J. Cryptol. (2014) 27: 636-771

DO 10.1007/500145-013-9157-6 Journal of

CRYPTOLOGY

Authenticated Adversarial Routing*

Yair Amir"
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
yairamir@cs.jhu.edu

Paul Bunn*

Google, Mountain View, CA, USA
paulbunn@google.com

Rafail Ostrovsky®

UCLA Departments of Computer Science and Department of Mathematics, Los Angeles, CA, USA
rafail @cs.ucla.edu

Communicated by Oded Goldreich

Received 14 July 2009
Online publication 7 September 2013

Abstract. The aim of this paper is to demonstrate the feasibility of authenticated
throughput-efficient routing in an unreliable and dynamically changing synchronous
network in which the majority of malicious insiders try to destroy and alter messages
or disrupt communication in any way. More specifically, in this paper we seek to answer
the following question: Given a network in which the majority of nodes are controlled
by a node-controlling adversary and whose topology is changing every round, is it
possible to develop a protocol with polynomially bounded memory per processor (with
respect to network size) that guarantees throughput-efficient and correct end-to-end
communication?

We answer the question affirmatively for extremely general corruption patterns: we
only request that the topology of the network and the corruption pattern of the adversary
leaves at least one path each round connecting the sender and receiver through honest

* A preliminary version of this paper appeared in the 6th IACR Theory of Cryptography Conference,
pp. 163-182, 2009.

T Part of Y. Amir’s work was done while visiting IPAM and supported in part by NSF grant 0430254.

¥ P. Bunn’s work was supported in part by NSF grants 0430254, 0716835, 0716389 and 0830803.

§ Part of R. Ostrovsky’s work was done while visiting IPAM and supported in part by NSF grants CNS-
0430254; CNS-0716835; CNS-0716389; CNS-0830803; CCF-0916574; 11S-1065276; CCF-1016540; CNS-
1118126; CNS-1136174; US-Israel BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty
Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research
Award, and Lockheed-Martin Corporation Research Award. This material is also based upon work supported
by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Con-
tract NOOO14-11-1-0392. The views expressed are those of the author and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

© International Association for Cryptologic Research 2013

mailto:yairamir@cs.jhu.edu
mailto:paulbunn@google.com
mailto:rafail@cs.ucla.edu

Authenticated Adversarial Routing 637

nodes (though this path may change at every round). Out construction works in the
public-key setting and enjoys optimal transfer rate and bounded memory per processor
(that is polynomial in the network size and does not depend on the amount of traffic).
We stress that our protocol assumes no knowledge of which nodes are corrupted nor
which path is reliable at any round, and is also fully distributed with nodes making
decisions locally, so that they need not know the topology of the network at any time.

The optimality that we prove for our protocol is very strong. Given any routing
protocol, we evaluate its efficiency (rate of message delivery) in the “worst case,” that
is with respect to the worst possible graph and against the worst possible (polynomi-
ally bounded) adversarial strategy (subject to the above mentioned connectivity con-
straints). Using this metric, we show that there does not exist any protocol that can be
asymptotically superior (in terms of throughput) to ours in this setting.

We remark that the aim of our paper is to demonstrate via explicit example the
feasibility of throughput-efficient authenticated adversarial routing. However, we stress
that out protocol is not intended to provide a practical solution, as due to its complexity,
no attempt thus far has been made to reduce constants and memory requirements.

Our result is related to recent work of Barak et al. (Proc. of Advances in
Cryptology—27th EUROCRYPT 2008, LNCS, vol. 4965, pp. 341-360, 2008) who
studied fault localization in networks assuming a private-key trusted-setup setting. Our
work, in contrast, assumes a public-key PKI setup and aims at not only fault localiza-
tion, but also transmission optimality. Among other things, our work answers one of the
open questions posed in the Barak et al. paper regarding fault localization on multiple
paths. The use of a public-key setting to achieve strong error-correction results in net-
works was inspired by the work of Micali et al. (Proc. of 2nd Theory of Cryptography
Conf., LNCS, vol. 3378, pp. 1-16, 2005) who showed that classical error correction
against a polynomially bounded adversary can be achieved with surprisingly high pre-
cision. Our work is also related to an interactive coding theorem of Rajagopalan and
Schulman (Proc. 26th ACM Symp. on Theory of Computing, pp. 790-799, 1994) who
showed that in noisy-edge static-topology networks a constant overhead in commu-
nication can also be achieved (provided none of the processors are malicious), thus
establishing an optimal-rate routing theorem for static-topology networks.

Finally, our work is closely related and builds upon to the problem of End-To-End
Communication in distributed networks, studied by Afek and Gafni (Proc. of the 7th
ACM Symp. on Principles of Distributed Computing, pp. 131-148, 1988); Awebuch
et al. (Proc. of the 30th IEEE Symp. on Foundations of Computer Science, FOCS,
1989); Afek et al. (Proc. of the 11th ACM Symp. on Principles of Distributed Com-
puting, pp. 35-46, 1992); and Afek et al. (J. Algorithms 22:158-186, 1997), though
none of these papers consider or ensure correctness in the setting of a node-controlling
adversary that may corrupt the majority of the network.

Key words. Network routing, Fault localization, Error-correction, Multi-party com-
putation, End-to-end communication, Communication complexity.

1. Introduction

In this paper we design a routing protocol for an unreliable and dynamically changing
synchronous network that is resilient against malicious insiders who may try to destroy
and alter messages or disrupt communication in any way. We model the network as a
communication graph G = (V, E) where each vertex/node is a processor and each edge
is a communication link. We do not assume that the topology of this graph is fixed or
known by the nodes. Rather, we assume a complete graph on n vertices, where some
of the edges are “up” and some are “down”, and the status of each edge can change
dynamically at any time.

638 Y. Amir, P. Bunn, and R. Ostrovsky

We concentrate on the most basic task, namely how two processors in the network can
exchange information. Thus, we assume that there are two designated vertices, called
the sender S and the receiver R, who wish to communicate with each other. We assume
that the capacity of each edge in the network is fixed, so that any edge in the system
that is “up” during some round can transmit exactly P bits of information' during that
round. We assume the sender has bundled the information he wishes to send the receiver
into a sequence of “packets” {py, pa2, ...} of size at most P.

We will evaluate our protocol using the following three considerations:

1. Correctness. A protocol is correct if the sequence of packets output by the receiver
is a prefix of packets that were sent by the sender, without duplication or omission.

2. Throughput. This measures the number of packets that the receiver has obtained
as a function of the number of rounds that have passed.

3. Processor Memory. This measures the memory required of each node by the pro-
tocol, independent of the number of packets to be transferred.

All three considerations will be measured in the worst-case scenario as standards that
are guaranteed to exist regardless of adversarial interference. One can also evaluate
a protocol based on its dependence on global information to make decisions. In the
protocol we present in this paper, we will not assume there is any global view of the
network available to the internal nodes. Such protocols are termed “local control” (or
“distributed”) in that each node can make all routing decisions based only the local
conditions of its adjacent edges and neighbors.

Our protocol is designed to be resilient against a malicious, polynomially bounded
adversary who may attempt to impact the correctness, throughput, and memory of our
protocol by disrupting links between the nodes or taking direct control over the nodes
and forcing them to deviate from our protocol in any manner the adversary wishes.
In order to relate our work to previous results and to clarify the two main forms of
adversarial interference, we describe two separate (yet coordinated with each other)
adversaries:?

Edge-Scheduling Adversary. This adversary controls the links between nodes every
round. More precisely, at each round, this adversary decides which edges in the net-
work are up and which are down. We will say that the edge-scheduling adversary is
conforming if for every round there is at least one path from the sender to the receiver
(although the path may change each round).® The adversary can make any arbitrary
poly-time computation to maximize interference in routing, so long as it remains
conforming.

1 For the protocol of Sect. 4, we require that P € §2(logn), while the protocol of Sect. 5 requires that
P € 2(k +logn), where k is the security parameter.

2 The separation into two separate adversaries is artificial: our protocol is secure whether edge-scheduling
and corruption of nodes are performed by two separate adversaries that have different capabilities yet can
coordinate their actions with each other, or this can be viewed as a single coordinated adversary.

3 A more general definition of an edge-scheduling adversary would be to allow completely arbitrary edge
failures (except that in the limit there must be no permanent cut between the sender and receiver). However,
this definition (while more general) greatly complicates the evaluation of a protocol’s throughput perfor-
mance; in particular, our current definition of throughput rate cannot be used to compare routing protocols in
this generalized setting.

Authenticated Adversarial Routing 639

Node-Controlling Adversary. This adversary controls the nodes of the network. More
precisely, each round this adversary decides which nodes to corrupt. Once corrupted,
a node is forever under complete adversarial control and can behave in an arbitrary
malicious manner. We say that the node-controlling adversary is conforming if every
round there is a connection between the sender and receiver consisting of edges that
are “up” for the round (as specified by the edge-scheduling adversary) and that passes
through uncorrupted nodes. We emphasize that this path can change each round,
and there is no other restriction on which nodes the node-controlling adversary may
corrupt (allowing even a vast majority of corrupt nodes).

Although we could capture the two above forms of adversarial interference by a single
adversary, it will be convenient to view these adversaries as distinct, as we deal with
the challenges they pose to correctness, throughput, and memory in different ways.
Namely, aside from the conforming condition, the edge-scheduling adversary cannot be
controlled or eliminated. Edges themselves are not inherently “good” or “bad,” so iden-
tifying an edge that has failed does not allow us to forever refuse the protocol to utilize
this edge, as it may come back up at any time (and indeed it could form a crucial link
on the path connecting the sender and receiver that the conforming assumption guaran-
tees). In sum, we cannot hope to control or alter the behavior of the edge-scheduling
adversary, but must come up with a protocol that works well regardless of the behavior
of the ever-present (conforming) edge-scheduling adversary.

By contrast, our protocol will limit the amount of influence the node-controlling ad-
versary has on correctness, throughput, and memory. Specifically, we will show that if
a node deviates from the protocol in a sufficiently destructive manner (in a well-defined
sense), then our protocol will be able to identify it as corrupted in a timely fashion. Once
a corrupt node has been identified, it will be eliminated from the network. Namely, our
protocol will call for honest nodes to refuse all communication with nodes that have
been identified as corrupt.4 Thus, there is an inherent difference in how we handle the
edge-scheduling adversary verses how we handle the node-controlling adversary. We
can restrict the influence of the latter by eliminating the nodes it has corrupted, while
the former must be dealt with in a more ever-lasting manner.

1.1. Previous Work

To motivate the importance of the problem we consider in this paper, and to empha-
size the significance of our result, it will be useful to highlight recent works in related
areas. To date, routing protocols that consider adversarial networks have been of two
main flavors: End-to-End Communication protocols that consider dynamic topologies
(anotion captured by our “edge-scheduling adversary”), and Fault Detection and Local-
ization protocols, which handle devious behavior of nodes (as modeled by our “node-
controlling adversary”).

End-to-End Communication One of the most relevant research directions to our paper
is the notion of End-to-End communication in distributed networks, considered by a

4 The conforming assumption guarantees that the sender and receiver are incorruptible, and our protocol
places the responsibility of identifying and eliminating corrupt nodes on these two nodes.

640 Y. Amir, P. Bunn, and R. Ostrovsky

number of authors, including Afek and Gafni and Rosen [2], Afek and Gafni [1], Awer-
buch, Mansour and Shavit [6], Afek, Awebuch, Gafni, Mansour, Rosen, and Shavit [3],
and Kushilevitz, Ostrovsky and Rosen [14]. Indeed, our starting point is the Slide pro-
tocol® developed in these works. It was designed to perform end-to-end communication
with bounded memory in a model where (using our terminology) an edge-scheduling
adversary controls the edges (subject to the constraint that there is no permanent cut
between the sender and receiver). The Slide protocol has proven to be incredibly useful
in a variety of settings, including multi-commodity flow (Awerbuch and Leighton [5])
and in developing routing protocols that compete well (in terms of packet loss) against
an online bursty adversary ([4]). However, prior to our work there was no version of
the Slide protocol that could handle malicious behavior of the nodes. A comparison of
various versions of the Slide protocol and our protocol is featured in Table 1 of Sect. 1.3
below.

Fault Detection and Localization Protocols At the other end, there have been a num-
ber of works that explore the possibility of a node-controlling adversary that can corrupt
nodes. In particular, there is a line of work that considers a network consisting of a single
path from the sender to the receiver, culminating in the recent work of Barak, Goldberg
and Xiao [8] (for further background on fault localization see references therein). In this
model, the adversary can corrupt any node on the path (except the sender and receiver)
in a dynamic and malicious manner. Since corrupting any node on the path will sever
the honest connection between S and R, the goal of a protocol in this model is not to
guarantee that all messages sent to R are received. Instead, the goal is to detect faults
when they occur and to localize the fault to a single edge.

There have been many results that provide Fault Detection (FD) and Fault Localiza-
tion (FL) in this model. In Barak et al. [8], they formalize the definitions in this model
and the notion of a secure FD/FL protocol, as well as providing lower bounds in terms
of communication complexity to guarantee accurate fault detection/location in the pres-
ence of a node-controlling adversary. While the Barak et al. paper has a similar flavor
to our paper, we emphasize that their protocol does not seek to guarantee successful or
efficient routing between the sender and receiver. Instead, their proof of security guar-
antees that if a packet is deleted, malicious nodes cannot collude to convince S that
no fault occurred, nor can they persuade S into believing that the fault occurred on an
honest edge. Localizing the fault in their paper relies on cryptographic tools, and in
particular the assumption that one-way functions exist. Although utilizing these tools
(such as MACs or Signature Schemes) increases communication cost, it is shown by
Goldberg, Xiao, Barak, and Redford [12] that the existence of a protocol that is able
to securely detect faults (in the presence of a node-controlling adversary) implies the
existence of one-way functions, and it is shown in Barak et al. [8] that any protocol that
is able to securely localize faults necessarily requires the intermediate nodes to have a
trusted setup. The proofs of these results do not rely on the fact that there is a single
path between S and R, and we can therefore extend them to the more general network
encountered in our model to justify our use of cryptographic tools and a trusted-setup
assumption (i.e. PKI) to identify malicious behavior.

5 Also known in practical works as “gravitational flow” routing.

Authenticated Adversarial Routing 641

Another paper that addresses routing in the Byzantine setting is the work of Awer-
buch, Holmes, Nina-Rotary and Rubens [7], though this paper does not have a fully
formal treatment of security, and indeed a counter-example that challenges its security
is discussed in the appendix of [8].

