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Abstract. In 2008 and 2009, Gaudry and Diem proposed an index calculus method
for the resolution of the discrete logarithm on the group of points of an elliptic curve
defined over a small degree extension field Fqn . In this paper, we study a variation of
this index calculus method, improving the overall asymptotic complexity when n =
Ω( 3

√
log2 q). In particular, we are able to successfully obtain relations on E(F

q5 ),
whereas the more expensive computational complexity of Gaudry and Diem’s initial
algorithm makes it impractical in this case. An important ingredient of this result is a
variation of Faugère’s Gröbner basis algorithm F4, which significantly speeds up the
relation computation. We show how this index calculus also applies to oracle-assisted
resolutions of the static Diffie–Hellman problem on these elliptic curves.

Key words. Elliptic curve, Discrete logarithm problem (DLP), Index calculus,
Gröbner basis computation, Summation polynomials, Static Diffie–Hellman problem
(SDHP).

1. Introduction

Given a finite group G and two elements g,h ∈ G, the discrete logarithm problem
(DLP) consists in computing—when it exists—an integer x such that h = gx . The diffi-
culty of this problem is at the heart of many existing cryptosystems, such as the Diffie–
Hellman key exchange protocol [12], the ElGamal encryption and signature scheme
[14], DSA, or more recently in pairing-based cryptography. Historically, the DLP was
first studied in the multiplicative groups of finite fields. In such groups, now standard in-
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dex calculus methods allow solving the DLP with a subexponential complexity. There-
fore, the key size necessary to achieve a given level of security is rather large. For this
reason, in 1985, Miller [33] and Koblitz [29] suggested using for G the group of points
of an elliptic curve, thus introducing algebraic curves to the cryptographic community.

Up to now, very few algorithms exist that solve the DLP in the group of points of an
elliptic curve defined over a finite field (ECDLP). In most cases, only generic methods
such as Baby-step Giant-step [41] or Pollard rho and kangaroo algorithms [36,37] are
available. Their complexity is exponential in the size of the largest prime factor of the
group cardinality; more precisely, the running time is of the order of the square root of
this largest prime factor [35]. However, for some specific curves more powerful attacks
can be applied; they usually move the DLP to another, weaker group. The first approach
is to lift the ECDLP to a characteristic zero field, either global (i.e. Q) or local (i.e. p-
adic numbers Qp): so far, this works only for subgroups of E(Fpn) of order pi [38,39,
43]. The second approach is to transfer via the Weil or Tate pairing the DLP on E(Fq)

to F
∗
qk : this includes the Menezes–Okamoto–Vanstone [32] and Frey–Rück [19] attacks

for elliptic curves with small embedding degree k. The last approach is to transfer via
Weil descent the DLP on an elliptic curve defined over an extension field Fqn to a
second algebraic curve, defined over Fq but of greater genus g; this is efficient when
the resulting genus g is small, which occurs only with specific curves [26].

In [40], Semaev proposed for the first time an index calculus method for the ECDLP,
which unfortunately turned out to be impractical. However, combining Semaev’s ideas
and Weil restriction tools, Gaudry and Diem [11,20] independently came up with an
index calculus algorithm for elliptic curves defined over small degree extension fields,
which has a better asymptotic complexity than generic algorithms. More precisely, the
complexity of their algorithm over E(Fqn) for fixed n is Õ(q2−2/n), but with a hidden

constant in n that grows over-exponentially, as 2O(n2). If one also allows n to go to infin-
ity, then Diem shows that the complexity is subexponential as long as n is Θ(

√
log2(q)).

In this article, we investigate a variant of Gaudry and Diem’s method and obtain the
following result:

Theorem 1. Let E be an elliptic curve defined over Fqn and let G be a cyclic subgroup
of its group of rational points. Then there exists an algorithm that solves the DLP in G

and whose asymptotic complexity, under Assumptions 1 and 2, is

Õ
(
(n − 1)!(2(n−1)(n−2)en n−1/2)ω

q2),

where ω is the effective complexity exponent of matrix multiplication.

Consequently, this new approach is asymptotically better than generic attacks like
Pollard rho when n ≤ 1

2ω
log2 q , as qn grows to infinity. Compared to Gaudry and Diem,

it provides an asymptotic speed-up factor of 2(3−ω)n2
q−2/n, and hence is faster when

n ≥ ( 2
3−ω

log2 q)1/3.
The paper is organized as follows. First, we give a summary of Gaudry and Diem’s

index calculus; the main ideas are the use of the Weil restriction to obtain a convenient
factor base and of Semaev’s summation polynomials to test decompositions. More pre-
cisely, Gaudry and Diem check whether a given point can be decomposed as a sum of n
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Fig. 1. Asymptotic comparison (for large values of q) of Pollard rho method, Gaudry and Diem’s method
and this paper for ECDLP over Fqn , n ≥ 2.

points of this factor base, where n is the degree of the extension field. This amounts to
solving a multivariate polynomial system of n equations in n variables of degree 2n−1,
arising from the (n + 1)th summation polynomial. Next, we introduce our variant: we
check if a point decomposes as a sum of n − 1 points instead of n. This reduces the
likelihood of finding a relation, but greatly speeds up the decomposition process; as
mentioned above, this trade-off is favorable when n is bigger than some multiple of
3
√

log2 q . We then give a detailed analysis of the complexity of our variant, enabling us
to prove Theorem 1, and show that our trade-off is better than the one that could be
provided by the hybrid approach of [4]. The following sections are devoted to several
optimizations of the decomposition process. As already noted by Gaudry, the polyno-
mial system that has to be solved is inherently symmetrical, so it pays off to reduce its
total degree by writing down the equations in terms of the elementary symmetric func-
tions before the resolution. A convenient way to do so is to use (partially) symmetrized
summation polynomials instead of Semaev’s; in Sect. 3, we detail two different ways to
directly compute these polynomials. The second optimization concerns the resolution
of the symmetrized system. The fastest available method is to compute a Gröbner basis
for an appropriate monomial order, using one of Faugère’s algorithms [15,16]. Since
each relation search leads to a system with the same specific shape, we propose an ad
hoc variant of F4 which takes advantage of this particularity to remove all reductions to
zero. Finally, we present a variation of our algorithm which solves the oracle-assisted
static Diffie–Hellman problem (SDHP, introduced in [6]) over E(Fqn). As in the case of
finite fields presented in [28], solving the SDHP, after some oracle queries, is faster than
solving the corresponding discrete logarithm problem. More precisely, we show that an
attacker is able, after at most q/2 well-suited oracle queries, to compute an arbitrary
SDHP instance reasonably quickly.

2. Index Calculus Algorithms for Elliptic Curves over Extension Fields

We begin by briefly recalling the principle of index calculus methods. We consider
a finite abelian group G and two elements h,g ∈ G such that h = [x]g (in additive
notation) where x is the secret to recover. For simplicity, we assume g has prime order �.
The basic outline consists of three main steps:

1. Choice of a factor base, i.e. a set F = {g1, . . . , gN } of elements of G, generating
the whole group G.
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2. Relation search: for “random” integers ai, bi ∈ Z/�Z, try to decompose [ai]g +
[bi]h into the factor base,1 i.e. write

[ai]g + [bi]h =
N∑

j=1

[cij ]gj , where cij ∈ Z. (1)

3. Linear algebra: once k relations of the form (1) have been found where k is large
enough, construct the matrices A = (ai bi )1≤i≤k and M = (cij ) 1≤i≤k

1≤j≤N
, and find an

element v = (v1 . . . vk ) in the left kernel of M such that vA �= (0 0 ) mod �. Such
an element v exists and can be computed with elementary linear algebra as soon
as k is greater than N and the relations are linearly independent. The logarithm of
h is then x = −(

∑
i aivi)/(

∑
i bivi) mod �.

Other variants exist for steps 2 and 3, such as the precomputation-and-descent: all
relations considered are of the form (1) with bi = 0, and the linear algebra yields the
logarithms in base g of all factor base elements; then only one relation involving h is
needed to obtain its logarithm. This method is much more efficient when one has more
than one discrete logarithm to compute in base g.

