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Abstract. A new technique for combinational logic optimization is described. The
technique is a two-step process. In the first step, the nonlinearity of a circuit—as mea-
sured by the number of nonlinear gates it contains—is reduced. The second step re-
duces the number of gates in the linear components of the already reduced circuit. The
technique can be applied to arbitrary combinational logic problems, and often yields
improvements even after optimization by standard methods has been performed. In this
paper we show the results of our technique when applied to the S-box of the Advanced
Encryption Standard (FIPS in Advanced Encryption Standard (AES), National Institute
of Standards and Technology, 2001).

We also show that, in the second step, one is faced with an NP-hard problem, the
Shortest Linear Program (SLP) problem, which is to minimize the number of linear
operations necessary to compute a set of linear forms. In addition to showing that SLP
is NP-hard, we show that a special case of the corresponding decision problem is MAX
SNP-complete, implying limits to its approximability.

Previous algorithms for minimizing the number of gates in linear components pro-
duced cancellation-free straight-line programs, i.e., programs in which there is no can-
cellation of variables in GF(2). We show that such algorithms have approximation ra-
tios of at least 3/2 and therefore cannot be expected to yield optimal solutions to non-
trivial inputs. The straight-line programs produced by our techniques are not always
cancellation-free. We have experimentally verified that, for randomly chosen linear
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transformations, they are significantly smaller than the circuits produced by previous
algorithms.

Key words. Circuit complexity, Multiplicative complexity, Linear component mini-
mization, Shortest Linear Program, Cancellation, AES, S-box.

1. Introduction

Constructing optimal combinational circuits is an intractable problem under almost any
meaningful metric (gate count, depth, energy consumption, etc.). In practice, no known
techniques can reliably find optimal circuits for functions with as few as eight Boolean
inputs and one Boolean output (there are 22°° such functions). As an example of this,
consider multiplicative complexity, the number of GF(2) multiplications (i.e., AND
gates) necessary and sufficient to compute a function. The multiplicative complexity
of the Boolean function Eff, which is true if and only if exactly four of its eight input
bits are true, is unknown [5].

In practice, we build circuit implementations of functions using a variety of heuris-
tics. Many of these heuristics have exponential time complexity and thus can only be
applied to small components of a circuit being built. This works reasonably well for
functions that naturally decompose into repeated use of small components. Such func-
tions include arithmetic functions (which we often build using full adders), matrix mul-
tiplication (which decomposes into multiplication of small submatrices), and more com-
plex functions such as cryptographic functions (which are commonly based on multiple
iterations of an algorithm containing linear steps and one or more nonlinear steps).

This work presents a new technique for logic synthesis and circuit optimization with
the goal of minimizing the total number of gates. The reason for considering this mini-
mization is that in an actual circuit implementation this would lead to smaller area and
less power consumption, and in a program implementation this would lead to faster
execution times. The technique can be applied to arbitrary functions, and yields im-
provements even on programs/circuits that have already been optimized by standard
methods. We apply our technique to the S-box of the Advanced Encryption Standard
(AES),l which, in addition to being used in AES, has been used in several proposals for
a new hash function standard.? The result is, as far as we know, the smallest circuit yet
constructed for this function. The circuit contains 32 AND gates and 83 XOR/XNOR
gates for a total of 115 gates. We have also applied these techniques to the logic embed-
ded in the nonlinear components of several candidates to the SHA-3 competition. The
improvements in software performance were significant.

Finally, we note that there is another metric that is important in the area of secure
multi-party computation. The computational cost of various applications in this area is
proportional, not to the total number of gates, but rather to the number of nonlinear
gates. For example, what is known as the “Free-XOR” technique [25] uses circuits with
low multiplicative complexity to speed up multi-party computation. The work of [21] is
currently the fastest implementation of a two-prover protocol for AES. That work uses

! Our circuit for the AES S-box has already been used as the basis of a software bit-sliced implementation
of AES in counter mode [23].
2 See http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.
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Fig. 1. Two circuits and corresponding straight-line programs for MAJ(a, b, c).

the circuit in [39] where the S-box contains 123 linear gates and 58 nonlinear gates.
In contrast, our S-box circuit contains only 32 nonlinear gates. Thus, using our circuit
immediately leads to a significant reduction in the cost of those protocols.

1.1. Preliminaries

The goal of this work is to minimize the total number of gates used in a circuit for a
function. Our circuits are over the basis {6, A, 1}, where @ represents XOR, A rep-
resents AND, and the 1 can be used with the & for complementing bits. This basis is
logically complete: any Boolean circuit can be transformed into this form using only
local replacements. The circuit operations can be viewed either as performing Boolean
logic or arithmetic modulo 2 (when viewing it the latter way, we will write outputs to
be computed as polynomials with multiplication replacing A and addition replacing &®).
The number of A gates is called the multiplicative complexity of the circuit. Connected
components of the circuit containing A gates are called nonlinear. Components free of
A gates are called linear. Circuits and programs for computing Boolean functions can
be defined using straight-line programs, where each statement defines the operation of
a gate or a line in a program. The examples in Fig. 1 define two different circuits and
their corresponding straight-line programs for computing the majority function of three
inputs, a, b, and c.

The Boolean complexity of a function is the minimal number of gates sufficient to
compute that particular function, when any two-input one-output gates are allowed.
A Boolean predicate is a Boolean function with only one output bit.

1.2. Combinational Circuit Optimization

The techniques described here would generally be applied to subcircuits of a larger
circuit, such as an S-box in a cryptographic application, which have relatively few inputs
and outputs connecting them to the remainder of the circuit. The key observation that
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led us to our techniques is that circuits with low multiplicative complexity will naturally
have large sections which are purely linear (i.e., contain only & gates). Thus

it is plausible that a two-step process, which first reduces multiplicative
complexity and then optimizes linear components, would usually lead to
small circuits over the basis {®, A, 1}.

We have, of course, no way of proving this hypothesis. In fact, it seems unlikely
that circuits with optimal Boolean complexity which are also optimal with respect
to multiplicative complexity always exist. In practice, though, we conjecture that this
two-step method will usually yield “good” circuits as compared with other meth-
ods, primarily because of the improved techniques presented here for optimizing lin-
ear circuits. As mentioned above, in this paper, we apply this method to the AES
S-box and present experiments testing the techniques for optimizing linear circuits.
Additionally, we (and others, see, e.g., [16]) have successfully applied the heuris-
tics described in this paper to a number of circuit optimization problems of inter-
est to cryptology. These include finite field arithmetic and binary multiplication. New
records (i.e., circuits with fewer gates than previously known) are periodically posted at
http://cs-www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html.

1.2.1. First Step

The first step of our technique consists of identifying nonlinear components of the sub-
circuit to be optimized and reducing the number of A gates. This reduction is not easy
to do. For example, it is not obvious how to algorithmically transform one of the two
equivalent circuits defined in Fig. 1 into the other.

Classic results by Shannon [35] and Lupanov [26] show that almost all predicates
on n bits have a Boolean circuit complexity of about 2’% Analogous to the Shannon-
Lupanov bound, it was shown in [9] that almost all Boolean predicates on n bits have
a multiplicative complexity of about 2%, Strictly speaking, these theorems say nothing
about the class of functions with polynomial circuit complexity. However, it is reason-
able to expect that, in practice, the multiplicative complexity of functions is significantly
smaller than their Boolean complexity.

Finding circuits with minimum multiplicative complexity is, in all likelihood,
a highly intractable problem. However, recent work on multiplicative complexity con-
tains an arsenal of reduction techniques that in practice yield circuits with small, and
often optimal, multiplicative complexity [5]. That work focuses exclusively on symmet-
ric functions (those whose value depends only on the Hamming weight of the input).

In this paper we use ad hoc heuristics to construct a circuit with low multiplicative
complexity for inversion in GF(2%). (GF(2") is the field with 2" elements.) The tech-
nique is described in Sect. 2.1.

1.2.2. Second Step

The second step of our technique consists of finding maximal linear components of the
circuit and then minimizing the number of XOR gates needed to compute the target
functions computed in these linear components. A new heuristic for this computation-
ally intractable problem is described in Sect. 3.2.
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1.3. The Shortest Linear Program Problem

We argue below that minimizing the number of XOR gates in the second step is equiv-
alent to solving the Shortest Linear Program (SLP) problem over GF(2).
Let IF be an arbitrary field and let

o1,1X1 + 012X + -0+ AL pXn,

02 1X] + 022X + -+ - + @2 nXn,

O, 1X1 + QU 2X2 + -+ Oy n X,

be a set of linear forms where the o; ;’s are constants from IF and the x;’s are variables
over F.

Suppose a subcircuit for a linear component in a circuit has x;s as inputs and y;s as
outputs.3 The y;s are linear functions of the x;s in the field GF(2), so the subcircuit is
an algorithm for computing the linear forms (the functions the y;s represent) given the
X;s as input, in the special case where F = GF(2).

We consider this question in the model of computation known as linear straight-line
programs. A linear straight-line program is a variation on a straight-line program which
does not allow multiplication of variables. That is, every line of the program is of the
form u := nv + pw; where n, u are in F and v, w are variables. Some of the lines
are output lines; these are the lines where the linear forms in the set are produced. For
brevity, we will use the terms linear programs or simply programs to refer to linear
straight-line programs. The length of the program is the number of lines it contains, and
is equal to the number of XOR gates in a subcircuit computing these forms. A program
is optimal if it is of minimum length.

