J. Cryptol. (2013) 26: 375-441

DOL: 10.1007/500145-012-9127-4 Journal of

CRYPTOLOGY

Polynomial Runtime and Composability

Dennis Hofheinz

Karlsruhe Institute of Technology, Karlsruhe, Germany
Dennis.Hofheinz@cwi.nl

Dominique Unruh

University of Tartu, Tartu, Estonia

Jorn Miiller-Quade

Karlsruhe Institute of Technology, Karlsruhe, Germany

Communicated by Ran Canetti.

Received 14 January 2009
Online publication 17 August 2012

Abstract. We devise a notion of polynomial runtime suitable for the simulation-
based security analysis of multi-party cryptographic protocols. Somewhat surprisingly,
straightforward notions of polynomial runtime lack expressivity for reactive tasks
and/or lead to an unnatural simulation-based security notion. Indeed, the problem has
been recognized in previous works, and several notions of polynomial runtime have
already been proposed. However, our new notion, dubbed reactive polynomial time, is
the first to combine the following properties:

— itis simple enough to support simple security/runtime analyses,

— it is intuitive in the sense that all intuitively feasible protocols and attacks (and
only those) are considered polynomial-time,

— it supports secure composition of protocols in the sense of a universal composi-
tion theorem.

We work in the Universal Composability (UC) protocol framework. We remark that
while the UC framework already features a universal composition theorem, we develop
new techniques to prove secure composition in the case of reactively polynomial-time
protocols and attacks.

Key words. Universal composability, Polynomial runtime, Multi-party protocols,
Protocol composition.

1. Introduction

1.1. Introduction to the Problem

The security of cryptographic protocols is often based on the hardness of certain com-
putational problems, e.g., inverting a given trapdoor one-way permutation. Breaking the

© International Association for Cryptologic Research 2012

mailto:Dennis.Hofheinz@cwi.nl

376 D. Hotheinz, D. Unruh, and J. Miiller-Quade

protocol security then requires solving the underlying computational problem. To prove
this, one generally considers reductions; i.e., one translates a successful cryptographic
attack on the protocol security into an algorithm that solves the underlying computa-
tional problem. For such a reduction to work, the complexity of the protocol runs must
be bounded, so that the protocol situation can be translated into the setting in which the
computational assumption is formulated. Typically, computational assumptions are for-
mulated against algorithms which are probabilistic polynomial-time. That means, one
usually assumes that an arbitrary but fixed polynomial upper-bounds the runtime of the
algorithm.

Thus it is not merely of aesthetic interest to find a notion that captures the notion of
polynomial-time complexity for cryptographic protocols. It is also a practical necessity
to conduct security proofs.

Our goal in this contribution is to find a useful and meaningful notion of polynomial-
time complexity for cryptographic protocols that matches the intuition of what is fea-
sible. In particular, the induced security notion should be useful when analyzing the
composition of protocols.

More specifically, we endeavor to find a notion of polynomial time together with a
variant of the UC security notion such that the following requirements are fulfilled.

Flexibility: All “intuitively feasible” protocols and protocol tasks (and only those)
should be considered polynomial-time. In particular, natural protocol tasks like se-
cure channels should be polynomial-time and should not be excluded for formal rea-
sons.

Soundness: All “intuitively feasible” attacks (i.e., adversaries) should be considered
polynomial-time. Otherwise, we would have no guarantee that a secure protocol will
withstand real-world attacks. In particular, in the context of universal composability
the very important “dummy adversary” should be polynomial-time.

Completeness: Only “intuitively feasible” attacks should be considered polynomial-
time. Otherwise, the resulting security notion would be too strong and the security of
protocols could not be reduced to computational hardness assumptions.

Composability: The security notion should support secure composition of an arbitrary
number of concurrent protocol instances in arbitrary contexts (universal composi-
tion).

Simplicity: The notion should be easy to formulate, and for all practical cases, it should
be easy to decide whether a protocol or attack runs in polynomial time.

Note that flexibility can be seen as a dual to soundness and completeness. In particu-
lar, flexibility captures the feasibility of protocols, while soundness resp. completeness
capture the feasibility of attacks. Thus, this distinction distinguishes requirements on
algorithms from requirements on adversaries.

The UC Framework Since we strive for composability, we work in the Universal Com-
posability (UC) protocol framework [5,8].! The UC framework [5,8] defines the secu-
rity of a protocol (often called the real protocol) by comparison with an ideal protocol.

! We stress that our observations and results apply as well in any other protocol framework in which
security is defined through an interactive simulation. In particular, our results also apply in the frameworks
of reactive simulatability (RSIM) [4,29], SPPC [14], inexhaustible interactive Turing machines (IITMs) [26],
Task-probabilistic input/output automata (PIOA) [11,12], and environmental security [19, Sect. 7.7.2].

Polynomial Runtime and Composability 377

The ideal protocol usually comprises only a single trusted machine, called an ideal func-
tionality, which is secure by construction. The ideal protocol can be thought of as the
specification of the protocol task that should be achieved by the real protocol. In the UC
framework, the real protocol is considered to be a secure implementation of the ideal
protocol if only those attacks are possible in the real protocol that are also possible in
the ideal protocol. More precisely, for any adversary that interacts with (attacks) the real
protocol, there is a corresponding adversary (the simulator) that interacts with the ideal
protocol such that no protocol environment interacting with both the protocol and the
adversary can distinguish between an execution of the real and an execution of the ideal
protocol. In this case we say that the real protocol emulates the ideal protocol. To be
able to use computational assumptions in the protocol design, one usually requires the
adversary, the simulator, the environment, and both the ideal and the real protocol to be
polynomial-time.

Since ideal functionalities can model very different protocol tasks, the UC frame-
work is very versatile. Furthermore, it gives very strong composability guarantees: If a
protocol 7w emulates a protocol ¢, and a protocol p that uses the ideal protocol ¢ as a
subprotocol emulates some ideal functionality F, then after replacing ¢ by its imple-
mentation 7, p still emulates F. This enables the modular design of security protocols.

We give a detailed overview of the UC framework in Sect. 2.

1.2. Our Work

Our Approach: Reactively Polynomial-Time Protocols We propose a new notion of
polynomial runtime for cryptographic protocols, that of reactive polynomial time. The
basic intuition behind our notion is that a protocol should be considered polynomial-
time as long as it is not possible to make it run more than a polynomial number of steps.
However, the precise polynomial bounding the number of steps should depend on the
context in which the protocol runs. For example, if the protocol runs in a context that
gives extremely long input, the protocol should be allowed to run longer. On the other
hand, we should not allow contexts that input messages of superpolynomial length; it
would be too restrictive to require that the protocol run in polynomial time on super-
polynomial inputs. Thus we restrict the contexts to a priori polynomial-time machines,
i.e., machines whose running time, in any situation, is bounded by a fixed polynomial
(depending only on the machine). Note that a priori polynomial time is the classical
notion of polynomial time for reactive machines, employed, e.g., in [5,29]. We then get
the following definition of reactive polynomial time.

Definition 1 (Reactive polynomial time (informal)). A protocol 7 runs in reactive
polynomial time iff for any a priori polynomial-time machine Z, there is a polynomial
P, such that the network 7w U{Z} (in which Z interacts with) runs, with overwhelming
probability, at most p steps.

It is easy to see that according to this definition, the polynomial p bounding the
running time of 7 may depend on Z (and thus be large enough so that & can process
all inputs coming from Z). On the other hand, since Z is a priori polynomial-time, 7
is not required to run in polynomial time on superpolynomially long inputs or on inputs
that are infeasible to find.

378 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Notice that we only require w U {Z} to have runtime p with overwhelming proba-
bility, not with probability 1. This may seem like an unnecessary complication, yet this
relaxation is essential to allow for a composition theorem; see Sect. 9.1 for a detailed
explanation and proof. (We remark, however, that it is not essential whether the consid-
ered protocol context is polynomial-time or only polynomial-time with overwhelming
probability; see Sect. 4, p. 403 for an explanation.)

It should also be noted that being reactively polynomial-time is a property of the
protocol as a whole, not of the individual machines (unlike the property of being a priori
polynomial-time).

Given the notion of reactive polynomial time, we can now rephrase the notion of UC
with respect to reactively polynomial-time protocols.

Definition 2 (UC with respect to reactive polynomial time (informal)). We call an
adversary A valid for a protocol 7 iff w U { A} (the protocol 7 running together with
the adversary .A) is reactively polynomial-time, and analogously for simulators.

Let 7 and ¢ be protocols. We say that = emulates ¢ iff for any adversary A that is
valid for 7z there is a simulator S that is valid for ¢ such that no a priori polynomial-time
environment Z can distinguish between 7 U { A} and ¢ U {S}.

Notice that the only difference from the classical notion of UC [5] is that we do not
quantify over a priori polynomial-time adversaries and simulators, but instead over valid
adversaries and simulators, i.e., over adversaries and simulators that keep the protocol
reactively polynomial-time.

The advantage of this notion is that it behaves better than classical UC when the
protocols are reactive polynomial-time (and not just a priori polynomial-time). For ex-
ample, we get the following composition theorem.

Theorem 3 (Universal composition theorem (informal)). Let 7, ¢, and p be protocols.
Let p™ denote the protocol where p invokes an arbitrary number of instances of 7w as
subprotocols, and analogously for p® . Assume that w and p™ are reactively polynomial-
time, and that w emulates ¢. Then p™ emulates p?.

We stress that with respect to classical notions of UC, this theorem only holds if
7 and ¢ are a priori polynomial time. Yet, considering only a priori polynomial-time
protocols would exclude many natural protocols (see Sect. 1.4).

There is one noteworthy limitation to our composition theorem: It takes as an explicit
assumption that p7 is reactively polynomial-time. Thus, in order to apply the theorem,
one needs to manually verify that the composed protocol p” is reactively polynomial-
time in order to derive its security with the composition theorem. Fortunately, in most
cases the runtime of a protocol is simple to analyze, while its security is the interesting

property.

Simplicity We claim that our definitions are quite simple. Of course, simplicity is both
a matter of taste, as well as a matter of comparison with other notions. The most basic
notion, a priori polynomial time (which is used in [5,29]), is arguably simpler than our
notion, but it excludes protocols whose running time depends on the input length, and

Polynomial Runtime and Composability 379

it is subject to certain technical artifacts (see our discussion in Sect. 1.4). Prior notions
that try to solve the problems of a priori polynomial time are, in our opinion, more com-
plicated than those involving reactive polynomial time. Often, they have to introduce
distinctions of various types of channels between machines; the maximum allowed run-
ning time depends in different ways on the amount of communication on the different
channels types. (Canetti [8] distinguishes six types of tapes for input/output, subrouting
invocation/results, and incoming/outgoing messages; Hofheinz et al. [21] introduces
a special connection between environment and adversary that is counted differently.)
Other approaches introduce some methods of filtering unneeded incoming communi-
cation so that it does not waste runtime. (Backes [1], and Backes et al. [4] introduce
length functions that allow one to close down a connection; Datta et al. [14] extends
this approach to guards, i.e., general-purpose filters on incoming connections.) Other
approaches use artificial padding of inputs or outputs in order to satisfy certain length
requirements that come from the definition of polynomial time. (In some notions, a
functionality leaking some length / can be securely realized if it sends / in unary encod-
ing while it cannot be realized if it sends / in binary; see Sect. 8. See also our discussion
on padding in Sect. 3.) Our notion of reactive polynomial time does not need any such
technical tools in the network and machine model.

Of course, the question remains of whether it is simple to check if a given proto-
col is reactive polynomial-time; in general, this is an undecidable problem. (Even for
a priori polynomial time, this problem is undecidable.) We believe, however, that for a
natural protocol, it is easy to see that it is reactively polynomial-time: In most cases,
there will be a (simple-to-find) upper bound on the running time that is a polynomial
of the total length of the protocol inputs. Deciding whether a given adversary is valid
may be harder. In contrast to protocols, we cannot expect that adversaries are in any
way natural. Fortunately, we show that, without loss of generality, one can assume a
particular adversary, the dummy adversary (Theorem 19). This adversary just forwards
all messages; its running time is trivial to analyze.

Flexibility 'We claim that the notion of a reactively polynomial-time protocol captures
all intuitively feasible protocol tasks (and only those). We admit that such a claim is
hard to formally substantiate, since the set of intuitively feasible protocol tasks is not
formally defined. However, it is clear that the notion of reactive polynomial time gen-
eralizes a priori and a posteriori polynomial runtime bounds as discussed above. Fur-
thermore, it is easily verified that the problematic use cases described in Sect. 1.3 below
can be modeled as reactively polynomial-time protocols (resp. ideal functionalities).
On the other hand, a reactively polynomial-time protocol along with a valid adversary
behaves efficiently in any given a priori polynomial-time protocol context (except with
small probability). In particular, such a system can be simulated (up to negligible error)
inside one single machine that is polynomial-time in the usual, static sense (i.e., a priori
polynomial). Hence, every reactively polynomial-time protocol is efficient in this sense.
Summarizing, we claim that our notion is flexible.

Soundness and Completeness We consider only adversaries that are valid, i.e., adver-
saries that, together with the protocol, are reactively polynomial-time. This implies that
the adversary never (up to negligible probability) runs more than a polynomial number

380 D. Hotheinz, D. Unruh, and J. Miiller-Quade

of steps (Lemma 12). Thus only “intuitively feasible” attacks are considered; we achieve
completeness. On the other hand, if the protocol is reactively polynomial-time, all rea-
sonable adversaries are considered: We consider all adversaries that do not make the
protocol lose its reactive polynomial time property, i.e., all adversaries that do not “in-
troduce” superpolynomial-time computations. Thus all “intuitively feasible” attacks are
covered; we achieve soundness. Moreover, we stress that none of the technical artifacts
discussed in Sect. 1.4 occur. In particular, neither adversaries nor protocol machines can
be “exhausted”; that is, we do not get the artificial condition that a machine is forced
to ignore messages because the environment sends too many inputs. Additionally, in
our notion the important “dummy adversary” is valid (Theorem 19), which is important
both for composability and soundness. On the other hand, using reactively polynomial-
time adversaries induces a security notion that lies (strictly) in between the traditional
UC security notion and the relaxation of UC discussed in [27] (Theorem 41). Thus, our
new notion still provides a reasonable and useful definition of security.

Composability Concerning composability, our notion has a certain (unavoidable) lim-
itation: If two networks Si, S are both reactively polynomial-time, the network S U S
consisting of all machines in §; and S is not necessarily reactively polynomial-time.
This stands in contrast to other notions of polynomial time such as a priori polynomial
time. Yet, we claim that this limitation is an unavoidable consequence of the flexibil-
ity requirement. There are machines that, on their own, would be intuitively consid-
ered to be polynomial-time, yet the composition of several such machines would not
be polynomial-time with respect to any reasonable definition. For example, two ma-
chines that echo all incoming data should be polynomial-time individually, but if they
are combined to echo each other’s messages, their running time is unbounded. Since
the flexibility requirement demands that such (intuitively polynomial-time) machines are
considered polynomial-time, it is not possible to satisfy flexibility and composability si-
multaneously.

However, the most important aspect of the composability requirement is satisfied by
our notion, namely that security (as opposed to running time) is preserved under com-
position.

We demonstrate that our notion induces a composable security notion by proving the
universal composition theorem (Theorems 3 and 21). This proof is considerably more
complex than proofs of composability for previous notions of polynomial runtime (such
as, e.g., the proofs from [3,5,8,14]). Ironically, this complexity seems to result from the
simplicity of our notion; in the proof, it is necessary to prove that certain combinations of
protocol pieces are still reactively polynomial-time. The good news is that these results
do not have to be proven during the design of the protocol (except for the condition
that p” is reactively polynomial-time). As a consequence, our composition theorem
needs only relatively few assumptions, which might come in very handy during protocol
design. We now provide further details.

Common Structure of (Universal) Composition Theorems Stated very briefly, a (uni-
versal) composition theorem states that whenever one protocol instance is secure, then
multiple protocol instances are also secure, even when used in arbitrary contexts. In the
UC framework, security means existence of a simulator. Hence, to prove a UC com-
position theorem, one usually (explicitly) constructs a simulator S* for many protocol

Polynomial Runtime and Composability 381

instances from a simulator S for one protocol instance. This construction usually (e.g.,
[3,5]) is conceptually simple: S* is the combination of multiple instances of S.> To
prove security, one must show that

1. the constructed simulator S is valid (in the sense that S fulfills the respective
polynomial-time notion), and
2. 8™ achieves a successful simulation (in the sense of the UC security definition).

The first of these properties is usually trivially verified, while the second property is
shown using a hybrid argument.

The Obstacle with Reactively Polynomial-Time Simulators In the case of reactively
polynomial-time protocols and adversaries, however, the first property (S is a valid
adversary) is not trivially verified. Concretely, as hinted above, the composition of sev-
eral reactively polynomial-time machines may no longer be reactively polynomial. As
an example, consider a “double-repeater” R that resends every incoming message twice
(i.e., on incoming message x, it sends xx). Any single such machine is clearly reac-
tively polynomial-time. However, pipelining k such machines R yields a machine R’

which, e.g., sends 12 when receiving 1. Thus, R’ is exponential-time and not reactively
polynomial-time. We stress that we consider this property of our notion of reactive
polynomial time not to be an artifact, but a necessity. The lack of composability of the
notion itself is simply the price we have to pay for completeness, i.e., for the ability to
model natural functionalities such as secure channels or (double-)repeaters. If we want
to model such machines (and this is the design decision we made), then we have to deal
with the technical consequences.

Our Techniques to Overcome the Obstacle Hence, we have to explicitly prove that the
combined simulator S* constructed in the composition is, together with the composed
protocol, reactively polynomial-time. To this end, we use not only that one simulator in-
stance S is reactively polynomial-time. We also employ the fact that S achieves UC in-
distinguishability. More concretely, we show that if S° was not reactively polynomial-
time, then we could distinguish a simulation by S from a real attack on a single protocol
instance.

We proceed as follows. In the /-th step, we consider a hybrid system H;. H; con-
sists of a fixed larger protocol p, together with [/ instances of the ideal subprotocol ¢,
each running with an instance of simulator S. (The remaining subprotocol instances
requested by p are instances of 7 running with the dummy adversary.)

Essentially, we will prove that all [ideal subprotocol simulations in H; adhere to a
single polynomial runtime bound 7 that does not depend on I. To show our claim, we
proceed by induction on /. By assumption on p” and S, we know that such a bound
T exists in Hj. Fix this bound for all /. Now assume we have proved that all ideal
simulations in H;_1 adhere to bound 7. Now consider an environment Zz* that internally
simulates H;_1, but relays one real subprotocol instance to the outside (cf. Fig. 1(c) on
p. 395). If Z/ runs with 7 and the dummy adversary, this setup equals H;_;. But if Z
runs with ¢ and S, this setup equals H;. Hence, by the induction hypothesis, Z;* will

2 Of course, we are oversimplifying here. A more accurate presentation will be given in Sect. 2.1.

382 D. Hotheinz, D. Unruh, and J. Miiller-Quade

observe that when running with 7 and the dummy adversary, all internally simulated
ideal subprotocol instances adhere to the runtime bound 7.

Since 7 emulates ¢, this implies that the same holds when Z; runs with ¢ and S.
Note the unfortunate asymmetry of this argument: We can conclude that / — 1 ideal sub-
protocol instances in H; adhere to bound 7. (Namely, this holds for all ideal instances
that are internally simulated inside Z;.) However, we cannot immediately deduce that
the bound T applies to the /-th ideal subprotocol instance that corresponds to the ¢-
instance that is relayed outside of Z/*. In particular, we cannot immediately deduce that
our induction claim holds for H;.

Our solution to this complication is to randomly shuffle the order of subprotocol in-
vocations. Concretely, Z uniformly selects a subset of / — 1 subprotocol instances as
ideal sessions, and another uniform instance as the instance that is relayed to the out-
side. As a consequence, runtime bounds derived for internally simulated ideal instances
automatically apply to the instance that is relayed outside of Z;*. (Namely, if only a
single ideal instance did not adhere to bound 7', then this instance is simulated inside
Z" and hence “caught” with probability (/ — 1)/1.) We can hence derive that also in
Hj, all ideal subprotocol instances adhere to the fixed runtime bound 7'. By induction,
we get that the system p?, running with simulator S, is reactively polynomial-time as
desired.

Of course, this exposition neglects a few technicalities. (In particular, most claims
only hold with overwhelming probability.) The full proof will deal with these issues.

1.3. Some Problematic Use Cases

To illustrate the kind of natural protocols that may be rejected by too restrictive a def-
inition of polynomial time, we give two simple and natural examples of problematic
protocol tasks. Recall that, since we strive for composability, we work in the UC frame-
work. Hence, protocol tasks are specified as ideal functionalities (that reflect the ideally
desired behavior). We will need these examples in Sect. 1.4 below to illustrate difficul-
ties with other approaches to defining polynomial time. We stress that these examples
do not pose any problems with our notion; both are reactively polynomial-time.

Secure Channels A natural protocol functionality is that of a secure channel, again
modeled as a single machine. For simplicity, let us say that the machine accepts
only inputs of the form (send, receiver, message), and gives outputs of the form
(message, sender, message) (where the semantics should be clear).

We stress that this ideal functionality may be activated arbitrarily often, with arbitrar-
ily large message inputs. Hence, this functionality does not satisfy a polynomial-time
notion that bounds the number of activations or the size of allowed inputs a priori. This
eliminates most of the polynomial-time notions presented so far, except for (a) the vari-
ation on a posteriori polynomial-time bounds, (b) the notion from [21], and (c) the most
recent polynomial-time definition of the UC model. In particular, all polynomial-time
definitions that enforce an a priori runtime bound on machines do not allow us to model
a simple secure channel. In some situations, machines that just forward messages are
also called repeaters or forwarders. These names are usually used when the machines
are not intended to represent connections between parties, but instead are used as a
technical tool in definitions or proofs.

Polynomial Runtime and Composability 383

A Database Functionality Consider a publicly available centralized database, formal-
ized as an ideal functionality, i.e., as a single database machine. The database ma-
chine accepts inputs of the form (store, key, data) and (retrieve, key), with the
obvious semantics (namely, an input (store, key, data) stores data under key, and
(retrieve, key) retrieves that data again).

We stress that this database machine may be activated arbitrarily often, with arbi-
trarily large (store) inputs. Hence, similar to the preceding case of a secure channel,
this database machine does not satisfy a polynomial-time notion that a priori bounds
the number of activations or the size of allowed inputs. Additionally, observe that the
quotient of output and input size of database queries may be arbitrarily large: Con-
sider one party storing a large database entry and then another party retrieving it—the
retrieve instruction itself is short, although the corresponding output may become
arbitrarily large. This latter property prevents a modeling in the most recent version of
the UC framework.>

Notice that the database functionality is reactive polynomial-time: In any given a pri-
ori polynomial-time protocol context, only a fixed polynomial number of retrieve
queries can occur, each retrieving only a polynomially sized piece of data. Thus the
running time of the functionality is polynomial in any such context.

The same problems as with the database functionality also occur when considering an
anonymous bulletin board (as often used in remote voting protocols, e.g., [25,28]). Here
every user can post messages (which corresponds to storing an entry in the database),
and every user can read the bulletin board (which corresponds to retrieving an entry
from the database).

1.4. Straightforward Approaches and Why They Fail

An a Priori Polynomial Bound on the Overall Runtime Probably the most obvious
approach is to allow only machines of polynomial (time) complexity as entities in a
protocol run. That is, there is a fixed polynomial gy, so that machine M halts and
cannot be activated again after at most gy (k) overall steps. (Here and in the following,
k € N denotes the security parameter, which intuitively measures the “amount of desired
security.”) We assume that this bound is an a priori runtime bound; that is, we assume
that gjs only depends on the machine M, but not on the context in which M is run (in
particular, not on the runtime of the machines M interacts with). This bound applies to
honest protocol parties as well as to adversarial entities. In the UC setting, these are the
adversary, the simulator, and the environment.

