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Abstract. AES-based functions have attracted of a lot of analysis in the recent years,
mainly due to the SHA-3 hash function competition. In particular, the rebound attack
allowed to break several proposals and many improvements/variants of this method
have been published. Yet, it remained an open question whether it was possible to
reach one more round with this type of technique compared to the state-of-the-art. In
this article, we close this open problem by providing a further improvement over the
original rebound attack and its variants, that allows the attacker to control one more
round in the middle of a differential path for an AES-like permutation. Our algorithm
is based on lists merging as defined in (Naya-Plasencia in Advances in Cryptology:
CRYPTO 2011, pp. 188–205, 2011) and we generalized the concept to non-full active
truncated differential paths (Sasaki et al. in Lecture Notes in Computer Science, pp. 38–
55, 2010).

As an illustration, we applied our method to the internal permutations used in
Grøstl, one of the five finalist hash functions of the SHA-3 competition. When
entering this final phase, the designers tweaked the function so as to thwart attacks
from Peyrin (Peyrin in Lecture Notes in Computer Science, pp. 370–392, 2010) that
exploited relations between the internal permutations. Until our results, no analysis
was published on Grøstl and the best results reached 8 and 7 rounds for the 256-bit
and 512-bit versions, respectively. By applying our algorithm, we present new internal
permutation distinguishers on 9 and 10 rounds, respectively.
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1. Introduction

Hash functions are one of the most important primitives in symmetric-key cryptography.
They are simply functions that, given an input of variable length, produce an output of
a fixed size. They are needed in several scenarios, like integrity check, authentication,
digital signatures, so we want them to verify some security properties, for instance:
preimage resistance, collision resistance (i.e., for an n-bit hash function, finding two
distinct inputs mapping to the same output should require at least 2n/2 computations),
second preimage resistance, and so on.

Since 2005, several new attacks on hash functions have appeared. In particular, the
hash standards MD5 and SHA-1 were cryptanalyzed by Wang et al. [26,27]. Due to
the resemblance of the standard SHA-2 with SHA-1, the confidence in the former was
also somewhat undermined. This is why the American National Institute of Standards
and Technology (NIST) decided to launch in 2008 a competition in order to find a
new hash standard, SHA-3. This competition received 64 hash function submissions
and accepted 51 to enter the first round. Three years and two rounds later, only 5 hash
functions remained in the final phase of the competition.

Among the candidates, many functions were AES-based (they reuse some AES com-
ponents or the general AES design strategy), like the SHA-3 finalist Grøstl [6]. This
design trend is at the origin of the introduction of the rebound attack [18], a new crypt-
analysis technique that has been widely deployed, improved and applied to a large num-
ber of SHA-3 candidates, hash functions and other types of AES-based constructions
(such as block ciphers in the known/chosen-key model). It has become one of the most
important tools used to analyze the security margin of many SHA-3 candidates as well
as their building blocks.

The rebound attack was proposed as a method to derive a pair of internal states that
verifies some truncated differential path with lower complexity than a generic attack.
It was formed by two steps: a first one, the controlled part (or inbound), where solu-
tions for two rounds of an unkeyed AES-like permutation were found with negligible
complexity, and a second one, uncontrolled part (or outbound), where the solutions
found during the inbound phase were used to verify probabilistically the remaining dif-
ferential transitions. Assuming an AES-like internal state composed of a t × t matrix
of c-bit cells, the rebound attack was then extended to three rounds by the start-from-
the-middle [17] and the SuperSBox variants [7,14] for a negligible average complexity
per found pair, but with a higher minimal complexity of 2t ·c computations. Since most
rebound-based attacks actually required many such pairs, this was not much of a con-
straint. In parallel, other improvements on the truncated differential paths utilized [25]
or on methods to merge lists [21] were proposed.

In this article, we describe a method based on lists merging in order to control trun-
cated differences over four rounds of an unkeyed AES-like permutation [12] with com-
plexity 2t ·c·x computations, where x is a parameter depending on the differential path
considered. While the cost per pair found in the controlled part is much increased, solv-
ing four rounds directly allows to handle much better truncated differential paths for
the uncontrolled part. Note that whether it was possible or not to reach four rounds re-
mained an open problem among the research community. We also generalize the global
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Table 1. Best attacks on targets where our analysis is applicable. By best analysis, we mean the ones on the
highest number of rounds.

Target Subtarget Rounds Time Memory Ideal Reference

Grøstl-256 Permutation 8 (dist.) 2112 264 2384 [7]

8 (dist.) 248 28 296 [25]

9 (dist.) 2368 264 2384 Sect. 3

10 (zero-sum) 2509 – 2512 [3]

Grøstl-512 Permutation 7 (dist.) 2152 256 2512 [25]

8 (dist.) 2280 264 2448 Appendix A

9 (dist.) 2328 264 2384 Appendix A

10 (dist.) 2392 264 2448 Appendix A

PHOTON-224/32/32 Permutation 8 (dist.) 28 24 210 [8]

9 (dist.) 2184 232 2192 Appendix B

reasoning by considering as well non-fully-active truncated differential paths [25] dur-
ing both the controlled and uncontrolled phases, eventually obtaining the best known
results for many attack scenarios of an AES-like permutation.

As an application, we concentrated our efforts on the Grøstl internal permutation.
Rebound-like attacks on this function have already been applied and improved in several
occasions [7,17,19,21,24], Grøstl being one of the most studied SHA-3 candidates.
When entering the final round, a tweak of the function was proposed, which prevents
the application of the attacks from [24]. We denote Grøstl-0 the original submis-
sion [5] of the algorithm and Grøstl its tweaked version [6]. Apart from the rebound
results, the other main analysis communicated on Grøstl is a higher order property
on 10 rounds of its internal permutation [3] with a complexity of 2509 computations.
In Table 1, we give a summary of the best known results on both the 256- and 512-bit
tweaked versions of Grøstl, including the ones that we present in this article.

Namely, we provide the best known rebound distinguishers on 9 rounds of the internal
permutation and we show how to make some nontrivial observations on the correspond-
ing compression function, providing the best known analysis of the Grøstl compres-
sion function exploiting the properties of the internal permutations. For Grøstl-512,
we considerably increase the current largest number of analyzed rounds, from 7 to 10.
Additionally, we provide in Appendix the direct application of our new techniques to
the AES-based hash function PHOTON [8].

These results do not threaten the security of Grøstl, but we believe they will play an
important role in better understanding its security, and AES-based functions in general.
In particular, we believe that our work will help determining the bounds and limits of
rebound-like attacks in this type of constructions.
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Fig. 1. One round of the AES-like permutation instantiated with t = 8.

2. Generalities

In this section, we start by describing a generic view of an AES-like permutation to
capture various cryptographic primitives such as AES [4], Grøstl [5], ECHO [2],
Whirlpool [1], LED [9], or PHOTON [8].

