scheme’s efficiency. For example, using Chinese Remainder Theorem will
speed up decapsulation by a factor between 3 and 4.

Practical Chosen Ciphertext Secure Encryption from Factoring 111
5. Proof of Security

We split up the proof of Theorem 1 into two parts:

— We first recall that the BBS generator is pseudorandom if factoring Blum integers
is hard. This holds even if the modulus N and the 2‘th power u2™® of the BBS
seed u are published, as is the case in our KEM. (Theorem 2.)

— We then prove that KEM is IND-CCA secure under the assumption that the BBS
generator is pseudorandom and the employed hash function is target-collision re-
sistant. This reduction is the heart of our proof. (Theorem 3.)

Combining both parts yields Theorem 1.
We start by recalling that the BBS generator is pseudorandom, in the following sense.

Definition 4 (PRNG Experiment for BBS Generator). For an algorithm D, define
AdvpPS (k) = Pr[D(N, z, BBSy (1)) = 1] — Pr[D(N, z, Ujg 1y4) = 1],

where

— N e N is distributed as 1Gen(1%),
— u € QR}; is uniformly chosen, and z = u2®,
= U1y €10, 1}% is independently and uniformly chosen.

We say that D (, €)-breaks BBS if D’s running time is at most ¢ = ¢ (k) and AdeBS (k) >
€ =e(k).

Concretely, any BBS-distinguisher can be used to factor Blum integers. This result
has already been used in the Blum—Goldwasser scheme [5].

Theorem 2 (BBS-Distinguisher = Factoring Algorithm [1,6,7,19]). For every algo-
rithm D that (tgBs, €ss)-breaks BBS, there is an algorithm F that (tac, €tac)-factors
Blum integers, where

o, 4 2
trac ~ K" 1BBS /€8BS €tac = €BBS/ K-

Proof. Let D be an algorithm that (tggs, €ggs)-breaks BBS. That is, D distinguishes
pseudorandom from truly random bitstrings. First, using a (by now standard) hy-
brid argument, [6] show that then D can be converted to an algorithm that distin-
guishes individual pseudorandom bits from truly random bits. Concretely, D gives rise
to an algorithm D’ that (7_sg, €,.sg)-distinguishes tuples (N, u?,LSB(«)) from tuples
(N, u?, Uio,1)), where u € QR; and Uy, 1y € {0, 1} are uniformly chosen, f.sg ~ ggs,
and €_.sg = epps/{k-

Next, we can use that the least significant bit is a hard-core bit of the squaring function
modulo N. In particular, any algorithm that, given N and u?, successfully distinguishes
LSB(«) from a random bit, can be used to recover a square root of u2. This in turn
yields a non-trivial factor of N with significant probability. Concretely, building on [1],

112 D. Hotheinz, E. Kiltz, and V. Shoup

Fischlin and Schnorr [19] show how to transform D’ into an algorithm F that (¢ac, €tac)-
factors Blum integers, where fyc & KKZILSB/EI%SB ~ £K4IBBS /eéBS and € = €58 =
egps/fk. (We use the quantitative interpretation [36, Theorem 6.1] of the results from
[19] here.) The claim follows.]

The following theorem contains the heart of our proof, namely, a simulation that
shows that any successful IND-CCA adversary on KEM implies a successful BBS-
distinguisher (and hence, using Theorem 2, can be used to factor Blum integers).

Theorem 3 (IND-CCA Adversary = BBS-Distinguisher). For every adversary A
that (tkem, €kem)-breaks KEM’s IND-CCA property, there exists an algorithm D that
(tBBS, €8BS)-breaks BBS and an adversary B that (t1, e1)-breaks T, such that

~ A —k+3
tBBs ~ IT = IKEM, €pBs + €7 + 2 > €KEM.

Proof (Setting up the Variables for Simulation). Assume an adversary A on KEM’s
IND-CCA security. We define a BBS-distinguisher D, which acts on input (N, z, V)
as follows. D first uniformly selects a signed quadratic residue g € QR7, as well as
exponent S € [(N — 1)/4], and sets

R*=Z, t*=T(R*)e{l’,”’2£T_1}’ ngﬁZZKHT—t*.