Error Correction in the Active Setting Due to space considerations, we will not be
able to give a comprehensive account of all the work in this area. Instead we highlight
some of the most relevant works and point out how they differ from our setting and
results. For a lengthy treatment of error-correcting codes against polynomially bounded
adversaries, we refer to the work of Micali et al. [15] and references therein. It is im-
portant to note that this work deals with a graph that has a single “noisy” edge, as
modeled by an adversary who can partially control and modify information that crosses
that edge. In particular, it does not address throughput efficiency or memory consid-
erations in a full communication network, nor does it account for malicious behavior
at the vertices. Also of relevance is the work on Rajagopalan and Schulman on error-
correcting network coding [17], where they show how to correct noisy edges during
distributed computation. Their work does not consider actively malicious nodes nor the
question of throughput-efficient network routing, and thus is different from our setting.
It should also be noted that their work utilizes Schulman’s tree-codes [18] that allow
length-flexible online error correction. The important difference between our work and
that of Schulman is that we do not restrict the amount of malicious activity of corrupt
nodes.

1.2. Subsequent Work

Subsequent to the submission of this work, there has been a line of research that investi-
gates the feasibility of routing in a network model that is more general than the network
model considered here. Specifically, the network model of Bunn and Ostrovsky [10]
is susceptible to both edge failures and corruptible nodes (as is the case in the present
work), but is different from the model presented in Sect. 3 because of fewer assumptions
placed on the overall connectivity of the network: there are no connectivity guarantees,
and the network is asynchronous (i.e. there is no universal clock to coordinate transmis-
sions across each network link).

Direct comparison of the present results to those in [10] is not possible, as the less
restrictive network model of [10] requires a different metric for evaluating performance
of protocols within that model. For example, the lack of any assumption on network
connectivity means that all edges of the network may be inactive at all times, and thus
all protocols would achieve zero throughput. Instead, competitive analysis is used in
[10] to compare a given protocol’s throughput performance to an imaginary protocol
that makes optimal routing decisions, based on the network’s actual behavior. Under
this metric of performance, it is shown in [10] that for any (deterministic) protocol,
there exists network behavior for which that protocol delivers a factor of n fewer packets
than an ideal protocol could have delivered under the same network behavior; in other
words, the best achievable “competitive-ratio” is 1/n (here, n is the number of nodes in
the network). A specific protocol that achieves competitive-ratio of 1/n is also presented
in [10].

642 Y. Amir, P. Bunn, and R. Ostrovsky

Thus, the greater generality of the network considered in [10] comes at a cost: in
practice, a competitive-ratio of 1/n is unacceptable. Since 1/n is shown to be the best
achievable competitive-ratio in the network model of [10], developing protocols with
better performance guarantees is only possible if additional assumptions are placed on
network behavior.

While the different network model and definition of throughput make direct compari-
son impossible, many of the techniques used by the protocol in [10] to combat the com-
bined efforts of the edge-scheduling and node-controlling adversaries are extensions of
the work presented here.

1.3. Our Results

Prior to our work, no protocol has been demonstrated to be provably secure in net-
works that are simultaneously susceptible to faults occurring due to edge failures and
faults occurring due to malicious activity of corrupt nodes.® The end-to-end commu-
nication works are not secure when the nodes are allowed to become corrupted by a
node-controlling adversary, and the fault detection and localization works focus on a
single path for some duration of time, and do not consider a fully distributed rout-
ing protocol that utilizes the entire network and attempts to maximize throughput ef-
ficiency while guaranteeing correctness in the presence of edge failures and corrupt
nodes. Indeed, our work answers one of the open questions posed in the Barak et
al. paper regarding fault localization on multiple paths. In this paper we bridge the
gap between these two research areas and obtain the first routing protocol simulta-
neously secure against both an edge-scheduling adversary and a node-controlling ad-
versary, even if these two adversaries attack the network using an arbitrary coordi-
nated poly-time strategy. Furthermore, our protocol is distributed (local control) and
achieves comparable efficiency standards in terms of throughput and processor mem-
ory as state-of-the-art protocols that are not secure against a node-controlling adver-
sary. An informal statement of our result and comparison of our protocol to exist-
ing protocols can be found below. Although not included in the table, we empha-
size that the linear transmission rate that we achieve (assuming at least n° pack-
ets are sent) is asymptotically optimal, as any protocol operating in a network with
a single path connecting sender and receiver can do no better than one packet per
round.

A Routing Theorem For Adversarial Networks (Informal): If one-way functions ex-
ist, then for any n-node graph and & sufficiently large, there exists a trusted-setup, local-
control protocol that achieves the following properties in networks susceptible to any
poly-time conforming Edge-Scheduling and Node-Controlling Adversaries:

e Correctness. Achieves correctness with all but negligible (in k) probability of failure

6 There are numerous protocols that have been designed to work in specific networks settings, e.g. ad
hoc wireless networks, where the networks are susceptible to both corrupt/faulty nodes as well as unreliable
links. While research in designing specific (end-to-end) protocols for specific network settings is extensive,
no existing protocol has been demonstrated to be provably secure with respect to a formal notion of security
(as presented here).

Authenticated Adversarial Routing 643

Table 1. Comparison of our protocol to related existing protocols and folklore. Above, n represents the
number of nodes in the network, and P is the size of a packet.

Secure against ~ Secure against Processor memory Throughput rate
edge-sched. ad? node-cntr. ad? x rounds — f(x) packets
Protocol of [3]* YES NO on%p) Fx)=0@x—n?)
Protocol of [14]T YES NO OnP) Fx)=0(x/n—n?
(Folklorei) YES YES O(P) fx)=0(x/n— nz)
(flooding +
signatures)
(Folklore) YES YES Unbounded® f(x)=0(x/n— nz)
(signatures +
sequence no.’s)
Our protocol YES YES Om?P +n*(k+1logn)) f(x)=R(x—n?)

*The analysis in [3] is concerned with memory costs of its Data Dispersal Algorithm (a variant of the Slide
protocol) in asynchronous networks. The throughput rate indicated in the table comes from the analysis of the
variant of the Slide protocol presented in Sect. 4 of the current paper.

TThe analysis in [14] is concerned with memory costs of the protocol in asynchronous networks. In particular,
there is no analysis of the performance of the protocol with respect to throughput-rate in a synchronous
network setting. The throughput rate indicated in the table represents our analysis of the protocol in [14] and
is not proven rigorously in this paper or in [14].

#The usefulness of the flooding technique to combat Byzantine attacks has been investigated by numerous
authors, beginning with [16].

SIn order for a packet’s position to be described in @ (logn) bits (as is assumed in our model), the number
of packets in the input stream must be polynomial in n. While the memory required of this folklore protocol
can be bounded with respect to the size of the input stream, by “unbounded” we mean that the degree of the
polynomial that describes the size of the input stream can be arbitrarily large in 7.

e Throughput. Achieves linear throughput: For any x € §2(n°), transmits x packets
in O (x) rounds
e Memory. Requires O (n*(k + logn)) memory per processor

While the protocol introduced in this paper provides an important first step in estab-
lishing the feasibility of throughput-efficient routing in highly unreliable networks, we
emphasize that our protocol falls short of providing a practical routing solution for the
following reasons. First, the protocol introduced in Sect. 5 is fairly complex, requiring
multiple pages of pseudo-code to describe it in detail. Second, our protocol assumes a
synchronous network, and it remains an open problem of extending it to asynchronous
network settings. Finally, our protocol is expensive in terms of both processor memory
and computation. As shown in Table 1 and discussed in Sect. 2, both the complexity
and processor costs come at the expense of guaranteeing optimal throughput (e.g. oth-
erwise one could use Flooding + Signatures protocol). As this is primarily a feasibility
result, we have put at a premium the requirement of provably correct routing in net-
works that are susceptible to deliberate, malicious attacks on any subset of the nodes
and edges. It is worth noting that in practice, one typically values protocols that require
less processor-memory and processor-computation, and enjoy greater simplicity and/or
observed throughput; characteristics that can be obtained by relaxing the corruption
model and/or removing the requirement of perfect correctness.

644 Y. Amir, P. Bunn, and R. Ostrovsky

2. Challenges and Naive Solutions

The Slide protocol (and its variants) have been studied in a variety of theoretical con-
texts, including multi-commodity flow (Awerbuch and Leighton [5]), and in networks
controlled by an online bursty adversary (Aiello et al. [4]).

Before proceeding, it will be useful to consider a couple of naive solutions that
achieve the goal of correctness (but perform poorly in terms of throughput), and help to
illustrate some of the technical challenges that our theorem resolves. Consider the ap-
proach of having the sender continuously flood’ a single signed packet into the network
for n rounds. Since the conforming assumption guarantees that the network provides a
path between the sender and receiver through honest nodes at every round, this packet
will reach the receiver within n rounds, regardless of adversarial interference. After n
rounds, the sender can begin flooding the network with the next packet, and so forth.?
Notice that this solution will require each processor to store and continuously broad-
cast a single packet at any time, and hence this solution achieves excellent efficiency
in terms of processor memory. However, notice that the throughput rate is sub-linear,
namely after x rounds, only O (x/n) packets have been received by the receiver.

One idea to try to improve the throughput rate might be to have the sender streamline
the process, sending packets with ever-increasing sequence numbers without waiting
for n rounds before sending the next packet. In particular, across each of his edges the
sender will send every packet’ once, waiting only for the neighboring node’s confirma-
tion of receipt before sending the next packet across that edge. The protocol calls for
the internal nodes to act similarly. Analysis of this approach shows that not only has the
attempt to improve throughput failed (it is still O (x/n) in the worst-case scenario'?),
but additionally this modification requires arbitrarily large'! processor memory, since

7 By “flood,” we mean that the sender will repeatedly attempt to send the first packet across every adjacent
edge for n rounds, and then do the same thing for the second packet for the next n rounds, and so forth. The
internal nodes behave similarly, attempting to send whatever packet they are storing (there will be just one)
across every adjacent edge. They continue to do this until they have a more recent packet, at which point they
repeat this behavior with the new packet (and delete the older packet).

8 An alternative approach would have the sender continue flooding the first packet, and upon receipt, the
receiver floods confirmation of receipt. This alternative solution requires sequence numbers to accompany
packets/confirmations, and the rule that internal nodes only keep and broadcast the packet and confirmation
with largest sequence number. Although this alternative may potentially speed things up, in the worst-case it
will still take O (n) rounds for a single packet/confirmation pair to be transmitted.

9 More precisely, for each neighboring node n;, the sender keeps track of the highest indexed packet p j (;)
it has sent to that neighbor (and gotten confirmation of receipt from the neighbor). Then the next time the
sender is able to utilize edge E (S, n;), it sends the next indexed packet that has not yet been received by the
receiver (e.g. packet p 1, if the sender has not already received confirmation of receipt for this packet from
the receiver).

10 Consider the following pattern of edge failures/activations by the scheduling adversary: for 1 <i <n —
2 and for any m € N, during round mi, the only active edges are E (S, N;) and E(R, N;). Itis straightforward
to see that this pattern of activating edges will have this protocol deliver just one distinct packet at the end of
each (n — 2) rounds, for a throughput rate of & (x/n).

1 Since this paper is concerned only with transferring an (arbitrary) polynomial (in n and k) number
of inputs, by “arbitrarily large” processor memory, we mean that there does not exist a memory bound C =
poly(n, k) for which this protocol is correct and achieves reasonable throughput. To see that correctness and/or
throughput become problematic if memory is bounded by something polynomial in n (call it C), consider

Authenticated Adversarial Routing 645

achieving correctness in the dynamic topology of the graph will force the nodes to re-
member all of the packets they see until they broadcast them across all adjacent edges
or have seen confirmation of their receipt from the receiver.

2.1. Challenges in Dealing with Node-Controlling Adversaries

In this section, we discuss some potential strategies that the node-controlling and edge-
scheduling adversaries'? may incorporate to disrupt network communication. Although
our theorem will work in the presence of arbitrary malicious activity of the adversarial
controlled nodes (except with negligible probability), it will be instructive to list a few
obvious forms of devious behavior that our protocol must protect against. It is important
to stress that this list is not intended to be exhaustive. Indeed, we do not claim to know
all the specific ways an arbitrary polynomially bounded adversary may force nodes to
deviate from a given protocol, and in this paper we prove that our protocol is secure
against all possible deviations.

e Packet Deletion/Modification. Instead of forwarding a packet, a corrupt node
“drops it to the floor” (i.e. deletes it or effectively deletes it by forever storing
it in memory), or modifies the packet before passing it on. Another manifestation
of this is if the sender/receiver requests fault localization information of the inter-
nal nodes, such as providing documentation of their interactions with neighbors.
A corrupt node can then block or modify information that passes through it in
attempt to hide malicious activity or implicate an honest node.

e Introduction of Junk/Duplicate Packets. The adversary can attempt to disrupt com-
munication flow and “jam” the network by having corrupted nodes introduce junk
packets or re-broadcast old packets. Notice that junk packets can be handled by
using cryptographic signatures to prevent introduction of “new” packets, but this
does not control the re-transmission of old, correctly signed packets.

e Disobedience of Transfer Rules. If the protocol specifies how nodes should make
decisions on where to send packets, etc., then corrupt nodes can disregard these
rules. This includes “lying” to adjacent nodes about their current state.

the following example. Label the internal nodes (S, R, Ng, N1, ..., N,_3), where n > 5 is the size of the
network. Suppose that for M := [C(1 + 5/n)] rounds, the scheduling adversary activates edges as follows:
for each 1 <i <n — 3 and for any m € N, during round mi, the only active edges are E(S, N;), E(N;, R),
and E(S, Ng). Notice that at the end of these M rounds, the sender has successfully sent ~ M/(n — 3)
packets to the receiver (and received confirmation of receipt for these), which means that node Ny is storing
its capacity C packets (the sender has had the opportunity to send M packets to Ny, and at most M /(n — 3)
can be deleted by Ny when the sender indicates the packets have already been received by the receiver; so
M—-M/(n—-3)=C(n+4)(n—4)/n(n —3) > C). Then for the next 2C rounds, the scheduling adversary
activates edges E(S, N1), E(N1, Np), and E(N»2, R). Notice that by the end of these 2C rounds, ~ 2C
packets have gone from sender to receiver through N| and N, and neither N| nor Ny will be storing any
confirmations of receipt for any of the C packets that N is storing. At this point, edges E(S, N1), E(N1, Ny),
E(Ny, N2), E(N>, R) are activated every round henceforth. Notice that no progress can be made, since Ny
cannot accept any more packets until it has freed room, and it cannot delete any of its packets until it receives
indication that the receiver already has them (but neither Ny nor Nj can give Ny such confirmation, since
they no longer have it). One could try to modify this protocol in various ways (e.g. allow overwriting of
packets by packets that have a much higher index number, or have sender/receiver resend old confirmations
of receipt); but this example demonstrates the challenge of simultaneously maximizing throughput while
demanding correctness, and the fact that naive protocols do not suffice.
12 we give a definition of the adversary in Sect. 3.2.

