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Abstract. We describe a state recovery attack on the X-FCSR family of stream ci-
phers. In this attack we analyse each block of output keystream and try to solve for
the state. The solver will succeed when a number of state conditions are satisfied.
For X-FCSR-256, our best attack has a computational complexity of only 24.7 table
lookups per block of keystream, with an expected 244.3 such blocks before the at-
tack is successful. The precomputational storage requirement is 233. For X-FCSR-128,
the computational complexity of our best attack is 216.3 table lookups per block of
keystream, where we expect 255.2 output blocks before the attack comes through. The
precomputational storage requirement for X-FCSR-128 is 267.
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1. Introduction

A common building block in stream ciphers is the Linear Feedback Shift Register
(LFSR). The bit sequence produced by an LFSR has several cryptographically inter-
esting properties, such as long period, low autocorrelation and balancedness. LFSRs
are inherently linear, so additional building blocks are needed in order to introduce
nonlinearity. A Feedback with Carry Shift Register (FCSR) is an alternative construc-
tion, similar to an LFSR, but with a distinguishing feature, namely that the update of
the register is in itself nonlinear. The idea of using FCSRs to generate sequences for
cryptographic applications was initially proposed by Klapper and Goresky in [11].

Recently, we have seen several new constructions based on the concept of FCSRs.
The class of F-FCSRs, Filtered FCSRs, was proposed by Arnault and Berger [1,12].
These constructions were cryptanalyzed in [10], using a weakness in the initialization
function. Also a time/memory tradeoff attack was demonstrated in the same paper.

∗ This is the full version of the paper An Efficient State Recovery Attack on X-FCSR [14], solicited by
the Editors-in-Chief as one of the best papers from FSE 2009, based on the recommendation of the program
committee.

© International Association for Cryptologic Research 2012

mailto:paul.stankovski@eit.lth.se
mailto:martin.hell@eit.lth.se
mailto:thomas.johansson@eit.lth.se


2 P. Stankovski, M. Hell, and T. Johansson

Another similar construction targeting hardware environments is F-FCSR-H, which
was submitted to the eSTREAM project [6]. F-FCSR-H was later updated to F-FCSR-
H v2 because of a weakness demonstrated in [9]. F-FCSR-H v2 was one of the four
ciphers targeting hardware that were selected for the final portfolio at the end of the
eSTREAM project. Inspired by the success, Arnault, Berger, Lauradoux and Minier
presented a new construction at Indocrypt 2007, now targeting software implementa-
tions. It is named X-FCSR [4]. The main idea was to use two FCSRs instead of one,
and to also include an additional nonlinear extraction function inspired by the Rijn-
dael round function. Adding this would allow more output bits per register update and
thus increase throughput significantly. Two versions, X-FCSR-256 and X-FCSR-128,
were defined producing 256 and 128 bits per register update, respectively. According to
the specification X-FCSR-256 runs at 6.5 cycles/byte and X-FCSR-128 runs at 8.2 cy-
cles/byte. As this is comparable to the fastest known stream ciphers, it makes them very
interesting in software environments. For the security of X-FCSR-256 and X-FCSR-128
we note that there have been no published attacks faster than exhaustive key search.

In [7,8] a new property inside the FCSR was discovered, namely that the update was
sometimes temporarily linear for a number of clocks. This resulted in a very efficient
attack on F-FCSR-H v2 and led to its removal from the eSTREAM portfolio.

In this paper we present a state recovery attack on the X-FCSR family consisting of
X-FCSR-128 and X-FCSR-256. We use the observation in [7,8]. The fact that two regis-
ters are used, together with the extraction function, makes it impossible to immediately
use this observation to break the cipher. However, several additional non-trivial obser-
vations will allow a successful cryptanalysis. The keystream is produced using state
variables 16 time instances apart. By considering consecutive output blocks, and as-
suming that the update is linear, we are able to partly remove the dependency of several
state variables. A careful analysis of the extraction function then allows us to treat parts
of the state independently and brute force these parts separately, leading to an efficient
state recovery attack. It is shown that the X-FCSR-256 state can be recovered using
244.3 output keystream blocks and a computational complexity of 24.7 table lookups per
output block on average. Note that table lookup operations are much cheaper than test-
ing a single key. The corresponding figures for X-FCSR-128 are 255.2 for the number of
output keystream blocks with a computational effort of 216.3 per block.

The paper is organized as follows. In Section 2 we give an overview of the FCSR
construction in general and the X-FCSR-128 and X-FCSR-256 stream ciphers in par-
ticular. In Section 3 we describe the different parts of the attack. Each part of the attack
is described in a separate subsection and in order to simplify the description we will
deliberately base the attack on assumptions and methods that are not optimal for the
cryptanalyst. Then, additional observations and more efficient algorithms are discussed
in Section 4, leading to a more efficient attack. Finally, some concluding remarks are
given in Section 8.

2. Background

This section will review the necessary prerequisites for understanding the details of
the attack. FCSRs are presented separately as they are used as core components of
the X-FCSR-256 stream cipher. The X-FCSR-256 stream cipher itself is outlined in
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Fig. 1. Automaton computing the 2-adic expansion of p/q .

sufficient detail for understanding the presented attack. For remaining details, the reader
is referred to the specification [4].

2.1. Recalling the FCSR Automaton

An FCSR is a device that computes the binary expansion of a 2-adic number p/q ,
where p and q are some integers, with q odd. For simplicity one may assume that
q < 0 < p < |q|. Following the notation from [2], the size n of the FCSR is the bitlength
of |q| less one. In FCSR-based ciphers, p usually depends on the secret key and the
initialization vector (IV), and q is a public parameter. The choice of q induces a number
of FCSR properties, the most important one being that it completely determines the
length of the period T of the keystream.

