
J. Cryptol. (2013) 26: 340–373
DOI: 10.1007/s00145-012-9126-5

Sequential Aggregate Signatures, Multisignatures,
and Verifiably Encrypted Signatures Without Random

Oracles

Steve Lu∗, Rafail Ostrovsky†, and Amit Sahai‡

Los Angeles, CA, USA
stevelu@math.ucla.edu; rafail@cs.ucla.edu; sahai@cs.ucla.edu

Hovav Shacham§

La Jolla, CA, USA
hovav@cs.ucsd.edu

Brent Waters¶

Austin, TX, USA
bwaters@cs.utexas.edu

Communicated by Keneth G. Paterson

Received 8 July 2009
Online publication 22 June 2012

Abstract. We present the first aggregate signature, the first multisignature, and the
first verifiably encrypted signature provably secure without random oracles. Our con-
structions derive from a novel application of a recent signature scheme due to Waters.
Signatures in our aggregate signature scheme are sequentially constructed, but knowl-
edge of the order in which messages were signed is not necessary for verification.
The aggregate signatures obtained are shorter than Lysyanskaya et al.’s sequential ag-
gregates and can be verified more efficiently than Boneh et al.’s aggregates. We also
consider applications to secure routing and proxy signatures.

Key words. Waters signature, Bilinear map, Secure BGP.

∗ S. Lu was supported in part by NSF Grant DMS-0502315.
† R. Ostrovsky was supported in part by a gift from Teradata, Intel Equipment Grant, NSF Cybertrust

Grant No. 0430254, OKAWA Research Award, B. John Garrick Foundation and Xerox Innovation Group
Award.

‡ A. Sahai was supported in part by grants from the NSF ITR and Cybertrust programs, a generous Equip-
ment Grant from Intel, and an Alfred P. Sloan Foundation Fellowship.

§ H. Shacham was supported by a MURI Grant administered by the Air Force Office of Scientific Re-
search. Work done while at the Weizmann Institute of Science, supported by a Koshland Scholars Program
Fellowship.

¶ B. Waters was supported by DHS and DOI Contract No. NBCHF040146. Views expressed in this paper
do not necessarily reflect those of DHS and DOI.

© International Association for Cryptologic Research 2012

mailto:stevelu@math.ucla.edu
mailto:rafail@cs.ucla.edu
mailto:sahai@cs.ucla.edu
mailto:hovav@cs.ucsd.edu
mailto:bwaters@cs.utexas.edu

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 341

1. Introduction

In this paper we present an aggregate signature scheme, a multisignature scheme, and
a verifiably encrypted signature scheme. Unlike previous such schemes, our construc-
tions are provably secure without random oracles. A series of papers beginning with the
uninstantiability result of Canetti, Goldreich, and Halevi [13] have cast some doubt on
the soundness of the random oracle methodology, making random-oracle-free schemes
more attractive. Moreover, our proposed schemes are quite practical, and in some cases
outperform the most efficient random-oracle-based schemes.

An aggregate signature scheme allows a collection of signatures to be able to be
compressed into one short signature. Aggregate signatures are useful for applications
such as secure route attestation and certificate chains where the space requirements for
a sequence of signatures can have an impact on practical application performance.

Boneh et al. [11] presented the first aggregate signature scheme, which was based
on the BLS short signature due to Boneh, Lynn, and Shacham [12] in groups with ef-
ficiently computable bilinear maps. Subsequently, Lysyanskaya et al. [28] presented
a sequential RSA-based scheme that, while more limited, could be instantiated using
more general assumptions. In a sequential aggregate signature scheme the aggregate
signature must be constructed sequentially, with each signer modifying the aggregate
signature in turn. However, most known applications are sequentially constructed any-
way. One drawback of both schemes is that they are provably secure only in the random
oracle model and thus there is only a heuristic argument for their security.

We present the first aggregate signature scheme that is provably secure without ran-
dom oracles. Our signatures are sequentially constructed; however, unlike the scheme of
Lysyanskaya et al., a verifier need not know the order in which the aggregate signature
was created. Additionally, our signatures are shorter than those of Lysyanskaya et al.
and can be verified more efficiently than those of Boneh et al.

In addition, we present the first multisignature scheme that is provably secure without
random oracles. In a multisignature scheme, a single short object—the multisignature—
can take the place of n signatures by n signers, all on the same message. (Aggregate
signatures can be thought of as a multisignature without this restriction.) Boldyreva [7]
gave the first multisignature scheme in which multisignature generation does not require
signer interaction, based on BLS signatures.

Finally, we present the first verifiably encrypted signature scheme that is provably
secure without random oracles. A verifiably encrypted signature is an object that, as
people can tell, contains encryption of a signature on some message, but from which
only the party under whose key it was encrypted can recover the signature. Such a prim-
itive is useful in contract signing. Boneh et al. [11] gave the first verifiably encrypted
signature scheme, based on BLS signatures.

All our constructions derive from novel adaptations of the signature scheme of Wa-
ters [44], which follows from his identity-based encryption (IBE) scheme. In particular,
we are (to our knowledge) the first to observe that the Waters signature remains secure
when the generators u′ and u1, . . . , uk are chosen by a user and their discrete logarithms
(to some base) known to her, and when these generators are shared by all users and their
discrete logarithms are known to a central authority. Our sequential aggregate signature
makes use of the former setting; our multisignature, of the latter.

342 S. Lu et al.

Previous Publication A preliminary version of this work appeared in the proceedings
of Eurocrypt 2006 [27]. This is the full version.

2. Preliminaries

In this section we first present some background on groups with efficiently computable
bilinear maps. Next, we recall the definition of existentially unforgeable signatures.
Then we present the Waters [44] signature algorithm.

2.1. Groups with Efficiently Computable Bilinear Maps

We briefly review the necessary facts about bilinear maps and bilinear map groups. (For
more detail, see e.g. [17,38].) Consider the following setting:

• G and GT are multiplicative cyclic groups of order p;
• the group action on G and GT can be computed efficiently;
• g is a generator of G;
• e : G × G → GT is an efficiently computable map with the following properties:

– Bilinear: for all u,v ∈ G and a, b ∈ Z, e(ua, vb) = e(u, v)ab;
– Non-degenerate: e(g, g) �= 1.

We say that G is a bilinear group if it satisfies these requirements.
The security of our scheme relies on the hardness of the Computational Diffie–

Hellman (CDH) problem in bilinear groups. We state the problem and our assumption as
follows. Define the success probability of an algorithm A in solving the Computational
Diffie–Hellman problem on G as

Advcdh
A

def= Pr
[

A
(
g,ga,h

) = ha : g,h
R←G, a

R←Zp

]
.

The probability is over the uniform random choice of g and h from G, of a from Zp ,
and the coin tosses of A.1 We say that an algorithm A (t, ε)-breaks Computational
Diffie–Hellman on G if A runs in time at most t , and Advcdh

A is at least ε. The (t, ε)-
Computational Diffie–Hellman assumption on G is that no adversary (t, ε)-breaks Com-
putational Diffie–Hellman on G.

Asymmetric Pairings and Short Representations It is a simple (though tedious) matter
to rewrite our schemes to employ an asymmetric pairing e : G1 ×G2 → GT. Signatures
will then include elements of G1, while public keys will include elements of G2 and
GT. This setting allows us to take advantage of curves due to Barreto and Naehrig [3].
With these curves, elements of G1 have a 160-bit representation at the 1024-bit security
level.2 In this case, security follows from the Computational co-Diffie–Hellman prob-
lem [12].

1 Here and below, the symbol “
R←” stands for uniform random selection from a set or sampling from the

output of an algorithm when run with uniform random coins.
2 By “1024-bit security,” we mean parameters such that the conjectured complexity of computing discrete

logarithms is roughly comparable to the complexity of factoring 1024-bit numbers. For a more refined analysis
see Koblitz and Menezes [26].

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 343

Group Membership Tests There exist efficient algorithms for verifying that a bitstring
represents an algebraic object that is an element of the groups G or GT. Throughout
this paper we assume that all algorithms test that their inputs are in the correct groups
before operating on them; signature verification algorithms, in particular, must reject a
signature if its components are not in the appropriate groups.

2.2. The Waters Signature Scheme

We describe the Waters signature scheme [44]. In our description the messages will be
signatures on bitstrings of the form {0,1}k for some fixed k. However, in practice one
could apply a collision-resistant hash function Hk : {0,1}∗ → {0,1}k to sign messages
of arbitrary length.

The scheme requires, besides the random generator g ∈ G, k + 1 additional random
generators u′, u1, . . . , uk ∈ G. In the basic scheme, these can be generated at random as
part of system setup and shared by all users. In some of the variants below, each user
has generators (u′, u1, . . . , uk) of her own, which must be included in her public key.
We will draw attention to this in introducing the individual schemes.

The Waters signature scheme is a three-tuple of algorithms W = (W.Kg,W. Sig,

W.Vf). These behave as follows.

W.Kg. Pick random α
R←Zp and set A ← e(g, g)α . The public key pk is A ∈ GT. The

private key sk is α.
W.Sig(sk, M). Parse the user’s private key sk as α ∈ Zp and the message M as a bitstring

(m1, . . . ,mk) ∈ {0,1}k . Pick a random r
R←Zp and compute

S1 ← gα ·
(

u′
k∏

i=1

u
mi

i

)r

and S2 ← gr . (1)

The signature is σ = (S1, S2) ∈ G
2.

W.Vf(pk, M, σ). Parse the user’s public key pk as A ∈ GT, the message M as a bitstring
(m1, . . . ,mk) ∈ {0,1}k , and the signature σ as (S1, S2) ∈ G

2. Verify that

e(S1, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1
?=A (2)

holds; if so, output valid; if not, output invalid.

This signature is existentially unforgeable under a chosen-message attack—the stan-
dard notion of signature security, due to Goldwasser, Micali, and Rivest [20]—if CDH
is hard. We give a roundabout proof of this as Corollary 5.5.

3. Sequential Aggregate Signatures

In a sequential aggregate signature, as in an ordinary aggregate signature, a single short
object—called the aggregate—takes the place of n signatures by n signers on n mes-
sages. Thus aggregate signatures are a generalization of multisignatures. Sequential ag-

344 S. Lu et al.

gregates differ from ordinary aggregates in that the aggregation operation is performed
by each signer in turn, rather than by an unrelated party after the fact.

Aggregate signatures have many applications, as noted by Boneh et al. [11] and
Lysyanskaya et al. [28]. Below, we consider two: Secure BGP route attestation and
proxy signatures.

BGP, the Border Gateway Protocol, is the protocol by which the core routers that
make up the Internet backbone agree on how packets should be routed among them.
(The latest version of BGP is specified in RFC 4271 [40].) In BGP, routers generate and
forward route attestations to other routers to advertise the routes which should be used
to reach their networks. Secure BGP solves the problem of attestation forgery by having
each router add its signature to a valid attestation before forwarding it to its neighbors.
Since the size of route attestations is limited, aggregate signatures are useful in reducing
the overhead of multiple signatures along a path. Nicol, Smith, and Zhao [35] gave a
detailed analysis of the application of aggregate signatures to the Secure BGP routing
protocol [25]. Our sequential aggregate signature scheme is well suited for improving
SBGP. Since all of the incoming route attestations need to be verified anyway, the fact
that our signing algorithm requires a verification adds no overhead. Additionally, our
signature scheme can have signatures that are smaller than those of Lysyanskaya et al.
and verification will be faster than that of the Boneh et al. scheme.

A proxy signature scheme allows a user, called the designator, to delegate signing
authority to another user, called the proxy signer. This signature primitive, introduced
by Mambo, Usuda, and Okamoto [29], has been discussed and used in several practical
applications. Boldyreva, Palacio, and Warinschi [8] show how to construct a secure
proxy signature scheme from any aggregate (or sequential aggregate) signature scheme.
Instantiating the Boldyreva–Palacio–Warinschi construction with our scheme, we obtain
a practical proxy signature secure without random oracles.