646 Y. Amir, P. Bunn, and R. Ostrovsky

e Coordination of Edge Failures. The edge-scheduling adversary can attempt to dis-
rupt communication flow by scheduling edge failures in any manner that is con-
sistent with the conforming criterion. Coordinating edge failures can be used to
impede correctness, memory, and throughput in various ways: e.g. packets may
become lost across a failed edge, stuck at a suddenly isolated node, or arrive at the
receiver out of order. A separate issue arises concerning fault localization: when
the sender/receiver requests documentation from the internal nodes, the edge-
scheduling adversary can slow progress of this information, as well as attempt to
protect corrupt nodes by allowing them to “play-dead” (setting all of its adjacent
edges to be down), so that incriminating evidence cannot reach the sender.

2.2. Highlights of Our Solution

Our starting point is the Slide protocol [3], which has enjoyed practical success in net-
works with dynamic topologies, but is not secure against nodes that are allowed to
behave maliciously. We chose the Slide protocol as our starting point because of its
proven ability to work well in networks with dynamic topology (with frequent edge
failures), see e.g. [2,6], and [3]. Furthermore, the protocol has proven to be robust in its
ability to be readily extendible to more complex network settings (which was important
for our goal of extending to networks whose nodes cannot be trusted), such as multi-
commodity flow [5], networks controlled by an adversary inserting packets in attempt to
jam the network [4], and networks with more stringent demands on available processor
memory [14].

We provide a detailed description of our version of the Slide protocol in Sect. 4, but
highlight the main ideas here. Begin by viewing the edges in the graph as consisting of
two directed edges, and associate to each end of a directed edge a stack data-structure
able to hold 2n packets and to be maintained by the node at that end. The protocol
specifies the following simple, local condition for transferring a packet across a directed
edge: if there are more packets in the stack at the originating end than the terminating
end, transfer a packet across the edge. Similarly, within a node’s local stacks, packets
are shuffled to average out the stack heights along each of its edges. Intuitively, packet
movement is analogous to the flow of water: high stacks create a pressure that force
packets to “flow” to neighboring lower stacks. At the source, the sender maintains the
pressure by filling his outgoing stacks (as long as there is room) while the receiver
relieves pressure by consuming packets and keeping his stacks empty. Loosely speaking,
packets traveling to nodes “near” the sender will therefore require a very large potential,
packets traveling to nodes near the receiver will require a small potential, and packet
transfers near intermediate nodes will require packages to have a moderate potential.
Assuming these potential requirements exist, packets will pass from the sender with a
high potential, and then “flow”” downwards across nodes requiring less potential, all the
way to the receiver.

Because the Slide protocol provides a fully distributed protocol that works well
against an edge-scheduling adversary, our starting point is to extend the protocol by
using digital signatures'? to provide resilience against Byzantine attacks and arbitrary

13 In this paper we use public-key operations to sign individual packets with control information. Clearly,
this is too expensive to do per-packet in practice. There are methods of amortizing the cost of signatures by

Authenticated Adversarial Routing 647

malicious behavior of corrupt nodes. This proved to be a highly nontrivial task that re-
quired us to develop a lot of additional machinery, both in terms of additional protocol
ideas and novel techniques for proving correctness. We give a detailed explanation of
our techniques in Sect. 5 and pseudo-code in Appendix C, as well as providing proofs of
security in Appendix D. However, below we first give a sample of some of the key ideas
we used in ensuring our additional machinery would be provably secure against a node-
controlling adversary, and yet not significantly affect throughput or memory, compared
to the original Slide protocol:

e Addressing the “Coordination of Edge-Scheduling” Issues. In the absence of a
node-controlling adversary, previous versions of the Slide protocol (e.g. [3]) are
secure and efficient against an edge-scheduling adversary. In particular, the fol-
lowing explains how previous authors of the Slide protocol combated the problem
of faulty edges in a network. It will be useful to discuss how some of the chal-
lenges posed by a network with a dynamic topology are handled. See Sect. 4 for a
thorough description of the Slide protocol.

For the Slide protocol, the total capacity of the stack data-structure is bounded
by 4n3. That is, each of the n nodes can hold at most 2n packets in each of their
2n stacks (along each directed edge) at any time.

— To handle the loss of packets due to an edge going down while transmitting a
packet, a node is required to maintain a copy of each packet it transmits along
an edge until it receives confirmation from the neighbor of successful receipt.

— To handle packets becoming stuck in some internal node’s stack due to edge
failures, error correction is utilized. In particular, the sequence of packets
{p1, p2, ...} is partitioned into messages, with each message containing O n3)
packets. The messages are then expanded into codewords, and then the code-
words are divided into codeword packets of size P. The transformation from
packets to codeword packets has the property that the receiver can “decode” a
message (thus obtaining the original @ (n?) packets corresponding to the mes-
sage), even if it is missing a fraction of the codeword packets. In particular, if
an error-correcting code allowing a fraction of A faults is utilized, then since the
capacity of the network is 4n> packets, if the sender is able to pump 4n3 /A code-
word packets into the network and there is no malicious deletion or modification
of packets, then the receiver will necessarily have received enough packets to
decode the message.

— The Slide protocol has a natural bound in terms of memory per processor of
O (n?logn) bits, where the bottleneck is the possibility of a node holding up to
2n? packets in its stacks, where each packet requires O (logn) bits to describe
its position in the code.

Of course, these techniques are only valid if nodes are acting honestly, which leads

us to our first extension idea.

e Handling Packet Modification and Introduction of Junk Packets. Before inserting
any packets into the network, the sender will authenticate each packet using his

signing “batches” of packets; using private-key initialization [8,12], or using a combination of private-key
and public-key operations, such as “on-line/off-line” signatures [11,19]. For the sake of clarity and since the
primary focus of our paper is theoretical feasibility, we restrict our attention to the straightforward public-key
setting without considering these techniques.

648 Y. Amir, P. Bunn, and R. Ostrovsky

digital signature, and intermediate nodes and the receiver never accept or forward
packets not appropriately signed. This simultaneously prevents honest nodes be-
coming bogged down with junk packets, as well as ensuring that if the receiver
has obtained enough authenticated packets to decode, a node-controlling adver-
sary cannot impede the successful decoding of the message as the integrity of the
codeword packets is guaranteed by the inforgibility of the sender’s signature.

e Fault Detection. In the absence of a node-controlling adversary, our protocol looks
almost identical to the Data Dispersal Algorithm (a variant of Slide) of [3], with
the addition of signatures that accompany all interactions between two nodes. First,
the sender attempts to pump the 4n> /A codeword packets of the first message into
the network, with packet movement exactly as in the original Slide protocol. We
consider all possible outcomes:

1. The sender is able to insert all codeword packets and the receiver is able
to decode. In this case, the message was transmitted successfully, and our
protocol proceeds to begin transferring the next message.

2. The sender is able to insert all codeword packets, but the receiver has not
received enough to decode. In this case, the receiver floods the network with
a single-bit message indicating packet deletion has occurred.

3. The sender is able to insert all codeword packets, but the receiver cannot
decode because he has received duplicated packets. Although the sender’s
authenticating signature guarantees the receiver will not receive junk or mod-
ified packets, a corrupt node is able to duplicate valid packets. Therefore, the
receiver may receive enough packets to decode, but cannot because he has
received duplicates. In this case, the receiver floods the network with a single
packet indicating the label of a duplicated packet.

4. After some amount of time, the sender still has not inserted all codeword
packets. In this case, the duplication of old packets is so severe that the net-
work has become jammed, and the sender is prevented from inserting packets
even along the honest path that the conforming assumption guarantees. If the
sender believes the jamming cannot be accounted for by edge failures alone,
he will halt transmission and move to localizing a corrupt node.'* One con-
tribution this paper makes is to prove a lower bound on the insertion rate
of the sender for the Slide protocol in the absence of the node-controlling
adversary. This bound not only alerts the sender when the jamming he is ex-
periencing exceeds what can be expected in the absence of corrupt nodes, but
it also provides a mechanism for localizing the offending node(s).

The above four cases exhaust all possibilities. Furthermore, if the transmission
of a message is not successful, the sender is not only able to detect the fact that

14 we emphasize here the importance that the sender is able to distinguish the case that the jamming is a
result of the edge-scheduling adversary’s controlling of edges verses the case that a corrupt node is duplicating
packets. After all, in the case of the former, there is no reward for “localizing” the fault to an edge that has
failed, as all edges are controlled by the edge-scheduling adversary, and therefore no edge is inherently better
than another. But in the case a node is duplicating packets, if the sender can identify the node, it can eliminate
it and effectively reduce the node-controlling adversary’s ability to disrupt communication in the future.

Authenticated Adversarial Routing 649

malicious activity has occurred, but he is also able to distinguish the form of the
malicious activity, i.e. which case 2-4 he is in. Meanwhile, for the top case, our pro-
tocol enjoys (within a constant factor) an equivalent throughput rate as the original
Slide protocol.

e Fault Localization. Once a fault has been detected, it remains to describe how to
localize the problem to the offending node. To this end, we use digital signatures
to achieve a new mechanism we call “Routing with Responsibility.” By forcing
nodes to sign key parts of every communication with their neighbors during the
transfer of packets, they can later be held accountable for their actions. In particu-
lar, once the sender has identified the reason for failure (cases 2—4 above), he will
request all internal nodes to return festimonies, which are signatures on the rele-
vant parts of the communication with their neighbors. These testimonies consist
of three pieces of information: (1) The net number of packets a node has trans-
ferred with each neighbor; (2) For each packet p, the net number of times a node
has transferred p with each neighbor; and (3) An integer representing the net “po-
tential drop” a node has had with each neighbor (roughly, this integer relates the
relative number of packets each node was storing each time a packet is transferred
between them). Note that in terms of memory, the cost of storing these testimonies
is O(n*), controlled by item (2), which has each node storing 0 n?) signatures
from each neighbor (there are O (n?) relevant packets p).

We prove that no matter what the reason for failure, if the sender has the com-
plete testimony from every node, he can with overwhelming probability identify
and eliminate a corrupt node. Of course, malicious nodes may choose not to send
incriminating information. We handle this separately (see the “Blacklist” bullet
below).

e Processor Memory. The signatures on the communication that a node has with its
neighbors for the purpose of fault localization is a burden on the memory required
of each processor that is not encountered in the original Slide protocol. One major
challenge was to reduce the amount of signed information each node must main-
tain as much as possible, while still guaranteeing that each node has maintained
“enough” information to identify a corrupt node in the case of arbitrary malicious
activity leading to a failure of type 2—4 above. The content of Theorem 5.1 in
Sect. 5 demonstrates that the extra memory required of our protocol is a factor of
n? higher than that of the original Slide protocol.

e Incomplete Information. As already mentioned, we show that regardless of the
reason of failure 2—4 above, once the sender receives the testimonies from every
node, a corrupt node can be identified. However, this relies on the sender obtaining
all of the relevant information; the absence of even a single node’s information
can prevent the localization of a fault. We address this challenge in the following
ways:

1. We minimize the amount of information the sender requires of each node, so
that a node need not be connected to the sender for very many rounds in order
for the sender to get its information. Specifically, regardless of the reason for
failure 2—4 above, a testimony consists of only n pieces of information from
each node: one packet for each of its edges.

650

Y. Amir, P. Bunn, and R. Ostrovsky

2. If the sender does not have the n pieces of information from a node, it cannot
afford to wait indefinitely. After all, the edge-scheduling adversary may keep
the node disconnected indefinitely, or a corrupt node may simply refuse to
respond. For this purpose, we create a blacklist for non-responding nodes,
which will disallow them from transferring codeword packets in the future.
This way, anytime the receiver fails to decode a codeword as in cases 2—4
above, the sender can request the information he needs, blacklist nodes not
responding within some short amount of time, and then re-attempt to transmit
the codeword using only non-blacklisted nodes. Nodes should not transfer
codeword packets to blacklisted nodes, but they do still communicate with
them to transfer the information the sender has requested. If a new transmis-
sion again fails, the sender will only need to request information from nodes
that were participating, i.e. he will nof need to collect new information from
blacklisted nodes (although the nodes will remain blacklisted until the sender
gets the original information he requested of them). Nodes will be removed
from the blacklist and re-allowed to route codeword packets as soon as the
sender receives their information.

e The Blacklist. Blacklisting nodes is a delicate matter; we want to place malicious

nodes “playing dead” on this list, while at the same time we do not want honest
nodes that are temporarily disconnected from being on this list for too long. We
show in Theorem 5.2 and Lemma D.31 that the occasional honest node that gets
put on the blacklist will not significantly hinder packet transmission. Intuitively,
this is true because any honest node that is an important link between the sender
and receiver will not remain on the blacklist for very long, as his connection to the
sender guarantees the sender will receive all requested information from the node
in a timely manner.

Ultimately, the blacklist allows us to control the amount of malicious activity a
single corrupt node can contribute to. Indeed, we show that each failed message
transmission (cases 2—4 above) can be localized (eventually) to (at least) one cor-
rupt node. More precisely, the blacklist allows us to argue that malicious activity
can cause at most n failed transmissions before a corrupt node can necessarily be
identified and eliminated. Since there are at most n corrupt nodes, this bounds the
number of failed transmissions at n2. The result of this is that other than at most n>
failed message transmissions, our protocol enjoys the same throughput efficiency
of the old Slide protocol. The statement of this fact can be found in Theorem 5.2
in Sect. 5.

3. The Formal Model

It will be useful to describe two models in this section, one in the presence of an edge-
scheduling adversary (all nodes act “honestly”), and one in the presence of an adversary
who may “corrupt” some of the nodes in the network. In Sect. 4 we present an efficient
protocol (“Slide”) that works well in the edge-scheduling adversarial model, and then
extend this protocol in Sect. 5 to work in the additional presence of the node-controlling
adversary.

Authenticated Adversarial Routing 651

3.1. The Edge-Scheduling Adversarial Model

We model a communication network by an undirected graph G = (V, E), where
|V| = n. Each vertex (or node) represents a processor that is capable of storing informa-
tion (in its buffers) and passing information to other nodes along the edges. We assume
a synchronous network, so that there is a universal clock that each node has access to.15
The global time is divided into discrete chunks, called rounds, which consists of two
equal intervals of unit time called stages, and all nodes are synchronized in terms of
when each stage begins and ends.

We do not assume that the topology of the graph is fixed or known by the nodes.
Rather, we assume a complete graph on n vertices, where some of the edges are “up”
and some are “down”, and the status of each edge can change dynamically at any time.
We assume a fixed bandwidth/capacity P for each edge; so that an edge that is “up”
during a stage can transmit up to P bits of information across it. Our protocol of Sect. 4
requires that P € §2(logn), while the protocol of Sect. 5 requires that P € §2(k +logn),
where k is the security parameter (discussed in Sect. 3.2 below).

The network is local control, so that the only information that nodes have concern-
ing the state of the network comes from the local communication they have with their
neighbors across each edge. During each stage, each node first makes a decision (based
on packets it has received in previous stages) about which packets to send across each
edge, then it sends these packets, and finally the node receives packets that were sent
to it (across edges that were “up” during that stage). In this paper, the constraints we
are concerned with in terms of the processors is with respect to processor memory; we
ignore computation costs and assume that the computation required of each node at the
start of each stage (in terms of making routing decisions) happens instantaneously.