The linear straight-line program model (see [11] for a discussion of linear complex-
ity) has the advantage of being very structured, but is nevertheless optimal to within a
constant factor as compared to arbitrary straight-line programs when the computation is
over an infinite field. Over finite fields the optimality of linear straight-line programs is
unknown,* but we restrict our attention to this form and consider minimizing the length
of the program.

The standard algorithm for computing the linear forms Ax, where A is an m X n
matrix containing entries from a set of size r, requires m(n — 1) operations. However,
Savage [34] showed that O (mn/log, m) operations are sufficient in many cases, includ-
ing computations over GF(2) if m > 4. Williams [37] improved this to 0 (n? / log2 n)
on a RAM with word length ® (n) for n by n matrices over finite semirings. In contrast,
Winograd [38] has shown that most sets of linear forms have a nonlinear complexity in
the straight-line program model; in fact, for a “random” m x n matrix A the probability
is high that its complexity is §£2(mn) (for infinite fields). However, there are nontrivial
matrices which can be computed considerably faster than this.

3 We consider circuits without negations only. There is no loss of generality in doing so, because negations
can be treated as standard XOR gates via (=X = (X @ 1)).

4 It is not known if multiplication of variables can ever be used to reduce program length when the program
outputs only linear functions.
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Over GF(2), finding the shortest linear straight-line program is equivalent to our orig-
inal goal of finding a circuit with only XOR gates and minimizing the number used. Lin-
ear forms have many applications, especially to problems in scientific computation, and
there has been considerable success in finding efficient algorithms for computing them
in special cases. The best known example is the fast Fourier transform, an O (nlogn)
algorithm, discovered by Cooley and Tukey in 1965 [15].

In Sect. 3.1.1 we show that finding the shortest linear straight-line program is NP-
hard. This can be seen in relation to Hastad’s result [20] showing that tensor rank is
NP-hard and thus finding the minimum bilinear program for computing bilinear forms
is NP-hard.

In Sect. 3.1.2 the NP-hardness result is used to prove a special case of the prob-
lem MAX SNP-complete [32] (and also APX-complete). This means there are no
e-approximation algorithms for the problem unless P = NP [1].

A linear straight-line program over GF(2) is said to be a cancellation-free straight-
line program if, for every line of the program u := v 4+ w, none of the variables in the
expression for v are also present in the expression for w; i.e., there is no cancellation of
variables in the computation. A small example showing that the optimal linear program
is not always cancellation-free over GF(2) is:

X1+x2; x1+x2+x3; xp+x2+x3+x4; X2+ x3+ x4,

It is not hard to see, by exhaustive search, that the optimum cancellation-free straight-
line program has length 5. A solution of length 4 which allows cancellations is

v =X1+Xx2; v2=v1+Xx3; V3=V2+X4; VUg4=10V3+X].

In Sect. 3.1.3 we show that the approximation ratio for cancellation-free techniques is
at least 3/2. This discovery led us to create the heuristic in Sect. 3.2, allowing cancella-
tions, for minimizing linear straight-line programs and the corresponding circuits.

2. First Step

We will illustrate the first step of the circuit minimization using AES’s S-box as an
example. The nonlinear operation in AES’s S-box is to compute an inverse in the field
GF(2%). A recursive method for building a circuit for inverses in GF(2™"), given a
circuit for inverses in GF(2"), is due to Itoh and Tsujii [22]. The circuits produced
by this method are said to have a fower fields architecture. Since there are multiple
possible representations for Galois fields, several authors have concentrated on finding
representations that yield efficient circuits under the tower fields architecture. We use the
same general technique for the reduction from inversion in GF(2%) to GF(2*) inversion,
but we use a completely different technique for computing the inversion in GF(2*). We
then place the optimized circuit for GF(2*) inversion in its appropriate place in AES’s
S-box and, in the second step, apply a novel optimization technique to the linear parts
of the resulting circuit.
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2.1. GF(2*) Inversion: A Nonlinear Component

The tower fields architecture for inversion in GF(2®) has (nontrivial) easily identifi-
able nonlinear components corresponding to inversion in subfields. The first step in our
method is to focus on one of these components and derive a circuit that uses few A gates.
The component for inversion in GF(2?) is too small for us to benefit significantly from
optimizing it. Instead we focus on inversion in GF(2*). There are many representations
of GF(2%). Following Canright [13], who compared 432 different representations as a
tower of fields [12] and found this one optimal using his techniques for reducing circuit
size, we construct

e GF(2%) by adjoining a root W of x? + x + 1 over GF(2);
e GF(2H by adjoining a root Z of xZ + x + W2 over GF(22).

GF(2?) is represented using the basis (W, W?2), and GF(2%) using the basis (Z2%, Z%).
Thus, an element § € GF(2%) is written as 8; Z2 + 8,Z8, where 81, 8, € GF(2%). Sim-
ilarly, an element y in GF(2%) is written as nw + yz W2, where y1, ¥2 € GF(2).
Since Z satisfies x2 4+ x + W2 =0 and W satisfies x> 4+ x + 1 = 0, one can calcu-
latethat Z* = Z24+ W, Z8 =272 +1(1=28+2%),z0=2z4+ 72, 71 =728 + w,
W3 =W?2+ W, W*=W, and W> = W2. These equations can be used to reduce ex-
pressions to check equalities.

Using this representation, an element of GF(2%) can be written as A = (x;W +
X2 W2)Z2 + (x3W + x4W2)Z8, where x1, x2, x3, x4 € GF(2). The inverse of this ele-
ment, A" = (y W + ysz)Z2 + (3 W + y4W2)Zg, can then be calculated using the
following polynomials over GF(2):

Y1 = X2X3X4 + X1X3 + X2X3 + X3 + X4
Y2 = X1X3X4 + X1X3 + X2X3 + X2X4 + X4
Y3 =X1X2X4 + X1X3 + X1X4 + X1 + X2
Y4 = X1X2X3 + X1X3 + X1X4 + X2X4 + X2

The fact that A" is the inverse of A can be verified by multiplying the two elements
together and reducing using the equations mentioned above (along with x> = x and
x 4+ x = 0). The symbolic result is (QW + OW?AZ2 + (OW + OQW?)Z8, where Q =
X1X2X3X4 + X1X2X3 + X1X2X4 + X1X3X4 + X2X3X4 + X1 X2 + X1 X3 + X1Xq + X2X3 + X2X4 +
Xx3x4 + x1 + x2 + x3 + x4. The fact that the value of Q is 1 unless all four variables
have the value 0, when it is 0, can be seen by observing that it is the symmetric function
Z‘j + Z’g‘ + Z‘; + Z’f. If exactly four variables are set, then the first term gives the
value 1 (and the others 0); if three are set, then the second, third, and fourth terms give
the value 1; if exactly two are set, then only the third gives the value 1; and if only one
is set, then only the last gives the value 1. Hence, the result is 1, except for the zero
input.’

Thus the task at hand is to construct a circuit with four inputs and four outputs that
calculates the above system of equations using as few A gates as possible. Currently, our

5 A circuit for finite field inversion must have some output for the noninvertible zero element. In the
following constructions we follow the AES convention that the output on input zero is zero.
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heuristic search programs can handle functions with one output and up to eight inputs.
(Since they are heuristics, one is not certain that an output is optimal, so they cannot be
used, for example, to determine a tight lower bound for the multiplicative complexity
of Ef.) This means that we can directly construct optimal circuits for each of the four
equations individually, but not for the system itself. For the full system we took the
following approach:

1. pick an equation and construct an efficient circuit for it;

2. store intermediate functions computed in the previous steps for possible use in
constructing a circuit for the next equation to be tackled;

3. iterate until all equations have been computed.

The first step is nontrivial even for predicates on few inputs. The heuristic we used is
inspired by methods from automatic theorem proving [6]: consider an arbitrary predi-
cate f on n inputs. We refer to the last column of the truth table for f as the signal
of f. The columns in the truth table corresponding to each of the inputs to f are known
signals. A search for a circuit for f starts with this set S of known signals. If u, v are
known signals for functions g, i respectively, then the bit-wise XOR (AND) of « and
v is the signal for the predicate g @ i (g A h). We can grow the set S by adding the
XOR of randomly chosen signals. We call this step an XOR round. The analogous step
where the AND of signals is added to S is called an AND round. Each round is param-
eterized by the number of new signals added and the maximum number of AND gates
allowed. In either an XOR round or an AND round, two signals are not combined if
doing so creates a signal with more AND gates than is allowed. The heuristic alternates
between XOR and AND rounds until the target signal is found or the set S becomes too
large. In the latter case, since this is a randomized procedure, we start again. Various
enhancements and optimizations have been implemented. Their description is outside
the scope of this paper. We can report, however, that we succeeded in determining the
multiplicative complexity of all 2'® predicates on four bits. It turns out that 3 multi-
plications are enough to compute any predicate on four variables.® This is of interest
to designers of cryptographic functions, since many constructions have been proposed
which use 4 x 4 S-boxes. We have not yet been able to do the same for all predicates on
5 bits.

We performed the three steps above for each of the 24 orderings of {y1, y2, y3, y4}.
The ordering (ya, y2, y1,y3) gave the best results. The resulting circuit, expressed
as a straight-line program over GF(2), is shown in Fig. 2 (outputs are indicated by
an (*)).