The FCSR automaton as described in [2] efficiently implements the generation of a
2-adic expansion sequence. It contains two registers, a main register M and a carries
register C. The main register M contains n cells. Let M = (mn−1,mn−2, . . . ,m1,m0)

and associate M to the integer M = ∑n−1
i=0 mi · 2i .

Let the binary representation of the positive integer d = (1 + |q|)/2 be given by
d = ∑n−1

i=0 di · 2i . The carries register contains l active cells, l + 1 being the number
of nonzero binary digits di in d . The active carry cells are the ones in the interval
0 ≤ i ≤ n − 2 for which di = 1, and dn−1 must always be set.

Write the carries register as C = (cn−2, cn−3, . . . , c1, c0) and associate it to the integer
C = ∑n−2

i=0 ci · 2i . Note that l of the bits in C are active and the remaining ones are set
to zero.

Representing the integer p as
∑n−1

i=0 pi · 2i where pi ∈ {0,1}, the 2-adic expansion of
the number p/q is computed by the automaton given in Fig. 1.

The automaton is referred to as the Galois representation and it is very similar to the
Galois representation of an LFSR. For all defined variables we also introduce a time
index t , letting M(t) and C(t) denote the content of M and C at time t , respectively.

The addition with carry operation, denoted � in Fig. 1, has a one bit memory, the
carry. It operates on three inputs in total, two external inputs and the carry bit. It outputs
the XOR of the external inputs and sets the new carry value to one if and only if the
integer sum of all three inputs is two or three.

In Fig. 2 we specifically illustrate (following [2]) the case q = −347, which gives us
d = 174 = (10101110)binary.

The X-FCSR family of stream ciphers uses two FCSR automatons at the core of their
construction. For the purposes of this paper it is sufficient to recall the FCSR automaton
as implemented in Figs. 1 and 2.

The FCSR automaton has n bits of memory in the main register and l bits in the
carries register for a total of n + l bits. If (M,C) is our state, then many states are
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Fig. 2. Example of an FCSR.

equivalent in the sense that starting in equivalent states will produce the same output.
As the period is |q| − 1 ≈ 2n, the number of states equivalent to a given state is in the
order of 2l .

2.2. Brief Summary of X-FCSR Prerequisites

X-FCSR-128 and X-FCSR-256 both admit a secret key of 128-bit length and a public
IV of bitlength ranging from 64 to 128 as input. The core of the X-FCSR stream ci-
phers consists of two 256-bit FCSRs with main registers Y and Z which are clocked in
opposite directions.

Y(t) = (yt−255, . . . , yt−2, yt−1, yt ), clocked ←
Z(t) = (zt+255, . . . , zt+2, zt+1, zt ), clocked →

At each discrete time instance t , Y and Z are used to form a 256-bit block X(t) accord-
ing to

X(t) = Y(t) ⊕ Z(t),

where ⊕ denotes bitwise XOR, so that

X(0) = (y−255 ⊕ z255, . . . , y−2 ⊕ z2, y−1 ⊕ z1, y0 ⊕ z0),

X(1) = (y−254 ⊕ z256, . . . , y−1 ⊕ z3, y0 ⊕ z2, y1 ⊕ z1),

X(2) = (y−253 ⊕ z257, . . . , y0 ⊕ z4, y1 ⊕ z3, y2 ⊕ z2),

. . .

X-FCSR-128 and X-FCSR-256 are identical up to this point, but they differ in the ex-
traction function. Let us concentrate on X-FCSR-256 for a while. X(t) is used as input
to the extraction function. We define

W(t) = round256
(
X(t)

) = mix256
(
sr256

(
sl256

(
X(t)

)))
, (1)

where sl256, sr256 and mix256 mimic the general structure of the AES round function;

sl is an s-box function applied at byte level,

sr is a row-shifting function operating on bytes,

mix is a column mixing function operating on bytes.
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The X-FCSR-256 round function operates on a 256-bit input, as defined in (1). The
general idea behind the round function operations becomes apparent if one considers
how the functions operate on the 256-bit input when it is viewed as a 4 × 8 matrix A at
byte level. Let the byte entries of A be denoted ai,j with 0 ≤ i ≤ 3 and 0 ≤ j ≤ 7.

The first transformation layer consists of an S-box function sl applied at byte level.
The chosen S-box has a number of attractive properties that are described in [4].

The second operation shifts the rows of A, and sr is identical to the row shifting
operation of Rijndael. sr shifts (i.e., rotates) each row of A to the left at byte level,
shifting the first, second, third and fourth rows 0, 1, 3 and 4 bytes respectively.

The purpose of the third operation, mix, is to mix the columns of A. This is also done
at byte level according to

mix256

⎛

⎜
⎜
⎝

a0,j

a1,j

a2,j

a3,j

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

a3,j ⊕ a0,j ⊕ a1,j

a0,j ⊕ a1,j ⊕ a2,j

a1,j ⊕ a2,j ⊕ a3,j

a2,j ⊕ a3,j ⊕ a0,j

⎞

⎟
⎟
⎠

for every column j of A.
Note that sl, sr and mix are all both invertible and byte oriented. Finally, the 256 bits

of keystream that are output at time t are given by

out(t) = X(t) ⊕ W(t − 16). (2)

This last equation introduces a time delay of 16 time units. The first block of keystream
is produced at t = 0 and the key schedule takes care of defining W(t) for t < 0.

X-FCSR-128 has a very similar extraction function, but it operates on a 128-bit
block. If we by XL(t) and XR(t) denote the left and right parts of X(t) according to
X(t) = XL(t)||XR(t) where || denotes concatenation, we form X̃(t) = XL(t) ⊕ XR(t)

and similarly define

W(t) = round128
(
X̃(t)

) = mix128
(
sr128

(
sl128

(
X̃(t)

)))
, (3)

and

out(t) = X̃(t) ⊕ W(t − 16) (4)

for X-FCSR-128. Now view the 128-bit block as a 4 × 4 matrix at byte level. sr128
shifts the first, second, third and fourth rows by 0, 1, 2 and 3 bytes respectively, and
the corresponding mix function uses the same matrix as above, but now with only four
columns.