3.1. Definitions and Security Model

A sequential aggregate signature scheme includes three algorithms. The first, Kg, is used
to generate public–private keypairs. The second, ASig, takes not only a private key and
a message to sign, as does an ordinary signing algorithm, but also an aggregate-so-far
by a set of l signers on l corresponding messages; it folds the new signature into the
aggregate, yielding a new aggregate signature by l + 1 signers on l + 1 messages. The
third algorithm, AVf, takes a purported aggregate signature, along with l public keys and
l corresponding messages, and decides whether the aggregate is valid.

More formally, the key generation algorithm Kg, is a randomized algorithm whose
output is a public–private keypair (pk,sk). The aggregate signing algorithm, ASig, is a
randomized algorithm that takes a private key sk, a message M ∈ {0,1}∗ to sign, an
aggregate-so-far σ ′, and two l-element vectors: one, M, of messages, the other, pk, of
public keys. A system parameter, n, serves as an upper bound on the length of aggre-
gate signatures and therefore on l. The aggregate-so-far should be a valid sequential
aggregate signature on the messages in M, each under the corresponding public key
in pk, and the signer’s public key pk should not appear in pk. The signing algorithm
outputs a new aggregate-so-far, σ ′, on messages M‖M under public keys pk‖pk. Fi-
nally, the aggregate verification algorithm, AVf, takes an aggregate signature σ , a vector
of messages M, and a vector of public keys pk. It verifies that both vectors are the same

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 345

length l; that l is at most n, the maximum number of signatures in an aggregate; that no
public key appears more than once in pk; and that σ is a valid sequential aggregate sig-
nature on the messages in M under the respective public keys in pk. If all these checks
pass, the algorithm returns 1; otherwise it returns 0.

The Sequential Aggregate Certified-Key Model Since our aggregate signature behaves
like a sequential aggregate signature from the signers’ viewpoint but like standard ag-
gregate signature from the verifiers’ viewpoint, we describe a security model for it that
is a hybrid of the sequential aggregate chosen key model of Lysyanskaya et al. [28] and
the aggregate chosen key model of Boneh et al. [11]. In both models, the adversary is
given a single challenge key, along with an appropriate signing oracle for that key. His
goal is to generate a sequential aggregate that frames the challenge user. The adversary
is allowed to choose all the keys in that forged aggregate but the challenge key.3

We prove our scheme in a more restricted model that requires that the adversary cer-
tify that the public keys it includes in signing oracle queries and in its forgery were
properly generated. This we handle by having the adversary hand over the private keys
before using the public keys. More realistically, a system incorporating our signature
scheme could require users to engage with the authority in an interactive proof of knowl-
edge of their private keys, and in the proof of security use rewinding to extract the keys;
or else require non-interactive proofs that a committed private key is the correct one
(using, e.g., the non-interactive zero knowledge proofs proposed by Groth, Ostrovsky,
and Sahai [21]), and in the proof of security set the common reference string to allow
extraction.

Formally, the advantage of a forger A in our model is the probability that the chal-
lenger outputs 1 in the following game:

Setup. Initialize the list of certified public keys C ← ∅. Choose (pk,sk)
R←Kg. Run al-

gorithm A with pk as input.
Certification Queries. Algorithm A provides a keypair (pk′, sk′) in order to certify

pk′. Add pk′ to C if sk′ is its matching private key.4

Signing Queries. Algorithm A requests a sequential aggregate signature, under the
challenge key pk, on a message M . In addition, it supplies an aggregate-so-far σ ′ on
messages M under keys pk. Check that the signature σ ′ verifies; that each key in pk
is in C; that pk does not appear in pk; and that |pk| < n. Here n is an upper bound on
the length of a sequential aggregate, a game parameter. If any of these fails to hold,
answer invalid. Otherwise respond with σ = ASig(sk,M,σ ′,M,pk).

Output. Eventually, A halts, outputting a forgery σ ∗ on messages M under keys pk.
This forgery must verify as valid under AVf; each key in pk (except the challenge key)

3 The original security model of Boneh et al. included the additional restriction that the messages included
in an aggregate all be distinct. As observed by Shacham [43] and formalized by Bellare, Namprempre, and
Neven [5], this restriction is in fact unnecessary provided that signatures are computed over H(pk‖M) rather
than H(M).

4 A private key matches a public key if (pk, sk) is in the image of Kg. For some signature schemes (in-
cluding the sequential aggregate signature that we propose—see below), it is possible to check this relation
directly. For others, the requirement of private key disclosure should be implemented by having the adversary
disclose the coins it provided to the key generation algorithm.

346 S. Lu et al.

must be in C; and |pk| ≤ n must hold. In addition, the forgery must be nontrivial: the
challenge key pk must appear in pk, wlog at index 1 (since signature verification in
our scheme has no inherent order), and the corresponding message M[1] must not
have been queried by A of its sequential aggregate signing oracle. Output 1 if all
these conditions hold, 0 otherwise.

We say that an aggregate signature scheme is (t, qC, qS, n, ε)-secure if no t-time adver-
sary making qC certification queries and qS signing queries can win the above game
with advantage more than ε, where n is an upper bound on the length of the sequential
aggregates involved.

3.2. Our Scheme

We start by giving some intuition for our scheme. Each signer in our scheme will have
a unique public key from the Waters signature scheme

u′,u = (u1, . . . , uk),A ← e(g, g)α.

While in the original signature scheme the private key consists only of gα , in our aggre-
gate signature scheme it is important that the private key holder will additionally choose
and remember the discrete logs of u′,u = (u1, . . . , uk). In the Waters signature scheme,
signatures are made of two group elements, S1 and S2. At a high level, we can view
S2 as some randomness for the signature and S1 as the signature on a message relative
to that randomness.

An aggregate signature in our scheme also consists of group elements S′
1, S

′
2. The

second element S′
2 again consists of some “shared” randomness for the signature. When

a signer wishes to add his signature on a message to an aggregate (S′
1, S

′
2), he simply

figures out what his S1 component would be in the underlying signature scheme given
S′

2 as the randomness. In order to perform this computation, the signer must know the
discrete log values of all of his public generators. He then multiplies this value into S′

1
and finally re-randomizes the signature.

We now formally describe the sequential aggregate signature scheme obtained from
the Waters signature scheme.

Our sequential aggregate scheme is a three-tuple of algorithms WSA = (WSA.Kg,

WSA.ASig,WSA.AVf). These behave as follows.

WSA.Kg. Pick random α,y′ R←Zp and a random vector y = (y1, . . . , yk)
R←Z

k
p . Com-

pute

u′ ← gy′
and u = (u1, . . . , uk) ← (

gy1, . . . , gyk
)

and A ← e(g, g)α.

The user’s private key is sk = (α, y′,y) ∈ Z
k+2
p . The public key is pk = (A,u′,u) ∈

GT × G
k+1; it must be certified to ensure knowledge of the corresponding private

key.
WSA.ASig(sk, M, σ ′,M,pk). The input is a private key sk, to be parsed as (α, y′,

y1, . . . , yk) ∈ Z
k+2
p ; a message M to sign, parsed as (m1, . . . ,mk) ∈ {0,1}k ; and an

aggregate-so-far σ ′ on messages M under public keys pk. Verify that σ ′ is valid by

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 347

calling WSA.AVf(σ ′,M,pk); if not, output ⊥ and halt. Check that the public key cor-
responding to sk does not already appear in pk; if it does, output ⊥ and halt. (We
revisit the issue of having one signer sign multiple messages below.)
Otherwise, parse σ ′ as (S′

1, S
′
2) ∈ G

2. Set l ← |pk|. Now, for each i, 1 ≤ i ≤ l, parse
M[i] as (mi,1, . . . ,mi,k) ∈ {0,1}k , and parse pk[i] as (Ai, u

′
i , ui,1, . . . , ui,k) ∈ GT ×

G
k+1. Compute

w1 ← S′
1 · gα · (S′

2

)(y′+∑k
j=1 yj mj) and w2 ← S′

2. (3)

The values (w1,w2) form a valid signature on M‖M under keys pk‖pk, but this
signature needs to be re-randomized: otherwise whoever created σ ′ could learn the
user’s private key gα . Choose a random r̃ ∈ Zp , and compute

S1 ← w1 ·
(

u′
k∏

j=1

u
mj

j

)r̃

·
l∏

i=1

(

u′
i

k∏

j=1

u
mi,j

i,j

)r̃

and S2 ← w2g
r̃ . (4)

It is easy to see that σ = (S1, S2) is also a valid sequential aggregate signature on
M‖M under keys pk‖pk, with randomness r + r̃ , where w2 = gr ; output it and halt.

WSA.AVf(σ,M,pk). The input is a purported sequential aggregate σ on messages M
under public keys pk. Parse σ as (S1, S2) ∈ G. If any key appears twice in pk, if any
key in pk has not been certified, or if |pk| �= |M|, output invalid and halt.
Otherwise, set l ← |pk|. If l = 0, output valid if S1 = S2 = 1, invalid otherwise.
Now, for each i, 1 ≤ i ≤ l, parse M[i] as (mi,1, . . . ,mi,k) ∈ {0,1}k , and parse pk[i]
as (Ai, u

′
i , ui,1, . . . , ui,k) ∈ GT × G

k+1. Finally, verify that

e(S1, g) · e
(

S2,

l∏

i=1

(

u′
i

k∏

j=1

u
mi,j

i,j

))−1
?=

l∏

i=1

Ai (5)

holds; if so, output valid; if not, output invalid.

Signature Form Consider a sequential aggregate signature on l messages M un-
der l public keys pk. For each i let M[i] be (mi,1, . . . ,mi,k) and let pk[i] be
(Ai, u

′
i , ui,1, . . . , ui,k) with corresponding private key (αi, y

′
i , yi,1, . . . , yi,k). A well-

formed sequential aggregate signature σ = (S1, S2) in this case has the form

S1 =
l∏

i=1

gαi ·
l∏

i=1

(

u′
i

k∏

j=1

u
mi,j

i,j

)r

and S2 = gr .

Additionally, we consider σ = (1,1) to be a valid signature on an empty set of signers.
Notice that (S1, S2) is the product of Waters signatures all sharing the same random-
ness r .

Multiple Messages from One Signer Even though in our description we did not allow
a signer to sign twice in an aggregate signature, a simple trick allows for this. Suppose

348 S. Lu et al.

a signer wishes to add his signature on message M to a sequential aggregate signature
that already contains his signature on another message M ′. He need simply first remove
his signature on M ′ from the aggregate, essentially by dividing it out of S1, and multiply
in a signature on M ′ : M , which is a message that attests to both M ′ and M .

To see why this trick works, suppose the signer’s public key is pk = (A,u′, u1, . . . , uk)

and her private key is sk = (α, y′,y), and consider an (l + 1)-element sequential
aggregate signature (S1, S2) under keys pk‖ pk on messages M‖M , where M =
(m1, . . . ,mk). If this is a valid sequential aggregate signature, then the sequential ag-
gregate verification equation guarantees that we have

e(S1, g) · e
(

S2,

(

u′
k∏

j=1

u
mj

j

)

·
l∏

i=1

(

u′
i

k∏

j=1

u
mi,j

i,j

))−1

= A ·
l∏

i=1

Ai.

Now let S1′ ← (S2)
(y′+∑k

j=1 yj mj); then we can easily see that (S′
1, S2) is a valid Waters

signature on M per (2), so

e
(
S′

1, g
) · e

(

S2,

(

u′
k∏

j=1

u
mj

j

))−1

= A.

Now set S′′
1 ← S1/S

′
1. Dividing the former displayed equation by the latter shows that

e
(
S′′

1 , g
) · e

(

S2,

l∏

i=1

(

u′
i

k∏

j=1

u
mi,j

i,j

))−1

=
l∏

i=1

Ai,

i.e., that (S′′
1 , S2) is a valid l-element sequential aggregate signature under keys pk on

messages M; and we can re-randomize (S′′
1 , S2) to obtain a uniformly distributed se-

quential aggregate under the same keys on the same messages. The signer can now add
a signature on the message M : M ′ to this aggregate just as before.