This approach has several disadvantages. First, it becomes impossible to formulate
natural protocol tasks with an (a priori) unbounded number of activations (such as the
examples from Sect. 1.3). This is a violation of flexibility.

An obvious workaround (extensively used, for instance, in the “cryptographic li-
brary” [2]) would be to artificially bound in advance the number and size of inputs to
a cryptographic system. For instance, a secure channel might shut down after a certain
(fixed in advance) number of transmitted bits. We do not recommend this workaround;

3 Technically speaking, [8] allows the database as a functionality. However, it does not allow a protocol
party with that behavior; in particular, this makes it impossible to implement this functionality, even when
using an uncorruptible trusted party. See Sect. 3 for details.

384 D. Hotheinz, D. Unruh, and J. Miiller-Quade

it might not be clear in advance how often, say, a secure channel will be used. Further-
more, this workaround creates the additional (intuitively unnecessary) hassle of fixing
and keeping track of all concrete running time bounds. Strictly speaking, even the fi-
nally deployed protocol implementation would need to keep track of the number of its
activations and stop working after a given time.

But there is a second, very severe technical drawback that becomes apparent when
considering the composition of cryptographic protocols. Recall that in the UC security
definition, the environment that represents the larger protocol context, is chosen last.
But if all protocol machines have a priori runtime bounds, there is an environment that
can “exhaust” all protocol machines and even a given adversary, e.g., by sending them
useless messages and force them to waste their limited runtime by processing them. Not
only does this cause severe technical artifacts, it actually renders many natural proto-
col tasks formally impossible when allowing only machines with a priori polynomial
runtime bounds; cf. [21,26].

An a Priori Polynomial Runtime Bound per Activation As a second straightforward
approach, let us consider machines that perform only a polynomial number of steps
in each activation (possibly even dependent on input size instead of security parame-
ter), but may be activated an unbounded number of times. This overcomes the flexibility
problems of forcing an upper a priori polynomial bound on the overall runtime. How-
ever, when considering a network of two machines, even if both machines are a priori
polynomial-time per activation, the two machines can run infinitely long by activating
each other over and over again.4 Thus, the notion (at least if defined machine-wise)
is not applicable to networks of machines. (Also, there is no obvious way to extend
the notion to apply to networks as a whole.) Hence, we either need a definition of
polynomial-time that composes in the sense that a network of polynomial-time ma-
chines is polynomial-time again, or, failing that, a definition that can be directly applied
to the whole network (like our definition of reactive polynomial time and like the a pos-
teriori definitions described below).

An a Posteriori Polynomial Bound on Overall Runtime This gives reason to consider
machines that are polynomial-time for any given machine (of arbitrary complexity) they
interact with. (For zero-knowledge, several such notions appear in the literature; an
explicit discussion and analysis has been conducted in [20].) We claim that, while an
a posteriori runtime bound is useful in the zero-knowledge context, it does not constitute
a good definition of polynomial runtime for general protocols.

For general protocols, by a posteriori runtime we mean that every protocol machine
and the adversary run in polynomial time in every given (but arbitrary) context.

For instance, consider a secure channel R. Since we did not fix an a priori upper
bound on the size of the incoming data, R forwards incoming data of arbitrary length.
In particular, R runs in exponential time when interacting with a machine M that sends

k) o .
12" to R. Hence even a secure channel would also not satisfy the a posteriori polynomial

41f we allow a machine to send messages to itself, we can even get the same effect with a single machine
activating itself. This is another indication that the notion of a priori polynomial time per activation does not
capture the intuitive notion of polynomial time.

Polynomial Runtime and Composability 385

runtime definitions from the zero-knowledge case.>® As above, this violates flexibility
and, when also enforcing an a posteriori polynomial runtime bound for adversaries, it
might endanger soundness. In fact, in the context of UC, the dummy adversary, which
basically is the same as a secure channel/repeater, would not be allowed by an a poste-
riori polynomial runtime bound. The dummy adversary is an essential technical tool to
prove composition theorems; cf. also Sect. 6. Hence, we also cannot guarantee compos-
ability.

A natural way to relax the a posteriori runtime bounds definition would be the follow-
ing: One could allow machines M that have polynomial time complexity when running
with any (a priori) polynomial-time machine M’.

Let us call this modified a posteriori notion a posteriori polynomial time in bounded
contexts (APPT-BC). Note that the secure channel R from above is indeed APPT-BC.
We claim that the APPT-BC notion enjoys flexibility: A protocol that does not run in
polynomial time when interacting with an a priori polynomial-time context cannot, in-
tuitively, be considered polynomial-time. Thus any intuitively polynomial-time protocol
is APPT-BC. Yet, the APPT-BC notion does not enjoy composability. First, two individ-
ually APPT-BC protocols are not necessarily APPT-BC when running together (con-
sider two repeaters echoing each other’s messages). This on its own is not necessarily a
problem; the same happens with our notion of reactive polynomial time (see the discus-
sion on composability on p. 380). Second, a security notion based on APPT-BC does
not even allow for secure composition of one protocol instance with a larger protocol.
We prove this fact in Sect. 9.1.”

Notice, however, that APPT-BC is already very close to our notion of reactive poly-
nomial time. The only difference is that in the definition of reactive polynomial time,
we allow for a negligible probability that the protocol runs in superpolynomial time.

Acyclic Runtime Dependencies One reason why definitions of polynomial runtime
can be difficult is that two machines (e.g., secure channels) can be combined such that

5 There is a subtlety here. By “polynomial-time,” we mean polynomial in the (global) security parameter,
whereas in the zero-knowledge case, it is customary to assume that “polynomial-time” means polynomial in
the size of the input. However, in the context of general protocols, the former interpretation of “polynomial-
time” is preferred, since it allows for a meaningful analysis of composed and nested protocols as well as
protocols with constant input size like oblivious transfer.

6 In fact, a priori and a posteriori polynomial runtime coincide when arbitrary, unbounded contexts are
considered. Namely, say that a machine M runs at most ¢ steps when running in a context C, where ¢ = g¢ (k)
is a polynomial (in the security parameter) that may depend on C. Then, there is a context C* that maximizes
M’s runtime by, for each security parameter k, acting like argmax g¢ (k). By definition, gcx* (k) > g¢ (k)
for all contexts C, and hence g (k) is a single polynomial that bounds M’s runtime in arbitrary contexts.
Thus, M’s runtime is already a priori polynomially bounded. (Note that argmax . gc (k) exists. Otherwise we
could construct a context C* with gcx (k) > 2% which would be a contradiction.) We conclude that we do not
gain on generality by allowing a posteriori runtime bounds, at least when we consider arbitrary, unbounded
contexts.

7 The intuitive reason is that the real and the ideal protocol might behave identically only up to a small
probability. Hence, the real and ideal protocols might give slightly different (runtime) guarantees to the ad-
versary and environment. Now a larger protocol that uses the real, resp. ideal protocol as a subprotocol might
ensure that the runtime of the real subprotocol will always be bounded, while the runtime of the ideal protocol
will only almost always be. This can lead to a situation in which any successful simulation will sometimes
(with negligible probability) require superpolynomial time.

386 D. Hotheinz, D. Unruh, and J. Miiller-Quade

they send messages back and forth and consume an unlimited amount of runtime. This
problem can be solved by the following approach: In a network of machines, one defines
an acyclic directed graph on the set of machines. If there is an edge from M’ to M, we
call M’ the parent of M. Then we call a machine M polynomial-time if its running time
is bounded by a fixed (a priori) polynomial in the total length and number of incoming
messages sent by the parents of M. Incoming messages not coming from the parents of
M are allowed, but do not increase the allowed running time of M.

Although this approach allows for more protocols than a priori polynomial-time (bet-
ter flexibility), many protocols will still be rejected by such a definition as there is no
distinguished direction in which messages flow. For example, a database functional-
ity (described in Sect. 1.3 below) would not be considered polynomial-time because in
some cases the database would need running time from the parties retrieving data from
the database, and in some cases the parties retrieving the data would need running time
from the database.

Another problem is that it is not clear which running time dependency should hold
between the protocol, the environment, and the adversary or simulator. If the protocol
gets running time from the adversary or simulator, the latter may be forced to terminate
before the protocol run is complete, leading to soundness or completeness issues. If
the adversary or simulator gets running time from the protocol, the protocol may be
unable to react to messages arriving over the insecure network (that is controlled by
the adversary), and hence some natural protocols will be disallowed (flexibility deficits).
(The latest version of the UC framework [8] uses a variant of this approach. Much of the
complexity of the definition of polynomial time there is due to the necessity to clarify
which machine gets running time from which.)

Padding Furthermore, the database example from Sect. 1.3 also illustrates why
padding, a solution often advocated to circumvent the runtime restrictions in the UC
framework [8], is not always applicable. By padding we mean that a protocol specifi-
cation or functionality expects inputs that are padded to a suitable length such that the
machine receiving these inputs is allowed to run longer. In the case of the database func-
tionality, however, padding does not solve the problem, since a party retrieving an entry
does not know in advance what the length of the data returned from the database will be,
and thus that party cannot know how long a padding has to be used. Also the party stor-
ing the entry cannot add sufficient padding because it cannot know how many times the
entry will be retrieved. It seems possible to inferactively pad messages, in the sense that
before giving the actual response, the database first requests padding of a suitable length
from the user. However, this approach seems unnecessarily cumbersome. (More details
on this problem are given in Sect. 3, which also gives further examples of problems that
might occur with too restrictive notions of polynomial time.)

1.5. Previous Work

In the Context of Zero-Knowledge Perhaps zero-knowledge protocols [17] were the
first example of protocol tasks for which it was recognized that a priori runtime bounds
lead to surprising artifacts. For instance, certain definitions of zero-knowledge require
for every adversary the existence of an expected polynomial-time simulator. (There are
also arguments for allowing expected polynomial-time adversaries [15, Chap. 3].) This

Polynomial Runtime and Composability 387

is so since the successful simulation of an attack may require a number of adversary
rewindings that is only expected polynomial (as, e.g., in [16]). Goldreich [20] gives an
excellent overview of different flavors of expected polynomial-time notions in the zero-
knowledge setting. We stress, however, that the issue of rewindings does not apply to our
setting, in which we are dealing with an interactive environment. (Hence, the artifacts
resolved by expected polynomial time are orthogonal to the artifacts in our case.)

Another artifact that does concern our case is the following dependency problem that
arises with concurrent black-box zero-knowledge (see, e.g., [13]). Namely, with black-
box zero-knowledge, a simulator should be independent in particular of the internal
structure of the respective adversary. At the same time, however, the simulator should
be applied to an arbitrarily large (polynomial) number of zero-knowledge sessions that
may be scheduled and interleaved in an arbitrary way. In [13], this problem is solved by
letting the simulator (and hence its complexity) depend only on the number of sessions.
(This solution does not work in our case, since we want protocols as well as adversaries
to be more powerful than just a priori polynomial-time. Hence letting one entity depend
on the complexity of the other entities would lead to a cyclic definition.)

Length Functions Backes [1] observed the technical artifacts that arise with a priori
polynomial runtime bounds in conjunction with an interactive protocol environment
(cf. also Sect. 1.4). His solution, which has been incorporated into the reactive simu-
latability (RSIM) framework [4], was to employ length functions, a technical tool to
guard machines from being flooded with useless messages. This overcomes the sound-
ness issues of straightforward approaches. Yet, since these RSIM machines still have an
(a priori) polynomial upper bound on the overall runtime, this does not achieve flexibil-
ity. Natural tasks like that of a public-key encryption system (that allows an unbounded
number of encryptions) still cannot be expressed. Besides, length functions are a rather
technical tool resulting from a technical artifact, and are intuitively not easily explain-
able.

Continuously Polynomial Time In this situation, Hotheinz et al. [21] suggested to al-
low protocols that are, as a whole, polynomial-time in their input size. This achieves
flexibility. With a specific, dedicated restriction on allowed attacks, they also achieved
(and demonstrated with examples) completeness and soundness of their definition.
Namely, in their setting, neither protocols nor adversaries are required to ever terminate;
however, the “relative computation speed” of adversary and protocol has to be polyno-
mially related, and only polynomial-length execution prefixes are considered. However,
they do not give a universal composition theorem that would allow for the composition
of more than a constant number of protocol instances. Furthermore, their restriction of
allowed attacks is somewhat unintuitive and lacks simplicity.

In the UC Framework In the Universal Composability (UC) framework [5,8] of
Canetti, there are a number of approaches to define polynomial runtime. In the initial
formulation [5], an a priori polynomial overall bound on the number of computational
steps of each protocol entity was mandated. When the technical artifacts of this became
clear, several definitions were proposed [6,7,9]. The most recent® version [8] of the UC

8 See, however, the addendum below.

388 D. Hotheinz, D. Unruh, and J. Miiller-Quade

framework uses a definition in which machines may be activated in principle infinitely
often. However, at any point in time, a certain condition must be fulfilled that relates
the runtime so far with the input/output behavior of that machine. In particular, the in-
put which a machine M gives to other (sub-)machines must be smaller in size than
the overall input M gets. This means that a protocol has to take care that its own in-
put is large enough in size such that all necessary subprotocol invocations are allowed.
In many cases, padding of the “top-level inputs” is necessary, which complicates the
specification of natural tasks (see Sect. 3 for more details). In Sect. 3, we also show
that composability might be a problem, since the technical tool of a (complete) dummy
adversary is not available, which however is used in the proof of the Universal Com-
position Theorem. Besides, the current UC notion of polynomial runtime is arguably
somewhat complicated and not simple.

In the SPPC Framework In a different line of work, Datta et al. propose different no-
tions of polynomial runtime for cryptographic protocols in the SPPC framework [14].
In [14], a natural extension to the length function approach from [1] is put forward.
Specifically, where length functions merely allowed a machine to block messages from
certain “spamming” senders, the guards from [14] allow a machine to specify algo-
rithms that decide whether an incoming message is blocked or not. The computational
steps used for deciding whether a message is blocked or not are not counted as com-
putational steps of the receiving machine. However, the notion from [14] requires that
machines still have an a priori polynomial upper runtime bound, thus inducing the same
flexibility issues as with length functions.

In the IITM Framework In the IITM framework [26], two variants of polynomial time
are proposed. The /0-enriching definition allows machines to have a running time which
is polynomial in the total length of the inputs it obtained over enriching input/output
channels. The definition additionally requires that the enriching channels form a di-
rected acyclic graph, so that no two machines can give each other running time; this
ensures that the overall running time of the network stays polynomial. The I0-network-
enriching definition additionally allows network channels, i.e., channels between dif-
ferent parties, to be enriching. The IO-enriching definition bears a certain resemblance
to that of [8]. In particular, it also imposes the limitation that in a communication pro-
tocol, the running time of the recipient cannot depend on the length of the input of the
sender (as that input would have to be transmitted through a network channel).® The
[0-network-enriching definition resolves this problem; for this notion, however, no uni-
versal composition theorem is given that would allow for the composition of more than
a constant number of protocol instances.

In the Task-PIOA Framework The Task-PIOA framework [11,12] proposes a simula-
tion-based security notion that inherits many facets of the UC model. However, the
Task-PIOA model uses different kinds of abstractions (in particular with respect to pro-
cess scheduling) and thus allows for more flexible system specifications. The main focus

9 Again, “padding” can be used here to circumvent this problem. See Sect. 3 for a description of the
padding approach in the context of the UC model.

Polynomial Runtime and Composability 389

of the Task-PIOA model thus is not polynomial runtime issues; the model of polynomial
time considered in [12] requires that all machines be a priori polynomial-time per acti-
vation (that is, there is no limit on the number of activations, but in each activation, the
running time is restricted by a fixed polynomial in the security parameter). The problem
of two machines activating each other indefinitely is avoided by requiring the scheduler
to only schedule a polynomial number of activations. This approach inherits many of
the flexibility restrictions of the a priori polynomial-time approach; in particular, it is not
possible to formulate a machine that implements a secure channel without imposing an
a priori bound on the length of messages.

Other Frameworks In [20], it is investigated whether the notion of expected polyno-
mial time allows for composability. Although this question is answered positively, the
approach does not allow machines to run in polynomial time in the length of the in-
coming communication. (It must be stated that allowing such protocols was not the aim
of [20]; the goal was to give the simulator additional power, which is needed in some
settings.)

Summarizing, while previous notions can be used to express many natural protocols
and protocol tasks, there are natural protocol tasks that cannot be expressed by exist-
ing notions (excluding perhaps [21], although [21] is not known to support universal
composability).

Addendum After submitting the initial version of our manuscript, we were made aware
of a revision of the Universal Composability framework [10]. This revision features a
modified definition of polynomial runtime that improves upon that of the earlier UC
version [8]. In particular, a suitable variant of the dummy adversary can be proven com-
plete in the setting of [10]. On the other hand, padding of inputs as described above is
still necessary; the examples given in Sect. 3 apply.

Technically, the revision [10] largely follows the earlier version [8]. The crucial mod-
ification is to consider only balanced environments. Essentially, balanced environments
send at least as much (up to a fixed polynomial factor) data to the adversary as to the pro-
tocol. A balanced environment thus guarantees that a simulator is invoked sufficiently
often and with sufficiently long inputs to produce a successful simulation. (A similar
technique has been used in [21].) This allows one to prove the dummy adversary com-
plete. In particular, the counterexample to the completeness of the dummy adversary
from [8] we point out in Sect. 3 does not work in the setting of [10]. Our counterexam-
ple crucially employs non-balanced environments.

Besides, the notion of a polynomial-time machine is slightly simplified compared
to [8]. This change is technical in nature and keeps the spirit of the definition from [8].
Specifically, this simplified definition still requires that inputs be suitably padded in
order to allow subprotocol invocations.

1.6. Organization

After introducing some notation, we review the UC framework (in which our work
takes place) and the UC composition theorem in Sect. 2. We motivate our work by
highlighting the problematic aspects of previous polynomial runtime notions in Sect. 3.
Our own polynomial runtime notion is presented in Sect. 4. In Sect. 5 and Sect. 6, we

390 D. Hotheinz, D. Unruh, and J. Miiller-Quade

prove some basic but important properties of our notion, which will be useful in the
proof of the composition theorem in Sect. 7. Section 8 gives an example of our notion
in action. In Sect. 9, we discuss two variations of our notion. Finally, Sect. 10 relates
our notion to the standard UC definitions.

1.7. Notation

We say an algorithm A is polynomial-time if A’s runtime is bounded by a polyno-
mial in the length of A’s first input (assuming that A’s input is a tuple of bitstrings).
This notation facilitates the use of a security parameter k, since we will usually pass
1¥ as the first argument. Two ensembles {X (k, 2) }keN,ze(0,1y and {Y (k, 2)}keN,zef0,1}*
of probability distributions are statistically indistinguishable if there is a negligi-
ble function w such that for all k € N, z € {0, 1}*, the statistical distance between
X(k,z) and Y (k,z) is bounded by w(k). Two ensembles {X(k, z)}renN,ze(0,1)* and
{Y (k, 2)}keN,zef0,1y+ are computationally indistinguishable (written X (k, z) ~ Y (k, 2))
if for every nonuniform probabilistic polynomial-time algorithm C there exists a negli-
gible function u such that for all k € N, z € {0, 1}* we have that | Pr[D(lk, z, X(k,2)) =
11— Pr[D(X, 2, Y (k, 2)) = 1] < (k).

2. The UC Framework

We briefly review the framework proposed by [5]. We omit the details that are orthog-
onal to our result; for these we refer to [S]. An interactive Turing machine (ITM) is a
Turing machine that has additional tapes for incoming and for outgoing communica-
tion.'® An ITM may be activated by a message on an incoming communication tape. At
the end of an activation, the ITM may send a message on an outgoing communication
tape to another ITM. The recipient of a message is addressed by the unique ID of that
ITM. The actions of an ITM may depend on a global parameter k € N, called the secu-
rity parameter. (One can, e.g., assume that the security parameter is stored on a special
tape of the ITM.)

A network is modeled as a (possibly infinite) set of ITMs. Such a set of ITMs we call
a system of ITMs.'!*12 We call a system § of ITMs executable if it contains an ITM Z

10 Actually, the UC framework distinguishes various types of incoming and outgoing communication
tapes, namely tapes for input, output, subroutine invocation, subroutine results, incoming messages and out-
going messages. These distinctions are necessary to formulate the notion of polynomial time given in [8].
However, these distinctions are immaterial for our definition of polynomial time; thus we will only consider
incoming and outgoing communication tapes in this exposition.

1 Infinite systems are necessary to allow, e.g., for systems where an arbitrary number of instances of a
given ITM can be invoked. In the case of infinite systems we require the system to be uniform in the sense
that, given the ID of an ITM, we can compute the code of that ITM in deterministic polynomial time.

12 e stress that this notion of systems differs from the one introduced in [8]. In our setting, following [5],
a system of ITMs is plainly a set of machines. In the setting of [8], a system contains an initial ITM and
so-called control function; all other ITMs come into existence when the initial ITM specifies their code (in
a sense, the initial ITM “programs” the other ITMs). Specifically, [5] allows machines that “pop up into
existence,” while we do not. Again, this is no restriction (since we allow infinite sets of ITMs), but simply a
more static way to think about protocol executions. This will make it easier for us to specify runtime properties
of systems of ITMs. We stress that our results apply analogously when using the modeling from [8], where
ITMs are created dynamically.

Polynomial Runtime and Composability 391

with a distinguished input and output tape. An execution of S with input z € {0, 1}* and
security parameter k € N is the following random process: First, Z is activated with the
message z on its input tape. Whenever an ITM M| € § finishes an activation with an
outgoing message m addressed to another ITM M, € S on its outgoing communication
tape, the other ITM M5 is invoked with incoming message m on its incoming commu-
nication tape. If an ITM terminates its activation without an outgoing message, the ITM
Z is activated. If an ITM sends a message to a non-existing I'TM, Z is activated with
that message. Z may send messages in the name of any non-existing machine.'> When
the ITM Z sends a message on its output tape, the execution of S terminates. The output
of Z we denote by EXECg(k, z) (where we set EXECg(k, z) := 0 if the execution does
not terminate).14 Furthermore, by TIMEg (k, z) we denote the total number of steps ex-
ecuted by all ITMs in S. If the execution does not terminate, we set TIMEg (k, z) := oo.
Further, we write TIMEg(k, z, M) for the total number of steps executed by the ITM
M € S. Given a system of ITMs 7 (representing a protocol) and two ITMs Z (environ-
ment) and A (adversary), we will usually write EXEC, 4 z(k, z) and TIME,; 4 z(k, z)
for EXEC,y4,2(k, 2) and TIME 4, zy(k, 2).

We stress that ITMs are probabilistic machines, in the sense that they possess a
random tape that contains uniformly and independently distributed bits. This makes
EXECgs(k, z) and TIMEg(k, z, M) random variables, where the probability space is de-
fined by the contents of the random tapes of all machines.

A network without the machine Z and without an adversary (the adversary is simply
defined as being an ITM with a special ID) is called a protocol.

Using the above network model, security is usually defined by comparison. We de-
fine an ideal protocol ¢ (formally a system of ITMs) that usually consists only of one
machine, a so-called ideal functionality. Then we define what it means that another
protocol 7 (securely) emulates ¢.

Definition 4 (UC—classical definition). Let 7 and ¢ be systems of polynomial-time
ITMs. We say that w emulates ¢ if for any polynomial-time ITM A (the adversary) there
exists a polynomial-time ITM S (the simulator) such that for any polynomial-time ITM
Z (the environment) the following families of random variables are computationally
indistinguishable:

{EXECH’A,Z("’ Z)}keN,ze{O,l}* and {EXEC¢,S,Z(’<’ Z)}keN,ze{O,l}*'

Note that for this definition to be complete, we have to specify what we mean by
polynomial-time machines. In classical definitions of UC [5], polynomial-time ma-
chines are assumed to run a polynomial number of steps in the security parameter (we
call this a priori polynomial time; cf. Definition 8 below). Other approaches define other
meanings of polynomial time; see e.g., [8].