Throughout this paper we will use X-FCSR-256 as our basic case to show how the
attack works in full detail. In Section 6 we show how to adapt the attack to X-FCSR-128.

3. Describing the Attack

3.1. Idea of Attack

A conceptual basis for understanding the attack is obtained by dividing it into the four
parts listed below. Each part has been attributed its own section.



6 P. Stankovski, M. Hell, and T. Johansson

• LFSRization of FCSRs
• Combining Output Blocks
• Analytical Unwinding
• Solving for the State

In Section 3.2 we describe a trick we call “LFSRization of FCSRs”. We explain how
an observation in [7,8] can be used to allow treating FCSRs as LFSRs. There is a price
to pay for introducing this simplification, of course, but the penalty is not as severe as
one may expect.

We observe that we can combine a number of consecutive output blocks to effectively
remove most of the dependency on X(t) introduced in (2). The LFSRization process
works in our favor here as it provides a linear relationship between FCSR variables.
Output block combination is explored in Section 3.3.

Once a suitable combination Q of output blocks is defined, state recovery is the next
step. This is done in two parts. In Section 3.4 we explain how to work with Q analyti-
cally to transform its constituent parts into something that will get us closer to the state
representation. As it turns out, we can do quite a bit here. Finally, we find that the state
can be divided into several almost independent parts that can be treated separately. This
is described in Section 3.5.

3.2. LFSRization of FCSRs

As mentioned above, an observation in [7,8] provides a way of justifying the validity in
treating FCSRs as LFSRs, and does so at a very reasonable cost. We call this process
LFSRization of FCSRs, or simply LFSRization when there is no confusion as to what
is being treated as an LFSR. There are two parts to the process, a flush phase and a
linearity phase.

The observation is simply that a zero feedback bit in the Galois implementation of
an FCSR, see Fig. 2, causes the contents of the carry registers to change in a very
predictable way. Adopting a statistical view and assuming independent events is helpful
here. Assuming a zero feedback bit, carry registers containing zeros will not change,
they will remain zero. The carry registers containing ones are a different matter, though.
A one bit will change to a zero bit with probability 1

2 . In essence this means that one
single zero feedback bit will cut the number of ones in the carry registers roughly in
half.

The natural continuation of this observation is that a sufficient amount of consecutive
zero feedback bits will eventually flush the carry registers so that they contain only
zeros. On average, roughly half of the carry registers contain ones to start with, so an
FCSR with N active carry registers requires roughly lg N

2 + 1 zero feedback bits to
flush the ones away with probability 1

2 . By expected value we therefore require roughly
lg N

2 + 2 zero feedback bits to flush a register completely. For the X-FCSR family we
have N = 210, indicating that we need no more than 9 zero feedback bits to flush a
register.

After the flush phase, a register is ready to act as an LFSR. In order to take advan-
tage of this state we need to maintain a linearity phase in which we keep having zero
feedback bits fed for a sufficiently long duration of time. As we will see from upcoming
arguments, we will in principle require the linearity property for two separate sets of 5
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Fig. 3. Maximally linearized FCSR outputting zero feedback bits.

R1 At time t − 16, the carry registers of Y are completely flushed except for the last bit.
R2 At least 5 consecutive zero feedback bits are output starting from time t − 16.
R3 At time t , the carry registers of Y are completely flushed except for the last bit.
R4 At least 5 consecutive zero feedback bits are output starting from time t .

Fig. 4. Requirements for the Y register.

consecutive zero feedback bits, with the two sets being 16 time units apart. We will need
the FCSRs to act as LFSRs during this time, so our base requirement consists of two
smaller LFSRizations, each requiring roughly 9+5 bits for flush and linearity phase, re-
spectively. The probability of the two smaller LFSRizations occurring in both registers
Y and Z simultaneously is 2−4(9+5) = 2−56. In other words, our particular LFSRization
condition appears once in about 256 output blocks.

A real-life deviation from the theoretical flush reasoning was noted in [7,8]. We can-
not flush the carry register entirely as the last active carry bit will tend to one instead of
zero. As further noted in [7,8], flushing all but the last carry bit does not cause a problem
in practice. Consider the linearized FCSR in Fig. 3, it produces a maximal number of
zero feedback bits for an FCSR of its size.

In simulations and analytical work we must compensate for this effect, of course, but
the theoretical reasoning to follow remains valid as we allow ourselves to treat FCSRs
as simple LFSRs. The interested reader is referred to [7,8] for details on this part.

Furthermore, assumptions of independence are not entirely realistic. Although the
theoretical reasoning above is included mainly for reasons of completeness, simulations
show that we are not far from the truth, effectively providing some degree of validation
for the theory. Our simulations show that we have about 228.0 for the Y register and 226.0

for Z for a total of at most 254.0 expected output blocks for LFSRization in X-FCSR in
the basic setting made explicit below.

Our requirements for the basic attack are summarized as follows. At some specific
time instance we require the carry registers of Y and Z to be completely flushed except
for the last bit. Here we also require the tails of the main registers to contain the bit
sequence . . . 11100 as in Fig. 3 to guarantee at least 5 consecutive zero feedback bits for
the five upcoming time instances. Sixteen time instances later we require this set-up to
appear once again. In each flush-set, the five upcoming zero feedback bits ensure that
the main registers remain linear.