There are two designated vertices, called the sender S and the receiver R, who wish to
communicate with each other through this network. We assume the sender has bundled
the information he wishes to send the receiver into a sequence of “packets” {p1, p2,...}
of size at most P. The sole purpose of the network is to transmit the messages from S
to R, so § is the only node that introduces new messages into the network, and R
is the only node that removes them from the network (although below we introduce
a node-controlling adversary who may corrupt the intermediate nodes and attempt to
disrupt the network by illegally deleting/introducing messages). As mentioned in the
Introduction, the three commodities we care about are Correctness, Throughput, and
Processor Memory. We define each of these notions in terms of the network model:

1. Correctness. A protocol is correct if the sequence of packets output by the receiver
is a prefix of packets that were sent by the sender, without duplication or omission.

2. Throughput (Rate). This measures the number of packets that the receiver has
obtained as a function of the number of rounds that have passed.

3. Processor Memory. This measures the memory required of each node by the pro-
tocol, i.e. the maximum number of packets and/or control information (measured
in bits) an internal node may be required to store at any moment in time. Memory
may be a function of the size of the network 7, but is independent of the number
of packets to be transferred.

15 Although synchronous networks are difficult to realize in practice, we can further relax the model to
one in which there is a known upper bound on the amount of time an active edge can take to transfer a packet.

652 Y. Amir, P. Bunn, and R. Ostrovsky

Although the edges in our model are bidirectional, it will be useful to consider each link
as consisting of two directed edges. Except for the conforming restriction (see below),
we allow the edges of our network to fail and resurrect arbitrarily. We model this via
an Edge-Scheduling Adversary, who controls the edges of the network: at any time, the
edge-scheduling adversary controls whether an edge is able to deliver a packet or not.
Note that the edge-scheduling adversary only controls the status of the edges, i.e. he
cannot duplicate or alter the packets that pass across the edges (aside from preventing
them from being delivered by deactivating an edge). Below, we introduce a second
adversary that will be able to modify and duplicate packets (as well as many other
forms of destructive behavior); we describe a protocol that handles a coordinated attack
by both adversaries in Sect. 5.

We say that an edge is active during a given stage/round if the edge-scheduling ad-
versary allows that edge to remain “up” for the entirety of that stage/round. We impose
one restriction on the edge-scheduling adversary:

Definition 3.1. An edge-scheduling adversary is conforming if for every round of the
protocol, there exists at least one path between S and R consisting of edges that active
for the entirety of the round.

For a given round t, we will refer to the path guaranteed by the conforming assump-
tion as the active path of round t. Notice that although the conforming assumption guar-
antees the existence of an active path for each round, it is not assumed that any node
(including S and R) is aware of what that path is. Furthermore, this path may change
from one round to the next. The edge-scheduling adversary cannot affect the network in
any way other than controlling the status of the edges. In the next section, we introduce
a node-controlling adversary who can take control of the nodes of the network.'°

3.2. The Node-Controlling + Edge-Scheduling Adversarial Model

This model begins with the edge-scheduling adversarial model described above, and
adds a polynomially bounded Node-Controlling Adversary that is capable of corrupting
nodes in the network. The node-controlling adversary is malicious, meaning that the
adversary can take complete control over the nodes he corrupts, and can therefore force
them to deviate from any protocol in whatever manner he likes. We further assume that
the adversary is dynamic, which means that he can corrupt nodes at any stage of the
protocol, deciding which nodes to corrupt based on what he has observed thus far.!” For
a thorough discussion of these notions, see [13] and references therein.

As in Multi-Party Computation (MPC) literature, we will need to specify an “access-
structure” for the adversary:

16 The distinction between the two kinds of adversaries is made solely to emphasize the contribution of
this paper. Edge-scheduling adversaries (as described above) are commonly used to model edge failures in
networks, while the contribution of our paper is in handling the additional presence of a node-controlling
adversary, which has the ability to corrupt the nodes of the network.

17 Although the node-controlling adversary is dynamic, he is still constrained by the conforming assump-
tion. Namely, the adversary may not corrupt nodes that have been, or will be, part of any active path connecting
sender and receiver.

Authenticated Adversarial Routing 653

Definition 3.2. A node-controlling adversary is conforming if he does not corrupt any
nodes who have been or will be a part of any round’s active path.

Apart from this restriction, the node-controlling adversary may corrupt whoever he
likes (i.e. it is not a threshold adversary). Note that the conforming assumption implicitly
demands that S and R are incorruptible, since they are always a part of any active path.
Also, this restriction on the adversary is really more a statement about when our results
remain valid. This is similar to e.g. threshold adversary models, where the results are
only valid if the number of corrupted nodes does not exceed some threshold value ¢.
Once corrupted, a node is forever under the control of the node-controlling adversary
(although the adversary may choose to have the node behave honestly).

Notice that because correctness, throughput, and memory are the only commodities
that our model values, an honest-but-curious adversary is completely benign, as privacy
does not need to be protected!'® (indeed, any intermediate node is able to read any packet
that is passed through it). Our techniques for preventing/detecting malicious behavior
will be to incorporate a digital signature scheme that will serve the dual purpose of val-
idating information that is passed between nodes, as well as holding nodes accountable
for information that their signature committed them to.

We assume that there is a Public-Key Infrastructure (PKI) that allows digital signa-
tures. In particular, before the protocol begins we choose a security parameter k suf-
ficiently large and run a key generation algorithm for a digital signature scheme, pro-
ducing n = |G| (secret key, verification key) pairs (sky, vky). As output to the key
generation, each processor N € G is given its own private signing key sky and a list of
all n signature verification keys vkg for all nodes NeG.In particular, this allows the
sender and receiver to sign messages to each other that cannot be forged (except with
negligible probability in the security parameter) by any other node in the system.

4. Routing Protocol in the Edge-Scheduling Adversarial Model

In this section we formally describe our edge-scheduling protocol, which is essentially
the protocol of [3] (we have modified the specifics in order to fit our network model
and allow analysis in this model, but have not changed the original protocol in any
substantial way). As mentioned in the Introduction, this protocol is motivated by the
Slide protocol developed in [2,6], and [3], and as such we will refer to the protocol
presented in this section as “Slide.”

4.1. Definitions and High-Level Ideas

Recall from Sect. 3.1 that the goal of the protocol is to transmit a sequence of packets
{p1, p2, ...} of size P from the sender S to the receiver R.

To allow for packets to become stuck in isolated nodes (which may be possible
based on the dynamic topology of the network graph, as controlled by the scheduling-
adversary), we will utilize error correction (see e.g. [13]).!° Specifically, the packets

18 1f desired, privacy can be added trivially by encrypting all packets.
19 In this paper, we assume the existence of an error-correcting code with information rate o and error
rate A.

654 Y. Amir, P. Bunn, and R. Ostrovsky

{p1, p2, ...} are first grouped together into messages {m, my, ...}, with each message
6on>

consisting of >5* packets. The messages are then expanded by a factor of 1/0 into
codewords {cy, c2, ...}, and each codeword is partitioned into codeword packets of size
P to be transmitted through the network from S to R. We emphasize the distinction
between the original packets that the sender is ultimately trying to get to the receiver,
verses the codeword packets that are the actual contents that are relayed through the
network. We will frequently use the terminology “packet” when referring to “codeword
packets”; relying on context to disambiguate which type of packet we mean.

We assume that the codewords are formed as part of the setup of our protocol. Given
the above construction of codewords, we emphasize the following quantity of codeword
packets per codeword:

6 3
D = % = number of (codeword) packets per codeword. (D)

Note that the only “noise” in our network results from undelivered packets or out-dated
packets (in the edge-scheduling adversarial model, any packet that R receives has not

been altered). Therefore, since each codeword consists of D = % packets, by defini-

tion of A, if R receives (1 — A)D = (1 — A)(%) packets corresponding to the same
codeword, he will be able to decode:

Fact 1. If the receiver has obtained D — 6n° = (1 — k)(%) packets from any code-
word, he will be able to decode the codeword to obtain the corresponding message.

Each node will maintain a stack (i.e. FILO buffers) along each of its (directed) edges
that can hold up to 2n packets concurrently. Because our model allows for edges to go
up/down, we force each node to keep incoming and outgoing buffers for every possible
edge, even if that edge is not part of the graph at the outset.

We introduce now the notion of height of a buffer, which will be used to determine
when packets are transferred and how packets are shuffled between the internal buffers
of a node between rounds.

Definition 4.1. The height of an incoming/outgoing buffer is the number of packets
currently stored in that buffer. Also, the height of a packet refers to its position in the
buffer/stack, i.e. one plus the number of packets below it.

The presence of an edge-scheduling adversary that can force edges to fail at any time
complicates the interaction between the nodes. Note that our model does not assume
that the nodes are aware of the status of any of its adjacent edges, so failed edges can
only be detected when information that was supposed to be passed along the edge does
not arrive. We handle edge failures as follows. First, the incoming/outgoing buffers at
either end of an edge will be given a status (normal or problem). Also, to account for
a packet that may be lost due to edge failure during transmission across that edge, a
node at the receiving end of a failed edge may have to leave room in its corresponding

Authenticated Adversarial Routing 655

incoming buffer.?? We refer to this gap as a ghost packet, but emphasize that the height
of an incoming buffer is not affected by ghost packets (by definition, height only counts
packets that are present in the buffer). Similarly, when a sending node “sends” a packet
across an edge, it actually only sends a copy of the packet, leaving the original packet
in its outgoing buffer. We will refer to the original copy left in the outgoing buffer as a
flagged packet, and note that flagged packets continue to contribute to the height of an
outgoing buffer until they are deleted.

Codewords are transferred sequentially, so that at any time, the sender is only insert-
ing packets corresponding to a single codeword. We refer to the rounds for which the
sender is inserting codeword packets corresponding to the ith codeword as the ith trans-
mission. Lemma 4.9 below states that after the sender has inserted D — 2n> packets cor-
responding to the same codeword, the receiver can necessarily decode. Therefore, when
the sender has inserted D — 21> packets of some codeword, he will clear his outgoing
buffers and begin distributing packets corresponding to the next codeword.

4.2. Detailed Description of the Edge-Scheduling Protocol

We describe now the two main parts of the edge-scheduling adversarial routing protocol:
the Setup and the Routing Phase. See Appendix A for pseudo-code.

Setup Each internal (i.e. not S or R) node has the following buffers:

1. Incoming Buffers. Recall that we view each bidirectional edge as consisting of two
directed edges. Then for each incoming edge, a node will have a buffer that has the
capacity to hold 2n packets at any given time. Additionally, each incoming buffer
will be able to store a “Status” bit (‘0 for “normal” and ‘1’ for “problem”), the
label of the “Last-Received” packet, and the “Round-Received” index (the round
in which this incoming buffer last accepted a packet, see Definition 4.4 below).
The way that this additional information is used will be described in the “Routing
Rules for Receiving Node” section below.

2. Outgoing Buffers. For each outgoing edge, a node will have a buffer that can hold
up to 2n packets at any given time. Like incoming buffers, each outgoing buffer
will also be able to store a status bit, the index label of one packet (called the

20 Although the original Slide protocol does not require room to be left in incoming buffers, our technique
for proving optimal throughput rate requires this modification: At a high level, the proof regarding throughput
will require that a packet never increase in height from the time it is inserted into the network by the sender.
Thus, whenever a packet is transferred, the height it assumes in the receiving node’s buffer must be no greater
than the height it had in the sending node’s buffer. While this is the guiding principle of Slide, in our network
setting and version of the Slide protocol, this property is threatened in the following scenario: Suppose there
is a round in which node A’s incoming buffer along E(A, B) has fewer packets than B’s outgoing buffer
along that edge; a condition that leads the Slide protocol to transfer a packet pg from B to A. But as this
packet is being exchanged, the connecting edge fails before it is delivered. The edge remains down for some
time, during which A’s other edges remain active, and A’s buffers fill because it is getting packets from other
neighbors (our version of Slide keeps its buffers balanced, so that even A’s incoming buffer along E(A, B)
is filling during this time). Then once E(A, B) becomes active again, our protocol must decide what to do
with pg. If no spot was reserved for pg, then either A rejects pg, or A accepts pg at a height higher than pg
had in B’s buffer (or A must shift other packets up to make room for pg). Both these scenarios are problematic
for our throughput proof, the former because our proof requires that an active edge is always utilized when it
has a packet to transfer, and the latter because it violates the property that packets always decrease in height.

656 Y. Amir, P. Bunn, and R. Ostrovsky

Stage A B
H 4 := Height of buffer along E(A, B) Hp := Height of buffer along E(A, B)
1 Height of flagged p. (if there is one) <—> Round prev. packet was received
Round prev. packet was sent
Send packet if:
2 e Hy>Hp OR —

e B did not rec. prev. packet sent

Fig. 1. Description of communication exchange along directed edge E(A, B) during the Routing Phase of
any round.

“Flagged” packet), and a “Problem-Round” index (index of the most recent round
in which the status bit switched to ‘1°).

The receiver will only have incoming buffers (with capacity of one) and a large Storage
Buffer that can hold up to D packets. Similarly, the sender has only outgoing buffers
(with capacity 2n) and the input stream of packets, which are clustered into messages
and expanded into codewords. The codeword packets for the current codeword are dis-
tributed to the sender’s outgoing buffers whenever there is room for them there.

Also as part of the Setup, all nodes learn the relevant parameters (P, n, A, and o).

Routing Phase As indicated in Sect. 3.1, we assume a synchronous network, so that
there are well-defined rounds in which information is passed between nodes. Each round
consists of two units of time, called Stages. The formal treatment of the Routing Phase
can be found in the pseudo-code in Appendix A. Informally, Fig. 1 below considers a
directed edge E(A, B) from A (including A = S) to B (including B = R), and describes
what communication each node sends in each stage.

In addition to this communication, each node must update its internal state based on
the communication it receives. In particular, from the communication A receives from
B in Stage 1 of any round, A can determine if B has received the most recent packet A
sent. If so, A will delete this packet and switch the status of the outgoing buffer along
this edge to “normal.” If not, A will keep the packet as a flagged packet, and switch
the status of the outgoing buffer along this edge to “problem.” At the other end, if B
does not receive A’s Stage 1 communication or B does not receive a packet it was
expecting from A in Stage 2, then B will leave a gap in its incoming buffer (termed a
“ghost packet”) and will switch this buffer’s status to “problem.” On the other hand, if
B successfully receives a packet in Stage 2, it will switch the buffer back to “normal”
status.

Re-Shuffle Rules At the end of each round, nodes will shuffle the packets they are
holding according to the following rules:

1. Take a packet from the fullest buffer and shuffle it to the emptiest buffer, provided
the difference in height is at least two (respectively one) when the packet is moved
between two buffers of the same type (respectively when the packet moves from
an incoming buffer to an outgoing buffer). Packets will never be re-shuffled from
an outgoing buffer to an incoming buffer. If two (or more) buffers are tied for

Authenticated Adversarial Routing 657

having the most packets, then a packet will preferentially be chosen from incoming
buffers over outgoing buffers. Conversely, if two (or more) buffers are tied for the
emptiest buffer, then a packet will preferentially be given fo outgoing buffers over
incoming buffers. Ties for which buffer to choose are broken in a round-robin
fashion.