For a complete definition of the UC framework, many more details must be specified,
e.g., how secure and insecure channels are modeled, how messages are scheduled, how

13 We allow Z to impersonate non-existing ITMs to simplify the formulation of Definition 10 below.
14 Since our modeling will guarantee that all valid systems will terminate with overwhelming probability,
the value of EXECg (k, z) in the case of non-termination is unimportant. We arbitrarily fix O for concreteness.

392 D. Hotheinz, D. Unruh, and J. Miiller-Quade

the adversary can corrupt parties, etc. Since these aspects are orthogonal to the results
in this paper, we refer the interested reader to [8].

2.1. The Composition Theorem

Arguably, one of the most important properties of the UC framework is its universal
composition theorem. The composition theorem guarantees that whenever a protocol &
emulates some ideal functionality F, we can use 7 instead of JF in any larger protocol
context without losing security.

We will illustrate this with a small example. Assume that Fcom is a functionality
for commitments (it is not necessary for this example to know how this functionality is
designed). Assume further that we are given some protocol & that emulates Fcom. Now
we design a protocol p7com that uses the ideal commitment Fcom and implements a
more complex functionality G. Since Fcowm is an ideal commitment, no cryptography is
involved in using Fcom (in particular, we have perfect hiding and binding properties).
This greatly simplifies the proof that p7coM implements G. In some cases, p” <M might
not use any cryptography at all, and the security proof can be done by using an infor-
mation theoretical argument. Unfortunately, since Fcop is an ideal assumption, p7com
cannot be implemented in a real life setting. Instead one has to replace all calls to Fcom
by calls to the protocol 7. The question then arises of whether the resulting protocol p™
still securely emulates G.

Here the universal composition theorem of the UC framework comes into play. It
guarantees that if 7 emulates F, then p” emulates ,0}— . Since we also know that p}—
emulates G, it follows that p™ implements G (using the transitivity of the security no-
tion) and hence p” is a secure protocol for the task described by G.

Note that without the composition theorem, we would have had to analyze p” in one
go instead of analyzing the simpler protocols 7 and or individually.

In order to state the universal composition theorem, one first needs to define the op-
eration of composing protocols; i.e., one needs to specify the meaning of constructions
of the form p™. We will now give an informal definition and refer to [8] for details.

Definition 5 (Composition—informal). Let a protocol 7 and a protocol p be given.
Assume that the machines in p send messages to the machines in 7. Then let p™ be
the protocol that contains the machines from & and from p. In p”, the machines in
7 are modified such that instead of expecting messages from the environment Z and
sending messages to Z, they expect messages from machines in p and send the answers
to machines in p. (That is, 7 plays the role of the environment for p.) Furthermore, p
can invoke arbitrarily many instances of 7. We assume that the invocations of & are
tagged with a session id that identifies the instance of 7, and that the answers produced
by an instance of & carry the same session id. New instances of & spring into existence
whenever a new session id is used for the first time (by p or by the adversary).!

This definition also specifies the meaning of p” for an ideal functionality F since a
functionality is just a special case of a protocol.

15 Formally, all possible instances of 7 are already present from the beginning and are only activated if
needed. This is the reason why we need systems to be possibly infinite. However, for the intuition it is often
easier to assume that machines are created when needed.

Polynomial Runtime and Composability 393

Note that p is allowed to invoke arbitrarily many instances of m. In our example
above, this would mean that p is allowed to use an arbitrary number of commitments
instead of just a single one.

Using this notation, we can formulate the universal composition theorem of [8].

Theorem 6 (Universal composition theorem). Let 7, ¢, and p be a priori polynomial-
time protocols. Assume that = emulates ¢. Then p™ emulates p®.

There is also a weaker variant of the universal composition theorem, which we call
the simple composition theorem. Here we require that p invoke only one instance of &
or ¢, respectively.

Note the restriction that 7, ¢, and p have to be a priori polynomial-time. It is easy to
see that the composition theorem does not hold if no computational restriction is put on
these protocols.'® Yet, the restriction to strict polynomial time is a strong one; one of
the goals of this paper is to find a variant of the UC definition where this restriction is
relaxed.

We give a short proof sketch of the universal composition theorem from [8] to enable
comparisons with our proof of the universal composition theorem in the case of reactive
polynomial time (Sect. 7).

Proof Sketch of Theorem 6 Assume 7, ¢, and p as in Theorem 6, and let A denote
the dummy adversary, i.e., an adversary that only executes orders from the environment
Z, and reports its own view to Z. By assumption, m emulates ¢, so that there exists a
simulator S such that

EXEC; 4,z *EXECy s = (1)

for all a priori polynomial-time environments Z. (Here ~ denotes computational indis-
tinguishability.) Hence, informally, S emulates attacks on (one instance of) 7, while
actually running with (one instance of) ¢.

Our goal is to show that p™ emulates p®. The dummy adversary is complete in the
sense that, without loss of generality, it is the only adversary that needs to be considered
(see Sect. 6 for a detailed discussion). Hence it suffices to construct a simulator S*
with

EXEC,» 4z ~EXEC 4 s z 2)

for any a priori polynomial-time Z.

Recall that the dummy adversary 4 only collects information and executes orders.
Hence, the dummy adversary .4 attacking p” can be seen as a combination of several
dummy adversaries, namely dummy adversaries .4; that only attack one instance of sub-
protocol 7 each, and a dummy adversary A, that only attacks p itself. (See Fig. 1(a).)
Each A; is “responsible” for messages from one m -instance.

We will construct S as a combination of .4, and several S-instances, one for each
invoked instance of subprotocol ¢. Similarly to protocol p”, each S; is responsible

16 Even if 7 emulates ¢, the protocols might be distinguishable by an unbounded machine. Then an

unbounded p can be constructed that determines whether it is running as p” or o® and gives different output
accordingly.

394 D. Hotheinz, D. Unruh, and J. Miiller-Quade

for messages from one ¢-instance in p?. (See Fig. 1(b).) Since each S-instance by
assumption simulates attacks performed on one 7 -instance, while running together with
one ¢-instance, this intuitively achieves that S° simulates attacks on many m -instances,
while running together with many ¢-instances.

Now the only difference between p™ and p? is precisely that, in p™, all ¢-instances
of p? have been replaced with 7-instances. Hence, S® simulates attacks on p”, while
actually running with p?®. To formally show that this holds, we have to reduce the fact
that S is a good simulator to our assumption, namely the fact that S is a good simula-
tor.

To this end, we will assume an arbitrary environment Z and show that

EXEC,» 4 z ~EXEC 6 g~ z. 3)

We apply a hybrid argument. Namely, consider the hybrid network H; which is a “mix”
of the real and the ideal network in the following sense. H; consists of Z and p, where
the first / of p’s subprotocol invocations are connected to an instance of ¢ (with sim-
ulator S;), and the remaining subprotocol instances are connected to an instance of
(with dummy adversary .4;). The situation is depicted in Fig. 1(c). In this notation, (3)
is equivalent to

EXECp, ~EXECy,, .

where p(k) is the number of subprotocol instances that p invokes. We will show (3) by
a hybrid argument. More specifically, we will show that for 0 </ < p(k), we have

EXECy, ~ EXECy,,, . 4)

Informally, this means that “‘changing one subprotocol instance from 7 to ¢ does not
make a difference.” However, our assumption that & emulates ¢ guarantees that chang-
ing a single subprotocol instance from 7 to ¢ indeed does not make a difference. All
that remains is to formalize this intuition.

We thus build an environment Z;* that encompasses the whole hybrid network Hj,
only without the (I 4+ 1)-th subprotocol instance (the part of Fig. 1(c) enclosed by a
dashed line). Hence, running Z;* with = and A yields an execution of H;, and running
Z}* with ¢ and S yields an execution of Hj . Our assumption (1) on S hence guarantees
that

EXECy, =EXEC, 4z ~ EXECy s zr = EXECy,, .

which shows (4). Hence (3) holds, which means that we have proved our goal (2).

Finally, we also have to prove that our constructed simulator S is allowed in the
sense that S° is polynomial-time as required by Definition 4. For a priori polynomial-
time notions this is usually easy to verify, since the combination of polynomially many
polynomial-time machines always yields a polynomial-time machine.

3. Difficulties with Prior Notions

In order to illustrate the difficulties that can arise when trying to model polynomial time
in UC-like notions, we will sketch a few of the problems that arise in prior notions

Polynomial Runtime and Composability 395

(c)

Fig. 1. Relevant networks for the proof of Theorem 6. (a) depicts environment Z, running with protocol
P and dummy adversary .A. For presentation, A is split up into dummy adversaries A, and A; for proto-
col p and all respective 7-instances. (b) illustrates Z running together with p? and the simulator S con-
structed during the proof. For presentation, S is split up into adversaries A, and S; for p and the respective
¢-instances. (¢) shows (surrounded by a dashed line) the hybrid environment Zl* used in the reduction that
proves the settings (a) and (b) indistinguishable (from Z’s point of view).

of polynomial time. We will concentrate on difficulties with the UC framework of [8].
However, we stress that we simply chose this example since [8] is the most well-known
and popular model. For instance, in the reactive simulatability (RSIM) framework [4],
some of these issues are solved using length functions, which are also known to lead to
difficulties (see, e.g., [21]).

Network Model We first sketch very roughly how polynomial time is modeled in [8].
Our description is far from complete, but it should be sufficient to understand the ex-
amples below. The ITMs in a network are arranged in a hierarchy of invocation. The
top level contains the environment Z. The second level contains the machines directly
invoked by Z, namely the adversary (or simulator) and the protocol machines. Further
levels might include subroutines of the protocol machines (these subroutines may, e.g.,
result from the composition, in this case they are the ITMs comprising the subprotocol).
Finally, the lowest level will usually contain the functionalities, which are modeled as
subroutines shared by different ITMs. There are two kinds of communication in the net-

396 D. Hotheinz, D. Unruh, and J. Miiller-Quade

work. We have vertical communication between a machine and its subroutines, called
subroutine input and subroutine output, and we have horizontal communication between
different machines, which represents messages sent over the network. Commonly, these
messages will be sent between machines on the same level or between machines on
any level and the adversary. The adversary communicates with the environment using
vertical communication (since protocol and adversary are considered subroutines of the
environment), and with protocol machines using horizontal communication (since this
represents communication over the network). The auxiliary input of Z is considered a
subroutine input for Z.

Polynomial Time Definition In this setting, we model polynomial time by requiring
the following property of any ITM in the network (cf. Definition 3 in [8] for details and
motivation).

Definition 7 (Canetti-PPT). An ITM M is PPT in the sense of [8] (abbreviated
Canetti-PPT) if and only if M runs in time which is polynomial inn : =k +ny —nop —
k - ny. (That is, there is a fixed polynomial p such that the number of M’s computa-
tional steps taken so far never exceeds p(n).) Here k is the security parameter, n; the
total length of the subroutine inputs received from a higher level, n o the total length of
subroutine outputs passed to a lower level, and ny the number of ITMs that M commu-
nicates with.

Note that we will always have np < nj (since otherwise n < 0); i.e., we cannot send
longer inputs to subroutines than we get from a higher level. This is why it is necessary
that Z gets some initial subroutine input, namely the auxiliary input.

Padding At first glance it might seem that the requirement that no ITM can call sub-
routines with inputs longer than the inputs of that ITM itself is very restrictive. However,
this is solved by the use of padding: When designing a protocol and the corresponding
ideal functionality, one requires all inputs to contain a padding of sufficient length such
that the protocol machines are able to call their subroutines/functionalities. For exam-
ple, a functionality F for secure message transmission would expect an input of the
form (m, 1'"D), where ¢ is a polynomial that depends on the protocol we would like to
use to implement F. Although an explicit treatment of this padding can be cumbersome
in some cases, it at least allows us to write protocols without an a priori bound on their
runtime.

However, an example of a protocol where the use of padding meets its limits is the
case of the database functionality D described in Sect. 1. This functionality represents
a publicly available centralized database. The functionality D accepts queries of the
form (store, key, data) and (retrieve, key). Upon retrieve, the data previously
stored with key is returned. As a functionality, this machine is Canetti-PPT even without
any padding (it does not invoke subroutines, so np = 0, and thus the functionality is
allowed to run in polynomial time in the total length of the queries).

However, even simple protocol machines that use the database D may not be poly-
nomial-time any more. For instance, consider a party P; that wants to copy the entry
stored at key; to key,. With the current specification of the database functionality, this

Polynomial Runtime and Composability 397

is only possible by retrieving the data data stored at key; and then storing data under
key key,. However, to do so, P; needs to run §2(|data|) steps. Thus the input (e.g.,
from the protocol environment Z) of P; needs a padding whose length is dependent
on [:= |data|. For one, this length [might not be known in advance (it depends on
the inputs of other protocol parties), so it is unclear how to specify the length of the
padding P; expects. It seems possible to interactively let P; ask its own environment
for a suitably long padding depending on the size / of the database entry. However, these
solutions are (seemingly unnecessarily) cumbersome and might make the analysis more
complicated. Furthermore, even if we would model Pj to have an interactive protocol
interface that, e.g., first requests additional padding of sufficient length and then copies
the data, this might have implications for the simulatability of the protocol. In some
cases, whether and to what extent the database is used might have to be hidden from
the environment; for example, if in the real and the ideal model, a different number of
queries to the database is performed by some larger protocol.

Dummy Adversary and Composition A very instructive case is the question of whether
the dummy adversary is complete. Intuitively, the dummy adversary is an adversary
that simply does what it is told by the environment and forwards all messages received
from the protocol to the environment. By completeness of the dummy adversary we
mean that it is sufficient to consider only the dummy adversary as a real adversary
A in the UC security Definition 4. (See Sect. 6 for a detailed exposition.) Validity'’
and completeness of such a dummy adversary is crucial for the proof of the Universal
Composition Theorem. Unfortunately, a machine as in Definition 16 that just forwards
messages in both directions is not Canetti-PPT (i.e., it is not valid) since it may have to
forward messages that come from the protocol, i.e., via horizontal communication. In
order to handle this problem, [8] proposes to define the dummy adversary A as follows:

— When asked by the environment Z to send a message m to the protocol, that mes-
sage m is sent. (Since A is a subroutine of Z, this is permitted.)

— When receiving a message m from the protocol, the adversary A first sends [:= |m|
to Z. If it then receives 1/ from Z, it sends m to Z.

This definition now allows the forwarding of arbitrary messages; however, it raises the
following difficulties: First, it is very sensitive to the machine and network model. In
particular, for Ato compute [= |m]|, it is necessary for messages to always be prefixed
with their length (otherwise A will take time £2(/) for measuring /). Further, it is nec-
essary for m to still be accessible when 1/ is received from the environment, although
A did not have the runtime to copy m to some working tape. However, assuming a
suitable machine model, these problems are easily solvable. More problematic is the
second difficulty: The dummy adversary is not complete; i.e., security with respect to
the dummy adversary does not imply security with respect to arbitrary Canetti-PPT ad-
versaries.'® Note that this poses a problem for two reasons: First, the dummy adversary
is a very useful construct when proving the security of concrete protocols, allowing one

17 We say that an adversary A is valid if A is considered in the UC security definition, i.e., if A is in the
set of “allowed” adversaries.

18 This contradicts Claim 10 on p. 45 of [8]. The mistake in their proof was the assumption that the
simulator S constructed there is always Canetti-PPT.

398 D. Hotheinz, D. Unruh, and J. Miiller-Quade

to consider only a single adversary, and second, the proof of the Universal Composition
Theorem in [8] uses the dummy adversary in an integral way (however, we do not know
whether only the proof or the theorem itself is invalidated).

To see that the dummy adversary from [8] is really not complete (in contradiction to
[8, Claim 10]), assume a function f with the following property: We have | f (¢, x)| =
|x|, and f(#, x) can be computed in time polynomial in # 4 |x|, but for any polynomial
p, there is a polynomial p such that f(p(k), x) cannot be computed probabilistically
in time p(k) given a uniformly chosen x € {0, 1}¥. (More exactly, in time p(k), the
probability of guessing f(p(k), x) is negligible.) A candidate for such a function would
be, e.g., applying some suitable hash function ¢-times to x.

We then define the protocol 7 to expect a message (17, x) with |x|, 2! <k from Z and
then to send (17, f(¢, x)) to the adversary.'® Further, we define the protocol ¢ to expect
amessage (17, x) with |x|, 2’ <k from Z and then to send (¢, x) to the adversary. Note
that both 7 and ¢ are Canetti-PPT.

First, we show that w emulates ¢ with respect to the dummy adversary. The dummy
adversary first sends the number 7 + | f (¢, x)| =t + |x| to the environment, and only
when receiving 17 +1x1 does it send (17, f(t,x)) to the environment. Thus the corre-
sponding simulator also sends 7 + |x| to the environment, and when receiving 1/+1¥1 it
computes f (¢, x) and sends (17, f(z, x)) to the environment. The simulator is Canetti-
PPT since computing f (¢, x) and sending (17, f(z, x)) takes time polynomial in the
length of 11+,

Now, we show that 7 does not emulate ¢ with respect to arbitrary Canetti-PPT
adversaries. For a polynomial p, let Z5 be an environment that chooses a random
x € {0, 1} and sends (17%), x) to the protocol. Let A be an adversary that upon re-
ceipt of (17, (¢, x)) forwards f(t, x) to the environment. Now a suitable simulator has
to compute f (¢, x) from (¢, x). Since the simulator has a fixed runtime polynomial p,
there is a p such that f(p(k),x) cannot be computed in time p(k). Thus, in an in-
teraction with Z5, that simulator will return f(¢, x) = f(p(k), x) only with negligible
probability, allowing Z to distinguish the real and the ideal model. Thus 7 does not
emulate ¢.

Dummy Parties A useful construct in UC-like security definitions is that of a dummy
party. Such a dummy party is used when considering a single ideal functionality as the
protocol; for each player we then introduce a dummy party that forwards the messages
between the functionality and the environment. These parties are very useful, e.g., for
modeling corruptions (in particular in the adaptive case) in the ideal model. (In [8] such
dummy parties are introduced on p. 51 under the caption “Ideal protocols.”) However,
since dummy parties have to forward messages from the functionality to the environ-
ment, they are not Canetti-PPT. An interactive padding convention would have to be
introduced similar to those used with the dummy adversary, but in this case the same
padding convention would have to be followed by the parties in the real protocol; oth-
erwise, the environment could trivially distinguish the real and the ideal model.

19 Depending on the exact machine model, we might also send 17 and f (¢, x) in two separate messages if
receiving a very long 17 might make accessing f(z, x) impossible.

Polynomial Runtime and Composability 399

Combining Machines A technical tool that is needed in many situations when working
with UC-like security definitions is to construct a machine that simulates internal sub-
machines. As noticed by [1], the resulting machine is not polynomial-time, at least with
respect to an a priori polynomial-time notion as in [5]. Assume that a machine M sim-
ulates two submachines M1, M5. Assume further that n messages are sent to M, where
n is larger than the runtime polynomial of M. Then M, since it is a priori polynomial-
time, will have to stop even reading incoming messages. If then a message is sent to M»,
M will not be able to notice and answer. Since given two separate machines M1, M>,
M- will not stop reacting just because we send many messages to M1, it follows that M
does not correctly simulate M7, M>.

Summary We want to stress again that the problems mentioned in this section do not
compromise the essence of the results of [8]. For example, probably no “reasonable”
cryptographic protocol will fail to compose because of quirks in the modeling of poly-
nomial time; most results in the UC setting are robust with respect to the details of
the modeling. However, to put these results on exact and rigorous foundations, it is
necessary to develop a model of polynomial time that does not lead to any formal in-
consistencies.

4. Our Definition of Polynomial Runtime

In order to define a computational security notion, we first have to fix a definition of
polynomial time. Classically, an ITM is considered to be polynomial-time if it runs in
polynomial time in the security parameter. This notion we will call a priori polynomial
time.

Definition 8 (A priori polynomial time). An ITM M runs in a priori polynomial time
if there is a polynomial p such that, for any sequence of incoming messages, M runs at
most p(k) steps with probability 1 upon security parameter k.>°

However, as seen in the introduction, this definition is far from being flexible enough.
Many protocols that are intuitively considered to be polynomial-time are rejected by
this definition, e.g., a secure channel functionality or a database. Investigating these
examples, we see that what we intuitively expect from a polynomial-time protocol is
that when the protocol is used in an a priori polynomial-time context, the whole system
still runs in polynomial time. For example, although a channel is not a priori polynomial-
time (cf. Sect. 1.3), a channel can be implemented in polynomial time if the messages
sent through it are generated by an a priori polynomial-time machine.

To capture even more protocols, we can slightly relax the condition, and only re-
quire that the whole system run in polynomial time with overwhelming probability.*!
The resulting notion may be the weakest notion of polynomial time that still makes
sense. Any weaker definition would allow for protocols that interact with an a priori

20 Remember that the program of M may depend on the globally known security parameter k.
21 It turns out that this relaxation is indeed necessary for our security notion, see Sect. 9.1.

400 D. Hotheinz, D. Unruh, and J. Miiller-Quade

polynomial-time environment and run a superpolynomial number of steps with non-
negligible probability. We call this notion reactive polynomial time, and it is formalized
by the following two definitions.

Definition 9 (Polynomial time with overwhelming probability). An executable sys-
tem S of ITMs runs in polynomial time with overwhelming probability if there is a
polynomial p and a negligible function p such that for all k € N, z € {0, 1}* we have
TIMEg(k, z) > p(k) with probability at most w (k).

Definition 10 (Reactive polynomial time). A system S of ITMs runs in reactive poly-
nomial time if for any a priori polynomial-time ITM Z the system S U {Z} runs in
polynomial time with overwhelming probability.

We remark that in this definition, S can impersonate any machine that the machines
in S could ever run with (cf. footnote 13). For example, if S is a protocol and does not
contain an adversary, then Z also controls messages that are sent over the (insecure)
network (by impersonating the adversary). And if S already contains an adversary, then
Z can only control the protocol inputs and outputs. In particular, Definition 10 makes
sense both for protocols S without adversary, and systems S that include a protocol and
an adversary.

We will comment below (after giving the security definition) on how easy it is to
show that a system is reactively polynomial-time.

Why the Generality? One of the main features (and design goals) of Definition 10
is its permissiveness. Essentially, Definition 10 stipulates only that a protocol should
“behave well” in any (a priori) polynomial-time context. One particularly instructive
example on the benefits of such a permissive notion is the case of a repeater machine.
Namely, consider a machine R that simple relays its input verbatim to a dedicated out-
put channel. Repeaters are “natural” machines in the sense that inserting them into an
existing protocol should intuitively not make any difference. At the same time, repeaters
can be powerful technical tools. The dummy adversary (see the proof of Theorem 6) is
essentially a repeater; besides, during security proofs, it can be useful to insert a repeater
to “split up a party in two.” A similar case can be made for secure channels, which can
be thought of as repeaters that hand extra information (e.g., the message length) to the
adversary.

It is easy to see that Definition 10 allows repeaters or secure channels even as stand-
alone protocols. On the other hand, as we briefly outline in Sect. 3, secure channels (and
also repeaters) are not Canetti-PPT without modifications. Of course, one could think
of augmenting, say, the Canetti-PPT runtime definition to explicitly consider repeaters
as “polynomial-time.” However, explicitly allowing repeaters would still only permit
machines that are precisely repeaters, but not machines that are “essentially” repeaters,
such as a secure message transmission functionality. Similarly, the dummy adversary,
who is essentially a repeater, would not be precisely a repeater, because it does some
multiplexing and header rewriting (messages to/from all machines of the protocol are
forwarded through a single “connection” to the environment).

Polynomial Runtime and Composability 401

Of course, one could relax the definition of a repeater and explicitly allow certain
forms of recoding and multiplexing. But it would seem that the resulting definitions
would not be very simple any more, and in particular would be more difficult to use.
More generally, in Sect. 3 (on p. 396), we give another, more complex example of
a functionality that requires the generality offered by Definition 10. Concretely, we
provide a natural database functionality that is reactively polynomial-time, but cannot
be directly modeled as Canetti-PPT.