The proof of security below can be modified to take this into account. For an ag-
gregate (S1, S2), suppose the adversary, algorithm A, asks its challenger to replace the
signature under the challenge key from one on message M to one on M : M ′. The reduc-
tion algorithm B queries its Waters signature oracle on M : M ′, obtaining a sequential
aggregate on messages (M : M ′) under keys (pk); using its knowledge of the certified
private keys, it then constructs the rest of the required aggregate by adding to σ , for each
signer pk[i], the appropriate signature on message M[i] using algorithm WSA.ASig.
Note also that the adversary must previously have queried its signing oracle at M , since
otherwise (S1, S2) would already constitute a nontrivial forgery.

Performance Verification in our signatures is fast, taking approximately k/2 multi-
plications per signer in the aggregate, and only two pairings regardless of how many
signers are included. In contrast, the aggregate signatures of Boneh et al. [11] take
l + 1 pairings to verify when the aggregate includes l signers.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 349

3.3. Proof of Security

Theorem 3.1. The WSA sequential aggregate signature scheme is (t, qC, qS, n, ε)-
unforgeable if the Waters signature scheme is (t ′, q ′, ε′)-unforgeable on G, where

t ′ = t + O(qC + nqS + n) and q ′ = qS and ε′ = ε.

Proof. Suppose that there exists an adversary A that succeeds with advantage ε. We
build a simulator B to play the forgeability game against the Waters signature scheme.
Given the challenge Waters signature public key pk = (A,u′, u1, . . . , uk), simulator B
interacts with A as follows.

Setup. Algorithm B runs A supplying it with the challenge key pk.
Certification Queries. Algorithm A wishes to certify some public key pk′, providing

also its corresponding private key sk′. Algorithm B checks that the private key is
indeed the correct one and if so registers (pk′, sk′) in its list of certified keypairs.5

Aggregate Signature Queries. Algorithm A requests a sequential aggregate signature,
under the challenge key, on a message M . In addition, it supplies an aggregate-so-far
σ ′ on messages M under keys pk. The simulator first checks that the signature σ ′
verifies; that each key in pk has been certified; that the challenge key does not appear
in pk; and that |pk| < n. If any of these conditions does not hold, B returns ⊥.
Otherwise, B queries its own signing oracle for key pk, obtaining a signature σ on
message M , which we view as a sequential aggregate on messages (M) under
keys (pk). The simulator now constructs the rest of the required aggregate by adding
to σ , for each signer pk[i], the appropriate signature on message M[i] using al-
gorithm WSA.ASig. It can do this because it knows—by means of the certification
procedure—the private key corresponding to each public key in pk. The result is an
aggregate signature σ ′ on messages M‖M under keys pk‖pk. This reconstruction
method works because signatures are re-randomized after each aggregate signing op-
eration and because our signatures have no inherent verification order.

Output. Eventually, A halts, outputting a forgery, σ ∗ = (S∗
1 , S∗

2), on messages M under
keys pk. This forgery must verify as valid under WSA. AVf; each key in pk (except
the challenge key) must have been certified; and |pk| ≤ n must hold. In addition, the
forgery must be nontrivial: the challenge key pk must appear in pk, wlog at index 1
(since signature verification in our scheme has no inherent order), and the corre-
sponding message M[1] must not have been queried by A of its sequential aggregate
signing oracle. If the adversary was not successful, we can quit and disregard the
attempt.
Now, for each i, 1 ≤ i ≤ l = |pk| = |M|, parse pk[i] as (Ai, u

′
i , ui,1, . . . , ui,k) and

M[i] as (mi,1, . . . ,mi,k) ∈ {0,1}k . Note that we have pk = (A1, u
′
1, u1,1, . . . , u1,k).

Furthermore, for each i, 2 ≤ i ≤ l, let (αi, y
′
i , yi,1, . . . , yi,k) be the private key corre-

5 As noted above, for our signature scheme we can verify that a private key sk = (α, y′,y) matches a
public key pk = (A,u′, u1, . . . , uk) and, indeed, that (pk, sk) is in the image of WSA.Kg, by checking that

A
?=e(g, g)α , that u′ ?=gy′

, and that ui
?=gyi for 1 ≤ i ≤ k.

350 S. Lu et al.

sponding to pk[i]. Algorithm B computes

S1 ← S∗
1 ·

l∏

i=2

(
gαi · (S∗

2

)(y′
i+

∑k
j=1 yi,j mi,j))−1 and S2 ← S∗

2 .

We now have

e(S1, g) · e
(

S2, u
′
1

k∏

j=1

u
m1,j

1,j

)−1

= e
(
S∗

1 , g
) · e

(

S∗
2 , u′

1

k∏

j=1

u
m1,j

1,j

)−1

×
l∏

i=2

e
(
gαi , g

)−1 ·
l∏

i=2

e
((

S∗
2

)(y′
i+

∑k
j=1 yi,j mi,j)

, g
)−1

= e
(
S∗

1 , g
) · e

(

S∗
2 , u′

1

k∏

j=1

u
m1,j

1,j

)−1

×
l∏

i=2

A−1
i ·

l∏

i=2

e

(

S∗
2 , u′

i

k∏

j=1

u
mi,j

i,j

)−1

= e
(
S∗

1 , g
) ·

l∏

i=1

e

(

S∗
2 , u′

i

k∏

j=1

u
mi,j

i,j

)−1

·
l∏

i=2

A−1
i

=
l∏

i=1

Ai ·
l∏

i=2

A−1
i = A1 = A.

So (S1, S2) is a valid Waters signature on M∗ = M[1] = (m1,1, . . . ,m1,k) under key
pk[1] = pk. The last line follows from the sequential aggregate verification equa-
tion. Moreover, since A did not make an aggregate signing query at M∗, B did not
make a signing query at M∗, so σ = (S1, S2) is a nontrivial Waters signature forgery.
Algorithm B returns it and halts.

Algorithm B is successful whenever A is. Algorithm B makes as many signing
queries as A makes sequential aggregate signing queries. Algorithm B’s running time
is that of A’s, plus the overhead in handling A’s queries, and computing the final result.
Each certification query can be handled in O(1) time; each aggregate signing query can
be handled in O(n) time; and the final result can also be computed from A’s forgery in
O(n) time. �

3.4. A More Efficient Variant in the Random Oracle Model

Our scheme as described in Sect. 3.2 implicitly uses the Waters hash H(m1, . . . ,mk) =
u′ ∏k

i=1 u
mi

i . It is also possible to instantiate it with the Boneh–Boyen hash H(M) =

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 351

uH0(M)h, where H0 maps {0,1}∗ to Zp and is treated as a random oracle. (This derives
from Boneh and Boyen’s suggested conversion, in the random oracle model, of their
selective-ID IBE to a fully secure one [9, Theorem 7.2], to which we then apply the
Naor transform recorded by Boneh and Franklin [10] to obtain a signature.)

In this variant, each user picks x, y,α
R← Zp and publishes u = gx , h = gy , and

A = e(g, g)α . Public key sizes are thus much smaller than in our Waters-hash–based
scheme.

Compared to the scheme of Boneh et al. [11], whose proof of security is also in the
random oracle model, our variant scheme is sequential, guarantees security in a weaker
(certified-key) security model, and has somewhat longer public keys and signatures. On
the other hand, verification in our variant scheme requires only a constant number of
pairings rather than l + 1 for an l-user aggregate as in BGLS.

4. Multisignatures

In a multisignature scheme, a single multisignature—the same size as one ordinary
signature—stands for l signatures on a message M . Multisignatures were introduced
by Itakura and Nakamura [24], and have been the subject of much research [7,36,37].
The first multisignatures in which signatures could be combined into a multisignature
without interaction were proposed by Boldyreva [7], based on BLS signatures [12].
Below, we present another non-interactive multisignature scheme, based on the Waters
signature scheme, which is provably secure without random oracles.

4.1. Definitions

A multisignature scheme includes five algorithms. Three of these, Kg, Sig, and Vf, are
analogous to those in ordinary signature schemes. The randomized key-generation al-
gorithm Kg outputs a public–private keypair (pk, sk). The randomized signing algo-
rithm Sig takes a private key sk and a message M ∈ {0,1}∗ and outputs a signature σ .
The verification algorithm Vf takes a public key pk, a message M , and a signature σ ,
and outputs a bit: 1 if the signature is valid, 0 otherwise.

The two remaining algorithms provide the multisignature functionality. The first,
Comb, combines l ordinary signatures, all on a common message M but each under
a different key, into a single multisignature that stands for all the input signatures. More
formally, Comb is a randomized algorithm that takes the l public key–signature pairs
{pki , σi}li=1 along with the message M ∈ {0,1}∗ and outputs a multisignature σ or, if
combining the signatures failed, ⊥. We stress that the combination algorithm requires
the public keys of all the users, not just the signatures themselves.

The second algorithm, MVf, performs multisignature verification. It takes the l pub-
lic keys {pki}li=1; the common message M ; and the multisignature σ that purportedly
stands for signatures on M under each of the keys, and outputs a bit: 1 if the multisig-
nature is valid, 0 otherwise.

We add the restriction that neither the combination algorithm nor the multisignature
verification algorithm allows a single signer’s key to appear more than once in the key
list {pki}li=1.

352 S. Lu et al.

A multisignature scheme, instantiated using these algorithms, is correct if all
properly-generated signatures and multisignatures verify. More formally, for all signer
keypairs (pk, sk) and (pki , ski) output by Kg, all messages M , and all l ≥ 1, the follow-
ing hold with probability 1:

Vf
(
pk,M,Sig(sk,M)

) = 1,

MVf
({pki}li=1,M,Comb

({
pki ,Sig(ski ,M)

}l

i=1,M
)) = 1.

4.2. Security Model

Micali, Ohta, and Reyzin [31] gave the first formal treatment of multisignatures. We
prove security in a variant of the Micali–Ohta–Reyzin model due to Boldyreva [7]. In
this model, the adversary is given a single challenge public key pk, and a signing oracle
for that key. His goal is to output a forged multisignature σ ∗ on a message M∗ under
keys pk1, . . . ,pkl . Of these keys, pk1 must be the challenge key pk. For the forgery
to be nontrivial, the adversary must not have queried the signing oracle at M∗. The
adversary is allowed to choose the remaining keys, but must prove knowledge of the
private keys corresponding to them. For simplicity, Boldyreva handles this by having
the adversary hand over the private keys; in a more complicated proof of knowledge, the
keys could be extracted by rewinding, with the same result. Furthermore, an extractable
knowledge-of-secret-key protocol is not required; the multisignature we propose can be
proved secure if users provide a lighter-weight “proof of possession” of their private
keys. Indeed, Ristenpart and Yilek [41, Sect. 4.2] provide an efficient non-interactive
proof-of-possession scheme for our Waters-signature based multisignature; the proof
of possession is essentially a Waters signature on the user’s public key using a second
set of Waters hash exponents shared by all users. Ristenpart and Yilek’s Theorem 4.2
shows that our multisignature, augmented by their proof of possession, is secure without
requiring adversaries to disclose their secret keys.

More formally, the advantage of an adversary in forging a multisignature is the prob-
ability that the challenger outputs 1 in the following game:

Setup. The challenger generates a challenge keypair (pk, sk)
R←Kg. It runs the adver-

sary, providing to it the public key pk.
Signature queries. The adversary can request ordinary signatures under the challenge

key and a message M of his choice. The challenger computes a signature σ as
Sig(sk,M) and returns σ to the adversary.
Note that no multisigning oracle is provided to the adversary. Combining individual
signatures into a multisignature requires no knowledge of secret information, and the
adversary is expected to carry this step out on its own.