In Fig. 4 we explicitly list the requirements for the Y register, with the requirements
for the Z register defined correspondingly.
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The X-FCSR family members output a block of keystream at each clocking, 128 and
256 bits for X-FCSR-128 and X-FCSR-256, respectively. Let COSTkeystream denote the
required number of such output blocks (or clockings) for an attack to come through. To
be fair and accurate we will use the simulation values, which puts us at

COSTkeystream < 254.0

for the basic attack scenario with requirements R1–R4. Later, in Sections 5.1 and 5.2,
we will minimize keystream by relaxing requirements R2 and R4 to only 3 consecutive
zero feedback bits, and in Section 5.3 we use a symmetry observation for a reduced
keystream complexity of

COSTkeystream < 244.3.

3.3. Combining Output Blocks

The principal reason for combining consecutive output blocks is to obtain a set of data
that is easier to analyze and work with, ultimately leading to a less complicated way to
reconstruct the cipher state. Remember that we now treat the two FCSRs as LFSRs with
the properties given in Section 3.2.

The main observation is that the modest and regular clocking of the two main registers
provides the following equality:

X(t) ⊕ [
X(t + 1) 	 1

] ⊕ [
X(t + 1) 
 1

] ⊕ X(t + 2) = (�,0,0, . . . ,0, �). (5)

The shifting operations 	 and 
 on the left hand side denote shifting of the corre-
sponding 256-bit block left and right, respectively. From this point onward we discard
bits that fall over the edge of the 256 bit blocks, and we do so without loss of gener-
ality or other such severe penalties. The right hand side is then the zero vector,1 with
the possible exception of the first and last bits which are undetermined (and denoted �).
Define

OUT(t) = out(t) ⊕ [
out(t + 1) 	 1

] ⊕ [
out(t + 1) 
 1

] ⊕ out(t + 2) (6)

in the corresponding way. We have

OUT(t) = X(t) ⊕ [
X(t + 1) 	 1

] ⊕ [
X(t + 1) 
 1

] ⊕ X(t + 2)

⊕ W(t − 16) ⊕ [
W(t − 15) 	 1

] ⊕ [
W(t − 15) 
 1

] ⊕ W(t − 14)

= (�,0,0, . . . ,0, �)

⊕ W(t − 16) ⊕ [
W(t − 15) 	 1

] ⊕ [
W(t − 15) 
 1

] ⊕ W(t − 14)

≈ W(t − 16) ⊕ [
W(t − 15) 	 1

] ⊕ [
W(t − 15) 
 1

] ⊕ W(t − 14), (7)

where ≈ denotes bitwise equality except for the peripheral bits. This expression allows
us to relate keystream bits to bits inside the generator that are just a few time instances

1 Recall that we ignore the effects of the last carry bit being one instead of zero, as explained in Section 3.2.
The arguments below are valid as long as adjustments are made accordingly.
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apart. This will turn out to be very useful when recovering the state of the FCSRs. In
order to further unwind Eq. (7) we need to take a closer look at the constituent parts of
W , namely the round function operations sl, sr and mix.

3.4. Analytical Unwinding

Reviewing the round function operations from Section 2.2, recall that all of the opera-
tions are invertible and byte oriented. We also see that the operations mix, sr and their
inverses are linear over ⊕, such that

mix(A ⊕ B) = mix(A) ⊕ mix(B),

sr(A ⊕ B) = sr(A) ⊕ sr(B).

Obviously, sl does not harbor the linear property. So, in order to unwind (7) as much
as possible, we would now ideally like to apply mix−1 and sr−1 in that order. Let us
begin with focusing on the mix operation.

The linearity of mix over ⊕ is the first ingredient we need as it allows us to apply
mix−1 to each of the W terms separately. The shifting does, however, cause us some
problems since

mix−1(W(t) 	 1
) �= mix−1(W(t)

) 	 1.

Therefore mix−1 cannot be applied directly in this way, but realizing that mix−1 is a
byte-oriented operation, it is clear that the equality holds if one restricts comparison to
every bit position except the first and last bit of every byte. This is easy to realize if one
considers the origin and destination byte of the 6 middlemost bits as mix−1 is applied.
One single bit shift does not affect the destination byte of these bits. Furthermore, a pe-
ripheral bit that is shifted out of its byte position is mapped to another peripheral bit
position. We therefore have

mix−1(OUT(t)
) ∼= sr

(
sl

(
X(t − 16)

))

⊕ [
sr

(
sl

(
X(t − 15)

)) 	 1
]

⊕ [
sr

(
sl

(
X(t − 15)

)) 
 1
]

⊕ sr
(
sl

(
X(t − 14)

))
,

where ∼= denotes equality with respect to the 6 middlemost bits of each byte. The same
arguments apply to sr−1, so we define

Q(t) = sr−1(mix−1(OUT(t)
))

(8)

to obtain

Q(t) ∼= sl
(
X(t − 16)

)

⊕ [
sl

(
X(t − 15)

) 	 1
]

⊕ [
sl

(
X(t − 15)

) 
 1
]

⊕ sl
(
X(t − 14)

)
.



10 P. Stankovski, M. Hell, and T. Johansson

Fig. 5. Bit usage for one byte in Q(t).

Loosely put, we can essentially bypass the effects of the mix and sr operations by ig-
noring the peripheral bits of each byte.

We have combined consecutive keystream blocks out(t) into Q in hope of Q being
easier to analyze than out(t). As our expression for Q involves only X and sl, let’s see
how and at what cost we can brute-force Q and solve for Y and Z.

3.5. Solving for the State

In this section we outline the state recovery step. We proceed in a divide-and-conquer
fashion by dividing the state into several almost independent parts and treat each part
separately by solving a related equation system.

State solving can most easily be understood by focusing on one specific byte position
in Q(t). Given the, say, seventh byte in Q(t), how can we uniquely reconstruct the
corresponding parts of Y and Z? Let us first figure out which bits one needs from
Y(t − 16) and Z(t − 16) in order to be able to calculate the given byte in Q(t). Note
that this step is possible only because of the LFSRization described in Section 3.2.