This circuit contains 5 A gates and 11 @ gates. It is a significant improvement over
previous constructions; e.g., Paar’s construction [30] has a gate count of 10 A gates and
15 @ gates for the same function. It is harder to compare to Canright’s construction [13].
In his original, he had 9 A gates (and NAND gates) and 14 & gates (and XNOR gates),

6 Lest the reader think this trivial, he/she may attempt to compute the function f(xy,x3,x3,x4) =
X1Xx2x3%4 + x1x2x3 + x1x2x4 + xpx3x4 + x1x2 + x1x3 + x1x4 + x2x3 + x3x4 using only three multipli-
cations.
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Fig. 2. Inversion in GF(24).

but he optimized, allowing NOR gates. After this, he had 8 NAND gates, 2 NOR gates,
and 9 XOR/XNOR gates.

Under the given representation for GF(24), the multiplicative complexity of inversion
is 5. This can be argued as follows: the upper bound is given by the construction. The
four outputs that have to be computed all have degree 3. One A is needed to compute a
polynomial of degree 2. Then, an additional A is necessary to produce each of the four
linearly independent polynomials, since each is of degree 3.

2.2. A View of the Structure of AES’s S-Box

In the previous section, using the tower fields architecture, we identified and optimized
(with respect to multiplicative complexity) a major nonlinear component in an imple-
mentation of the AES S-box. The multiplications in GF(24) are also nonlinear, but we
have used the same circuit as Canright for these components. That completes the first
step of our technique for circuit optimization, but in other circuits, one may be able
to identify more nonlinear components with few enough inputs that they can also be
optimized before continuing. At this point, we replaced the GF(2*) inversion subcir-
cuit, in Canright’s [13] (already optimized) circuit, with the subcircuit in Fig. 2. As
expected, the resulting circuit contained large linear connected components. In fact,
from a cryptanalyst’s point of view, the topology of the resulting circuit is potentially
of interest: the S-box of AES consists of an initial linear expansion U from 8 to 22 bits,
followed by a nonlinear contraction F from 22 to 18 bits, and ending with a linear
contraction B from 18 to 8 bits. The U and B matrices are given below. AES’s S-box
is S(x) = B - F(U - x) + [11000110]7, where - is matrix multiplication and x is the
8-bit S-box input. We do not know if there are any cryptanalytic implications to the
structure of these matrices. The first row and last columns of U should raise an eye-
brow, as should the 12th and the last three columns of B. Note that the initial linear
expansion and the linear contraction were defined to contain as much of the circuit
as possible while still being linear, increasing the portion of the circuit which could
be further optimized by concentrating on the linear components. Thus, the portion of
the circuit defined by U, for example, overlaps with the GF(2%) inversion. Also in-
cluded in these linear components is the linear transformation to change bases, before
computing the inverse in GF(2%), plus the linear transformation to change back to the
original basis, followed by the affine transformation which is the final operation in the
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S-box.
[0 0 0 00O O 0 1]
01 1 0 0001
1 110 0 0 0 1
1 110 01 11
01 11 00 01
01 1 0 0011
1 0011 011
01001111
1 000 O01O00O0
1 001 0 O0O00O0
U_lllllOlO
101 001 1 1 0of
1 001 0110
1 000 O0O0T1DO0
0001 O01O00
1 001 1 010
00101110
1 0110100
1 01 01 110
01111110
1101 1 110
(1 01 01 1 0 0]
[0 001 1 01 1 0110O0UO0OUO0T1T1 0]
11 000O0OT1T1O0T1T1O0O0O0O0T1T1SFO0
1 010001 O0T1O0O0O0OT1TTUO0OT1T1TTO0:1
B_110110000110000110
01101 10O0O0O01T1TO0O0O0OO0OT1T1SFO0
1 01110O0T1T1OWO0OT1T1T1TSHW0OT1T1TT1SF®O
000OT11O0T1T1TO0OO0OO0OT1TT1SO0OT1T1TSF®O
([t o1 101000O0O0OO0CTT1O0T1T1 0]

3. Second Step

The second step is to optimize the linear components in the circuit. One method of
finding the nonlinear components to be optimized in the first step was to find maxi-
mal linear components of the circuit, remove them, and look at the remaining nonlinear
components. Whether this was done or not, after the optimized nonlinear components
are inserted into their appropriate places in the circuit, the beginning of the second step
should be to find maximal linear components in this new circuit (since after optimiza-
tion, some of the nonlinear portions may contain @ gates which can be included in the
“old” linear parts, as in the case of the U and B matrices from AES’s S-box).

These maximal components define linear components of the circuit which should be
minimized in Step 2. In the case of the AES S-box, the top linear component corre-
sponds to the matrix U, and the bottom linear component corresponds to the matrix B.
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No other significant linear components were found. After finding these, the next step
was to minimize the circuits for computing U and B.

3.1. Hardness of Minimizing Linear Components

First, we show that the problem of linear circuit minimization, or equivalently, the Short-
est Linear Program (SLP), is NP-hard.

3.1.1. NP-Hardness

The problem SHORTEST LINEAR PROGRAM (SLP) is as follows: Given a set of
linear forms E over a field IF, find a shortest linear program to compute E.

In order to prove NP-hardness, we consider the corresponding decision problem,
SLPd: Given a set of linear forms E over a field F and a positive integer k, determine if
there exists a straight-line linear program with at most & lines which computes E.

We will prove SLPd NP-hard, even if the constants in the set of linear forms to be
computed are only zeros and ones. Furthermore, if the field I is finite, then SLPd is
easily seen to be in NP, so SLPd is NP-complete over finite fields.’

The interest of this section is not just in the final result that SLP is NP-hard, but also in
the method used to prove it. In particular, most of this section is devoted to the proof of
Lemma 1, which gives the exact complexity for sets of linear forms of a certain simple
type. This proof is algorithmic in form, and its algorithmic nature can be exploited to
prove a further result in Sect. 3.1.2.

In order to show NP-hardness, we reduce from VERTEX COVER. A vertex cover of
agraph G = (V, E) isasubset V' of V such that every edge of E is incident with at least
one vertex of V/. VERTEX COVER is defined as follows: Given a graph G = (V, E)
and an integer k, determine if there exists a vertex cover of size at most k.

The following polynomial-time reduction f transforms an arbitrary graph, G =
(V, E), and a bound, k, to a set of linear forms with another bound, k. The input vari-
ables are X = V U {z}, where z is a distinguished variable not occurring in V. The
linear forms are E = {z 4+ a + b | (a, b) € E}, and the program length we ask about is
k = k + |E|. This is an instance of SLPd, and it is clear that (G, k) = (E, X, k) can be
produced in polynomial time. We call a set of linear expressions in this restricted form,
Z + x; + xj, a set of z-expressions. Note that three distinct z-expressions are linearly
independent over any field.

Before we proceed, we illustrate with an example. The graph, G, in Fig. 3 has a
vertex cover of size k = 3: {a, c, e}. The corresponding instance of SLPd, f(G,3) is
E={z4+a+b,z+b+c,z2+c+d, z+d+e,z+e+ fiz+a+ fiz+ctg z+e+g),
X =A{z,a,b,c,d,e, f, g}, and k =3+ 8. A linear program for this of size 11 is

v i=z+a; v i=z+c; v3:=z+e; Vg =1 +b;
Vs :=vy +b; Ve 1 =v2 +d; v7:=v3+d; vg =3+ f;
vg :=v] + f; vip =2+ g; v i=v3+g;

7 We avoid the discussion of models for dealing with infinite fields, such as in [36] or [4], by proving
NP-hardness when the constants in the forms are only zeros and ones and showing that a shortest linear
straight-line program for the forms considered can be created with only zeros and ones as constants.
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a

b f

Ce
d

Fig. 3. Graph with 8 edges and cover size 3.

where the computation of v, vz, and vz corresponds to the vertex cover in the graph G,
and the remaining operations produce the eight forms in E. The variables vy, ..., v1]
are called output variables.

A cover for a set E of z-expressions is a subset W of X \ {z} such that every expres-
sion in E contains at least one variable in W. Note that if (E X, IE) = f(G, k), a cover
for E trivially defines a vertex cover for the graph G and vice versa.

Lemma 1. Let (E , X) be a set of z-expressions without repetitions; that is, E is a set
of expressions of the form z + x; + x;, where x;, xj are distinct variables in X \ {z},
z is a distinguished variable in X, and no two of these z-expressions contain exactly
the same variables. There is a cover of E of size at most k if and only if there is a
linear straight-line program P for E of length k = k + |E|. In addition, given a linear
straight-line program P for E, a cover for E of size at most | P| — | E| can be computed
in polynomial time.

Proof. We will refer to the elements of X \ {z} as “the variables” and z as “the symbol,”
although as an element of a linear program, z is also an input variable.

Given a cover W of size k for E, a (cancellation-free) linear straight-line program for
E can be created consisting of z 4+ w; for each w; € W, followed by linear expressions
computing each output, created by adding a second variable to the appropriate z 4+ w;.
This program has length k + | E|.

It remains to be shown that, given a linear straight-line program P for E, we can
efficiently find a cover, W, for E of size no more than | P| — | E|. This cover is computed
by associating elements of X \ {z} with some non-output lines of the program—W will
then be the union of all the variables so associated. Since we will assign at most one
element of X \ {z} to each non-output line, the cover is of size at most | P| — |E|.

Let F® be the linear function computed at line i; the result there is assigned to v;.
It will be convenient to use the notation F@ to refer both to the function and to the
set of variables (not including z) in F (), The association of variables with lines of the
program will be denoted by a mapping m : N — X \ {z}U{A}. Initially, we set m (i) = A
for all lines i. When line i is first processed, m (i) will, in some cases, be set to a variable
in F®_ We define

W(i)z{xeX|x=m(j) for some j <i}.
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Compute-Cover()
fori=1to |P|do
m(i) < A
if £ is not an output then
if 3 a variable x in F©\ WU~ then
m(i) < x
else { F@ is an output }
if |[FO\ w®| =2 then
Fix-up(i, i) (see Fig. 6)

Fig. 4. Computing the cover W.