Closure Properties of Reactive Polynomial Time Notice that the notion of reactive
polynomial time is not closed under the composition of networks. More precisely, if
we have two reactively polynomial-time systems Si, So of ITMs, then S; U S; is not
necessarily reactively polynomial-time. For example, S| could contain a machine R
that, when receiving a message x from any machine, sends x to a machine R (not
contained in S1). And S> could contain a machine R; that, when receiving a message
x, forwards x to R;. Both S; and S are easily seen to be reactively polynomial-time.
Butin S; U S7, as soon as Rj receives a message x (say, from the environment), R; and
R> enter an infinite loop in which they forward the message x to each other. (A more
drastic case would be the one where Rj, given x, forwards x| x, a string of twice the
length.)

Such a lack of closure can, of course, be troublesome, because it implies that when-
ever we compose protocols or networks, we need to check again that the resulting sys-
tem is reactively polynomial-time. We believe, however, that this lack of closure is a
necessary evil: If we wish to admit all networks that are “intuitively polynomial-time,”
we have to admit networks such as S| and S;. Notice that each of them, on its own, is
harmless; the bad (non-polynomial-time) behavior arises only from the interaction of
the two. Thus, unless we wish to impose strong conditions on the networks, we have to
accept the lack of closure properties.

In the results of this paper the issue is handled by an extra condition in the compo-
sition theorem (Theorem 21) that requires us to check whether the composed protocol
is reactively polynomial-time before applying the composition theorem. See the discus-
sion on p. 410; there we also discuss how our results apply to more restricted classes of
protocols that are closed under composition.

Is the Notion Too Permissive? At a first glance, this notion might seem oo permissive
(i.e., too general). One might argue that the system S is allowed a running time k2,
where k€ is the running time of Z for some constant c. It might seem that such con-
structions lead to too powerful a system S of possibly exponential runtime. However,
this is not the case, since our definition guarantees that the overall network, and thus in
particular S, will always run in polynomial time in k£ (Lemma 12 below). The appar-
ent power only stems from the fact that the polynomial that bounds the running time
may depend on Z; thus there is no polynomial p independent of Z such that S runs in
polynomial time in p(k + ¢) where ¢ is the running time of Z.

We remark that this absence of a uniform polynomial bound p reflects the model-
ing of existing notions of zero-knowledge and simulatability. For example, in [18], the
definition of (non-black-box) zero-knowledge is—roughly—formulated as follows: For
any polynomial-time verifier there is a polynomial-time simulator such that the veri-
fier’s and the simulator’s output is indistinguishable. In particular, the running time of

402 D. Hotheinz, D. Unruh, and J. Miiller-Quade

the simulator does not have to be polynomially bounded in the running time of the ver-
ifier. Instead, it is only required that if the verifier runs in polynomial time, so does the
simulator. In particular, the simulator might run, e.g., plogc steps22 where ¢ is the run-
ning time of the (simulated) verifier and k the length of the common input x. This is
analogous to our modeling if we identify the verifier’s runtime with that of Z and the
length of the common input with the security parameter.

However, if a uniform bound on the running time of § is needed, it is possible to
strengthen the notion in a way that disallows an arbitrary dependency on Z’s com-
plexity. Namely, a stricter definition, called uniform reactive polynomial time, is also
conceivable: The runtime of S has to be bounded by p(k + ¢) with overwhelming prob-
ability where ¢ is the runtime of Z and p is a polynomial independent of Z. (In contrast,
Definition 10 allows p to depend on Z.) Indeed, uniform reactive polynomial time is
as suitable a notion of polynomial time as reactive polynomial time, and we show in
Sect. 9.2 that the results of this paper also hold for that notion. We have chosen Defini-
tion 10 as our main notion because—although this may not be obvious at first glance—it
better reflects how polynomial time is classically modeled in cryptography. We want to
stress, however, that this is just a design choice and that we prove all our results for both
notions.

Why Allow a Negligible Error? In Definition 10 we have introduced the notion of a
reactively polynomial-time network S roughly as follows: For any ITM Z, the network
S U{Z} is polynomial-time with overwhelming probability. However, the reader might
question whether the additional generality of allowing networks that run in superpoly-
nomial time with negligible probability is not offset by the added complexity. Instead,
we could require S U {Z} to be a priori polynomial-time; the resulting notion we call
strong reactive polynomial time. Replacing reactive polynomial time by strong reac-
tive polynomial time in Definition 11, we get a seemingly simpler security definition.
Unfortunately, it can be shown that the resulting security definition does not fulfill the
Universal Composition Theorem (Theorem 21). See Sect. 9.1 for additional details and
proofs.

After giving the security definition, we will comment on why we do not allow a
negligible error in the runtime guarantees of the context Z. (Essentially, the answer is:
“because we would not gain anything.”)

Security Notion Equipped with the notion of reactive polynomial time, we can now
look for a variant of the UC notion that can handle arbitrary reactively polynomial-time
protocols (i.e., we want all the usual properties like the composition theorem to hold
for reactively polynomial-time protocols). To design such a UC variant, we first have
to specify what machines should be considered valid adversaries and simulators. With
classical notions, a valid adversary/simulator would run in a priori polynomial time.
However, this is not sufficient in our context, since in this case the adversary/simulator
might have to terminate before the protocol. In this case the real protocol might continue
to work without an adversary, whereas the ideal protocol might rely on a simulator, mak-
ing a successful simulation impossible (examples for such ideal protocol tasks are the

22 Note that this should not be confused with the quasi-polynomial 11921 which would not be allowed.

Polynomial Runtime and Composability 403

public-key encryption functionality Fpkg and the signature functionality Fgig; cf. [S]).
Hence, we instead try to find the largest class of adversaries/simulators for a given pro-
tocol such that the definition still makes sense, i.e., such that the overall system does
not run in superpolynomial time. Obviously, we minimally require that the adversary
and the protocol together are still reactively polynomial-time. It will turn out that this
requirement is also sufficient to get the properties we expect from a UC notion (see
the following sections). We therefore call an adversary/simulator valid if the network
consisting of adversary/simulator and the real/ideal protocol is reactively polynomial-
time. Finally, we have to specify which environments to allow. To ensure that the overall
protocol is still at least polynomial-time with overwhelming probability, we require an
a priori polynomial environment. Note that, in contrast to the adversary/simulator, an
a priori polynomial-time environment is fully sufficient, since intuitively its task is to
observe whether there is some polynomial p such that the real and the ideal protocol
can be distinguished within time p. Combining these observations into a single defini-
tion, we propose the following variant of the UC definition that can handle reactively
polynomial-time protocols.

Definition 11 (UC with respect to reactive polynomial time). We say that an [TM M
is valid for m (or ¢) if m U {M} (or ¢ U {M}) runs in reactive polynomial time.

Then 7 emulates ¢ (with respect to reactive polynomial time) if for any ITM A
that is valid for m, there is an ITM S that is valid for ¢ such that for every a priori
polynomial-time ITM Z the following families of random variables are computationally
indistinguishable:

{EXECI-A!Z(k’Z)}keN,ze{O,l}* and {EXEch,S,Z(kaZ)}keN,ze{o,l}*'

In the following, we will simply say “UC” and “emulate” instead of “UC/emulate
with respect to reactive polynomial time.”

Note that there might be other possibilities of how to model a UC definition that can
handle reactively polynomial-time protocols (e.g., one could define that an adversary
A is valid if for all reactively polynomial-time protocols 7, the network 7 U {A} is
reactively polynomial-time). However, all other variants the authors have considered
seem to break at least one of the properties that we minimally expect from a viable UC
variant (i.e., the composition theorem holds, the relation is transitive and reflexive, and
no networks running in superpolynomial time with non-negligible probability occur).

Note further that we only claim that our security definition makes sense when consid-
ering reactively polynomial-time protocols. If we apply the definition to unbounded pro-
tocols, unexpected effects may occur (e.g., the set of valid adversaries may be empty).

Why Not Allow a Negligible Error for the Runtime Bounds of the Protocol Context?
Given that it is essential to allow a negligible error for the runtime bounds of protocol
and adversary, the question arises of why the runtime bound for the protocol context Z
in Definition 11 has to hold with probability 1 (by Definition 8). Alternatively, one could
allow environments Z that run in polynomial time only with overwhelming probability.
We do not pursue this variation further because it leads to an equivalent Definition 11:
Any Z that runs in a priori polynomial-time except with negligible probability w (k)

404 D. Hotheinz, D. Unruh, and J. Miiller-Quade

can be substituted with an a priori polynomial-time Z’ that behaves like Z, except with
probability u (k). Hence Z’ distinguishes a real and an ideal protocol whenever Z does.

Similarly, one might allow Z to run in a posteriori polynomial time (see p. 384). This
would lead to an equivalent Definition 11, too, by an argument analogous to that given
in footnote 6.

And if we instead quantify over environments Z that are APPT-BC (cf. p. 385), then
we might lose completeness as no guarantees can be made about the running time of Z
when running with 7w U {A} or ¢ U {S} (since these networks are not necessarily a priori
polynomial-time).

How Easy Is It to Show Reactive Polynomial Time? Since we are interested in actu-
ally analyzing protocols, it is crucial that it be easy to check whether a given protocol,
adversary, or simulator is allowed in our setting. For all concrete protocols and ideal
functionalities that we are aware of, this is easy to check: These protocols consist of a
fixed polynomial number of rounds (for each protocol invocation or input) with mes-
sages and running time that are of polynomial size in the respective protocol input.
(Ideal functionalities are generally even easier to handle, since they consist only of one
machine.) Thus we immediately get that the protocol runs in polynomial time with any
a priori polynomial time Z. The validity of adversaries and simulators may, at first
glance, be harder to verify. After all, nothing is known a priori about a real adversary A,
and it is not immediately clear how the complexity of .4 would be in, say, a black-box
simulation inside the corresponding simulator S.

Fortunately, there is a very simple real adversary, the dummy adversary, to which we
can restrict ourselves; cf. Sect. 6. It suffices to give a good simulator for this dummy ad-
versary. Thus, security can be proven by analyzing only a single simulator. All concrete
constructions of such simulators that we are aware of are in fact valid in the sense of
Definition 11. (In fact, since in many simulator descriptions occurring in the literature,
there is no discussion of when the simulator actually halts, they may not be considered
polynomial-time in any of the stricter notions of polynomial time occurring in prior
work.)

Relation to Classical Notions Furthermore, the reader might ask in what relation our
notion stands to the classical UC definitions. Since the classical definitions are not
meaningful for protocols that are not a priori polynomial-time, we are interested in the
case that m and ¢ are a priori polynomial-time protocols. In this case, it turns out that
UC with respect to reactive polynomial time lies strictly between two common classical
definitions: UC and specialized-simulator UC.2? That is, if 7 emulates ¢ with respect
to classical UC, this strictly implies that 7 emulates ¢ with respect to reactive poly-
nomial time, which in turn strictly implies that 7 emulates ¢ with respect to classical
specialized-simulator UC. We believe that the fact that UC with respect to reactive poly-
nomial time lies strictly between two established notions gives additional evidence that
our notion indeed captures intuitive security requirements. See Sect. 10 for additional
details and proofs.

23 Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on the
environment. We stress that we consider the specialized-simulator UC notion as defined by [27], which is
not equivalent to the UC notion from [8]. There also exists a specialized-simulator UC variant in [8] that is
equivalent to standard UC (see [8, Claim 12]).

Polynomial Runtime and Composability 405
5. Basic Properties
In this section, we state some simple but important properties of our definition.

Efficient Executions The first lemma guarantees that the executions EXEC,; 4 z and
EXECy, s, z that are considered in Definition 11 do not run in superpolynomial time.

Lemma 12. Let m be a (not necessarily reactively polynomial-time) protocol, A an
adversary or simulator that is valid for w, and Z an a priori polynomial-time environ-
ment. Then there is an a priori polynomial-time probabilistic Turing machine M such
that M(1%, 7) and EXECy 4, z(k, 2) are statistically indistinguishable in k.

Proof. Since A is valid for 7, m U {A} is reactively polynomial-time. Since Z is
a priori polynomial, it follows that = U { A, Z} is polynomial-time with overwhelming
probability. So there is a polynomial p such that TIME, 4 z(k,z) < p(k) with over-
whelming probability. By letting M (1, z) simulate EXEC; 4,z (k, z) for at most p(k)
steps, the lemma follows. O

Reflexivity and Transitivity A very important property of UC-type security definitions
which is often underestimated is that the relation of emulation is reflexive and tran-
sitive. A non-reflexive relation (i.e., a protocol does not emulate itself) would at least
raise some doubts about the meaningfulness of the definition.?* A nontransitive relation
strongly lessens the usefulness of the composition theorem. For example, a typical use
case of the composition theorem is the following: We have that 7 emulates ¢ and p?
emulates T (where ¢ and t usually are ideal functionalities). Using the composition
theorem, we then get that p™ emulates p? which emulates 7. By transitivity, it follows
that p” emulates 7. It may seem that transitivity is a trivial property, but surprisingly
many of our approaches failed this property.

Lemma 13 (Reflexivity, transitivity). Let w, ¢, and p be protocols. Then w emulates
7 (reflexivity), and if m emulates ¢ and ¢ emulates p, then w emulates p (transitivity).

Proof. We first show reflexivity: If A is a valid adversary for 7, then S := A is a valid
simulator for 7, and for all Z we have EXEC,; 4 z = EXEC; s z, so 7 emulates 7.
We now show transitivity: Let A be a valid adversary for 7. Then, since 7 emu-
lates ¢, there is a valid simulator S for ¢ such that EXEC, 4 z and EXEC, s z are
computationally indistinguishable for all a priori polynomial-time Z. Then A" := S is
a valid adversary for ¢, so since ¢ emulates p, there is a valid simulator S’ for o such
that EXECy 4/ z and EXEC,, s/ z are computationally indistinguishable for all a priori
polynomial-time Z. Using the transitivity of the computational indistinguishability, we
see that for every A valid for there is an S’ valid for p such that EXEC, 4 z and
EXEC, s,z are computationally indistinguishable for all a priori polynomial-time Z.
Thus = emulates p. U

24 Unless, of course, the non-reflexivity is only due to syntactical reasons, e.g., if the ideal protocol is
formally required to consist of a functionality.

406 D. Hotheinz, D. Unruh, and J. Miiller-Quade

On Generalizations of Transitivity Successive application of Lemma 13 yields for any
constant n that 1 emulates ,, whenever 7r; emulates 77; 1 for all 1 <i < n. We cannot
hope for more (e.g., if n is polynomial in the security parameter k). Namely, consider an
infinite sequence 71, 72, . .. of protocols such that 7r; emulates 7r; 1 foralli. Let p(k) be
any function with limy_, oo p(k) = co. In this situation, one might hope that 7; emulates
T p(k)> Where 7, is the protocol that behaves like ;) when invoked with security
parameter k = i. (Such a form of transitivity would be extremely useful, e.g., to avoid
“full-fledged hybrid arguments,” and instead focus on two individual hybrid systems.)
However, this “generalized transitivity” does not hold in general. For instance, say that
m; outputs 1 on security parameter p(k) =i, and O otherwise. Note that this implies
that r; emulates 77; 11 for any fixed i. However, ; outputs O almost always, and 7)
outputs 1 always.

Note that this impossibility is not a property specific to our definition. The example
given here works with essentially any security notion unless it uses concrete security
bounds.

One-Bit Output Without Loss of Generality Finally, the following lemma states that,
without loss of generality, we can consider only environments that give a single bit of
output. While this property is not necessary for a useful security definition (and indeed,
some UC-like security notions do not fulfill it, e.g., specialized-simulator UC [27]), it
can sometimes be convenient to assume that the output consists of a single bit; some
authors even define the UC notion with respect to one-bit output.

Definition 14 (Emulation with respect to one-bit output). We say that = emulates
¢ with respect to one-bit output if Definition 11 applies when quantifying only over
environments Z that give a single bit of output.

Lemma 15. 7 emulates ¢ with respect to one-bit output if and only if m emulates ¢.

Proof. By definition, UC implies UC with respect to one-bit output. So we only have
to show the opposite direction. Assume that 7 does not emulate ¢. Then (using the defi-
nition of computational indistinguishability), there is a valid adversary A for 7 such that
for every valid simulator for ¢, there exists an a priori polynomial-time environment Z,
a nonuniform probabilistic polynomial-time algorithm D, and a sequence zx € {0, 1}*,
such that [Pr[D(1¥, zx, EXEC, 4 z(k, 2¢)) = 1] — Pr[D(1*, 2, EXECy s,z (k. 2¢)) =
1]] is not negligible. For the moment, let A and S be fixed. For the nonuniform prob-
abilistic polynomial-time algorithm D, there is a uniform probabilistic polynomial-
time algorithm D and a sequence dj of strings of polynomial length such that
b(lk, di, 2k, x) = D(lk, Zk, x). Let Z be the environment that upon security param-
eter 1% and auxiliary input (d, zx) simulates Z with auxiliary input z;. When Z gives
output x, then Z gives output D(lk, dy, 7k, X).
Let Zx := (dk, zx). Then

Pr[EXEC, 4 5(k. 2) = 1] = Pr[D(1*, 24 EXEC, 4 2 (k. 20)) = 1]

and Pr[EXEC¢ s z(k, 2¢) = 11 =Pr[D(1¥, z, EXECy s, z(k, zx)) = 1]. Thus, we get
that |Pr[EXEC_ , s (k,) =1]— Pr[EXEC(p s 2k, Zx) = 1]] is not negligible. Sum-

Polynomial Runtime and Composability 407

marizing, we have that there is a valid adversary A such that for any valid simulator
S there exists an a priori polynomial-time environment Z such that EXECH’ AZ and
EXEC .52 arenot computationally indistinguishable. Thus 7 does not emulate ¢ with
respect to one-bit output. U

6. Dummy Adversary

A very useful tool for dealing with a UC-like definition is the concept of the dummy
adversary.

Definition 16 (Dummy adversary). The dummy adversary is the following machine.
Whenever it receives a message from the protocol (this may include control messages
like the responses to corruption requests), it forwards that message to the environment
(including the id of the sender of the message). When it receives a message from the
environment to send a given message to a given recipient (which may be a normal
message, or a control message like a corruption request), the dummy adversary sends
that message to the required recipient.

The usefulness of the dummy adversary stems from the fact that, for many variants of
the UC definition (including ours, see below), one can, without loss of generality, con-
sider only the dummy adversary (we say, the dummy adversary is complete). This has
several advantages. First, security proofs can be formulated much more simply, since
we can assume a single given adversary and construct a simulator for that given adver-
sary (instead of formulating a generic transformation from adversaries to simulators).
Second, even with classical UC definitions, the proof of the universal composition theo-
rem uses the dummy adversary (at least if we allow polynomially many instances of the
subprotocol). And third, some authors find it more intuitive to define security directly
with respect to the dummy adversary.

Furthermore, in our situation, the dummy adversary has additional advantages. First,
even the proof of the simplest case of the composition theorem (where only a single
instance of the subprotocol may be invoked) heavily depends on the completeness of
the dummy adversary. Second, the security definition as formulated in Definition 11
may be hard to handle, since it requires us to prove the existence of a valid simulator for
every valid adversary. Since the definition of validity depends on the protocols under
consideration, it may be very difficult to find a simple characterization of the set of all
adversaries. However, when using the dummy adversary, such a characterization is not
necessary, and it is sufficient to construct a concrete valid simulator for this concrete
and simple adversary.

However, despite the seeming simplicity of the concept of the dummy adversary,
some care is required. In the classical UC notion, the adversary is required to be a pri-
ori polynomial-time. Since the dummy adversary does not have any a priori bound on
the length or number of messages it delivers for the environment, it is not a priori
polynomial-time. So in the classical UC notion one instead has to consider a family
of dummy adversaries that are parametrized over the maximum number and length of
messages they can transmit. This introduces additional complexity into proofs using

408 D. Hotheinz, D. Unruh, and J. Miiller-Quade

the dummy adversary. Fortunately, it turns out that for our UC variant such a family of
dummy adversaries is not necessary, since for every reactively polynomial-time proto-
col, the dummy adversary is valid.

Lemma 17 (Validity of the dummy adversary). If & is a reactively polynomial-time
protocol, the dummy adversary is valid for .

Proof. Assume that the dummy adversary A was not valid. Then there is an a priori
polynomial-time ITM Z such that 7 U (A, Z} is not polynomial-time with overwhelm-
ing probability. Since A only forwards messages between Z and m, we can construct
an a priori polynomial-time ITM Z’ that directly sends and receives those messages
to and from 7. Then Z’ U {7} is not polynomial-time with overwhelming probability.
This is a contradiction to the fact that Z’ is a priori polynomial-time and 7 is reactively
polynomial-time.>]

Of course, the validity of the dummy adversary does not yet ensure its usefulness.
Instead, we need to be able to consider without loss of generality only the dummy
adversary. This is guaranteed by the following theorem.

Definition 18 (Emulation with respect to the dummy adversary). We say 7 emulates
¢ with respect to the dummy adversary if there is an ITM S that is valid for ¢ such that
for every a priori polynomial-time ITM Z the ensembles EXEC T AZ and EXEC 082

are computationally indistinguishable. Here A denotes the dummy adversary.

Theorem 19 (Completeness of the dummy adversary). Assume that w is reactively
polynomial-time. Then w emulates ¢ if and only if w emulates ¢ with respect to the
dummy adversary.

Proof. Assume that 7 emulates ¢. Since the dummy adversary A is valid for 7 by
Lemma 17, it directly follows that 7= emulates ¢ with respect to the dummy adversary.

Assume now that v emulates ¢ with respect to the dummy adversary A. Let S be
the corresponding simulator; i.e., S is valid for ¢ and the ensembles EXECm Az and
EXEC 5.5,z are computationally indistinguishable for any a priori polynomial-time Z.

To show that 7 emulates ¢ we have to show that, for any valid adversary A, there
is a valid simulator S such that the ensembles EXEC,; 4 z and EXECy s z are com-
putationally indistinguishable for any a priori polynomial-time Z. Therefore, let A be
an adversary that is valid for 7, and let Z be an a priori polynomial-time environment.
We will construct a valid simulator for ¢ that depends only on A (and not on Z). The
network consisting of 7, Z, and that adversary A is depicted in Fig. 2(a).

Since A is valid and Z is a priori polynomial-time, the network 7w U {A4, Z} is
polynomial-time with overwhelming probability. In other words, there is a polynomial
p such that TIME,; 4 z(k, z) < p(k) with overwhelming probability for all z € {0, 1}*
and k e N.

25 We stress that, by Definition 10, Z’ may impersonate the adversary when running with 7.

Polynomial Runtime and Composability 409

Fig. 2. Networks in the proof of the completeness of the dummy adversary. The hatched background of
machine A in (¢) and (d) denotes an enforced runtime bound of p (k).

We now construct the environment Z’ which is supposed to run with the dummy
adversary A. The environment Z’ simulates the original environment Z and the ad-
versary A. Whenever A sends a message to the protocol 7, the environment Z’ in-
stead instructs the dummy adversary A to send that message. Conversely, whenever the
dummy adversary A informs the environment Z’ of an incoming message, that message
is passed to the simulated adversary A.

Obviously, the resulting network (cf. Fig. 2(b)) is a faithful simulation of the original
network; in other words, EXEC,; 4 z = EXECH’ Az

Now we modify Z’ as follows, resulting in a new environment Z;,: When the run-
ning time of the simulated A exceeds p(k), then Z; terminates with a special output
beep (we assume that Z never outputs beep). Since TIME, 4 z(k,z) > p(k) only
with negligible probability, the modified environment Z’ terminates with output beep
only with negligible probability (when running with 7 and A, cf. Fig. 2(c)). Therefore
EXEC, ; z and EXEC ; -, are computationally indistinguishable (in fact even sta-

A, AZ,

tistically indistinguishable). Note further that since Z is a priori polynomial-time, and
the simulated A runs at most p(k) steps, the environment 2/, is a priori polynomial-
time, too.