Consider the first part of expression (8): sl(X(t − 16)). Since sl is an S-box function
that operates on bytes, we need to know the full corresponding byte from X(t − 16).
Those 8 bits are derived from 8 bits in each of Y and Z, totaling 16 bits, as shown in the
left column of Fig. 5.
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Fig. 6. Bit usage in Q(t).

The next parts of (8) involves sl(X(t − 15)). The same reasoning applies here, we
need to know the full corresponding byte of X(t − 15) in order to be able to calculate
this S-box value. But since the main registers act like LFSRs, most of the bits we need
from Y and Z for X(t − 15) have already been employed for X(t − 16) previously.
Since the two main registers are clocked only one step at each time instance, only 2
more bits are needed, one from Y and one from Z. This is illustrated by the middle
column of Fig. 5. We count 18 bits in Y and Z so far.

In the same vein, 2 more bits are needed from Y and Z to calculate sl(X(t − 14)),
illustrated in the remaining part of Fig. 5. This brings the total up to 20 bits. All in all,
for one byte position in Q(t) we have total bit usage as shown in Fig. 6.

So, 10 bits in Y(t − 16) and 10 bits in Z(t − 16) is what we require to be able
to calculate one specific byte position in Q(t). By restricting our attention to the 6
middlemost bits of each byte in Q we accomplish two objectives; we effectively reduce
the number of unknown bits we are dealing with in Y and Z, and we simplify the
expression for calculating the byte in Q by safely reducing the effects of the shifting
operation. Specifically, shifting one bit left or right does not bring neighboring bytes
into play.

Focusing on one single byte position gives us six equations, one for each of the 6
middlemost bits, and 20 unsolved variables, one for each bit position in Y and Z. This
amounts to an underdetermined system, but we can easily add more equations by having
a look at the same byte position in Q(t + 1). The 6 middle bits of that byte give us six
new equations at the cost of introducing a few new variables. To see how many, we must
perform the analysis for Q(t + 1) corresponding to Fig. 5. The total bit usage for one
byte position in Q(t + 1) in terms of bits in Y(t − 16) and Z(t − 16) is given in Fig. 7.

From this we see that the six new equations have the downside of introducing two
new variables. In total we therefore have 12 equations and 22 variables after including
Q(t +1), and 18 equations and 24 variables after including Q(t +2). The corresponding
bit usage for our three consecutive Q’s in terms of bits in Y(t − 16) and Z(t − 16) is
illustrated in Fig. 8.

When solving one byte position in Q we essentially recover 24 bits. If we scan Q

from left to right, solving the corresponding system for each byte, we can reuse quite
many of these bits. Instead of solving for 24, we need only solve for 16 as the remaining
8 have already been determined. Thus, we actually have an overdetermined system with
18 equations and 16 variables. This is illustrated in Fig. 9.
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Fig. 7. Bit usage in Q(t + 1).

Fig. 8. Total bit usage for Q(i), t ≤ i ≤ t + 2.

Fig. 9. Reusing bits when solving for Q(t).

Reusing bits in this way works fine for all byte positions except the first one. For the
first byte position we do not have any prior solution to lean back on, so at first glance it
seems that this system is larger and thus more expensive to solve. In Section 4 we will
explain what the first and last byte position systems look like in more detail, and we will
see how to use the LFSRization assumption to reduce the system complexity in these
cases.

As it turns out, the middle byte systems are largest in terms of unsolved bits, which
will dominate the worst-case cost of the equation solving part. Let COSTsolver denote
the required number of variable assignments that must be tested for an attack to come
through. Employing bit reuse, the worst-case cost for the solving part becomes

COSTsolver < 32 × 216 = 221.
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Fig. 10. Equation system at middle byte position.

This concludes the principles of the basic attack, in which we have assumed availabil-
ity of four separate sets of 5 consecutive zero feedback bits as described in Section 3.2.
The only thing that remains is to calculate the solving complexity more rigorously. Us-
ing precomputed lookup tables and considering the expected-case complexity, we can
significantly lower the cost for equation solving. This is what we will do in the following
sections.

4. The Anatomy of Equation Solving

In our attack scenario we wait for the first opportunity in which our keystream fulfills
the requirements given in Fig. 4. For every block of keystream that is output, we try
to solve for the state. Most times we fail, but our solver will find a solution when the
requirements R1–R4 have been met for registers Y and Z. Therefore, the average cost
is more interesting from a practical perspective, so this is what we will compute next.

In Section 4.1 we warm up by finding the cost when precomputation is disallowed.
In Section 4.2 we analyze the precomputation case, which concludes the basic attack on
X-FCSR-256. We start by taking a closer look at the equation systems at different byte
positions.

4.1. Equation Solving

Restating Eq. (9), one may view the equation solving game as solving for the state at
time t − 16 given output at time t .

OUT(t) = X(t) ⊕ [
X(t + 1) 	 1

] ⊕ [
X(t + 1) 
 1

] ⊕ X(t + 2)

⊕ W(t − 16) ⊕ [
W(t − 15) 	 1

] ⊕ [
W(t − 15) 
 1

] ⊕ W(t − 14)

= (�,0,0, . . . ,0, �)

⊕ W(t − 16) ⊕ [
W(t − 15) 	 1

] ⊕ [
W(t − 15) 
 1

] ⊕ W(t − 14). (9)

When solving for the state without precomputation, what we do in practice is to run
through all unknown bits in Y(t −16) and Z(t −16) to see if we can find a configuration
that produces the expected output. We do this byte by byte from left to right in the Y

and Z registers for efficiency. Three byte position cases need to be considered; first,
middle and last. The simplest case, the middle byte position case, is depicted in Fig. 10.