2.1. Description of AES-like Permutations

We define an AES-like permutation as a permutation that applies Nr rounds of a round
function to update an internal state viewed as a square matrix of t rows and t columns,
where each of the t2 cells has a size of c bits. As we will show later, our techniques can
also be adapted when the matrix is not square (as it is the case for Grøstl-512), but
we focus on square matrices for ease of description.

The round function (Fig. 1) starts by xoring a round-dependent constant to the state
in the AddRoundConstant operation (AC). Then, it applies a substitution layer SubBytes
(SB) which relies on a c × c nonlinear bijective SBox. Finally, the round function per-
forms a linear layer, composed of the ShiftRows transformation (SR), that moves each
cell belonging to the x-th row by x positions to the left in its own row, and the MixCells
transformation (MC), that linearly mixes all the columns C of the matrix separately by
multiplying each one with a matrix M implementing a Maximum Distance Separable
(MDS) code: C ← M × C.

Note that this description encompasses permutations that really follow the AES de-
sign strategy, but very similar designs (for example with a slightly modified ShiftRows
function or with a MixCells layer not implemented with an MDS matrix) are likely to be
attacked by our techniques as well. In the case of AES-like block ciphers analyzed in the
known/chosen-key model, the subkeys generated by the key schedule are incorporated
into the known constant addition layer AddRoundConstant. We note that all the rounds
considered in this article are full rounds: they all have the MixCells transformation, even
the last one as opposed to the full version of the AES.

2.2. Description of Grøstl

The hash function Grøstl-0 has been submitted to the SHA-3 competition un-
der two different versions: Grøstl-0-256, which outputs a 256-bit digest and
Grøstl-0-512 with a 512-bit one. For the final round of the competition, the can-
didate has been tweaked to Grøstl, with corresponding versions Grøstl-256 and
Grøstl-512.
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Fig. 2. The compression function of Grøstl using the permutations Pw and Qw , with w ∈ {256,512}.

The Grøstl hash function handles messages1 by dividing them into blocks after
some padding and uses them to update iteratively an internal state (initialized to a pre-
defined IV) with a compression function. This function is itself built upon two different
permutations, namely P and Q. Each of those two permutations are built upon the well-
understood wide-trail strategy of the AES. As an AES-like Substitution-Permutation
Network, Grøstl enjoys a strong diffusion in each of the two permutations and by its
wide-pipe design, the size of the internal state is ensured to be at least twice as large as
the final digest.

The compression function f256 of Grøstl-256 uses two 256-bit permutations,
P256 and Q256, which are similar to the two 512-bit permutations, P512 and Q512, used
in the compression function f512 of Grøstl-512. More precisely, for a chaining value
h and a message block m, the compression function (Fig. 2) produces the output (⊕ de-
notes the XOR operation):

f256(h,m) = P256(h ⊕ m) ⊕ Q256(m) ⊕ h, or: (1)

f512(h,m) = P512(h ⊕ m) ⊕ Q512(m) ⊕ h. (2)

The internal states are viewed as matrices of bytes of size 8×8 for the 256-bit version
and 8 × 16 for the 512-bit one. The permutations strictly follow the design of the AES
and are constructed as Nr iterations of the composition of four basic transformations:

R
def:= MixCells ◦ ShiftBytes ◦ SubBytes ◦ AddRoundConstant. (3)

All the linear operations are performed in the same finite field GF(28) as in the
AES, defined via the irreducible polynomial x8 + x4 + x3 + x + 1 over GF(2).
The AddRoundConstant (AC) operation adds a predefined round-dependent constant,
which significantly differs between P and Q to prevent the internal differential at-
tack [24] that takes advantage of the similarities between P and Q. The SubBytes
(SB) layer is the nonlinear layer of the round function R and applies the same SBox
as in the AES to all the cells of the internal state. The ShiftBytes (Sh) transforma-
tion shifts cells in row i by τP [i] positions to the left for permutation P and τQ[i]
positions for permutation Q. We note that τ also differs from P to Q to emphasize
the asymmetry between the two permutations. Finally, MixCells (MC) is implemented

1 Messages are of maximal bit-length 2n · (264 − 1) − 64 − 1 for Grøstl-n, with n ∈ {256,512}.
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in Grøstl by the MixBytes (Mb) operation that applies a circulant MDS constant
matrix M independently to all the columns of the state. In Grøstl-256, Nr = 10,
τP = [0,1,2,3,4,5,6,7] and τQ = [1,3,5,7,0,2,4,6], whereas for Grøstl-512,
Nr = 14 and τP = [0,1,2,3,4,5,6,11] and τQ = [1,3,5,11,0,2,4,6].

Once all the message blocks of the padded input message have been processed by the
compression function, a final output transformation is applied to the last chaining value
h to produce the final n-bit hash value h′ = truncn(P (h) ⊕ h), where truncn only keeps
the last n bits.

2.3. Distinguishers

In this article, we describe algorithms that find input pairs (X,X′) for an AES-like
permutation P , such that the input difference ΔIN = X ⊕ X′ belongs to a subset of
size IN and the output difference ΔOUT = P(X) ⊕ P(X′) belongs to a subset of size
OUT . The best known generic algorithm (this problem is different than the one studied
in [14] where linear subspaces are considered) in order to solve this problem, known as
limited-birthday problem, has been given in [7] and later a very close lower bound has
been proven in [22]. For a randomly chosen n-bit permutation π , the generic algorithm
can find such a pair with complexity

max
{
min

{√
2n/IN,

√
2n/OUT

}
,2n/(IN · OUT)

}
. (4)

If one is able to describe an algorithm requiring less computation power, then we
consider that a distinguisher exists on the permutation π .

In the case of Grøstl, it is also interesting to look at not only the internal permu-
tations P and Q, but also the compression function f itself. For that matter, we will
generate compression function input values (h,m) such that ΔIN = m ⊕ h belongs to a
subset of size IN, and such that ΔIN ⊕ ΔOUT = f (h,m) ⊕ f (m,h) ⊕ h ⊕ m belongs to
a subset of size OUT . Then, one can remark that:

f (h,m) ⊕ f (m,h)

= P256(h ⊕ m) ⊕ Q256(m) ⊕ P256(m ⊕ h) ⊕ Q256(h) ⊕ h ⊕ m, (5)

f (h,m) ⊕ f (m,h) = Q256(m) ⊕ Q256(h) ⊕ h ⊕ m. (6)

Hence, it follows that:

f (h,m) ⊕ f (m,h) ⊕ h ⊕ m = Q256(m) ⊕ Q256(h). (7)

Since the permutation Q is supposed to have no structural flaw, the best known generic
algorithm requires max{min{√2n/IN,

√
2n/OUT},2n/(IN · OUT)} operations (the sit-

uation is exactly the same as the permutation distinguisher with permutation Q) to find
a pair (h,m) of inputs such that h ⊕ m ∈ IN and f (h,m) ⊕ f (m,h) ⊕ h ⊕ m ∈ OUT .
Note that both IN and OUT are specific to our attacks.