Output. Finally, the adversary halts, having output a multisignature forgery σ ∗ on
some message M∗ under public keys pk∗

1, . . . ,pk∗
l ; l, the number of keys, is up to the

adversary. One of the keys, say at index i∗, must be the challenge key pk: pk∗
i∗ = pk.

For multisignatures in which the key order is not important (such as our proposed
scheme, below) we may assume, without loss of generality, that i∗ = 1.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 353

In addition, to implement key certification, we require the adversary to emit the pri-
vate keys {sk∗

i }i �=i∗ for all keys except the challenge key.6

If no key appears more than once in the key list {pk∗
i }; if the challenge key appears

in the key list {pk∗
i } at some index i∗; if each of the other public keys matches the

corresponding private key; if the adversary did not query the signing oracle at M∗;
and if the multisignature verifies (i.e., MVf({pk∗

i }li=1,M
∗, σ ∗) = 1), the challenger

outputs 1; otherwise, the challenger outputs 0.

A multisignature scheme is (t, qS, ε)-unforgeable if no t-time adversary making
qS signing queries can win the above game with probability more than ε.

4.3. Our Scheme

We describe the multisignature obtained from the Waters signature scheme. In this
scheme, all users share the same random generators u′, u1, . . . , uk , which are in-
cluded in the system parameters. Our scheme is a five-tuple of algorithms WM =
(WM.Kg,WM. Sig,WM.Vf,WM.Comb,WM.MVf), which behave as follows.

WM.Kg, WM.Sig, WM.Vf. Same as W.Kg, W.Sig, and W.Vf, respectively.
WM.Comb({pki , σi}li=1,M). For each user in the multisignature the algorithm takes

as input a public key pki and a signature σi . All these signatures are on a single
message M . For each i, parse user i’s public key pki as Ai ∈ GT and her signature σi

as (S
(i)
1 , S

(i)
2) ∈ G

2; parse the message M as a bitstring (m1, . . . ,mk) ∈ {0,1}k . Check
that no public key occurs twice in {pki}, and verify each signature using WM.Vf;
if some key is repeated or any signature is invalid, output ⊥ and halt. Otherwise,
compute

S1 ←
l∏

i=1

S
(i)
1 and S2 ←

l∏

i=1

S
(i)
2 . (6)

The multisignature is σ = (S1, S2); output it and halt.
WM.MVf({pki}li=1,M,σ). For each user in the multisignature, the algorithm takes a

public key pki . The algorithm also takes a purported multisignature σ on a mes-
sage M . Parse user i’s public key pki as Ai ∈ GT, the message M as a bitstring
(m1, . . . ,mk) ∈ {0,1}k , and the multisignature σ as (S1, S2) ∈ G

2. Verify that no key
occurs twice in {pki} and that

e(S1, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1
?=

l∏

i=1

A(i) (7)

holds; if so, output valid; if not, output invalid.

6 A private key matches a public key if (pk, sk) is in the image of Kg. For some signature schemes (in-
cluding the multisignatures we propose—see below), it is possible to check this relation directly. For others,
the requirement of private key disclosure should be implemented by having the adversary disclose the coins
it provided to the key generation algorithm.

354 S. Lu et al.

It is clear that if all signatures verify individually, the multisignature formed by their
product also verifies according to (7). Note that we have

(S1, S2) =
(

g
∑l

i=1 α(i) ·
(

u′
k∏

j=1

u
mj

j

)∑l
i=1 r(i)

, g
∑l

i=1 r(i)

)

,

where r(i) is the randomness used by user i to generate her signature.

Incremental Combination of Multisignatures In the discussion above, we considered
signature combination in a multisignature as a one-time operation: The signature com-
bination algorithm provides no way to add additional signatures to an existing mul-
tisignature or combine two multisignatures (on the same message) into one. In fact,
our scheme does allow such incremental signature combination, as do other multisig-
natures, including the Boldyreva’s multisignature [7], as well as the BGLS aggregate
signature [11]. See Mykletun, Narasimha, and Tsudik [32] for a discussion. In the case
of multisignatures, this is simply an interface issue. The security model and the proof
of security need not change.

4.4. Proof of Security

Theorem 4.1. The WM multisignature scheme is (t, q, ε)-unforgeable if the Waters
signature scheme is (t ′, q ′, ε′)-unforgeable, where

t ′ = t + O(q) and q ′ = q and ε′ = ε.

Proof. Suppose A is an adversary that can forge multisignatures, and (t, q, ε)-breaks
the WM scheme. We show how to construct an algorithm B that (t ′, q, ε)-breaks the
Waters signature scheme. Algorithm B is given a Waters public key A = e(g, g)α . It
interacts with A as follows.

Setup. Simulator B invokes A, providing to it the public key A.
Signature queries. Algorithm A requests a signature on some message M under the

challenge key A. Algorithm B requests a signature on M in turn from its own signing
oracle, and returns the result to the adversary.

Output. Finally, A halts, having output a signature (S∗
1 , S∗

2) on some message M∗,
along with public keys A(1), . . . ,A(l) for some l, where A(1) equals A, the challenge
key. It must not previously have requested a signature on M∗. In addition, it outputs
the private keys α(2), . . . , α(l) for all keys except the challenge key.
Algorithm B checks that A(1) equals A, the challenge key; that each private key

matches the corresponding public key, by verifying that A(i) ?=e(g, g)α
(i)

holds for
2 ≤ i ≤ l; that no key that occurs appears twice in {A(i)}; and (using WM.MVf) that
(S∗

1 , S∗
2) is a valid signature on M∗ under keys {A(i)}, and that A did not query its

signing oracle at M∗. If any of these conditions is not satisfied, A has failed to provide
a valid forgery, and B declares failure as well.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 355

Otherwise, algorithm B sets S ← S∗
1/

∏l
i=2 gα(i)

. Then we have

e(S, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1

= e(S1, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1

·
l∏

i=2

e(g, g)−α(i)

=
l∏

i=1

A(i) ·
l∏

i=2

A−(i) = A(1) = A,

so (S,S2) is a valid Waters signature on M∗ under the challenge key A. Since A
did not make a signing query to the challenger at M∗, neither did B make a signing
query to its own signing oracle at M∗, and the forgery is thus nontrivial. Algorithm B
outputs (S,S2) and halts.

Thus B succeeds whenever A does. Algorithm B makes exactly as many signing
queries as A does. Its running time is the same as A’s, plus the time required for setup
and output—both O(1)—and to handle A’s signing queries—O(1) for each of at most
q queries. �

5. Verifiably Encrypted Signatures

A verifiably encrypted signature on some message attests to two facts:

• that the signer has produced an ordinary signature on that message; and
• that the ordinary signature can be recovered by the third party under whose key the

signature is encrypted.

Such a primitive is useful for contract signing, in a protocol called optimistic fair ex-
change [1,2]. Suppose both Alice and Bob wish to sign some contract. Neither is willing
to produce a signature without being sure that the other will. But Alice can send Bob
a verifiably encrypted signature on the contract. Bob can now send Alice his signature,
knowing that if Alice does not respond with hers he can take Alice’s verifiably encrypted
signature and the transcript of his interaction with Alice to the third party—called the
adjudicator—who will reveal Alice’s signature.

Boneh et al. [11] introduced verifiably encrypted signatures, gave a security model
for them, and constructed a scheme satisfying the definitions, based on BLS signatures.

The security model proposed by Boneh et al. has been revisited by Hess [23] and by
Rückert and Schröder [42]. We prove security in a variant of Boneh et al.’s model that
takes into account the “extractability” requirement of Rückert and Schröder.

Below, we recall the definition of verifiably encrypted signatures, formally specify the
security model we use, and describe the verifiably encrypted signature scheme obtained
from the Waters signature scheme. Unlike the scheme of Boneh et al., ours is secure
without random oracles.

5.1. Definitions

A verifiably encrypted signature includes seven algorithms. Three of these, Kg, Sig,
and Vf, are analogous to those in ordinary signature schemes. The randomized key-
generation algorithm Kg outputs a public–private keypair (pk, sk). The randomized

356 S. Lu et al.

signing algorithm Sig takes a private key sk and a message M ∈ {0,1}∗ and outputs
a signature σ . The verification algorithm Vf takes a public key pk, a message M , and a
signature σ , and outputs a bit: 1 if the signature is valid, 0 otherwise.

The remaining four algorithms provide the verifiably encrypted signature function-
ality, and bring into the system the trusted third party, which is called the adjudica-
tor. The randomized algorithm AKg generates the adjudicator’s public–private keypair,
(apk,ask). The adjudicator’s public key is made available to users who use it to generate
verifiably encrypted signatures. The randomized algorithm for this, ESig, takes a user’s
private key sk, an adjudicator’s public key apk, and a message M ∈ {0,1}∗, and outputs
a verifiably encrypted signature η. Other users then use the verification algorithm EVf to
check the validity of η. This algorithm takes the signer’s public key pk, the adjudicator’s
public key apk, the message M , and the purported verifiably encrypted signature η, and
outputs a bit: 1 if the verifiably encrypted signature is valid, 0 otherwise. Finally, the ad-
judication algorithm, Adj, is used by the adjudicator to recover the (ordinary) signature
encrypted in η. The algorithm takes the adjudicator’s private key ask, the signer’s public
key pk, the message M , and the purported encrypted signature η, and outputs either the
underlying ordinary signature σ or ⊥ if extraction failed.

A verifiably encrypted signature, instantiated using these algorithms, is correct if all
properly-generated signatures verify, and properly-generated verifiably encrypted sig-
natures verify (as verifiably encrypted signatures) and, when extracted, lead to ordinary
signatures that verify (as ordinary signatures). More formally, for all signer keypairs
(pk, sk) output by Kg, for all adjudicator keypairs (apk,ask) output by AKg, and for
all M , the following hold with probability 1:

Vf
(
pk,M,Sig(sk,M)

) = 1,

EVf
(
pk,apk,M, ESig(sk,apk,M)

) = 1,

Vf
(
pk,M,Adj

(
ask,pk,M,ESig(sk,apk,M)

)) = 1.

5.2. Security Model

Informally, we would like a secure verifiably encrypted signature scheme to satisfy, in
addition to the security required of ordinary signature schemes, the following property:
Any verifiably signature that verifies as valid (using EVf) can be adjudicated, and the
resulting signature verifies as valid (using Vf).

In the paper introducing verifiably encrypted signatures, Boneh et al. [11] specified
two formal security properties, besides correctness, intended to capture this informal
desideratum: unforgeability and opacity. Both are defined in games. In each, the ad-
versary is given a signer’s public key pk and an adjudicator’s public key apk. He is
allowed to make verifiably encrypted signing queries of the form ESig(sk,apk, ·) and
adjudication queries of the form Adj(ask,pk, ·, ·). In the unforgeability game, his goal
is to output a valid message and encrypted signature pair (M∗, η∗) such that he did not
query his signing oracle at M∗; in the opacity game his goal is to output a valid message
and ordinary signature pair (M∗, σ ∗) such that he did not query his adjudication oracle
at M∗. An adversary can thus win the opacity game either by creating a forgery for the
underlying signature scheme directly or by recovering the ordinary signature from an
encrypted signature without the adjudicator’s help.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 357

Rückert and Schröder [42] observe that, to capture the informal desideratum above,
the original security model of Boneh et al. is missing an important third property, which
they called extractability: every verifiably encrypted signature η that verifies as valid on
some message M under some user’s public key pk and adjudicator public key apk should
yield a valid signature when adjudicated: i.e., if EVf(pk,apk,M,η) accepts then so does
Vf(pk,M,σ), where σ = Adj(ask,pk,M,η). This is a stronger requirement than the cor-
rectness requirement for the verifiably encrypted signature scheme, since extractability
must hold even when η and pk are maliciously generated.