At the end, the cover W will be WUPD  the set of all variables that are assigned to
some m(i).

The algorithm Compute-Cover works as follows (see Fig. 4): Starting at the first line
of the linear straight-line program P, it associates with each non-output line i a variable
in X \ {z} which occurs in F) and which is currently unassociated (if there is no such
variable, the line is assigned the null symbol, ). When an output is reached, Compute-
Cover checks if the set of all variables currently assigned to earlier lines covers that
output, i.e., if there is some variable in W~ which occurs in F@_ If this is not the
case, then a fix-up procedure is invoked (see Fig. 6). This fix-up procedure changes
some of the associations until all the output expressions up to that point are covered.
After Compute-Cover has terminated, all the output expressions will be covered, so W
is the desired cover, and |P| > |W| + | E|. If the straight-line program P is restricted to
being cancellation-free, the fix-up procedure will never be necessary; it is only called if
an output line was produced as a linear combination of two lines, where at one of those
lines a cancelled variable was added to the cover, W.

The remainder of the proof first establishes the precise conditions under which the
fix-up procedure is called, and then describes the action taken. We first define the two
properties that Compute-Cover seeks to establish for each line / of the program.

Property 1. If line / is not an output, either

e all variables in F© are in W(l), or
e m(l)=xe FD and m(i) #x forall i <.

Property 2. There is at most one variable in F) which is not in W®.

In terms of these two properties, Compute-Cover (Fig. 4) can be described as follows.
Given that Properties 1 and 2 hold for lines 1 to i — 1, establish Property 1 for line i and
check if Property 2 holds for line i. If not, the fix-up procedure will be called. For all j,
the size of W) will never decrease.

It will be convenient to assume each line of the program is of the form

vii=n-vpy+pu-vr (>0, n,u#0).

To do this, we define vy = z, v_; = x; for each variable x;, and m(i) = A for all i <O.
We note that Property 2 holds for these initial assignments which occur before the first
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v_s:=d FEY =4 m(—4) = A
v_3:=c FE =¢ m(=3)=A
v_p:=b F=2 =p m(—=2) = A
v_1:=a FED =4 m(—1)=A
vy =2 F(O)ZZ m(0) = A
vii=voi+vy  FY=a+b m(1)=b
v =v_3+v_4 FO=c+d mR2)=c
V3 i=v_9 4+ v_3 F®=pb+c m@3) =
V4 :=v + Vg FY=z4a+b m(4)=Axr
V5 :=1v3 + V4 FO =z4a+c mS)=A
Vg := V2 + U5 FO=z74+a+d m(6) = A

Fig. 5. The last three lines are outputs. When the last line is reached, neither a nor d is in W(6), so fix-up is
called.

“line” of the program P. Line 1 of P contains at most two variables and cannot be an
output. Thus, Compute-Cover assigns one of these variables to m(1). So, the first time
Compute-Cover processes line 1, it establishes Properties 1 and 2 for line 1.

Claim 1. Let line | be a non-output line and assume Property 2 holds for all lines
before 1. If Property 1 holds for line 1, then Property 2 also holds for line [.

Proof. If all variables in line [ are in W=D both properties hold for line /. Otherwise,
let non-output line / be v; :=n - vy + w - vyr. By assumption, Property 2 holds for F @
and FU", Since WO uw ) C WUY=D  there are at most two variables in F but not
in W=D By Property 1, m(l) € FO\ W=D _Thus Property 2 holds for line /. t

Claim 1 implies that, prior to the first call to Fix-up(i, i), establishing Property 1 also
establishes Property 2. Compute-Cover explicitly establishes Property 1 at non-output
lines. We have already argued that Properties 1 and 2 hold immediately after Compute-
Cover processes line 1. It follows that the first time Fix-up(i, i) is called, Property 1
holds for lines 1 through i (vacuously for line i) and Property 2 for all lines prior to .

We now consider the way the algorithm processes output lines. It is not obvious that
the fix-up procedure can ever be called. Figure 5 shows an example where this happens.

Claim 2. Before a call to Fix-up(s,t), either directly from Compute-Cover or recur-
sively from fix-up, Property 1 holds for lines 1 through t and Property 2 holds for all
lines before line s.

Proof. Consider a call to Fix-up(s, t). We have already shown the claim holds if this
is the first call to fix-up. If this is not the first call to fix-up, we may assume, inductively,
that the claim holds for all previous calls. Suppose the previous call was to Fix-up(i, [)
for an output line i <1I:

vir=n-vy v (n,u#0)
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which produces the expression z 4+ a + b. This call is caused by neither a nor b being
in W®.

Without loss of generality, assume that i’ < i”. If both a and b are in F @ or both
are in F ("//), then, by the induction hypothesis, at least one of a or b is in w®  a con-
tradiction. Thus, neither line contains both a and b. We may assume, without loss of
generality, that a is not present in line i’ and b is not present in line i”.

Since

n-FO 4 FO=z4a+b

we have that

FO = vz 4 (b/n) — (H/n),
FU") = vz 4 (a/m) + (H/p),

where nv; + uvy = 1 and H is a polynomial with variables in X \ {a, b, z}.

We now show that line i’ is a non-output line and line i” is an output line. Since b ¢
wa, Property 2 implies that all variables in H are in W ¢ ). Therefore, all variables in
H arein W4 =D and, by assumption, a ¢ W=D TIf line i” is not an output, Property 1
implies m (i”) = a. This contradicts a ¢ W Thus line i” is an output line. Since no
three distinct z expressions are linearly dependent, and lines i and i” are output lines, it
follows that line i” is a non-output line.

Thus, F@) = 7 + a + ¢ where c is a variable distinct from a and b. It follows that

vy =1; nw=1; H=c; v1=0; i'>0.
Therefore,

F@ = ®b—c)/n,
Fi) =z4a+c.

Inductively, Property 1 holds for lines 1 through /, so m(i’) = c.

The fix-up procedure, as defined in Fig. 6, backs up to line i/, changes the mapping m
so m(i’) = b, not ¢, and then calls Correct to scan forward from i to check if there is
a later line j where m(j) = b. Such an occurrence is changed, since no variable can
be assigned to two different lines without violating Property 1 at the second such line.
If such a line j is found, there are two cases to consider: (1) there is another variable
x in FU) which is not in W), and (2) all variables in F) are already covered. In
the first case, the variable x is assigned to m(j), which could cause another violation
of Property 1 if x is also assigned at a later line. Thus, Correct is called recursively
from line j to check for x being assigned later. This x could only be assigned to one
later line, so Correct eventually terminates, ensuring that no two lines are assigned the
same variable. In the second case, the variable c¢ is assigned to line j; it cannot have
been assigned elsewhere, since it had only been assigned to line i’ before the call to
Fix-up(i, I).

The next loop in the fix-up procedure ensures that Property 1 still holds up through
line /. If this property does not hold at some line, it is because some variable x (either
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Fix-up(i, /)
{ i is the current line being fixed; [ is original line being fixed }
{ line i, v; := nv;» 4 v;», produces the expression z +a + b,
a is not present in line i’ and b is not present in i }
{ line i’ is not an output, m(i") = ¢, and F@) = (b —¢)/n }
{ line i” is an output and FU") =z +a + ¢ }
m(i’) < b
{ Check if b has been assigned to a later line }
Correct(b, 1,1, c)
{ Check that Property 1 holds everywhere }
for j < i’tol do
if F) is not an output and Ix € F) \ W) then
if m(j)=x)or (m(j) & FY)) then
m(j) <= x
fork=j+1toldo
if m(k) = x then m(k) < X
{ Check that Property 2 holds everywhere }
for j < 1toldo
if F) is an output then
if |[F()\ W) | =2 then Fix-up(}, [); return;

Correct(y,i,l,c)
{ The variable y has just been assigned to a line. }
{ Check if y is assigned to between lines i + 1 and /. }
{ If so, assign the variable ¢ or some variable in that line. }
j<—i+l1
while j </andm(j)#ydoj <« j+1
if j <l {ie. m(j)=y }then
if 3 a variable x € F/)\ W) then
m(j) < x
if x # ¢ then Correct(x, j, [, ¢)
else
m(j) <c

Fig. 6. The fix-up procedure.

¢ or some other variable replaced in Correct) has been removed from some W® | but
x € F®_ There are two possible cases here: (1) m(k) = A, and (2) m(k) = d, where
d ¢ F_ The first case is easy, and m (k) is set to x. The second case could only have
arisen from an earlier call to the fix-up procedure, at a point where m (k) was set to the
variable d because all of its variables were covered by W®) and the variable d had been
removed from an earlier line. In this case, we switch the assignment from d to x. If x
was assigned to a later line (when correcting for a b being assigned to a later line and
finding a line where all the variables were already covered), that assignment is removed.



296 J. Boyar, P. Matthews, and R. Peralta

(Note that this does not decrease the size of any W) since x is added to them when
m(k) gets the value x.) Thus, Property 1 holds up through line /.

