
J. Cryptol. (2013) 26: 484–512
DOI: 10.1007/s00145-012-9131-8

Enhancements of Trapdoor Permutations

Oded Goldreich and Ron D. Rothblum
Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel

oded.goldreich@weizmann.ac.il; ron.rothblum@weizmann.ac.il

Communicated by Ran Canetti.

Received 3 August 2011
Online publication 13 September 2012

Abstract. We take a closer look at several enhancements of the notion of trapdoor
permutations. Specifically, we consider the notions of enhanced trapdoor permuta-
tion (Goldreich, Foundation of Cryptography: Basic Applications, 2004) and doubly
enhanced trapdoor permutation (Goldreich, Computational Complexity: A Concep-
tual Perspective, 2011) as well as intermediate notions (Rothblum, A Taxonomy of
Enhanced Trapdoor Permutations, 2010). These enhancements arose in the study of
Oblivious Transfer and NIZK, but they address natural concerns that may arise also in
other applications of trapdoor permutations. We clarify why these enhancements are
needed in such applications, and show that they actually suffice for these needs.

Key words. Trapdoor permutations, Oblivious transfer, Non-interactive zero-knowledge.

1. Introduction

This article surveys and studies two enhancements of the notion of trapdoor permuta-
tions (TDP). Our exposition clarifies how these enhancements of TDP emerge in two
central applications, and shows that these enhancements actually suffice for the corre-
sponding applications. As is often the case when studying known definitions, we find it
useful to start with a review of the historical roots of the various definitions.

1.1. A historical perspective

The notion of trapdoor permutations was formulated by Yao [25] as a sufficient condi-
tion for the construction of secure public-key encryption schemes (put forward by Diffie
and Hellman [7] and rigorously defined by Goldwasser and Micali [19]). Indeed, build-
ing on the ideas of [6,19], Yao [25] showed that any collection of trapdoor permutations
can be used to construct a secure public-key encryption scheme. The abstract notion
of trapdoor permutations was inspired by the RSA and Rabin collections (cf. [22,23],
resp.), which still serve as the archetypical examples (see Appendix B).

Loosely speaking, the notion of trapdoor permutations (TDP) refers to a collection
of permutations that are easy to sample and have domains that are easy to sample from

© International Association for Cryptologic Research 2012

mailto:oded.goldreich@weizmann.ac.il
mailto:ron.rothblum@weizmann.ac.il

Enhancements of Trapdoor Permutations 485

(when given the description of the permutation). The main requirements are that these
permutations are easy to evaluate, easy to invert when given a suitable trapdoor, but hard
to invert when only given the description of the permutation (but not the trapdoor).

The minimal requirements regarding the sampleability of permutations and their do-
mains were glossed over when constructing secure public-key encryption schemes (both
in [19,25] and [5] (cf. [14, Sect. 5.3.4])). Consequently, in later years, researchers have
tended to think of TDP in terms of an idealized case in which sampling permutations as
well as elements in their domains is trivial (i.e., the sampling algorithms just output their
random coin tosses).1 This tendency seems to be the source of the flaws that followed.

Specifically, trapdoor permutations were suggested as a basis for the construction
of Oblivious Transfer (OT) protocols [8] and general Non-Interactive Zero-Knowledge
proof (NIZK) systems [9]. In both cases, an idealized TDP suffices for these construc-
tions, and this promoted a false belief that a general TDP would also do. (We note that
the difference between idealized TDP and general TDP is crucial, because no candidate
for an idealized TDP is known, whereas a general TDP can be constructed based, say,
on factoring.)

The first difficulty was discovered by Bellare and Yung [2], who observed that the
soundness of the NIZK construction of [9] relies on the hypothesis that the set of per-
mutations in the collection is easily recognizable (which is trivial in the idealized case).
Since this hypothesis does not hold in the known candidate TDPs,2 Bellare and Yung
relaxed the hypothesis to requiring that membership in the aforementioned set (or actu-
ally just being almost 1-1) can be demonstrated by a special-purpose NIZK, and showed
that the relaxed hypothesis can be met for all known candidates [2]. Interestingly, their
presentation avoids the problem of sampling in the domains of the various permutations,
by postulating that these domains consist of all strings of a specific length (which, in
turn, can be easily determined by the description of the permutation). We note that all
known candidates can be converted to such a form. Still, there is a difference between
the latter form (of trivially sampleable domains) and the general case, and the rest of
our discussion refers to that difference.

The difference between TDP with trivially sampleable domains and general TDP was
first observed by Goldreich [12], when producing a detailed proof of the secure multi-
party computation result of [18], which relies on the construction of OT. Specifically, he
discovered that the construction of OT outlined in [8,18], which works when the TDP
has trivially sampleable domains, may not be secure when a general TDP is employed,
but is secure when using an enhanced notion of a TDP. This enhancement requires that

1 That is, in the idealized case the set of permutations is associated with the set of all bit strings, whereas
the domain of each permutation equals the set of all strings of a specific length.

2 For example, for RSA, it is not known how to verify that N is a product of two primes. Still, for a specific
version of RSA, where e > N , it is possible to obtain a TDP with an efficiently recognizable index set. Such
a TDP is obtained by (fictitiously) extending the index set of RSA to contain all pairs (N, e) such that N

is any composite and e > N is a prime. On the other hand, the index sampler remains unchanged and, as in
RSA, it still samples N as a product of two equal-sized primes (i.e., most indices in the new index set are
never sampled). Observe that (1) the new index set is efficiently recognizable (by verifying that e is prime and
e > N), (2) every index in the new index set (including those that are not in the support of the index sampler)
specifies a permutation (because e and ϕ(N) are co-prime) and (3) the collection is one-way (assuming RSA
is hard for some e > N).

486 O. Goldreich and R.D. Rothblum

the permutation is hard to invert also when one is given the coins that were used to
sample the domain element (rather than merely the domain element itself).

We note that the enhanced notion of hardness-to-invert collapses to the original no-
tion (of hardness-to-invert) in the case that the domain-sampling algorithm is trivial
(i.e., the permutation’s domain consists of all strings of a specific length). More gener-
ally, this enhancement is insignificant whenever it is easy to invert the domain-sampling
algorithm (i.e., given an element in the domain, to sample (uniformly) random coins
that cause the domain-sampling algorithm to produce the given element). We also men-
tion that, for the purpose of constructing OT, the enhancement may be avoided if the
permutation’s domain is dense (by using a more complex OT construction; cf. [21]).

Turning back to the main thread, we mention that while Goldreich [14, Ap-
pendix C.4.1] claimed that the aforementioned enhancement of TDP suffices for con-
structing general NIZK, Jon Katz raised doubts regarding this claim. These justified
doubts led Goldreich [16] to propose the notion of doubly enhanced TDP, and show that
this notion does suffice for constructing general NIZK.

Subsequent work by Rothblum [24] showed that the security of a natural extension
of the OT protocol of [8,18] to 1-out-of-k OT for k ≥ 3 also requires the second en-
hancement (however, a more cumbersome construction may be based solely on the first
enhancement). Rothblum [24] also uncovered a taxonomy of notions of TDP, residing
between enhanced TDP and doubly enhanced TDP. These intermediate notions will be
further discussed in Sect. 6.

To summarize the historical account, we note that the general formulation of TDP was
envisioned as the most general and/or minimal formulation of a collection of functions
that allows for the construction of secure public-key encryption schemes. This appli-
cation determined the main requirements (i.e., easy to evaluate, easy to invert when
given a suitable trapdoor, but hard to invert when not given the trapdoor), whereas the
sampling conditions were stated in the most general form possible (i.e., merely requir-
ing easy sampling of permutations and domain elements). However, the general (and
innocent-looking) formulation of the sampling conditions turned out to be a problem
when seeking to construct OT and general NIZK based on TDP.

Before proceeding to the next subsection, in which we review these difficulties, we
note that these problems are not just intellectual but also affect some of the popular TDP
candidates. While we shall offer an abstract presentation (considering general TDP),
some readers may find it useful to consider these issues in the context of the RSA or
Rabin collections (discussed in Appendix B).

1.2. The Difficulties

The following presentation does not preserve the chronological order (which was fol-
lowed in Sect. 1.1). Also, we shall only sketch the nature of the difficulties that arise
and the way in which they are addressed by the enhancements. Corresponding detailed
descriptions appear in later sections.

We shall refer to a collection of the permutations of the form fα : Dα → Dα , where
α is the index (or description) of the permutation fα , and to two sampling algorithms:
(1) an index-sampling algorithm I1 that, on input coins s, outputs an index α = I1(s);
and (2) a domain-sampling algorithm S that, on input an index α and coins r ∈ {0,1}|α|,

Enhancements of Trapdoor Permutations 487

outputs an element in the corresponding domain (i.e., S(α, r) ∈ Dα).3 Indeed, the index
of the permutation is associated with its description, and the hardness-to-invert condi-
tion refers to inverting fα on y, when α and y are selected by the foregoing sampling
algorithms (i.e., α ← I1(s) and y ← S(α, r), where s and r are selected uniformly in
{0,1}n). The idealized case, mentioned in Sect. 1.1, refers to the case that all strings are
valid indices and Dα = {0,1}|α| for every α.

The first difficulty refers to the construction of OT based on TDP. The security of the
standard construction of [8] (as well as other applications) relies on the hypothesis that
a party knowing α = I1(s) and r (which are chosen as above), is unable to invert fα on
S(α, r). Note that this would follow from the hardness-to-invert condition if given (α
and) y one can efficiently find a random r such that y = S(α, r). However, there is no
reason to assume that such a “reverse-sampling” is feasible in general. Instead, one may
define enhanced TDP as TDP that satisfy this enhanced hardness-to-invert condition,
and note that the popular candidates for TDP actually yield enhanced TDP. Using any
such enhanced TDP allows one to construct an OT protocol.

The second difficulty refers to the soundness of a general NIZK based on TDP. In this
setting the prover is supposed to select a random permutation (in the TDP collection)
and send its description to the verifier, and the soundness of the proof system relies on
the hypothesis that the description sent (i.e., α) indeed refers to an almost 1-1 function
(i.e., fα is almost 1-1). In general, as observed in [2], this hypothesis needs to be tested
(by the verifier), and a natural way of doing so is by asking the prover to provide the
inverses of the function (i.e., of fα) on a sequence of randomly selected domain ele-
ments. If we use a general TDP, then the prover is asked to provide the inverses of fα

on S(α, r1), . . . , S(α, rm), when given r1, . . . , rm that are randomly distributed (and are
part of the common random string).