The public key used in the simulation is pk = (N, g, X). It will be convenient to write
X = g2 asin Gen, for & = B — t* /2T unknown to D. (Here and in the follow-
ing, a division of exponents is computed modulo pgq, the order of QR;.) Furthermore,
in the following, we will silently assume that g generates QR;, which is very likely,
but not guaranteed. A rigorous justification that takes into account error probabilities
follows below.

Preparation of Challenge Ciphertext and Key To complete the definition of the chal-
lenge ciphertext C* = (R*, §*), write R* = g’*ZlKHT. Since we assumed that g is a
generator, this is possible, but of course r* is unknown. D defines

S =R (=g PR = (47 X)) 6)
as Enc would have computed. The (real) corresponding key K* is defined as

K*=8BBSy(¢* ™) = BBSN(R*z%K) = BBSN(Z2‘+K) = BBSy ().)

D then invokes A with public key pk = (N, g, X), challenge ciphertext C* = (R*, §*),
and challenge key V. Note that V is either the real challenge key BBSy (u), or it is a
uniform string.

On the Distribution of Simulated Public Key and Challenge Ciphertext We claim that
the distribution of public key pk and challenge ciphertext C* is almost identical in simu-
lation and IND-CCA experiment. Concretely, we postpone the straightforward but some-
what tedious proof of the following lemma until after the description of our simulation.

Practical Chosen Ciphertext Secure Encryption from Factoring 113

Lemma 2. There exists an event badyey such that, conditioned on —badyey, public key
pk and challenge ciphertext C* are identically distributed in simulation and IND-CCA
experiment. Also, —badyey implies that g is a generator. We have

Pr[badyey] <27%F3 (8)
both in the simulation and in the IND-CCA experiment.

Thus, conditioned on —badyey, D perfectly simulates A’s input as in the real IND-CCA

experiment if V = BBSy () = BBSy (z//2™), and as in the ideal IND-CCA experiment
if V is random.

How to Handle A’s Decryption Queries It remains to describe how D handles decryp-
tion queries of A as in the IND-CCA experiment. So say that A submits a ciphertext
(R, S) for decryption. We may assume that (R, S) € QR};, x QR}; since QR}; is effi-
ciently recognizable. Let r = T(R) € {1, ..., 26T — 1}. We call a ciphertext consistent iff
the original decryption algorithm would not have rejected it. Hence, by (1), a ciphertext
is consistent iff

Sz[KJrZT ; Rt_t*+ﬁ2€K+[T (: Rt+a2€K+ZT)' (9)

By our setup of variables, D can check (9) by itself, and hence detect and reject incon-
sistent ciphertexts.

How to Decrypt Consistent Ciphertexts Now assume that C is consistent and ¢ # t*.
Then, (4) and (5) follow (except for the deduction (x)) just as in the correctness proof,
and we get

1
T = R2% (10)

for the raw key T that would have been computed by Dec. We will now show how D
can compute 7. Namely, D computes a’, b’, ¢’ € Z such that

2¢ = ged(r — 1%, 2%HT) =/ (1 — 1) 4 b20KHET, (11)
Since 1 <t,t* <2'T and ¢ # t*, we have ¢’ < £1. Similarly to (4) and (5), (9) implies
5= Rt (12)
from (9), and from this,

(57 RY-4PPT — ((sRP)” RV ((thﬂ?—fﬁ) RPYT

a’(tft*)+h’ZZK+[T
— (R ST

1
R 2k+er = R2% (2)

T. (13)

/
)2[1-76/ (E) 2¢ _281——0/

Note that from 7', the final decryption key can be computed as K = BBSy (7). Hence,
using (13), D can correctly decrypt every consistent ciphertext with ¢ # ¢*.

114 D. Hotheinz, E. Kiltz, and V. Shoup

The Case t =t* Let us turn to the case that t = t* and the ciphertext is consistent.
Then, if R = R* holds, we have

s Q gt P& prb g (14)

where in (x) we use R = R* and ¢ = r*. Since A is not allowed to query (R, S) =
(R*, §*) for decryption, we may hence assume that R # R*.