Further enhancements to the security model for verifiably encrypted signatures have
been proposed that we do not address here. Hess [23] observed that the original scheme
of Boneh et al. is vulnerable to related-key attacks on adjudication in a multi-user set-
ting, and proposed that signatures be computed over H(pk‖M) rather than H(M). An
analogous attack in this model and an analogous defense apply to our scheme. Rück-
ert and Schröder [42] further consider an attack in which a corrupt adjudicator frames
an honest user by forging a verifiably encrypted signature from that user; they argue
that our WVES verifiably encrypted signature and the verifiably encrypted signature of
Boneh et al. are secure against such framing attacks.

5.2.1. Oracles for the Security Games

We now formally define the games for unforgeability, extractability, and opacity. In

all three games, the challenger generates an adjudicator keypair (apk,ask)
R←AKg; in

the unforgeability and opacity games, the challenger also generates a signer keypair

(pk, sk)
R← Kg. The public keys from these keypairs are supplied to the adversary. The

adversary in each of the games is given access to certain of the following oracles:

Verifiably encrypted signing queries for the challenge user. The adversary provides

a message M ∈ {0,1}∗. The challenger computes σ
R←ESig(sk,apk,M) and responds

to the adversary with σ .
Adjudication queries for the challenge user. The adversary provides a message M

and a verifiably encrypted signature η. The challenger first checks that η is a valid
verifiably encrypted signature on M under the challenge user key pk and challenge
adjudicator key apk, by checking that EVf(pk,apk,M,η) = 1. If η is invalid, the
challenger responds with ⊥. Otherwise, it computes σ ← Adj(ask,pk,M,η) and re-
sponds to the adversary with σ .

Adjudication queries for an adversarially chosen user. In this variant of the previ-
ous oracle, used in the extractability game (in which the challenger does not pro-
vide the adversary with a challenge user key), the adversary provides a mes-
sage M , a user public key pk′, and a verifiably encrypted signature η. The chal-
lenger first checks that η is a valid verifiably encrypted signature on M under
the provided user key pk′ and the challenge adjudicator key apk, by checking that
EVf(pk′,apk,M,η) = 1. If η is invalid, the challenger responds with ⊥. Otherwise,
it computes σ ← Adj(ask,pk′,M,η) and responds to the adversary with σ .

Note that no ordinary signing oracle is provided for the challenge user key pk: The ad-
versary can obtain ordinary signatures under this key by calling the verifiably encrypted
signing oracle and the adjudication oracle in succession.

358 S. Lu et al.

5.2.2. Unforgeability

Formally, the forging advantage of an algorithm A against a verifiably encrypted signa-
ture scheme is the probability that the challenger outputs 1 in the following game:

Setup. The challenger generates an adjudicator keypair (apk,ask)
R←AKg and a signer

keypair (pk, sk)
R←Kg and runs algorithm A with pk and apk as input.

Verifiably encrypted signing queries for the challenge user. As specified above.
Adjudication queries for the challenge user. As specified above.
Output. Eventually, A halts, outputting a verifiably encrypted forgery η∗ on a mes-

sage M∗ under challenge keys pk and apk. If EVf(pk,apk,M∗, η∗) = 1 and the ad-
versary never queried either of its oracles at M∗, the challenger outputs 1; otherwise,
the challenger outputs 0.7

A verifiably encrypted signature scheme is (t, qS, qA, ε)-unforgeable if no t-time ad-
versary making qS verifiably encrypted signing queries and qA adjudication queries can
win the above game with probability more than ε.

5.2.3. Extractability

Formally, the extraction advantage of an algorithm A against a verifiably encrypted
signature scheme is the probability that the challenger outputs 1 in the following game:

Setup. The challenger generates an adjudicator keypair (apk,ask)
R←AKg and runs al-

gorithm A with apk as input.
Adjudication queries for an adversarially chosen user. As specified above.
Output. Eventually, A halts, outputting three values: a user public key pk∗; a mes-

sage M∗; and a verifiably encrypted forgery η∗. If η∗ is a valid verifiably encrypted
signature on M∗ under user key pk∗ and the challenge adjudication key apk (i.e.,
if EVf(pk∗,apk,M∗, η∗) = 1) but either the signature cannot be adjudicated (i.e.,
Adj(ask,pk∗,M∗, η∗) = ⊥) or, when adjudicated, is not a valid ordinary signature
(i.e., Vf(pk∗,M∗,Adj(ask,pk∗,M∗, η∗)) = 0), the challenger outputs 1; otherwise,
the challenger outputs 0.

A verifiably encrypted signature scheme is (t, qA′ , ε)-extractable if no t-time adversary
making qA′ adjudication queries for an adversarially chosen user can win the above
game with probability more than ε. A verifiably encrypted signature scheme is uncon-
ditionally extractable if no adversary can win the above game at all, regardless of how
long it runs or how many adjudication queries for an adversarially chosen user it makes.

7 Note that the important nontriviality restriction is that the adversary never queried the verifiably en-
crypted signing oracle at M∗. There is no reason for it to have queried its adjudication oracle at M∗: If the
verifiably encrypted signature provided to that oracle is valid, the adversary could instead output it, winning
the game; if the provided signature is invalid, the oracle returns ⊥; and the adversary can run the EVf algorithm
itself to check whether or not the signature is valid.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 359

5.2.4. Opacity

Finally, the opacity advantage of an algorithm A against a verifiably encrypted signature
scheme is the probability that the challenger outputs 1 in the following game:

Setup. The challenger generates an adjudicator keypair (apk,ask)
R←AKg and a signer

keypair (pk, sk)
R←Kg and runs algorithm A with pk and apk as input.

Verifiably encrypted signing queries for the challenge user. As specified above.
Adjudication queries for the challenge user. As specified above.
Output. Eventually, A halts, outputting an ordinary forged signature σ ∗ on a mes-

sage M∗ under challenge key pk. If Vf(pk,M∗, η∗) = 1 and the adversary never
queried its adjudication oracle at M∗, the challenger outputs 1; otherwise, the chal-
lenger outputs 0.

A verifiably encrypted signature scheme is (t, qS, qA, ε)-opaque if no t-time adversary
making qS verifiably encrypted signing queries and qA adjudication queries can win the
above game with probability more than ε.

Note that the opacity game also captures the unforgeability of the underlying ordi-
nary signature scheme. To transform an algorithm that wins the existential unforgeabil-
ity game (per Goldwasser, Micali, and Rivest [20]) against the underlying signature
scheme to one that wins the opacity game with the same probability, one simulates that
algorithm’s signing oracle by using the verifiably encrypted signing oracle followed by
the adjudication oracle; it is easy to see that the resulting forgery is nontrivial.

5.3. Our Scheme

Our scheme is a seven-tuple of algorithms WVES = (WVES.Kg,WVES.Sig,WVES.Vf,
WVES.AKg,WVES.ESig,WVES.EVf,WVES.Adj) that behave as follows.

WVES.Kg, WVES.Sig, WVES.Vf. These are the same as W.Kg, W. Sig, and W.Vf, re-
spectively.

WVES.AKg. Pick β
R←Zp , and set v ← gβ . The adjudicator’s public key is apk = v;

the adjudicator’s private key is ask = β .
WVES.ESig(sk,apk,M) Parse the user’s private key sk as α ∈ Zp and the adjudicator’s

public key apk as v ∈ G. To sign the message M = (m1, . . . ,mk), compute a signature

(S1, S2)
R←WVES.Sig(sk,M). Pick a random s

R← Zp , and compute

K1 ← S1 · vs and K2 ← S2 and K3 ← gs.

The verifiably encrypted signature η is the tuple (K1,K2,K3).
WVES.EVf(pk,apk,M,η). Parse the user’s public key pk as A ∈ GT, the adjudi-

cator’s public key apk as v ∈ G, and the verifiably encrypted signature η as

360 S. Lu et al.

(K1,K2,K3) ∈ G
3. Accept if the following equation holds:

e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, v)−1 ?=A, (8)

where M = (m1, . . . ,mk).
WVES.Adj(ask, pk,M,η). Parse the adjudicator’s private key, ask, as β ∈ Zp . Parse

the user’s public key pk as A ∈ GT. Parse the message M as (m1, . . . ,mk) ∈ {0,1}k .
Verify (using WVES. EVf) that the verifiably encrypted signature η is valid, and parse
it as (K1,K2,K3) ∈ G

3. Compute

S1 ← K1 · K−β

3 and S2 ← K2;

re-randomize (S1, S2) by choosing s
R←Zp and computing

S′
1 ← S1 ·

(

u′
k∏

i=1

u
mi

i

)s

and S′
2 ← S2 · gs;

and output the signature (S′
1, S

′
2).

It is easy to see that this scheme is valid, since if all parties are honest, we have, for a
verifiably encrypted signature (K1,K2,K3),

e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, v)−1

= (
e(S1, g) · e(vs, g

)) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1

· e(gs, v
)−1

= e(S1, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1

= A,

as required; and if (K1,K2,K3) is a valid verifiably encrypted signature, then

e(S1, g) · e
(

S2, u
′

k∏

i=1

u
mi

i

)−1

= (
e(K1, g) · e(K−β

3 , g
)) · e

(

K2, u
′

k∏

i=1

u
mi

i

)−1

= e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, v)−1

= A,

so the adjudicated signature is indeed a valid one.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 361

5.4. Proofs of Security

5.4.1. Unforgeability

Theorem 5.1. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
unforgeable if the Waters signature scheme is (t ′, q ′, ε′)-unforgeable, where

t ′ = t + O(qS + qA) and q ′ = qS and ε′ = ε.

Proof. We show how to turn a verifiably encrypted signature forger A into a forger B
for the underlying Waters signature scheme.

Algorithm B is given a Waters signature public key A = e(g, g)α . It picks β
R←Zp ,

sets v ← gβ , and provides the adversary A with A and v.
When A requests a verifiably encrypted signature on some message M , the chal-

lenger B requests a signature on M from its own signing oracle, obtaining a signature

(S1, S2). It picks s
R←Zp and computes

K1 ← S1 · vs and K2 ← S2 and K3 ← gs.

The tuple (K1,K2,K3) is a valid verifiably encrypted signature on M . Algorithm B
provides A with it. (Here B is simply evaluating WVES.ESig, except that it uses its
signing oracle instead of evaluating WVES. Sig directly.)

When algorithm A requests adjudication of a verifiably encrypted signature
(K1,K2,K3) on some message M under the challenge key A, B responds with
WVES.Adj(β,A,M, (K1,K2,K3)). Note that B knows the adjudicator’s private key β .

Finally, A outputs a forged verifiably encrypted signature (K∗
1 ,K∗

2 ,K∗
3) on some

message M∗ = (m∗
1, . . . ,m

∗
k). Algorithm A must never have made a verifiably en-

crypted signing query at M∗.
The challenger B computes

S∗
1 ← K∗

1 · (K∗
3

)−β and S∗
2 ← K∗

2 .

Then we have

e
(
S∗

1 , g
) · e

(

S∗
2 , u′

k∏

i=1

u
m∗

i

i

)−1

=
[

e
(
K∗

1 , g
) · e

(

K∗
2 , u′

k∏

i=1

u
m∗

i

i

)−1]

· e((K∗
3

)−β
, g

)

= e
(
K∗

1 , g
) · e

(

K∗
2 , u′

k∏

i=1

u
m∗

i

i

)−1

· e(K∗
3 , v

)−1 = A,

and (S∗
1 , S∗

2) is therefore a valid Waters signature on M∗. The last equality follows from
Equation (8). Since A did not make a verifiably encrypted signing query at M∗, neither
did B make a signing query at M∗, and the forgery is thus nontrivial. The challenger B
outputs (S∗

1 , S∗
2) and halts.

362 S. Lu et al.

Algorithm B thus succeeds whenever A does. Its running time overhead is O(1) for
each of A’s verifiably encrypted signing and adjudication queries, and for computing
the final output. �

Rückert and Schröder observe that our WVES verifiably encrypted signature has a
property they call “key independence” and prove that all key-independent verifiably
encrypted signature schemes are unforgeable if the underlying signature is unforge-
able [42]. This gives an another proof for the unforgeability of WVES.