For example, if G is the multiplicative group of Fp , p prime, we can take for F the
set of equivalence classes of prime integers smaller than a fixed bound B . An element
is then decomposable in this factor base if its representative in [1,p − 1] is B-smooth.
There is obviously a compromise to be found: if B is large, then most elements are
decomposable, but many relations are necessary and the matrices involved in the linear
algebra step are comparatively large. On the other hand, if the factor base is small, the
required number of relations is small and the linear algebra step is fast, but finding a
relation is much less probable. In any case, the matrix M is usually very sparse and
appropriate techniques can be used to compute its kernel quickly.

One major obstruction to index calculus when G is the group of rational points of an
elliptic curve defined over Fq is that there exist no obvious factor bases. The second,
related difficulty is that decomposing an element as in (1) is really not straightforward.
In [40], Semaev proposes the first efficient way to find such a decomposition, yet his
approach could not work for lack of an adequate factor base.

2.1. The Versions of Gaudry and Diem

In [11,20], Gaudry and Diem propose applying an index calculus method in the group
of rational points of elliptic curves defined over small degree extension fields. To do so,
they combine ideas from Semaev’s index calculus proposal and Weil descent attack to
get a multivariate polynomial system that one can solve using Gröbner basis techniques.
More precisely, if E is an elliptic curve defined over Fqn , Gaudry’s choice of a factor
base is the set of points whose x-coordinate lies in the base field: {P ∈ E(Fqn) : P =
(xP , yP ), xP ∈ Fq, yP ∈ Fqn}. Actually, since this set is invariant under negation, it is

1 For the complexity analysis, it is usually necessary to assume that the elements to decompose are chosen
randomly in G. If the group generated by g is different from G, this can be achieved by considering elements
g1, . . . , gt ∈ F that together with g generate G. One then tries to decompose random combinations of the
form [ai ]g + [bi ]h + [ci,1]g1 + · · · + [ci,t ]gt .



Elliptic Curve Discrete Logarithm Problem 123

possible to consider only one half of it; if E is given in reduced Weierstrass form in
characteristic different from 2 or 3, the factor base becomes:

F = {
P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈ S

}
,

where S is a subset of Fqn such that Fqn = S ∪ (−S) and S ∩ (−S) = {0} (for example,
assuming that −1 is not a square in Fqn , we can choose for S the set of quadratic
residues together with 0). The same kind of twofold reduction can also be done for a
general equation of E.

To compute the discrete logarithm of Q ∈ 〈P 〉 with an index calculus algorithm, we
first need to find relations, i.e. to decompose combinations of the form R = [a]P +
[b]Q, where a, b are random integers, as sums of points in F . Following Semaev’s
idea, Gaudry suggests considering only relations of the form

R = ±P1 ± P2 ± · · · ± Pn, (2)

where n is the degree of the extension field and Pi ∈ F (1 ≤ i ≤ n). Getting such
relations can be done by using a Weil restriction process. One considers Fqn as
Fq [t]/(f (t)), where f (t) is an irreducible polynomial of degree n over Fq , in order
to represent points P = (xP , yP ) ∈ E(Fqn) by 2n coordinates: xP = x0,P + x1,P t +
· · · + xn−1,P tn−1 and yP = y0,P + y1,P t + · · · + yn−1,P tn−1. Instead of writing down
an equation with (n+ 1)n unknowns from the decomposition (2), it is rather convenient
to use Semaev’s summation polynomials to get rid of the yPi

variables. We recall here
the definition and properties of such polynomials.

Proposition 2. Let E be an elliptic curve defined over a field K . The mth Semaev’s
summation polynomial is an irreducible symmetric polynomial fm ∈ K[X1, . . . ,Xm], of
degree 2m−2 in each variable, such that given P1 = (xP1 , yP1), . . . ,Pm = (xPm, yPm) ∈
E(K) \ {OE}, we have

fm(xP1 , . . . , xPm) = 0 ⇔ ∃ε1, . . . , εm ∈ {1,−1}, ε1P1 + · · · + εmPm = OE.

These summation polynomials can be effectively computed by induction, see [40] or
Sect. 3. At this point, we replace (2) by the equivalent equation

fn+1(xP1 , . . . , xPn, xR) = 0, (3)

using the (n + 1)th summation polynomial fn+1 ∈ Fqn [X1, . . . ,Xn+1]. The unknowns
xP1, . . . , xPn actually lie in Fq , so if we sort (3) according to powers of t , we obtain
∑n−1

i=0 ϕi(xP1 , . . . , xPn) t i = 0 where each ϕi is a symmetric polynomial over Fq , of
degree at most 2n−1 in each variable (and whose coefficients depend polynomially on
xR , a and b). This leads to a system of n symmetric polynomials, which, as advised by
Gaudry, can be written as a system of polynomials of total degree 2n−1 in terms of the
elementary symmetric functions e1, . . . , en of the variables xP1 , . . . , xPn :

ϕ0(e1, . . . , en) = 0, ϕ1(e1, . . . , en) = 0, . . . , ϕn−1(e1, . . . , en) = 0. (4)
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Given the (n + 1)th summation polynomial, writing down such a system is almost im-
mediate, but solving it is much more complicated. Actually, the resolution cost is hard
to estimate precisely, but is at least polynomial in the degree of the corresponding zero-
dimensional ideal, which according to [11] is generically equal to the Bézout bound
2n(n−1). This over-exponential complexity causes the attack to be unfeasible for n ≥ 5
on current personal computers.

In order to deduce a relation of the form (2) from a solution of the symmetrized
equation (4), we first need to find the roots of the univariate polynomial F(x) = xn −
e1x

n−1 + · · ·+ (−1)nen; this can easily be done using classical algorithms like Cantor–
Zassenhaus’s [46, Chap. 14]. When F is split over Fq , it suffices to construct the points
of F whose x-coordinates are roots of F and then test the 2n possible arrangements
of signs until the decomposition of R is found. The cost of this desymmetrization and
sign-finding step is negligible compared to the resolution of the polynomial systems
involved. We remark that when F is split, it is a priori possible that some of its roots
do not correspond to x-coordinates of points in F : this is the case if the associated
y-coordinates lie in a quadratic extension F(qn)2 but not in Fqn . However, these points
belong to the subgroup G′ = ϕ(E′(Fqn)) ⊂ E(Fq2n), where E′

|Fqn
is the quadratic twist

of E and ϕ is a Fq2n -isomorphism between E′(Fq2n) and E(Fq2n). The decomposition
of R given by F is thus R = ±P1 ± · · · ± Pk ± Pk+1 ± · · · ± Pn where Pi ∈ F if
i ≤ k and Pi ∈ G′ otherwise. This can be rewritten as R ∓ P1 ∓ · · · ∓ Pk = ±Pk+1 ±
· · · ± Pn, where the left-hand side is in E(Fqn) and the right-hand side in G′. Since
the intersection of these two groups is reduced to E(Fqn)[2], this means that ±Pk+1 ±
· · · ± Pn is a decomposition of a 2-torsion point in only n − k points with x-coordinate
in Fq . While possible, the existence of such a decomposition for a given elliptic curve is
highly unlikely, so that in practice we always get a decomposition in F when F is split.
Note that the cost of sign-finding can be reduced by a factor of 2 by fixing the sign of P1
to + and by considering the 2n−1 possible signs for the other points, stopping when the
corresponding sum is either R or −R (this is efficiently tested by looking at the abcissa
of the sum P1 ± P2 ± · · · ± Pn).

Once we get enough equations like (2), we proceed to the linear algebra step. After
collecting k > #F � q/2 distinct (independent) relations of the form:

[ai]P + [bi]Q =
N∑

j=1

[cij ]Pj , where N = #F , cij ∈ {0;1;−1} and
N∑

j=1

|cij | = n,

we get a vector A = (ai bi )1≤i≤k and a matrix M = (cij ) which is very sparse since
it has only n entries per row. It remains to find a element tv ∈ ker(tM) such that vA �=
0 mod �, which yields the discrete logarithm x = −(

∑
i aivi)/(

∑
i bivi) mod � of Q in

base P .