We emphasize that even if trivial distinguishers are already known for the Grøstl
compression function (for example fixed-points), no distinguisher is known for the in-
ternal permutations. Moreover, our observations on the compression function use the
differential properties of the internal permutations.
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2.4. Truncated Differential Characteristics

In the following, we will consider truncated differential characteristics, originally intro-
duced by Knudsen [13] for block cipher analysis. With this technique, already proven to
be efficient for AES-based hash functions cryptanalysis [10,11,16,18,23], the attacker
only checks if there is a difference in a cell (active cell, denoted by a black square in the
figures) or not (inactive cell, denoted by an empty square in the figures) without caring
about the actual value of the difference.

In this model, all AddRoundConstant and SubBytes layers can be ignored since they
have no impact on truncated differences. ShiftBytes will only move the difference posi-
tions and the diffusion will come from the MixCells layers. More precisely, we denote
x → y a non-null truncated differential transition mapping x active cells to y active
cells in a column through a MixCells (or MixCells−1) layer, and the MDS property en-
sures x + y ≥ t + 1. Its differential probability is determined by the number (t − y) of
inactive cells on the output: 2−c(t−y) if the MDS property is verified, 0 otherwise.

3. Distinguishers for AES-like Permutations

In this section, we describe a distinguisher for 9 rounds of an AES-like permutation
with certain parameters t and c. For the sake of clarity, we first describe the attack
for a truncated differential characteristic with three fully active states in the middle,
but we will generalize our method in the next section by introducing a characteristic
parameterized by variables controlling the number of active cells in some particular
states.

Let us remark that before our work, the best known such distinguishers on this type
of constructions could only reach 8 rounds, being an open problem whether reaching
more rounds would be possible.

3.1. A First Truncated Differential Characteristic

The truncated differential characteristic we use has the sequence of active cells

t
R1−→ 1

R2−→ t
R3−→ t2 R4−→ t2 R5−→ t2 R6−→ t

R7−→ 1
R8−→ t

R9−→ t2, (8)

where the sizes of the input and output difference subsets are both IN = OUT = 2ct ,
since there are t active c-bit cells in the input of the truncated characteristic, and the
t2 active cells in the output are linearly generated from only t active cells. The actual
truncated characteristic instantiated with t = 8 is described in Fig. 3.

Note that we have three fully active internal states in the middle of the differential
characteristic, and this kind of path is impossible to solve with previous rebound or
SuperSBox techniques since the number of controlled rounds would be too small and
the cost for the uncontrolled part would be extremely high.

3.2. Finding a Conforming Pair

The method to find a pair of inputs conforming to this truncated differential character-
istic is similar to the rebound technique: we first find many solutions for the middle
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Fig. 3. The 9-round truncated differential characteristic used to distinguish an AES-like permutation from
an ideal permutation.

rounds (beginning of round 3 to the end of round 6) and then we filter them out during
the outward probabilistic transitions through the MixCells layers (round 2 and round 7).
Since in our case we have two MixCells transitions t → 1 (see Fig. 3), the outbound
phase has a success probability of 2−2c(t−1) and is straightforward to handle once we
found enough solutions for the inbound phase.

In order to find solutions for the middle rounds (see Fig. 4), we propose an algorithm
inspired by the ones in [20,21]. As in [7,14], instead of dealing with the classical t2

parallel c-bit SubBytes SBox applications, one can consider t parallel tc-bit SBoxes
(named SuperSBoxes) each composed of two SBox layers surrounding one MixCells
and one AddRoundConstant function. Indeed, the ShiftBytes can be taken out from the
SuperSBoxes since it commutes with SubBytes. The part of the internal state modified
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Fig. 4. Inbound phase for the 9-round distinguisher attack on an AES-like permutation instantiated with
t = 8. The four rounds represented are the rounds 3 to 6 from the whole truncated differential characteristic.
A gray cell indicates an active cell; hatched and colored cells emphasize one SuperSBox set: there are seven
similar others for each one of the two hatched senses. (Color figure online)

by one SuperSBox is a SuperSBox set. The total state is formed by t such sets, and
their particularity is that their transformation through the SuperSBox can be computed
independently.

We start by choosing the input difference δIN after the first SubBytes layer in state
S1 and the output difference δOUT after the last MixCells layer in state S12. Both δIN
and δOUT are exact differences, not truncated ones, but they are chosen so that they
are compliant with the truncated characteristic in S0 and S12. Since we have t active
cells in S1 and S12, there are as many as 22ct different ways of choosing (δIN, δOUT).
Note that differences in S1 can be directly propagated to S3 since MixCells is linear.
We continue by computing the t forward SuperSBox sets independently by considering
the 2ct possible input values for each of them in state S3. This generates t independent
lists, each of size 2ct and composed by paired values in S3 (that can be used to compute
the corresponding paired values in S8). Doing the same for the t backward SuperSBox
sets from state S12, we again get t independent lists of 2ct elements each, and we can
compute for each element of each list the pair of values of the SuperSBox set in state
S8, where the t forward and the t backward lists overlap. In the sequel, we denote Li

the ith forward SuperSBox list and L′
i the ith backward one, for 1 ≤ i ≤ t .
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Fig. 5. In the case where t = 8, the figure shows the steps to merge the 2 × t lists. Gray cells denote cells
fully constrained by a choice of elements in L′

1, . . . ,L′
t/2 during the first step.

In terms of freedom degrees in state S8, we want to merge 2t lists of 2ct elements
each for a merging condition on 2× ct2 bits, where we use the definition of list merging
from [21] (ct2 for values and ct2 for differences) since the merging state is fully active:
we then expect 22t×ct2−2ct2 = 1 solution as a result of the merging process on average.

In the following, we describe a method to find this solution and compute its com-
plexity afterwards (see Fig. 5). In comparison to the algorithm suggested in [12] where
the case t = 8 is treated, we generalize the concept to any t , even odd ones where the
direct extension of [12] is not applicable. To detail this algorithm, we use a temporary
parameter t ′ ∈ [1, t] such that the time complexity will be written in terms of t ′. In the
end, we give the best choice for t ′ such that the time complexity is minimal for any t .

Step 1. We start by considering every possible combination of elements in each of the
t ′ first lists L′

1, . . . ,L
′
t ′ There are 2c·t ·t ′ possibilities.