5.4.2. Extractability

Theorem 5.2. The WVES verifiably encrypted signature scheme is unconditionally
extractable.

Proof. We show that every valid verifiably encrypted signature can always be adjudi-
cated, and that the resulting ordinary signature always verifies as valid. Winning in the
extractability game requires the adversary to produce a verifiably encrypted signature
that cannot be adjudicated to a valid signature, so what we show in fact proves that no
adversary can win the extractability game, and that the WVES scheme is uncondition-
ally extractable.

Specifically, we show that, for all adjudicator keypairs (apk,ask), all signer keys A,
all messages M , and all verifiably encrypted signatures η, whenever WVES.EVf(pk,
apk,M,η) accepts, so does WVES.Vf(pk,M,σ), where σ = WVES.Adj(ask,pk,M,η).

Let u′, u1, . . . , uk ∈ G be the shared random generators included in the system pa-
rameters. Let the adjudicator’s private key be ask = β ∈ Zp , and let his public key be
apk = v = gβ ∈ G.

Consider a public key pk = A ∈ GT, a message M = (m1, . . . ,mk) ∈ {0,1}k , and a
verifiably encrypted signature η = (K1,K2,K3) ∈ G

3. The adversary may have gener-
ated these maliciously.

By the definition of WVES.EVf, the condition that WVES.EVf(pk, apk,M,η) = 1
means that

e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, v)−1 = A.

Given the verifiably encrypted signature η, WVES.Adj chooses s
R←Zp and sets

S′
1 ← K1 · K−β

3 ·
(

u′
k∏

i=1

u
mi

i

)s

and S′
2 ← K2 · gs.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 363

We will show that the pair (S′
1, S

′
2) is a valid signature on M under key pk, as required.

Indeed,

e
(
S′

1, g
) · e

(

S′
2, u

′
k∏

i=1

u
mi

i

)−1

= e

(

K1 · K−β

3 ·
(

u′
k∏

i=1

u
mi

i

)s

, g

)

· e
(

K2 · gs, u′
k∏

i=1

u
mi

i

)−1

= e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K−β

3 , g
)

× e

((

u′
k∏

i=1

u
mi

i

)s

, g

)

· e
(

gs, u′
k∏

i=1

u
mi

i

)−1

= e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, g
β
)−1

= e(K1, g) · e
(

K2, u
′

k∏

i=1

u
mi

i

)−1

· e(K3, v)−1

= A,

where the last equality follows from (8), the verifiably encrypted signature verifica-
tion equation for (K1,K2,K3). But we have just derived (2), the verification equation
for Waters signatures, showing that (S′

1, S
′
2) is a valid Waters signature under public

key A. �

5.4.3. Opacity

For convenience, we prove opacity by reduction from the aggregate extraction assump-
tion: given (gα, gβ, gγ , gδ, gαγ+βδ), computing gαγ is hard. Coron and Naccache [16]
showed that this assumption, introduced by Boneh et al. [11], is equivalent to CDH.

Theorem 5.3 (Coron–Naccache [16]). The aggregate extraction and Computational
Diffie–Hellman problems are Karp reducible to each other with O(1) computation.8

Theorem 5.4. The WVES verifiably encrypted signature scheme is (t, qS, qA, ε)-
opaque if aggregate extraction is (t ′, ε′)-hard on G, where

t ′ = t + O(qS + qA) and ε′ = 8qA(k + 1)ε.

Proof. Given an algorithm A that breaks the opacity of the scheme, we show how to
construct an algorithm B that breaks the aggregate extraction assumption.

8 Strictly speaking, the amount of work is poly-logarithmic in the security parameter since the group
element representations grow. The number of algebraic operations is constant.

364 S. Lu et al.

The challenger B is given values gα , gβ , gγ , and gδ , along with gαγ+βδ ; its goal is
to produce gαγ . It sets v ← gβ , and A ← e(g, g)αγ .

Let λ be a parameter to be optimized later and small enough that kλ
 p. Al-

gorithm B picks κ
R←{0, . . . , k}, x′, x1, . . . , xk

R← Zλ = {0, . . . , λ − 1} and y′, y1, . . . ,

yk
R← Zp and sets

u′ ← (
gγ

)x′−κλ
gy′

and ui ← (
gγ

)xi gyi for i = 1, . . . , k.

It then interacts with A as follows.

Setup. Algorithm B gives to A the system parameters (g,u′, u1, . . . uk), the signer’s
public key A, and the adjudicator’s public key v. Note that the private signing key,
gαγ , is not known to B.

Verifiably encrypted signing queries. Algorithm A requests a verifiably encrypted
signature on M = (m1, . . . ,mk) ∈ {0,1}k under challenge key A and adjudicator
key v. Algorithm B returns to A a verifiably encrypted signature (K1,K2,K3), which

it computes by choosing r, s
R←Zp and setting

K1 ← (
gαγ+βδ

) · (gβ
)s ·

(

u′
k∏

i=1

u
mi

i

)r

and K2 ← gr and K3 ← (
gδ

) · gs.

This is a Waters signature with randomness r , encrypted with randomness δ + s; with
r and s uniformly chosen (K1,K2,K3) are distributed exactly as in the real system.

Adjudication queries. Suppose A requests adjudication on (K1,K2,K3) for message
M = (m1, . . . ,mk). Algorithm B first verifies that (K1,K2,K3) is valid and rejects it
otherwise.
Define F = −κλ + x′ + ∑k

i=1 ximi and J = y′ + ∑k
i=1 yimi ; observe that

u′ ∏k
i=1 u

mi

i = (gγ)F gJ . If F ≡ 0 mod λ algorithm B declares failure and halts.

Otherwise, it proceeds as follows. It picks r
R←Zp and sets

S1 ← (
gα

)−J/F

(

u′
k∏

i=1

u
mi

i

)r

and S2 ← (
gα

)−1/F
gr .

This is a valid Waters signature with randomness r̃ = r − α/F : observing that
u′ ∏k

i=1 u
mi

i = (gγ)F gJ , we see that

S1 = (
gα

)−J/F

(

u′
k∏

i=1

u
mi

i

)r

= gαγ
((

gγ
)F

gJ
)−α/F ((

gγ
)F

gJ
)r

= gαγ

(

u′
k∏

i=1

u
mi

i

)r̃

,

where for the second equality we have multiplied and divided by gαγ . (This is the
“Boneh–Boyen trick” [9].) Algorithm B returns (S1, S2) to A as the answer to the
adjudication query.

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 365

Note that B does not decrypt the encrypted signature (K1,K2,K3) given by A as
input to the adjudication oracle; instead, it generates a randomly-distributed valid
Waters signature on the same message. We must therefore argue that the distribu-
tion of B’s responses is the same as it would be if B performed the adjudication us-
ing WVES.Adj and the adjudicator’s private key. Theorem 5.2 shows that, whenever
(K1,K2,K3) is a valid encrypted signature on M , the output of WVES.Adj, computed

by choosing s
R←Zp and setting

S′
1 ← K1 · K−β

3 ·
(

u′
k∏

i=1

u
mi

i

)s

and S′
2 ← K2 · gs,

satisfies the Waters signature verification equation (2):

e
(
S′

1, g
) · e

(

S′
2, u

′
k∏

i=1

u
mi

i

)−1

= A. (9)

Let S′
2 = gs̃ for some s̃ ∈ Zp . (Here we are relying on the group membership test ap-

plied to K1, K2, and K3 to be sure that S′
2, computed as above, is in fact in G = 〈g〉.)

Then we can rewrite (9) as

e
(
S′

1, g
) = e

(

gαγ

(

u′
k∏

i=1

u
mi

i

)s̃

, g

)

.

Since e(·, g) is an isomorphism from G to GT (in fact, it is the Menezes–Okamoto–

Vanstone map [30]), this shows that S′
1 = gαγ (u′ ∏k

i=1 u
mi

i)
s̃
, which means that S′

1 is
a Waters signature on M , as output by W.Sig, with randomness s̃. Further, there
is a one-to-one correspondence between choices of r , r̃ , s̃, and s. Thus the three
distributions—(1) the output of B as above using the Boneh–Boyen trick; (2) the out-
put were B following WVES.Adj; and (3) the output of W.Sig on M—are all identical.

Output. Finally, algorithm A outputs a signature (S∗
1 , S∗

2) on a message M∗ =
(m∗

1, . . . ,m
∗
k); it must not have queried its adjudication oracle at M∗, which means

that M∗ differs in at least one coordinate from each message M(i) on which A
queried the adjudication oracle. Define F ∗ = −κλ + x′ + ∑k

i=1 xim
∗
i and J ∗ =

y′ + ∑k
i=1 yim

∗
i . If F ∗ �= 0, B declares failure and exits. Otherwise, we have

u′ ∏k
i=1 u

m∗
i

i = gJ ∗
, so that, by the Waters signature verification equation,

A = e
(
S∗

1 , g
) · e

(

S∗
2 , u′

k∏

i=1

u
m∗

i

i

)−1

= e
(
S∗

1 , g
) · e(S∗

2 , gJ ∗)−1

= e
(
S∗

1

(
S∗

2

)−J ∗
, g

)
,

366 S. Lu et al.

so S∗
1 (S∗

2)−J ∗
equals gαγ , which is the solution to the aggregate extraction challenge;

B outputs it and halts.

To complete the proof, we must bound the probability that B aborts.
Consider a third algorithm, B′, which is given the secret values α, β , γ , and δ from

the aggregate extraction challenge. Algorithm B′ interacts with A as algorithm B does,
except for the following differences:

1. Whenever B would have aborted, B′ instead uses its secret knowledge to compute
and return the answer; and

2. Once A terminates, B′ outputs 0 if A’s queries or Waters signature forgery would
have caused B to abort; 1 otherwise.

(Equivalently, B′ could use its secret knowledge to answer all of A’s queries; these
answers would be distributed identically to those B gives, as we have argued above.)
Clearly A cannot distinguish whether it is interacting with B or B′ so long as neither
aborts. We will give an upper bound for the probability that B′ outputs 0, which will
also bound the probability that B aborts when interacting with A.

Because algorithm B′ uses the values κ , x′, and x1, . . . , xk only after A has halted,
to decide whether the interaction would have caused B to abort, it is clear that A can
learn no information about these values. Moreover, it is only these values that determine
whether B aborts (equivalently, whether B′ outputs 0).

We will, equivalently, give a lower bound on the probability that B′ does not abort
regardless of the adversary’s sequences of message queries. Different sequences of mes-
sage queries lead to different success probabilities; the usual argument that relies on
full independence between aborts for different messages does not apply. (This is why,
in the identity-based encryption context, Waters’ original analysis required an artificial
abort stage [44]; see Bellare and Ristenpart [6] for further discussion and an improved
analysis.) Instead, we will give a lower bound on the success probability that holds
for any message sequence. Specifically, we will consider the following combinatorial
problem:

Let M∗ stand for (m∗
1, . . . ,m

∗
k) and define F ∗ = −κλ + x′ + ∑k

i=1 xim
∗
i ;

for 1 ≤ j ≤ qA, let M(j) stand for (m
(j)

1 , . . . ,m
(j)
k) and define F (j) =

−κλ + x′ + ∑k
i=1 xim

(j)
i . What is the minimum probability for any choice

of M∗ and {M(j)}1≤j≤qA
, all distinct, that F ∗ = 0 and, for 1 ≤ j ≤ qA,

F (j) �≡ 0 mod λ, where the probability is over the random choice of κ

from {0, . . . , k} and x′ and x1, . . . , xk from {0, λ − 1}?
Let E (j) be the event that F (j) ≡ 0 mod λ for each j , and let E ∗ be the event that

F ∗ ≡ 0 mod λ. Observe that Pr[E (j)] = Pr[E ∗] = 1/λ since each x′ and x1, . . . , xk is
independently random in {0, . . . , λ − 1}; furthermore, the events are pairwise indepen-
dent because the messages are all distinct, so one event in any pair will involve an

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 367

xi value not included in the other. Following Waters’ analysis, we have

Pr

[
qA∧

j=1

¬E (j) ∧ E ∗
]

= Pr

[∧

j

¬E (j)

]
· Pr

[
E ∗

∣∣
∣
∧

j

¬E (j)

]

= Pr

[∧

j

¬E (j)

]
· Pr[E ∗]

Pr[∧j ¬E (j)] · Pr

[∧

j

¬E (j)
∣∣∣ E ∗

]

≥ Pr

[∧

j

¬E (j)

]
· Pr

[
E ∗] · Pr

[∧

j

¬E (j)
∣∣∣ E ∗

]

=
(

1 − Pr

[∨

j

E (j)

])
· Pr

[
E ∗] ·

(
1 − Pr

[∨

j

E (j)
∣∣∣ E ∗

])

≥
(

1 −
∑

j

Pr
[

E (j)
]
)

· Pr
[

E ∗] ·
(

1 −
∑

j

Pr
[

E (j)
∣∣ E ∗]

)

=
(

1 − qA

λ

)(
1

λ

)(
1 − qA

λ

)
≥

(
1

λ

)(
1 − 2qA

λ

)
.