2.1.1. Complexity Estimate of Gaudry and Diem’s Algorithm

As a preliminary step, we should check that F contains enough points. Heuristically,
it is clear that there are approximately q/2 elements in the factor base; this statement
can be made rigorous. The geometric object corresponding to F is C = {P ∈ E(Fqn) :
P = (xP , yP ), xP ∈ Fq} ∪ {OE}, which is the disjoint union (up to 2-torsion points) of



Elliptic Curve Discrete Logarithm Problem 125

F and −F together with the point at infinity. This is a projective curve contained in the
Weil restriction WFqn /Fq

(E) of E, relatively to the extension Fqn/Fq (note that the GHS
attack uses precisely the Jacobian of an irreducible component of C for the transfer of
the DLP [21]). It turns out that it is quite easy to determine when C is irreducible and
to bound its genus, so that we can estimate its number of points. According to Diem,
we ask that the curve E satisfies the following condition, which is a reformulation of
Condition 2.7 of [11]:

Condition 3. There exists a 2-torsion point P = (xP , yP ) ∈ E(Fqn) such that for all
i ∈ {1, . . . , n − 1}, σ i(xP ) �= xP and σ i(xP ) is not the x-coordinate of a 2-torsion of
point of E, where σ is the exponentiation by q .

Technically, this is a condition on the Weierstrass equation of E (and not on E itself).
Diem showed that it is always possible to find an equation for E such that this condi-
tion is satisfied, even if E is initially defined over a proper subfield of Fqn . Under this
condition, the number of points in C is greater than q + 1 − n2n+2(

√
q + 1) (see [11],

proof of Proposition 4.11); as soon as n ≤ c log2 q where c < 1/2, this is greater than
q/2 for q large enough. Thus we have the following proposition:

Proposition 4. For any ε > 0, there exists a constant C > 0 such that for any q > C

and n < (1/2 − ε) log2 q , the factor base F associated to an elliptic curve defined over
Fqn satisfying Condition 3 contains more than q/4 elements.

Note that even when n > log2(q)/2, it is probable that the factor base F has more
than q/4 points. In fact, the possible values for the cardinality of an irreducible curve
defined over Fq are concentrated near q + 1, so that it is rather unlikely that no equation
of an elliptic curve E|Fqn would yield a factor base with enough elements.

The first main step of the algorithm consists of collecting around #F � q/2 relations
of the form (2) to build the matrix M . The (n+1)th summation polynomial can be deter-
mined once for all using Poly(e(n+1)2

log2 q) operations for a fixed elliptic curve [11].
The representation of this summation polynomial in terms of elementary symmetric
functions can be done by using Gröbner elimination techniques for example; we refer
to Sect. 3 for improvements of this computation. The probability of finding a decompo-
sition of a point R ∈ E(Fqn) is approximately

#Cn/Sn

#E(Fqn)
� qn

n!
1

qn
= 1

n! ,

and the cost of checking if the point R is actually decomposable in the factor base,
denoted c(n, q), is the cost of the resolution of a multivariate polynomial system of n

equations defined over Fq with n variables of total degree 2n−1. As we need at least #F
relations, the total complexity of the first step is about n! c(n, q) q/2.

The estimation of the cost c(n, q) is not straightforward as it thoroughly depends
on the algorithm used. Following Diem’s analysis [11, Sect. 4.5], the polynomial sys-
tem considered is generically of dimension 0 since it has a finite number of solutions
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over Fq , and using resultant techniques we get an upper bound for c(n, q):

c(n, q) ≤ Poly
(
n!2n(n−1) log2 q

)
.

The sparse linear algebra step can then be done in a time of Õ(nq2) with an
adapted version of Lanczos or Wiedemann’s algorithm [8, §20.3.3]. However, in order
to improve the complexity of the algorithm, Gaudry suggests rebalancing the matrix-
building cost against the linear algebra cost using “large primes” techniques adapted
from [22] and [44] (see [20] for more details). By doing so, he needs to obtain ap-
proximately q2−2/n relations instead of q . The cost of the first main step becomes
thus n! c(n, q) q2−2/n. By contrast, the cost of the linear algebra step is reduced to
Õ(nq2−2/n), which is negligible compared to the previous step. As a result, the ellip-
tic curve discrete logarithm problem over Fqn for fixed n can be solved in an expected
time of Õ(q2−2/n), but the hidden constant grows extremely fast with n. A complete
complexity estimate using Diem’s bound is:

n! Poly
(
n!2n(n−1) log2 q

)
q2−2/n.

2.2. Our Version

The bad behavior (over-exponential) in n occurring in the complexity of Gaudry and
Diem’s algorithm remains a serious drawback and makes their approach practical only
for very small extension degrees, namely n = 3 or 4. Since the cost of the multivari-
ate system resolution heavily depends on the degree of the summation polynomial, the
complexity can be considerably improved by considering only decompositions of com-
binations R = [a]P + [b]Q as sums of (n − 1) points in F , instead of n points as in
[11,20]. Even though we are lowering the probability of getting such a decomposition
when q grows, the gain is sufficient to make this approach realistic for n = 5.

We can solve the equation:

[a]P + [b]Q = ±P1 ± · · · ± Pn−1, (5)

where a and b are random integers and the Pi belong to F , in the same way as explained
in the previous section. The differences are that only the nth summation polynomial is
involved and that the resulting system of n polynomials is in (n − 1) variables and of
total degree only 2n−2. Since this system is overdetermined, its resolution is greatly
sped up, as compared to the previous case. The trade-off is that it is less probable to find
a decomposition.

A Toy Example We consider the curve

E : y2 = x3 + ax + b, a = 60t2 + 52t + 44, b = 74t2 + 87t + 58

defined over F1013 � F101[t]/(t3 + t + 1); it has prime order #E = 1029583. Let P =
(84t2 + 24t + 75,92t2 + 18t + 61) be a random generator of E and Q = (50t2 + 98t +
89,2t2 + 95t + 15).
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We first try to decompose the random multiple R = [47044]P + [956092]Q =
(37t2 + 84t + 85,86t2 + 3t + 15) as a sum of two points in F . The third symmetrized
Semaev’s polynomial (see Sect. 3) is

f̃3(e1, e2, xR) = (
e2

1 − 4e2
)
x2
R − 2

(
e1(e2 + a) + 2b

)
xR + (e2 − a)2 − 4be1.

Replacing a, b and xR by their respective values, we obtain the equation
(
59t2 + 29t + 100

)
e2

1 + (
27t2 + 34t + 32

)
e1e2 + (

31t2 + 71t + 55
)
e1 + e2

2

+ (
48t2 + 83t + 17

)
e2 + 32t2 + 16t + 81 = 0

whose Weil restriction yields the system
⎧
⎪⎨

⎪⎩

100e2
1 + 32e1e2 + 55e1 + e2

2 + 17e2 + 81 = 0,

29e2
1 + 34e1e2 + 71e1 + 83e2 + 16 = 0,

59e2
1 + 27e1e2 + 31e1 + 48e2 + 32 = 0.

This system has no solution, hence the point R (like most points of the curve) is not
decomposable.

We then try to decompose the random multiple R = [5620]P +[679359]Q = (16t2 +
94t + 21,80t2 + 34t + 41). We obtain the equation

(
61t2 + 78t + 59

)
e2

1 + (
69t2 + 14t + 59

)
e1e2 + (

40t2 + 20t + 57
)
e1 + e2

2

+ (
40t2 + 89t + 80

)
e2 + 12t2 + 11t + 77 = 0

yielding the system
⎧
⎪⎨

⎪⎩

59e2
1 + 59e1e2 + 57e1 + e2

2 + 80e2 + 77 = 0,

78e2
1 + 14e1e2 + 20e1 + 89e2 + 11 = 0,

61e2
1 + 69e1e2 + 40e1 + 40e2 + 12 = 0.

This time the system has a unique solution (e1, e2) = (69,75), and the trinomial X2 −
69X + 75 has two roots 6 and 63 ∈ F101, corresponding to the points P1 = (6,77t2 +
93t + 35) and P2 = (63, t2 + 66t + 2) ∈ F ∪ −F . We check that indeed R = P1 +
P2. Since #(F ∪ −F ) = 108, we need about 54 such decompositions to complete the
relation search step. Once these relations are collected, we can deduce with sparse linear
techniques that the discrete logarithm of Q in base P is x = 715339.