We saw this system in Fig. 9 before. The grayed bits are the ones we can reuse from
solving the equation system from the preceding byte position, leaving 16 bits unsolved.
Feedback bits do not affect the equation systems at middle byte position.
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Fig. 11. Equation system at first byte position.

Fig. 12. Equation system at last byte position.

The equation system for the first byte position is shown in Fig. 11.
As before, we have 24 variables and 18 equations. One difference is that four of

the variables are new, having just entered the Z register. Another difference is that we
cannot reuse variables from a prior solution. On the other hand we can use assumption
R2. The last 5 bits of Y are known (00111), and the 4 bits entering Z are all zero.

Thus, for the first byte position system, 9 of the 24 bits are predetermined, leaving 15
bits unsolved.

The equation system at the last byte position mirrors that of the first, except that the
bits from the previous byte position system are also given.

Thus, for the last byte position system, 17 of the 24 bits are predetermined, leaving
only 7 bits unsolved (Fig. 12).

The amortized cost for attempting to solve for the entire state is then given by con-
sidering the relative frequencies of solving attempts per byte position. We process the
byte positions from left to right in the natural way.

Using verification of Eq. (9) as unit, the expected2 cost for recovering the state is
given by

COSTsolver = 215 + 1

8

(

216 + 216

4
+ 216

42
+ · · · + 216

429
+ 27

430

)

< 215.5. (10)

The factor 1
8 is derived from the fact that we have 15 variables and 18 equations for the

first byte position system. For the middle byte position systems we have 16 variables
and 18 equations, producing the factor 1

4 above.

2 It is also possible to reduce the size of the first equation system even further by using the zero feedback

bits from the flush phase. That approach does produce a significant saving to, for example, COSTsolver < 28

for eight flush-bits. As the number of bits needed to flush the carry register is unknown, this assumption may
be false, leading to more keystream before the state can be recovered.
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4.2. Equation Solving with Precomputation

The amortized cost for attempting to solve for the entire state using precomputation is,
similarly, given by considering the relative frequencies of lookups per byte position.
Instead of solving an equation system at each step, we look the answer up in a table.
Letting COSTsolver denote the average number of required table lookups for a keystream
block to be fully analyzed, we have

COSTsolver = 1 + 1

8

(

1 + 1

4
+ 1

42
+ · · · + 1

430

)

< 20.3.

Total computational complexity, i.e., the total number of table lookups, is given by

COST = COSTkeystream × COSTsolver.

To see how the corresponding tables are constructed, consider Eq. (8) once more.
We have 24 Y and Z variables that are combined into 18 Q values. As a conceptual
starting point, make an auxiliary table A containing the corresponding Q values for all
224 variable configurations. That is, table A has 224 entries, each containing an 18-bit
value.

The equation system for the first byte position has only 15 of the 24 Y and Z variables
undetermined. Filtering out the corresponding 215 entries from table A and making
a reverse lookup hash table will do the trick. The hash table will be indexed on, at
most, 215 18-bit Q values, and the entries will be the corresponding variable assignment
(15 bits) for Y and Z.

For the middle byte position systems we correspondingly populate a hash table in-
dexed on the 18-bit Q values and the eight known and reused variables. This table will
contain 224 entries, as we will use all of table A. Each entry will state the corresponding
variable assignment (16 bits) for Y and Z.

Although it seems to be possible to use the table for the first byte position system
for the last byte position by mirroring, this opportunity is destroyed by our upcoming
minimizations of keystream requirements. Therefore, for the last byte position systems
we construct a hash table indexed on the 18-bit Q values and the eight known and
reused variables. This table will contain 215 entries, where each entry represents the
corresponding variable assignment (7 bits) for Y and Z.

In total, no more than 225 table entries are needed, and each table entry fits well within
a 32-bit word. The above numbers are possible to obtain in practice by employing, for
example, cuckoo hashing (see [13]), which offers practical O(1) lookups and amortized
O(1) insertions with O(n) storage (all constants small).

This concludes the basic attack on X-FCSR-256 for which we have

COSTkeystream < 254.0

and

COSTsolver < 20.3

with 225 precomputational storage. These numbers assume 5 feedback bits as described
by the requirements stated in Fig. 4.

In the next section, our aim is to reduce the amount of required keystream.
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5. Reducing Keystream

We go on to reduce the keystream requirements by increasing the amount of equation
solving. This is done in two steps. In Section 5.1 we see how the zero vector compensa-
tion from Eq. (7) can be modified to allow for a faster state recovery. The correspond-
ing effort is then applied to the equation solving part, which will reduce the required
keystream even further. This is examined in Section 5.2.

5.1. Zero Vector Compensation

We will now take a closer look at requirements R3 and R4 from Fig. 4. Referring to
Eq. (9) once more, one can see that the purpose of R3 and R4 is to make way for the
X’s to cancel out properly according to Eq. (5). Requirement R4 for the Y register
dictates the behavior at one end of the vector, and that of the Z register controls the
other.

If we relax R4 from at least 5 consecutive zero feedback bits to precisely four, that
fifth one feedback bit prohibits the X’s from canceling out entirely. We can cope with
this anomaly by compensating for such a non-null aggregate of the X’s in Eq. (9). The
important issue is that we are in control of the resulting changes. As noted in Section 3.2,
at least 5 consecutive zero feedback bits forces the tails of the main registers to contain
the bit sequence . . . 11100 as in Fig. 3. To handle the case with precisely 4 consecutive
zero feedback bits, one must compute the corresponding zero vector3 for the five-bit tail
. . . 01100 and compensate accordingly. Solving for the state in the case with precisely
4 consecutive zero feedback bits amounts to solving a very similar equation system for
the first and last byte position.