2. Repeat the above step until the difference between the fullest buffer and the emp-
tiest buffer does not meet the criterion outlined in Step 1.

Recall that when a packet is shuffled locally between two buffers, packets travel in a
FILO manner, so that the top-most packet of one buffer is shuffled to the top spot of
the next buffer. When an outgoing buffer has a flagged packet or an incoming buffer
has a ghost packet, we use instead the following modifications to the above re-shuffle
rules. Recall that in terms of measuring a buffer’s height, flagged packets are counted
but ghost packets are not.

— Outgoing buffers do not shuffle flagged packets. In particular, if Rule 1 above se-
lects to transfer a packet from an outgoing buffer, the top-most non-flagged packet
will be shuffled. This may mean that a gap is created between the flagged packet
and the next non-flagged packet.

— Incoming buffers do not re-shuffle ghost packets. In particular, ghost packets will
remain in the incoming buffer that created them, although we do allow ghost pack-
ets to slide down within its incoming buffer during re-shuffling. Also, packets shuf-
fled into an incoming buffer are not allowed to occupy the same slot as a ghost
packet?! (they will take the first non-occupied slot).

The sender and receiver have special rules for re-shuffling packets. Namely, during the
re-shuffle phase the sender will fill each of his outgoing buffers (in an arbitrary order)
with packets corresponding to the current codeword. Meanwhile, the receiver will empty
all of its incoming buffers into its storage buffer. If at any time R has received enough
packets to decode the current codeword (Fact 1 says this amount is at most D — 6n3),
then R outputs the corresponding message, and deletes all packets corresponding to this
codeword from its storage buffer (also, R will not store any packets that it receives in
future rounds that correspond to this codeword).

4.3. Analysis of the Edge-Scheduling Adversarial Protocol

We now evaluate our edge-scheduling protocol in terms of our three measurements of
performance: correctness, throughput, and processor memory.?*> The following theorem

21 Note that because ghost packets do not count towards height, there appears to be a danger that the re-
shuffle rules may dictate a packet gets transferred into an incoming buffer, and this packet either has no place
to go (because the ghost packet occupies the top slot) or the packet increases in height (which would violate
Claim B.13 in Appendix B). However, because only incoming buffers are allowed to re-shuffle packets into
other incoming buffers, and the difference in height must be at least two when this happens, neither of these
troublesome events can occur.

22 As mentioned, the Slide protocol was developed and analyzed in a series of papers prior to this paper,
including [2-6], and [14]. However, none of these papers considered the network setting encountered in the
present paper, and as such Theorem 4.3 (and more specifically the fact that the Slide protocol enjoys linear
throughput-rate in synchronous networks) has not been proven previously.

658 Y. Amir, P. Bunn, and R. Ostrovsky

concerns the memory requirements of our edge-scheduling protocol, which is bottle-
necked by the O(n?) packets that each internal node has the capacity to store in its
buffers.

Theorem 4.2. The edge-scheduling protocol described in Sect. 4.2 (and in the pseudo-
code in Appendix A) requires at most O (n? P) bits of memory of the internal processors.

Proof. Each internal node needs to hold at most O (n?) packets of size P at any time
(nodes have 2(n — 2) buffers, each able to hold 2n packets).23 O

The throughput standard expressed in Theorem 4.3 below will serve an additional
purpose when we move to the node-controlling adversary setting: the sender will know
that malicious activity has occurred when the throughput standard of Theorem 4.3 is
not observed. Note that the theorem below implicitly states that our edge-scheduling
protocol is correct.

Theorem 4.3. The transmission of every message m; takes at most 3D rounds; that is,
within 3D rounds of the time the sender begins inserting packets corresponding to any
codeword c;, the receiver will have received enough codeword packets to decode the
message. Thus, for any x > 3D, after x rounds R has received §2(x) packets from the
input stream of packets { p1, p2, ...}, and thus our edge-scheduling adversarial protocol
enjoys a linear throughput rate.

The first statement of the theorem implies that for any y € N, after 3y D rounds R
will have received at least y messages. This in turn implies the second statement, since

each message is comprised of @ (n°) packets from the original packet stream and D =

62—3 = O n3). The proof of the first statement of Theorem 4.3 is rather involved, and

will require many lemmas and subclaims that follow from the Routing and Re-Shuffle
Rules of Sect. 4.1. We sketch the proof of this theorem below. Pseudo-code, as well as
all technical proofs relying heavily on the pseudo-code, can be found in Appendices A
and B. We begin with the following definitions:

Definition 4.4. We will say that a packet is accepted by a buffer B in round t if B
receives and stores that packet in round t, either due to a packet transfer or re-shuffling.

Definition 4.5. 'We say that the sender inserts a packet into the network in round t if
any internal node (or R) accepts the packet (as in Definition 4.4) in round t. Note that
this definition does not require that S receives the verification of receipt, so S may not
be aware that a packet was inserted.

Definition 4.6. The sender is blocked from inserting any packets in some round t if
the sender is not able to insert any packets in t (see Definition 4.5). Let B denote the
number of rounds in a transmission T that the sender was blocked.

23 Note that for the Slide protocol in this section, P € §2(logn) to account for the fact that a codeword
packet must carry with it £2(logn) bits of information regarding its position in the codeword. In the next
section, we will require that P € §2(k + logn), where k is the security parameter, so that each packet can
carry a signature.

Authenticated Adversarial Routing 659

The following definition formalizes the notion of “potential,” and will be necessary
to prove throughput-performance bounds. A good way to think about potential is to
imagine each packet contributes to a buffer’s potential by an amount proportional to the
height of the packet in the buffer. This way, when a packet is transferred from (the top of,
since packets are transferred FILO) one buffer to (the top of) another buffer, there will
be a drop in overall potential (the sending node will decrease in potential by an amount
greater than the increase in potential to the receiving node, based on the routing rules
of the Slide protocol). This net potential drop for each packet transfer will be important
for arguing a linear throughput rate, see e.g. Lemma 4.11.

Definition 4.7. For any buffer B ¢ S, R that has height % at time #, define the potential
of B at time ¢, denoted by <D,B , to be

h
hh+1
@f::é izi(2+).
i=1

For any internal node N € G \ {R, S}, define the node’s potential d),N to be the sum of
its buffer’s potentials:
M= Y of

Buffers B of N

Define the network potential @; at time ¢ to be the sum of all the internal buffers’ poten-

tials:
b, = Z oM.
NeG\({R,S}

It will be useful to break an internal node’s potential into two parts. The first part,
which we term packet duplication potential, is the sum of the heights of the flagged
packets in the node’s outgoing buffers that have already been accepted by the neigh-
boring node (as in Definition 4.4). Recall that a flagged packet is a packet that was sent
along an outgoing edge, but the sending node is maintaining a copy of the packet until it
gets confirmation of receipt. Therefore, the contribution of packet duplication potential
to overall network potential is the extraneous potential; it represents the over-counting
of duplicated packets. We emphasize that not all flagged packets count towards packet
duplication potential, since packets are flagged as soon as the sending node decides to
send a packet, but the flagged packet’s height does not count towards packet duplication
potential until the receiving node has accepted the packet (which may happen in a later
round or not at all).

The other part of network potential will be termed non-duplicated potential, and is
the sum of the heights of all non-flagged packets together with flagged packets that
have not yet been accepted. Note that the separation of potential into these two parts
is purely for analysis of the Slide protocol; indeed the nodes are not able to determine
if a given flagged packet contributes to packet duplication or non-duplicated potential.
For convenience, we will often refer to (network) non-duplicated potential simply as
(network) potential (the meaning should be clear from context).

660 Y. Amir, P. Bunn, and R. Ostrovsky

Notice that when a node accepts a packet, its own (non-duplicated) potential instan-
taneously increases by the height that this packet assumes in the relevant incoming
buffer. Meanwhile, the sending node’s non-duplicated potential drops by the height
that the packet occupied in its outgoing buffer, and there is a simultaneous and equiv-
alent increase in this sending node’s packet duplication potential. Note that if we did
not introduce the notion of duplicated potential, it would not necessarily be the case
that network potential never increases as a result of a packet transfer. In particular,
Lemma 4.11 would no longer be valid, and the proof of Theorem 4.3 becomes more
difficult.

Definition 4.8. The height of a packet in an incoming/outgoing buffer is the spot it
occupies in that buffer.

We now (restate and) prove the main theorem of Sect. 4.3 (the lemmas required in
the proof will be stated within the proof, and proven after the proof of the theorem).

Theorem 4.3. The transmission of every message m; takes at most 3D rounds; that is,
within 3D rounds of the time the sender begins inserting packets corresponding to any
codeword c;, the receiver will have received enough codeword packets to decode the
message. Thus, for any x > 3D, after x rounds R has received 2 (x) packets from the
input stream of packets {p1, p2, ...}, and thus our edge-scheduling adversarial protocol
enjoys a linear throughput rate.

Proof. The second statement follows from the first, as discussed above, so it remains
to prove the first statement. Let t denote the round that S first tries to insert packets
corresponding to a new codeword b; into the network. Considering the rounds between
t and t + 3D, we apply the pigeonhole principle to argue that either D rounds pass in
which § can insert a packet, or 2D rounds pass in which no packets are inserted. In the
former case, R can decode by Lemma 4.9:

Lemma 4.9. Ifat any time D — 2n? distinct packets corresponding to some codeword
b; have been inserted into the network, then R can decode message m;.

It remains to prove the theorem in the latter case. Note that the network non-
duplicated potential drops by at least n in each of the 2D rounds in which no packets
are inserted (a total drop of 2rn D) by Lemma 4.10:

Lemma 4.10. [f at any point in any transmission T, the number of blocked rounds is
Br, then there has been a decrease in the network’s non-duplicated potential by at least

l’lﬂT.

Meanwhile, the increase to network potential between t and t + 3D caused by du-
plicated potential is at most by 2n> — 8n? + 8n by Lemma 4.11:

Lemma 4.11. Every change in network potential comes from one of the following
three events:

Authenticated Adversarial Routing 661

1. S inserts a packet into the network.

2. R receives a packet.

3. A packet that was sent from one internal node to another is accepted; the verifica-
tion of packet receipt is received by the sending node; a packet is shuffled between
buffers of the same node; or a packet is moved within a buffer.

Furthermore, changes in network potential due to item (1) are strictly non-negative
and changes due to item (2) are strictly non-positive. Also, changes in network non-
duplicated potential due to item (3) are strictly non-positive. Finally, at all times, net-
work packet duplication potential is bounded between zero and 2n> — 8n* + 8n.

Combining these two facts, we have that (not counting changes in potential caused by
packet insertions) the network potential drops by at least 2n.D — 21> +8n” — 8n between
t and t + 3D. Since network potential can never be negative, we must account for this
(non-duplicated) potential drop with positive contributions to potential change.

Note that the potential already in the network at the start of t adds to the potential at
most 4n* — 14n° + 8n” + 8n:

Claim. The maximum amount of potential (see Definition 4.7) in the internal buffers
of the network at any time is 2n(2n + 1)(n — 2)2.

Proof. A buffer contributes the most to network potential when it is full, in which case
it contributes leil i =n(2n + 1). Since there are 2(n — 2) buffers per internal node,
and n — 2 internal nodes, the maximum amount of potential in the internal buffers is as
claimed. O

Therefore, packet insertions must account for the remaining change in potential of
(2nD —2n° + 8n? — 8n) — (4n* — 14n> + 8n% 4+ 8n) =2nD — 4n* + (120> — 16n) >
2nD — 4n* (where the last inequality assumes n > 3). Lemma 4.11 (stated above) also
indicates that the only way network potential can increase (other than the contribution
of packet duplication potential which has already been accounted for) is when S inserts
a packet (a maximum increase of 2n per packet), so it must be that S inserted at least
(2nD —4n*)/2n = D —2n3 packets into the network between t and t + 3D, and again
R can decode by Lemma 4.9 (stated above). O

The following Lemma will bound the number of rounds that S needs to insert packets
corresponding to the same codeword.

Lemma 4.9. Ifat any time D — 2n? distinct packets corresponding to some codeword
b; have been inserted into the network, then R can decode message m; .

Proof. The following claim guarantees that every packet that has been inserted into
the network has either reached R or is in the incoming/outgoing buffer of an internal
node:

Claim. Before the end of any transmission T, any packet that was inserted into the
network during T is either in some buffer (perhaps as a flagged packet) or has been
received by R.

662 Y. Amir, P. Bunn, and R. Ostrovsky

Proof. Our protocol dictates that when a node sends a packet to a neighboring node,
it maintains a copy of the packet until it gets confirmation of receipt from the neighbor.
We restate this as Claim B.14 in Appendix B, where it is proven in terms of the pseudo-
code.]

The maximum number of packets that can be stored in some incoming/outgoing
buffer of an internal node is bounded by 4n3: Each node has (n — 2) outgoing buffers
(one to each node except itself and §) and (n — 2) incoming buffers (one from each
node except itself and R), and thus a total of 2(n — 2) buffers. Each of these buffers has
capacity 2n, and there are n — 2 internal nodes, so the internal buffer capacity of the
network is 4n(n — 2)2. Therefore, if D — 2n3 distinct packets corresponding to b; have

been inserted, then R has necessarily received D — 6n> = 1- A)(%) of these, and so
R can decode message m; by Fact 1. (]

The following Lemma will be useful in bounding the number of rounds in which no
packets are inserted.

Lemma 4.10. [f at any point in any transmission T, the number of blocked rounds is
Br, then there has been a decrease in the network’s non-duplicated potential by at least

l’l,BT.

Proof. The idea of the proof is to argue that each blocked round creates a drop in
non-duplicated potential of at least n as follows. If the sender is blocked from inserting
a packet, the node N adjacent to the sender (along the guaranteed active path for that
round) will necessarily have a full incoming buffer along its edge to the sender. The fol-
lowing claim states that buffers are balanced at all times, and hence all of N’s outgoing
buffers are also full:

Claim. After re-shuffling, (and hence at the very end/beginning of each round), all
of the buffers of each node are balanced. In particular, there are no incoming buffers
that have height strictly bigger than any outgoing buffers, and the difference in height
between any two buffers is at most one.

Proof. The Re-Shuffle rules dictate that if there is ever a buffer whose height is at least
two bigger than another buffer, then a packet will be shuffled from the higher buffer to
the lower one. Similarly, packets are preferentially taken from incoming buffers and
shuffled to outgoing buffers if there is ever an incoming buffer with larger height than
an outgoing buffer. We restate this as Claim B.3 in Appendix B, where it is proven in
terms of the pseudo-code. (]

Meanwhile, at the opposite end of the active honest path, the node adjacent to the
receiver will necessarily send a packet to the receiver if there is anything in its outgoing
buffer along this edge, and this will result in a drop of potential of whatever height the
packet had in the outgoing buffer.