Step 2. Each choice in Step 1 fixes the first t ′ columns of the internal state (both values
and differences) and thus forces 2c constraints on t ′ cells in each of the t lists Li ,
1 ≤ i ≤ t . For each list Li , we then expect on average 2ct2−2ct ′ = 2c(t−2t ′) elements
to match this constraint for each choice in Step 1, and these elements can be found
with one operation by sorting the lists Li beforehand.2

Step 3. We continue by considering every possible combination of elements in each
of the t − t ′ last lists Lt−t ′+1, . . . ,Lt . Depending on the value of t ′, we may have
different scenarios at this point: if t − 2t ′ ≥ 0, then the time complexity is multiplied
by 2c(t−2t ′)(t−t ′), which is the number of expected elements in the lists. Otherwise, the
probability of success decreases from 1 to 2c(t−2t ′)(t−t ′), as the constraints imposed
by the previous step are too strong and elements in those lists would exist only with
probability smaller than 1.

Step 4. We now need to ensure that the t ′ first lists L1, . . . ,Lt ′ and the t − t ′ last lists
L′

t−t ′+1, . . . ,L
′
t contain a candidate fulfilling the constraints deduced in the previous

steps. In the L′
i lists, we already determined 2c(t − t ′) bits so that there are 2ct−2c(t−t ′)

elements remaining in each of those. Again, we can check if these elements exist with
one operation by sorting the lists beforehand. Finally, the value and difference of all

2 We consider lists for the sake of clarity, but we can reach the constant-time access of elements using hash
tables. Otherwise, it would introduce a logarithmic factor.
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Fig. 6. Plot of the two polynomials Pt and Qt in two cases: t = 8 and t = 7.

the cells have been determined, which leads to a probability 2ct−2ct = 2−ct of finding
a valid element in each of the t ′ first lists Li .

All in all, trying all the 2c·t ·t ′ elements in Step 1, we find

2c·t ·t ′+c(t−2t ′)(t−t ′)+(ct−2c(t−t ′))(t−t ′)−ct ·t ′ = 1

solution during the merge process. We find this solution in time Tm operations, with
two cases to consider. Either t − 2t ′ ≥ 0, in which case we enumerate 2c·t ·t ′ elements
in Step 1 followed by the enumeration of 2c(t−2t ′) elements in Step 2. In that case, we
have log2(Tm) = ctt ′ + c(t −2t ′)(t − t ′) = 2t ′2 −2t t ′ + t2. If t −2t ′ ≤ 0, the conditions
imposed by the elements enumerated in the first steps make the lists from Step 2 to be
nonempty with probability smaller than 1. Hence, we simply have log2(Tm) = ctt ′. This
can be summarized by:

log2(Tm) =
{

c · Pt(t
′) if t − 2t ′ ≥ 0 with Pt = 2X2 − 2tX + t2,

c · Qt(t
′) if t − 2t ′ ≤ 0 with Qt = tX.

(9)

To find the value t ′ that minimizes the time complexity, we need to determine for
which value the minimum of both polynomials Pt and Qt is reached. For Pt , we get
t
2 and the nearest integer value satisfying t − 2t ′ ≥ 0 is � t

2
. For Qt , we get � t
2�. For

example, see Figs. 6a and 6b, when t equals 8 and 7, respectively.
Consequently, if t is even we set t ′ = t

2 , which leads to an algorithm running in 2ct2/2

operations and t ′ · 2ct memory. If t is odd, then we need to decide whether t ′ should be
� t

2� or � t
2
. If we write t = 2k + 1, this is equivalent to find the smallest value between

Pt(k) and Qt(k + 1). We find Pt (k) = 2k2 + 2k + 1 and Qt(k + 1) = 2k2 + 3k + 1 so
that Pt(k) < Qt(k + 1) (see for example Fig. 6b when t = 7). Hence, when t is odd, we
fix t ′ = � t

2
. Note that t
2 = � t

2
 if t is even.
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Summing up, for any t , our algorithm performing the merge runs in Tm operations,
with:

log2(Tm) = c · Pt

(⌈
t

2

⌉)
= ct2 − 2c

⌊
t

2

⌋⌈
t

2

⌉
(10)

and a memory requirement of 2t ′ · 2ct .
Hence, from a pair of random fixed differences (δIN, δOUT), we show how to find a

pair of internal states of the permutation that conforms to the middle rounds. To pass the
probabilistic transitions of the outbound phase, we need to repeat the merging 22c(t−1)

times by picking another couple of differences (δIN, δOUT). In total, we find a pair of
inputs to the permutation that conforms to the truncated differential characteristic in
time T9 = 22c(t−1) · Tm operations, that is:

log2(T9) = ct (t + 2) − 2c

(⌊
t

2

⌋⌈
t

2

⌉
+ 1

)
(11)

with a memory requirement of t · 2ct .

3.3. Comparison with the Ideal Case

In the ideal case [7], obtaining a pair whose input and output differences lie in a subset
of size IN = OUT = 2ct for a ct2-bit permutation requires

2max{ct (t−1)/2,ct2−ct−ct} = 2ct (t−2), (12)

computations (assuming t ≥ 3). Therefore, our algorithm distinguishes an AES-like per-
mutation from a random one if and only if its time complexity is smaller than the generic
one. This occurs when log2(T9) ≤ ct (t − 2), which happens as soon as t ≥ 8. Note that
for the AES in the known-key model, we have t = 4 and thus our attack does not apply.

One can also derive slightly cheaper distinguishers by aiming at less rounds: instead
of using the 9-round truncated characteristic from Fig. 3, it is possible to remove either
round 2 or 8 and spare one t → 1 truncated differential transition. Overall, the generic
complexity remains the same and this gives a distinguishing attack on the 8-round re-
duced version of the AES-like permutation with T8 computations, with:

log2(T8) = log2(Tm) + c(t − 1) = ct (t + 1) − c

(
2

⌊
t

2

⌋⌈
t

2

⌉
+ 1

)
(13)

and still 2ct memory provided that t ≥ 6. If we spare both t → 1 transitions, we end up
with a 7-round distinguishing attack with time complexity T7 = Tm and t · 2ct memory
for any t ≥ 4. Note that those reduced versions of this attack can have a greater time
complexity than other techniques: we provide them only for the sake of completeness.

4. Using Non-fully-active Characteristics

4.1. The Generic Truncated Characteristic

In [25], Sasaki et al. present new truncated differential characteristics that are not totally
active in the middle. Their analysis allows to derive distinguishers for 8 rounds of AES-
like permutations with no totally-active state in the middle, provided that the state-size
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Fig. 7. Non-fully-active truncated differential characteristic on 9 rounds of an AES-like permutation instan-
tiated with t = 8.

verifies t ≥ 5. In this section, we reuse their idea by introducing an additional round in
the middle of their trail, which is the unique fully active state of the characteristic. With
a similar algorithm as in the previous section, we show how to find a pair conforming
to that case.