But if T(R) =t =t* = T(R*) and R # R*, then A has broken the target-collision
resistance of T. Formally, let badrcg denote the event that t = ¢* and R # R*. If badtcr
occurs, D can safely give up, since

Pribadrcr] < Adv] % (k) (15)

for a suitable PPT adversary B on T that simulates D and A.

Summary of the Decryption Procedure 'We summarize the decryption cases:

— inconsistent (R, S) (consistency check (9)<>(1) not passed): reject,

— consistent (R, S) and ¢ # t*: decrypt using (13),

— consistent (R, S), t =*, and R = R*: cannot happen since then (R, S) = (R*, S*)
by (14),

— consistent (R, S), t = t*, and R # R*: give up simulation (A has found a
T-collision).

Hence, also decryption is faithfully simulated unless badtcg occurs.

Finishing the Proof We conclude that, unless badtcr or badkey, occurs, D perfectly
simulates the real IND-CCA experiment upon input V = BBSy (u#), and the ideal IND-
CCA experiment if V is random. If we let D output whatever the simulated experiment
outputs, we obtain:

|Pr[D(N, z,BBSy (1)) = 1] — Pr[Exprga k2 (k) = 1]| < Pr[badrcr] + Pr[badey],

Pr[D(N, 2, Uyg 1y4) = 1] — Pr[Expicgma™ (k) = 1]| < Pr[badrcr] + Pr[badiey].
(16)

Using (8) and (15), Theorem 3 follows from (16).
It remains to prove Lemma 2.

Proof of Lemma 2 Observe that pk and C* are distributed slightly differently in the
IND-CCA experiment (i.e., as generated by Gen and Enc) and in the simulation:

~ R* = g"" 2™ for uniform (hidden) r* € [(N — 1)/4] in the experiment, while
R* e QR; is a uniform group element in the simulation.

— X = 2™ for uniform (hidden) a € [(N — 1)/4] in the experiment, while X =
¢P2* =" for uniform (hidden) B € [(N — 1)/4] in the simulation.

Practical Chosen Ciphertext Secure Encryption from Factoring 115

However, conditioned on the following event goodye,:

(in the experiment:) g is a generator, and r*, ¢ < |9R;|,
(in the simulation:) g is a generator, and 8 < |QR} |,

pk and C* are distributed identically in experiment and simulation: good,e, implies that
N, g, X, and R* are uniformly and independently chosen over their respective domains,
and S* follows deterministically from pk and R* according to (7). Hence we only need
to bound the probability of badkey := —g00d,e,. Since |QR;| = |QRy| = pg and we
assumed that p and ¢ are £y/2-bit primes (for £y/2 > k), a uniform QR y-element is a
generator except with probability (p 4+ ¢ — 1)/ pg < 27"/>*2_ Furthermore, (N — 1)/4
is a close approximation of the group order |QRX',| =pg=N-1)/4—(p+qg)/2,s0
that, e.g., r* < |QR},| except with probability 2(p +¢)/(N — 1) <27%/2F1 Hence,

Pr[badkey] < max{z—lN/2+2 +2. 2—EN/2+1 , 2—KN/2+2 + 2—KN/2+1}
2—ZN/2+3

n/2>k
S 2—k+3

both in the experiment and in the simulation. O

6. Avoiding Safe Primes

In our KEM, we assume that N = P Q is composed of two safe primes (i.e., primes of
the form P =2p + 1 for prime p). We can drop this assumption and allow arbitrary
Blum integers N, if we employ a Goldreich—Levin [22] based pseudorandom generator
instead of the Blum—Blum—Shub generator. Namely, all we actually need to prove that
KEM is IND-CCA is that

(N8 8" Extu(g2 7)) = (N, 2,82, Ug 1) (17

where ~ denotes computational indistinguishability, N is a Blum integer, g € QR;, re
[N/4], and U 0.1} € {0, l}zK are uniform, and Ext is a suitable randomness extractor.
In our original description of KEM, we have Ext,; (1) = BBSy (). In that case, we only
know that the hardness of factoring N implies (17) if u = g" 2Tisa uniform element of
QR; (which is the case when N = P Q for safe primes P, Q, since then g is a generator
with high probability). But if g is not a generator at least with high probability, then u
may not be uniformly distributed.
Now suppose we set