Therefore, near the front-end of the active honest path, the buffers are full, while at
the end of the path, a packet will be transferred to height zero (in the receiver’s buffer).

Authenticated Adversarial Routing 663

Intuitively, it therefore seems that tracking all packet movements along the active honest
path should result in a drop of potential of at least 2n. As the counter-example in the
footnote shows,?* this argument does not work exactly (we are only guaranteed a drop
of n), but the structure of the proof is guided by this intuition.

This lemma is restated in Lemma B.18 in Appendix B, where we prove it based on
the pseudo-code of our protocol. (]

Lemma 4.11. Every change in network potential comes from one of the following
three events:

1. S inserts a packet into the network.

2. R receives a packet.

3. A packet that was sent from one internal node to another is accepted; the verifica-
tion of packet receipt is received by the sending node; a packet is shuffled between
buffers of the same node; or a packet is moved within a buffer.

Furthermore, changes in network potential due to item (1) are strictly non-negative
and changes due to item (2) are strictly non-positive. Also, changes in network non-
duplicated potential due to item (3) are strictly non-positive. Finally, at all times, net-
work packet duplication potential is bounded between zero and 2n> — 8n* + 8n.

Proof. Since network potential counts the heights of the internal nodes’ buffers, it
only changes when these heights change, which in turn happens exclusively when there
is packet movement. Note that all packet movement falls under one of two categories:
(1) Packets transferred between two nodes; and (2) Packets re-shuffled between the
buffers on one node. Both of these fall under one of the three items listed in the lemma,
thus proving the first statement in the lemma.

That network potential changes due to packet insertion by S are strictly non-negative
is obvious (either the receiving node’s potential increases by the height the packet as-
sumed, or the receiving node is R and the packet does not contribute to potential). Sim-
ilarly, that potential change upon packet receipt by R is strictly non-positive is clear,
since packets at R do not count towards potential (see Definition 4.7). Also, since only
flagged packets (but not necessarily all of them) contribute to network packet dupli-
cation potential, the largest this value can have is the maximum height of a flagged
packet times the maximal possible number of flagged packets in the network. By the
fact that outgoing buffers have at most one flagged packet at any time,> there are at
most (n — 2)? flagged packets in the network at any given time, and each one has max-
imal height 2n (the maximum capacity of each buffer), so network packet duplication
potential is bounded by 213 — 8n? 4 8n.

24 An initial guess that the minimal potential drop equals “2n” for each blocked round is incorrect. Con-
sider the case where the active path consists of all n — 2 intermediate nodes with the following current state:
the first two nodes’ buffers all have height 2n, the next pair’s buffers all have height 2n — 1, and so forth,
down to the last pair of internal nodes, whose buffers all have height n + 2. Then the drop in the network’s
non-duplicated potential is only n 4 2 for this round.

2 Intuitively, an outgoing buffer has at most one flagged packet since the buffer will continue trying to
send this packet until it receives confirmation of receipt from the neighboring node. We restate and prove this
fact in terms of the pseudo-code in Claim B.10 in Appendix B.

664 Y. Amir, P. Bunn, and R. Ostrovsky

It remains to prove that changes in network non-duplicated potential due to item
(3) are strictly non-positive. To do this, we look at all places where there is packet
movement in our protocol, and argue each will result in a non-positive change to non-
duplicated potential. Clearly potential changes caused by re-shuffling packets is non-
positive, since the re-shuffle rules dictate that packets will only be re-shuffled if they
decrease in height or stay the same height in the new buffer.

Meanwhile, when a packet is sent across an edge between two nodes, there are two
possibilities: the receiving node accepts the packet (as in Definition 4.4), or the receiv-
ing node has already accepted this packet (but the sending node is sending it again
because it never got confirmation of receipt). In the latter case, the packet is not stored
by the receiving node, and the sending node’s copy contributes towards duplicated po-
tential within the outgoing buffer, so non-duplicated potential is not affected. In the for-
mer case, the flagged packet in the sending node’s outgoing buffer still counts towards
non-duplication potential. Notice that upon receipt there are two changes to network
non-duplicated potential: it increases by the height the packet assumes in the incoming
buffer it arrived at, and it decreases by the height the packet had in the corresponding
outgoing buffer (this decrease is because the flagged packet in the outgoing buffer will
count towards packet duplication potential instead of non-duplicated potential the in-
stant the packet is accepted). The decrease outweighs the increase since the packet’s
height in the incoming buffer is less than or equal to the height it had in the corre-
sponding outgoing buffer, which follows from the protocol rules which specify a packet
transfer should occur if and only if the sending buffer has height strictly larger than the
receiving buffer.%6

This lemma is restated in Lemma B.4 in Appendix B, where we prove it based on the
pseudo-code of our protocol.]

5. Routing Against a (Node-Controlling + Edge-Scheduling) Adversary

In this section we introduce a routing protocol for networks susceptible to both edge
failures and corruptible nodes. The protocol will be an extension of the Slide protocol
presented in Sect. 4, with added mechanisms to handle the fact that nodes cannot be
relied upon to behave honestly (i.e. they may deviate from protocol specifications). We
will refer to this protocol as “Mal-Slide,” to emphasize it is (as will be proven below)
secure against a malicious node-controlling adversary.

The main difference between the Slide protocol of Sect. 4 and the Mal-Slide pro-
tocol will be the introduction of control information, which will contain the relevant
pieces of (signed) information necessary to identify a corrupt node. Notice that the con-
forming assumption placed on the node-controlling adversary implicitly states that the
sender and receiver are incorruptible. The Mal-Slide protocol makes use of this by dic-
tating that these two nodes (and primarily the sender) bear the burden of detecting faults

26 Even if the sending and/or receiving node’s buffer heights have changed since the original communi-
cation that prompted the packet transfer, the fact that flagged packets are not re-shuffled or shifted down to
fill-gaps ensures that the flagged-packet maintains its original height; while the use of ghost packets ensures
that the height assumed by the transferred packet (when it is finally accepted) is exactly one greater than the
originally communicated height.

Authenticated Adversarial Routing 665

(transmission failures caused by misbehaving nodes), and localizing the faults to the of-
fending node(s). In particular, the control information used to identify a corrupt node
will be collected by the sender, and we must allocate system resources (e.g. processor
memory and bandwidth) to store this information and transfer it through the network to
the sender.

Intuitively, the Mal-Slide protocol can be thought of as cycling through two disjoint
phases:

Routing Phase. Codeword packets are transferred through the network from the sender
to the receiver, using the same protocol rules as in the Slide protocol of Sect. 4.
The only two differences will be: (1) All codeword packets are signed by the sender
upon insertion (for authentication, i.e. to protect against packet modification and/or
the insertion of junk packets), and this signature accompanies the codeword packet
until it is received by the receiver; and (2) One packet of “control information” is
piggy-backed onto the transfer of codeword packets, in a manner to be described
below.

Regulation Phase. When a message transmission fails (the receiver could not decode
the current codeword after the Routing Phase), the Regulation Phase begins. The in-
ternal nodes send back the control information to the sender, who uses it to iden-
tify a corrupt node. Once identified, corrupt nodes are eliminated from the net-
work, meaning all nodes are forbidden to communicate in any way with corrupt
nodes.

In actuality, these two phases happen concurrently, so that the Mal-Slide protocol does
not waste time waiting for the control information to make its way back to the sender be-
fore beginning the next Routing Phase. Instead, the control information will be transmit-
ted to the sender by piggy-backing it onto the ordinary communication of each round,
in a manner to be described below.

In the next four subsections, we describe more precisely the Mal-Slide protocol, and
in particular exactly what control information is collected, how it is transferred back
through the network to the sender, and how this information is used by the sender to
identify corrupt nodes. We then state and prove in Sect. 5.5 theorems concerning the
correctness, throughput, and memory requirements of the Mal-Slide protocol.

5.1. Control Information

Anytime two nodes transfer a codeword packet between them, they will also transfer
(signed) control information that contains values the nodes have been storing and up-
dating through the course of the transmission. In particular, for any pair of nodes (A, B)
and directed edge E(A, B):

1. Nodes A and B maintain a running tally of the total number of codeword packets
A has sent to B in the current transmission.

2. Every time A sends a packet to B, the packet had some height / in A’s outgo-
ing buffer, and the packet assumed some height 4’ in B’s incoming buffer. The
height difference h — h’ represents the potential drop that resulted due to the
packet transfer (see Definition 4.7), which was shown in Lemma 4.11 to be al-
ways non-negative (assuming honest behaving nodes). Nodes A and B maintain a

666 Y. Amir, P. Bunn, and R. Ostrovsky

running tally of the cumulative potential drop as a result of codeword packets A
has sent to B in the current transmission.

3. For every codeword packet p that A has sent to B in the current transmission,
A and B maintain a running tally of the total number of times A has passed this
specific packet to B.

Node A sends the updated value of each of these three quantities, together with a times-
tamp indicating the current round and transmission and his signature on all of these
items, during Stage Two communication with B (see Fig. 2 below). Note that the values
that are sent by A reflect the most recent values of the three quantities in (1)—(3), i.e.
the changes made to these quantities based on the current packet being transferred have
been updated in the values A sends to B.

Although the routing of codeword packets in the Mal-Slide protocol is the same as
the basic Slide protocol, because corrupt nodes are not guaranteed to behave honestly in
the present network model, Theorem 4.3 (which guaranteed the receiver could decode
the message after 3D rounds) is no longer valid. In particular, after the 3D rounds of
a transmission in the Mal-Slide protocol, the receiver might not have received enough
(valid) codeword packets to decode the message. We will refer to such transmissions
as failed transmissions. Below we outline three types of malicious behavior that corrupt
nodes may engage in to force a transmission to fail, and how the control information
can be used to identify a corrupt node in each case. Although this list is in no way
intended to be comprehensive of all possible forms of malicious behavior, it turns out
that the mechanisms we put in place to handle the following three issues will be enough
to handle all forms of malicious behavior (not just the ones listed below).

1. Packet Deletion. Suppose that corrupt nodes refuse to forward on the packets they
receive, so that by the time the sender has inserted all D of the codeword packets,
the receiver has not received enough of them to decode the message.?’ In this case,
there is necessarily a corrupt node that is deleting packets (or equivalently, storing
more packets than it is allowed to). The sender can identify the corrupt node if
he can find a node who input x packets and output y packets, where x — y >
4n(n — 1) (the quantity on the right-hand side of the inequality represents the
total capacity of an internal node to store packets: it has n — 1 incoming and
outgoing buffers, each of capacity 2n). Control information of type (1) provides
exactly this information (provided the sender can collect this information from all
nodes).

2. Packet Duplication. Suppose corrupt nodes are duplicating packets in such a man-
ner that keeps nodes “near” the sender (assume for the moment a relatively stable
network topology) at full capacity, thus making it impossible for the sender to
insert packets (even along the active honest path; recall Definition 3.2). In par-
ticular, suppose this strategy prevents the sender from inserting all D codeword
packets by the time 3D rounds have passed. This means that there have been at

27 Note that our use of error correction allows for the fact that some packets may be in the internal nodes’
buffers, and yet the receiver can still decode: Even if every buffer of each internal node is completely full, the
receiver will still be able to decode the codeword if it has received the rest of the codeword packets. Therefore,
if the sender has inserted all D of the codeword packets, the receiver should be able to decode, even if many
of the packets are stuck in the internal nodes’ buffers.

Authenticated Adversarial Routing 667

least 2D rounds in which the sender was blocked from inserting any packets (see
Definition 4.6). Note that Lemma 4.10 of Sect. 4.3 concerns only nodes along
the active honest path, and in particular, since these nodes are honest, the lemma
remains valid (it is restated and proven in Lemma D.14 in Appendix D for com-
pleteness). This lemma states that these (at least) 2D blocked rounds will cause
a recorded potential drop of at least 2n D, and this drop is recorded in the con-
trol information of type (2). Since the sender inserted fewer than D packets in
this case, the cumulative recorded increase in potential as a result of these inser-
tions is less than 2nD (a single packet insertion can cause potential to raise by
at most 2n, since this is the highest height a packet may be stored in an incom-
ing buffer). Since the overall decrease in potential (at least 2n D) outweighs the
overall increase (less than 2n D), there is necessarily a node that is responsible
for more potential /oss than gain. With control information of type (2) collected
from all of the nodes, the sender can identify such a node, which is necessarily
corrupt.

Packet Deletion + Packet Duplication. Suppose that the adversary recognizes he
will be caught if he only employs a strategy of packet deletion or packet detec-
tion (as in Cases (1)—(2) above). Instead, the adversary forces corrupt nodes to
replace valid packets they receive with old packets they have already sent for-
ward. This way, their actions appear consistent in terms of analyzing the con-
trol information of types (1) and (2). Notice that transmissions when this occurs
can now fail, despite the fact the sender was able to insert all D packets of the
codeword and the receiver got (1 — A)D packets (which is ordinarily what is
needed to decode): If too many of the received packets are duplications, then
the receiver may not have the (1 — A)D distinct packets required for decod-
ing. In this case there is at least one packet p that the receiver has received
more than once. Since packets are never duplicated by honest nodes (they will
never resend a packet before getting an acknowledgement of receipt from the
node they sent the previous copy to), the sender can identify a corrupt node by
finding a node that output the duplicated packet p more times than that node
input p. Notice that the sender can identify such a node with control infor-
mation of type (3) (provided the sender can collect this information from all
nodes).

The following four cases clearly cover all possible outcomes for a transmission. Notice
that the first case corresponds to a successful transmission, while the latter three are
failed transmissions, and they roughly correspond to the three above malicious strate-
gies (F2 corresponds to Packet Duplication, F3 to Packet Deletion, and F4 to Packet
Deletion + Duplication).

S1.
F2.

F3.

F4.

The receiver was able to decode the codeword within 3D rounds

The receiver could not decode, and the sender inserted less than D packets in 3D
rounds

The receiver could not decode, the sender inserted D packets, and the receiver
did not receive any duplicated codeword packets

The receiver could not decode and cases F2 and F3 do not happen. In other
words, the sender inserted D packets, and the receiver could not decode because
he received at least one duplicated packet p.

668 Y. Amir, P. Bunn, and R. Ostrovsky

Notice that there are two forms of control information: (1) The current information,
which consists of the three quantities mentioned in the section above, and which are
being updated and signed for every new packet transfer between two neighbors; and
(2) Control information pertaining to previous (failed) transmissions, which represent
the values that each of the three types of quantities had at the end of the earlier failed
transmission in question. We emphasize the difference between these two forms of con-
trol information: the former kind is being stored and continuously updated between
every pair of nodes, and no attempt is made to transmit this information beyond the two
nodes it pertains to. If a transmission fails, then the values that each of the three quanti-
ties had at the end of that transmission are locked (i.e. they will not be updated/changed
in the next transmission), and now (honest) nodes will attempt to transmit the final
values of these quantities through the network back to the sender, where they will be
collected and used to identify a corrupt node. To distinguish between these two dif-
ferent forms of control information, we will refer to the information for the current
transmission as control packets and the information that corresponds to previous failed
transmissions as a node’s testimony for the failed transmission in question.