The removal of ¢ from W@ may also cause Property 2 to fail. By Claim 1, the
corrections for Property 1 in the previous loop ensure that the first failure for Property 2
is not at a non-output line. Some of the failures at output lines may be rectified by the
adjustments fixing Property 1. “Fix-up” is called recursively to fix the others. If Fix-
up(s, t) is the first recursive call within Fix-up(i, /) then

e the first loop in Fix-up ensures Property 1 holds through line [ = ¢;
e the first failure of Property 2 must be at an output line, and therefore Property 2
holds through line s — 1.

Otherwise, Fix-up(i, /) terminates before the call to Fix-up(s, ¢). In this case Properties 1
and 2 hold up through line / (hence the return statement after one recursive call to Fix-
up). Thus the call to Fix-up(s, f) occurs in the code of Fig. 4 and s = ¢ > /. From lines
I + 1 through ¢ there is no call to Fix-up. Hence, by Claim 1, the steps in the main loop
(of Fig. 4) ensuring Property 1 also ensure Property 2 up through line ¢t — 1. Property 1
holds vacuously at line ¢. |

Finally, we note that the last call to Fix-up, and the remaining iterations of the loop in
Fig. 4 ensure that Properties 1 and 2 hold everywhere. Thus, if the algorithm terminates,
Property 2 will hold for all lines of P, and therefore W = WU”D is a cover of size at
most |P| — |E|.

We now turn to the proof of termination.

Claim 3. A call to Fix-up never decreases the size of any W,

Proof. There are two ways Fix-up appears to decrease the size of some W/, The
first is by swapping ¢ for b at line i’ where b is already assigned to some other line
j > i.If the procedure terminates at this point, this would decrease the size of W/ ) for
j' = j. However, the procedure Correct(b, i, I, c) checks for this and assigns some other
variable, x or c, to line j and corrects for x recursively. The starting line for the search
by Correct is larger for each recursive call, so eventually it terminates, adding a new
variable to the cover which has not been assigned to a later line. Since ¢ was originally
assigned to line i/, it was not assigned to any other line, so this corrects the temporary
decrease in WU for j' > j.

The second apparent decrease in the size of some W) does not actually ever create
a decrease. During the check for Property 1 still holding, if m(j) is set to x, but x is
assigned to some later line &, then m (k) is set to A. (Note that this x may be the variable
¢ which was removed at line i’, but it could be some other variable if some m(j) had
recently been set to A.) However, adding x to W) also added it to W®), so there is no
actual decrease in the size of any W, ]

Let k1, k3, . .. be the sequence of line numbers for output lines which require a call to
the fix-up procedure, and let Wl.(" ) denote the set W) at the point just before the fix-up
procedure is called for line ;.

Note that no two adjacent members of ki, k», ... are equal.



Logic Minimization Techniques with Applications to Cryptology 297

Let j be an index for which k; < k1 Gf no such index exists the sequence is clearly

finite and this terminates). We claim that |W] | < |W | By the previous claim, the
size of the cover never decreases. Thus, the claim follows if we show that a variable is
added to the cover by the fix-up procedure when going from line k; to k.

Consider how the fix-up procedure operates between the calls at lines k; and k.
Suppose that line k; is

Ukj =1V, +u- Ukl

We know that k;. < k;’ < kj < kji1. Suppose the formal expressions computed at these
lines are

F —wb—o/m  FY =z1a+e,
F(k-i)=z+a+b; F(kj-H):...

For line k; to have caused a call to “Fix-up”, neither a nor b could have been in the cover

WJ( 7 Thus the algorithm first visited line k’ and changed the mapping m(k’ ) from ¢

to b, then executed the first “for” loop, correctlng lines not satisfying Property 1, and
finally moved down the program, checking each line for Property 2, until reaching line
kj41.But this means that Property 2 held at line k}/ , and this could only have happened
if a or ¢ was in the cover. Since neither of them was in the cover immediately after the
swap of b for ¢ at line k/ ., one of them must have been added by the fix-up procedure at

one of the lines in between. Thus |W(k )| |W(l_{H) B

Hence for each j where k; < k1, the size of the cover at some line increases. Let
n be the length of the program. Since all k; are positive, there can be at most 7 calls to
the fix-up procedure before some W /) increases in size. Other than the time required
for a possible recursive call, each call to the fix-up procedure is linear in n. From the
bound |[W*)| < |X| < n, for 1 < j < n, it follows that Compute-Cover requires at
most O (n*) time. (The fact that the execution time is polynomial is irrelevant for the
purposes of showing NP-hardness, but will be important later.) This completes the proof
of Lemma 1. t

The following theorem follows immediately, since we have given a polynomial time
reduction from VERTEX COVER, which is NP-complete.

Theorem 1. For any field F, SHORTEST LINEAR PROGRAM is NP-hard.
For finite fields, it is easy to see that SLPd € NP. Thus we have the following.

Theorem 2. For any finite field F, the decision version of SHORTEST LINEAR PRO-
GRAM is NP-complete.

Note that in the proof of Lemma 1, if the straight-line program P had been restricted
to be cancellation-free, the proof would have been easier, because the fix-up procedure
would never be necessary; it is only called if an output line was produced as a linear
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combination of two lines, where at one of those lines a cancelled variable was added to
the cover, W. This immediately gives us the following.

Theorem 3. For any finite field F, SHORTEST LINEAR PROGRAM is NP-complete
even if the programs produced are restricted to being cancellation-free.

3.1.2. Limits to Approximation

The major result of the previous subsection is that it is NP-hard to find an optimal
linear program for computing a set of linear forms. Thus, it is natural to turn our at-
tention to approximation algorithms for this problem. Here we concentrate entirely on
polynomial-time approximation algorithms with provable performance guarantees.

We show that SHORTEST LINEAR PROGRAM has no e-approximation scheme
unless P = NP. Recall that these are families of algorithms, one for each ¢ > 0, which
are polynomial time and achieve an approximation ratio of 1 + €. We use a concept
called MAX SNP-completeness, which was introduced by Papadimitriou and Yan-
nakakis [32]. Arora et al. [1] have shown that no MAX SNP-complete problem has
an e-approximation scheme unless P = NP. We show that BOUNDED Z-EXPN (de-
fined below), is MAX SNP-complete, showing that there is no e-approximation scheme
for SHORTEST LINEAR PROGRAM unless P = NP, since it is a generalization of
BOUNDED Z-EXPN.

MAX SNP is a complexity class of optimization problems. It is contained within
NP in the sense that the decision versions of the problems are all in NP. Papadimitriou
and Yannakakis [32] proved that many problems are MAX SNP-complete, including the
following: BOUNDED VERTEX COVER: Given a graph with maximum vertex degree
bounded by a constant b, find the smallest vertex cover.

To talk about completeness for this class, we need a notion of reduction. The reduc-
tions Papadimitriou and Yannakakis defined, called L-reductions, preserve the existence
of e-approximation schemes. The following definitions and propositions are taken di-
rectly from the original paper.

Let IT and IT’ be two optimization (maximization or minimization) problems, and let
f be a polynomial-time transformation from problem I7 to problem I7’. We say that f
is an L-reduction if there are constants «, 8 > 0 such that, for each instance I of I7, the
following two properties are satisfied:

(a) The optima of I and f(I), written OPT(/) and OPT(f (1)) respectively, satisfy
the relation OPT(f (1)) < «OPT(I).

(b) For any solution of f(I) with cost ¢/, we can find in polynomial time a solution
of I with cost ¢ such that |c — OPT(I)| < B|c’ — OPT(f(I))|.

The constant 8 will usually be 1. The following two propositions, stated in [32],
follow easily from the definition.

Proposition 1. L-reductions compose.

Proposition 2. If IT L-reduces to I1' and if there is a polynomial-time approximation
algorithm for IT' with worst-case error €, then there is a polynomial-time approximation
algorithm for IT with worst-case error afe.
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BOUNDED Z-EXPN is the following problem: Given a set of z-expressions (as de-
fined in Theorem 1) in which each non-z variable appears at most b times (b is a fixed
constant), generate an optimal linear program for computing the expressions (over some
fixed field F).

Theorem 4. BOUNDED Z-EXPN is MAX SNP-complete.

Proof. First, we will show that BOUNDED Z-EXPN is in MAX SNP. To show
membership in MAX SNP, we will exhibit an L-reduction of BOUNDED Z-EXPN to
Bounded Vertex Cover, a problem in MAX SNP.

For every non-z variable x;, we associate a vertex X;. The L-reduction f maps
z-expressions to edges as follows: f(“z+x; +x;”) = *“edge (i, j)”. Since variable oc-
currences are bounded by » in BOUNDED Z-EXPN, the vertex degrees will be bounded
by b in the graph.

We proved in the previous section that a set of z-expressions can be optimally
computed by first computing z + x; for those x; which are in the minimum vertex
cover, and then using these intermediate results to compute the z-expressions. Thus
OPT(f (1)) + |E| = OPT(I) where |E| is both the number of z-expressions and the
number of edges in the graph.

We claim that this reduction is an L-reduction. Property (a) is satisfied because the
equation above implies that OPT(f (1)) < OPT([/). Property (b) is satisfied because,
from a vertex cover, we can build a linear program which computes the z-expressions
in the manner described above. This gives ¢ = OPT(I) + |¢’ — OPT(f (1))|.

To show that the problem is MAX SNP-hard we reverse the reduction so that it
goes from Bounded Vertex Cover to Bounded Z-EXPN. The function f now maps
“edge (i, j)” into “z 4+ x; +x;”.

Proof of Property (a): By Lemma 1 we have that OPT(/) + |E| = OPT(f(1)). Since
the maximum degree in the graph is bounded by b and every edge must be adjacent to at
least one vertex of the cover, there can be at most b - OPT(/) edges, of the cover. Thus
OPT(f (1)) < (b+ 1)OPT().