Extyi (1) = (GL, (u), GL, (u?), ..., GL (12) € {0, 1}

for the Goldreich-Levin predicate GL; that maps u to the bitwise inner product of s
and u. Then a hybrid argument and the hard-core property of GL; show that (17) is
implied by the hardness of computing # with > = v mod N from (N, g,v) (with

116 D. Hotheinz, E. Kiltz, and V. Shoup

v = g"). But any algorithm B that computes such a u from (N, g, v) can be used to fac-
tor N. Namely, given N, choose uniformly & € Zy and 7 € [N /4], and set g = h? and
v= ng +1 (Observe that v is almost uniformly distributed over (g), since N is a Blum
integer.) Then, invoke B(N, g, v) to obtain a square root u of v. We can then compute a
square root of g as h= u?g? (for a, b € Z with a(2F + 1) + 2b = ged(2r +1,2) =1).
With probability 1/2, then ged(h — &, N) yields a non-trivial factor of N. Hence (17)
is implied by the hardness of factoring arbitrary Blum integers, and our KEM (instan-
tiated with the Goldreich-Levin predicate) is IND-CCA secure. The price to pay is that
we need to place a seed s € {0, 1}N for the Goldreich—Levin hard-core function in the
public key. (However, note that s can be made a global system parameter, like N and g.)

Acknowledgements

We would like to thank Ronald Cramer and Ivan Damgérd for interesting discussions.

References

[1

—

W. Alexi, B. Chor, O. Goldreich, C.-P. Schnorr, RSA and Rabin functions: certain parts are as hard as

the whole. SIAM J. Comput. 17(2), 194-209 (1988)

[2] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols,
in ACM CCS 93: Ist Conference on Computer and Communications Security, ed. by V. Ashby (ACM,
New York, 1993), pp. 62-73

[3] M. Bellare, P. Rogaway, Optimal asymmetric encryption, in Advances in Cryptology—

EUROCRYPT 94, ed. by A. De Santis. Lecture Notes in Computer Science, vol. 950 (Springer,

Berlin, 1994), pp. 92111

D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard

PKCS #1, in Advances in Cryptology—CRYPTO 98, ed. by H. Krawczyk. Lecture Notes in Computer

Science, vol. 1462 (Springer, Berlin, 1998), pp. 1-12

[5] M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption scheme which hides all partial

information, in Advances in Cryptology—CRYPTO’84, ed. by G.R. Blakley, D. Chaum. Lecture Notes

in Computer Science, vol. 196 (Springer, Berlin, 1985), pp. 289-302

M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudorandom bits. SIAM

J. Comput. 13(4), 850-864 (1984)

[7] L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo-random number generator. SIAM J. Com-

put. 15(2), 364-383 (1986)

D. Boneh, X. Boyen, Efficient selective-ID secure identity based encryption without random oracles,

in Advances in Cryptology—EUROCRYPT 2004, ed. by C. Cachin, J. Camenisch. Lecture Notes in

Computer Science, vol. 3027 (Springer, Berlin, 2004), pp. 223-238

[9] D. Boneh, R. Canetti, S. Halevi, J. Katz, Chosen-ciphertext security from identity-based encryption.

SIAM J. Comput. 36(5), 1301-1328 (2007)

[10] X. Boyen, Q. Mei, B. Waters, Direct chosen ciphertext security from identity-based techniques, in ACM
CCS 05: 12th Conference on Computer and Communications Security, ed. by V. Atluri, C. Meadows,
A. Juels (ACM, New York, 2005), pp. 320-329

[11] J. Camenisch, V. Shoup, Practical verifiable encryption and decryption of discrete logarithms, in Ad-
vances in Cryptology—CRYPTO 2003, ed. by D. Boneh. Lecture Notes in Computer Science, vol. 2729
(Springer, Berlin, 2003), pp. 126-144

[12] R. Canetti, O. Goldreich, S. Halevi, The random oracle methodology, revisited. J. ACM 51(4), 557-594
(2004)

[13] D. Cash, E. Kiltz, V. Shoup, The twin Diffie-Hellman problem and applications, in Advances in