Thus, since w emulates ¢ with respect to the dummy adversary, EXECH’ Az, and

EXEC 65,2 (cf. Fig. 2(d)) are computationally indistinguishable.
. ! iy 4 . . . g
Since EXECﬂ’ Az, = beep only with negligible probability, EXEC .52, = beep

holds only with negligible probability. Therefore we can replace Z;, by Z’, and thus
EXEC $.5.2, and EXEC $.8.2 (cf. Fig. 2(e)) are computationally indistinguishable.

By constructing a simulator S that simulates both 4 and S, we get the situation
depicted in Fig. 2(f). Since this is essentially just a regrouping of machines, we have
EXEC¢,S,Z’ =EXECy s =.

Summarizing our results so far, we have that EXEC,; 4 = and EXECy s = are com-
putationally indistinguishable. Note that this holds for any Z, and that the construction
of S does not depend on Z.

It is left to show that S is valid for ¢. Since S is valid for ¢, the network ¢ U {Z/ , S}
is polynomial-time with overwhelming probability (Fig. 2(d)). Since the network
¢ U{Z', S} behaves differently from ¢ U {Z’, S} (Fig. 2(e)) only if Z/ output beep

which happens with negligible probability, the network ¢ U {Z’, S} is polynomlal time
with overwhelming probability, too. Then ¢ U{S, Z} (Fig. 2(f)) is also polynomial-time
with overwhelming probability. Since this holds for any a priori polynomial-time Z, it
follows that ¢ U {S} is reactively polynomial-time, and therefore S is valid for ¢. O

410 D. Hotheinz, D. Unruh, and J. Miiller-Quade
7. Universal Composition Theorem

Arguably the most salient property of the UC security definition (and other security defi-
nitions of the same kind like RSIM [4,29]) is the composition theorem. The composition
theorem guarantees that we can securely replace an ideal functionality with its imple-
mentation. More formally, the composition theorem states that whenever 7 emulates ¢,
then p” emulates p®. The composition theorem is a well-known result for classical UC
notions and comes in two flavors. One flavor allows p to invoke an arbitrary number
of instances of the subprotocol 7 or ¢, respectively (universal composition theorem),
while the other, more restricted flavor requires p to invoke only a single instance of the
subprotocol (called the simple composition theorem in what follows). It is known that
for some variants of the UC notion only the simple composition theorem holds [24].
For UC with respect to reactive polynomial time, however, the universal composition
theorem holds (see below), of which the simple composition theorem is a direct con-
sequence. Nevertheless, since the proof of the universal composition theorem is quite
involved, here we start with the conceptually simpler theorem for simple composition.
We believe that reading the proof for this simple composition theorem first will help
the reader to familiarize himself with the setting and our model before attempting to go
through the more involved proof of the universal composition theorem.

Theorem 20 (Simple Composition Theorem). Let 7, ¢, and p be protocols. Assume
that w emulates ¢. Assume that p calls only one subprotocol instance. Assume further
that 7w and p™ are reactively polynomial-time. Then p™ emulates p?®.

On the Assumptions in the Composition Theorem(s) We remark that there is an inter-
esting asymmetry in the preconditions in Theorem 20 (and in the universal composi-
tion theorem, Theorem 21, below). Namely, it is required that 7 and p” are reactively
polynomial-time, while ¢ and p? need not be. Although probably protocols which are
not reactively polynomial-time will not be used in applications of the composition the-
orem, the absence of additional proof obligations may make proofs that use the compo-
sition theorem simpler.

We stress that our security notion is not subject to the counterexample of [8, pp. 65—
66]. This counterexample exhibits a Canetti-PPT protocol 7 that realizes an ideal func-
tionality JF that is not Canetti-PPT. The example then goes on to show that two instances
of 7 (in concurrency) no longer realize two instances of F. In our setting, however, &
would not realize F in the first place. Namely, recall that we require the existence of a
simulator S such that the ideal system ¢ U {S} is reactively polynomial-time. (That is, it
is the responsibility of the simulator to make ¢ polynomial-time.) However, in the case
of the example from [8], the system F U {S} is not reactively polynomial-time for any
simulator S.

On the Assumption that p” is Reactively Polynomial-Time An important point is the
fact that we have to show that the composed protocol p” is reactively polynomial-time
before we can show that it is secure. This is an extra assumption compared, e.g., to
the composition theorem of [8]. In their setting, p” is automatically polynomial-time
as soon as p and 7 are. In our setting, this may not be the case (so in a certain sense,

Polynomial Runtime and Composability 411

the definition of reactive polynomial time itself does not compose). However, we stress
that in most practical situations, it is very easy to show that the composed protocol is
reactively polynomial-time, while the security is the interesting property. We believe
that this additional proof obligation is a necessary result of the high generality of our
approach. In particular, one can easily derive a version of this composition theorem that
does not have this condition: When restricting the protocols to some subclass of reac-
tively polynomial-time protocols that is closed under composition (e.g., those studied
in [8,14]), one automatically gets a composition theorem without this condition as a
corollary of Theorem 20 (and a universal composition theorem without this condition
as a corollary of Theorem 21).

Alternatively, the follow-up work [22] gives a “dual” version of our composition
theorems Theorem 20 and Theorem 21. Namely, the (universal) composition theorem in
[22] assumes that the ideal composed protocol p? (and not the real composed protocol
p™) is polynomial-time. The composition theorem in [22] proceeds to show that then,
the composed real protocol p” is polynomial-time as well. This dual version of the
composition theorem can be easier to work with in situations in which protocol design
starts with an ideal protocol, which is then refined and implemented in several steps.
The price to pay for this “dual version” of Theorem 20 and Theorem 21 in [22] is a
modified notion of polynomial runtime, which needs to explicitly consider and restrict
the volume of the message flows between machines.

Functionalities with Code Upload In some situations, it is convenient to model a func-
tionality that accepts a fragment of code from the adversary or simulator and executes
that code. For example, consider a signature functionality . This functionality, given a
message m from a user, returns a corresponding signature . Since the signature func-
tionality should not depend on the signature scheme that is used to implement the func-
tionality, the functionality does not know what a valid signature o should look like.
Thus, m is typically sent to the simulator, which provides a corresponding signature o .
The drawback with this solution is that the simulator learns all messages that are signed,
even if both the message and the corresponding signature are never sent over the net-
work. This can be avoided by modeling F as follows: In the beginning of the execution,
the simulator sends a program P to the functionality. When the functionality has to
sign m, it simply produces the signature as o := P (m). (This approach was suggested,
e.g.,in [8].)

The problem with this approach is that such a functionality F with code upload is not
polynomial-time (not even reactively polynomial-time): Since F does not impose any
runtime bound on P, the execution can take arbitrarily long. (Notice also that fixing a
polynomial runtime bound is nontrivial because F cannot know which is the polynomial
that should be used.)

In our setting, however, it turns out that functionalities with code upload can be mod-
eled and used. For example, in the case of the signature functionality F, we can specify
a protocol 7 that emulates F using a fixed signature scheme & (7 just signs all mes-
sages locally). Notice that 7 is reactively polynomial-time because it does not use an
adversary-provided algorithm for signing. However, F is not reactively polynomial-
time (but, together with the concrete simulator that we use to simulate p, it becomes
reactively polynomial-time because that simulator uploads the signature scheme G).

412 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Now, assume a protocol o that uses the signature functionality F to implement some
functionality G. (Here G describes the final goal of our protocol construction.) At first
glance, it may seem as though showing that o7 emulates G will be impossible: o7
contains , which is not reactively polynomial-time; hence we might expect o to run
a superpolynomial number of steps, which means that we cannot rely on any computa-
tional assumptions in the analysis of o . This argument, however, is fallacious. Indeed,
in the definition of UC emulation (Definition 11) we quantify only over valid adver-
saries. Hence we have the guarantee that o7 will never make more than a polynomial
number of steps. Thus, we can use computational assumptions.

We have that 7 emulates F. Furthermore, 0™ and & will be reactively polynomial-
time (if constructed sensibly) since they do not contain F. We can therefore apply the
composition theorem to get that o™ emulates . Together with the fact that o’ em-
ulates G20 and the transitivity of UC emulation (Lemma 13), it follows that ™ emu-
lates G. We have thus successfully used a functionality with code upload in the analysis
of o, and never needed the fact that functionality was reactively polynomial-time.

The reason why functionalities with code upload can be handled in our setting
is that, in the definition of UC emulation, we consider only valid adversaries and
simulators, i.e., adversaries and simulators that make sure that the real/ideal proto-
col runs in polynomial-time. This puts the burden of ensuring the correct runtime on
the adversary/simulator. Hence a functionality that executes code sent from the adver-
sary/simulator is permitted because the adversary/simulator will not be allowed to send
code that runs too long (otherwise the adversary/simulator would not be valid).

Proof of the Simple Composition Theorem We now state the proof of the simple com-
position theorem.

Proof of Theorem 20. Let A be the dummy adversary. Since 7 is reactively
polynomial-time, A4 is a valid adversary for 7. Therefore there exists a simulator S
that is valid for ¢ such that EXEC, 4 z and EXECy s z are computationally indistin-
guishable.

To show the composition theorem, by Theorem 19 it is sufficient to show that S is
valid for p”™ and that, for any a priori polynomial-time environment Z,

EXEC,» 4.z and EXEC, sz ®)

are computationally indistinguishable. These networks are depicted in Figs. 3(a) and (d).
Therefore let Z be an arbitrary a priori polynomial-time environment.
In the classical UC definitions, the proof would now continue by replacing Z and p
by a machine Z’ simulating these machines (Fig. 3(b)). Then Z’ could be considered

26 Depending on the particular situation, proving that o7 emulates G may be more or less complicated.

The fact that F is not reactively polynomial-time does not exclude the use of complexity assumptions in the
proof, because a valid adversary will make F run in polynomial time. But we are restricted in what structural
properties of UC we can use when proving that o7 emulates G: Both the composition theorem (Theorem 21)
and the completeness of the dummy adversary (Theorem 19) do not apply and cannot be used in this subproof.
Whether or not these difficulties outweigh the advantages of code upload probably depends on the particular
use case.

Polynomial Runtime and Composability 413

Fig. 3. Networks appearing in the proof of the simple composition theorem.

as an environment for 7, and .A would be an adversary for 7. Since 7= emulates ¢ we
could then replace 7 and A by ¢ and S (Fig. 3(c)) and finally replace Z’ by Z and p
(Fig. 3(d)). However, in our setting we have to be more careful. First, an adversary that
is valid for p™ is not necessarily valid for 7. Second, the resulting environment Z’ is
not necessarily a priori polynomial-time. And third, we further have to show that the
simulator S is valid for p™ and not only for 7.

The first point can be easily handled, since we assumed .A to be the dummy adversary.
In this case, A is also valid for 7, so the problem does not occur. Note, however, that
if A was an arbitrary adversary, this would not hold. Therefore the completeness of the
dummy adversary is essential for our proof.

The second point can be solved by first replacing p by an a priori polynomial-time
protocol with a sufficiently large polynomial runtime bound p and only then construct-
ing an a priori polynomial-time environment Z’ that simulates Z and the modified p.
This will be shown in more detail in the following.

The third point is handled at the end of this proof.

Since p” is reactively polynomial-time, so is p™ U {4} (by Lemma 17). Hence for
any a priori polynomial-time environment Z the network p” U {4, Z} is polynomial-
time with overwhelming probability. In other words, there is a polynomial p such
that TIME)= 4,z (k, z) < p(k) with overwhelming probability for all z € {0, 1}* and
keN.

We now construct the environment Z’ as follows: Z’ simulates the environment Z
and all machines in p. However, when the total running time of all machines in p ex-
ceeds p(k), then Z’ terminates with a special output beep (we assume that Z never
outputs beep). Since TIME = 4 z(k, z) > p(k) only with negligible probability, the
running time of p will exceed p(k) only with negligible probability. Thus Z’ termi-
nates with output beep only with negligible probability (when running with 7 and
A, cf. Fig. 3(b)) and performs a faithful simulation of Z and p otherwise. Therefore
EXEC,~ 4,z and EXEC 4,z are computationally indistinguishable (in fact, even sta-
tistically indistinguishable).

Since Z is a priori polynomial-time, and since Z’ enforces a polynomial run-
time bound for the simulated machines in p, the resulting environment Z’ is a priori
polynomial-time, too.

Therefore, by definition of S, the simulator S is valid for ¢, and the ensembles
EXEC, 4,z and EXECy s = are computationally indistinguishable. (See Figs. 3(b)
and (c).)

Since in an execution EXEC, 4 z the output beep occurs only with negligible
probability, the probability of output beep is also negligible for the computationally

414 D. Hotheinz, D. Unruh, and J. Miiller-Quade

indistinguishable EXECy s z'. Since Z’ faithfully simulates Z and p unless it gives
output beep, we can again replace Z’ by Z and p, resulting in the network p™ U{S, Z}
(cf. Fig. 3(d)). Thus the ensembles EXEC,, s z' and EXEC 4 5 = are computationally
indistinguishable (in fact, even statistically indistinguishable).

Summarizing, we have

EXEC,r 4 z ~EXEC, 4z ~EXECy s 2/ ¥ EXEC s 5. z

where =~ denotes computational indistinguishability. Thus EXEC,~ 4 =z and
EXEC,s s z are computationally indistinguishable, and (5) is shown.

It is left to show that S is valid for p?. Since S is by construction valid for ¢, and
since Z’ is a priori polynomial-time, we have that ¢ U {S, Z’} is polynomial-time with
overwhelming probability.

As seen above, the output EXECy s = is beep only with negligible probability,
and Z’ faithfully simulates p and Z otherwise. Therefore, since the running time of
¢ U{S, Z'} is polynomial-time with overwhelming probability, so is that of the network
p? U{S, Z} which results from replacing Z’ by p and Z.

Since this holds for every a priori polynomial-time Z, it follows that p® U {S} is
reactively polynomial-time, and so the simulator S is valid for p?.]

We now state our main result in this section, the universal composition theorem.

Theorem 21 (Universal Composition Theorem). Let 7, ¢, and p be protocols, such
that w and p™ are reactively polynomial-time. The protocol p may call an arbitrary
number of subprotocol instances. Assume that = emulates ¢. Then p™ emulates p®.

Proof Sketch of Theorem 21 Recall the original proof of the universal composition
theorem reproduced in Sect. 2.1. In that proof, we have constructed a simulator S for
p® from a simulator S for ¢. Concretely, S™ was essentially a combination of many
instances of S. It is easy to see that S*° is a priori polynomial-time whenever S is.
However, we do not know that S*° is reactively polynomial-time (when combined with
the ideal protocol) whenever S is. (Recall that the combination of several reactively
polynomial-time machines may not be reactively polynomial.)

Hence, we cannot apply the original reasoning of the universal composition theorem
because we do not know if the constructed simulator S* satisfies our polynomial-time
notion. Furthermore, the hybrid networks H; from the analysis in Sect. 2.1 may or may
not satisfy any polynomial runtime bounds (which is a prerequisite for applying the the-
orem assumption that 7 emulates ¢). For example, it is possible to construct protocols
7 and ¢ such that k copies of 7 running concurrently as well as k copies of ¢ are reac-
tively polynomial-time, but % copies of w with % copies of ¢ run in exponential time,
even though they cannot communicate directly.*’ So even when we require both p™ and
0? to be reactively polynomial-time, the hybrid network H »/2 might not be.

2T Asa rough sketch, assume that there are two puzzles A and B of variable hardness. When Z solves
a puzzle of type A of hardness s for 7, then 7 solves a puzzle of type B of hardness 2s for Z. Similarly,
when Z solves puzzles of type B for ¢ of hardness s, then ¢ solves puzzles of type A and hardness 2s for Z.
Both 7 and ¢ are reactively polynomial-time, even when executed polynomially many times. But when Z

Polynomial Runtime and Composability 415

We approach these issues by inductively proving that the networks H; (j =1, ..., p)
are reactively polynomial-time. Of course, since we apply an inductive step a polyno-
mial number of times, we have to keep track of the concrete complexities and probabil-
ities carefully. To prevent these concrete bounds from growing too quickly, we use the
following approach.

Recall that the hybrid environment Z~1* from the proof sketch of Theorem 6 mapped
subprotocol invocations directly to instances of &, resp. ¢ (with the corresponding ad-
versaries). Concretely, the first / — 1 subprotocol instances are mapped to ¢-instances,
the /-th subprotocol instance is the challenge instance, and the remaining subprotocol
instances are mapped to 7 -instances. (See also Fig. 1(c).) For our purposes, we modify
the Z~'l* into an environment Z;* as follows: Instead of directly mapping the subprotocol
sessions invoked by p to instances of the real, resp. ideal protocol, our hybrid envi-
ronment Z applies a random permutation to the instance indices 1,...,/. (In other
words, Z;" proceeds like Z*, but randomly shuffles the subprotocol indices.) Assume
that for some i we already know that Z* with 7 runs in polynomial time with some
overwhelming probability 1 — #;_; (where #;_1 is some negligible function that will be
inductively derived below). If we replace 7 by ¢, by assumption the environment Z*
cannot distinguish the two cases, so in particular, we know that all i — 1 internal in-
stances of ¢ simulated by Zi* still run in polynomial time with probability 1 —#;_1 (up
to a negligible error #). Now consider the probability #; that one of the i internal or
external instances of ¢ runs in superpolynomial time. Since the instances 1,...,i of ¢
are randomly permuted, the instances of ¢ cannot “know” which of them is the external
instance, so with probability %ti one of the internal instances will run in superpoly-
nomial time, and thus #; < ﬁti_l. Since []; ﬁ is polynomially bounded even for a
polynomial number of factors, the probabilities #; that the hybrid networks H; run in
superpolynomial time will stay negligible. This proves that all hybrid networks H; are
reactively polynomial-time.

Note that in this argument, to derive the runtime bounds of the hybrid networks Hj,
we required that two consecutive H; be indistinguishable, and to show that indistin-
guishability, we need the polynomial runtime bound. Fortunately, for the indistinguisha-
bility of H; and H;11, we need runtime bounds on H; but not on H;. Hence, we can
derive both the indistinguishability and the runtime bounds in one simultaneous induc-
tion. Of course, in the full proof we additionally have to keep track of the concrete
runtime polynomials, and we have to ensure that the negligible error / is independent
of i.

We remark that in the full proof, the hybrid network H; is not constructed explicitly;
instead, we directly analyze the networks 7 U{A, Z'} and ¢ U{S, Z" ,} which simulate
the machines in Hj.

The Full Proof The rest of this section will be devoted to the proof of Theorem 21. As
usual, k € N will always denote the security parameter, and .4 will always denote the
dummy adversary. Furthermore, S will always denote a simulator such that ¢ U {S} is

relays the messages between k instances of 7 and ¢, these instances will solve puzzles up to a hardness 2k,
Of course, these protocols can be easily distinguished by Z; hence this particular example does not invalidate
the proof of the composition theorem.

416 D. Hotheinz, D. Unruh, and J. Miiller-Quade

sidj-1(y| 1 —1 instances of
: ideal protocol ¢
and simulator &

.Sidl

b’idn—l(l Sidn.il(lfl

Sidn—l(l)

subprotocol
invocations,

remaining sids:
instances of real
8id (k)41 sidp(k)+1_| protocol m with

: : dummy adversary

Sidp(k.).

Fig. 4. The hybrid environment Zl* » internally simulates environment Z with dummy adversary A and
protocol p. The subroutine calls of p (and .A) are translated as follows: / — 1 subsessions are simulated inside
Zl* pas ideal instances of ¢ with simulator S. The subsession with session-id sidy,; = sid 10 is relayed

outside of Zl* » i.e., to the adversary and protocol Zl* » itself is running with. The remaining subsessions are
simulated in Zl* as real instances of 7 together with the dummy adversary. Which subsessions are relayed
where is governed by the permutation /7.

reactively polynomial-time, and for every a priori polynomial-time Z, we have
EXEC; 4,z *EXECy s, z. (6)

The existence of such a good simulator®® for ¢ and A follows from the fact that, with
w, w U{A} is also reactively polynomial-time (Lemma 17), and hence our security
assumption that 7 emulates ¢ implies the existence of such an S.

In analogy to existing composability proofs, a good simulator S* for p¢ and A can
be obtained by simply running many copies of the simulator S concurrently, one for
each session of ¢. The main difficulty in proving that S* is good is to show that the
network p? U {S} is reactively polynomial-time. This is also the main difference from
existing proofs for (universal) composition theorems.

We start by defining a hybrid environment for our hybrid argument. This hybrid ar-
gument is, due to the absence of a priori and uniform runtime bounds, considerably
more complicated than existing hybrid arguments for composition theorems in classical
models (such as [5,8]).

Definition 22 (Hybrid environment Z;‘j). Let m, ¢, and p be protocols, such that
7 and p” are reactively polynomial-time. Let .4 be the dummy adversary and S be
a simulator that is valid for ¢ such that EXEC,; 4 z ~ EXECy s = for all a priori
polynomial-time Z. Let Z be an a priori polynomial-time environment.

Furthermore, let p = p(k) be a polynomial and / € N U {oco}.

Then the environment fo » (to be run either with 7 or with ¢) proceeds as follows:

1. Uniformly pick a random permutation /7 on {1, ..., p(k)}. Define I1(i) := i for
i>pk).

2. Start a simulation of Z with protocol p and adversary A. Note that p and A
may invoke and communicate with subprotocol instances of or ¢. Denote the
session-id of the i-th invoked instance by sid;.

28 By a good simulator S for ¢ and A we mean here and in what follows that ¢ U {S} is reactively
polynomial-time and that EXEC,; 4 = ~ EXECy g, z for every a priori polynomial-time Z.

Polynomial Runtime and Composability 417

3. Calls to the i-th instance of 7 are answered as follows:
(a) if I1(i) <, then relay to a simulation of protocol ¢ with simulator S,
(b) if I1(i) =, then relay to the outside of Zl* » i.e., to the protocol and adversary

that Z;f , Tuns with,

(c) if I1(i) > I, then relay to a simulation of protocol = with dummy adversary.
During this process, the session-id sid; is removed from and added to the messages
as necessary for interfacing to and from p and A.

4. When Z terminates, terminate with the same output as Z.

It will be useful to abbreviate our := IT~1(l), i.e., out is the index such that messages
for session sid,,; are relayed to the outside of Zl* -

Definition 23 (Hybrid environments Z;’;’ » [ij p]q, [Z;‘e’ P]q). In the situation of the
above Definition 22, and for a polynomial g = g (k), define environments Z% | [Zf

R,p’ l,p]q ’
and [Z% plq Just like Z/ - only with the following exceptions:

- Z}g’p initially uniformly chooses [€ {1, ..., p(k)} on its own,
- [Zl’f p]q terminates with output (timeout, [) as soon as one of the following holds:
o the internally simulated protocol p runs more than p(k) steps, or
e the internally simulated protocol p or the simulation of Z invokes more than
p (k) subprotocol sessions,?” or
e one internally simulated subprotocol session (where we count steps of the re-
spective instances of S, 7, and ¢, but not those of A) runs more than g (k) steps.
Without losing on generality, we assume that Z never outputs (timeout, *) on its
own (this can be enforced, e.g., by a different encoding of Z’s own output). Hence,
from a (timeout,l) output of [Z] p]q, we can deduce that one of the preceding
conditions is fulfilled.
- [Z;g’p]q is defined as [Z:p]q, but initially uniformly chooses [€ {1, ..., p(k)} on
its own.

Note that the environments [Z;’f p]q and [Z};, p]q stop execution as soon as one of the
internally simulated non-.A machines runs more than a polynomial number of steps (or if
more than polynomially many of those internal simulations are started). By construction
of the dummy adversary A, this makes [Z] »lq and [Z%. »Jq @ priori polynomial-time,
whereas Z , and 2y , might not be.

The next definition will be useful in the analysis of the environments defined above.
It defines events that are fulfilled when certain complexity bounds are surpassed.