2.2.1. Complexity Analysis

In order to estimate the complexity of our variant, we need to bound the probability that
a random point is decomposable as a sum of n−1 points of F and to determine the cost
of the resolution of the corresponding polynomial system.

Assumption 1. The number of points of E(Fqn) that can be decomposed as a sum of
n − 1 elements of F is Ω(qn−1/(n − 1)!).
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Let as before C = {P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq} ∪ {OE}. Since the cardi-
nality of Cn−1/Sn−1 is approximately qn−1/(n − 1)!, this assumption means that the
preimage of most points of E under the map sending an unordered (n − 1)-tuple of ele-
ments of C to their sum in E(Fqn) has a cardinality bounded by a constant independent
of q and n.

Actually, this assumption is a corollary of the more precise following conjecture, as
soon as the cardinality of F is Ω(q) (which is always true provided that Condition 3
holds and that n/(log2 q) stays bounded away from 1/2, cf. Proposition 4 and the fol-
lowing discussion).

Conjecture. Let C(n−1) = Cn−1/Sn−1 be the (n − 1)th symmetric product of C ,
and WFqn/Fq

(E) the Weil restriction of E relative to the extension Fqn/Fq . Let ς :
(P1, . . . ,Pn−1) �→ ∑

i Pi be the summation morphism C(n−1) → WFqn/Fq
(E), defined

over Fq . Then

1. The map ς is a degree-one morphism from C(n−1) to ς(C(n−1));
2. The fiber ς−1(R) of a point R ∈ ς(C(n−1)) has positive dimension if and only if

there exist P1, . . . ,Pn−3 ∈ C such that R = ς(P1, . . . ,Pn−3, OE, OE).

Part 1 of this conjecture can be verified formally for n = 3 using a computer al-
gebra system, and has been satisfied for other extension degrees in all our exam-
ples. Note that C(n−1) is a projective variety, so that in practice to check if this prop-
erty holds, it is sufficient to find a point R ∈ ς(C(n−1)) such that the fiber ς−1(R)

is a zero-dimensional variety of degree 1. Part 2 is less obvious to verify. It is clear
that if R = ς(P1, . . . ,Pn−3, OE, OE) (i.e. R = ∑n−3

i=1 Pi ), then the corresponding
fiber ς−1(R) has dimension at least 1: it contains all the (n − 1)-tuples of the form
(P1, . . . ,Pn−3,Q,−Q). The converse is much more delicate, but has been verified ex-
perimentally (by exhaustive search) on small enough curves when n = 5. It is, however,
reasonable to suppose that this conjecture holds, if not for all elliptic curves, at least
for a large proportion of them (possibly up to a change of equation). In any case, with
Assumption 1, the expected number of decomposition trials for the relation search is
O((n − 1)!q2).

As mentioned above, the cost of trying to find one decomposition, denoted c̃(n, q),
is reduced to the cost of the resolution of an overdetermined multivariate polynomial
system of n equations with (n − 1) variables of total degree 2n−2. Consequently, the
complexity of the relation search step becomes O((n − 1)! c̃(n, q) q2).

The value of c̃(n, q) has to be compared to the cost c(n − 1, q): clearly, we have
c̃(n, q) < c(n − 1, q). Indeed, solving a system of n equations with (n − 1) variables
of degree 2n−2 can be achieved by solving the system consisting of the first (n − 1)

equations, and by checking the compatibility of the solutions with the last equation.
With such an upper bound of c̃(n, q), we obtain the complexity for the first collecting
step of

O
(
(n − 1)!q2 Poly

(
(n − 1)!2(n−1)(n−2) log2 q

))
. (6)

The linear algebra step has a complexity of Õ(nq2), which is negligible compared to
the first step. Hence the total complexity of the algorithm is given by (6). We emphasize
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that because of the q2 factor in the complexity, Pollard rho or other generic methods
remain faster than our variant for n ≤ 4, thus our approach is actually relevant only for
n ≥ 5. On the other hand, estimate (6) shows that there exists a constant c such that the
variant is asymptotically faster than generic methods as soon as 5 ≤ n ≤ c log2 q .

However, the resultant method yielding (6) is not optimal. A faster way of solving
a zero-dimensional polynomial system over a finite field is to compute a lexicographic
order Gröbner basis of the corresponding ideal. If this ideal is radical, up to a generic
linear change of coordinates the resulting system of generators is of the form:

{
X1 − g1(Xn), . . . ,Xn−1 − gn−1(Xn), gn(Xn)

}
,

where gn is a univariate polynomial of degree equal to the degree of the ideal, and
g1, . . . , gn−1 are univariate polynomials of degree strictly smaller [3]. It is then easy to
determine the set of solutions by finding the roots of gn and then the corresponding val-
ues of the remaining variables. In the general case, the shape of the basis is not necessary
linear in the remaining variables X1, . . . ,Xn−1, but it is still simple to recover the solu-
tions. Nevertheless, the computation of a lexicographic order Gröbner basis is usually
difficult: this is not surprising since polynomial system solving is known to be a hard
problem. For zero-dimensional ideals, an efficient strategy is to first compute a Gröbner
basis for the graded reverse lexicographic order (grevlex) and then obtain the lex basis
using a ordering change algorithm, such as FGLM [18]. We give some estimates of the
complexity of the first stage later on; as for the second stage, its complexity is O(nD3)

field operations, where D is the degree of the ideal and n the number of variables.
In our case, the ideal is given by an overdetermined polynomial system. Generically,

i.e. when R /∈ ς(C(n−1)), this ideal is the whole polynomial ring and the correspond-
ing set of solutions is empty; its minimal Gröbner basis is {1} for any order, includ-
ing grevlex. Otherwise, i.e. when the decomposition exists, the set of solutions usually
contains a small number of points, actually exactly one if the first part of the above
conjecture holds. In this case, the ideal is maximal and its grevlex Gröbner basis con-
tains only linear polynomials; recovering the solution is then immediate. If the ideal
is zero-dimensional but not of degree 1, it is still simple to recover the solutions since
the degree is small. Exceptionally, e.g. if R decomposes as a sum of n − 3 points, the
dimension of the fiber is positive; this can be easily detected on the grevlex basis. It
is then still possible to deduce some useful relations, but one can also simply discard
this rarely occurring decomposition trial. This situation is in stark contrast with the one
in Gaudry and Diem’s algorithm, where we have seen that the degree of the ideal is
generically equal to the Bézout bound 2n(n−1). This means that the solution set generi-
cally contains 2n(n−1) points, although most of them lie in an extension of Fq since the
probability of finding a decomposition is only 1/n!. In their setting, the computation
of a degrevlex Gröbner basis is thus not sufficient to solve the system and the FGLM
algorithm is needed. We see below that this over-exponential degree in n is actually the
bottleneck of their approach.

In order to derive effective upper bounds for the complexity of the grevlex Gröbner
basis computation of a zero-dimension system {f1, . . . , fr}, it is necessary to make
some additional hypotheses. For instance, one can assume that the sequence {f1, . . . , fr}
is semi-regular [1,2] or that the set of solutions of the homogenized system has no
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positive dimension component at infinity [31]. These properties hold generically, and
imply that the maximum degree of polynomials occurring during the computation of the
Gröbner basis is bounded by the degree of regularity dreg of the homogenized system,
which is itself smaller than the Macaulay bound

∑r
i=1(degfi − 1) + 1. The standard

algorithms for Gröbner bases (e.g. Buchberger [7], Faugère’s F4 and F5 [15,16]) can
then be reduced to the computation of the row echelon form of the dreg-Macaulay matrix
(cf [31]). In the following, we make a second assumption, which has been verified in all
our experiments:

Assumption 2. The maximal degree of the polynomials occurring during the compu-
tation of the homogenized grevlex Gröbner basis of the system {ϕ0, . . . , ϕn−1} arising
from (5) is smaller than the Macaulay bound d = ∑n−1

i=0 (degϕi − 1) + 1.