The latter proposal brings us to a third difficulty, which refers to the question of
whether providing the value of f −1

α (S(α, r)) for a random r is zero-knowledge. The
answer would have been positive if (given α) it were feasible to generate random sam-
ples of the form (x, r) such that S(α, r) = fα(x), since in this case x = f −1

α (S(α, r)).
But, again, this condition may not hold in general, and postulating that it does hold is
the content of another enhancement.4

The construction of general NIZK based on TDP uses the two aforementioned en-
hancements: The first enhancement is used in order to argue that, when seeing α and r ,
the (unrevealed) value of f −1

α (S(α, r)) remains secret. The second enhancement is used
in order to argue that revealing f −1

α (S(α, r)) for a random r is actually zero-knowledge
(w.r.t. a fixed α).

We note that the two difficulties that give rise to the two enhancements of TDP are
natural ones, and are likely to arise also in other (sophisticated) applications of TDP.
One such application that we show is the construction of public-key encryption (from
trapdoor permutations) with the property that ciphertexts can be sampled obliviously
from the plaintext.

3 Indeed, for simplicity (and without loss of generality), we assumed here that the number of coins taken
by S(α, ·) is |α|. Similarly, we assume here that |I1(s)| = |s|.

4 Again, if there exists a reverse-sampler for S, then it is easy to generate random samples of the form
(x, r) such that S(α, r) = fα(x). This is done by uniformly selecting x, and obtaining r from the reverse
sampler.

488 O. Goldreich and R.D. Rothblum

We also note that the source of both difficulties is that, in general, obtaining an el-
ement of Dα may not be computationally equivalent to obtaining the coins that are
used to produce this element. This computational equivalence holds only in the spe-
cial case in which there exists an efficient reversed domain sampler (i.e., a probabilistic
polynomial-time algorithm that on input (α, y) outputs a string that is uniformly dis-
tributed in {r : S(α, r) = y}). (We mention that adequate implementations and/or vari-
ants of the popular candidate collections of trapdoor permutations (e.g., the RSA and
Rabin collections) do have efficient reversed domain samplers.)

1.3. The Current Article

This article provides a revised account of the findings in [16,24]. The focus of the cur-
rent article is on the notion of TDP and its enhancements. In contrast, the focus of
Goldreich [16] is on the application to general NIZK, whereas the starting point of
Rothblum [24] is the two enhancements mentioned in Sects. 1.1 and 1.2. In particu-
lar, we explore the entire range between general TDP and doubly enhanced TDP, while
Rothblum [24] focuses on the range between enhanced TDP and doubly enhanced TDP.
We also present an additional application of the aforementioned enhancements in the
context of public-key encryption. While we describe both the difficulties and the cor-
responding security notions with respect to TDP, one may consider the affect on gen-
eral collections of one-to-one trapdoor functions (of which TDP are a special case).
In fact, enhanced versions of trapdoor functions suffice for the three main applications
considered in this article: public-key encryption, oblivious transfer and non-interactive
zero-knowledge proofs for N P . For more details on TDF and their enhancements see
Sect. 7.

We note that [16,24] did not appeared in a refereed publication before, and the current
article should be viewed as a combined journal version of these two works. We view the
current article as a hybrid of a survey and a research article, and hope that it will help to
clarify the confusion around the various notions of enhanced TDP.

Organization In Sect. 2 we recall the definition of TDP and present its two afore-
mentioned enhancements. These enhancements were motivated in Sect. 1.2, and these
motivations will be detailed in the subsequent sections. In particular, Sect. 3 details how
the first enhancement arises out of the construction of 1-out-of-2 OT, whereas Sect. 4
details how the second enhancement arises out of the construction of 1-out-of-3 OT and
general NIZK systems. In Sect. 5 we discuss an application of the two enhancements
to oblivious sampling of ciphertexts in public-key encryption. In Sect. 6, we consider
some intermediate notions of TDP that arise naturally in the foregoing applications. In
Sect. 7 we consider the effect of enhancements on general collections of one-to-one
trapdoor functions and even more generally on any collection of one-way functions.
Appendix B discusses the RSA and Rabin collections, showing that (natural versions
of) both collections satisfy both the enhancements.

Notation We denote by A(x) the output distribution of algorithm A on input x and by
A(x; r) the deterministic output of algorithm A on input x and the random string r .

Enhancements of Trapdoor Permutations 489

2. Definitions

Collections of finite functions arise naturally in cryptography, and collections of trap-
door permutations are indeed a prime example. For example, the standard presentation
of the “RSA function” refers to a collection of permutations, indexed by pairs (N, e),
where N is a product of two large primes and e is relatively prime to the order of Z∗

N ,
and the permutation index by (N, e) has domain ZN (or Z∗

N). This description presumes
that permutations in the collection are easy to select (at random), and uniformly sam-
pling their domain is also easy. Indeed, in general, when talking about a collection of
functions, we wish the collection to be “usable” in the sense that (1) it is easy to select
function at random in the collection, and (2) it is easy to uniformly sample an element in
the domain of a given function. These two conditions appear in the standard definition
of a collection of trapdoor permutations, reproduced next.

Standard Trapdoor Permutations Recall that a collection of trapdoor permutations, as
defined in [13, Def. 2.4.5], is a collection of finite permutations, denoted {fα : Dα →
Dα}, accompanied by four probabilistic polynomial-time algorithms, denoted I, S,F

and B (for index, sample, forward and backward), such that the following (syntactic)
conditions hold:

1. On input 1n, algorithm I selects at random an n-bit long index α (not necessarily
uniformly) of a permutation fα , along with a corresponding trapdoor τ ;

2. On input α, algorithm S samples the domain of fα , returning an almost uniformly
distributed element in it;

3. For any x in the domain of fα , given α and x, algorithm F returns fα(x) (i.e.,
F(α,x) = fα(x));

4. For any y in the range of fα if (α, τ) is a possible output of I (1n), then, given τ

and y, algorithm B returns f −1
α (y) (i.e., B(τ, y) = f −1

α (y)).

The standard hardness condition (as in [13, Def. 2.4.5]) refers to the difficulty of in-
verting fα on a uniformly distributed element of its range, when given only the range-
element and the index α. That is, letting I1(1n) denote the first element in the output of
I (1n) (i.e., the index), it is required that, for every probabilistic polynomial-time algo-
rithm A (resp., every non-uniform family of polynomial-size circuits A = {An}n), we
have

Pr
α←I1(1n)
x←S(α)

[
A

(
α,fα(x)

) = x
] = μ(n), (1)

where μ denotes a generic negligible function. Namely, A (resp., An) fails to invert fα

on fα(x), where α and x are selected by I and S as above. An equivalent way of writing
(1) is

Pr
α←I1(1n)

r←Rn

[
A

(
α,S(α; r)) = f −1

α

(
S(α; r))] = μ(n), (2)

where Rn denotes the distribution of the coins of S on n-bit long inputs. That is, A fails
to invert fα on S(α; r), where α and r are selected as above.

490 O. Goldreich and R.D. Rothblum

We note that the idealized cased mentioned in the introduction refers to the special
case in which (1) I1(1n) is uniformly distributed in {0,1}n, and (2) Dα = {0,1}|α|.
Recall that Condition (1) seems unrealistic, and avoiding it was the contents of [2]. Our
focus, instead, is on avoiding (or relaxing) Condition (2). Furthermore, we focus on the
case that the domain sampler S cannot be efficiently inverted.

Before proceeding, recall that any collection of trapdoor permutations can be easily
modified to have a hard-core predicate [6,17], denoted h. Loosely speaking, such a
predicate h is easy to compute, but given α ← I1(1n) and x ← S(α), it is infeasible to
guess the value of h(α,f −1

α (x)) non-negligibly better than by a coin toss.

Enhanced Trapdoor Permutations Although the foregoing definition suffices for some
applications5, in other cases (further discussed in Sects. 3 and 4) we will need an en-
hanced hardness condition. Specifically, we will require that it is hard to invert fα on
a random input x (in the domain of fα) even when given the coins used by S in the
generation of x. (Note that, given these coins (and the index α), the resulting domain el-
ement x is easily determined, and so we may omit it from the input given to the potential
inverter.)

Definition 2.1 (Enhanced Trapdoor Permutations [14, Def. C.1.1]). Let {fα : Dα →
Dα} be a collection of trapdoor permutations. We say that this collection is enhanced
(and call it an enhanced collection of trapdoor permutations) if, for every probabilistic
polynomial-time algorithm A, we have

Pr
α←I1(1n)

r←Rn

[
A(α, r) = f −1

α

(
S(α; r))] = μ(n), (3)

where Rn and μ are as above. The non-uniform version is defined analogously.

Definition 2.1 requires that it is infeasible to invert fα on S(α; r), when given α and r ,
which are selected as above (i.e., α ← I1(1n) and r ← Rn). Note that any trapdoor per-
mutation in which Dα = {0,1}|α| satisfies Definition 2.1 (because, without loss of gen-
erality, the sampling algorithm S may satisfy S(α; r) = r). This implies that modified
versions of the RSA and Rabin collections satisfy Definition 2.1. (More natural versions
of both collections can also be shown to satisfy Definition 2.1. For further discussion
see Appendix B.)

We note that Definition 2.1 is satisfied by any collection of trapdoor permutations that
has a reversed domain sampler (i.e., a probabilistic polynomial-time algorithm that on
input (α, y) outputs a string that is uniformly distributed in {r : S(α; r) = y}). Indeed,
the existence of a reversed domain sampler eliminates the difference between being
given (α, r) and being given (α,S(α; r)).

Any collection of enhanced trapdoor permutations can also be augmented by a hard-
core predicate (or rather by an enhanced hard-core predicate). Loosely speaking, such
a predicate h is easy to compute, but given α ← I1(1n) and r ← Rn, it is infeasible to
guess the value of h(α,f −1

α (S(α; r))) non-negligibly better than by a coin toss. Before

5 E.g., the construction of semantically secure public-key encryption schemes.

Enhancements of Trapdoor Permutations 491

Standard TDP Enhanced TDP Doubly enhanced TDP
Characteristic α,y � x α, r � x α, r � x and α → (x, r)

Main Application PKE OT NIZK

α a random index of a permutation
r uniform random coins of the domain sampler S

y = S(α; r) the element sampled by r

x = f −1
α (y) the inverse of y

Fig. 1. The different enhancements of TDP. Mappings that are infeasible to affect are marked by �, and
mappings that are easy to affect are marked by →.

presenting the actual definition, we stress that the proof of [17] extends to the current
setting (cf. [13, Sect. 2.5.2] or better [15, Thm. 7.8]).

Definition 2.2 (Enhanced Hard-Core Predicate). Let {fα : Dα → Dα} be a collection
of enhanced trapdoor permutations. We say that h : {0,1}∗ × {0,1}∗ → {0,1} is an
enhanced hard-core predicate of {fα} if h is polynomial-time computable and for every
probabilistic polynomial-time algorithm A,

Pr
α←I1(1n)

r←Rn

[
A(α, r) = h

(
α,f −1

α

(
S(α; r)))] (4)

where Rn and μ are as above. The non-uniform version is defined analogously.