Definition 24 (Events Bé, B,‘,’, By g, Bfffq). Assume a network of the form p™ U
{A, Z}. For i € N, denote by B(; the event that the machines associated with the i-th

session-id sid; of w run more than ¢ (k) overall steps. Denote by Bg the event that ei-
ther the machines from protocol p (not counting machines from) run more than p (k)
overall steps, or that p and Z have invoked in total more than p(k) sessions of .

2z may invoke subprotocol sessions through the dummy adversary.

418 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Furthermore, let

Bpg =BV \/ B
ieN
B}y =B5v\/ B
i'5£i
For networks of the form 7 U {4, Z*} with Z* = Z;'j p orone of its variants, define

Bé, B,‘,’, B, 4, and Bf,éfq analogously. As usual, the machines associated with session-id

sid; include a possible copy of S, but not a possible copy of A.3°
We write “B, in N etc. to emphasize the specific network N in which the event is
considered (e.g., “Bj, in 7 U {4, Zp I

Note that we have defined Blff]"t such that [Z]" 1, gives output (rimeout, 1) if and

only if the event B3 9" occurs.
The following simple observations will prove substantial for the later arguments.

Lemma 25. [n the situation of Definition 22, for arbitrary p, and | € N, the network
equivalences

pU{S, Zf,} =n U{A 2,), Q)
p”U{A,Z}:nU{A,ZT’p}, ®)
quU{S,Z}:(bU{S,Z:O’p}ZﬂU{A,Z:O,p} ©)

hold in the following sense. For each equivalence, the common distribution of the view
of all machines (simulated and non-simulated, but excluding instances of the dummy
adversary A)*! on the left-hand side is identical to the common distribution of the view
of all machines on the right-hand side.

Here we do not count the view of Zl’f » itself, but only the common view of all of its
submachines, except for A-instances.

Proof. For Eq. (7), this is clear since, in both networks, precisely / ideal protocol
instances are present, in both cases with the session-ids (sid 7-1 (1)> -+ sid -1 (1))-
Similarly, in the networks from Eq. (8), only real instances are run, and in Eq. (9),
only ideal instances are run. (Note that Z3 » s execution does not depend on the net-
work it runs in, since Z;‘o’ p never activates the network it runs with.) |

30 This asymmetry is to ensure that we can compare “timeout events” in systems of the form p™ U {A, Z}
and 7 U{A, [Z*]} where the dummy adversary relays a different set of connections. Intuitively, this is justified
by the fact that the dummy adversary can be considered just as being a set of connections and not participating
actively in the computation.

31 See footnote 30.

Polynomial Runtime and Composability 419

The following lemma will not only act as a “base case” in the upcoming inductive
argument, it will also be useful to derive the existence of some concrete complexity
bounds.

Lemma 26. In the situation of Definition 22, there exist polynomials p = p(k) and
q = q(k), and a negligible function u = (k) such that for all k € N and all auxiliary
inputs z € {0, 1}* for Z, the following holds. We have that Pr[B, ;] < u(k), both in
T U{A, Zf’p} and in p U (S, Z}

Proof. By assumption, p” is reactively polynomial-time, so by Lemma 17 the net-
work p™ U {A} is also reactively polynomial-time. Since the original environment Z is
a priori polynomial-time, p™ U {A, Z} is polynomial-time with overwhelming probabil-
ity. Hence, there is a polynomial p = p(k) and a negligible function w1 = w1 (k), such
that

Pr(B, ,inm U{A, 2] =Pr[B,, in p" U{A, Z}] <Pr[TIME,x 4 z > p(k)]
< i (k). (10)

As discussed above, by construction, [Zf p] p is a priori polynomially bounded and

outputs (timeout, 1) iff Bii,m occurs. Since S is a good simulator for ¢, this implies
#out
P[B 1n¢U{$ le}]

@Pr[#Uut 1n¢U{ [Zﬁp]p}]

(E)P (B 7&0“ inmU{A, [Zf’p]p}] + ua(k)

P [B;éom‘ lnnU{.A Zlp}]_’_uz(k)(;)ul(k)-‘rﬂZ(k) (11)

for some negligible py = u (k). Here (x) uses that [Zi“ p] p behaves like Zf‘ » until
Bi(;,m occurs, and () uses that Bi(;,m can be efficiently computed from the output of
27 ,1p-

Now since [Z*] p 1s a priori polynomial-time, ¢ U {S, [Z*] p} is polynomial-time
with overwhelmmg probability. Hence, there is a polynomial q q (k) with g > p and

a negligible function p3 = w3 (k) with
Pr[B" in g U{S. [2]], }] < Pr[TIMEy 5 12; 3, > ¢®0)] =mak). (12)

Since [Z} »1p simulates zZy , until it outputs (timeout, 1), which in turn happens with
probability at most @1 + w2 in an execution with ¢ and S by (11), an execution of ¢ U
{S, [ZT, p] »} and an execution of ¢ U {S, ZT’ p} differ with probability at most w1 + uo.

Using (12) it follows that

Pr[BO in ¢ U{S, 25 ,}] < 1 (k) + 12 k) + pa (k). (13)

420 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Let p :=2u1 + 2u2 + p3. Since g > p, we have B, 4 = B) V \/;cy Bé = Bj v
i _ pFout
\/iyﬁout B;j \Y qum =B,p, Vv B:;”t. So

(11,13)

Pi[BygingU(S, 2)] <P[B}5 v B ingU(S. 2)] < nk). (14)

Finally, since ¢ > p, we have B, ; = B, V\/;cy By = Bj V' \/;cy B, = By, and thus
obtain

Pr[Byq inw U{A Zf,}] <Pi[Bp,inn U{A Zf)] <m0 <u). (15
Equations (15) and (14) show the lemma. O

For the remainder of this section, fix p, ¢, and pu as given by Lemma 26. For readabil-
ity, we will drop p and g from the notation of the hybrid environments and events. That
is, we will abbreviate Z* := Z;fp, Zp = Z;g’p, [Z]]:= [Zl?'jp]q, and [Z}]:= [Z}’;’p]q.

Also, we will write B :=B), ;, B' := B(j, Bf:=B} ,, and B* := Bfi.

Lemma 27. [In the situation of Definition 22, there exists a negligible function h =
h(k) such that for all k e N, all l € {1, ..., p(k)}, and all auxiliary inputs z € {0, 1}*
for Z, we have

|Pr[BZ“ in 7t U{A, ZF}] —Pt[B¥" in¢ U{S, Z}]| < hik). (16)
Note the universality of /4; in particular, it does not depend on /.

Proof. By construction, [Z%] is a priori polynomial-time. Therefore, we have the
computational indistinguishability EXEC 4 23] (k,z) ~ EXECy s | Zx] (k, 7). Now let

8;(k) := max
z€{0,1}*

Pr[B?é”’” inm U{A [Z]]}] - Pr[Bs‘é””’ ing U{S,[Z]]}]

3

and let /*(k) be an index [* € {1, ..., p(k)} that maximizes &+ (k).3?

Let D be the nonuniform polynomial-time algorithm that upon input (1%, z, X) out-
puts 1 iff X = (timeout, I* (k)). Since [Zg] chooses arandom [€ {1, ..., p(k)} and then
behaves like [Z;], and thus in particular only outputs (timeout, I*(k)) if [= I*(k), we

32 The maximum is reached because [Zl*] is a priori polynomial-time and hence considers only a finite
prefix of z (the length depending only on the security parameter k). Hence one can assume that there are only
finitely many different z for each k.

Polynomial Runtime and Composability 421

have forallk e Nand/ € {1, ..., p(k)} that

(k) = Zen{l(%JPr[D(lk, 2, EXECy 4,125k, 2) = 1]

—Pr[D(1*, 2, EXECy 5,123 (k, 2)) = 1]
1
max
ze{0,1}* p(k)

—Pr[D(1¥, 2, EXECy 5 121,,1(k. 2)) = 1]]

|Pr[D(1k, Z, EXECJ‘[,A,[Z*)](k, Z)) = 1]

* (k

1
_ Fout - *
= oy pk) prlpT i U A [Z 1]

—Pi[B7"in ¢ U{S. [2]]}]]
: 8r+ k) (k) > ! 81 (k)
= Ok = —0/(K).
plo =
Since EXEC, 4 Z5 EXECy s | 25 and D is nonuniform polynomial-time, we have
that /4’ is negligible.’® Therefore & (k) := p(k)h' (k) is negligible, too, and & (k) < h(k)
for all k.
Now observe that for all /, the environment [Z;*] behaves by construction exactly like
Z/" unless B7°“ occurs. The lemma follows. (]

Lemma 28. In the situation of Definition 22, there exists a negligible function v such
that for all k € N, all | € NU {00}, and all z € {0, 1}*, the following holds. We have
Pr[B] < v(k), in all of the following networks:

nU{A,Zl*}, nU{A,Z;‘Q}, JTU{.A,[ZI*]}, nU{A,[Z;}]},
sUIS 7). sUls Z] sUIS[E]. suls [Z])

Proof. Fix a security parameter k£ € N and auxiliary input z € {0, 1}*. For [/ €
{1,..., p(k)}, define #; :=Pr[B in ¢ U {S, Z}]. Our goal will be to give a common
negligible bound on all ;. Now Lemma 26 shows that #; < w(k) where w is negligible.
The bounds on #; for [> 1 will now be derived inductively.

Fix some / € {2, ..., p(k)}. Recall that in an execution of ¢ U {S, Z['}, the session-
ids (sidp-1(1ys - - -, sid 1)) refer to [identical ideal instances of ¢ U {S}. The sessions
with the first / — 1 session-ids in the list are simulated inside Z;". Only the last ideal ses-
sion in this list, the one with session-id sidyy; = sid -1) is relayed outside of Zl*. By
the uniform choice of IT, however, the distribution of this list of session-ids is invariant
under any (fixed) permutation. Hence, for runs of ¢ U {S, Z[*}, we have for any fixed
Jj <l

Pr[—~B#T 'O A BT O] = pr[—BT D) A 170, (17)

33 Here we use the fact that we have defined computational indistinguishability with respect to nonuniform
distinguishers. For uniform distinguishers, the lemma can be shown with a more complicated but uniform D
that guesses /* by sampling runs of 7 U {4, [ZR]} and approximating §;.

422 D. Hotheinz, D. Unruh, and J. Miiller-Quade
Thus,

Pr[B#7 O] > Pr[3j <1 —1: BT D] = Pi[3j <l —1:=B*T D A BT D]
-1
O S P-BAT D A BT D)L ¢ — 1) Pr[~B*T O A B0,
j=1
(18)

Here (%) uses the fact that the events —B# ! DA BTG are mutually exclusive for
different j. We obtain

Pr[B]) Pr[B#T‘(l)] _i_Pr[_,B;éH*l(l) A BH*'(I)] (%)Pr[B;éH*l(l)]

+ ——Pi[B*T 0]

-1

= 1—% pr[B#1 0] = % Pr[B7]. (19)

Here (%) uses the fact that B < B#1T ')\, gIT~' (D)
Therefore we have

(19)

Pr[Bing U{S, Z}] <

f Pr[B# in¢ U{S, Z}]

-1

16

< %(Pr[B#m inm U {.A, Zl*}] +h(k)) < %(Pr[B inT U {.A, Zl*}] +h(k))

2 %(Pr[B ingpU{S, Z | }]+hk) = %(m + h(k)).

Hence for any / € {1, ..., p(k)} we have

(11525)+ (ST 525 oo

y=2 j=2y=j

7]

IA

S 2 2
=l + Z jTlh(k) <ty +1°h(k) < p(k)u(k) + pk)“h(k) =:v(k). (20)
j=2

Since p is polynomial, and p and % are negligible, v is negligible as well. Note that the
construction of v does not depend on k, [, or z.

For bounding #; in the case ! > p(k) (this includes the case [= c0), consider exe-
cutions of Z[*. Now if [> p(k), then Zl* runs the first p(k) subprotocol sessions that
p asks for internally as ideal instances, independently of the concrete value of [and
Z’s surrounding network. (Note that only the IT ~1(I)-th invoked session is relayed
outside, and that [T~1()) =1 > p(k) for [> p(k).) Since the invocation of more than

Polynomial Runtime and Composability 423
p(k) sessions causes B and thus B, this implies that for [> p(k),

Pr[Bin¢U{S, Zf}] =Pr[Binm U{A, Z}], (21)
Pr[BingpU{S, Z['}] =Pr[Bing U{S, Z5), }] (22)

We get for [> p(k):

n=Pi[BingU{S, Z}|EPr[Bingp U{S, Z5,),1}]
LPBinm U A 224)] 2PBin g U (S, Z5)] = tha < vik).
Combining this with (20), we see that

VieNU{oo}: Pr[BingU{S, Z/}] <vk). (23)

With Eq. (7) for the case [> 1 and Lemma 26 for the case / = 1 (using that u© < v by
construction), we also obtain

VI e NU {00} : Pr[B inm U {A, ZI*}] <v(k) (24)

for the same v. The remaining bounds from the lemma statement can be derived from
Eq. (23) and Eq. (24) by using that

— Z; and [Z]] proceed identically unless B occurs (since B is implied by BFouty,
so Pr[B] is identical with these environments,
— Zj firstpicks [€ {1, ..., p(k)} and then runs Z}*, so any bound on Pr[B] that holds
for all Z also holds for Zj.
O

Lemma 29. [In the situation of Definition 22, we have the computational indistin-
guishability EXEC; 4 zx(k,z) ¥ EXEC; 4, zx (k, 2).

Proof. First, we have the following chain of computational indistinguishabilities:
EXECn’_A,g; ~ EXECn"A,[Z;] ~ EXEC(/,’S’[Z;] ~ EXEC¢,’5,Z;. (25)

The first and third indistinguishabilities hold because Z} and [Z}] behave identically
unless B occurs, and Lemma 28 bounds Pr[B] by a negligible function in these net-
works. The second indistinguishability holds since S is a good simulator, and [Z}] is
a priori polynomial-time.

424 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Thus, for any nonuniform polynomial-time distinguisher D, the following is negligi-
ble:

[Pr[D(1%, 2, EXBCyr 4 23 (k, 2)) = 1] = Pe[D(1*, 2, EXECy 5z (k, 2)) = 1]

pk)

3" (Pr[D(1%, 2. EXEC, 4 5 (k.) = 1]
=1

_
~ plk)

—Pr[D(1%, 2, EXECy 5,2+ (k. 2)) = 1])‘

pk)

Y (P[D(1*, 2, EXEC, 4 z; (k. 2)) = 1]
=1

—Pr[D(1%, 2, EXECy 4 27, (k, 2)) = 1])‘

1 k
=20 Pr[D(1%, 2, EXECy 4, zx (k, 2)) = 1]
—Pr[D(1%,z, EXECy 4,23, ., (k.2)) =1]|
w1 X
> %(|Pr[D(1 .2, EXECy 4 z: (k, 7)) = 1]
—Pr[D(1¥, 2, EXECy 4 22 (k. 2)) = 1]| + v(K)). (26)

Here () uses Lemma 28 and the fact that Z;(k) 41 and Z5 behave identically unless B
occurs.

Thus | Pr[D (1%, z, EXECH,A,ZT (k,z)) = 1] —Pr[D(1¥, z, EXECy 4, zx (k,2)) =1]|
is negligible and hence

EXEC, 4,z ~ EXECy 4 zx . 0

We can finally proceed to prove the main result.

Proof of Theorem 21. Recall that A always denotes the dummy adversary. As in
Definition 22 and all the preceding helping lemmas, let S be a simulator for a single
instance of ¢, such that for all a priori polynomial-time Z, we have EXEC, 4 z ~
EXECy s z. Now we construct a good simulator S* for p?, such that p?® U {S*)
is reactively polynomial-time, and such that EXEC,x 4 z ~ EXEC s s~ z for every
a priori polynomial-time Z.

This construction of S°° is actually the same as in previous proofs of universal com-
posability (e.g., as in the setting of [5]) and conceptually simple: S internally simu-
lates a copy of the dummy adversary A for attacking p itself, and as many instances of
S as needed, one for each session that the simulation of A or the protocol p asks for.
Messages between A and instances of 7 are rerouted to the corresponding instances

Polynomial Runtime and Composability 425

~—— non-simulated

<+ ! instances of ¢

~—— simulations of
-~ olinstances of S

Z | 177y Nnvocations /77777777 Ty 3 ””””” 3 0
I I

I

I I

I I

| |

| |

Fig. 5. The dashed box surrounds simulator S°°, running with environment Z and protocol 0? (ie., with
protocol p in the ¢-hybrid model). S internally simulates the dummy adversary A and instances of simula-
tor S.

of §. Messages between the instances of S and instances of protocol ¢ are directly re-
layed to S°°’s outside, i.e., to the ¢-hybrid setting in which S is executed. Informally,
we get the situation depicted in Fig. 5 when S is run with an environment Z and
protocol p?. Note that the only difference to the hybrid simulator from the proof of the
composition theorem in the classical UC setting is that S° has no upper bound on the
number of instances of S it simulates. In particular, S* is not a priori polynomial-time
even if S is.

Now we make the following claim of execution equalities: For all environments Z,
auxiliary inputs z, and security parameters k, we claim

EXECpn’AYZ(k, Z) = EXECH,A,Z,* (k, 2), 27
EXECpq)’Soo‘Z(k, 7) =]E‘:XECT[’_,4’2,75%(7 (k, z). (28)

Equation (27) follows from Eq. (8). For Eq. (28), note that the permutation /7 in the
definition of Z" dictates which subsession instance queries are relayed where, but since
all subsessions in ¢ U {S, Z% } are ideal instances, this does not have any impact. (This
has already been exploited in the proof of Eq. (9).) Note also that Z* never invokes
the external machines .4 and Z%_, but relays all session-ids to the unbounded number
of internal instances of p and S.

Combining Eq. (27) and Eq. (28) with Lemma 29 shows the indistinguishability
EXEC,r 4,z * EXEC 4 5 z.

It remains to show that p? U {S*} is reactively polynomial-time (and thus S is
valid for p?). Fix any a priori polynomial-time Z to run with p? U {S°°}. The above
argument for Eq. (28) shows that

Pr[B in p? U {S‘X’, Z}] =Pr[B inmw U {A, Z;‘o}]

Now the right-hand side of this equation is negligible by Lemma 28. Hence Pr[B] is
negligible in p? U {S*, Z}. Since in this network, event B occurs if any machine ex-
ceeds a certain fixed polynomial runtime bound (or if more than a fixed polynomial
number of machines are invoked), p? U {S°, Z} is polynomial-time with overwhelm-
ing probability. Hence p? U {S°°} is reactively polynomial-time. O

426 D. Hotheinz, D. Unruh, and J. Miiller-Quade
8. Example: Secure Message Transmission

In this section we will use a toy example to show how using UC with respect to reactive
polynomial time differs from using classical UC. In particular, we will demonstrate
that, for using our notion, one does not have to perform more complicated checks as
to whether a protocol is polynomial time than one would have to do using the classical
UC notion. For this, we will consider an implementation of the functionality FsmT for
secure message transmission. The functionality Fsmr is defined as follows.

Functionality Fsyvt
The functionality Fsmt proceeds as follows:

— When receiving an input (Send, m) from party Pp, then send (Sent, |m|) to
the adversary, and send a delayed message (Sent, m) to P.>*

Note that this functionality does not impose any bounds on the number or length of the
transmitted messages. Yet it is easy to see that it is reactively polynomial-time, because
the running time of Fgyr is linear in the length of the inputs from the environment
and the simulator. We will realize Fsyr in the authenticated channel model in the case
of static corruption and make use of an ideal key exchange functionality Fxg. The
functionality Fxg is defined as follows.

Functionality Fgg
The functionality Fxg proceeds as follows (on security parameter k):

— When receiving an input (Key) from party P, then choose a random key K €
{0, l}k, send (Key) to the adversary, and send (Key, K) as delayed messages
to P; and P;.

Let (E, D) be an IND-CPA secure encryption scheme (we assume for simplicity that
the keys for (E, D) are uniformly distributed keys of length k). Note that this encryp-
tion scheme is not a priori polynomial-time, but polynomial-time in its input. Next, we
implement Fsyvt using the following (unsurprising) protocol.

Protocol SMT

— Whenever P; receives (Send, m) from the environment, it invokes a new in-
stance of Fxg. Let K be the key that is sent to P; and P> by Fkg.

— Then P; sends ¢ := Eg (m) to P, over an authenticated channel.®

— Upon receipt of a message ¢ from P, P, computes m := Dk (c) and sends
(Sent, m) to the environment.

For simplicity, we only elaborate on the case that no party is corrupted.® First, we
verify that SMT is indeed reactively polynomial-time. For each input (Send, m) from

34 By delayed we mean that the adversary may schedule the delivery of that message. That is, the func-

tionality queues the message and only sends it upon an explicit request from the adversary. See [8] for details.
35 We assume an authenticated channel where the adversary can reorder and drop, but not replay messages.
36 For secure message transmission, this is actually the interesting case.

Polynomial Runtime and Composability 427

the environment, one instance of the functionality Fxg is invoked, and one encryp-
tion and one decryption is performed, whose complexity is polynomial in the length
of m. Thus the total complexity of SMT is polynomial in the total length of all
messages m received from the environment, and so SMT is reactively polynomial-
time.

We now examine whether SMT emulates Fsyt. By Theorem 19, it is sufficient to
give a simulator S for the dummy adversary .A. The simulator S for the protocol SMT
is straightforward: Whenever the simulator receives (Sent, /) from Fsmr, it informs
the environment that an instance of Fxg has been invoked. When the environment tells
S to deliver the key to Pp, the simulator chooses an arbitrary message m of length [
and a random key K and informs the environment that the message Eg (2) has been
transmitted over the authenticated channel.

To show that SMT emulates Fsv, we show that EXECgur, 4,z and EXEC x5 =
are computationally indistinguishable for any a priori polynomial-time environment
Z, and that S is a valid simulator for ¢. The computational indistinguishability fol-
lows from the fact that (E, D) is IND-CPA and therefore the environment cannot
distinguish between Eg (m) and Eg (m). We will not go into details, since this part
of the proof is standard and does not differ from the analogous proof in the classi-
cal UC setting. To see that S is valid, we have to see that {FsmT, S} is reactively
polynomial-time. For each message m that is sent, the machines in {FsmT, S} will
only send messages that are polynomial-time in the length of m (most notably the en-
cryption Eg (m)). Since computing these messages also takes only polynomial time in
|m|, the overall complexity of {FsmT, S} is polynomially bounded in the total length
of the messages m. Thus S is valid. Interestingly, the simulator S by itself is not
reactively polynomial-time. When receiving (Sent, /) it chooses a random message
m of length [/, and the integer / is exponential in the length |/| of its representation.
However, the fact that Fspmt would never send (Sent,/) without receiving a mes-
sage of length / guarantees that the overall network is reactively polynomial-time.
This, too, shows the flexibility of our approach; many earlier models of polynomial
time in the UC setting would require Fsyt to send (Sent, 1¢) instead of (Sent, £)
to ensure that the running time of the simulator is bounded in the length of its in-
put 1¢.

We have seen that SMT emulates Fsyr in the Fgg-hybrid model. Assume now that
we want to implement Fsyt without using an ideal key exchange. Let therefore DH
be a Diffie—Hellman key exchange. Under the decisional Diffie-Hellman assumption,
it is not hard to see that DH emulates Fgg (in the case of static corruption at least).
To see that SMTPH (i.e., the protocol SMT using DH as subprotocol) emulates Fsmr,
we have to apply the Universal Composition Theorem 21. The protocol DH is a pri-
ori polynomial-time (since it generates only a single key of fixed length), so in par-
ticular it is reactively polynomial-time. Furthermore, we have to see that SMTP" is
reactively polynomial-time. Analogous to the above, we count the number of steps
occurring when a message m is transmitted and see that the complexity of SMTPH
is polynomial-time in the total length of the messages transmitted. So SMTPH is re-
actively polynomial-time, too. Therefore Theorem 21 applies, and SMTP" emulates
FsMmr.-

428 D. Hotheinz, D. Unruh, and J. Miiller-Quade

9. Variants of Our Approach

In this section, we present two variants of our notion of polynomial time and of the
corresponding security notion. The goal is to enable the reader to better understand
which of our design choices are necessary and which are just a matter of taste.