Notice that a node’s testimony consists of n — 1 packets, i.e. one packet for each
neighbor. In particular, for a given node A and one of its neighbors B, the node will
return in its (signed) testimony the final (value, signature) pairs on the relevant three
quantities from the control packets.?®

In the next section, we describe exactly the protocol rules for how the testimonies
are communicated through the network. We state once-and-for-all that if a node ever
receives a packet from a neighbor that has faulty information (e.g. a control packet that
does not reflect accurate values or has a faulty signature, or a codeword packet that
does not carry the sender’s signature), then the node ignores all communication from
the offending neighbor for that round (treating the edge as having failed for the entirety
of the round).?’

28 In the case a transmission T fails as in F4, which means the receiver got at least one duplicated packet
p, then the testimonies from the nodes includes only the final value (from each of their neighbors) on the
number of times p has passed between them. In particular, even though the control packets passed between
neighbors have been accumulating information on all of the ® (n3) codeword packets, the only value returned
to the sender is on the relevant packet p that had been duplicated. This way, a testimony from each node
consists of n — 1 packets instead of O3 packets. Indeed, once a node learns a transmission fails for reason
F4 and they know a packet p that has been duplicated (how this knowledge is conveyed is discussed below),
they can delete the information corresponding to all of the other O3 packets, freeing up this memory.

29 An honest node will never send a packet with faulty information. Therefore, if a node receives a packet
with faulty information from a neighbor, the node can be certain its neighbor is corrupt. There are three rea-
sonable candidates for how a protocol should have nodes deal with the knowledge its neighbor is corrupt:
(1) Do nothing; (2) Keep the information local, but refuse all future communication with the node; (3) Report
the offending node, to alert the network the node is faulty in attempt to have it eliminated. Option (3) intro-
duces the difficulty of a “he said, she said” problem of the sender not being able to pinpoint which of the two
nodes is corrupt, and we therefore do not use that approach. Of the other two options, we choose the former,
simply because it is more in line with our approach for eliminating corrupt nodes, as opposed to eliminating
the links adjacent to corrupt nodes. However, employing strategy (2) can be done without any major modifi-
cations to Mal-Slide (although this strategy will not improve the bound for throughput efficiency that is stated
in Theorem 5.2 below).

Authenticated Adversarial Routing 669

Stage A B
H 4 := Height of buffer along E(A,B) Hp:=Height of buffer along E(A,B)
) Height of flagged p. (if there is one) Round prev. packet was received
Round prev. packet was sent <— Control packet for edge E(A,B)
Ack. of rec. of Control Info. Ack. of rec. of Control Info.
(Values pertain to p. rec’d in prev. round)
Send packet and control packet if: Receive packet if:
e A has rec’d SOT, AND e B has rec’d SOT, AND
2 e A, B ¢ blacklist or eliminated, AND <«— e A, B ¢ blacklist or eliminated
— Hy > Hg OR Send Control Info: (1) EOT, (2) SOT,
— B did not rec. prev. packet sent (3) Nodes to remove from BL,
(4) Testimonies

Fig. 2. Communication exchange along directed edge E(A, B) during some round.

5.2. Gathering Control Information

As mentioned at the beginning of Sect. 5, intuitively the Mal-Slide protocol can be
viewed as cycling between a routing phase and a regulation phase. However, if these
two phases are separated in practice, a problem is encountered: How long should the
sender wait during the regulation phase to gather the testimonies he requires to identify
a corrupt node? If the sender waits for all the information he needs before returning
to transmitting the next message, then a set of corrupt nodes can refuse to return their
testimonies. Since the sender cannot see the status of the edges of the network, he is
unable to determine if these nodes are “playing dead” (refusing to use the links available
to them to transmit their testimonies) and thus should be eliminated as corrupt, or if they
are honest nodes that are (temporarily) disconnected from the rest of the network. Even
though the sender will necessarily be getting some control information back (e.g. from
the honest nodes that are “near” him on the active honest path), this information may not
be enough to identify a corrupt node. Furthermore, the sender cannot simply eliminate
non-responding nodes from the network, as it is possible that they are honest, and that
at some point in the future they will form a crucial link on the active honest path of later
rounds.

The Mal-Slide protocol avoids the problem of an indefinite regulation phase by per-
forming regulation tasks in conjunction with the actual routing. Figure 2 describes how
the routing and regulation phases are combined.

Notice that control packets (control information corresponding to the current trans-
mission) are sent in both directions in each round: B sends one to A during Stage 1, and
A sends one to B in Stage 2 (the values B uses for each of the three relevant quantities
in the control packet it sends to A are current as of the previous packet that B received
from A, whereas the values A uses in the control packet it sends to B are current as of
the current packet being sent). A relevant testimony packet that B has (either his own
or that of another node) can be sent from B to A in Stage 2. As can be seen from Fig. 2,
B may potentially have multiple packets of control information (e.g. testimonies) that
he would like to send to A during Stage 2. Since B can only send one packet of control
information during Stage 2, we describe the rules for how B determines which packet

670 Y. Amir, P. Bunn, and R. Ostrovsky

to send below (after describing the remaining forms of control information found in
Fig. 2).

There remains one last change between the Slide protocol of Sect. 4 and the Mal-
Slide protocol: the identification of corrupt nodes requires that the sender has collected
enough control information from the internal nodes. The procedure for how the Mal-
Slide protocol handles the collection of this information, and in particular how it pre-
vents a (set of) corrupt node(s) from delaying the collection of this data by refusing to
return information that will implicate themselves, is the content of the next section.

5.3. The Blacklist

As discussed above, when a transmission fails as in Case F2, F3, or F4, the sender
will request nodes to return testimonies so that the sender can identify a corrupt node.
Loosely speaking, the sender maintains a blacklist consisting of all nodes for which the
sender has not yet collected their complete testimony (recall that each node’s testimony
consists of n — 1 packets, corresponding to the three quantities recorded from the node’s
communication with its n — 1 neighbors). Blacklisted nodes are not allowed to transfer
any codeword packets.

More precisely, when a transmission T fails, all nodes who participated in the trans-
mission (i.e. nodes that were not already on the blacklist for at least one round during T)
are added to the blacklist, and the sender records T as the transmission these nodes were
added to blacklist. A node is not removed from the blacklist until the sender receives the
node’s complete testimony. Meanwhile, nodes on the blacklist are not allowed to send
or receive any codeword packets.”

Notice that each failed transmission has a set of nodes that were blacklisted at the end
of that particular transmission: the nodes who were not already on a previous blacklist.
However, nodes are never on more than one transmission’s blacklist, as if they were
blacklisted for the entirety of transmission T that fails, then they are not added to the
blacklist for T. After all, the blacklist serves two purposes: (1) It ensures that corrupt
nodes cannot continue to cause transmissions to fail while withholding their testimonies
from the sender; and (2) It provides a list of nodes that participated in each failed
transmission. As will be shown in the next section, the sender will be able to identify a
corrupt node as soon as there exists a failed transmission T in which the sender is able to
collect the complete testimony from all nodes that participated in the transmission; i.e.
nodes that were not on the blacklist during at least one round of T. Because blacklisted
nodes are not supposed to be transferring codeword packets, if a transmission T fails,
then the sender does not need the testimony from any node that was already blacklisted

30 Corrupt nodes cannot be prevented from transferring packets to/from blacklisted nodes. However, such a
strategy will not help them to cause transmissions to fail without their guilt being discovered, as if they employ
this strategy to force a transmission T’ to fail, then either: (1) They return the accurate control information for
T/ (in which case the sender sees they transferred codeword packets with blacklisted nodes and are therefore
necessarily corrupt); (2) They return the control information to the sender, but do not include with this the parts
that indicate they transferred packets with blacklisted nodes (in which case there will be discrepancies in the
testimony that they return); (3) They do not return any control information, and are consequently blacklisted
(and not able to affect future transmissions) until they return enough control information to fall under case (1)
or (2) and become permanently eliminated.

Authenticated Adversarial Routing 671

for the entirety of T (all values in these testimonies should be zero, since the nodes were
not allowed to transfer any codeword packets).

After a failed transmission, every node (except for the sender, but including the re-
ceiver) is therefore on the blacklist (they were either added at the end of the transmission
that just failed, or they were already on the blacklist for an earlier failed transmission).
Note that even though nodes on the blacklist are not allowed to transfer codeword pack-
ets, they are allowed to transfer control information (see Fig. 2).

In the following section we collect the ideas from Sects. 5.1-5.3 and describe how
each transmission T progresses.

5.4. Overview of the Mal-Slide Protocol

The following steps describe the procedure for every transmission of the Mal-Slide
protocol (pseudo-code is given in Appendix C).

1. The sender begins each transmission by forming the Start Of Transmission (SOT)
broadcast. This consists of:

(a) A single packet indicating how many total packets will comprise the SOT for
the current transmission T (i.e. how many eliminated and blacklisted nodes
there are)

(b) The list of eliminated nodes

(c) The list of blacklisted nodes; this includes for each blacklisted node the trans-
mission in which the node was placed on the blacklist

As mentioned above, if the previous transmission T — 1 failed (as in Cases F2-F4
above), then the sender blacklists all nodes that were not already on the blacklist,
and indicates these new nodes were blacklisted due to transmission T — 1. Addi-
tionally, for nodes that were blacklisted as a result of a transmission that failed
as in F4, the sender indicates the packet p for which the receiver got at least two
copies in that failed transmission (the sender has access to this information from
the End Of Transmission packet, see Item (5) below). Notice that the SOT broad-
cast consists of at most n packets, as every node (other than the sender) is either
eliminated or on at most one blacklist.

Each of the above three items are timestamped with the current transmission
index T and signed by the sender. Notice from Fig. 2 that SOT packets are sent
during Stage Two communication.

2. Nodes are not allowed to transfer codeword packets until they have received the
SOT for the current transmission. This way, no node is (legally) transferring any
packets from the current codeword until they have an updated view of the blacklist
and eliminated nodes. When the sender has sent the complete SOT to a neighbor,
he may begin inserting codeword packets to that neighbor (assuming the neighbor
is not blacklisted).

3. If anode ever learns it has been blacklisted (from the SOT broadcast), it will form
its testimony: the final values of the three types of control information from each
of its neighbors from the indicated transmission. The n — 1 packets of the testi-
mony are then queued for delivery to the sender. The mechanism for transmitting
testimonies (and indeed all forms of control information sent in Stage Two, see
Fig. 2) back to the sender is flooding: a node will send every testimony packet it

672

Y. Amir, P. Bunn, and R. Ostrovsky

has seen (its own testimonies and the testimonies it has collected from its neigh-
bors) across every adjacent edge. We note that because a node is on at most one
blacklist at any time, and because the testimony of a single node consists of n — 1
packets, a node need store and transfer at most n> testimony packets at any time.
Also, the priority of sending control information in Stage Two (see Fig. 2) en-
sures that nodes know the most recent transmission that each blacklisted neigh-
bor was placed on the blacklist before touching any of its neighbors’ testimonies
(this way a node knows which of its neighbors testimony packets are current and
valid).

We note that sending control information back to the sender via flooding does

not affect the overall throughput efficiency of Mal-Slide because there is much
less control information than codeword packets: 0 (n?) verses ©(n3), respec-
tively. In particular, a protocol that employs flooding for codeword packets sent
from sender to receiver may suffer in a factor of 1/n in terms of throughput ef-
ficiency. However, because there are only n? packets of control information that
need to be transmitted to the sender in any transmission, the fact that transmissions
last © (n?) rounds means that the even a loss of 1/n in throughput efficiency for
these packets will not impede their ability to reach the sender by the end of the
transmission.
When the sender receives the complete testimony of a blacklisted node, it re-
moves the node from the blacklist. In particular, the sender creates a (signed
and timestamped with the index of the current transmission number) packet in-
dicating the node to be cleared from the blacklist, and queues this packet for
delivery with the rest of the control information sent during Stage Two (see
Fig. 2). If the sender ever has received enough of the testimonies to elimi-
nate a corrupt node, then he starts the current transmission over again, includ-
ing in the new SOT broadcast the identity of the node that has just been elimi-
nated.

. If at any time:

(a) The receiver can decode the current codeword, OR

(b) The receiver has received a duplicated packet p

then the receiver forms the End Of Transmission (EOT) packet. This packet con-

tains the label of the duplicated packet p (in Case (5b)), or else a bit indi-

cating successful decoding, and is signed and timestamped by the receiver and

queued for delivery with the rest of the control information (see Fig. 2). The

EOT packet is used to alert the sender to end the current transmission. We restate

now (using current terminology) the four ways a transmission can end. Notice

that one of them necessarily happens within 3D rounds of starting a transmis-

sion, and hence every transmission (whether successful or failed) lasts at most 3D

rounds:

S1. Sender receives EOT packet indicating Receiver was able to decode current
codeword

F2. 3D rounds have passed, and Sender has not been able to insert D packets,
nor has he received an EOT packet

F3. Sender has inserted D packets but has not received an EOT packet

F4. Sender receives an EOT packet indicating Receiver got some packet p
twice

Authenticated Adversarial Routing 673

5.5. Analysis of the Mal-Slide Protocol

In this section we present the main ideas for why the Mal-Slide protocol is secure against
the combined attack of the edge-scheduling and node-controlling adversaries, and an-
alyze the performance of the Mal-Slide protocol in terms of correctness, memory, and
throughput. Pseudo-code for Mal-Slide can be found in Appendix C, and proofs of all of
the below lemmas and theorems are proven in terms of the pseudo-code in Appendix D.

Theorem 5.1. The Mal-Slide protocol requires at most O (n*P + n*(k + logn)) bits
of memory of the internal nodes.

Proof. The most memory-intensive cost of the Mal-Slide protocol is the requirement
for nodes to store control information of type (3): For every codeword packet p, each
node must store the total number of times it has transferred p to each neighbor. There
are O(n) packets per codeword, each node has O (n) neighbors, the packet’s position
within the codeword and timestamp?! can be described using @ (logn) bits, and it costs
©® (k) bits to store signatures on each of these, so the overall cost of storing this infor-
mation is O (n*(k + logn)). Note the other information a node needs to store (current
codeword packets and all other kinds of control information) collectively only require
O (n*P) bits of memory, where P € §2(k + logn). [l

The following theorem, which states that the Mal-Slide protocol has the same
(asymptotic) throughput rate as the basic Slide protocol of Sect. 4, implicitly guarantees
that the Mal-Slide protocol is correct.