Cryptology—EUROCRYPT 2008, ed. by N.P. Smart. Lecture Notes in Computer Science, vol. 4965

(Springer, Berlin, 2008), pp. 127-145

[4

=

[6

=

[8

—_

Practical Chosen Ciphertext Secure Encryption from Factoring 117

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Cash, E. Kiltz, V. Shoup, The twin Diffie-Hellman problem and applications. J. Cryptol. 22(4),
470-504 (2009)

R. Cramer, V. Shoup, Universal hash proofs and a paradigm for adaptive chosen ciphertext secure
public-key encryption, in Advances in Cryptology—EUROCRYPT 2002, ed. by L.R. Knudsen. Lecture
Notes in Computer Science, vol. 2332 (Springer, Berlin, 2002), pp. 45-64

R. Cramer, V. Shoup, Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167-226 (2003)

R. Cramer, D. Hofheinz, E. Kiltz, A twist on the Naor—Yung paradigm and its application to efficient
CCA-secure encryption from hard search problems, in TCC 2010: 7th Theory of Cryptography Con-
ference, ed. by D. Micciancio. Lecture Notes in Computer Science, vol. 5978 (Springer, Berlin, 2010),
pp. 146-164

D. Dolev, C. Dwork, M. Naor, Nonmalleable cryptography. SIAM J. Comput. 30(2), 391-437 (2000)
R. Fischlin, C.-P. Schnorr, Stronger security proofs for RSA and Rabin bits. J. Cryptol. 13(2), 221-244
(2000)

R. Gennaro, Y. Lindell, A framework for password-based authenticated key exchange. ACM Trans. Inf.
Syst. Secur. 9(2), 181-234 (2006)

0. Goldreich, Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations: the state
of the art. Manuscript. Online available at http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/
nizk-tdp.ps, 2009

O. Goldreich, L.A. Levin, A hard-core predicate for all one-way functions, in 2/st Annual ACM Sym-
posium on Theory of Computing (ACM, New York, 1989), pp. 25-32

S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270-299 (1984)

S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-
message attacks. STAM J. Comput. 17(2), 281-308 (1988)

G. Hanaoka, K. Kurosawa, Efficient chosen ciphertext secure public key encryption under the computa-
tional Diffie-Hellman assumption, in Advances in Cryptology—ASIACRYPT 2008, ed. by J. Pieprzyk.
Lecture Notes in Computer Science, vol. 5350 (Springer, Berlin, 2008), pp. 308-325

K. Haralambiev, T. Jager, E. Kiltz, V. Shoup, Simple and efficient public-key encryption from compu-
tational Diffie-Hellman in the standard model, in PKC 2010: 13th International Conference on Theory
and Practice of Public Key Cryptography, ed. by P.Q. Nguyen, D. Pointcheval. Lecture Notes in Com-
puter Science, vol. 6056 (Springer, Berlin, 2010), pp. 1-18

D. Hofheinz, E. Kiltz, Secure hybrid encryption from weakened key encapsulation, in Advances
in Cryptology—CRYPTO 2007, ed. by A. Menezes. Lecture Notes in Computer Science, vol. 4622
(Springer, Berlin, 2007), pp. 553-571

D. Hofheinz, E. Kiltz, Practical chosen ciphertext secure encryption from factoring, in Advances in
Cryptology—EUROCRYPT 2009, ed. by A. Joux. Lecture Notes in Computer Science, vol. 5479
(Springer, Berlin, 2009), pp. 313-332

E. Kiltz, Chosen-ciphertext security from tag-based encryption, in TCC 2006: 3rd Theory of Cryptog-
raphy Conference, ed. by S. Halevi, T. Rabin. Lecture Notes in Computer Science, vol. 3876 (Springer,
Berlin, 2006), pp. 581-600

E. Kiltz, Chosen-ciphertext secure key-encapsulation based on gap hashed Diffie-Hellman, in PKC
2007: 10th International Conference on Theory and Practice of Public Key Cryptography, ed. by
T. Okamoto, X. Wang. Lecture Notes in Computer Science, vol. 4450 (Springer, Berlin, 2007), pp. 282—
297