In Sect. 9.1, we introduce a simplification of the definition of reactive polynomial
time, strong reactive polynomial time. Strong reactive polynomial time requires that the
overall system (including Z) run in polynomial time with probability 1 (instead of just
overwhelming probability as in Definition 10). We show that this variant is not viable
because the composition theorem does not hold.

In Sect. 9.2, we introduce the notion of uniform reactive polynomial time. Recall that
in Definition 10, we required that for any reactively polynomial-time system S and any
a priori polynomial-time ITM Z, the complexity of S U {Z} be polynomial-time with
overwhelming probability. However, no requirement was made as to how the polyno-
mial bounding the running time of S U {Z} depends on the polynomial bounding the
running time of Z. In contrast, in the case of uniform reactive polynomial time we
require that these two polynomials be polynomially related. We show that the choice
between reactive polynomial time in the sense of Definition 10 and uniform reactive
polynomial time is largely a matter of choice and that all our results also apply to uni-
form polynomial time.

9.1. Strong Reactive Polynomial Time

In Sect. 4 we have introduced the notion of a reactively polynomial-time network S
roughly as follows: For any ITM Z, the network S U { £} is polynomial-time with over-
whelming probability. However, the reader might question whether the additional gener-
ality of allowing networks that run in superpolynomial time with negligible probability
is not offset by the added complexity. Might not the following notion of strong reactive
polynomial time be more suitable for defining our security notion?

Definition 30 (Strong reactive polynomial time). A system S of ITMs runs in strong
reactive polynomial time if for any a priori polynomial time ITM Z the system S U {Z}
runs in a priori polynomial time (i.e., S U {Z} always terminates after a polynomial
number of steps).

For example, it is not difficult to see that strong reactive polynomial time has the
following simple characterization: For any sequence of incoming messages such that
the total length is polynomially bounded, the system S runs a polynomial number of
steps.®’

Based on the notion of strong reactive polynomial time, we can now define security
analogous to Definition 11.

Definition 31 (UC with respect to strong reactive polynomial time). We say an ITM M
is strongly valid for w (or ¢) if 1 U{M} (or ¢ U{M}) runs in strong reactive polynomial
time.

37 To see this, consider a polynomial-time ITM Z that sends random messages. Any sequence of messages
of polynomial length is sent by this ITM with nonzero probability.

Polynomial Runtime and Composability 429

Then 7 emulates ¢ with respect to strong reactive polynomial time if for any ITM A
that is strongly valid for 7, there is an ITM S that is strongly valid for ¢ such that for
every a priori polynomial-time I'TM Z the following families of random variables are
computationally indistinguishable:

{EXECmA!Z(k’Z)}keN,ze{O,l}* and {EXECtb,S,Z(kaZ)}keN,ze{o,l}*'

Although this definition looks very similar to Definition 11, it turns out that it is not a
suitable security definition, since not even the Universal Composition Theorem 21 holds
(not even its restricted variant Theorem 20).

Theorem 32. There are protocols rw, ¢, and p such that

— The protocol p calls only one instance of its subprotocol.

The protocols 1, ¢, p, p™, and p® are strongly reactively polynomial-time.
The protocol w emulates ¢ with respect to strong reactive polynomial time.
— But p™ does not emulate p® with respect to strong reactive polynomial time.

Proof. In this proof, we say “emulate” for “emulate with respect to strong reactive
polynomial time.”

We first describe the protocols m and ¢. The protocol m expects a pair of the form
(1,s,b) with t € N, s € N, and b € {0, 1} from the environment (or the embedding
protocol). When b = 1, it sends s to the adversary. Otherwise, the message is ignored.

The protocol ¢ also expects a pair of the form (17, s, b). If b = 1, it sends s to the
adversary. If b = 0, it sends s to the adversary with probability y (k) := 2~* where k is
the security parameter.

Both protocols accept only one message from the environment. Further messages are
ignored.

It is easy to see that 7 and ¢ are both strongly reactively polynomial-time.

We will now show that 7 emulates ¢. Let a strongly valid adversary A be given.?
We set S := A. Since ¢ deviates from the program of 7 with probability at most y (k),
the ensembles EXEC,; 4 z and EXECy s = are statistically indistinguishable for any
environment Z. To show that 7 emulates ¢, we therefore only have to show that S = A
is strongly valid for ¢. Let an a priori polynomial-time ITM Z be given. Let Z’ be the
ITM that simulates Z with the following modification: When Z would send a message
(17, 5, 0) to the protocol, Z’ sends with probability y (k) the message (17, s, 1) and with
probability 1 — y (k) the message (1’, s, 0). Then TIME, 4 z and TIME, s z have the
same distribution and Z’ is a priori polynomial-time. Therefore if there is an a priori
polynomial-time ITM Z such that ¢ U{S, Z} is not a priori polynomial-time, then there
is an a priori polynomial-time ITM Z’ such that = U {4, Z} is not a priori polynomial-
time. The latter is a contradiction to the strong validity of .A. Thus ¢ U {S, Z} is a priori
polynomial-time and S is strongly valid. Therefore = emulates ¢.

We now introduce the protocol p. This protocol expects a message (1°, s) from the
environment. Then it sets b := 1 if and only if # = s and b := 0 otherwise. Finally, it

8

38 In the context of UC with respect to strong reactive polynomial time, by strongly valid we mean of
course that w U { A} is strongly reactively polynomial-time. The same applies to strongly valid simulators.

430 D. Hotheinz, D. Unruh, and J. Miiller-Quade

sends (17, s, b) to its subprotocol. As did 7 and ¢, this protocol accepts only a single
message from the environment.

It is straightforward to check that p, p™, and p? are strongly reactively polynomial-
time.

We proceed to show that p™ does not emulate p®. Consider the following adver-
sary A. When receiving a message s from the subprotocol 7, it sends 1° to the envi-
ronment. We first check that A is strongly valid for p™. The critical point is the fact
that A receives an s in binary representation and outputs 1° which takes time linear
in s, i.e., exponential in the length of s. However, it turns out that p¢‘ U {A} is a priori
polynomial-time nevertheless. To see this, consider an a priori polynomial-time ITM Z.
Whenever the ITM Z sends a message (17, s) to p with 7 # s, p sends (1’,s,0) to 7.
The message (1, s, 0) is ignored by 7. So 7 only outputs s if Z sends a message (17, s)
with s =t. Since Z is a priori polynomial-time, ¢ is polynomially bounded in the se-
curity parameter. Therefore the message s received by the adversary A is guaranteed
to be polynomially bounded, too, so the running time spent by .4 for outputting 1° is
polynomially bounded in the security parameter. Hence A is strongly valid for 7.

Now assume a simulator S for A. Without loss of generality, we may assume that
S expects a message s from the subprotocol ¢ and then either ignores that message or
sends a single message m to the environment. Let P (k, s) denote the probability that
the simulator S sends a message m = 1° upon receiving s when running with security
parameter k. Let L(k) be the largest nonnegative integer such that P (k,s) > % for all
s < L(k). (We set L(k) := oo if P(k,s) > 5 forall s.)

We distinguish two cases. First, consider the case that L(k) is polynomially bounded
in k for sufficiently large k. Then we construct an environment Z that upon security
parameter k sends (17, s) to p with t :=s := L(k) + 1 and outputs 1 if it receives the
message 1* from the simulator.* Obviously, Z is a priori polynomial-time. (If L(k) is
not efficiently computable, we can assume that Z extracts L (k) from its auxiliary input.)
By construction of p, 7, and A, we then have Pr[EXEC,~ 4,z = 1] = 1 for sufficiently
large k. On the other hand, by the definition of P (k, s) we have Pr[EXEC 00,82 = 1]=
Pk,s)=Pk,Lk)+1) < % for sufficiently large k (namely whenever L(k) # 00).
Thus EXEC,~ 4 z and EXEC 4 5 z are computationally distinguishable.

If L(k) is not polynomially bounded, we construct an ITM Z that chooses 7 := 0

and s := min{L(k), 2%} and sends (1’,s) to p. Again, Z is a priori polynomial-time.

. (€
However, we have Pr[TIMEp¢’S’Z > min{L(k),2k}] > Pr[S sends 1mm{L(k)’2k}] z)

y (k) P (k, min{L (k), 2}) > y(k)% > 0. Here () uses the fact that even in the case
b =0, the subprotocol ¢ sends s to the simulator with probability y (k). Thus
p? U (S, Z} does not run in a priori polynomial time, so S is not strongly valid for ¢.
So summarizing, there is no strongly valid simulator S such that EXEC,» 4 z and
EXEC s s z are computationally indistinguishable for all a priori polynomial-time Z.
Hence p” does not emulate p?. |

An interesting question at this point is whether this counterexample still holds (pos-
sibly with a different choice for y) if we allow S U {Z} to run in expected polynomial

39 Strictly speaking, this definition does not make sense for L(k) = co. However, this only happens for
finitely many k, so we can assume that Z just aborts in these cases.

Polynomial Runtime and Composability 431

time in Definition 30. However, in this case consider the simulator S that accepts any s,
but aborts after 1/y (k) steps. This simulator produces a good simulation: Since 1/y (k)
is superpolynomial, the abort occurs only for ¢ # s. In this case no output is expected
from the real adversary either, so the real and ideal views are indistinguishable. And this
simulator is strongly valid (w.r.t. expected polynomial time): In the case t # s, it runs
1/y (k) steps with probability y (k).

So at least this counterexample does not apply to a notion using expected polyno-
mial time. However, it demonstrates that the simulator may have to explicitly bound
its running time by the inverse of some probability y, where y is—intuitively—the
probability that a naive simulator would run superpolynomial time. Since it is not clear
whether such a bound y can always be explicitly constructed or efficiently computed,
we might expect that, even if it holds, the proof of even the simple composition theorem
will be much harder in the case of expected polynomial time. Nevertheless, it would
be an interesting question to see how a notion of reactive polynomial time based on
expected polynomial time behaves and what techniques would be used in the proofs.

9.2. Uniform Reactive Polynomial Time

In Definition 10, we allow a reactively polynomial-time network S to run in time p(k +
q) where g is the runtime of the ITM Z and p is some polynomial that may depend
on Z. As mentioned on p. 401, we might also require that p not depend on Z, leading
to a stricter notion of uniform reactive polynomial time. In this section, we define this
alternative notion and show that the properties we proved in Sects. 57 also hold for this
somewhat stricter notion. Thus the choice of which notion to use is more a matter of
personal preference than of formal necessity. However, note that with uniform reactive
polynomial time some arguments are slightly more awkward since one has to keep track
that p is independent of Z. (This is somewhat reminiscent of the difference between UC
and specialized-simulator UC [27].)

Definition 33 (Uniform reactive polynomial time). A system S of ITMs runs in uni-
form reactive polynomial time if there exists a polynomial p such that, for any a priori
polynomial time ITM Z and any polynomial ¢ bounding the running time of Z (cf.
Definition 8), there is a negligible function p such that for all k € N and z € {0, 1}* we
have that TIMEgy z)(k, z) > p(k + g (k)) with probability at most w (k).

Definition 34 (UC with respect to uniform reactive polynomial time). We say an I'TM
M is uniformly valid for & (or ¢) if mw U {M} (or ¢ U {M}) runs in uniform reactive
polynomial time.

Then v emulates ¢ (with respect to uniform reactive polynomial time) if for any ITM
A that is uniformly valid for 7, there is an ITM S that is uniformly valid for ¢ such that
for every a priori polynomial-time ITM Z the following families of random variables
are computationally indistinguishable:

{EXECﬂ,A,Z(k’ Z)}keN,ze{O,l}* and {EXEC¢,S,Z("’ Z)}keN,ze{O,l}*'

In the following sections, we show that the properties we proved in Sects. 57 still
hold for the alternative notion in Definitions 33 and 34.

432 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Basic Properties Lemma 12 still holds because uniform reactive polynomial time im-
plies reactive polynomial time. So the conditions of Lemma 12 also hold in the present
setting. Lemmas 13 and 15 holds with identical proofs since these proofs do not use the
definition of validity at all. Thus all results from Sect. 5 still hold for uniform reactive
polynomial time.

Dummy Adversary All our results concerning the dummy adversary carry over to the
case of uniform reactively polynomial time.

Lemma 35 (Uniform validity of the dummy adversary). If w is a uniformly reactively
polynomial-time protocol, then the dummy adversary is uniformly valid for .

Proof. Let Z be an ITM with runtime polynomial ¢ and consider the system
{Z, fl} U 7. Since A only forwards messages between Z and w, we can construct an
a priori polynomial-time ITM Z’ that directly sends and receives those messages to and
from 7. Then, assuming the same random tapes in both networks, TIME (2. Ay (k,2) <
¢ - TIMEzur (k, z) for some fixed ¢ > O (independent of Z). Since 7 is uniformly
reactively polynomial-time, we have that TIME, z/,ur (k, 2) < p(k + g (k)) with over-
whelming probability in k for some polynomial p which is independent of Z’. Thus
TIME{ 2. Ajur (k,z) <c- p(k + g(k)) with overwhelming probability. Since this holds

for all Z (and the polynomial ¢ - p does not depend on Z), it follows that (AU is
uniformly reactively polynomial-time and thus A is uniformly valid for 7. U

Definition 36 (Uniform emulation with respect to the dummy adversary). We say
emulates ¢ with respect to the dummy adversary and uniform reactive polynomial time
if for the dummy adversary A there is an ITM S that is uniformly valid for ¢ such that
for every a priori polynomial-time ITM Z the ensembles EXEC_ Az and EXEC $.8.2
are computationally indistinguishable.

Theorem 37 (Completeness of the dummy adversary). Assume that w is uniformly
reactively polynomial-time. Then w emulates ¢ with respect to uniform reactive polyno-
mial time if and only if m emulates ¢ with respect to the dummy adversary and uniform
reactive polynomial time.

Proof. We describe the changes that must be applied to the proof of Theorem 19. First,
consider the construction of the polynomial p that bounds TIME,, 4 z(k, z) with over-
whelming probability. In the present case we can achieve a stronger condition: We can
choose p such that p(k) < p(k+ g (k)) for any polynomial ¢ bounding the running time
of Z where p is a fixed polynomial independent of Z and q. Then, the construction of
the simulator S and the proof that EXEC; 4 =z and EXECy s z are computationally
indistinguishable is unchanged. (It does not use the definition of validity, only the prop-
erty that p bounds TIME, 4 z(k,z) with overwhelming probability.) Thus it is only
left to show that S is uniformly valid.

Since Z;, simulates Z and A, but A for at most p steps, we have that the running time
of Z} is bounded by ¢’ (k) := c; - (¢ (k) + p(k)) for some constant c; (in the sense of

Polynomial Runtime and Composability 433

Definition 8). The constant c; reflects a possible simulation overhead and is independent
of Z and ¢. Since § is uniformly valid for ¢, it follows that TIME $.5.2/ < pi1k +
< Ep

q'(k)) with overwhelming probability. Again, p; is independent of Z and ¢. Then,
since the network ¢ U {Z ;,, S} behaves differently from ¢ U {Z’, S} only if Z; outputs
beep which happens with negligible probability, it follows that TIME $5.2 SC2-
p1(k+q’(k)) with overwhelming probability. Here ¢ again represents some simulation
overhead independent of Z and g. Then we also have TIMEy s =z < c3c2 - p1(k +
q'(k)) with overwhelming probability with some overhead c3 independent of Z and g.
Substituting the definitions of ¢’ and p, we get that TIME, s z < c3¢2 - pi(k + 1 -
(q(k) + p(k 4+ q(k)))) where c1, c2, c3, p1, p are independent of Z and g. Thus we can
choose some polynomial p* independent of Z and g such that TIMEy s = < p*(k +
q(k)). Since this holds for every a priori polynomial-time Z and any g bounding the
running time of Z, it follows that ¢ U {S} is uniformly reactively polynomial-time and
thus S is uniformly valid for ¢. O

Universal Composition Theorem Since the Simple Composition Theorem is a direct
consequence of the Universal Composition Theorem, it is sufficient to show that the
Universal Composition Theorem 21 holds for uniform reactive polynomial time.

Theorem 38 (Universal Composition Theorem for uniform reactive polynomial time).
Let v, ¢, and p be protocols, such that w and p™ are uniformly reactively polynomial-
time. The protocol p may call an arbitrary number of subprotocol instances. Assume
that = emulates ¢. Then p™ emulates p?.

We will now sketch the modifications that need to be applied to the proof of Theo-
rem 21 in order to prove Theorem 38. We assume the notation used in the proof of The-
orem 21. Similar to that proof, here we let A denote the dummy adversary and choose a
fixed simulator S such that ¢ U {S} is uniformly reactively polynomial-time, and that for
every a priori polynomial-time Z we have that EXEC,, 4 z and EXECy s = are com-
putationally indistinguishable. Additionally, by rz we denote a polynomial bounding
the running time of Z (in the sense of Definition 8).

Then, for the new proof Definitions 22, 23, and 24 and Lemmas 25, 27, 28, and 29
remain unchanged. These lemmas were shown to hold under the assumption that s,
o™, and {S} U ¢ are reactively polynomial-time, that EXEC; 4 =z ~ EXECy s z for
all a priori polynomial-time Z, and that Z is an a priori polynomial-time environment.
Then the lemmas in particular hold under the stronger condition of the present proof
that 7, p™, and {S} U ¢ are uniformly reactively polynomial-time, that EXEC, 4 z ~
EXECy s,z for all a priori polynomial-time Z, and that Z is an a priori polynomial-
time environment. The same holds for Lemma 26, but we need to somewhat strengthen
Lemma 26.

Lemma 39. [In the situation of Definition 22, there exist polynomials p = p(k) and
q = q(k), and a negligible function u = (k) such that, for all k € N and all auxiliary
inputs z € {0, 1}* for Z, the following holds. We have that Pr[B, ;1 < (k), both in
T U{A, Zip} andin ¢ U{S, Zi“’p

434 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Moreover, we can write p and q as p(k) = p(k +rz(k)) and q(k) = q(k + r=z(k))
where p and q do not depend on Z and rz.

(Note that only the part after moreover is changed with respect to Lemma 26.)

Proof. To show Lemma 39, we have to show that in the proof of Lemma 26 we can
choose p and ¢ such that they additionally satisfy the conditions p(k) = p(k + rz(k))
and g (k) = q(k +rz(k)).

For p this is straightforward: p was chosen as a polynomial such that TIME ;= 4 = <
p(k) with overwhelming probability. Since in our setting, p™ U {A} is uniformly reac-
tively polynomial-time, and since rz bounds the running time of Z, we can therefore
choose p with p(k) = p(k + rz(k)) where p is independent of rz and Z.

For g the situation is slightly more complicated. The polynomial ¢ was chosen such
that TIMEy s [20 < g (k) with overwhelming probability. To show that g can fulfill
the additional constraint, we first have to analyze the runtime bound of [ZI’" p] p- By
construction, [Zi p] p simulates Z, p and at most p instances of the dummy adversary
and . Furthermore, p and each instance of 7 are executed for at most p steps. There-
fore the running time of [Zf’p]p is bounded by s1 (k) := s2(k +rz (k) + p(k)) for some
polynomial s, that does not depend on Z and rz. Since ¢ U {S} is uniformly reac-
tively polynomial-time by assumption, it follows that TIMEy s | 20, =83 (k + s1(k))
with overwhelming probability where the polynomial s3 does not depend on Z and rz.
We can therefore choose a polynomial ¢ with g(k + rz(k)) > s3(k + s2(k + rz (k) +
pk + rz(k)))) = s3(k 4+ s1(k)) such that g does not depend on Z and rz. Then
TIMEy s | 2 < q(k +rz(k)) =: q(k) with overwhelming probability; thus we have
shown that we can choose ¢ satisfying the additional constraint g (k) = g(k +rz(k)). O

We are now ready to prove Theorem 38. The construction of the simulator S* and the
proof that EXEC = 4 z ~ EXEC 4 g z are as in the proof of Theorem 21. However,
to prove Theorem 38, we need to additionally show that p® U {S>°} is uniformly reac-
tively polynomial-time. To achieve this, we first show as for Theorem 21 that Pr[B]
is negligible in p® U {S*°, Z}. Furthermore, note that by construction of S* there
is a fixed polynomial s (not depending on Z or rz) such that TIME ;4 s z(k,z) <
s(k+ Ry + Pk{ .t sz, . T Ok,;) where the random variable Ry . denotes the number of

steps Z runs, Pk]’ . denotes the number of steps the machines from p run, sz, . denotes
the number of sessions of 7 invoked, and Qy ; the maximum number of steps any of
the instances of 7 runs. By definition of rz we have Ry ; <rz(k) with probability 1,
and by definition of B = B, 4, the fact that Pr[B] is negligible implies that Pkl’ .= pk),
sz’ . =< p(k), and Qi ; < p(k) hold with overwhelming probability. Thus with over-
whelming probability we have TIMEM,SOO’Z(IC,) <stk+rzk)+2pk)+qk)) &
stk+rzk)+2pk +rzk)) + gk +rzk))) <s(k+ rz(k)) for a suitable polyno-
mial § that does not depend on Z or rz. (Here (*) uses Lemma 39.) Since this holds
for any a priori polynomial-time Z, we have that p? U {S°°} is uniformly reactively
polynomial-time, and Theorem 38 follows. |

Polynomial Runtime and Composability 435
10. Relation to Classical Notions

In this section we investigate the relation of our notion to the classical UC definitions.
Since the classical definitions are not meaningful for protocols that are not a priori
polynomial-time, we are interested in the case that 7w and ¢ are a priori polynomial-time
protocols. In this case, it turns out that UC with respect to reactive polynomial time
lies strictly between two common classical definitions: UC and specialized-simulator
UC.0 To show the strictness of these implications, we need the following complexity
assumption.

Definition 40 (Time-lock puzzle). A time-lock puzzle consists of an ITM V (the veri-
fier) and an ITM P (the prover) such that

— Given arguments (1%, 5), the ITM V runs in polynomial time in k. Given arguments
(lk, s), the ITM P runs in polynomial time in k + s.
— Easiness. For any polynomial p we have that

min P((P(lk, s), V(lk, s)) = 1)
s<p(k)
is overwhelming in k. (We call s the hardness of the puzzle.)
— Hardness. For any ITM B running in polynomial time in the length of its first
argument there exists a polynomial p, such that

sup P((B(lk, s, Z), V(lk, s)) = 1)
s>p(k)
ze{0,1}*

is negligible in k.

In this definition (P, V) denotes the distribution of the output of V after an interaction
with P.

Note the following differences between our definition and that of [23,24]. First, fol-
lowing [31], we allow interactive time-lock puzzles, while Hofenheinz and Unruh [23]
used the stronger assumption of noninteractive ones. However, all results of Hofenheinz
and Unruh [24] were shown to hold also for interactive time-lock puzzles [31]. Further,
Hofenheinz and Unruh [23,24], Unruh [31] allow the prover to depend on the polyno-
mial p in the easiness condition, while we require the same prover for any p; i.e., we
impose a uniformity requirement on the honest prover. All constructions known to the
authors (in particular those from [30,31]) fulfill this additional requirement.

We can now state the relations between our model and classical notions for the case
of a priori polynomial-time protocols. Note that we have included another notion be-
sides classical UC and classical specialized-simulator UC, namely general composabil-
ity. Intuitively, general composability is the weakest security notion that still fulfills the

40 Specialized-simulator UC is defined like UC, with the difference that the simulator may depend on the
environment [27]. We stress that we consider the specialized-simulator UC notion as defined in [27], which
is not equivalent to the UC notion from [8]. There also exists a specialized-simulator UC variant in [8] that is
equivalent to standard UC (see [8, Claim 12]).

436 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Universal Composition Theorem 21. Although no workable characterization for this no-
tion is known, it is insofar an important notion that specifies the minimum properties
we might expect from a UC-like security notion.