Here the second line follows from an application of Bayes’ law, the fifth from two
applications of the union bound.

Next, observe that Pr[F ∗ = 0 | ∧qA

j=1 ¬E (j) ∧ E ∗] = 1/(k + 1), since event E ∗ guar-

antees that x′ + ∑k
i=1 xim

∗
i is a multiple of λ between 0 and kλ; this is canceled out by

the −κλ term when κ has the right value, which occurs with probability 1/(k + 1) since
κ is independent of the events E ∗ and {E (i)}.

Putting this all together and fixing the parameter λ as λ = 4qA, we obtain

Pr

[

F ∗ = 0 ∧
qA∧

j=1

F (j) �≡ 0 mod λ

]

≥
(

1

k + 1

)(
1

λ

)(
1 − 2qA

λ

)
= 1

8qA(k + 1)
.

This shows that if A succeeds in breaking the opacity of the WVES verifiably en-
crypted signature with probability ε, B succeeds in breaking the aggregate extraction
assumption with probability at least ε/(8qA(k + 1)). Algorithm B’s run-time overhead
is O(1) to answer each of A’s queries and to compute the final output. �

5.5. Security of the Waters Signature

The reduction above did not require that A had requested a verifiably encrypted sig-
nature at M∗. It is easy to convert an algorithm A′ that forges the underlying Waters
signature to a WVES opacity breaker of this sort: simulate a Waters signing oracle by a
call to the verifiably encrypted signing oracle followed by a call to the adjudication ora-
cle. Combining this insight with Theorems 5.4 and 5.3 immediately gives the following
corollary:

368 S. Lu et al.

Corollary 5.5 (Waters [44]). The Waters signature scheme is (t, q, ε)-unforgeable if
Computational Diffie–Hellman is (t + O(q),8q(k + 1)ε)-hard on G. Here q is the
number of signing queries.

Identity-Based Verifiably Encrypted Signatures Bellare, Namprempre, and Neven [4]
describe a “folklore” construction for identity-based signatures in which an identity-
based signature on a message M under an identity ID consists of an ordinary signature
on M under a public key and a certificate from the central authority tying that public
key to the identity ID. As Galindo, Herranz, and Kiltz [18] observe, this construction
yields an identity-based verifiably encrypted signature if the signature on M is replaced
with a verifiably encrypted signature on M . Thus, combining our WVES verifiably
encrypted signature (at level two) with the ordinary Waters signature (at level one, for
certificates) yields an identity-based verifiably encrypted signature secure under CDH
without random oracles.

Alternatively, one could construct an identity-based verifiably encrypted signature di-
rectly using a variant of our construction. Waters’ IBE [44] can be viewed as an instance
of the Boneh–Boyen paradigm for hierarchical IBE [9]. As observed by Gentry and
Silverberg [19], a two-level HIBE gives an identity-based signature using a transform
analogous to the Naor transform from IBE to signatures [10]. Thus, in particular, the
Waters 2-HIBE yields an identity-based signature; this was formalized by Paterson and
Schuldt [39]. This Waters identity-based signature can be verifiably encrypted just as
we do with the ordinary Waters signature in our WVES construction. The resulting
scheme is an identity-based verifiably encrypted signature secure under CDH without
random oracles. Verifiably encrypted signatures in the direct construction do not include
a certificate for a Waters public key and are thus substantially shorter than those in the
generic construction described above.

6. Comparison to Previous Work

In this section, we compare the schemes we have presented to previous schemes in
the literature. For the comparison, we instantiate pairing-based schemes using Barreto–
Naehrig curves [3] with 160-bit point representation. Note that BLS-based constructions
must compute, for signing and verification, a hash function onto G. This is an expensive
operation [12, Sect. 3.2].

Sequential Aggregate Signatures We compare our sequential aggregate signature
scheme to the aggregate scheme of Boneh et al. [11] (BGLS), to the sequential ag-
gregate signature scheme of Lysyanskaya et al. [28] (LMRS), and to Neven’s sequential
aggregate signed data scheme, an improved version of LMRS [34].

We instantiate the LMRS scheme using the RSA-based permutation family with com-
mon domain devised by Hayashi, Okamoto, and Tanaka [22]. With this permutation
family, LMRS signatures do not grow by 1 bit with each signature as is the case with
the RSA-based instantiation given by Lysyanskaya et al. [28], but evaluating the per-
mutation requires two applications of the underlying RSA function. Lysyanskaya et al.
give two variants of their scheme. One places constraints on the format of the RSA keys,
thereby avoiding key certification; we call this variant LMRS-1. The other uses ordinary

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 369

Table 1. Comparison of aggregate signature schemes. Signatures are by l signers; k is the output length of
a collision resistant hash function; “R.O.” denotes if the security proof uses random oracles. Neven’s scheme

supports message recovery, which can reduce the effective signature overhead.

Scheme R.O. Sequential Key model Sig. size Key size Verification Signing

BGLS YES NO Chosen 160 bits 1920 bits l + 1 pair. 1 exp.
LMRS-1 YES YES Chosen 1024 bits 2048 bits 2l exp. verify + 1 exp.
LMRS-2 YES YES Registered 1024 bits 1024 bits 4l mult. verify + 1 exp.
Neven YES YES Chosen 1184 bits 1024 bits 2l mult. verify + 1 exp.
Ours NO YES Registered 320 bits 311040 bits 2 pair., lk/2 mult. verify + 1 exp.

RSA keys and can have public exponent e = 3 for fast verification, but requires key cer-
tification, like our scheme; we call this variant LMRS-2. Neven’s scheme improves on
that of Lysyanskaya et al.’s by removing the requirement that keys correspond to certi-
fied permutations, which allows signers to use e = 3 without key certification, and by
allowing aggregation to proceed without requiring that keys be scoped, that aggregate
signatures grow by a bit with each additional signature (as in the original Lysyanskaya
et al.’s construction), or requiring two RSA function applications per signature (as in
Lysyanskaya et al.’s construction instantiated with the Hayashi–Okamoto–Tanaka per-
mutation). The downside to Neven’s scheme is somewhat longer signatures, though
Neven’s signatures support message recovery, which can reduce the signature overhead
to as little as 160 bits.

We present the comparisons in Table 1. The Size column gives signature length at the
1024-bit security level. The Verification and Signing columns give the computational
costs of those operations; l is the number of signatures in an aggregate, and k is the
output length of a collision-resistant hash function. For the pairing-based schemes, we
assume Barreto–Naehrig [3] curves without compression of G2 element representation.

One drawback of our scheme is that a user’s public key will be quite large. If we
use a 160-bit collision resistant hash function, then keys will be approximately 160
group elements and take around 38 KB to store. While it is desirable to achieve smaller
public keys, this will be acceptable in many settings such as SBGP where achieving the
signature size is a much more important consideration than the public key size. (The
routers participating in BGP are all known to each other and can distribute their public
keys ahead of any SBGP conversation.) Additionally, Naccache [33] and Chatterjee and
Sarkar [15] independently proposed ways to achieve shorter public keys in the Waters
signature scheme. Using these methods we can also achieve considerably shorter public
keys. Finally, there are shorter representations for elements of G2 than the naive choice
we consider; see Chatterjee and Menezes [14] for a discussion.

Multisignatures We compare our multisignature scheme to the Boldyreva’s multisig-
nature [7]. We present the comparisons in Table 2. The Size column gives signature
length at the 1024-bit security level. The Verification and Signing columns give the
computational costs of those operations; l is the number of signatures in a multisigna-
ture, and k is the output length of a collision-resistant hash function. Note that, unlike
with our sequential aggregate signature scheme, all users of our multisignature scheme
must share a single set of hash generators u′ and u1, . . . , uk , making public keys small.

370 S. Lu et al.

Table 2. Comparison of multisignature schemes. Multisignatures are by l signers; k is the output length of
a collision resistant hash function; “R.O.” denotes if the security proof uses random oracles.

Scheme R.O. Key model Sig. size Key size Verification Signing

Boldyreva YES Registered 160 bits 1920 bits 2 pair. 1 exp.
Ours NO Registered 320 bits 1920 bits 2 pair., k/2 mult. 1 exp.

Table 3. Comparison of verifiably encrypted signature schemes. We let k be the output length of a collision
resistant hash function. “R.O.” specifies whether the security proof uses random oracles.

Scheme R.O. Key model Sig. size Key size Verification Generation

BGLS YES Registered 320 bits 1920 bits 3 pair. 3 exp.
Ours NO Registered 480 bits 1920 bits 3 pair., k/2 mult. 4 exp.

While Neven gives a non-interactive multi-signed data scheme as a variant of his
sequential aggregate signed data scheme [34], this scheme does not appear to give a
constant-size multisignature when message recovery is not used. Accordingly, we omit
this scheme in our comparison. If message recovery is used and the messages signed
are sufficiently long, however, Neven’s scheme compares favorably to Boldyreva’s and
ours in signature overhead. Furthermore, unlike Boldyreva’s scheme and ours, Neven’s
is secure in the chosen-key model, even with small public exponent RSA keys.

Verifiably Encrypted Signatures We compare our verifiably encrypted signature
scheme to that of Boneh et al. [11] (BGLS). We present the comparisons in Table 3.
The Size column gives signature length at the 1024-bit security level. The Verification
and Generation columns give the computational costs of those operations; k is the out-
put length of a collision-resistant hash function. Note that, unlike with our sequential
aggregate signature scheme, all users of our verifiably encrypted signature scheme can
share a single set of hash generators u′ and u1, . . . , uk , making public keys small.

7. Conclusions and Open Problems

In this paper we gave the first aggregate signature scheme which is provably secure with-
out random oracles; the first multisignature scheme which is provably secure without
random oracles; and the first verifiably encrypted signature scheme which is provably
secure without random oracles. All our constructions derive from the recent signature
scheme due to Waters [44]. All our constructions are quite practical.

Signatures in our aggregate signature scheme are sequentially constructed, but knowl-
edge of the order in which messages are signed is not necessary for verification. Addi-
tionally, our scheme gives shorter signatures than in the LMRS sequential aggregate
signature scheme [28] and has a more efficient verification algorithm than the BGLS
aggregate signature scheme [11]. That gives some interesting trade-offs for practical
applications such as secure routing and proxy signatures.

Some interesting problems remain open for random-oracle–free aggregate signa-
tures:

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 371

1. To find a scheme which supports full aggregation, in which aggregate signatures
do not need to be sequentially constructed. While many applications only require
sequential aggregation, having a more general capability is desirable.