To keep our reasoning as general as possible, we parameterize the truncated differ-
ential characteristic by four variables (see Fig. 7) such that trade-offs will be possible
by finding the right values for each one of them. Namely, we denote nB the number of
active diagonals in the plaintext (alternatively, the number of active cells in the second
round), nF the number of active diagonals in the ciphertext (alternatively, the number
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of active cells in the eighth round), mB the number of active cells in the third round and
mF the number of active cells in the seventh round.

Hence, the sequence of active cells in the truncated differential characteristic be-
comes:

tnB
R1−→ nB

R2−→ mB
R3−→ tmB

R4−→ t2 R5−→ tmF

R6−→ mF
R7−→ nF

R8−→ tnF
R9−→ t2, (14)

with the constraints nF + mF ≥ t + 1 and nB + mB ≥ t + 1 that come from the MDS
property. The amount of solutions that can be generated for the differential path equals
to (log2):

ct2 + ctnB − c(t − 1)nB − c(t − mB) − ct (t − mF ) − c(t − 1)mF − c(t − nF )

= c(nB + nF + mB + mF − 2t). (15)

From the MDS constraints mB + nB ≥ t + 1 and mF + nF ≥ t + 1, we can bound
the amount of expected solutions by 2c(t+1+t+1−2t) = 22c . This means that, there will
always be at least 22c freedom degrees, independently of t .

4.2. Finding a Conforming Pair

As in the previous case, the algorithm that finds a pair of inputs conforming to this
characteristic first produces many pairs for the middle rounds and then exhausts them
outwards until one passes the probabilistic filter. The cost of those uncontrolled rounds
is given by:

2c(t−nB)2c(t−nF ) = 2c(2t−nB−nF ), (16)

since we need to pass one nB ← mB transition in the backward direction and one mF →
nF in the forward direction.

We now detail a way to find a solution for the middle rounds (Fig. 8) when the in-
put difference δIN after the first SubBytes layer in state S1 and the output difference
δOUT after the last MixCells layer in state S12 are fixed in a way that the truncated
characteristic holds in S0 and S12. The beginning of the attack is exactly the same as
before in the sense that once the output differences have been fixed, we generate the 2t

lists that contains the paired values of the t forward SuperSBox sets and the t backward
SuperSBox sets. Again, the same 2t lists overlap and we show how to find the solution
of the merging problem in 2ct ·min(mF ,mB,�t/2
) operations and mB · 2ct memory. We re-
call that Li is the ith forward SuperSBox list (orange) and L′

i is the ith backward one
(blue), for 1 ≤ i ≤ t .

We proceed in three steps, where the first guesses the elements from some lists, this
determines the remaining cells and we finish by checking probabilistic events. Without
loss of generality, we assume in the sequel that mB ≤ mF ; if this is not the case, then
we start Step 1 by guessing elements of lists Li in S8. We split the analysis into two
cases, whether mB ≤ � t

2
 or mB > � t
2
.
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Fig. 8. Inbound phase for the 9-round distinguisher attack on an AES-like permutation instantiated with
t = 8 with a single fully-active state in the middle. A gray cell indicates an active cell; hatched and colored
cells emphasize one SuperSBox set: there are seven similar others. (Color figure online)

First case: mB ≤ � t
2
. In this case, we use the strong constraints on the vector spaces

spanned by the mB differences on each columns to find a solution to the merge prob-
lem.

Step 1. We start by guessing the elements of the mB lists L′
1, . . . ,L

′
mB

in state S6.
There is a total of 2ctmB possible combinations.

Step 2. In particular, the previous step sets the differences of the mB first diagonals
of S6 such that there are exactly mB known differences on each of the t columns of
the state. This allows to determine all the differences in S5 since there are exactly
mB independent differences in each column of that state. Consequently, we linearly
learn all the differences of S6.

Step 3. Since all differences are known in S6, we determine 1 element in each of the
t − mB remaining L′

i lists: they are of size 2ct and we count ct bits of constraints
coming from t differences. From the known differences, we also get a suggestion
of 2ct−cmB values for the cells of each column. Indeed, the elements of the t lists Li

in S5 can be represented as disjointed sets regarding the values of the differences,
since the differences can only take 2cmB values per column. Assuming that they
are uniformly distributed,3 we get 2ct /2cmB = 2ct−cmB elements per disjointed set

3 This is a classical assumption, and here it is due to the nonlinear SBox.
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for each list: they all share the same value of the differences, but have different
values. Additionally, the ct-bit constraints of each list Li allows to find one el-
ement in each, and therefore a solution to the merge problem, with probability
2((ct−cmB)−ct)t = 2−ctmB .

Step 4. Finally, trying all the 2ctmB elements in (L′
1, . . . ,L

′
mB

), we expect to find
2ctmB 2−ctmB = 1 solution that gives a pair of internal states conforming to the four
middle rounds with a few operations.

Second case: mB > � t
2
. The columns of differences are less constrained, and it is

enough to guess � t
2
 lists in the first step to find a solution to the merge problem.

Step 1. We start by guessing the elements of the � t
2
 lists L′

1, . . . ,L
′
mB

in state S6.
There is a total of 2ct�t/2
 possible combinations.

Step 2. The previous step allows to filter 2c(t−2�t/2
) elements in each of the t lists
Li . Depending of the parity of t , we get 1 element per list for even t , and 2−c for
odd ones.4 In the latter case, there are then a probability 2−ct that the t elements
are found in the t lists Li .

Step 3. In the event that elements have been found in the previous step, we determine
completely the remaining 2ct (t − � t

2
) values and differences of the remaining
t − � t

2
 = � t
2� lists L′

i . We find a match in those lists with probability 2−ct ×
2(ct−2ct)(t−�t/2
) = 2−ct (1+�t/2�).

Step 4. Finally, trying all the 2ct� t
2 
 elements in (L′

1, . . . ,L
′�t/2
), we expect to find

2ct�t/2
2−ct (1+�t/2�) = 1 solution that gives a pair of internal states that conforms
to the four middle rounds with a few operations.

Hence, in any case, from random differences (δIN, δOUT), we find a pair of inter-
nal states of the permutation that conforms to the middle rounds in time 2ct min(mB,� t

2 
)
and memory mB2ct . To pass the probabilistic transitions of the outbound phase, we
need to repeat the merging 2c(2t−nB−nF ) times by picking another couple of differences
(δIN, δOUT). In total, we find a pair of inputs to the permutation conforming to the
truncated differential characteristic in time complexity 2ct min(mB,�t/2
)2c(2t−nB−nF ) =
2c(t (min(mB,�t/2
)+2)−nB−nF ) and memory complexity mB · 2ct .

Finally, without assuming mB ≤ mF , the time complexity T of the algorithm gener-
alizes to:

log2(T ) = c

(
t · min

{
mB,mF ,

⌈
t

2

⌉}
+ 2t − nB − nF

)
, (17)

with nF + mF ≥ t + 1 and nB + mB ≥ t + 1, and memory requirement of mB · 2ct .