Using the fact that the system in our variant is composed of polynomials of degree
2n−2 in n − 1 variables, we obtain that d = n2n−2 − n + 1. The number of columns
of the d-Macaulay matrix is at most the number of monomials of degree smaller than

or equal to d , which in our case is bounded by
(
n2n−2

n−1

)
. Similarly, the number of rows

is less than n
(
(n−1)2n−2

n−1

)
, corresponding to the multiples up to degree d of the n initial

polynomials. Since there are more columns than rows, we obtain with fast reduction
techniques the following bound:

c̃(n, q) = Õ

((
n2n−2

n − 1

)ω)
,

where ω ≤ 3 is the effective complexity exponent of matrix multiplication (in practice,
ω = log2(7) when using Strassen’s multiplication). As n − 1 is negligible compared to
n2n−2, using Stirling’s formula we get

(
n2n−2

n − 1

)
∼ (n2n−2)n−1

(n − 1)! ∼ 2(n−1)(n−2)en (2πn)−1/2.

This directly implies our main result:

Theorem 1. Let E be an elliptic curve defined over Fqn and G a cyclic subgroup of
its group of rational points. If Assumptions 1 and 2 are satisfied, then the DLP in G can
be solved with asymptotic complexity

Õ
(
(n − 1)!(2(n−1)(n−2)en n−1/2)ω

q2). (7)

Note, however, that the upper-bound given for c̃(n, q) (and thus the estimate of The-
orem 1) is convenient but not sharp: it does not take into account the fact that the
Macaulay matrix is sparse and heavily structured. Actually, deriving precise bounds for
the computation of Gröbner bases is still an open problem. As an illustration, for n = 5
the above estimate predicts about 1014 multiplications in Fq to achieve the Gröbner
basis computation, whereas the experimental computation with F4 only requires about
1010 multiplications. We see in Sect. 4 how to reduce this last amount by a factor 3.
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In the same spirit, we can also try to improve the estimate of the complexity of Gaudry
and Diem’s algorithm. We have seen that the resolution of the polynomial system is
composed of two main stages: the computation of a grevlex Gröbner basis followed by
the ordering change algorithm FGLM. The cost of the first step can be roughly estimated

in the same way as for our variant and is Õ
((

n2n−1+1
n

)ω) = Õ((2n(n−1)en n−1/2)ω). As
already mentioned, the complexity of FGLM for a zero-dimensional ideal of degree D

in n variables is Õ(nD3), and this estimate is actually sharp. Consequently, for ω < 3
we find that the cost of the lexicographic Gröbner basis computation is dominated by
the cost of FGLM. Its complexity is Õ((2n(n−1))3), and thus the total complexity of
Gaudry and Diem’s version is Õ(n!23n(n−1)q2−2/n). An easy computation then shows

that our approach is asymptotically faster2, provided n ≥ 3
√

( 2
3−ω

+ ε) log2 q .
Similarly, our method is asymptotically faster than Pollard rho algorithm if n ≤

( 1
2ω

− ε) log2 q . We stress that these comparisons are only asymptotic; we have seen
before that our version is irrelevant if n ≤ 4. However, this shows that for n > 4, there
exists a range of values for q in which our algorithm is the most efficient.

2.3. Comparison with the Hybrid Approach

We have seen that the main difficulty in Gaudry and Diem’s algorithm is the resolution
of the polynomial system. Recently, Bettale et al. [4] have proposed a hybrid approach
for solving such systems: the idea is to find a solution by exhaustive search on some
variables and Gröbner basis computations of the modified systems where the selected
variables have been specialized (i.e. evaluated). It is thus a trade-off between exhaustive
search and Gröbner basis techniques. A natural choice here would be to specialize (or
guess) one variable. The exhaustive search multiplies by q the number of polynomial
systems, but these systems now consist of n equations in n − 1 variables. At first sight,
this seems quite similar to our version; however, the total degree of the equations in this
hybrid approach is 2n−1 whereas it is only 2n−2 in our case. The following chart sum-
marizes the number of multivariate systems to solve together with their parameters, in
order to find one relation in E(Fqn). It shows that our version provides a better trade-off
between the number of systems to solve and their complexity than the hybrid approach.

Method Average number Number of Number of Total degree
of systems equations variables

Gaudry–Diem n! n n 2n−1

Gaudry–Diem with
hybrid approach

n!q n n − 1 2n−1

This work (n − 1)!q n n − 1 2n−2

2 Some papers (e.g. [17]) claim that in some special cases and with some modifications, the complexity
exponent of FGLM is actually smaller than 3. If the Gröbner basis computation dominates the cost of the
resolution, then the comparison is somewhat different: our approach would be asymptotically faster than

Gaudry and Diem’s for n ≥
√

( 1
ω + ε) log2 q . Nevertheless, in our experiments the FGLM step was always

the longest by a large margin.
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2.4. Application to Fq5

The approach of Gaudry and Diem, while theoretically interesting, turns out to be in-
tractable on Fqn as soon as n ≥ 5. Not only is the computation of the sixth summation
polynomial problematic (cf. Sect. 3), but also, since the system arising from (3) has a
large number of solutions (about 25(5−1) � 106) in Fq5 , it is very difficult to solve. In-
deed, we remind that the complexity of the resolution (e.g. by using FGLM to obtain
a lex order Gröbner basis) depends of the degree of the ideal generated by the equa-
tions, which is generically 2n(n−1). A natural way of decreasing this degree would be
to add the field equations e

q
i − ei , but clearly this is not practical for large values of

q . In particular, we have not been able to successfully run one complete relation search
with their method, as the requested memory exceeded the capacity of our personal com-
puter. Nonetheless, using our algorithm and our own implementation of the F4 variant
(see Sect. 4), we are able to check and if necessary compute a decomposition over Fp5

with p a prime number of 32 bits in about 8.5 seconds on a 2.6 GHz Intel Core 2 Duo
processor.

In characteristic 2, the computation is much faster: as pointed out by Granger [24],
Semaev’s summation polynomials are sparser than in the odd characteristic case, so
that the corresponding systems are much easier to solve. Note, however, that the bounds
given for the degree of regularity and the degree of the ideals remain the same, as do
the complexity estimates. Timings for testing decompositions up to n = 4 with Gaudry–
Diem approach are given in [24], but the simplification provided by the characteristic 2
case is still not sufficient to make this approach work for n = 5 on a personal computer.
Interestingly, the speedup noticed by Granger also applies with our method. Indeed, in
characteristic 2, testing a decomposition in four points over F2160 = F(232)5 takes only
30 ms instead of the 8.5 s given above in large characteristic.

Unfortunately, this is still much too slow to yield in a reasonable time the solution of
the ECDLP over fields of size compatible with current levels of security. To be more
precise, we can estimate for which base fields our algorithm is faster than Pollard rho,
knowing that a single decomposition test requires about 3 × 109 multiplications in Fp

for p odd and about 2 × 107 in F2d for the binary case (since the relation search is the
dominating step, we can neglect the linear algebra part). Our method is then faster as
soon as the cardinality of the base field is greater than 260 in the odd characteristic case,
or 245 in characteristic 2.

Nevertheless, our approach provides an efficient attack of non-standard problems
such as the oracle-assisted static Diffie–Hellman problem, as explained in Sect. 5.

3. Computing the Symmetrized Summation Polynomials

The main difficulty of the previously investigated algorithms is the construction of re-
lations of the form (2) or (5). Semaev’s summation polynomials were first proposed
in [40] to solve, or at least to reduce this difficulty, allowing to translate this prob-
lem into the resolution of the polynomial equation fm(xP1 , . . . , xPm−1 , xR) = 0, where
xP1, . . . , xPm−1 are the unknowns. The mth polynomial fm is computed only once and
is evaluated in xR for each relation search. As mentioned above, it is more efficient to
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express this equation in terms of the elementary symmetric functions of the unknowns

e1 =
∑

i

xPi
, e2 =

∑

i<j

xPi
xPj

, . . . , em−1 =
∏

i

xPi
,

before the resolution of the system. This symmetrizing operation greatly reduces the
total degree of the system, and improves a lot its resolution by e.g. Gröbner basis tech-
niques. It can be done once for all at the beginning of the relation search.