For simplicity, for both standard and enhanced hard-core predicates, we usually drop
the index from the input of h and write h(x) where we actually mean h(α, x). (This can
be done without loss of generality, since the hard-core predicate of [17] does not use the
index α.)

Doubly Enhanced Trapdoor Permutations Although collections of enhanced trapdoor
permutations suffice for the construction of Oblivious Transfer (see Sect. 3), it seems
that they do not suffice for constructing a general NIZK proof system (see Sect. 4). Thus,
we further enhance Definition 2.1 so to provide for such an implementation. Specifi-
cally, we will require that, given α, it is feasible to generate a random pair (x, r) such
that r is uniformly distributed in {0,1}poly(|α|) and x is a preimage of S(α; r) under fα ;
that is, we should generate a random x ∈ Dα along with coins that fit the generation
of fα(x) (rather than coins that fit the generation of x). The relation between the var-
ious notions of trapdoor permutations (TDP) is schematically depicted in Fig. 1. An
example of a factoring-based enhanced TDP that is not doubly enhanced is provided in
Appendix C.

Definition 2.3 (Doubly Enhanced Trapdoor Permutations). Let {fα : Dα → Dα} be an
enhanced collection of trapdoor permutations (as in Def. 2.1). We say that this collection
is doubly enhanced (and call it a doubly enhanced collection of trapdoor permutations)

492 O. Goldreich and R.D. Rothblum

if there exists a probabilistic polynomial-time algorithm that on input α outputs a pair
(x, r) such that r is distributed identically to R|α| and fα(x) = S(α; r).

We note that Definition 2.3 is satisfied by any collection of trapdoor permuta-
tions that has a reversed domain sampler. Indeed, the existence of a reversed do-
main sampler eliminates the difference between producing random pairs (x, r) such
that fα(x) = S(α; r) and producing random pairs of the form (x, S(α; r)) such that
fα(x) = S(α; r) (i.e., random pairs (x, y) such that fα(x) = y).

A useful relaxation of Definition 2.3 allows r to be distributed almost-identically
(rather than identically) to R|α|, where by almost-identical distributions we mean that
the corresponding variation distance is negligible (i.e., the distributions are statistically
close). Needless to say, in this case the definition of a reversed domain sampler should
be relaxed accordingly.

We stress that suitable implementations of the popular candidate collections of trap-
door permutations (e.g., the RSA and Rabin collections) do satisfy the foregoing dou-
bly enhanced condition (see Appendix B). In fact, any collection of trapdoor permu-
tations that has dense and easily recognizable domains satisfies this condition, where
Dα ⊆ {0,1}|α| is dense if |Dα| ≥ 2|α|/poly(|α|). The reason is that having such do-
mains offer a very simple domain sampler, which can be inverted efficiently: The sam-
pler merely generates a sequence of |α|-bit long strings and outputs the first string in
Dα , whereas the reversed domain sampler just generates such a sequence and replaces
the first string in Dα by the element given to it.

Again, any collection of doubly enhanced trapdoor permutations can also be aug-
mented by a hard-core predicate (or rather by a doubly enhanced hard-core predicate).
That is, such a predicate is required to satisfy the conditions of Definition 2.2 with
respect to a collection {fα : Dα → Dα} that is doubly enhanced (rather than just en-
hanced).

3. Enhanced TDP and 1-out-of-2 OT

Oblivious transfer (OT) is an interactive protocol between two parties, a sender and a
receiver. In the 1-out-of-2 version, introduced by Even et al. [8], the sender gets as input
two bits σ0 and σ1 and the receiver gets a single bit i. The parties exchange messages
and at the end of the protocol the receiver should learn the bit σi but gain no knowledge
regarding σ1−i and the sender should gain no knowledge of i. Oblivious transfer turned
out to be a central cryptographic tool, especially in the context of secure multi-party
computation [18].

In this section we present the standard OT protocol based on TDP, which originates
in [8,18] and is hereafter referred to as the EGL protocol. We highlight the difficulty the
arises when the protocol is implemented with general TDP, and show that under the
strengthened notion of enhanced TDP the protocol is actually secure.

Semi-honest OT We consider OT in the semi-honest model, where both parties fol-
low the protocol but may try to learn additional information based on their view of the
interaction. Recall that (using any one-way function) Goldreich et al. [18] showed a
compiler that transforms protocols secure in the semi-honest model into protocols that

Enhancements of Trapdoor Permutations 493

Sender(1n, σ0, σ1) Receiver(1n, i)

(α, τ) ← I (1n)

z0, z1 ← S(α)

yi = fα(zi)

y1−i = z1−i

x0 = f −1
α (y0), x1 = f −1

α (y1)

c0 = h(x0) ⊕ σ0, c1 = h(x1) ⊕ σ1

Output ci ⊕ h(zi)

α

y0, y1

c0, c1

Fig. 2. The EGL protocol for 1-out-of-2 oblivious transfer.

are secure against malicious adversaries (which may deviate arbitrarily from the spec-
ified protocol). Informally an OT protocol should satisfy the following requirements
(w.r.t. the sender input (σ0, σ1) ∈ {0,1}2 and the receiver input i ∈ {0,1}):

1. Correctness—At end of the protocol the receiver outputs σi (and the sender out-
puts nothing).

2. Receiver privacy—the sender does not learn the selection bit i (i.e., the view of
the sender can be simulated based on σ0, σ1).

3. Sender privacy—the receiver does not learn the bit σ1−i (i.e., the view of the
receiver can be simulated based on i and σi).

A precise definition of OT is provided in Appendix A.

3.1. The EGL Protocol

The EGL protocol uses a TDP {fα : Dα → Dα}α with a hard-core predicate h. We de-
note the algorithms associated with the TDP by I (index/trapdoor sampler), S (domain
sampler), F (forward evaluation) and B (backward evaluation). The protocol is depicted
in Fig. 2.

Even when implemented with general TDP (or in fact any collection of permutations),
it is not hard to verify that correctness holds. That is, at the end of the protocol, the
receiver outputs σi . Also, the receiver’s privacy holds, since the sender just sees two
uniformly distributed elements y0, y1 ∈ Dα , and therefore the selection bit i is perfectly
hidden (here we use the fact that fα is a permutation).

It is tempting to argue that the sender’s privacy also holds. The misleading intuition
is that the receiver does not know the preimage x1−i = f −1

α (z1−i) and therefore the
bit σ1−i is computationally hidden by the “mask” h(x1−i). The reason this argument
fails is that the receiver may be able to efficiently compute the preimage of z1−i under
f −1

α by using the random coins that it has used to generate z1−i . A general TDP does
not guarantee that given an index α and random coins that are used to sample z1−i ∈
Dα it is infeasible to obtain f −1

α (z1−i) or just guess h(f −1
α (z1−i)) with non-negligible

494 O. Goldreich and R.D. Rothblum

advantage. Indeed, as we shall see next, such guarantees are provided by enhanced
TDPs.

3.2. Security of the EGL Protocol Based on ETDP

The source of trouble (as discussed right above) is that the random coins of the sampling
algorithm may reveal the preimage of the sampled element. To overcome this difficulty
we use a stronger assumption about the TDP: We assume that it is actually an enhanced
TDP (Definition 2.1). Recall that the enhancement means that even given the random
coins of the domain sampler it is hard to invert a sampled element. If the EGL protocol
is implemented with enhanced TDP, then intuitively the additional information that the
receiver has regarding the sampled elements no longer helps and the protocol is secure.
Thus, we obtain the following.

Claim 3.1. If {fα} is an enhanced TDP and h is its enhanced hard-core predicate,
then the EGL protocol securely implements 1-out-of-2 OT in the semi-honest model.

Proof. We first detail the correctness and receiver’s privacy, which were sketched
above. Correctness follows by the following syntactic equalities:

ci ⊕ h(zi) = (
h(xi) ⊕ σi

) ⊕ h(zi)

= (
h(xi) ⊕ σi

) ⊕ h
(
f −1

α (yi)
)

= (
h(xi) ⊕ σi

) ⊕ h(xi)

= σi.

To show that sender and receiver privacy hold, we show simulators that based on the
local input and output of the corresponding party simulate the party’s view.

We first show that the receiver’s privacy holds. Consider the following (simple) sim-
ulation of the sender’s view. On input (σ0, σ1), the simulator selects a random string s

and uses it to sample an index α of a permutation. The simulator also selects two ele-
ments y0, y1 ← S(α) in the permutation’s domain and outputs ((σ0, σ1,1n), s, (y0, y1)),
where the first part is the sender’s input, the second part its random string, and the third
part is the message that it receives. Because α is a permutation, and since S samples
almost uniformly in the domain, the simulated view is statistically close to the actual
view of the sender in the protocol execution, and therefore the receiver enjoys statistical
privacy.6

We now turn to the sender’s privacy. Recall that the simulator gets i and σi and needs
to simulate the receiver’s view in the protocol execution. The simulator proceeds as
follows:

Simulator(i, σi,1n)

1. Select a random index α of a permutation.

6 We note that if S samples exactly at uniform from the domain then the receiver actually has perfect
privacy.

Enhancements of Trapdoor Permutations 495

2. Select two random strings r1 and r2 for the domain sampler S and set zj =
S(α; rj) for j ∈ {0,1}. Set yi = fα(zi) and y1−i = z1−i .

3. Set ci = σi ⊕ h(zi) and select a bit c1−i ∈ {0,1} uniformly at random.
4. Output (i, (r1, r2), (α, (c1, c2))), where the first part simulates the receiver’s input,

the second part its random string, and the third part simulates the two messages
that it receives.

We claim that the output of the simulator is computationally indistinguishable from the
actual view of the receiver. To see this observe that, except for c1−i , the output of the
simulator is distributed identically to the view of the receiver. Thus, an adversary that
distinguishes between the simulation and the actual execution view, also distinguishes
between c1−i (which is distributed uniformly and independent of anything else) and
h(f −1

α (S(α; r1−i))), when given random α and r1−i , which contradicts the hypothesis
that h is an enhanced hard-core predicate.7 �

4. Doubly Enhanced TDP, 1-out-of-3 OT, and NIZK

In the previous section we showed that the presumptions that a randomly sampled el-
ement and the random coins used to sample it are computationally equivalent is false
(i.e., it may be infeasible to retrieve the coins from the sampled element), and that this
fact may lead to the insecurity of cryptographic protocols that rely on this (false) pre-
sumption. While enhanced TDP do bring us closer to idealized TDP (in which random
coins and sampled elements are computationally equivalent), in this section we demon-
strate that a significant gap exists also between the enhanced and the idealized notions
of TDP.