4.3. Comparison with Ideal Case

In the ideal case, the generic complexity C(a, b) is given by the limited birthday distin-
guisher:

log2c

(
C(a, b)

) = max

{
min

{
t2 − a

2
,
t2 − b

2

}
, t2 − a − b

}
, (18)

4 Indeed, t − 2� t
2 
 = � t

2 � − � t
2 
 equals 0 when t is even, and −1 when t is odd.
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since we get an input space of size IN = 2c·a and output space of size OUT = 2c·b.
Without loss of generality, assume that a ≤ b: this only selects whether we attack the
permutation or its inverse. In that case, we have:

log2c

(
C(a, b)

) =

⎧
⎪⎪⎨

⎪⎪⎩

C1(a, b) := (t2 − b)/2, if: t2 < 2a + b,

C2(a, b) := a, if: t2 = 2a + b,

C3(a, b) := t2 − a − b, if: t2 > 2a + b.

(19)

In the case of the 9-round distinguisher, the generic complexity equals C(t ·nB, t ·nF )

since there are nB active diagonals at the input, and nF active diagonals at the output.
Let us compare T and the case of C3(t · nB, t · nF ) where t > 2nB + nF corresponding
to the limited birthday distinguisher. We want to find set of values for the parameters
(t, nF ,nB,mF ,mB) such that our algorithm runs faster that the generic one, that is
T is smaller than C3(t · nB, t · nF ). In the event that min(mF ,mB, � t

2
) is either mF

or mB , we can show that T is always greater than C3(t ·nB, t ·nF ), and so are the cases
involving C2(t · nB, t · nF ) and C1(t · nB, t · nF ).

We consider the case min(mF ,mB, � t
2
) = � t

2
:

log2c

(
C3(t · nB, t · nF )

) − log2c (T )

= t (t − nF − nB) − t

⌈
t

2

⌉
− 2t + nB + nF . (20)

With t as a parameter and nF ,nB ∈ {1, . . . , t}, our algorithm turns out to be a distin-
guisher when the quantity from (20) is positive, which is true as soon as

(nB + nF )(1 − t) + t

(
t − 2 −

⌈
t

2

⌉)
≥ 0. (21)

Since t −� t
2
 = � t

2�, we can show that if nF ∈ {1, . . . , t} and nB ∈ {1, . . . , t} are chosen
such that

2 ≤ nF + nB ≤ t

t − 1

(⌊
t

2

⌋
− 2

)
, (22)

then our algorithm is more efficient than the generic one. Note that this may happen only
when t ≥ 8 and that mF and mB are still constrained by the MDS bound: nF + mF ≥
t + 1 and nB + mB ≥ t + 1.

We can also consider an 8-round case by considering the characteristic from Fig. 7
where the last round is removed:5 the generic complexity becomes C(t · nB,nF ). Note
that the complexity of our algorithm remains unchanged: there are still two probabilistic
transitions to pass. For t ≥ 4, we can show that there are many ways to set the parameters
(nF ,nB,mF ,mB) so that T ≥ C(t · nB,nF ), and the best choice providing the most
efficient distinguisher happens when the MDS bounds are tight, i.e.: nF + mF = t + 1
and nB + mB = t + 1.

5 We still assume that nB ≤ nF . If not, then the generic complexity becomes C(nB, t · nF ) by removing
the first round.
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Table 2. Examples of reached time complexities for several numbers of rounds and different (t, c) scenarios.

Rounds Cipher Parameters Complexities

t c nB mB mF nF log2(T ) log2(C)

9 8 8 1 8 8 1 368 log2 C(t · nB, t · nF ) = 384

8 8 8 8 1 4 5 88 log2 C(nB, t · nF ) = 128

8 8 8 5 4 1 8 88 log2 C(t · nB,nF ) = 128

7 8 8 8 1 1 8 64 log2 C(nB,nF ) = 384

8 7 8 7 1 4 4 80 log2 C(nB, t · nF ) = 112

8 7 8 4 4 1 7 80 log2 C(t · nB,nF ) = 112

7 7 8 7 1 1 7 56 log2 C(nB,nF ) = 280

8 4 8 4 1 4 1 56 log2 C(nB, t · nF ) = 64

8 4 8 1 4 1 4 56 log2 C(t · nB,nF ) = 64

7 4 8 4 1 1 4 32 log2 C(nB, t · nF ) = 64

For the sake of completeness, we can also derive distinguishers for 7-round of the
permutation by considering the characteristic from Fig. 7 where the first and last rounds
are removed, as soon as t ≥ 4. The generic complexity in that scenario is C(nB,nF ).
Again, there are several ways to set the parameters, but the one that minimizes the
runtime T of our algorithm also verifies the MDS bounds: nB = 1, mB = t , mF = 1
and nF = t .

We give examples of more different cases in Table 2, which for instance match AES
and Grøstl instantiation. We note that the complexities of our algorithm may be worse
that other published results.

5. Applications to Grøstl-256 Permutations

The permutations of the Grøstl-256 hash function implement the previous generic
algorithms will the following parameters: t = 8, c = 8 and Nr = 10.

Three Fully-Active States From the analysis of Sect. 3, we can directly conclude
that this leads to a distinguishing attack on the 9-round reduced version of the
Grøstl-256 permutation with 2c(t2/2+2(t−1)) = 2368 computations and 2ct = 264

memory, when the ideal complexity requires 2ct (t−2) = 2384 operations.
As detailed previously, we could derive distinguishers for 8-round Grøstl-256

with 2c(t2/2+t−1) = 2312 operations and for 7-round Grøstl-256 with 2ct2/2 = 2256,
but those results are more costly than previous known results.

Similarly, as explained in Sect. 2.3, this result also induces a nontrivial observation on
the 9-round reduced version of the Grøstl-256 compression function with identical
complexity.
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Non-fully-active Characteristic With the generic analysis of Sect. 4 that uses a single
fully-active middle state, t = 8 only allows to instantiate the parameterized truncated
differential characteristic with nF = nB = 1, which determines mF = mB = 8. Indeed,
(22) imposes 2 ≤ nB + nF ≤ 16

7 , which gives integer values nF = nB = 1. Note that it
is exactly the case of the three fully-active states in the middle treated in Sect. 3, with
the same complexities.

For 8-round distinguishers, the case t = 8 where nB ≤ nF may give the parameters
nB = 5, mB = 4, mF = 1 and nF = 8 with the last round of the characteristic of Fig. 7 is
removed. If nB > nF , we instantiate the characteristic with the first round removed with
the values nB = 8, mB = 1, mF = 4 and nF = 5. In both cases, the time complexity
of the distinguishers is 288 operations with 264 of memory requirement, whereas the
generic algorithm terminates in about 2128 operations. As for 7-round distinguishers,
removing both first and last rounds of the characteristic of Fig. 7 leads to an efficient
distinguishers for Grøstl-256 when nB = 8, mB = 1, mF = 1 and nF = 8. The
corresponding algorithm runs in 264 operations with 264 of memory requirement, when
the corresponding generic algorithm needs 2384 operations to terminate. We note that
those 8- and 7-round distinguishers are not as efficient as other available techniques: we
provide them for the sake of completeness.