We propose here two distinct improvements: both consider a direct computa-
tion of the symmetrized summation’s polynomials, instead of rewriting the equation
fm(xP1 , . . . , xPm−1 , xR) = 0 in terms of elementary symmetric polynomials after the
computation of Semaev’s polynomials, as in [20]. Hence for m = 5, the first method
allows reducing the computation time and the memory requirement by a factor almost
equal to 10; while the second technique seems to provide a less significant advantage
in term of computation time, it allows reducing the memory requirement by a factor 25
(on Magma V2.17-5 [5]).

3.1. Distributing the Symmetrization

Let us recall that in [40] the summation polynomials are determined recursively, each
inductive step consisting of a resultant computation. Our first improvement is to par-
tially symmetrize after each step: it has the double benefit of reducing the size of the
intermediate polynomials and the cost of the final symmetrization, by distributing it
between the different steps. It is summarized by the following proposition:

Proposition 5. Let E be an elliptic curve defined over a field K of characteristic
different from 2 or 3, with reduced Weierstrass equation y2 = x3 + ax + b. The sym-
metrized summation polynomials are determined by the following induction. The initial
value for n = 3 is given by

f̃3(e1,2, e2,2,X3) = (
e2

1,2 − 4e2,2
)
X2

3 − 2
(
e1,2(e2,2 +a)+ 2b

)
X3 + (e2,2 −a)2 − 4b e1,2

and for m ≥ 3 by

f̃m+1(e1,m, . . . , em,m,Xm+1)

= Symm

(
ResY

(
f̃m(e1,m−1, . . . , em−1,m−1, Y ), f3(e1,1,Xm+1, Y )

))
,

where

• er,n is the r th elementary symmetric polynomial in variables X1, . . . ,Xn,
• f3(X1,X2,X3) = (X1 −X2)

2X2
3 − 2((X1 +X2)(X1X2 + a)+ 2b)X3 + (X1X2 −

a)2 − 4b(X1 + X2) is Semaev’s third summation polynomial,
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• Symm denotes the operation of rewriting a partially symmetrized polynomial in
terms of elementary symmetric functions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e1,m = e1,1 + e1,m−1,

e2,m = e1,1e1,m−1 + e2,m−1,

...

em−1,m = e1,1em−2,m + em−1,m−1,

em,m = e1,1em−1,m−1.

Obviously, it is also possible to define f̃m from resultants of f̃m−j and f̃j+2 for
1 ≤ j ≤ m − 3, as in [40]. This has the advantage of reducing the number of resultant
computations, but increases the complexity of the symmetrization step. In our context,
since m is small (m ≤ 6), the approach of Proposition 5 is the fastest.

3.2. Divisors and Elimination

In our second improvement, we replace the computation of resultants and the sym-
metrization by an elimination order Gröbner basis computation. Let E be an elliptic
curve of equation y2 = x3 + ax + b defined over K of characteristic different from 2 or
3. We consider the principal divisor D = (P1)+· · ·+ (Pm)−m(OE) ∈ Div0

K(E) where
P1, . . . ,Pm ∈ E(K) are such that P1 + · · · + Pm = OE . Up to a constant, there exists a
unique function gm ∈ K(E) such that D = div(gm) (cf. [42] Corollary 3.5). The same
techniques as the ones used in Miller’s algorithm [34] enable us to express the function
gm.

Let li (X,Y ) = 0 (1 ≤ i ≤ m − 1) be the equations of the lines passing through P1 +
· · · + Pi and Pi+1 and vi(X,Y ) = 0 (1 ≤ i ≤ m − 2) the equations of the vertical lines
passing through P1 + · · · + Pi+1, then we have

gm(X,Y ) = l1 · · · lm−1

v1 · · ·vm−2
(X,Y ).

An easy induction shows that

gm(X,Y ) = gm,1(X) + Ygm,2(X), (8)

where gm,1 and gm,2 are two polynomials of degree lower than dm,1 and dm,2, respec-
tively:

dm,1 =
{

m/2 if m is even,

(m − 1)/2 if m is odd,
and dm,2 =

{
(m − 4)/2 if m is even,

(m − 3)/2 if m is odd.

Note that the function gm is uniquely determined if the equations of li and vi are nor-
malized at the point at infinity. The intersection between the curve (gm = 0) and E is
exactly the set of points Pi , 1 ≤ i ≤ m, thus the following proposition is quite direct:

Proposition 6. Let E be an elliptic curve of equation y2 = x3 + ax + b defined over
a field K of characteristic different from 2 or 3. Let P1, . . . ,Pm ∈ E(K) be such that
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P1 + · · · + Pm = OE and gm,1 and gm,2 be the polynomials given by (8). Then we have
gm,1(x)2 − (x3 + ax + b)gm,2(x)2 = 0 if and only if x is the x-coordinate of one of the
points Pi .

Conversely, if gm,1 and gm,2 are two arbitrary polynomials in K[X] with degree dm,1
and dm,2, then the roots in K of

Fm(X) = gm,1(X)2 − (
X3 + aX + b

)
gm,2(X)2,

counted with multiplicity, are the x-coordinates of points Q1, . . . ,Qm ∈ E(K) such that
Q1 + · · · + Qm = OE .

The second assertion comes from the fact that in K(E), we have Fm = (gm,1 +
Ygm,2)(gm,1 − Ygm,2). Since deg(Fm) = m, Fm has exactly m roots counted with mul-
tiplicity over K , each of which is the x-coordinate of two opposite points ±Qi ∈ E(K).
Up to a change of sign, we can assume that Qi is a zero of gm,1 +Ygm,2 (and so −Qi is
a zero of the second factor gm,1 −Ygm,2). Thus, the principal divisor Div(gm,1 +Ygm,2)

is equal to (Q1) + · · · + (Qm) − m(OE), which implies Q1 + · · · + Qm = OE .
We can now use this proposition to construct the symmetrized summation polyno-

mials. Let A = K[α0, . . . , αdm,1 , β0, . . . , βdm,2 , xP1 , . . . , xPm ]. We define the following
elements of A[X]:

hm,1(X) =
dm,1∑

i=0

αiX
i, hm,2(X) = Xdm,2 +

dm,2−1∑

i=0

βiX
i,

Fm(X) = hm,1(X)2 − (
X3 + aX + b

)
hm,2(X)2.

Finally, let I be the ideal of A generated by Fm(xP1), . . . ,Fm(xPm). We can easily find a
different set of generators of I by identifying the coefficients of Fm with the elementary
symmetric functions e1, . . . , em of the variables xP1 , . . . , xPm , and consider the result as
an ideal J of K[α0, . . . , αdm,1 , β0, . . . , βdm,2 , e1, . . . , em]. Elimination theory (cf. [10])
allows computing efficiently (e.g. with appropriate Gröbner bases) a set of generators
of the ideal J ′ = J ∩ K[e1, . . . , em]. According to the second part of Proposition 6, an
m-tuple (e1, . . . , em) belongs to the algebraic set V(J ′) if and only if the roots of the
polynomial T m + ∑m

i=1(−1)ieiT
m−i are the x-coordinates of points of E(K) whose

sum is the point at infinity OE . Actually, using Semaev’s results, this elimination ideal
J ′ is principal, generated by the mth symmetrized summation polynomial. Hence, this
elimination computes the mth summation polynomial directly in terms of e1, . . . , em.
Note that with this approach, it is also possible to compute directly the partially sym-
metrized polynomial f̃m.

A Worked Example For m = 5, following the previous construction, we obtain

F5(X) = (
α2X

2 + α1X + α0
)2 − (

X3 + aX + b
)
(X + β0)

2

with a, b ∈ K . By identifying the coefficients of this polynomial with the elementary
symmetric polynomials e1, . . . , e5 of the variables xP1 , . . . , xP4 , xP5 , we deduce the
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polynomial system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e1 = α2
2 − 2β0,

e2 = β2
0 + a − 2α1α2,

e3 = 2α0α2 + α2
1,

e4 = aβ2
0 + 2bβ0 − 2α0α1,

e5 = α2
0 − bβ2

0 ,

and using a Gröbner basis computation with an elimination order, we obtain the fifth
summation polynomial f5 directly in terms of e1, . . . , e5.