Proof of Property (b): The proof of Lemma 1 gave a polynomial-time procedure for
converting any linear program computing a set of z-expressions into a vertex cover for
the corresponding graph. By inspecting this procedure, one sees that ¢ = OPT(/) +
lc" = OPT(f(I)]. u

The fact that BOUNDED Z-EXPN is complete for the class MAX SNP implies that
there is no e-approximation scheme for it unless P = NP. In fact, Clementi and Tre-
visan [14] have shown that BOUNDED VERTEX COVER is not approximable within
16/15 — € for sufficiently large maximum degree. By Proposition 2, this means that
thereisno 1 4+ (1/15 —€)/aB =1+ (1/15 — €)/(1 + b)-approximation algorithm for
SLP unless P = NP. We also mention that, assuming the Unique Games Conjecture [24],
Austrin et al. have improved this inapproximability bound to a function that approaches
2 as the bound on the degree gets large [2].

The fact that BOUNDED Z-EXPN is in the class MAX SNP means that there is an
approximation algorithm for it with a constant approximation ratio. In fact, it is obvious
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that Z-EXPN, even without the boundedness constraint, has an approximation algo-
rithm with a constant approximation. The straightforward linear straight-line program
for computing the |E| forms only requires 2| E| lines, and every straight-line program
for E must contain at least | E| lines (assuming no repetitions within the set E). Thus,
the straightforward algorithm comes within a factor of 2 of optimal. Moreover, since
there is an approximation algorithm for vertex cover which comes within a factor of 2 of
optimal, we can do even better for Z-EXPN. Since the optimal linear program contains
|W| + |E| steps, where W is the minimum vertex cover, by Lemma 1, there is an algo-
rithm which takes 2| W |+ | E| steps. Since |W| < | E|, theratio Q|W|+|E])/(|W|+|E])
is at most 3/2, so there is a (3/2)-approximation algorithm for Z-EXPN. There are, how-
ever, no known approximation algorithms which obtain a constant ratio for the general
SLP problem.

3.1.3. Cancellation Can Yield Smaller Circuits

Thus, unless P = NP, this problem does not even have efficient e-approximation
schemes, so our goal in this research is restricted to improving on known heuristics.
As far as we know, the most successful heuristics are variations on a greedy algorithm
due to Paar [31]. We report significant improvements over the latter methods. Paar’s
algorithm gives non-cancelling results. It keeps a list of variables computed, which is
initially only the inputs. Then it repeatedly determines which two variables, XORed to-
gether, occur in most outputs. One such pair is selected and XORed together. This result
is added as a new variable which appears in all outputs where both variables previously
appeared. This can be repeated until everything has been computed. One possible vari-
ant of this was presented in the same article [31]: When there is more than one most
frequently occurring pair, instead of selecting one, try all possibilities, using recursion.
The original algorithm is very fast; the variant is not.

A different technique is due to Bernstein [3]. Bernstein’s algorithm has the advan-
tages of using less storage and functioning better on two-operand platforms, i.e., where
a :=a @ b is an allowed operation, but a := b @ c is not. However, experiments men-
tioned in [3] indicate that Bernstein’s algorithm usually produces results with more gates
than Paar’s.

Previous work on circuit minimization for AES S-boxes (e.g., [13,30,33]) only con-
sider cancellation-free straight-line programs for producing a set of linear forms over
GF(2). Canright [13] even does an exhaustive search to find an optimal cancellation-
free straight-line program. This does not, however, necessarily imply that Canright has
found the optimal linear straight-line program. Some authors appear to make the incor-
rect assumption that there always exists a cancellation-free optimal linear program over
GF(2).

As mentioned in the introduction, restricting the search for optimal straight-line pro-
grams for computing linear forms over GF(2) to cancellation-free programs can lead
to suboptimal solutions. In our counter-example, the optimal cancellation-free program
has length % times that of the true shortest program. It is natural to ask how close to
optimal cancellation-free programs can get as the number of variables increases. In this
subsection we show that the best cancellation-free straight-line programs are not guar-
anteed to even have length within a factor 3/2 that of the shortest straight-line linear
program.
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fori=1tok(n—1)do

Uj i=Xi + Xitk
fori=0ton —2do

Si = Ujk+1 T Uik+2

for j=1tok—2do

Si 1= Si + Uik+j+2

fori=0ton —3do

Di ‘= Si + Si+1

Fig. 7. Straight-line program with cancellations.

The following construction uses two integer parameters k and n, which can be made
large to make the 3/2 inapproximability result hold asymptotically. The parameter &
is the number of variables in a block, and n is the number of distinct blocks. Blocks
have disjoint sets of variables: Block i, where 0 <i <n — 1, is the linear form b; =
Xik+41 + Xik42 + - - - + X(i1+1)k- The construction produces a linear straight-line program
which is not cancellation-free. All intermediate linear forms (the linear forms produced
at each line of the program) computed by this straight-line linear program will belong
to the set of required outputs. The first part of the linear straight-line program will
produce sums of consecutive pairs of blocks s; = b; +b; 1, for 0 <i <n—2, mixing the
variables in the two blocks in such a way that also producing a single block alone would
require extra additions compared to the program here. Then, pairs of these consecutive
sums are computed, p; = s; + si+1, for 0 <i <n — 3. Each p; is computed with only
one further addition, but the two s;s added share a common block which is cancelled,
so p; = b; + b;12. We express this linear program, denoted P, using for loops in Fig. 7,
but for any fixed k and n it is a straight-line program of length k(n — 1) + (k — 1)(n —
)+n—2=2kn—-2k—1.

We claim that an optimal cancellation-free program (for computing all the linear
forms which are the result of some line in this program) does at least enough additional
operations to compute each of the blocks, and this would require at least n(k — 1) addi-
tional lines. Let F' denote the set consisting of the first (2k — 1)(n — 1) lines of P, and
let L denote the set of the last n — 2 lines. All of the 2kn — 2k — 1 lines output by the
above straight-line program are linear forms which must be output. The lines in L are
the only ones with cancellations. None of the results from the lines in F can be used
to compute the lines in P, because, for any two lines f € F and / € L, f contains at
least one variable which is not present in the form calculated by . It is conceivable that
some of the non-output results computed in the process of producing the outputs in L
could be used in computing those in F', but, since they are all outputs, at least one extra
operation is needed to produce each output from F. Thus, we can consider computing
the outputs in L independently from those in F'.

Blocks b, through b,_3 each appear in two of the outputs from L, but there is no
other overlap between the outputs in L. Thus, the only reuse of forms computed which
is possible is within the blocks. An optimal way to compute the forms in L is to first
compute each of the n blocks, using k — 1 additions for each. After this, each form in L
can be created by adding two blocks together, using one addition for each, as in P. The
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computation of the blocks gives n(k — 1) extra additions, for a total of 3kn —2k —n — 1
additions. Asymptotically, the ratio % is 3/2 for large n and k.

Theorem 5. Any algorithm for computing short straight-line linear programs, which
only produces cancellation-free straight-line programs, has an approximation ratio of
at least 3/2.

Thus, even optimal cancellation-free circuits can be far from optimal in the un-
restricted model. The heuristic we present below is not restricted to producing
cancellation-free circuits. Furthermore, there appears to be little reason for restrict-
ing the search to cancellation-free circuits, as we have shown that finding an optimal
cancellation-free circuit is also NP-hard in Sect. 3.1.1.

3.2. A New Heuristic

Let S be a set of linear functions. For any linear predicate f, we define the distance
8(S, f) as the minimum number of additions of elements from S necessary to obtain f.

The problem is to find a short linear program that computes f(x) = Mx where M
is an m x n matrix over GF(2). The heuristic is as follows. We keep a “base” § of
“known” functions. Initially S is just the set of variables xi, ..., x,. We maintain the
vector Dist[] of distances from S to the linear functions given by the rows of M. That
is, Dist[i] = 8(S, f;) where f; is the ith row of M multiplied by the input vector x.
Initially, Dist[i] is just one less than the Hamming weight of row i. We then perform
the following loop:

e pick a new base element by adding two existing base elements;
e update Dist[];

until Dist[i] =0 for all i.
The current criterion for picking the new base element is

e pick one that minimizes the sum of new distances;
e resolve ties by maximizing the Euclidean norm of the vector of new distances.

This tie resolution criterion, which we term “Norm”, may seem counter-intuitive. The
basic idea is that we prefer a distance vector like 0, O, 3, 1 to one like 1, 1, 1, 1. In the
latter case, we would need 4 more gates to finish. In the former, 3 might do it.

The bulk of the time of the heuristic is spent on picking the new base element. Our
experiments show that the following “pre-emptive” choice usually improves running
time without increasing the size of the output circuit:

e if any two bases S[i], S[j] are such that S[i] & S[j] is a row in M, then pick this
sum as the new base element.

The tie resolution criterion is a critical part of the heuristic. It does well on most ma-
trices we have tried, but we have found specific matrices for which other decision rules
do better. Intuitively, no one simple rule should work for all matrices. The effectiveness
of the heuristic most likely depends on the topology of the digraph represented by the
input matrix. We have not pursued this line of inquiry. We have, however, tested our
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Yo = X0+ x1 +x2 1 1.1 00
V1 =X1+x3+ x4 01 0 1 1
Y2 =x0+x2+x3+ x4 M= 1 01 1 1
y3=x1+x2+x3 01 1 10
Y4 =x0+x1 +x3 1 1.0 1 0
Vs = X1+ x2 +x3 + x4 01 1 1 1

Fig. 8. Example sequence of equations and corresponding matrix.

heuristic with various tie resolution methods against Paar’s algorithm [31]. On random
matrices, our heuristic gives significant improvements under Norm as well as under
three other tie-breaking rules (see Sect. 5).