2. To find a sequential aggregate signature scheme provably secure in the chosen-key
model.

3. To find a sequential aggregate signature scheme with shorter user keys. The size
of public keys in our system reflects the size of keys in the underlying Waters
signature scheme. Naccache [33] and Chatterjee and Sarkar [15] have proposed
ways to shorten the public keys of the Waters IBE/signature scheme by trading off
parameter size with tightness in the security reduction. It would be better to have
a solution in which the public key is just a few group elements.

The last two are particularly important for certificate chain compression, proposed by
Boneh et al. [11] as an application for aggregate signatures. If keys need to be registered
with an authority, then a chaining application is impractical, and having large public
keys negates any benefit from reducing the signature size in a certificate chain since the
keys must be included in the certificates.

Acknowledgements

We thank Dan Boneh, Andrew Bortz, Xavier Boyen, Ilya Mironov, and the anonymous
Eurocrypt 2006 and Journal of Cryptology reviewers for their helpful comments.

References

[1] N. Asokan, V. Shoup, M. Waidner, Optimistic fair exchange of digital signatures. IEEE J. Sel. Areas
Commun. 18(4), 593–610 (2000)

[2] F. Bao, R. Deng, W. Mao, Efficient and practical fair exchange protocols with offline TTP, in Proceed-
ings of IEEE Security & Privacy, ed. by P. Karger, L. Gong (1998), pp. 77–85

[3] P. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, in Proceedings of SAC 2005, ed.
by B. Preneel, S. Tavares. LNCS, vol. 3897 (Springer, Berlin, 2006), pp. 319–331

[4] M. Bellare, C. Namprempre, G. Neven, Security proofs for identity-based identification and signature
schemes, in Proceedings of Eurocrypt 2004, ed. by C. Cachin, J. Camenisch. LNCS, vol. 3027 (Springer,
Berlin, 2004), pp. 268–286

[5] M. Bellare, C. Namprempre, G. Neven, Unrestricted aggregate signatures, in Proceedings of ICALP
2007, ed. by L. Arge, C. Cachin, T. Jurdziński, A. Tarlecki. LNCS, vol. 4596 (Springer, Berlin, 2007),
pp. 411–422

[6] M. Bellare, T. Ristenpart, Simulation without the artificial abort: Simplified proof and improved concrete
security for Waters’ IBE scheme, in Proceedings of Eurocrypt 2009, ed. by A. Joux. LNCS, vol. 5479
(Springer, Berlin, 2009), pp. 407–424

[7] A. Boldyreva, Threshold signature, multisignature and blind signature schemes based on the gap-Diffie–
Hellman-group signature scheme, in Proceedings of PKC 2003, ed. by Y. Desmedt. LNCS, vol. 2567
(Springer, Berlin, 2003), pp. 31–46

[8] A. Boldyreva, A. Palacio, B. Warinschi, Secure proxy signature schemes for delegation of signing rights.
Cryptology ePrint Archive, Report 2003/096 (2003). http://eprint.iacr.org/

[9] D. Boneh, X. Boyen, Efficient selective-ID secure identity based encryption without random oracles,
in Proceedings of Eurocrypt 2004, ed. by C. Cachin, J. Camenisch. LNCS, vol. 3027 (Springer, Berlin,
2004), pp. 223–238

[10] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–
615 (2003). Extended abstract in Proceedings of Crypto 2001

http://eprint.iacr.org/

372 S. Lu et al.

[11] D. Boneh, C. Gentry, B. Lynn, H. Shacham, Aggregate and verifiably encrypted signatures from bilinear
maps, in Proceedings of Eurocrypt 2003, ed. by E. Biham. LNCS, vol. 2656 (Springer, Berlin, 2003),
pp. 416–432

[12] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. J. Cryptol. 17(4), 297–319
(2004). Extended abstract in Proceedings of Asiacrypt 2001

[13] R. Canetti, O. Goldreich, S. Halevi, The random oracle methodology, revisited. J. ACM 51(4), 557–594
(2004)

[14] S. Chatterjee, A. Menezes, On cryptographic protocols employing asymmetric pairings—the role of ψ

revisited. Cryptology ePrint Archive, Report 2009/480 (2009). http://eprint.iacr.org/
[15] S. Chatterjee, P. Sarkar, Trading time for space: Towards an efficient IBE scheme with short(er) pub-

lic parameters in the standard model, in Proceedings of ICISC 2005, ed. by D. Won, S. Kim. LNCS,
vol. 3935 (Springer, Berlin, 2005), pp. 424–440

[16] J.-S. Coron, D. Naccache, Boneh et al.’s k-element aggregate extraction assumption is equivalent to
the Diffie–Hellman assumption, in Proceedings of Asiacrypt 2003, ed. by C.S. Laih. LNCS, vol. 2894
(Springer, Berlin, 2003), pp. 392–397

[17] S. Galbraith, Pairings, in Advances in Elliptic Curve Cryptography, ed. by I.F. Blake, G. Seroussi, N.
Smart. London Mathematical Society Lecture Notes, vol. 317 (Cambridge University Press, Cambridge,
2005), pp. 183–213. Chapter IX

[18] D. Galindo, J. Herranz, E. Kiltz, On the generic construction of identity-based signatures with additional
properties, in Proceedings of Asiacrypt 2006, ed. by X. Lai, K. Chen. LNCS, vol. 4284 (Springer, Berlin,
2006), pp. 178–193

[19] C. Gentry, A. Silverberg, Hierarchical ID-based cryptography, in Proceedings of Asiacrypt 2002, ed. by
Y. Zheng. LNCS, vol. 2501 (Springer, Berlin, 2002), pp. 548–566

[20] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput. 17(2), 281–308 (1988)

[21] J. Groth, R. Ostrovsky, A. Sahai, Perfect non-interactive zero knowledge for NP, in Proceedings of
Eurocrypt 2006, ed. by S. Vaudenay. LNCS, vol. 4004 (Springer, Berlin, 2006), pp. 339–358

[22] R. Hayashi, T. Okamoto, K. Tanaka, An RSA family of trap-door permutations with a common domain
and its applications, in Proceedings of PKC 2004, ed. by F. Bao, R.H. Deng, J. Zhou. LNCS, vol. 2947
(Springer, Berlin, 2004), pp. 291–304

[23] F. Hess, On the security of the verifiably encrypted signature scheme of Boneh, Gentry, Lynn and
Shacham. Inf. Process. Lett. 89(3), 111–114 (2004)

[24] K. Itakura, K. Nakamura, A public-key cryptosystem suitable for digital multisignatures. NEC J. Res.
Dev. 71, 1–8 (1983)

[25] S. Kent, C. Lynn, K. Seo, Secure border gateway protocol (secure-BGP). IEEE J. Sel. Areas Commun.
18(4), 582–592 (2000)

[26] N. Koblitz, A. Menezes, Pairing-based cryptography at high security levels, in Proceedings of Cryptog-
raphy and Coding 2005, ed. by N. Smart. LNCS, vol. 3796 (Springer, Berlin, 2005), pp. 13–36

[27] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters, Sequential aggregate signatures and multisigna-
tures without random oracles, in Proceedings of Eurocrypt 2006, ed. by S. Vaudenay. LNCS, vol. 4004
(Springer, Berlin, 2006), pp. 465–485

[28] A. Lysyanskaya, S. Micali, L. Reyzin, H. Shacham, Sequential aggregate signatures from trapdoor
permutations, in Proceedings of Eurocrypt 2004, ed. by C. Cachin, J. Camenisch. LNCS, vol. 3027
(Springer, Berlin, 2004), pp. 74–90

[29] M. Mambo, K. Usuda, E. Okamoto, Proxy signatures for delegating signing operation, in Proceedings
of CCS 1996, ed. by L. Gong, J. Stearn (ACM, New York, 1996), pp. 48–57

[30] A. Menezes, T. Okamoto, P. Vanstone, Reducing elliptic curve logarithms to logarithms in a finite field.
IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

[31] S. Micali, K. Ohta, L. Reyzin, Accountable-subgroup multisignatures (extended abstract), in Proceed-
ings of CCS 2001, ed. by P. Samarati (ACM, New York, 2001), pp. 245–254

[32] E. Mykletun, M. Narasimha, G. Tsudik, Signature bouquets: Immutability for aggregated/condensed
signatures, in Proceedings of ESORICS 2004, ed. by P. Ryan, P. Samarati. LNCS, vol. 3193 (Springer,
Berlin, 2004), pp. 160–176

[33] D. Naccache, Secure and practical identity-based encryption. Cryptology ePrint Archive, Report
2005/369 (2005). http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures 373

[34] G. Neven, Efficient sequential aggregate signed data, in Proceedings of Eurocrypt 2008, ed. by N. Smart.
LNCS, vol. 4965 (Springer, Berlin, 2008), pp. 52–69

[35] D. Nicol, S. Smith, M. Zhao, Evaluation of efficient security for BGP route announcements using par-
allel simulation. Simul. Model. Pract. Theory 12, 187–216 (2004)

[36] K. Ohta, T. Okamoto, Multisignature schemes secure against active insider attacks. IEICE Trans. Fun-
dam. E82-A(1), 21–31 (1999)

[37] T. Okamoto, A digital multisignature scheme using bijective public-key cryptosystems. ACM Trans.
Comput. Syst. 6(4), 432–441 (1988)

[38] K. Paterson, Cryptography from pairings, in Advances in Elliptic Curve Cryptography, ed. by I.F. Blake,
G. Seroussi, N. Smart. London Mathematical Society Lecture Notes, vol. 317 (Cambridge University
Press, Cambridge, 2005), pp. 215–251. Chapter X

[39] K. Paterson, J. Schuldt, Efficient identity-based signatures secure in the standard model, in Proceedings
of ACISP 2006, ed. by L. Batten, R. Safavi-Naini. LNCS, vol. 4058 (Springer, Berlin, 2006), pp. 207–
222

[40] Y. Rekhter, T. Li, S. Hares, A Border Gateway Protocol 4 (BGP-4). RFC 4271 (draft standard), Jan.
2006

[41] T. Ristenpart, S. Yilek, The power of proofs-of-possession: securing multiparty signatures against rogue-
key attacks, in Proceedings of Eurocrypt 2007, ed. by M. Naor. LNCS, vol. 4515 (Springer, Berlin,
2007), pp. 228–245

[42] M. Rückert, D. Schröder, Security of verifiably encrypted signatures and a construction without random
oracles, in Proceedings of Pairing 2009, ed. by H. Shacham, B. Waters. LNCS, vol. 5671 (Springer,
Berlin, 2009), pp. 17–34

[43] H. Shacham, New paradigms in signature schemes. Ph.D. thesis, Stanford University, 2005
[44] B. Waters, Efficient identity-based encryption without random oracles, in Proceedings of Eurocrypt

2005, ed. by R. Cramer. LNCS, vol. 3494 (Springer, Berlin, 2005), pp. 114–127

	Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Signatures Without Random Oracles
	Abstract
	Introduction
	Previous Publication

	Preliminaries
	Groups with Efficiently Computable Bilinear Maps
	Asymmetric Pairings and Short Representations
	Group Membership Tests

	The Waters Signature Scheme

	Sequential Aggregate Signatures
	Definitions and Security Model
	The Sequential Aggregate Certified-Key Model

	Our Scheme
	Signature Form
	Multiple Messages from One Signer
	Performance

	Proof of Security
	A More Efficient Variant in the Random Oracle Model

	Multisignatures
	Definitions
	Security Model
	Our Scheme
	Incremental Combination of Multisignatures

	Proof of Security

	Verifiably Encrypted Signatures
	Definitions
	Security Model
	Oracles for the Security Games
	Unforgeability
	Extractability
	Opacity

	Our Scheme
	Proofs of Security
	Unforgeability
	Extractability
	Opacity

	Security of the Waters Signature
	Identity-Based Verifiably Encrypted Signatures

	Comparison to Previous Work
	Sequential Aggregate Signatures
	Multisignatures
	Verifiably Encrypted Signatures

	Conclusions and Open Problems
	Acknowledgements
	References