6. Conclusion

In this article, we have provided a new and improved cryptanalysis method for AES-
like permutations, by using a rebound-like approach as well as an algorithm that allows
us to control four rounds in the middle of a truncated differential path, with a lower
complexity than a general probabilistic approach. To the best of our knowledge, all
previously known methods only manage to control three rounds in the middle and we
close the open problem whether this was possible or not.

We apply our algorithm on several algorithms and in particular on the building
blocks of both the 256 and 512-bit versions of the SHA-3 finalist Grøstl. We could
provide the best known distinguishers on 9 rounds of the internal permutations of
Grøstl-256, while for Grøstl-512, we have considerably increased the number
of analyzed rounds, from 7 to 10.

These results do not threaten the security of Grøstl, but we believe they will have
an important role in better understanding AES-based functions in general. In particular,
we believe that our work will help determining the bounds and limits of rebound-like
attacks in these types of constructions. Future works could include the study of more
AES-like functions in regards to this new cryptanalysis method.

Acknowledgements

We would like to thank the anonymous referees for their valuable comments on our
paper. Jérémy Jean is partially supported by the French National Agency of Research
through the SAPHIR2 project under Contract ANR-08-VERS-014 and by the French
Délégation Générale pour l’Armement (DGA). Thomas Peyrin is supported by the Sin-
gapore National Research Foundation Fellowship 2012 NRF-NRFF2012-06. This work
was partially supported by the French National Agency of Research: ANR-11-INS-011.



Improved Cryptanalysis of AES-like Permutations 791

Appendix A. Distinguish Attack on 10-Round Grøstl-512

The 512-bit version of the Grøstl hash function uses a non-square 8 × 16 matrix as
1024-bit internal state, which therefore presents a lack of optimal diffusion: a single
difference generates a fully active state after three rounds where a square-state would
need only two. This enables us to add an extra round to the generalization of the regular
9-round characteristic of AES-like permutation (Sect. 3) to reach 10 rounds.

A.1. The Truncated Differential Characteristic

To distinguish its permutation P512
6 reduced to 10 rounds, we use the truncated differ-

ential characteristic with the sequence of active bytes

64
R1−→ 8

R2−→ 1
R3−→ 8

R4−→ 64
R5−→ 128

R6−→ 64
R7−→ 8

R8−→ 1
R9−→ 8

R10−→ 64, (A.1)

where the size of the input differences subset is IN = 2512 and the size of the output
differences subset is OUT = 264.

The actual truncated characteristic is represented on Fig. A.1. Again, we split the
characteristic into two parts: the inbound phase involving a merging of lists in the four
middle rounds (round 4 to round 7), and an outbound phase that behaves as a proba-
bilistic filter ensuring both 8 −→ 1 transitions in the outward directions. Again, passing
those two transitions with random values occurs with probability 2−112.

A.2. Finding a Conforming Pair

In the following, we present an algorithm to solve the middle rounds in time 2280 and
memory 264. In total, we will need to repeat this process 2112 times to get a pair of inter-
nal states that conforms to the whole truncated differential characteristic, which would
then cost 2280+112 = 2392 in time and 264 in memory. The strategy of this algorithm (see
Fig. A.2) is similar to the ones presented in [20,21] and the one from the previous sec-
tion: we start by fixing the difference to a random value δIN in S1 and δOUT in S12 and
linearly deduce the difference δ′

IN in S3 and δ′
OUT in S10. Then, we construct the 32

lists corresponding to the 32 SuperSBoxes: the 16 forward SuperSBoxes have an input
difference fixed to δ′

IN and cover states S3 to S8, whereas the 16 backward SuperSBoxes
spread over states S10 to S6 with an output difference fixed to δ′

OUT . In the sequel, we
denote Li the 16 forward SuperSBoxes and L′

i the backward ones, 1 ≤ i ≤ 16.
The 32 lists overlap in S8, where we merge them on 2048 bits7 to find 264×322−2048 =

1 solution, since each list is of size 264. The naive way to find the solution would cost
21024 in time by considering each element of the Cartesian product of the 16 lists Li to
check whether it satisfies the output 1024 bit difference condition. We describe now the
algorithm that achieves the same goal in time 2280.

First, we observe that due to the geometry of the non-square state, any list Li inter-
sects with only half of the L′

i . For instance, the first list L1 associated with the first
column of state S7 intersects with lists L′

1, L′
6, L′

11, L′
12, L′

13, L′
14, L′

15 and L′
16. We

6 It would work exactly the same way for the other permutation Q512.
7 The 2048 bits come from 1024 bits of values and 1024 bits of differences.
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Fig. A.1. The 10-round truncated differential characteristic used to distinguish the permutation P of
Grøstl-512 from an ideal permutation.

represent this property with a 16 × 16 array on Fig. A.3: the 16 columns correspond to
the 16 lists L′

i and the lines to the Li , 1 ≤ i ≤ 16. The cell (i, j) is white if and only if
Li has a non-null intersection with the list L′

j , otherwise it is gray.
Then, we note that the MixCells transition between the states S8 and S9 constraints

the differences in the lists L′
i : in the first column of S9 for example, only three bytes are

active, so that the same column in S8 can only have 23×8 different differences, which
means that knowing three out of the eight differences in an element of L′

1 is enough
to deduce the other five. For a column-vector of differences lying in an n-dimensional
subspace, we can divide the 264 elements of the associated lists in 28n disjointed sets
of 264−8n values each. So, whenever we know the n independent differences, the only
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Fig. A.2. Inbound phase for the 10-round distinguisher attack on the Grøstl-512 permutation P512. The
four rounds represented are the rounds 4 to 7 from the whole truncated differential characteristic (Fig. A.1).
A gray byte indicates an active byte; hatched and coloured bytes emphasize the SuperSBoxes. (Color figure
online)

Fig. A.3. First guess on the algorithm. A � means we know both value and difference for that byte, a •
means that we only determined the difference for that byte and white bytes are not constrained yet.
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Fig. A.4. Second guess on the algorithm. A � means we know both value and difference for that byte, a •
means that we only determined the difference for that byte and white bytes are not constrained yet.

freedom that remains lie in the values. The bottom line of Fig. A.3 reports the subspace
dimensions for each L′

i .
Using a guess-and-determine approach, we derive a way to use the previous facts to

find the solution to the merge problem in time 2280. As stated before, we expect only
one solution; that is, we want to find a single element in each of the 32 lists. In the
sequel, we describe a sequence of 4 guess-and-determine steps illustrated by pictures
before and after each determine phase.