The distance vector in our heuristics is computed by exhaustive search. The reason the
heuristic is practical for moderate-size matrices is that the distance can only decrease. In
fact, it can only decrease by 1. So when a new base is being considered, if a distance is d,
then only combinations of exactly d — 1 old base elements and the new base element
need to be considered.

3.3. A Small Example Using the Heuristic

Suppose we need a circuit that computes the system of equations defined in Fig. 8,
which is equivalent to finding a circuit for multiplication by the 6 x 5 matrix, M, given
in the figure.
The target signals to be computed are simply the rows of M. The initial base is
{xo, x1, x2, X3, x4}, which corresponds to
S:{[l 0 00 0],[0 1 00 O],[O 010 O],
[00010],[00001].

The initial distance vector is
D=[2 2 3 2 2 3]

The heuristic must find two base vectors whose sum, when added to the base, min-
imizes the sum of the new distances. It turns out that the right choice is to calculate
x1 + x3. So the new base S is expanded to contain the signal

[0 1 010 = [01000 + [000 1 0]
The new distance vector is
D=[2 1 3 1 1 2].

The full run of the program is shown in Fig. 9. The tie-breaking criteria is used in
Step 3. If one had chosen xo + x1 instead of x4 + 6, the new distance vector would be
[11201 1], which has norm \/g, while the one found has norm m Note that there
is cancellation in Steps 6 and 8.
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Step 1: t5 = x1 + x3 (found signal = [0 1 01 0]). NewD:[213 11 2]

Step 2: t¢ = x3 + t5 (found target signal y3=[01110]). NewD:[21301 1]
Step 3: t7 = x4 + t¢ (found target signal y; =[01 1 1 1]). NewD:[212010]
Step 4: 13 = xo + x1 (found signal =[1 1 000]). NewD :[111010]

Step 5: t9 = xo + t5 (found target signal y4=[11010]).NewD:[1 1100 0]
Step 6: t19 = x2 + t7 (found target signal yy =[01011]). NewD:[101000]
Step 7: t11 = x2 + tg (found target signal yo=[11100]). NewD:[00 100 0]
Step 8: 12 = 17 + t3 (found target signal y, =[1 011 1]). NewD:[000000]
(DONE!)

Fig. 9. Example running heuristic for minimizing linear components.

Y14 =x3 + x5 Y13 =x0 + X6 Yo = X0 + X3

yg =x0 + x5 fo=x1+x2 y1=1o+x7

ya=y1+x3 Y2 =Y13+ Y14 y2=Yy1+xo0

Y5 =Yy1+xe »3=Yys+¥ H=x4+y12

Yis =11+ x5 Y20 =11 + X1 Y6 = y15 +x7

Yio=y15+1 Y11 =y20+ Y9 y1=x7+y11

Y17 =Y10 + Y11 Y19 =y10+y8 Y16 =10 + y11

Y21 = y13 + Y16 Y18 = X0 + Y16

Fig. 10. Top linear transformation: Inputs are xg, xp, ..., x7. Outputs to the next level are x7,y1, y2,
<5 Y21

Thus, after the x;, which may be nonlinear functions of other variables, are com-
puted, the y; are computed by following the algorithm produced and, in this case, letting

Yo =141, y1 =10, Y2 =112, Y3 =16, Y4 =19, y5 = 17.

4. A Circuit for the S-Box of AES

Our techniques yield a circuit for the AES S-box composed of 115 gates in three parts: a
“top” linear transformation, U; a middle nonlinear part; and a “bottom” linear transfor-
mation, B. The linear transformations are defined by the matrices U and B of Sect. 2.2.

For the matrix U, the smallest circuits we found had 23 @ gates. Among the many
such circuits, the shortest ones have depth 7. It is worthwhile to note that if 24 ¢ gates
are allowed, circuits with depth 4 exist for U. Figure 10 shows a circuit of size 23 and

depth 7. The circuit maps inputs x, ..., X7 to outputs x7, yi, ..., ¥21.

Figure 11 shows the nonlinear middle part of the S-box circuit. It is a function from 22
to 18 bits. The circuit contains 32 A gates and 30 @ gates. It maps inputs x7, y1, ..., ¥21
to outputs zg, ..., 217.

For matrix B, the randomized version of our heuristic yields many circuits with 30 &
gates. The heuristic is fast enough that we are able to pick a circuit which is both small
and short. Figure 12 shows a circuit of depth 6. The circuit maps inputs zg, ..., z17 to
outputs sgp, ..., 57.
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Fig. 11.

20,215 -+

Fig. 12. Bottom linear transformation: Inputs are zq, z1, ...

Iy =Y12 X Y15
Is = y4 X X7
I3 =Yy5 X y1
Hi=tio+1t
Ha=13+112
7 =14+14
o =111+ 16
13 =119 + y21

s =11 +12
g =125 X 177
131 =122+ s
134 =123 + 133
137 =136 + 134
140 =125 + 139

141 =140 + 137
144 =133 + 137
21 =137 X Y6
24 =140 X Y1
27 =145 X Y17
210 =137 X y3
213 =140 X Y5
216 =145 X Y14

13=1Yy3 X Y6
te =15+ 1
tg=13+17

12 =Yy9 X y11
15 =Y8 X Y10
Hg =16+ 16

1 =117+ y20
e =10+ Y18

I =11 X 123
fg =1y + 12
132 =131 X 130
135 =177 + 133
138 =127 + 136

42 =129 + 133
45 =142 + 141
22 =133 X X7
75 =19 X y7
28 =141 X Y10
211 =133 X Y4
Z14=1019 X 2
217 =141 X y8

=5+1n
17 =Yy13 X Y16
Ho=y2 Xy7

113 = Y14 X Y17
He =115+ 12
1o =19+ 14

1 =118 + y19

fy =tha+1he
130 =13 + 14
133 =132+ 14
136 = 124 X I35
139 =129 X 138

143 = 129 + 140
20 =144 X Y15
73 =143 X Y16
76 =142 X Y11
29 =144 X Y12
212 =143 X Y13
215 =142 X y9

The middle nonlinear section: inputs are x7,yi, y2,...
., z17- Note that the computation of 7,5 through #4¢ is the inversion in GF(2%).

146 = 215 + 216
149 =29 + 210

150 =277+ 28
155 =216 + 217
158 = 24 + 46
61 = 214 + 157
T4 =24 + 159
50 =159 + 163
t6T = tes + 165
S5 =147 + t65

t47 =210 + 211
150 =22 + 212

153 =20+ 23
156 =212 + 148
159 =23 + 154

62 = 152 + 158
65 =161 + 162
s6 = ts6 XNOR 162
§3 =153 + t66
51 = tg4 XNOR 53

148 =275 + 213
151 =22 +25
Is4 = z6 + 27

157 =150 + 153
160 = a6 + 157
163 = 149 + 158

66 = 21 + 163
s7 = t48 XNOR 140
sS4 =151 + t66

s7 =155 XNOR t¢7

, z17. Outputs are sg, 51, ...

,87.

305

,¥21. Outputs to the next level are
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As mentioned earlier, our circuit was based on Canright’s [13]. Our nonlinear middle
part corresponds fairly closely to his, except that his subcircuit for inversion in GF(2*)
was replaced by ours. He does not consider all of the top linear transformation as one
unit. However, since this middle part of his circuit corresponds to ours, with the same
inputs and outputs, he computes those inputs using linear operations. The number of
XOR/XNOR gates he uses to compute this top linear transformation is 29. Similarly, he
uses 31 XOR/XNOR gates to compute what corresponds to our bottom linear transfor-
mation. After optimizations, his circuit has a total of 80 XOR/XNOR gates, 34 NANDs,
and 6 NORs. We did not attempt to use NOR gates to further reduce the size of our cir-
cuit.

A more direct comparison was also made comparing our techniques for minimizing
linear circuits and Canright’s. In [13], he presents a factorization of two 16 by 8 matri-

ces, (#) and (@), showing that these can be computed using 20 and 18 gates,

respectively. Our heuristic produces circuits with 18 and 17 gates, respectively.®

5. Experiments with Different Tie-Breaking Methods

In order to compare the effects of using different tie-breakers, we tested our heuristics
on matrices generated as follows.

e We first chose a size (for example, 10 x 20 matrices, which represent 10 linear
forms on 20 distinct variables).

e We then picked a bias p between 0 and 1.

e For each entry of the matrix, we set the bit to 1 with probability p and to O with
probability 1 — p. Thus p is the expected fraction of variables that appears in each
linear form.

e Matrices with rows which are all zeros were discarded, as were matrices containing
duplicate rows.

The testing was performed with a C++ program, compiled with g++ -O3, on a quad-
core x86_64, running Ubuntu 9.10, with Intel Xenon 5150 processors running at 2.66
GHz, with 8 GB memory. There were no other users on the machine. The programs and
matrices used can be found at www.imada.sdu.dk/~joan/xor/, though minor changes are
necessary to run the programs with different files as input or to change the matrix size
and bias for the matrix generator. We compared the different heuristics on sets of 100
random matrices with different sizes and densities. The experiments showed that the
heuristics were slower when the bias was larger. This was expected, since the initial
“distances” (number of operations on the base vectors to obtain the target vectors) were
then larger on average when there were more ones in the matrices.