3.3. Some Comparisons

Here we give a comparison of computer times between the classical computation using
resultants followed by a final symmetrization and our two methods. In all cases, we
have used the software Magma (V2.17-5) on a 2.6 GHz Intel Core 2 processor; the
symmetrizations have been done via an elimination order Gröbner basis computation.
In view of the applications we have in mind, we chose to compute the fifth symmetrized
summation polynomial on an extension field Fp5 , p prime.

log2(p) Resultant + symmetrization 1st method 2nd method
(in s) (in s) (in s)

8 1.54 + 10.45 = 11.99 1.04 1.75
16 1.58 + 10.63 = 12.21 1.04 1.77
32 10.23 + 23.16 = 33.39 3.57 11.12

Memory requirement
(in MB)

510 66 22

We also tried to perform the same computations for the sixth symmetrized summation
polynomial. Unfortunately, in this case, both the resultant and Gröbner based computa-
tions exceeded the memory capacity of our personal computer (about 4 GB). However,
we were able to obtain with our first method (partially symmetrized resultants) the sixth
symmetrized summation polynomial over Fp6 (|p|2 = 27), for a fixed value of the last
variable x6, in about 10 min using 60 MB, expressed in the variables e1,5, . . . , e5,5. In
practice, this would mean that each time we try a decomposition of a new point into 5
points of the factor base, we would have to pay this extra price of computing the cor-
responding sixth symmetrized summation polynomial. Clearly, this would slow down
unreasonably any of the techniques presented in this paper.

3.4. The Characteristic 2 Case

The previous results can be easily adapted in characteristic 2. We consider an ordinary
elliptic curve E defined over F2d , with reduced Weierstrass equation y2 + xy = x3 +
ax2 + b. Then the third Semaev’s summation polynomial is

f3(X1,X2,X3) = (X1X2 + X1X3 + X2X3)
2 + X1X2X3 + b,
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see [40], and its partial symmetrization is

f̃3(e1,2, e2,2,X3) = (e1,2X3 + e2,2)
2 + e2,2X3 + b.

We can then proceed as in Proposition 5 to compute f̃m. For the second method, one just
has to replace gm,1(X)2 −gm,2(X)2(X3 +aX +b) by gm,1(X)2 +Xgm,1(X)gm,2(X)+
(X3 + aX2 + b)gm,2(X)2.

As already mentioned in Sect. 2.4, the summation polynomials are much sparser in
characteristic 2, and are thus faster to compute. For instance, the fifth partially sym-
metrized summation polynomial has only 100 terms and its computation takes about
50 ms with our first method over F(231)5 , whereas in the odd characteristic case, it has
3972 terms and is computed in 4 s over Fp5 for a prime p of comparable size.

4. An F4-Like Algorithm Without Reduction to Zero

An efficient way to solve the multivariate polynomial system coming from (2) or (5) is
to use Gröbner basis tools. Currently, the best algorithms for constructing Gröbner bases
are Faugère’s F4 and F5 [15,16], which are improvements of the classical Buchberger’s
algorithm. The second one, F5, is considered as the most efficient, since it includes a
criterion to eliminate a priori almost all critical pairs that eventually reduce to zero. This
criterion is based on the concept of “signature” of a polynomial; the main drawback is
that many reductions are forbidden because they do not respect signature compatibil-
ity conditions. Hence, the polynomials considered in the course of the F5 algorithm
are mostly “top-reduced” but their tails are left almost unreduced; this increases sig-
nificantly the complexity of the remaining pairs’ reduction. Furthermore, F5 generates
many “redundant” polynomials, i.e. which are not members of a minimal Gröbner ba-
sis, but cannot be discarded for signature reasons [13]. The total number of computed
critical pairs thus remains relatively important, at least compared to what could be ex-
pected from the F4 algorithm if all critical pairs reducing to zero were removed. These
drawbacks are especially significant for overdetermined systems such as those we are
considering. As mentioned by Faugère in [16], this is a consequence of the incremental
nature of the F5 algorithm. Indeed, to determine a Gröbner basis of an ideal gener-
ated by m polynomials, F5 starts by computing a basis of the ideal generated by the
first m − 1 polynomials. Clearly, the additional equation of the overdetermined system
cannot provide any speed-up at this point. Moreover, in our case, since the systems con-
sidered during the relation search always have the same shape, it is possible to extract
from a precomputation the knowledge of the relevant critical pairs and to remove the
pairs that lead to zero reductions. When such a precomputation is accessible, there is no
reason to use F5 instead of F4.

Recall that during the course of the F4 algorithm, a queue of yet untreated critical
pairs is maintained. At each iteration of the main loop, some pairs are selected from this
queue (according to some predefined strategy, usually all pairs having the smallest lcm
total degree) and treated, that is, their S-polynomials are computed and reduced simul-
taneously using linear algebra tools and results of former computations. The queue is
then updated with the critical pairs involving the resulting new generators and satisfying
Buchberger’s first and second criteria [7,23]. Here is a quick outline of the method we
used for our computations:
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1. For precomputation purposes, run a standard F4 algorithm on the first system, with
the following modifications:

– At each iteration, store the list of all selected critical pairs.
– Each time there is a reduction to zero, remove from the stored list the critical

pair that leads to the reduction.

2. For each subsequent system, run a F4 computation with the following modifica-
tions:

– Do not maintain or update a queue of untreated pairs.
– At each iteration, instead of selecting pairs from the queue, pick directly from

the previously stored list the relevant pairs.

More details on this method as well as applications to other problems are given in
[27].

This algorithm is probabilistic since the precomputation is not necessarily compatible
with all the following systems. Fortunately, one can always detect when a subsequent
system behaves “non-generically”, and then resume the computation with the classical
F4 algorithm. An upper-bound for the probability of failure is given in [27, Thm. 4]
under some worst-case hypotheses. Assuming that the precomputation has been done
in nstep iterations, the variant of F4 computes the Gröbner basis of a system involved
in the decomposition step, with a probability heuristically greater than c(p)nstep , where
Fp is the base field and c(p) = 1 − 1/p + O(1/p2). In particular, when p is large, the
probability of failure is very close to 0.

As an illustration of this approach we give in Fig. 2 some examples of the speed gain
it provides on Fp5 , using the equations generated from the fifth summation polynomial.
The system to solve is composed of 5 equations defined over Fp of total degree 8 in
4 variables. We run a degrevlex Gröbner basis computation of the corresponding ideal
over four prime fields of sizes 8, 16, 25 and 32 bits. To be fair, we compare our variant
F4Remake with an implementation of F4 which uses the same primitives and struc-
tures (in language C), and also with the proprietary software Magma (V2.15-15) whose
implementation is probably the best publicly available for the considered finite fields.
All tests are performed on a 2.6 GHz Intel Core 2 Duo processor, the timings are given
in seconds. We give the estimated probabilities of failure, thus showing that F4Remake
succeeds for almost all systems.

The F4Remake algorithm requires a single precomputation of 8.963 s to gen-
erate the list of relevant pairs. The timings in Fig. 2 show that this overhead
is largely compensated as soon as there are more than two subsequent computa-
tions. We emphasize that this precomputed list of relevant pairs is the same for
the four cases |p|2 = 8,16, 25 or 32 bits. We have also solved this system with
our own implementation of the F5 algorithm.3 The size of the Gröbner basis com-
puted by F5 at the last step (before minimization) is surprisingly large: it con-
tains 17249 labeled polynomials whereas both versions of F4 never build more
than 2789 polynomials at once, and construct bases containing at most 329 gen-
erators. Note that these figures do not depend on the implementation’s details.

3 At the present time, we have found no public implementation of F5 which achieves the computation of
the complete Gröbner basis in a reasonable time.
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Size of p Est. failure F4Precomp F4Remake F4 F4/F4Remake F4 Magma
probability

8 bits 0.11 8.963 2.844 5.903 2.1 9.660
16 bits 4.4 × 10−4 (19.07) 3.990 9.758 2.4 9.870
25 bits 2.4 × 10−6 (32.98) 4.942 16.77 3.4 118.8
32 bits 5.8 × 10−9 (44.33) 8.444 24.56 2.9 1046

Step Degree F4Remake matrix size F4 matrix size Size ratio

14 17 1062 × 3072 1597 × 3207 1.6
15 16 1048 × 2798 1853 × 2999 1.9
16 15 992 × 2462 2001 × 2711 2.2
17 14 903 × 2093 2019 × 2369 2.5
18 13 794 × 1720 1930 × 2000 2.8

Fig. 2. Experimental results on E(F
p5 ).