It is the tail of the Y register that determines the left end of the zero vector. The tail
of the Z register determines the right end. It seems at first that we need to quadruple the
computation to solve for all four variants. Taking the relative frequencies into account,
the last byte position system is very cheap to solve. In fact, it comes almost for free. The
modified cost for the case when we relax R4 to at least 4 consecutive zero feedback bits
is

COSTsolver = 2

(

1 + 1

8

(

1 + 1

4
+ 1

42
+ · · · + 1

429
+ 2

430

))

< 21.3.

To support our new solver we also need two new tables. These are the same size as the
previous ones for the first and last byte position. The total space requirement therefore
remains at most 225 table entries, since the storage requirement for the middle byte
position systems dominates.

We take the procedure one step further and relax R4 to only 3 consecutive zero feed-
back bits. This time we run into a complication. The bad news is that we get a one
feedback bit for the last of the five output blocks. This triggers an additional summation
at all carry cell positions, effectively pushing several ones into the carry vector. The
problem with this is that the LFSRization effect is ruined, so we cannot hope to push
the process even further to relax R4 to only two consecutive zero feedback bits. For the

3 The term zero vector may seem a little out of place as the vector is not all-zeros, but we appeal to the
readers’ idealizingly Plaotesque nature.
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three-case, however, we can still calculate a zero vector compensation and proceed as
above.

Another positive note is that we do not need to consider both tail cases when we con-
sider 3 consecutive feedback bits. We have covered the four-or-more case above with
five-bit tails, and it remains to treat the precisely-three-case. The tails of the registers
must contain the bit sequence . . . 00100 or . . . 10100, when compared to Fig. 3. Both tail
sequences lead to the exact same zero vector compensation, so we only need to consider
the four-bit tail . . . 0100. In terms of equation solving, this means that we have one less
known variable for the first and last byte position systems. But the storage requirements
are, as before, dominated by the middle byte position systems, so we may disregard
the sizes of the first and last byte position systems. We cannot, however, disregard the
equation system differences at the different middle byte positions, the differences im-
posed by the last feedback bit setting the many carries. The sizes of the systems remain
the same, but we now have 30 different middle byte position systems, which increases
memory usage for precomputation by a factor 25.

To summarize, we can recover the state also when R4 is relaxed to 3 or more consec-
utive zero feedback bits. The three different tails and the possibility of the one feedback
bit setting the many carries together generate six different equation systems for the first
and last byte position. For the middle bytes there are four different systems. It is possible
to recover the entire state with an expected

COSTsolver < 6

(

1 + 1

8

(

1 + 1

4
+ 1

42
+ · · · + 1

429
+ 6

430

))

< 22.9

table lookups into a precomputational storage of at most 230 table entries. The interested
reader is referred to [7,8], in which a similar situation is discussed.

Table lookups for the first byte position are most expensive as they occur most fre-
quently. We may optimize the solver by merging all first byte position system tables.
The cost of recovering the entire state is then reduced to

COSTsolver < 1 + 6

8

(

1 + 1

4
+ 1

42
+ · · · + 1

429
+ 6

430

)

< 21.1

without increasing the storage requirements.

5.2. A Second Requirement Relaxation

Having relaxed requirement R4 to 3 consecutive zero feedback bits, we now turn the
attention to requirement R2. Can we use the corresponding technique to relax R2 to at
least 3 consecutive zero feedback bits? This question is answered in the affirmative, and
the corresponding cost of recovering the entire state is then

COSTsolver < 1 + 62

8

(

1 + 1

4
+ 1

42
+ · · · + 1

429
+ 62

430

)

< 22.9,

when both R2 and R4 are simultaneously relaxed. As before, the possible Z register
tails at last byte position are solved for at virtually no cost. The formula above indi-
cates that we can treat the possible endings in each register as a separate system and
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Fig. 13. Maximally linearized FCSR outputting ‘one’ feedback bits.

create a separate table for each. For the middle byte position there are, as before, four
different systems. The size of the systems at middle byte position dominates the storage
requirements. We double our previous storage estimate to at most 231 table entries.

5.3. Feedback Ones—A Symmetry Case

It is also possible to shorten the keystream requirement further by considering the sym-
metry case of several consecutive one feedback bits. Analogously to Fig. 3, a maximally
linear FCSR outputting one feedback bits is given in Fig. 13.

In the original case with zero feedbacks, we wait for the carries to be flushed in order
for the FCSR to act linearly. In the conjugate case with one feedbacks, the same linear
behavior appears when we have accumulated ones in the carries. Reviewing the entire
methodology for the zero feedback case, one can see that the corresponding arguments
and techniques hold when we are facing one feedback bits as well. The only practical
difference is that we alter the constants in the equation systems we are solving.

Instead of requiring simultaneous LFSRization with zero feedbacks in both Y and
Z registers, we can relax our requirement to simultaneous LFSRization with zero or
one feedbacks in each of Y and Z. Thus, by quadrupling the precomputational storage
requirements and increasing the computational effort, we may reduce the amount of
required keystream to one quarter using this additional observation.

To summarize again, with requirements R2 and R4 relaxed to at least 3 zero feedback
bits and exploiting the symmetry ones-case, we obtain

COSTkeystream < 244.3

with

COSTsolver < 1 + 4 · 62

8

(

1 + 1

4
+ 1

42
+ · · · + 1

429
+ 4 · 62

430

)

< 24.7

using precomputational storage of size 233.
This is our best result, both for minimizing the keystream requirement of the attack

and for minimizing the total number of table lookups for recovering the state. The vari-
ous costs are shown in Table 1.

6. X-FCSR-128

The LFSRization process is identical for both variants of X-FCSR, as is the analytical
unwinding, leaving only the equation solving parts to be considered. In Eq. (3) we can
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Table 1. Costs for the X-FCSR-256 attack.