The gap that we refer to is related to the fact that many applications of TDP use
the property that for a given permutation α it is easy to generate a random pair (x, y)

such that y = fα(x). This can obviously be done by just sampling x at random (in
the domain) and applying the permutation to obtain y (as fα(x)). However, in some
applications a variant of this property is needed; namely, the ability to generate a random
pair (x, r) such that r is the random string used to sample y = fα(x). For idealized TDP
this is easy since we can sample (x, y) and use r = y, but for general TDP obtaining r

from y (s.t. y = S(α; r)) may be infeasible.8 (We mention that the ability to generate
such random pairs may be used in the proof of security of a given protocol and not in
the protocol execution.)

Next we show two protocols that use enhanced TDP for which the infeasibility of
generating such pairs may lead to security problems. These problems (in both proto-
cols) can be resolved by using an additional enhancement of TDP referred to as doubly
enhanced TDP. Recall that doubly enhanced TDP (which were defined specifically for
this purpose—see Definition 2.3) are enhanced TDP for which, in addition to the “stan-
dard” enhancement, it is feasible to generate pairs (x, r) as above.

7 Specifically, given a random string r , we set some values of i, σ1, σ2 such that the adversary distinguishes
the simulation from the real execution, and run the simulation with r1−i = r . Using the distinguishing gap of
the adversary we can guess whether c1−i = σ1−i ⊕ h(z1−i) (with non-negligible advantage), and thus guess
the hard-core bit of the fα -preimage of S(α; r).

8 Indeed, this potential infeasibility is the very motivation to the notion of enhanced TDP.

496 O. Goldreich and R.D. Rothblum

Sender(1n, σ1, σ2, σ3) Receiver(1n, i)

(α, τ) ← I (1n)

z1, z2, z3 ← S(α)

yi = fα(zi)

yj = zj for j 	= i

xj = f −1
α (yj) and cj = h(xj) ⊕ σj

for j ∈ {1,2,3}

Output ci ⊕ h(zi)

α

y1, y2, y3

c1, c2, c3

Fig. 3. The EGL protocol for 1-out-of-3 oblivious transfer.

4.1. 1-out-of-3 OT

As a first example we consider the natural extension of the EGL protocol to 1-out-of-k
OT, for any k ≥ 3. For simplicity we consider the 1-out-of-3 case in which the sender
gets as input three bits σ1, σ2, σ3 and the receiver gets an index i ∈ {1,2,3}. As before,
the receiver should learn σi but gain no knowledge on σj for j 	= i, and the sender
should gain no knowledge on i. The protocol for the case k ≡ 3 is depicted in Fig. 3.

At first glance, it seems that the protocol is secure when using enhanced TDP (for
similar reasons as in the 1-out-of-2 case). Nevertheless, we show that there is a subtle
issue that makes it insecure. Before proceeding, we note that there are other ways to
extend the EGL protocol to 1-out-of-k while preserving security (e.g., a simple generic
transformation from 1-out-of-2 OT to 1-out-of-k, for any k ≥ 2).9 Hence 1-out-of-k
OT can be constructed based on enhanced TDP, it is only that a specific natural way
of doing it (i.e., Fig. 3) is insecure. That is, we show the insecurity of the foregoing
(natural) construction (of Fig. 3) in order to demonstrate that enhanced TDP cannot be
treated as an idealized TDP.

The Problem with the 1-out-of-3 EGL Protocol For sake of concreteness, consider the
case i = 1 (i.e., the receiver wants to receive the bit σ1). As in the case of 1-out-of-2
OT, correctness and the receiver’s privacy follow from the fact that {fα}α is a collection
of permutations. Intuitively it seems that the sender’s privacy should also hold. Indeed,
since {fα}α is an enhanced TDP the receiver does not know x2 nor x3 and therefore
can learn neither σ2 nor σ3 (since each is “masked” by a pseudorandom bit). However,
privacy requires not only that the individual bits be pseudorandom, but also that they be
pseudorandom together. But the fact that h(x2) and h(x3) are each pseudorandom does
not imply that (h(x2), h(x3)) is pseudorandom. For example, perhaps the adversary can
learn h(x2) ⊕ h(x3), and thus break the security of the 1-out-of-3 EGL protocol (by

9 Alternatively, we mention that the protocol of Fig. 3 is secure for k = O(logn), provided that the en-
hanced hard-core predicate that is used is the GL hard-core predicate [17]; for details, see Sect. 6.

Enhancements of Trapdoor Permutations 497

obtaining the value of σ2 ⊕ σ3). We note that it may be tempting to try to prove this
joint pseudorandomness using a hybrid argument. The problem with such an argument
is that generating the necessary hybrid involves the generation of (say) r2 together with
h(x2) which may not be feasible if the TDP is not doubly enhanced.

This gap in the security proof can actually be used to form an attack. Specifically we
refer to the existence of an enhanced TDP (based on a standard intractability assump-
tion) with an enhanced hard-core predicate for which given α, r1, r2 it is easy to com-
pute the exclusive-or of the hard-core bits of the preimages (i.e., h(f −1

α (S(α; r1))) ⊕
h(f −1

α (S(α; r2)))). When the extended EGL protocol is invoked with such an enhanced
TDP the receiver can actually learn σ2 ⊕σ3 thereby breaking (semi-honest) security. An
enhanced TDP with the above property is presented in Appendix C.

We stress that the difference between the cases of k = 2 and k ≥ 3 (for the extended
EGL protocol) is that in the former we only referred to the (enhanced) hardness of a
single bit, whereas in the latter we need to refer to the simultaneous (enhanced) hardness
of two or more bits. That is, the protocol uses k bits, but one is revealed, and so it refers
to the security of the remaining k − 1 bits. While a single hard-core bit of an enhanced
TDP is certainly pseudorandom (which suffices for the k = 2), two or more hard-core
bits may not be simultaneously pseudorandom (which fails the case of k ≥ 3).

Doubly Enhanced TDP Resolve the Problem The essence of the problem in the 1-out-
of-k EGL protocol is that in this setting (where the adversary sees random strings and
not just sampled elements) hard-core bits are not necessarily pseudorandom. Recall that
the standard way to prove that many hard-core bits are (simultaneously) pseudorandom
is via a hybrid argument. For the hybrid argument to go through in this setting, we need
the ability to generate intermediate hybrids, which boils down to generating random
pairs (h(x), r) such that x = f −1

α (S(α; r)). For enhanced TDP we have no guarantee
that such pairs can be efficiently generated; furthermore, as mentioned above, there exist
enhanced TDP for which it is infeasible to generate such pairs. On the other hand, hard-
core bits of doubly enhanced trapdoor permutations are pseudorandom in this setting
(i.e., also when the adversary sees the randomness used to sample the images). This is
the case since the second enhancement guarantees the feasibility of generating random
pairs (x, r) such that fα(x) = S(α; r), and this allows to employ a hybrid argument in
order to prove the following claim.

Claim 4.1. Suppose that {fα} is a doubly enhanced TDP and h is its enhanced hard-
core predicate. Then, for every polynomial m = m(n), the sequences (α, r1, . . . , rm,

h(x1), . . . , h(xm)) and (α, r1, . . . , rm, b1, . . . , bm) are computationally indistinguish-
able, where the ri ’s are independently drawn from Rn, each xi is such that fα(xi) =
S(α; ri), and the bi ’s are independent uniformly distributed bits.

By setting k = m + 1, it follows that, for every polynomial k, if the TDP is doubly
enhanced, then the EGL protocol (of Fig. 3) securely implements 1-out-of-k OT in the
semi-honest model.

Proof. For m = 1, the claim follows by the definition of enhanced hard-core predi-
cate (i.e., Definition 2.2). For m > 1, we use a hybrid argument. Given α and (r, z),

498 O. Goldreich and R.D. Rothblum

where r ← Rn and z ∈ {0,1}, we select uniformly i ∈ [m], generate i − 1 pairs
(r1, x1), . . . , (ri−1, xi−1) such that fα(xj) = S(α; rj) for every j ∈ [i − 1], com-
pute bj = h(xj) for every j ∈ [i − 1], select bi+1, . . . , bm uniformly in {0,1} (and
ri+1, . . . , rm from Rn), and produce the sequence

(α, r1, . . . , ri−1, r, ri+1, . . . , rm, b1, . . . , bi−1, z, bi+1, . . . , bm).

Now, the indistinguishability of neighboring hybrids follows from the hypothesis that
h is an enhanced hard-core predicate, whereas the extreme hybrids correspond to the
desired conclusion. �

4.2. Non-interactive Zero-Knowledge Proofs

As a second example, we consider a construction of non-interactive zero-knowledge
proofs for any N P language. Recall that zero-knowledge proofs allow a prover to con-
vince a verifier that a given statement is valid without disclosing any additional informa-
tion other than the validity of the statement [20]. Non-interactive zero-knowledge proof
systems (NIZK), introduced by Blum, Feldman, and Micali [4], are zero-knowledge
proofs in which there is no actual interaction; that is, a single message is sent from the
prover to the verifier, which either accepts or rejects. Instead of bi-directional interac-
tion, a setup assumption is used; specifically, the existence of a (uniformly distributed)10

common random string (CRS), to which both parties have (read-only) access. For a def-
inition of NIZK proofs see Appendix A.

Assuming the existence of one-way permutations, Feige, Lapidot, and Shamir [9]
constructed NIZK proof systems for any N P language. They also offer an efficient
implementation of the prescribed prover, by using an idealized TDP. We refer to this
construction as the FLS protocol, and consider what happens when it is implemented
when using a general TDP (and the two enhancements of this notion).

There are two gaps when trying to replace idealized TDP in the FLS protocol with
general TDP. The first gap (discovered by Bellare and Yung [2]) is that the soundness
of the FLS construction relies on the feasibility of recognizing permutations in the col-
lection. We start by elaborating on this gap, while noting that the solution will lead to
the second gap.

Proving that a Function is 1-1 In the FLS protocol the prover provides the verifier an
index α of a permutation in the collection, and the soundness is based on the assumption
that α does indeed describe a permutation. This assumption always holds in the case of
idealized TDP (where any index describes a permutation), but for all popular candidate
TDPs it is unknown how to efficiently check whether a given string describes a valid
permutation (cf. [2]). Therefore, when the FLS protocol is implemented with general
TDP, a cheating prover may provide a string that does not correspond to any permuta-
tion (but rather describes a many-to-one function, which in turn may be used to violate
the soundness condition). Bellare and Yung suggested to resolve this problem by aug-
menting the main NIZK, with a (non-interactive zero-knowledge) proof that the given

10 A relaxation may allow for a non-uniform common random string. To the best of our understanding,
this relaxation does not help overcome the difficulties discussed in this section.

Enhancements of Trapdoor Permutations 499

index α does indeed describe a function that is practically a permutation. This is done
by presenting sufficiently many domain elements (described as part of the common ran-
dom string) and expecting the prover to provide the inverses of these elements (where
the validity of these preimages can be checked by applying the function fα in the for-
ward direction). Soundness follows from the fact that if the function is not (almost) 1-1,
then, with high probability, a cheating prover will not be able to supply preimages for
random domain elements. Unfortunately, it turns out that this protocol is not necessarily
zero-knowledge when using general (or singly enhanced) TDP, but it is zero-knowledge
in case the domain of fα equals {0,1}|α|.