Step 1 We start by guessing the values and the differences of the elements associated
with the lists L′

2, L′
3, L′

4 and L′
5. For this, we will try all the possible combinations

of their elements, there are 24×64 = 2256 in total. For each one of the 2256 tries, all
the checked cells � from Fig. A.3a now have known value and difference. From here,
8 bytes are known in each of the four lists L5, L6, L7 and L8: this imposes a 64-bit
constraint on those lists, which filter out a single element in each. Thereby, we deter-
mined the value and difference in the other 16 bytes marked by � in Fig. A.3b. In lists
L′

1 and L′
16, we have reached the maximum number of independent differences (three

and two, respectively), so we can determine the differences for the other bytes of those
columns: we mark them by • . In L4, the 8 constraints (three � and two •) filter out one
element; then, we deduce the correct element in L4 and mark it by �. We can now de-
termine the differences in L′

15 since the corresponding subspace has a dimension equals
to two. See Fig. A.3b for the current situation of the guess-and-determine algorithm.

Step 2 At this point, no more byte can be determined based on the information prop-
agated so far. We continue by guessing the elements remaining in L′

6 (see Fig. A.4a).
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Fig. A.5. Third guess on the algorithm. A � means we know both value and difference for that byte, a •
means that we only determined the difference for that byte and white bytes are not constrained yet.

Since there are already six byte-constraints on that list (three �), only 216 elements
conform to the conditions. The time complexity until now is thus 2256+16 = 2272.

Guessing the list L′
6 implies a 64-bit constraint of the list L9 so that we get a single

element out of it and determine four yet-unknown other bytes. This enables to learn
the independent differences in L′

14 and therefore, we filter an element from L3 (two �
and four •). At this stage, the list L′

1 is already fully constrained on its differences, so
that we are left with a set of 264−3×8 = 240 values constrained on five bytes (five �).
Hence, we are able to determine all the unset values in L′

1: see Fig. A.4b for the current
situation.

Step 3 Again, the lack of constraints prevent us to determine more bytes. We continue
by guessing the 28 elements left in L1 (two � and three •), which makes the time
complexity increase to 2280 (see Fig. A.5a).

The list L1 being totally known, we derive the vector of differences in L′
13, which

adds an extra byte-constraint on L2 where only one element was left, and so fully de-
termines it. From here, L′

7 becomes fully determined as well (four �) and so is L′
16. In

the latter, the differences being known, we were left with a set of 264−2×8 = 248 values,
which are now constrained on six bytes (six �).

Step 4 We describe in Fig. A.5b the knowledge propagated so far, with time complex-
ity 2280 and probability 1. In this step, no new guess is needed, and we show how to end
the algorithm by probabilistic filterings on the remaining unset lists.

First, we observe that L10 is overdetermined (four � and one •) by one byte. This
means that we get the correct value with probability 2−8, whereas L11 is filtered with
probability 1 (four �). We assume the correct values are found, such that the element of
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Fig. A.6. End of the guess-and-determine algorithm: after list L16 has been fully determined, we filter
L′

10, . . . ,L′
14 with probability 1 and then L13, . . . ,L15 with probability 2−64.

L′
8 happens to be correctly defined with probability 2−16 (five �), L′

9 with probability 1
(four �) and L′

15 also with probability 1 since we get 6 � that complete the knowledge
of the 2-dimensional subspace of differences (six � and two •). We continue in L′

11 by
learning the full vector of differences (three independent � for a subspace of dimen-
sion 3), which constraints L12 on 11 bytes (five � and one •) so that we get a valid
element with probability 2−24.

At this point, L16 is reduced to a single element with probability 2−8 (three � and
three •), which adds constraints on the three lists L′

11, L′
13 and L′

14, where we already
know all the differences (Fig. A.6). Consequently, we get respectively 5, 5 and 6 inde-
pendent values (�) on subspaces of respective dimensions 3, 3 and 2, which filter those
three lists to a single element with probability 1. Finishing the guess-and-determine
technique is done by filtering L′

10 and L′
12 with probability 1 (four � in a subspace

of dimension 4 for both lists), and then the three remaining lists L13, L14 and L15 are
all reduced to a single element which are the valid one with probability 2−64 for each
(eight �). After this, if a solution is found, everything has been determined.

In total, for each guess, we successfully merge the 32 lists with probability

2−8−16−24−40−64−64−64 = 2−280, (A.2)

but the whole procedure is repeated 264×4+16+8 = 2280 times, so we expect to find the
one existing solution. All in all, we described a way to do the merge with time complex-
ity 2280 and memory complexity 264. The final complexity to find a valid candidate for
the whole characteristic is then 2392 computations and 264 memory.
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A.3. Comparison with Ideal Case

In the ideal case, obtaining a pair whose input difference lies in a subset of size
IN = 2512 and whose output difference lies in a subset of size OUT = 264 for a 1024-
bit permutation requires 2448 computations. We can directly conclude that this leads
to a distinguishing attack on the 10-round reduced version of the Grøstl-512 per-
mutation with 2392 computations and 264 memory. Similarly, as explained in Sect. 2.3,
this results also induces a nontrivial observation on the 10-round reduced version of the
Grøstl-512 compression function with identical complexity.

One can also derive slightly cheaper distinguishers by aiming less rounds while keep-
ing the same generic complexity: instead of using the 10-round truncated characteristic
from Fig. A.1, it is possible to remove either round 3 or 9 and spare one 8 → 1 truncated
differential transition. Overall, this gives a distinguishing attack on the 9-round reduced
version of the Grøstl-512 permutation with 2336 computations and 264 memory. By
removing both rounds 3 and 9, we achieve 8 rounds with 2280 computations.

One can further gain another small factor for the 9-round case by using a 8 → 2
truncated differential transition instead of 8 → 1, for a final complexity of 2328 com-
putations and 264 memory. Indeed, the generic complexity drops to 2384 because we
would now have OUT = 2128.

Appendix B. Distinguishers for Reduced PHOTON Permutations

Using the same cryptanalysis technique, it is possible to study the recent lightweight
hash function family PHOTON [8], which is based on five different versions of AES-like
permutations. Using the notation previously described in this article, the five versions
(c, t) for PHOTON are (4,5), (4,6), (4,7), (4,8) and (8,6) for increasing versions. All
versions are defined to apply Nr = 12 rounds of an AES-like process.

Since the internal state is always square, by trivially adapting the method from Sect. 3
to the specific parameters of PHOTON, one can hope to obtain distinguishers for 9
rounds of the PHOTON internal permutations. However, we are able to do so only for
the parameters (4,8) used in PHOTON-224/32/32 (see Table 1 with the comparison to
previously known results). Indeed, the size t of the matrix plays an important role in
the gap between the complexity of our algorithm and the generic one. The bigger is the
matrix, the better will be the gap between the algorithm complexity and the generic one.
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