The large number of polynomials that F5 computes has obvious consequences on its
performances; in particular, the timings of F5 that we have obtained for this system are
much worse than those of F4 or its variants. This shows that F5 as described in [16] is
unsuitable for these specific systems.

5. Application to an Oracle-Assisted Static Diffie–Hellman Algorithm

Semaev’s idea of decomposing points of E(Fqn) into a well-suited factor base leads
naturally to an oracle-assisted resolution of the SDHP, akin to the finite field SDHP
algorithm presented in [28]. We first recall here the definition of oracle-assisted SDHP
from [6]:

Definition 7. Let G be a finite group of order #G and P,Q ∈ G such that Q = [d]P
where d ∈ [1,#G − 1] is a secret integer. An algorithm A is said to solve the SDHP in
G if, given P,Q, and a challenge X ∈ G, it outputs [d]X ∈ G.

The SDHP-solving algorithm A is said to be oracle-assisted if, during a learn-
ing phase, it can make any number of queries X1, . . . ,Xl to an oracle that outputs
[d]X1, . . . , [d]Xl , after which A is given a previously unseen challenge X and outputs
[d]X.

Generally, the ability to decompose points into a factor base F = {P1, . . . ,Pl} gives
the following oracle-assisted algorithm:

– Learning phase: ask the oracle to compute Qi = [d]Pi for 1 ≤ i ≤ l;
– Decompose a challenge X as X = ∑

i[ci]Pi and answer Y = ∑
i[ci]Qi .

This methodology directly applies to the case G = E(Fqn) with the factor base F =
{P ∈ E(Fqn) : P = (xP , yP ), xP ∈ Fq, yP ∈ S}. The only minor difficulty is that a
small fraction of points actually decompose (1 in n! or q (n − 1)! depending of the
details). However, we can use a simple variation of the descent step to circumvent this
difficulty:
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1. Learning phase: ask the oracle to compute Q = [d]P for each P ∈ F ;
2. Descent: given a challenge X, pick a random integer r coprime to the order of G

and compute Xr = [r]X;
3. Check if Xr can be written as a sum of m points of F : Xr = ∑m

i=1 εiPi , with
εi ∈ {−1;1};

4. If Xr is not decomposable, go back to step 2; else output Y = [s](∑m
i=1 εiQi)

where s = r−1 mod #G.

It should be noted that the same technique can also be used to solve other variants
of SDHP, such as the “Delayed Target” Discrete Logarithm or Diffie–Hellman problem
(DTDLP and DTDHP) described in [30]. Note also that a similar approach has been
presented independently by Granger in [24].

To our knowledge, the only other known method for solving the SDHP over a general
elliptic curve consists in solving the underlying discrete logarithm problem, i.e. comput-
ing d given P and Q = [d]P . It is not obvious how to compare this with our technique
because the cost of the learning phase is difficult to estimate. But if the definition field
is large enough, for instance if E is an elliptic curve defined over F2155 , then generic
methods like Pollard rho are currently unable to achieve the resolution of the DLP
on E. However, testing a decomposition on such a curve takes only 22.95 ms on a
2.93 GHz Intel Xeon processor. This means that it would take less than 2 weeks to find
a decomposition with 1000 of the above processors (after a learning phase of 230 oracle
queries), and shows that a complete attack on the oracle-assisted SDHP can be realized
on E(F2155) [25].

In practice, the oracle is often limited to a single device, e.g. a smart card chip,
whereas the decomposition tests can be distributed over several powerful computers.
Thus, the oracle queries are clearly the bottleneck of this SDHP resolution. As explained
in [30], it is possible to rebalance the two steps by artificially reducing the factor base
to a subset F ′ of cardinality (#F )/ l, where l > 1. This decreases the number of oracle
calls by a factor of l, and increases the complexity of the second step (more accurately,
the expected number of trials before finding a decomposition) by a factor of lm, where
m is the number of points in the decompositions. The optimal trade-off depends of the
oracle and the computing power available. Note that since no linear algebra is done, this
rebalancing is much simpler than the one or double large prime variation.

Using the estimates of Sect. 2.2, we can compare our version with Gaudry–Diem’s
for the oracle-assisted SDHP on E(Fqn). For simplicity, we choose the same reducing
factor l for both approaches, so that the number of oracle calls is q/(2l) in both cases.
The complexity of the decomposition step is n! ln c(n, q) with Gaudry–Diem method
vs (n− 1)! ln−1 q c̃(n, q) with ours. An easy computation shows that asymptotically our

variant is better as soon as n ≥
√

1
3−ω

log2(q/ l), corresponding to a somewhat smaller
range of values than for the ECDLP, but becoming larger as one wants to lessen the
number of oracle calls.

In practice, we have seen that, with current personal computers, we can only decom-
pose a given point into at most four points of the factor base. For m = 4 on E(FQ),
the complexity obtained by reducing the factor base is Õ(Q1/5) if Q = q4, which is the
same complexity as our method when Q = q̃5; however, the hidden constant is much
smaller in our case. Indeed, we can detail the computation in both cases:
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Q = q4
Q = q̃5 [this work]

nb of oracle calls
Q

1/4

2l

Q
1/5

2l̃

Decomposition cost 4! l4 c(4,Q
1/4) 4! l̃4

Q
1/5 c̃(4,Q

1/5)

For a fair comparison, we equate the number of oracle calls, i.e. we choose l̃ =
lQ1/5/Q

1/4 = lQ−1/20. With this choice, the cost of decomposition in our approach be-
comes 4! l4c̃(4,Q

1/5). As explained in Sect. 2.2, c̃(4,Q
1/5) < c(3,Q

1/5) � c(4,Q
1/4);

for instance, for Q = 2575×4, we found c̃(4,Q
1/5) = 768 s and c(4,Q

1/4) = 15476 s
using Magma (V2.15-15). Similarly, in characteristic 2, letting Q = 2160, we find
c̃(4,Q

1/5) = 0.67 s and c(4,Q
1/4) = 272 s. In both cases, we see that, for a given field

size, the oracle-assisted elliptic curve SDHP is easier over degree 5 than over degree 4
extension fields.

6. Conclusion and Perspectives

In this article, we have shown that considering decomposition of points on E(Fqn) as
sums of n − 1 points improves the index calculus proposed by [11,20] when n ≥ 5
and log2 q ≤ O(n3). The key point of our approach is that such decompositions lead to
overdetermined polynomial systems, which are easier to solve than the systems arising
from Gaudry and Diem’s original version. This resolution can be greatly sped up by
using our modified Gröbner basis computation algorithm, which takes advantage of the
common shape of the systems and is therefore faster than F4 and F5. The complexity
of our algorithm is still too large to seriously threaten ECDLP based cryptosystems
with the current cryptographic key sizes. However, we further illustrate the weakness of
elliptic curves defined over small degree extension fields by providing an efficient way
of solving oracle-assisted Diffie–Hellman problems.

For middle degree extension fields Fqn with n > 6, the increased complexity of the
decomposition tests means that none of the approaches presented in this paper can be
realistically implemented. Instead of just reducing the number of points m relative to n,
a more natural choice would be to also enlarge the factor base F and consider the set of
points in E(Fqn) whose x-coordinates lie in an Fq -linear subspace of dimension d > 1.

The probability that a point decomposes becomes approximately qmd−n

m! and the linear

algebra cost is Õ(mq2d), so the best values for d and m involve a trade-off that depends
heavily on the cost of the decomposition test. A major difficulty is that the equations
given by the Weil restriction of Semaev’s polynomials are no longer invariant under the
full symmetric group Smd acting on the variables, but only under the smaller group
Sm. Besides, the unsymmetrized systems are too large to be directly solved. To take
into account this Sm-invariance, a first idea, suggested by [9], is to work in the algebra
associated to the invariant polynomial ring Fq [(Xij )1≤i≤m,1≤j≤d]Sm ; but our experiments
using the implementation provided by Magma have been unsuccessful so far. A more
efficient way to solve these symmetric systems would probably be to use dedicated
algorithms, such as SAGBI-Gröbner bases [45].
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