E. Kiltz, K. Pietrzak, M. Stam, M. Yung, A new randomness extraction paradigm for hybrid encryption,
in Advances in Cryptology—EUROCRYPT 2009, ed. by A. Joux. Lecture Notes in Computer Science,
vol. 5479 (Springer, Berlin, 2009), pp. 590-609

K. Kurosawa, Y. Desmedt, A new paradigm of hybrid encryption scheme, in Advances in Cryptology—
CRYPTO 2004, ed. by M. Franklin. Lecture Notes in Computer Science, vol. 3152 (Springer, Berlin,
2004), pp. 426-442

A K. Lenstra, H.-W. Lenstra Jr. (eds.), The Development of the Number Field Sieve. Lecture Notes in
Mathematics, vol. 1554 (Springer, Berlin, 1993)

S. Lucks, A variant of the Cramer—Shoup cryptosystem for groups of unknown order, in Advances
in Cryptology—ASIACRYPT 2002, ed. by Y. Zheng. Lecture Notes in Computer Science, vol. 2501
(Springer, Berlin, 2002), pp. 27-45

http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/nizk-tdp.ps

118

(35]

(36]
(371
(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

D. Hotheinz, E. Kiltz, and V. Shoup

Q. Mei, B. Li, X. Lu, D. Jia, Chosen ciphertext secure encryption under factoring assumption revisited,
in PKC 2011: 14th International Workshop on Theory and Practice in Public Key Cryptography, ed.
by D. Catalano, N. Fazio, R. Gennaro, A. Nicolosi. Lecture Notes in Computer Science, vol. 6571
(Springer, Berlin, 2011), pp. 210-227

M. Naor, O. Reingold, A. Rosen, Pseudo-random functions and factoring. SIAM J. Comput. 31(5),
1383-1404 (2002)

M. Naor, M. Yung, Universal one-way hash functions and their cryptographic applications, in 2/st
Annual ACM Symposium on Theory of Computing (ACM, New York, 1989), pp. 33-43

M. Naor, M. Yung, Public-key cryptosystems provably secure against chosen ciphertext attacks, in 22nd
Annual ACM Symposium on Theory of Computing (ACM, New York, 1990)

P. Paillier, J.L. Villar, Trading one-wayness against chosen-ciphertext security in factoring-based en-
cryption, in Advances in Cryptology—ASIACRYPT 2006, ed. by X. Lai, K. Chen. Lecture Notes in
Computer Science, vol. 4284 (Springer, Berlin, 2006), pp. 252-266

C. Peikert, B. Waters, Lossy trapdoor functions and their applications, in 40th Annual ACM Symposium
on Theory of Computing, ed. by R.E. Ladner, C. Dwork (ACM, New York, 2008), pp. 187-196

D.H. Phan, D. Pointcheval, About the security of ciphers (semantic security and pseudo-random per-
mutations), in SAC 2004: 11th Annual International Workshop on Selected Areas in Cryptography, ed.
by H. Handschuh, A. Hasan. Lecture Notes in Computer Science, vol. 3357 (Springer, Berlin, 2004),
pp. 182-197

M.O. Rabin, Digital signatures and public key functions as intractable as factorization. Technical Report
MIT/LCS/TR-212, Massachusetts Institute of Technology, January 1979

C. Rackoff, D.R. Simon, Non-interactive zero-knowledge proof of knowledge and chosen ciphertext
attack, in Advances in Cryptology—CRYPTO’91, ed. by J. Feigenbaum. Lecture Notes in Computer
Science, vol. 576 (Springer, Berlin, 1992), pp. 433444

H. Wee, Efficient chosen-ciphertext security via extractable hash proofs, in Advances in Cryptology—
CRYPTO 2010, ed. by T. Rabin. Lecture Notes in Computer Science, vol. 6223 (Springer, Berlin, 2010),
pp. 314-332

H.C. Williams, A modification of the RSA public-key encryption procedure. [EEE Trans. Inf. Theory
26(6), 726729 (1980)

	Practical Chosen Ciphertext Secure Encryption from Factoringthanks
	Abstract
	Introduction
	Preliminaries
	The Group of Signed Quadratic Residues
	Chosen-Ciphertext Security from Factoring
	Proof of Security
	Avoiding Safe Primes
	Acknowledgements
	References