The reason that the foregoing protocol may not be zero-knowledge is the essence of
the second aforementioned gap, and we shall discuss this gap now, while first detailing
the foregoing proof system. In this proof system, both parties are given an index α

(which allegedly describes a permutation in the collection), and the prover is also given
a corresponding trapdoor. Both parties have access to a common random string that
is partitioned into � strings, denoted r1, . . . , r�, each of length that fits the number of
coins used by S(α). The prover uses the random strings to obtain � elements, y1, . . . , y�

such that yi = S(α; ri), inverts them (using the trapdoor) to obtain x1, . . . , x� such that
xi = f −1

α (yi), and sends x1, . . . , x� to the verifier. The verifier computes by itself yi =
S(α; ri) and verifies that yi = fα(xi), for all i ∈ {1, . . . , �}. Although this may convince
the verifier that fα is almost 1-1 (i.e., if n/� fraction of Dα has no preimage under fα ,
then the verifier will reject with overwhelming high probability), but it may not be zero-
knowledge in general. The point is that the verifier obtains a random pair (x, r) such that
fα(x) = S(α; r) (actually it gets many such pairs), and it is not clear that the verifier
could have generated such a pair (let alone many such pairs) by itself. This concern
remains valid if the collection is an enhanced TDP, but it disappears by the assumption
that the collection is doubly enhanced (which indeed is tailored for such applications).

General NIZK We mention that the difficulty encountered in the foregoing protocol
(for proving that a function is 1-1) also presents itself in the basic FLS protocol. Specif-
ically, the FLS verifier sees random pairs of the form (x, r) such that fα(x) = S(α; r)
also in the basic FLS protocol (i.e., before its augmentation by [2]). Again, as above
(and as in the case of the EGL OT protocol for k ≥ 3), the difficulty is resolved by
using doubly enhanced TDP. In such a case, by definition, the ability to efficiently gen-
erate random (x, r) such that fα(x) = S(α; r) is guaranteed, and the zero-knowledge
property of the protocol follows.

5. Obliviously Sampling Ciphertexts

In this section we consider the standard construction of public-key encryption based on
trapdoor permutations [19,25]. The construction is indeed secure given any TDP (i.e.,
no enhancement is necessary).11 Still, there are natural properties that are guaranteed
for the encryption scheme only when using a TDP that is either enhanced or doubly

11 Actually, the construction may even be based on a collection of one-to-one trapdoor functions (1-1
TDF) but for simplicity we consider the instantiation of the standard construction of public-key encryption
with a TDP and not a 1-1 TDF (for more on 1-1 TDF and their enhancements, see Sect. 7).

500 O. Goldreich and R.D. Rothblum

enhanced. Specifically, we refer to the ability to generate ciphertexts obliviously of the
plaintext. We focus on public-key schemes for which this property means that, given
the encryption-key, it is feasible to sample an encryption of a random message such
that even the sampler itself does not know the message (assuming that it does not have
the decryption-key). In contrast, the trivial sampler that chooses a random message and
encrypts it is inherently non-oblivious.

We use the standard definition of a public-key encryption scheme, except that we
allow a restriction of the message space. Recall that such a scheme is described in
terms of three algorithms (i.e., key-generation, encryption and decryption). For sake
of simplicity, we assume that the message space consists of all strings of length �(n),
where n is the security parameter and � is a polynomially bounded function. Typical
cases are � ≡ 1 (i.e., bit encryption) and �(n) = n.

Definition 5.1 (Oblivious Ciphertext Sampleability). We say that a public-key encryp-
tion scheme (G,E,D) is an oblivious ciphertext sampleable (OCS) scheme if there ex-
ists a probabilistic polynomial-time algorithm O (called the oblivious ciphertext sam-
pling algorithm) such that the following holds:

1. For any encryption-key e the output of O(e) is distributed identically to a random
encryption of a random message; that is O(e) is distributed identically to Ee(U)

where U is distributed uniformly in the message space. 12

2. Given the encryption-key e and the random coins of the sampler r , the value
Dd(O(e; r)) is pseudorandom; that is, (e, r,Dd(O(e; r))) and (e, r,U) are com-
putationally indistinguishable, when e, r and U are random.

Note that the essence of the obliviousness condition is captured in the second item,
which asserts that the plaintext looks random even when the coins used to produce the
ciphertext are known. We mention that OCS encryption schemes were considered by
Gertner et al. [10],13 who showed that they can be used to construct a 3-round OT
protocol.

5.1. On Constructing Public-Key OCS Schemes

As a concrete example of an OCS scheme consider the standard construction of public-
key bit encryption from TDP. Recall that in this construction the encryption-key is an
index α of a TDP, the decryption-key is the corresponding trapdoor τ , and the message
space is {0,1}. Using the encryption-key α, the bit σ ∈ {0,1} is encrypted by selecting
a random domain element x ← S(α), and outputting (fα(x),h(x) ⊕ σ), where h is a
hard-core predicate of the TDP. The ciphertext (y, b) is decrypted via the decryption-
key τ by outputting h(f −1

α (y)) ⊕ b (where fα is inverted using τ).
At first glance, it seems that, in this scheme, it is easy to sample ciphertexts oblivi-

ously of the plaintexts, since an encryption of a random message is uniformly distributed
in Dα × {0,1}. Specifically, consider the algorithm O(α) that outputs (y, b) such that

12 A natural relaxation would require the distributions to be statistically close or even just computationally
indistinguishable to an adversary that has the decryption-key.

13 Gertner et al. [10] refer to such schemes as to having Property B.

Enhancements of Trapdoor Permutations 501

y ← S(α) and b is a random bit. While the sampler O clearly outputs the right distri-
bution (and so satisfies the first item of Definition 5.1), it is not necessarily oblivious
(i.e., it does not necessarily satisfy the second item). The random coins of O include
the random coins that are used to produce the sample y ∈ Dα , and therefore, as shown
in Sect. 3, when using a general TDP, it may be possible (using these random coins) to
invert fα on y, and so retrieve the plaintext. Hence the suggested sampling algorithm
may not satisfy the conditions of Definition 5.1.

To resolve this issue we yet again use enhanced TDP (and assume that h is an en-
hanced hard-core predicate). Indeed, if the TDP is enhanced, then the foregoing O is an
oblivious ciphertext sampler (i.e., it satisfies the conditions of Definition 5.1).14

5.2. Sampling Multiple Ciphertexts Obliviously

Consider extending the notion of obliviously sampling a single ciphertext to sampling
multiple ciphertexts obliviously. Informally a k-OCS public-key encryption scheme is
one in which it is feasible given the encryption-key e to sample from the joint distri-
bution Ee(m1) × · · · × Ee(mk) such that m1, . . . ,mk are (1) uniformly distributed in
the message space and (2) pseudorandom even given the random coins of the sampler
(although they are information-theoretically determined).

Intuitively, it may seem that any regular OCS scheme (i.e., a 1-OCS scheme) di-
rectly yields a k-OCS scheme, by merely invoking the oblivious sampling algorithm k

times. Clearly, these k samples will be distributed correctly, but these samples may not
be pseudorandom given the random coins of the sampler. That is, while each individual
message mi is guaranteed to be pseudorandom, the joint distribution (m1, . . . ,mk) is not
necessarily pseudorandom. To see this we return to the construction of public-key bit
encryption based on enhanced TDP discussed above. Even for k = 2 the suggested sam-
pler is not necessarily oblivious. This follows from reasons similar to those discussed
in Sect. 4 and the difficulty can be resolved similarly by using a doubly enhanced TDP.
Details follow.

Consider the standard TDP-based encryption scheme and the corresponding oblivi-
ous sampler O (outlined in Sect. 5.1). Let O2 denote the direct product of O; that is,
O2(α) selects two random elements y1, y2 ∈ Dα and two random bits b0, b1 ∈ {0,1}
and outputs ((y1, b1), (y2, b2)). The output of O2 is indeed distributed identically to a
pair of encryptions of independent random bits. However, the random string used by
O2 is (r1, b1, r2, b2) where r1 and r2 are the random strings that respectively sample
y1 and y2 (i.e., yi = S(α; ri)). In Sect. 4 we showed that for an enhanced TDP, given
α, r1 and r2, it may be feasible to compute h(x1) ⊕ h(x2) where xi = f −1

α (yi). Since
the two plaintext bits (corresponding to ciphertexts (y1, b1) and y2, b2) are, respectively,
“masked” by h(x1) and h(x2), the random string used by O2 may reveal whether the
two plaintexts are equal or not.

As mentioned above, the difficulty can be resolved by using a doubly enhanced
TDP. When using a doubly enhanced TDP, for any polynomial k = k(n), the sam-
pler that outputs (y1, b1), . . . , (yk, bk), where y1, . . . , yk are random domain elements

14 To prove this it suffices to show that given α, (r, b) it is infeasible to predict Dτ (O(α; (r, b))) with

non-negligible advantage. Note that Dτ (O(α; (r, b))) = Dτ (y, b) = h(f −1
α (y)) ⊕ b where y = S(α; r) so an

adversary that predicts Dτ (O(α; (r, b))) can be easily converted to an adversary for h the enhanced hard-core
predicate that on input α, r predicts h(f −1

α (y)).

502 O. Goldreich and R.D. Rothblum

and b1, . . . , bk are random bits, is a k-oblivious sampler for the TDP-based public-
key encryption scheme. This fact follows from Claim 4.1, which states that even given
the random strings r1, . . . , rk , which are used to sample y1, . . . , yk , respectively, the
bits h(x1), . . . , h(xk), where xj = f −1

α (yj), are pseudorandom. Thus, given r1, . . . , rk ,
the k plaintext bits that correspond to the k ciphertexts (y1, b1), . . . , (yk, bk), are
also pseudorandom since they are, respectively, “masked” by the pseudorandom bits
h(x1), . . . , h(xk).

6. Intermediate Notions

So far we have mainly considered general TDP, enhanced TDP, doubly enhanced TDP
and idealized TDP. In this section we present a few intermediate notions. We first con-
sider the realm between doubly enhanced TDP and idealized TDP and then an interme-
diate notion between enhanced and doubly enhanced TDP.

6.1. Between Doubly Enhanced and Idealized TDP

Recall that idealized TDP are TDP which have domain {0,1}|α| (and therefore have a
trivial sampler) and for which the set of indices with respect to security parameter n are
{0,1}n. The first relaxation that we discuss refers to dropping the latter requirement:

Definition 6.1. A TDP is called a full-domain TDP if for every index α ← I1(1n) we
have Dα = {0,1}|α|.