The tie-breakers we compared were the following:

e Norm: maximizing the Euclidean norm
e Norm-largest: maximizing the square of the Euclidean norm minus the largest dis-
tance

8 Using the Improved2.cc program with the matrix canmat, available with the other programs and matrices
described in the next section, gives these results.
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o Norm-diff: maximizing the square of the Euclidean norm minus the difference of
the largest two distances

e Random: In processing the possible new base vectors, if the current possible new
base vector has the same sum of distances as the previous best (current choice),
then flip an unbiased coin. If heads, then keep the current choice. If tails, then apply
the Norm criterion. This heuristic may end up choosing a pair with non-maximum
Euclidean norm. On the other hand, it allows substitution of one optimum (by
sum-of-distances and Euclidean norm) pair by another found later in the search.

In all cases, except the “Random” one, when there were still ties after applying the
“tie-breaker,” the first pair with both the minimum sum of distances and the optimal
value for the tie-breaker was chosen. This was the base pair with lexicographically
minimum indices (i, j). The exception to this is when there is a target with distance 1,
meaning that using one extra gate will produce a target. A check is made for this case
by scanning the distances and choosing the first with distance 1 when such exists. This
check is efficient, and when there is a target of distance 1, it saves lengthy computations
of new distances for each possible pair of bases.

Randomized tie-breaking allows running the heuristic several times and picking the
best result. In our tests we ran the heuristic with “Random” tie-breaking three times.

We also compared these heuristics to Paar’s heuristic [31] on the same matrices.
Paar’s heuristic repeatedly finds the most frequently occurring base pair and adds that
as the next base pair. It is significantly faster than our heuristic, but it produces only
cancellation-free circuits. Its performance, relative to the heuristics proposed here, de-
creases as the bias increases, using more than 30 % extra gates when the bias is 3/4
(when the number of rows is at least 15) and 40 % extra when the bias is 9/10.

Among the biases tried, the number of gates in the circuits found by our heuristics
is similar with biases 1/2 and 3/4. It is not a strictly increasing function of the bias,
since when nearly all of the variables are used in nearly all of the forms, the outputs
from many of the gates can be reused for many targets. Thus, circuits with fewer gates
were found when the bias was 9/10 than when it was 1/2 or 3/4. This was also true for
Paar’s heuristic, but less dramatically so.

All the tie resolution criteria performed fairly similarly, producing circuits of nearly
the same size, with Random apparently doing slightly better (more often producing
smaller circuits), presumably because it tries three different circuits and uses the best.
Random also runs for about three times as long as the others. The results of these tests
are presented in tables in the Appendix. In the tables, the column headings specify
the matrix size and the bias. For each heuristic, and all matrix sizes and biases, 100
randomly chosen matrices were tested.

For each tie-breaker rule and Paar’s heuristic, for each matrix size and bias, the av-
erage number of gates in the circuits found and the number of matrices where that
heuristic did not obtain the minimum value of all of the heuristics was computed, along
with the running time in seconds. The Paar heuristic was beaten by at least one of the
other heuristics on all 700 matrices except for 17 of the 100 with bias 1/4 (and there
was only one matrix on which Paar’s heuristic beat any of the other heuristics). In fact,
for the tests with bias larger than 1/4, Paar’s heuristic did worse than any of the other
heuristic on every one of the matrices; usually the values obtained for the newer heuris-



308 J. Boyar, P. Matthews, and R. Peralta

tics were similar, with Random possibly being marginally better, but with the value for
Paar’s heuristic being significantly larger.

Paar’s heuristic (and, for matrices between size 4 and 10, a variant which does at most
one gate better on average in the data presented) was tested [31] on square matrices of
sizes 4 x 4 through 16 x 16, and the average number of XOR gates is presented, along
with the relative improvement over the straightforward implementation. These square
matrices came from applying Mastrovito’s [27] matrix description of multiplication in
GF(2") to constant multiplication. Paar tries all possible constants in GF(2") for n be-
tween 4 and 16, giving these square matrices. Since our heuristics are so much slower
and the matrices in the cryptographic applications we are interested in do not neces-
sarily have this form, we have not tested on all of these restricted matrices of those
sizes, but rather on random matrices with different biases. For 15 x 15 matrices, Paar
gets an average of 52.9 gates. This is similar to our results for Paar’s algorithm with
15 x 15 matrices with biases 1/2 and 3/4, where the Paar heuristic gets averages of
51.7 and 53.3 gates, respectively. For bias 1/2, our deterministic heuristics get average
gate counts between 44.21 and 44.28, while Random gets 43.81. For bias 3/4, our de-
terministic heuristics all get average count 40.82, while Random gets 40.38. Thus, our
relative improvement over the Paar heuristic is between 17 % and 32 % for these types
of matrices. Paar’s result of 52.9 gates for 15 x 15 matrices is a relative improvement
of 45.5 % over the straightforward approach.

The last row in each table in the Appendix shows the average of the values which are
the minimum of those calculated by the different heuristics for each matrix. The fact
that this number is always strictly smaller than the average for any specific tie-breaker
shows that, for each of the tie-breakers, there are cases where it gets a worse result than
at least one of the others. This is also shown by the column headed “Not min” which
shows the number of matrices for which that tie-breaker did not achieve the lowest value
found by the tie-breakers.

6. Conclusions and Work in Progress

We developed and tested new techniques for decreasing circuit size. The techniques
were applied to the extensively studied AES S-box. We obtained the smallest circuit yet
constructed for this function. The circuit contains 32 AND gates and 83 XOR/XNOR
gates for a total of 115 gates. As by-products of the experiment, we obtained very small
circuits for inversion in GF(24) and GF(28).

The result that SHORTEST LINEAR PROGRAM is NP-hard indicates that using
heuristic techniques is more realistic than expecting to find the smallest subcircuits for
linear parts of a Boolean circuit. The result that a special case of SHORTEST LINEAR
PROGRAM is MAX SNP-complete indicates that there is a limit to how well these
heuristic techniques can be guaranteed to perform.

Since cancellation-free techniques can produce linear straight-line programs which
are a factor 3/2 larger than the optimal, the heuristic developed here (in Step 2) is not
restricted to cancellation-free operations.

The experiments with linear circuit optimization indicate that our techniques are
likely to be superior to previous techniques which produced only cancellation-free cir-
cuits. We expect this to be particularly useful for cryptographic applications, both for
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hardware and software implementations, where many XOR operations are used, along
with some AND operations to introduce nonlinearity.

It would be interesting to determine how close to optimal the circuits found by these
techniques usually are and how much better they are than the optimal cancellation-free
circuits. Finding even better techniques which are not restricted to finding cancellation-
free circuits would also be very interesting.

Work on finding exact solutions using SAT-solvers has developed a technique which
will quickly find a circuit with 23 gates, the same size we report here for our techniques,
for the top linear transformation [18,19]. They also prove that this cannot be achieved
with 22 gates, so the number of gates used here for the top linear transformation is
optimal.

Recent work has shown that the lower bound of 3/2 for the approximation ratio of
cancellation-free straight-line programs can be improved to 2, using a generalization of
the example at the end of Sect. 1.3.

In practice, one would like to construct small low-depth circuits. This paper has dis-
cussed size only. However, it is plausible that a short circuit can be obtained by first
minimizing size and then shortening the circuit along critical paths using balancing and
other simple techniques. Preliminary results using this general approach are highly en-
couraging. An application to the AES S-box yields a circuit of depth 16 with only 128
gates [8]. This size is larger than that given here, where the depth is 28, but compara-
ble to other results which have significantly more depth [13,28]. Previous attempts at
reducing depth without too much expansion in size were only able to produce depth 22
and size 148 [29].
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Appendix A. Experimental Results on Samples of 100 Random Matrices

Heuristic 15 x 15 matrices, Bias = % 15 x 15 matrices, Bias = %

Average Notmin Seconds  Average Not min Seconds

Norm 29.65 16 12 44.21 48 125
Norm-largest 29.63 14 12 44.23 49 121
Norm-diff 29.65 15 11 44.28 51 119
Random 29.59 10 29 43.81 23 322
Paar 31.07 83 0.01 51.70 100 0.02

Minimum 29.48 0 - 43.50 0 -
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Heuristic 15 x 15 matrices, Bias = % 15 x 15 matrices, Bias = %

Average  Not min Seconds  Average Notmin  Seconds

Norm 40.82 47 291 30.28 31 388
Norm-largest 40.82 46 290 30.28 31 428
Norm-diff 40.82 46 292 30.29 32 388
Random 40.39 23 838 30.01 14 1145
Paar 53.27 100 0.03 43.11 100 0.02
Minimum 40.11 0 - 29.86 0 -

Heuristic 20 x 20 matrices, Bias = %

Average Not min Seconds

Norm 67.47 62 86,465

Norm-largest 67.43 60 82,597

Norm-diff 67.40 58 82,780

Random 66.87 30 234,815

Paar 90.86 100 0.11

Minimum 66.43 0 -

20 x 10 matrices, Bias = % 10 x 20 matrices, Bias = %
Heuristic Average  Notmin  Seconds Average  Not min Seconds
Norm 31.44 25 1.35 42.04 44 30,626
Norm-largest 31.43 24 1.38 42.08 44 30,490
Norm-diff 31.44 25 1.34 42.12 44 30,740
Random 31.23 11 4.08 41.76 22 84,540
Paar 43.32 100 0.02 50.02 100 0.02
Minimum 31.12 0 - 41.50 0 -
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