Keystream Solver Storage

Basic attack w/o tables 254.0 215.5 –
Basic attack w/ tables 254.0 20.3 225

Reduced keystream attack Sections 5.1–5.3 244.3 24.7 233

see that the 256-bit entity X(t) is “folded” to produce a 128-bit result for X-FCSR-128.
In effect, more state bits are condensed into one byte position of Q as analyzed in Sec-
tion 3.5. This affects cost in a negative way, actually making the attack more expensive
for X-FCSR-128. We are forced to solve larger equation systems to recover the state, so
we therefore need more Qs to increase the number of equations. The equation system
for the first byte position is illustrated in Fig. 14 for the case when six Qs are used.

This system is the largest with its 45 unknown variables. As before, the time com-
plexity of state recovery is largely determined by the size of the middle byte position
system. Regardless of how many Qs we use, this system has 32 unknown variables as
depicted in Fig. 15.

Note that the six Qs induce 36 equations, leaving the first byte position system un-
derdetermined by a factor 29, and the middle byte position systems overdetermined by
a factor 16. The corresponding third byte position system is not illustrated, but it has 17
unsolved variables. Solving for the state without precomputation (compare to Eq. (10))
therefore costs

COSTsolver = 245 + 29
(

232 + 232

16
+ 232

162
+ · · · + 232

1613
+ 217

1614

)

< 245.1,

where the factors 29 and 1
16 are derived from the over- and underdeterminedness of the

respective systems.

Fig. 14. Equation system at first byte position (6 Qs).

Fig. 15. Equation system at middle byte position (6 Qs).
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Table 2. Costs for the X-FCSR-128 attack.

Keystream Solver Storage

Basic attack w/o tables 264.0 245.1 –
Basic attack w/ tables 264.0 29.1 260

Reduced keystream attack Sections 5.1–5.3 255.2 216.3 267

The time complexity of recovering the state using six Qs with precomputation is
given by

COSTsolver = 1 + 29
(

1 + 1

16
+ 1

162
+ · · · + 1

1613
+ 1

1614

)

< 29.1

in the basic setting with no relaxation of requirements R2 and R4. The precomputational
storage is now 260, again dominated by the middle byte position system.

We minimize COSTkeystream by using six Qs. With requirements R2 and R4 relaxed
to at least 3 zero feedback bits and exploiting the symmetry ones-case, we obtain

COSTkeystream < 255.2

with

COSTsolver = 1 + 4 · 62 · 29
(

1 + 1

16
+ 1

162
+ · · · + 1

1613
+ 4 · 62

1614

)

< 216.3

using precomputational storage of size 267. The corresponding cost table for X-FCSR-
128 is given in Table 2.

7. Summing Up the Attack

The results have been verified with simulations. Specifically, for X-FCSR-256 we have
successfully recovered the entire state for all variations on the requirement set {R1, R2,
R3, R4} discussed above.

The total cost for state recovery in terms of table lookups is given by

COST = COSTkeystream × COSTsolver.

To summarize, we have COST < 244.3+4.7 = 249.0 for X-FCSR-256 using at most 233

table entries of precomputational storage. This attack variant minimizes both keystream
and total complexity. The corresponding cost for X-FCSR-128 is COST < 255.2+16.3 =
271.5 using at most 267 storage.

A high-level description of the algorithm may be specified as follows. Recall Q(t)

from to Eq. (8). The on-line part of the attack begins by calculating k consecutive such
Q-values, Q(i), t − k + 1 ≤ i ≤ t , collectively denoted Q(·) below. For X-FCSR-256
and X-FCSR-128 we have k = 3 and 6, respectively. Q(·) is then analyzed byte by byte
from left to right. A lookup table set T1 is queried for plausible state configurations
corresponding to the first byte position of Q(·). If solutions exist, we go on and query
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table set T2 for matching state configurations corresponding to the second byte position
of Q(·), and so on. Two neighboring state configurations are said to be matching if they
have identical variable assignments for their common variables.

Precomputation. Create lookup table sets Ti , one for each byte position i =
1,2, . . . , n of Q(·). Each table set Ti contains lookup tables for all the different re-
quirement variations for registers Y and Z discussed in Sections 4.2 and 5. The tables
for the first byte position, i = 1, may be merged for efficiency.

The algorithm is easily described in terms of depth-first search, if one views the plau-
sible state configurations as vertices in a tree in which two vertices are adjacent if and
only if they represent matching solutions at neighboring byte positions. Q(·) corre-
sponds to a forest, the solution space, in which each solution to the first byte position
system generates a separate tree. A path of length n − 1 in this tree represents a permis-
sible configuration for the entire state.

State recovery at time t .

1. Compute Q(·) according to Eq. (8).
2. Using the precomputed lookup table sets Ti above, perform a Depth-First Search

into the solution space of Q(·).
The state can be recovered if and only if a vertex at depth n is reached.

8. Concluding Remarks

It is clear that the design of the X-FCSR stream cipher family is not sufficiently secure.
Depending on one’s inclination, it is possible to attribute this insufficiency to the modest
clocking of the two FCSRs, the size or number of FCSRs, how they are combined, the
complexity of the round function or some other issue. All of these factors are parts of the
whole, but the key insight, however, is that it is important not to rely on the non-linear
property of FCSRs too heavily. The LFSRization process shows that it is relatively
cheap to linearize FCSRs, the cost being roughly logarithmic in the size of active carry
registers.

The attack presented here is not directly applicable to the newer ring-FCSRs pre-
sented in [3]. The desired LFSRization effect is much less likely to appear in ring-
FCSRs since these allow multiple simultaneous feedbacks. After the publication of [14],
new ring-FCSR versions of the F-FCSR family and X-FCSR-128 were presented in [3]
and [5], respectively. All of these new proposals are unbroken at the time of writing.
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