This definition as well as the subsequent three definitions were mentioned in passing
in Sect. 2. Assuming, for simplicity, that Dα ⊆ {0,1}|α|, we consider a relaxation of
Definition 6.1 by allowing domains that are either dense and/or efficiently recognizable.

Definition 6.2. A TDP is dense if for every index α ← I1(1n) we have |Dα| ≥ 2|α|
poly(α)

.

Definition 6.3. A TDP has an efficiently recognizable domain if it is possible to effi-
ciently check, given an index α and a string x ∈ {0,1}|α|, whether x ∈ Dα .

We note that given a TDP with dense and efficiently recognizable domain, one can
construct a full-domain TDP. This is done in two steps: First, we construct a full-domain
weak TDP (in the sense of weak one-way functions), and then we apply the transfor-
mation from weak one-way functions to strong one-way functions (see [13, Theorem
2.3.2]) to obtain a full-domain (strong) TDP.15 Lastly we recall an additional relaxation
discussed in Sect. 2:

Definition 6.4. A TDP is said to have a reversed domain sampler if there exists a
probabilistic polynomial-time algorithm that on input an index α and a domain element
y ∈ Dα outputs a string that is uniformly distributed in {r : S(α; r) = y}.

15 For the first step suppose that we have a TDP {fα}α with dense and efficiently recognizable domains.
We consider a new TDP {f ′

α}α that is defined by letting f ′
α(x) = fα(x) if x ∈ Dα and f ′

α(x) = x otherwise
(i.e., if x /∈ Dα). Note that {f ′

α}α is an efficiently computable permutation (since the domains are efficiently
recognizable), and that it is weakly one-way due to the density of the domains and the one-wayness of {fα}α .

Enhancements of Trapdoor Permutations 503

As mentioned in Sect. 2, any TDP that has a reversed domain sampler is doubly en-
hanced. The first enhancement follows by using the reversed domain sampler to reduce
the standard inverting task to the enhanced-inverting task (i.e., given (α, y), we invoke
the enhanced-inverter on input (α, r) where r is random subject to S(α; r) = y). For the
second enhancement, we can sample a random (x, r) such that fα(x) = S(α; r) by se-
lecting a random element x ∈ Dα , computing y = fα(x), and using the reversed domain
sampler to obtain r .

6.2. Between Enhanced and Doubly Enhanced TDP

In some of the protocols discussed above we used the doubly enhanced property to argue
that many hard-core bits of a doubly enhanced TDP are pseudorandom in the enhanced
settings. Although we have an example for an enhanced TDP whose enhanced hard-
core bits are not pseudorandom it may be possible to transform any enhanced TDP
to one whose hard-core bits are pseudorandom. The following theorem takes a step in
this direction by showing that up to logarithmically many hard-core bits of a specific
enhanced hard-core predicate are pseudorandom.

Theorem 6.5. Let {fα : Dα → Dα}α be an enhanced TDP where Dα ⊆ {0,1}|α| and
let {gα : Dα × {0,1}|α| → Dα × {0,1}|α|}α be the enhanced TDP defined as gα(x, s) =
(fα(x), s) where |x| = |s| = |α|. Then, for the GL enhanced hard-core predicate of

{gα}α , defined as h(x, s)
def= 〈x, s〉 = ∑n

i=1 xisi mod 2, logarithmically many hard-core
bits are pseudorandom. That is, for any k = O(log |α|) the following ensembles are
computationally indistinguishable:

• {(h(x1, s1), . . . , h(xk, sk)), ((r1, s1), . . . , (rk, sk))}α where each pair (ri , si) is a
uniform random string of the domain sampler of g and xi = f −1

α (S(α; ri)).
• {(σ1, . . . , σk), ((r1, s1), . . . , (rk, sk))}α where each pair (ri , si) is a uniform ran-

dom strings of the domain sampler of g and each σi is a uniformly random bit.

To prove Theorem 6.5 we show that given an index α of a permutation and k =
O(logn) random strings (r1, s1), . . . , (rk, sk) of the domain sampler Sg (the sampling
algorithm of {gα}α), it is infeasible to approximate

⊕
j∈U bj , for any non-empty set

U ⊆ [k] (where bj = h(xj , sj) and xj = f −1
α (S(α; rj))). The theorem follows by ap-

plying the computational XOR lemma for hard-core functions [13, Lem. 2.5.8]. (This
XOR lemma asserts that if it is infeasible to approximate the parity of a random subset
of logarithmically many hard-core bits, then these bits are pseudorandom.)

Proposition 6.6. Let k = k(n) be O(logn). For any probabilistic polynomial-time
algorithm A and any non-empty set U ⊆ [k], we have

Pr
(α,τ)←I (1n)

(r1,s1),...,(rk,sk)←{0,1}poly(|α|)×{0,1}poly(|α|)

[
A

(
α, (r1, s1), . . . , (rk, sk),U

) =
⊕

j∈U

bj

]

= 1

2
+ μ(n) (5)

504 O. Goldreich and R.D. Rothblum

where bj
def= h(xj , sj) = 〈xj , sj 〉 and xj

def= f −1
α (S(α; rj)) (and μ is a generic negligible

function).

Proof. Assume toward a contradiction that this is not the case. That is, there exists a
non-empty set U ⊆ [k] and an algorithm A that has a non-negligible advantage in ap-
proximating

⊕
j∈U bj based on α,U and (r1, s1), . . . , (rk, sk). Furthermore, such a set

U can be found in probabilistic polynomial-time by experimenting with all possible sets
(while generating random samples of I (1n)). Fixing such a set U = {j1, . . . , jk′ }, we
observe that

⊕
j∈U bj = ⊕

j∈U 〈xj , sj 〉 equals 〈xj1 ◦ · · · ◦ xjk′ , sj1 ◦ · · · ◦ sjk′ 〉, which is
the GL hard-core predicate of g′

α that is defined by the direct produce of k′ values of gα

(i.e., g′
α((x1, s1), . . . , (xk, sk)) = (gα(x1, r1), . . . , gα(xk, sk))). Thus, it suffices to note

that g′
α is an enhanced trapdoor permutation,16 and the result of [17] (cf. [13, Sect. 2.5.2]

or better [15, Thm. 7.8]) implies that the said predicate is indeed an enhanced hard-
core. �

Corollary Theorem 6.5 implies that, when using the GL hard-core predicate, the ex-
tended EGL protocol is secure for any logarithmically bounded k.

Further Notions Theorem 6.5 refers to the pseudorandomness of the sequence

h(x1, s1), . . . , h(xk, sk) relative to (α, (r1, s1), . . . , (rk, sk)), where xi
def= f −1

α (S(α; ri)).
Alternative notions that refer to the unpredictability of related sequences arise natu-
rally. The interested reader is referred to [24] for a taxonomy of notions of TDP that lie
between enhanced and doubly enhanced.

7. Enhancements of Trapdoor Functions and general One-Way Functions

Recall that a collection of one-way functions (OWF) is a collection of efficiently com-
putable functions {fα : Dα → Rα}α that is hard to invert on the average (for a formal
definition, see [13, Sect. 2.4.2]). Of course any collection of TDP is a collection of OWF
with the additional properties that (1) indices can be sampled together with correspond-
ing trapdoors, and (2) the functions are permutations.

In this section we consider the effect of the two enhancements when applied to any
collection of one-way functions (OWF), rather than when applied to collections of TDP
only. We note that to the best of our knowledge enhanced versions of general collections
of OWF have not been considered before. In Sect. 7.1 we provide a general treatment.
In Sect. 7.2 we consider the special case of one-to-one trapdoor functions and their en-
hancements as these can replace the use of TDP in the three main applications consid-
ered in this article: oblivious transfer, non-interactive zero-knowledge proofs for N P ,
and public-key encryption.

16 Note that here we merely claim that direct product preserves (rather than amplifies) hardness-to-invert.
Indeed, if given α, (r1, s1), . . . , (rk, sk) it is feasible to compute x1, . . . , xk , then it particular it is feasible to
compute x1 from α, (r1, s1).

Enhancements of Trapdoor Permutations 505

7.1. A General Treatment

Recall that the first difficulty discussed above (in the context of TDP) refers to the
possibility of sampling an element in the domain (of the permutation) without obtaining
its preimage (under the permutation). When considering general collections of OWF
(which may not be permutations), it is important to distinguish between sampling in
the domain and sampling in the range (since the two might not coincide). We note that
the first issue is actually concerned with sampling an element from the range; that is,
the possibility of generating a sample y in the range of the function fα without also
obtaining the preimage f −1

α (y) (which is an element in the domain).
Note that while a domain sampler is guaranteed by the definition of a collection of

OWF, a range sampler is not explicitly required. Nevertheless, a trivial range sampler
may be obtained by sampling an element in the domain and then applying the function.
However, as seen in the case of TDP, the random coins of this specific range sampler
totally reveal a corresponding preimage. Obtaining a range sampler that does not reveal
a preimage does not seem obvious and therefore it is natural to define an enhanced
collection of OWF (analogously to enhanced TDP):

Definition 7.1 (Enhanced Collection of OWF). Let {fα : Dα → Rα} be a collection of
OWF, and let SD be the domain sampler associated with it. We say that the collection
is an enhanced if there exists an efficient range sampler SR such that the output distri-
bution of SR(α) is statistically close to fα(SD(α)) and such that, for every probabilistic
polynomial-time algorithm A, we have

Pr
α←I1(1n)

r∈R{0,1}poly(|α|)

[
A(α, r) ∈ f −1

α

(
SR(α; r))] = μ(n),

where μ refers to a generic negligible function.

The range sampler of an enhanced collection of OWF has the property that its random
coins do not reveal a corresponding preimage. However, as is the case with enhanced
TDP, it could potentially be useful to jointly sample a random string of the range sampler
together with a corresponding preimage. Since there does not seem to be an obvious way
to do so, we also define a doubly enhanced collection of OWF (analogously to doubly
enhanced TDP):

Definition 7.2 (Doubly Enhanced Collection of OWF). Let {fα : Dα → Rα}α be an
enhanced collection of OWF (as in Definition 7.1) with domain sampler SD and range
sampler SR . We say that this collection is doubly enhanced (and call it a doubly en-
hanced collection of OWF) if there exists a probabilistic polynomial-time algorithm that
on input α outputs a pair (x, r) such that x is distributed identically to SD(α) and r is
distributed uniformly in {r ′ : SR(α; r ′) = fα(x)}.

7.2. Enhancements of 1-1 TDF

A one-to-one trapdoor function (1-1 TDF) may be thought of as a relaxation of a TDP in
which every function merely needs to be injective (and not necessarily a permutation).

506 O. Goldreich and R.D. Rothblum

Note that the inversion process is still well defined since there is a unique preimage.
More formally, a collection of 1-1 TDF is a collection {fα : Dα → Rα} of one-way
functions such that (1) all the functions in the collection are one-to-one and (2) the
index-sampling algorithm I on input 1n outputs, in addition to an index α of a function,
a corresponding trapdoor τ and there exists an efficient algorithm that on input τ and
y ∈ Rα (where τ is the trapdoor corresponding to α) outputs f −1

α (y). We note that 1-1
TDF can be used instead of TDP in the standard construction of public-key encryption
(see Sect. 5).