Theorem 41. By classical UC we denote UC as defined in Definition 4, where poly-
nomial time means a priori polynomial time. By classical specialized-simulator UC we
denote the notion from [27] which is defined like classical UC, except that the simulator
may depend on the environment.

A protocol 1 is said to emulate ¢ with respect to (polynomially bounded) general
composability if for every a priori polynomial-time protocol p we have that p™ emulates
p? in the stand-alone model (see [27] for a detailed definition of general composability).

Then for a priori polynomial-time protocols w and ¢, consider the following state-
ments.

(i) m emulates ¢ with respect to classical UC.
(1) emulates ¢ with respect to reactive polynomial time.
(i) m emulates ¢ with respect to general composability.
(iv) 7 emulates ¢ with respect to classical specialized-simulator UC.

Then (i) = (ii) = (iii)) = (iv).
If time-lock puzzles exist, all implications are strict in the sense that there is a pair of
protocols 1, ¢ such that the implication does not hold.

Proof. First we show (i) = (ii), i.e., that if 7 emulates ¢ with respect to classical UC,
then 7w emulates ¢ with respect to reactive polynomial time.

Let p be a polynomial such that the running time of 7 upon security parameter k is
bounded by p(k).

Let flp be defined like the dummy adversary, except that upon security parameter k,
no message of length greater than p(k) is sent or received to/from the protocol or envi-
ronment, and at most p (k) messages are sent to/from the environment and the protocol,
respectively.

Then 7 emulates ¢ with respect to reactive polynomial time if and only if 7 emulates
¢ with respect to reactive polynomial time and the dummy adversary A p- This is shown
analogously to Theorem 19, except that we additionally use that we can w.l.0.g. assume
the environment not to send more than p (k) messages or messages of length greater than
p(k) through the dummy adversary, since the protocol (having runtime bound p(k))
would not be able to read these superfluous messages.

Assume that 7 emulates ¢ with respect to classical UC. Since A p is a priori
polynomial-time, by definition of classical UC there is a a priori polynomial-time sim-
ulator S » such that for all a priori polynomial-time environments Z the ensembles

EXECH’ A,z and EXEC 6.5,z are computationally indistinguishable. Since 5‘,, and

7 are a priori polynomial-time, the network 7 U {S p} is a priori polynomial-time and
therefore in particular reactively polynomial-time. So S p is valid for ¢. Thus 7 emu-

lates ¢ with respect to reactive polynomial time and the dummy adversary A p- As seen
above, this implies that = emulates ¢ with respect to reactive polynomial time. This
shows (i) = (ii).

Polynomial Runtime and Composability 437

Now we are going to show (ii) = (iv), i.e., that if 7 emulates ¢ with respect to reac-
tive polynomial time, then 7 emulates ¢ with respect to classical specialized-simulator
UC. To prove this, let an adversary .4 and an environment Z be given, both a priori
polynomial-time, and we have to show that there is an a priori polynomial-time simula-
tor S such that EXEC,; 4 z and EXECy s = are computationally indistinguishable.

Since A and 7 are a priori polynomial-time, A is valid for 7. By assumption, 7 em-
ulates ¢ with respect to reactive polynomial time, so there is a valid simulator S’ for
¢ such that the ensembles EXEC,; 4 = and EXECy s/ = are computationally indistin-
guishable. However, S’ is not necessarily a priori polynomial-time. Since S’ is valid,
and Z is a priori polynomial-time, the network ¢ U {S’, Z} is polynomial-time with
overwhelming probability, so there is a polynomial p such that TIMEy s z(k, z) <
p (k) with overwhelming probability. So in particular S” runs at most p(k) steps with
overwhelming probability. Let S be as &', except that when running more than p(k)
steps S aborts. Since this happens only with negligible probability in an execution of
¢ U {S, Z}, we have that EXECy s/ z and EXECy s z are computationally indistin-
guishable (in fact even statistically indistinguishable). Summarizing, EXEC, 4 z and
EXEC, s, z are computationally indistinguishable, and S is a priori polynomial-time;
thus 7w emulates ¢ with respect to classical specialized-simulator UC.

Now we show (ii) = (iii), i.e., that if = emulates ¢ with respect to reactive polyno-
mial time, then 7 emulates ¢ with respect to general composability. For any a priori
polynomial-time protocol p, both p™ and p? are a priori polynomial-time and thus in
particular reactively polynomial-time. Thus by Theorem 21 p” emulates p?® with re-
spect to reactive polynomial time. Above we showed that, for a priori polynomial-time
protocols, reactive polynomial time UC implies classical specialized-simulator UC, so
o™ emulates p? with respect to classical specialized-simulator UC. This again implies
that p” emulates p? in the stand-alone model (see [27]). Since this holds for any a priori
polynomial-time protocol p, we have that w emulates ¢ with respect to general com-
posability.

In [27] it was shown that (iii) = (iv), so summarizing we have (i) = (ii) = (iii) =
(iv). Thus all implications are proven.

We are left to show that the implications are strict if time-lock puzzles exist.

First, we show that there are protocols w1 and ¢; such that ;1 emulates ¢; with
respect to general composability, but r; does not emulate ¢; with respect to reactive
polynomial time. For this purpose, we use a pair of protocols proposed in [23] to sepa-
rate the notions of UC and specialized-simulator UC.*! We give a short sketch of their
construction.

The protocols proposed in [23] are the following (called My and M| there). Let k
denote the security parameter. The protocol 7y first randomly chooses a strength s €
{29, ...,2K}. Then it performs a time-lock puzzle of strength s with the environment
as prover. After this, it performs a time-lock puzzle of strength s with the adversary as
prover. After this, 7 sends the message b = 0 to the environment.

The protocol ¢, behaves identically to w1, with the following difference: When the
environment solves the time-lock puzzle and the simulator does not solve it, then ¢

41 Actually, [23] separated the corresponding notions in the reactive simulatability framework [4,29].
However, all their proofs easily carry over to the UC framework. The same holds for [24].

438 D. Hotheinz, D. Unruh, and J. Miiller-Quade

sends the message b = 1 to the environment. Otherwise b = 0 is sent to the environment
as 71 would have done.

Then 71 does not emulate ¢ with respect to classical UC due to the following reason:
For any a priori polynomial-time simulator S, there is a polynomial p such that S solves
puzzles with strength s > p(k) only with negligible probability. Furthermore there is an
a priori polynomial-time environment that can solve puzzles of strength s < 2p(k) with
overwhelming probability. Since a puzzle of strength p(k) <s < 2p(k) is asked by
¢1 with probability %, with noticeable probability the environment solves the puzzle
while the simulator does not. Thus the environment gets message b = 1 with noticeable
probability when running with ¢; and S, but gets only » = 0 when running with
and some adversary; the environment can hence distinguish. Since for any simulator
such a distinguishing simulator exists, 71 does not emulate ¢; with respect to classical
UC.

On the other hand, if the simulator may depend on the environment, as in the case
of classical specialized-simulator UC, let p be a polynomial such that the a priori
polynomial-time environment Z solves puzzles of strength s > p(k) only with neg-
ligible probability. Then we can construct an a priori polynomial-time simulator that
solves all puzzles of strength s < p(k). With overwhelming probability it then holds
that, if the environment solves the puzzle, the simulator does so, too. Thus the message
sent by ¢1 will be b = 0 with overwhelming probability, so that the environment cannot
distinguish ¢; from ;. Therefore 7 emulates ¢ with respect to classical specialized-
simulator UC.

For detailed constructions and proofs we refer to [23]. The result can be somewhat
strengthened: It is easy to see that the proof that 771 emulates ¢; with respect to classical
specialized-simulator UC generalizes to the case where a polynomial number of copies
of my and ¢, respectively, run concurrently. From this it follows that 7| emulates ¢
with respect to general composability [27]. This is detailed in [31].

We now show that 71 does not emulate ¢; with respect to reactive polynomial time.
From this it follows that the implication (ii) = (iii) is strict.

Let A be the a priori polynomial-time adversary that solves time-lock puzzles given
by 7 up to an (arbitrarily chosen) strength of s = 1. Since 7] and A are a priori poly-
nomial, A is valid for m;. For a polynomial p, let Z, be the a priori polynomial-
time environment that solves time-lock puzzles given by m; or ¢ of a strength of
s < p(k) with overwhelming probability. Let S be any simulator that is valid for ¢;.
Then ¢1 U {S, Zp} is polynomial-time with overwhelming probability, so there is a
polynomial ¢ bounding TIMEy, s z,. Let S; be the simulator that behaves as does
S, but aborts when running more than g (k) steps. Then S, is a priori polynomial-
time, so there is a polynomial » such that in an execution of ¢ U {S,, Zp} the sim-
ulator S, solves time-lock puzzles of strength s > r(k) only with negligible proba-
bility. Since S, simulates S faithfully up to a negligible probability in an execution
of ¢1 U {S,, 2o}, it follows that S also solves time-lock puzzles of strength s > r (k)
only with negligible probability in an execution of ¢; U {S, Zp}. Since the messages
sent by ¢ to S do not depend on whether the environment solves its puzzle or not,
the probability that S solves time-lock puzzles of strength s > r(k) in an execution of
1 U{S, Z,,} is negligible, too. On the other hand, Z,, solves puzzles with strength
s < 2p(k) with overwhelming probability. Since ¢; chooses p(k) <s < 2p(k) with

Polynomial Runtime and Composability 439

probability %, it follows that with noticeable probability the environment Z,, solves its
puzzle, while the simulator S does not. Then the message b = 1 is sent to the environ-
ment by ¢p; thus the environment Z, can distinguish between 71 and ¢;. Therefore
1 does not emulate ¢; with respect to reactive polynomial time. Since 7; does emu-
late ¢; with respect to general composability (see above), the implication (ii) = (iii) is
strict.

We will now show that the implication (i) = (ii) is strict. For this, we use a slight
modification of the protocols given by [23]. We modify w1 and ¢; insofar that the
time-lock puzzle is only given to the adversary/simulator if the environment before-
hand solves its time-lock puzzle. We call the resulting protocols m; and ¢;. For these
modified protocols the results from [23] still hold (with almost unmodified proofs); in
particular 7> does not emulate ¢, with respect to classical UC. However, we will show
that 7 does emulate ¢, with respect to reactive polynomial time. From this it follows
that the implication (i) = (ii) is strict.

By Theorem 19 it is sufficient to construct a simulator S for the dummy adver-
sary A. This simulator S behaves like the dummy adversary: It follows the instruc-
tions given by the environment (since the dummy adversary would do so, too) and
forwards all messages from the protocol ¢, to the environment. But whenever the en-
vironment instructs the simulator to send a given solution a for the time-lock puzzle
to ¢, the simulator runs the algorithm for solving the puzzle (which runs in polyno-
mial time in s and outputs a correct solution @’ with overwhelming probability) and
then sends that correct solution @’ instead of a.*> Since the simulator solves all puz-
zles with overwhelming probability, the message sent by ¢» to the environment will
be b = 1 with overwhelming probability, and therefore the environment cannot distin-
guish. It is left to show that S is valid for ¢. The only critical point is the running time
of the algorithm for solving the time-lock puzzle. Let an a priori polynomial-time en-
vironment Z be given. Then there exists a polynomial p such that the probability is
negligible that Z solves puzzles with strength s > p(k). By construction, ¢, gives a
puzzle of strength s to the simulator only if the environment previously solved a puz-
zle of that strength. Therefore ¢, gives puzzles of strength s > p(k) to S only with
negligible probability. Since the running time needed by S for solving the puzzle is
bounded by g (s) for some polynomial s, it follows that when interacting with Z the
running time needed by S for solving the puzzle is bounded by g(p(k)) with over-
whelming probability. Thus 7= U {S, Z} is polynomial-time with overwhelming proba-
bility, and since this holds for all a priori polynomial-time environments Z, it follows
that S is valid for ¢,. Thus 7, emulates ¢ with respect to reactive polynomial time.
Since m, does not emulate ¢ with respect to classical UC, the implication (i) = (ii) is
strict.

We have shown that the implications (i) = (ii) = (iii) are strict. In [24] it was shown
that the implication (iii) = (iv) is strict, too, given the existence of time-lock puzzles.
Thus all implications given in the theorem are strict. t

42 This assumes that the solution to the time-lock puzzle is a single message as in [23]. If the solution
is an interaction as in [31], the simulator will first solve (interactively) the puzzle given by ¢, and then
(interactively) give a new puzzle of the same strength to the environment.

440 D. Hotheinz, D. Unruh, and J. Miiller-Quade

Acknowledgements

We thank Ran Canetti and the anonymous referees for valuable discussions. Dominique
Unruh was supported by the European Social Fund’s Doctoral Studies and Internation-
alisation Programme DoRa, by the European Regional Development Fund through the
Estonian Center of Excellence in Computer Science, EXCS, by the European Social
Fund through the Estonian Doctoral School in Information and Communication Tech-
nology, and by the Estonian Science Foundation (grant ETF9171). Much of the work
was done while Dominique Unruh was at the University of Karlsruhe and at the Saar-
land University. Part of the work was performed while Dennis Hofheinz was at CWI,
Amsterdam, and supported by an NWO Veni grant.

References

[1] M. Backes, Cryptographically sound analysis of security protocols. Ph.D. thesis, Universitit des Saar-
landes, 2002. Online available at http://www.infsec.cs.uni-sb.de/~backes/papers/PhDthesis.ps.gz

[2] M. Backes, B. Pfitzmann, M. Waidner, A composable cryptographic library with nested operations,
in 10th ACM Conference on Computer and Communications Security, Proceedings of CCS 2003
(ACM, New York, 2003), pp. 220-230. Extended abstract, extended version online available at
http://eprint.iacr.org/2003/015.ps

[3] M. Backes, B. Pfitzmann, M. Waidner, A general composition theorem for secure reactive systems, in
Theory of Cryptography, Proceedings of TCC 2004, ed. by M. Naor. Lecture Notes in Computer Sci-
ence, vol. 2951 (Springer, Berlin, 2004), pp. 336-354. Online available at http://www.zurich.ibm.com/
security/publications/2004/BaPfWa2004MoreGeneral Composition.pdf

[4] M. Backes, B. Pfitzmann, M. Waidner, Secure asynchronous reactive systems. IACR ePrint Archive,
March 2004. Online available at http://eprint.iacr.org/2004/082.ps

[5] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols, in 42th An-
nual Symposium on Foundations of Computer Science, Proceedings of FOCS 2001 (IEEE Comput.
Soc., Los Alamitos, 2001), pp. 136-145. Full version online available at http://www.eccc.uni-trier.de/
eccc-reports/2001/TRO1-016/revisn01.ps

[6] R. Canetti, On universally composable signature, certification and authentication. IACR ePrint
2003/239, June 2004. Version of 2004-06-26

[71 R. Canetti, On universally composable signature, certification and authentication. TACR ePrint
2003/239, August 2004. Version of 2004-08-15

[8] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint
2000/067, December 2005. Version of 2005-12-14

[9] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint
2000/067, January 2005. Version of 2005-01-28

[10] R. Canetti, Universally composable security: A new paradigm for cryptographic protocols. Manuscript
(2008)

[11] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, R. Segala, Task-structured proba-
bilistic I/O automata. Technical Report MIT-CSAIL-TR-2006-060, MIT CSAIL, September 2006. On-
line available at http://dspace.mit.edu/handle/1721.1/33964

[12] R. Canetti, L. Cheung, D.K. Kaynar, M. Liskov, N.A. Lynch, O. Pereira, R. Segala, Time-bounded
task-PIOAs: A framework for analyzing security protocols, in DISC (2006), pp. 238-253

[13] R. Canetti, J. Kilian, E. Petrank, A. Rosen, Concurrent zero-knowledge requires Q(log n) rounds, in
33rd Annual ACM Symposium on Theory of Computing, Proceedings of STOC 2001 (ACM, New York,
2001), pp. 570-579

[14] A. Datta, R. Kiisters, J.C. Mitchell, A. Ramanathan, On the relationships between notions of
simulation-based security, in Theory of Cryptography, Proceedings of TCC 2005, ed. by J. Kilian.
Lecture Notes in Computer Science (Springer, Berlin, 2005), pp. 476-494. Online available at
http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/DattaKuestersMitchellRamanathan-
TCC-2005.ps.gz

http://www.infsec.cs.uni-sb.de/~backes/papers/PhDthesis.ps.gz
http://eprint.iacr.org/2003/015.ps
http://www.zurich.ibm.com/security/publications/2004/BaPfWa2004MoreGeneralComposition.pdf
http://www.zurich.ibm.com/security/publications/2004/BaPfWa2004MoreGeneralComposition.pdf
http://eprint.iacr.org/2004/082.ps
http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps
http://www.eccc.uni-trier.de/eccc-reports/2001/TR01-016/revisn01.ps
http://dspace.mit.edu/handle/1721.1/33964
http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/DattaKuestersMitchellRamanathan-TCC-2005.ps.gz
http://www.ti.informatik.uni-kiel.de/~kuesters/publications_html/DattaKuestersMitchellRamanathan-TCC-2005.ps.gz

Polynomial Runtime and Composability 441

[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

U. Feige, Alternative models for zero knowledge interactive proofs. Ph.D. thesis, Weizmann Institute of
Science (1990)

O. Goldreich, A. Kahan, How to construct constant-round zero-knowledge proof systems for NP.
J. Cryptol. 9(3), 167-190 (1996)

S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J.
Comput. 18(1), 186-208 (1989)

O. Goldreich, Foundations of Cryptography, vol. 1 (Basic Tools) (Cambridge University Press, Cam-
bridge, 2001). Previous version online available at http://www.wisdom.weizmann.ac.il/~oded/frag.html
O. Goldreich, Foundations of Cryptography, vol. 2 (Basic Applications) (Cambridge Univer-
sity Press, Cambridge, 2004). Previous version online available at http://www.wisdom.weizmann.
ac.il/~oded/frag.html

0. Goldreich, On expected probabilistic polynomial-time adversaries: A suggestion for restricted def-
initions and their benefits, in Theory of Cryptography, Proceedings of TCC 2007, ed. by S. Vad-
han. Lecture Notes in Computer Science (Springer, Berlin, 2007), pp. 174-193. Online available at
http://eprint.iacr.org/2006/277.ps

D. Hofheinz, J. Miiller-Quade, D. Unruh, Polynomial runtime in simulatability definitions, in
18th IEEE Computer Security Foundations Workshop, Proceedings of CSFW 2005 (IEEE Com-
put. Soc., Los Alamitos, 2005), pp. 156-169. Online available at http://iaks-www.ira.uka.de/home/
unruh/publications/hoftheinzO5polynomial.html

D. Hotheinz, V. Shoup, GNUC: A new universal composability framework. IACR ePrint 2011/303, June
2011

D. Hofheinz, D. Unruh, Comparing two notions of simulatability, in Theory of Cryptography,
Proceedings of TCC 2005, ed. by J. Kilian. Lecture Notes in Computer Science (Springer,
Berlin, 2005), pp. 86—103. Online available at http://iaks-www.ira.uka.de/home/unruh/publications/
hotheinzO5comparing.html

D. Hofheinz, D. Unruh, Simulatable security and polynomially bounded concurrent composition, in
IEEE Symposium on Security and Privacy, Proceedings of SSP ’06 (IEEE Comput. Soc., Los Alamitos,
2006), pp. 169-182. Full version online available at http://eprint.iacr.org/2006/130.ps

A. Juels, D. Catalano, M. Jakobsson, Coercion-resistant electronic elections, in Proc. 4th ACM Work-
shop on Privacy in the Electronic Society (WPES) (ACM, New York, 2005), pp. 61-70

R. Kiisters, Simulation-based security with inexhaustible interactive Turing machines, in CSFW 2006,
Computer Security Foundations Workshop (IEEE Comput. Soc., Los Alamitos, 2006), pp. 309-320.
Long version available as IACR eprint 2006/151

Y. Lindell, General composition and universal composability in secure multi-party computation, in 44th
Annual Symposium on Foundations of Computer Science, Proceedings of FOCS 2003 (IEEE Comput.
Soc., Los Alamitos, 2003), pp. 394—403. Online available at http://eprint.iacr.org/2003/141

A.C. Myers, M. Clarkson, S. Chong, Civitas: Toward a secure voting system, in IEEE Symposium on
Security and Privacy (IEEE Press, New York, 2008), pp. 354-368

B. Pfitzmann, M. Waidner, A model for asynchronous reactive systems and its application
to secure message transmission, in /[EEE Symposium on Security and Privacy, Proceedings of
SSP ’01 (IEEE Comput. Soc., Los Alamitos, 2001), pp. 184-200. Full version online available at
http://eprint.iacr.org/2000/066.ps

R.L. Rivest, A. Shamir, D.A. Wagner, Time-lock puzzles and timed-release crypto. Technical Re-
port MIT/LCS/TR-684, Massachusetts Institute of Technology, February 1996. Online available at
http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps

D. Unruh, Protokollkomposition und Komplexitidt. Ph.D. thesis, Universitdt Karlsruhe (TH)
(2006). In German, online available at http://www.infsec.cs.uni-sb.de/~unruh/publications/
unruhO6protokollkomposition.html

http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://eprint.iacr.org/2006/277.ps
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05polynomial.html
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05polynomial.html
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html
http://iaks-www.ira.uka.de/home/unruh/publications/hofheinz05comparing.html
http://eprint.iacr.org/2006/130.ps
http://eprint.iacr.org/2003/141
http://eprint.iacr.org/2000/066.ps
http://theory.lcs.mit.edu/~rivest/RivestShamirWagner-timelock.ps
http://www.infsec.cs.uni-sb.de/~unruh/publications/unruh06protokollkomposition.html
http://www.infsec.cs.uni-sb.de/~unruh/publications/unruh06protokollkomposition.html

	Polynomial Runtime and Composability
	Abstract
	Introduction
	Introduction to the Problem
	The UC Framework

	Our Work
	Our Approach: Reactively Polynomial-Time Protocols
	Simplicity
	Flexibility
	Soundness and Completeness
	Composability
	Common Structure of (Universal) Composition Theorems
	The Obstacle with Reactively Polynomial-Time Simulators
	Our Techniques to Overcome the Obstacle

	Some Problematic Use Cases
	Secure Channels
	A Database Functionality

	Straightforward Approaches and Why They Fail
	An a Priori Polynomial Bound on the Overall Runtime
	An a Priori Polynomial Runtime Bound per Activation
	An a Posteriori Polynomial Bound on Overall Runtime
	Acyclic Runtime Dependencies
	Padding

	Previous Work
	In the Context of Zero-Knowledge
	Length Functions
	Continuously Polynomial Time
	In the UC Framework
	In the SPPC Framework
	In the IITM Framework
	In the Task-PIOA Framework
	Other Frameworks
	Addendum

	Organization
	Notation

	The UC Framework
	The Composition Theorem
	Proof Sketch of Theorem 6

	Difficulties with Prior Notions
	Network Model
	Polynomial Time Definition
	Padding
	Dummy Adversary and Composition
	Dummy Parties
	Combining Machines
	Summary

	Our Definition of Polynomial Runtime
	Why the Generality?
	Closure Properties of Reactive Polynomial Time
	Is the Notion Too Permissive?
	Why Allow a Negligible Error?
	Security Notion
	Why Not Allow a Negligible Error for the Runtime Bounds of the Protocol Context?
	How Easy Is It to Show Reactive Polynomial Time?
	Relation to Classical Notions

	Basic Properties
	Efficient Executions
	Reflexivity and Transitivity
	On Generalizations of Transitivity
	One-Bit Output Without Loss of Generality

	Dummy Adversary
	Universal Composition Theorem
	On the Assumptions in the Composition Theorem(s)
	On the Assumption that rhopi is Reactively Polynomial-Time
	Functionalities with Code Upload
	Proof of the Simple Composition Theorem
	Proof Sketch of Theorem 21
	The Full Proof

	Example: Secure Message Transmission
	Variants of Our Approach
	Strong Reactive Polynomial Time
	Uniform Reactive Polynomial Time
	Basic Properties
	Dummy Adversary
	Universal Composition Theorem

	Relation to Classical Notions
	Acknowledgements
	References