Using the enhanced notions of one-wayness defined in Sect. 7.1 (for general collec-
tions of OWF), it is straightforward to define an enhanced 1-1 TDF. Specifically, a 1-1
TDF is said to be enhanced if it is an enhanced collection of OWF (in addition to be-
ing a 1-1 TDF). Similarly, a 1-1 TDF is doubly enhanced if it is additionally a doubly
enhanced collection of OWF.

We find these enhanced 1-1 TDF particularly interesting because they can be used
instead of (enhanced) TDP in the main applications discussed in this article. Specifi-
cally, examining the protocols for oblivious transfer (OT) (Sect. 3) and non-interactive
zero-knowledge (NIZK) for N P (Sect. 4), we observe that the enhanced versions of
TDPs used there may actually be replaced by the corresponding enhanced versions of
1-1 TDFs. Moreover, it seems as though permutations were originally used in these
protocols because it was implicitly assumed that they (rather than functions) provide
enhanced one-wayness: In a sense, the use of 1-1 TDFs rather than TDP better clarifies
the issues at hand. Specifically, in the OT protocol we want to allow a party (which
does not have the trapdoor) to sample an element in the range of the function without
revealing the preimage (i.e., an enhanced TDF) and in the NIZK protocol we want to
reveal random coins of the range sampler such that (1) the preimage is not revealed and
(2) if needed then we can later reveal the preimage.

Acknowledgements

We thank Eike Kiltz and the anonymous reviewers for their helpful comments. In partic-
ular, we would like to thank an anonymous reviewer for suggesting to consider enhance-
ments of 1-1 TDF (which led to the contents of Sect. 7). This research was partially
supported by the Israel Science Foundation (grant No. 1041/08).

Appendix A. Definitions of OT and NIZK

For sake of simplicity, we present a non-uniform formulation of all definitions; that
is, the inputs to the protocols are quantified over all possibilities. Thus, constructing
such protocols may require non-uniformly hard TDP. Uniform-complexity formulations
can be derived by considering only polynomial-time sampleable inputs (cf. [11] or [14,
Sect. 5.2.5]).

A.1. Oblivious Transfer

Here k = k(n) is a polynomially bounded function. A pair of probabilistic polynomial-
time strategies (S,R) constitute a 1-out-of-k OT protocol (in the semi-honest model) if
the following conditions hold.

Enhancements of Trapdoor Permutations 507

• Correctness: For every σ1, . . . , σk ∈ {0,1} and i ∈ {1, . . . , k}, when S(1n, σ1,

. . . , σk) interacts with R(1n, i) the receiver R outputs σi and the sender S outputs
nothing.

• Receiver security: There exists a probabilistic polynomial-time simulator S1 such
that the following two probability ensembles are computationally indistinguish-
able.

1. {S1(σ1, . . . , σk,1n)}n∈N,σ1,...,σk,i and
2. {view1(σ1, . . . , σk, i,1n)}n∈N,σ1,...,σk,i , where view1 is a random variable

that consists of the sender’s view in the interaction (i.e. its input, randomness
and received messages).

• Sender security: There exists a probabilistic polynomial-time simulator S2 such
that the following two probability ensembles are computationally indistinguish-
able.

1. {S2(i,1n, σi)}n∈N,σ1,...,σk,i and
2. {view2(σ1, . . . , σk, i,1n)}n∈N,σ1,...,σk,i , where view2 is a random variable

that consists of the receiver’s view in the interaction (i.e. its input, random-
ness and received messages).

A.2. Non-interactive Zero-Knowledge Proofs

A pair of probabilistic polynomial-time algorithms (P,V) constitute an (efficient-
prover) non-interactive zero-knowledge proof for an N P language L with the witness
relation RL if the following conditions hold.

• Completeness: For every x ∈ L and every witness w such that (x,w) ∈ RL,

Pr
r∈{0,1}poly(|x|)

[
V

(
x, r,P (x,w, r)

) = 1
] ≥ 2

3
.

• Soundness: For every x /∈ L and every cheating strategy P ∗,

Pr
r∈{0,1}poly(|x|)

[
V

(
x, r,P ∗(x, r)

) = 1
] ≤ 1

3
.

• Zero-Knowledge: There exists a probabilistic polynomial-time simulator M such
that the following two probability ensembles are computationally indistinguish-
able.

1. {M(x)}x∈L,w∈RL(x), where RL(x) = {w : (x,w) ∈ RL} and
2. {(x,R|x|,P (x,w,R|x|))}x∈L,w∈RL(x), where Rn denotes a random variable

uniformly distributed over poly(n).

Appendix B. On the RSA and Rabin Collections

In this appendix we show that suitable versions of the RSA and Rabin collections satisfy
the two aforementioned enhancements (presented in Definitions 2.1 and 2.3, respec-
tively). Establishing this claim is quite straightforward for the RSA collection, whereas

508 O. Goldreich and R.D. Rothblum

for the Rabin collection some modifications (of the straightforward version) seem nec-
essary. In order to establish this claim we will consider a variant of the Rabin collection
in which the corresponding domains are dense and easy to recognize, and will show that
having such domains suffices for establishing the claim.

B.1. The RSA Collection Satisfies Both Enhancements

We start our treatment by considering the RSA collection (as presented in [13,
Sect. 2.4.3.1] and further discussed in [13, Sect. 2.4.3.2]). Note that in order to discuss
the enhanced hardness condition (of Def. 2.1) it is necessary to specify the domain sam-
pler, which is not entirely trivial (since sampling Z∗

N (or even ZN) by using a sequence
of unbiased coins is not that trivial).

A natural sampler for Z∗
N (or ZN) generates random elements in the domain by

using a regular mapping from a set of sufficiently long strings to Z∗
N (or to ZN).

Specifically, the sampler uses �
def= 2�log2 N� random bits, views them as an integer

in i ∈ {0,1, . . . ,2� − 1}, and outputs i mod N . This yields an almost uniform sample
in ZN , and an almost uniform sample in Z∗

N can be obtained by discarding the few
elements in ZN \ Z∗

N .
The fact that the foregoing implementation of the RSA collection satisfies Defini-

tion 2.1 (as well as Definition 2.3) follows from the fact that it has an efficient re-
versed sample (which eliminates the potential gap between having a domain element
and having a random sequence of coins that makes the domain-sample output this el-
ement). Specifically, given an element e ∈ ZN , the reversed sampler outputs an almost
uniformly distributed element of {i ∈{0,1, . . . ,2� − 1} : i ≡ e (mod N)} by selecting
uniformly j ∈ {0,1, . . . , �2�/N� − 1} and outputting i ← j · N + e.

B.2. Versions of the Rabin Collection that Satisfy Both Enhancements

In contrast to the case of the RSA, the Rabin Collection (as defined in [13, Sect. 2.4.3.3]),
does not satisfy Definition 2.1 (because the coins of the sampling algorithm give away
a modular square root of the domain element). Still, the Rabin Collection can be easily
modify to yield a doubly enhanced collection of trapdoor permutations, provided that
factoring is hard (in the same sense as assumed in [13, Sect. 2.4.3]).

The modification is based on modifying the domain of these permutations (follow-
ing [1]). Specifically, rather than considering the permutation induced (by the modular
squaring function) on the set QN of the quadratic residues modulo N , we consider the
permutations induced on the set MN , where MN contains all integers in {1, . . . ,N/2}
that have Jacobi symbol modulo N that equals 1. Note that, as in case of QN , each
quadratic residue has a unique square root in MN (because exactly two square roots
have Jacobi symbol that equals 1 and their sum equals N ; indeed, as in case of QN , we
use the fact that −1 has Jacobi symbol 1). However, unlike QN , membership in MN

can be determined in polynomial-time (when given N without its factorization). Lastly,
note that squaring modulo N is a 1-1 mapping of MN to QN . In order to obtain a per-
mutation over MN , we modify the function a little such that if the result of modular
squaring is bigger than N/2, then we use its additive inverse (i.e., rather than outputting
y > N/2, we output N − y).

Enhancements of Trapdoor Permutations 509

Using the fact that MN is dense (w.r.t. {0,1}�log2 N�+1) and easy to recognize, we may
proceed in one of two ways, which are actually generic. Thus, let us assume that we are
given an arbitrary collection of trapdoor permutations, denoted {fα : Dα → Dα}α∈I ,
such that Dα ⊆ {0,1}|α| is dense (i.e., |Dα| > 2|α|/poly(|α|))17 and easy to recognize
(i.e., there exists an efficient algorithm that given (α, x) decides whether or not x ∈ Dα).

1. The most natural way to proceed is showing that the collection {fα} itself is doubly
enhanced. This is shown by presenting a rather straightforward domain sampler
that satisfies the enhanced hardness condition (of Def. 2.1), and noting that this
sampler has an efficient reversed sampler (which implies that Def. 2.3 is satisfied).

The domain sampler that we have in mind repeatedly selects random (i.e., uni-
formly distributed) |α|-bit long strings and outputs the first such string that resides
in Dα (and a special failure symbols if |α| · 2|α|/|Dα| attempts have failed). This
sampler has an efficient reversed sampler that, given x ∈ Dα , generates a random
sequence of |α|-bit long strings and replaces the first string that resides in Dα by
the string x.

2. An alternative way of obtaining a doubly enhanced collection is to first define
a (rather artificial) collection of weak trapdoor permutations, {f ′

α : {0,1}|α| →
{0,1}|α|}α∈I , such that f ′

α(x) = fα(x) if x ∈ Dα and f ′
α(x) = x otherwise. Us-

ing the amplification of a weak one-way property to a standard one-way property
(as in [13, Sects. 2.3 and 2.6]), we are done.

Indeed, in the first alternative we amplified the trivial domain sampler that succeeds
with noticeable probability, whereas in the second alternative we amplified the one-way
property of the trivial extension of fα to the domain {0,1}|α|. Either way we obtain a
doubly enhanced collection of trapdoor permutations, provided that {fα} is an ordinary
collection of trapdoor permutations.

We mention that the foregoing modifications of the Rabin collection follows the out-
line of the second modification that is presented in [14, Appendix C.1]. In contrast,
as pointed out by Jonathan Katz, the first implementation (of an enhanced trapdoor
permutation based on factoring) that is presented in [14, Appendix C.1] is not doubly
enhanced.

Appendix C. An Enhanced TDP whose Hardcore Bits are not Pseudorandom

In this section we show that a variant of the factoring-based enhanced TDP (presented in
Appendix B.2) has an enhanced hard-core predicate for which two or more samples are
not pseudorandom. Note that since polynomially many samples of a doubly enhanced
TDP are pseudorandom (see Claim 4.1), the following construction is an example of an
enhanced TDP that is not doubly enhanced.18

17 Actually, a more general case, which is used for the Rabin collection, is one in which Dα ⊆ {0,1}�(|α|)
satisfies |Dα | > 2�(|α|)/poly(|α|), where � : N → N is a fixed function.

18 While the (enhanced) security of the construction relies on the hardness of factoring, the fact that it is
not doubly enhanced is unconditional.

510 O. Goldreich and R.D. Rothblum

Notation. For a Blum integer N , let JN be the set of all elements in Z∗
N that have Ja-

cobi symbol +1 modulo N and let MN
def= JN ∩ {1, . . . , �N

2 �}. For x ∈ Z∗
N , let QRN(x)

be 1 if x is quadratic residue (modulo N) and 0 otherwise.

Construction C.1. (A factoring-based enhanced TDP)

I (1n): Let N = PQ where P and Q are two uniformly selected primes such that
2n−1 ≤ P,Q ≤ 2n and P ≡ Q ≡ 3 mod 4. Select a random element y ∈ JN and
output (N,y) as the index and (P,Q) as the trapdoor.

Sampler S(N,y): Select, uniformly at random r ∈ Z∗
N , and let z = y · r2 mod N . If

z ≤ �N
2 �, output z and otherwise output N − z.

F((N,y), x): Set z = x2 mod N . If z ≤ �N
2 � output z and otherwise output N − z.

B((N,y), x): Given the factorization of N , it is possible to compute square roots mod-
ulo N and to invert this permutation (for details see [14, Sect. 2.4.4.2]).

Note that Construction C.1 is almost the same as the enhanced TDP of Appendix B.2,
where the only difference is in how elements are sampled in the domain MN (and the
augmentation of the index that is used for that purpose). In particular, the evaluation and
inversion algorithms remain the same, and therefore, as discussed in Appendix B.2, the
function FN is a permutation over MN . Additionally, the sampling algorithm S(N,y)

produces a uniformly distributed element in MN , since S(N,y) induces a 4-to-1 map-
ping from its random strings to MN .

We proceed to show an enhanced hard-core predicate for Construction C.1 (which
implies, in particular, that the TDP is enhanced). Specifically, we show that the predicate

hN,y(x)
def= QRN(FN,y(x)) (i.e., the predicate that equals 1 if the image of x under FN,y

is a quadratic residue and 0 otherwise) is an enhanced hard-core predicate.

Claim C.2. Assuming the quadratic residuosity assumption,19 the predicate hN,y is
an enhanced hard-core predicate of Construction C.1.

Proof. Given x, the predicate hN,y is indeed easy to compute (i.e., if FN,y(x) =
x2 mod N , then hN,y(x) = 1, otherwise it must be that FN,y(x) = N − x2 mod N

which implies that hN,y(x) = 0). What remains to be shown is that given (N,y) and
r , it is infeasible to predict QRN(S(N,y; r)). The key point is that multiplication by
r2 preserves quadratic residuosity whereas multiplication by −r2 complements it (i.e.,
y · r2 is a quadratic residue if and only if y is a quadratic residue and −y · r2 is a residue
if and only if y is a non-residue). Thus, given N,y and r it is easy to check whether y

and S(N,y; r) have the same QRN value (i.e., compute QRN(y)⊕QRN(S(N,y; r))),
by checking whether S multiplies y by r2 or by −r2. Thus, an adversary that computes
QR(S(N,y; r)) can be used to compute QRN(y). Details follow.

Consider an adversary A that on input (N,y) and r , breaks the hard-core predicate
by outputting QRN(S(N,y; r)) with probability 1

2 + ε. We use A to construct an ad-
versary A′ to the quadratic residuosity problem as follows. The adversary A′ is given N

19 The assumption states that given a random Blum integer N and a random element in JN it is infeasible
to decide whether the element is a quadratic residue or not (with non-negligible advantage).

Enhancements of Trapdoor Permutations 511

and y and needs to compute QRN(y). To do so A′ selects uniformly at random r ∈ Z∗
N ,

computes b = QRN(y) ⊕ QRN(S(N,y; r)) and outputs A((N,y), r) ⊕ b. With proba-
bility 1

2 + ε the output of A′ equals QRN(S(N,y; r))⊕ (QRN(y)⊕QRN(S(N,y; r)))
which in turn equals QRN(y). �

Thus, based on the quadratic residuosity assumption, the predicate hN,y is an en-
hanced hard-core predicate. However, we argue that the enhanced hard-core bits are
not pseudorandom. Specifically, we show that, given the index (N,y) and two ran-
dom strings r1 and r2, it is easy to check whether the hard-core bits of the preim-
ages of the elements sampled by r1 and r2 are equal or not. To do so, first compute
QRN(y)⊕QRN(S(N,y; r1)) and QRN(y)⊕QRN(S(N,y; r2)), by checking whether
S multiplies y by r2

i or by −r2
i (as above). Then, compute the exclusive-or of these two

values, which yields QRN(S(N,y; r1)) ⊕ QRN(S(N,y; r2)) (i.e., the exclusive-or of
the two hard-core bits).

Hence, the predicate hN,y is an enhanced hard-core predicate but is not pseudoran-
dom (in the enhanced setting) for even two samples.

References

[1] W. Alexi, B. Chor, O. Goldreich, C.P. Schnorr, RSA/Rabin functions: certain parts are as hard as the
whole. SIAM J. Comput. 17, 194–209 (1988). Preliminary version in 25th FOCS, 1984

[2] M. Bellare, M. Yung, Certifying permutations: noninteractive zero-knowledge based on any trapdoor
permutation. J. Cryptol. 9, 149–166 (1996)

[3] M. Blum, A. De Santis, S. Micali, G. Persiano, Non-interactive zero-knowledge proof systems. SIAM J.
Comput. 20(6), 1084–1118 (1991). (Considered the journal version of [4])

[4] M. Blum, P. Feldman, S. Micali, Non-interactive zero-knowledge and its applications, in 20th ACM
Symposium on the Theory of Computing (1988), pp. 103–112. See [3]

[5] M. Blum, S. Goldwasser, An efficient probabilistic public-key encryption scheme which hides all par-
tial information, in Crypto84. Lecture Notes in Computer Science, vol. 196 (Springer, Berlin, 1984),
pp. 289–302

[6] M. Blum, S. Micali, How to generate cryptographically strong sequences of pseudo-random bits. SIAM
J. Comput. 13, 850–864 (1984). Preliminary version in 23rd FOCS, 1982

[7] W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory IT-22, 644–654
(1976)

[8] S. Even, O. Goldreich, A. Lempel, A randomized protocol for signing contracts. Commun. ACM 28(6),
637–647 (1985). Extended abstract in Crypto’82

[9] U. Feige, D. Lapidot, A. Shamir, Multiple non-interactive zero-knowledge proofs under general as-
sumptions. SIAM J. Comput. 29(1), 1–28 (1999). Preliminary version in 31st FOCS, 1990

[10] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, M. Viswanathan, The relationship between public key
encryption and oblivious transfer, in Proceedings of the 41st annual symposium on foundations of com-
puter science (FOCS) (2000)

[11] O. Goldreich, A uniform complexity treatment of encryption and zero-knowledge. J. Cryptol. 6(1), 21–
53 (1993)

[12] O. Goldreich, Secure Multi-party Computation. Available from the author’s homepage, 1998 (revised
2001)

[13] O. Goldreich, Foundation of Cryptography: Basic Tools (Cambridge University Press, Cambridge,
2001)

[14] O. Goldreich, Foundation of Cryptography: Basic Applications (Cambridge University Press, Cam-
bridge, 2004)

[15] O. Goldreich, Computational Complexity: A Conceptual Perspective (Cambridge University Press,
Cambridge, 2008)

512 O. Goldreich and R.D. Rothblum

[16] O. Goldreich, Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations: the state of
the art, in Lecture Notes in Computer Science, vol. 6650 (Springer, Berlin, 2011), pp. 406–421

[17] O. Goldreich, L.A. Levin, Hard-core predicates for any one-way function, in 21st ACM Symposium on
the Theory of Computing (1989), pp. 25–32

[18] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game—a completeness theorem for
protocols with honest majority, in 19th ACM Symposium on the Theory of Computing (1987), pp. 218–
229

[19] S. Goldwasser, S. Micali. Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984). Prelim-
inary version in 14th STOC, 1982

[20] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems. SIAM J.
Comput. 18, 186–208 (1989). Preliminary version in 17th STOC, 1985

[21] I. Haitner, Implementing oblivious transfer using a collection of dense trapdoor permutations, in 1st
theory of cryptography conference. Lecture Notes in Computer Science, vol. 2951 (Springer, Berlin,
2004)

[22] M.O. Rabin, Digitalized signatures and public key functions as intractable as factoring. MIT/LCS/TR-
212 (1979)

[23] R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key cryptosys-
tems. Commun. ACM 21, 120–126 (1978)

[24] R. Rothblum, A taxonomy of enhanced trapdoor permutations. ECCC, TR10-145, 2010
[25] A.C. Yao, Theory and application of trapdoor functions, in 23rd IEEE Symposium on Foundations of

Computer Science (1982), pp. 80–91

	Enhancements of Trapdoor Permutations
	Abstract
	Introduction
	A historical perspective
	The Difficulties
	The Current Article
	Organization
	Notation

	Definitions
	Standard Trapdoor Permutations
	Enhanced Trapdoor Permutations
	Doubly Enhanced Trapdoor Permutations

	Enhanced TDP and 1-out-of-2 OT
	Semi-honest OT
	The EGL Protocol
	Security of the EGL Protocol Based on ETDP

	Doubly Enhanced TDP, 1-out-of-3 OT, and NIZK
	1-out-of-3 OT
	The Problem with the 1-out-of-3 EGL Protocol
	Doubly Enhanced TDP Resolve the Problem

	Non-interactive Zero-Knowledge Proofs
	Proving that a Function is 1-1
	General NIZK

	Obliviously Sampling Ciphertexts
	On Constructing Public-Key OCS Schemes
	Sampling Multiple Ciphertexts Obliviously

	Intermediate Notions
	Between Doubly Enhanced and Idealized TDP
	Between Enhanced and Doubly Enhanced TDP
	Corollary
	Further Notions

	Enhancements of Trapdoor Functions and general One-Way Functions
	A General Treatment
	Enhancements of 1-1 TDF

	Acknowledgements
	Appendix A. Definitions of OT and NIZK
	Oblivious Transfer
	Non-interactive Zero-Knowledge Proofs

	Appendix B. On the RSA and Rabin Collections
	The RSA Collection Satisfies Both Enhancements
	Versions of the Rabin Collection that Satisfy Both Enhancements

	Appendix C. An Enhanced TDP whose Hardcore Bits are not Pseudorandom
	References