Theorem 5.2. Except for at most n*/2 transmissions that may fail due to malicious
activity, the Mal-Slide protocol enjoys linear throughput. More precisely, after x trans-
missions, the receiver has correctly decoded at least x — n?/2 messages. If the number
of transmissions x is quadratic in n or greater, than the failed transmissions due to ad-
versarial behavior become asymptotically negligible. Since a transmission lasts O (n>)
rounds and messages contain © (n>) packages from the original stream of packets, in-
formation is transferred through the network at a linear rate.

Proof. Having the sender sign all packets ensures that the final message that the
receiver decodes in each of these transmissions is unaltered (ensuring correctness).
We showed at the end of the previous section that every transmission lasts at most
3D = O (1) rounds. Therefore, transmissions that are successful (Case S1) enjoy a lin-
ear throughput rate: © (n3) packets from the original input stream have been received
in 0(n3) rounds. It remains to show that there are at most n? /2 failed transmissions,
which follows from the following two lemmas (proven after this proof):

Lemma 5.3. There can be at most n — 1 failed transmissions before the sender nec-
essarily has all testimonies corresponding to one of these failed transmissions.

31 Because our protocol is only valid for an input stream of packets of size polynomial in n, timestamps
can be achieved using © (logn) bits.

674 Y. Amir, P. Bunn, and R. Ostrovsky

Lemma 5.4. [f there is a transmission T for which the sender has collected the com-
plete testimonies from every node that participated in T, then the sender can necessarily
identify a corrupt node.

Lemma 5.3 guarantees that there can be at most n — 1 failed transmissions before the
sender has necessarily collected the complete testimony of every node who participated
in one of these transmissions, and then the sender will be able to eliminate a node by
Lemma 5.4. This effectively reduces the network to n — 1 nodes, and we can repeat this
argument to ensure that there can be a total of at most n”/2 failed transmissions.]

Lemma 5.3. There can be at most n — 1 failed transmissions before the sender neces-
sarily has all testimonies corresponding to one of these failed transmissions.

Proof. (Sketch) As discussed in Sect. 5.3, a node can be on at most one blacklist at
any time. In particular, if a node participated in some failed transmission T, then the
node is not allowed to participate in any future transmission until the sender receives
the node’s complete testimony. We begin with the following observation:

Observation. The receiver participates in every transmission, i.e. by the end of every
transmission, the sender has received the receiver’s complete testimony (if the receiver
was on the blacklist’> for the previous transmission).

Proof. (Sketch) This follows from the conforming assumption (which guarantees that
every round has an active path going through honest nodes) together with how testi-
monies are relayed through the network to the sender. In particular, in any transmission
there are at most @ (n?) packets of control information (includes SOT, EOT, nodes to
remove from the blacklist, and testimony packets). Because the receiver is linked to
the sender in each of the 3D rounds of the transmission, its information will take at
most ® (n3) rounds to reach the sender, where the constant in the ® is small enough
to ensure the sender has the receiver’s information by the time 3 D rounds have passed.
This observation is restated and proven in terms of the pseudo-code in Lemma D.§ of
Appendix D. (]

Therefore, if there have been n — 2 failed transmissions and the sender has not col-
lected all of the testimonies from participating nodes for any of the transmissions, then
in all subsequent transmissions, either the sender completes his knowledge of the tes-
timonies for a failed transmission, or just the sender and the receiver participate in the
transmission. In the latter case, the transmission is guaranteed to be successful, since
both the sender and receiver are honest, and the active honest path must have been a
direct link between them for the vast majority of this transmission (otherwise, if there is
some honest node A that is part of numerous active honest paths during the transmission,

32 Even though the receiver cannot be corrupted, he nevertheless can (and will) be placed on the blacklist
at the end of each failed transmission. After all, the blacklist is not just a list of potential nodes that may be
corrupt; rather, it is a list of nodes who participated in a given failed transmission and it emphasizes that the
sender has yet to receive those nodes’ testimonies for the transmission. So the receiver gets placed on the
blacklist to emphasize to intermediate nodes the need to relay the receiver’s testimony back to the sender.

Authenticated Adversarial Routing 675

then the sender will necessarily receive all of A’s outstanding testimony, completing his
knowledge of all testimonies for some failed transmission). This lemma is restated and
proven in terms of the pseudo-code in Lemma D.9 of Appendix D. t

Lemma 5.4. If there is a transmission T for which the sender has collected the com-
plete testimonies from every node that participated in T, then the sender can necessarily
identify a corrupt node.

Proof. (Sketch) Failed transmissions fall under Case F2, F3, or F4. The mechanism
for how the testimonies can be used to identify a corrupt node in each of these cases
was described in Sect. 5.1 above. Below we go into a little more detail, but reserve the
formal proof with references to pseudo-code in Lemma D.27 in Appendix D.

Case F2. In this case, the Sender has the complete testimony from every participating
node for a transmission that failed due to Case F2. We will use control information
of type 2 to identify a corrupt node. The key observation is to note that a variant of
Lemma 4.10 from Sect. 4 remains valid when applied to the active honest path that exists
each round, since all nodes on this path are honest (this is proven in Lemma D.14):

—nz) Adw,.

NeP¢

where t € g is any blocked round, and P denotes the set of nodes comprising the
active honest path for round t (as guaranteed by the conforming assumption). Since the
Sender was unable to insert D packets (otherwise we would be in Case F3), the number
of blocked rounds is at least 2D (transmissions that fail as in Case F2 have 3 D rounds),

and hence:
—2nD > Z (Z A(DN>.)

teBe "NePy

Meanwhile, potential only increases on packets inserted by S; intuitively this is
Lemma 4.11, which is proven for the malicious model in Lemma D.11. Since S in-
serted fewer than D packets (we are in Case F2), and each inserted packet adds at most
2n to total potential (the maximum height a packet can have in a buffer is the capacity
of the buffer), we have that the total increase in potential due to packet insertions in the
failed transmission in question obeys:

2nD > AD*, 3)

where A®* represents the changes in potential caused by all packet insertions. There-
fore, we have that the total change in potential during this failed transmission satisfies

A® = (Cumm. inc. from packet insertions) + (Cumm. change as in (2))

+ (All other changes) < 0, “4)

where the inequality comes from (2) and (3), and the fact that all other contributions to
potential are strictly non-positive (intuitively this is Lemma 4.11, which is proven for

676 Y. Amir, P. Bunn, and R. Ostrovsky

the malicious model in Lemma D.11). (4) shows that the cumulative change in potential
is negative, which means there have been more packet transfers than is possible if all
nodes behaved honestly. We find the offending node by looking at control information
of type 2 to find a node that is responsible for too much potential drop (intuitively,
this node is duplicating packets, causing extra packet transfers that artificially increase
potential drop). This argument is formalized in Theorem D.28.

Case F3. In this case, the Sender has the complete testimony from every participating
node for a transmission that failed due to Case F3. Nodes exchange signatures every
time a packet is passed between them, acknowledging the packet transfer; in particular,
they keep a running count of the number of packets they have sent to each neighbor,
and they refuse to send/receive packets from a given neighbor until they have a current
signature from this neighbor on this count (this is control information of type 1). There-
fore, for any honest node N in the network, summing over these (signed) counts from
all of its neighbors, the total number of packets received by N minus the total number
of packets sent by N will equal the number of packets currently stored in N’s buffers
(up to an “off-by-one” error along each edge, due to the fact that N may not have the
most recent signature from a neighbor reflecting the most recent packet sent/received
along the edge). Meanwhile, summing over al/l nodes (including Sender and Receiver),
the net number of packets sent minus the total number of packets received should be
zero: every packet sent by some node is received by another (again the “off-by-one”
error can lead to a cumulative error of up to 2n on this sum, since it comes from the
signed counts):

0~ Z ((Num. packets rec’d by N from all neighbors)
NeG*

— (Num. packets sent by N to all neighbors)),

where G™* represents the subset of nodes that participated in the transmission in ques-
tion. Separating out the Sender and Receiver’s contribution to this sum:

6n’ ~ Z ((Num. packets rec’d by N from all neighbors)
NeG*\{S,R}

— (Num. packets sent by N to all neighbors)),

where we have used the fact that the Sender inserted all D packets and the Receiver got
fewer than D — 6n> of them (otherwise R could have decoded the message, resulting
in a successful transmission). By an averaging argument, there is some node N that
satisfies

6n’ < ((Num. packets rec’d by N from all neighbors)
— (Num. packets sent by N to all neighbors)). (®))

As noted above, the quantity on the right-hand side of (5) represents the current number
of packets N is currently storing in its buffers, and a value of 6n° is more than N is

Authenticated Adversarial Routing 677

allowed to store, implying that N is corrupt. The proof of Theorem D.33 formalizes this
argument.

Case F4. In this case, the Sender has the complete testimony from every participating
node for a transmission that failed due to Case F4. The proof of this case is analogous
to the proof of Case F3 above, except that rather than considering the total number
of packets that were sent/received between each node, here the Sender looks at the
number of times the packet p was exchanged between each node (available via control
information of type 3). Summing over all the counts of times p was sent minus the times
p was received yields zero:33

0= Z ((Num. times p rec’d by N from all neighbors)
NeG*

— (Num. times p sent by N to all neighbors)) (6)

But the Receiver’s contribution to this sum is at least negative two since R received p
at least twice (since we are in Case F4), while the Sender’s contribution to this sum is
exactly one (since S inserted p exactly once):

—1= Z ((Num. times p rec’d by N from all neighbors)
NeG*\{S,R}

— (Num. times p sent by N to all neighbors))
Using an averaging argument, there exists some node N with

—1> ((Num. packets rec’d by N from all neighbors)
— (Num. packets sent by N to all neighbors)),

which implies N sent p more times than N received p, something that will never be
true for honest nodes. This argument is formalized in Theorem D.34. (]

6. Conclusion

In this paper, we have presented a protocol that is secure simultaneously against con-
forming node-controlling and edge-scheduling adversaries. Our results are of a theo-
retical nature, with rigorous proofs of correctness and guarantees of performance. Sur-
prisingly, our protocol demonstrates that adding additional protection against the node-
controlling adversary, on top of protection against the edge-scheduling adversary, can
be achieved without any additional asymptotic cost in terms of throughput.

While our results do provide a significant step in the search for protocols that work
in a dynamic setting (edge failures controlled by the edge-scheduling adversary) where
some of the nodes are susceptible to corruption (by a node-controlling adversary), there

33 We explain in the proof of Theorem D.34 how to account for the “off-by-one” error discussed above,
so that the equality in (6) is precise.

678 Y. Amir, P. Bunn, and R. Ostrovsky
remain important open questions. The original Slide protocol** requires each internal
node to have buffers of size O(n*logn), while ours requires O (n*logn), though this
can be slightly improved with additional assumptions.

In practice, the extra factor of n? in terms of memory may make our protocol in-
feasible for implementation, even for overlay networks. While the need for signatures
inherently force an increase in memory per node in our protocol verses the original
Slide protocol, this is not what contributes to the extra O(n?) factor. Rather, the only
reason we need the extra memory is to handle the third kind of malicious behavior,
which roughly corresponds to the mixed adversarial strategy of a corrupt node replac-
ing a valid packet with an old packet that the node has duplicated. Recall that in order
to detect this, for every packet a node sees and for every neighbor, a node must keep
a (signed) record of how many times this packet has traversed the adjacent edge (the
O (n®) packets per codeword and O (n) neighbors per node yield the O(n*) bound on
memory). Therefore, one open problem is finding a less memory-intensive way to han-
dle this type of adversarial behavior.

Apart from the memory costs of our protocol, the computation costs and the com-
plexity of the protocol make it unrealistic to employ in practice. If a practical protocol
is to be developed for the network model considered here, there must be work done to
reduce these complexities and costs.

Another open question is how altering the assumptions made in the network model
affects the optimal protocol performance that is achievable. For example, Bunn and Os-
trovsky [9] explore routing in asynchronous networks that have no minimal connectivity
assumptions. It would be interesting to see how performance is affected in networks that
make different (combinations) of assumptions.

One final open problem is to extend our setting of end-to-end communication to the
case of multiple sender/receivers. In particular, can one do better than the trivial exten-
sion of our protocol, which would add a factor of @ (n?) to the already burdensome
memory cost of @ (n*) per node.

Appendix A. Pseudo-Code for the Edge-Scheduling Adversarial Protocol

In this section we present pseudo-code for the Slide protocol, which will be evaluated
in the next section with respect to networks operating in the edge-scheduling adversary
model of Sect. 3.1. As mentioned, the Slide protocol was developed in a series of works:
[2,3,6], and [14]. The version presented here varies slightly from these other versions,
but no significant changes have been made.

In what follows, let [a..b] denote the integers between a and b (inclusive); i.e.
[a..b] =[a,b]NZ.

34 In [14], it was shown how to modify the Slide protocol so that it only requires O (nlogn) memory per
internal node. We did not explore in this paper if and/or how their techniques could be applied to our protocol
to similarly reduce it by a factor of n.

35 1f we are given an a priori bound that a path-length of any conforming path is at most L, the om* logn)
can be somewhat reduced to O (Ln3 logn). Similarly, if we are given a bound that the maximum degree (num-
ber of edges) for all nodes is bounded by §, then the memory bound can be further reduced to O(Ln? logn).

Authenticated Adversarial Routing

679

Setup

DEFINITION OF VARIABLES:
01 n := Number of nodes in G;
2 D=9

=

03 T := Transmission index;
04 t := Stage/Round index;
05 P := Capacity of edge (in bits). Equivalently, P is the number of bits in each packet;
06 for every N € G
07 for every outgoing edge E(N,B) € G,B# Sand N # R
08 OUT € [2n] x {0, 1}P; ## Outgoing Buffer able to hold 2n packets
09 pel{o, 3P ul; ## Copy of packet to be sent
10 sb e {0,1}; ## Status bit
11 d e{0,1}; ## Bit indicating if a packet was sent in the previous round
12 FRe[0..6D]U L; ## Flagged Round (index of round N first tried to send p to B)
13 H €10..2n]; ## Height of OUT. Also denoted Hpy when there’s ambiguity
14 Hpp e[l.2n]UL; ## Height of Flagged Packet
15 RRe[-1..6D]U L; ## Round Received index (from adjacent incoming buffer)
16 Hpy €1[0.2n]1U L; ## Height of incoming buffer of B
17 for every incoming edge E(A,N) e G,A# Rand N # §
18 IN € [2n] x {0, I}P; ## Incoming Buffer able to hold 2n packets
19 p €10, nPul; ## Packet just received
20 sb e {0, 1}; ## Status bit
21 RR e [—1..6D]; ## Round Received (index of round N last rec’d a p. from A)
22 H €10..2n]; ## Height of IN. Also denoted Hyy when there’s ambiguity
23 Hgp e[l.2n]U L; ## Height of Ghost Packet
24 Hoyr €10..2n]U L; ## Height of outgoing buffer, or height of Flagged Packet of A
25 sbout €10, 1}; ## Status Bit of outgoing buffer of A
26 FRe[0..6D]U L; ## Flagged Round index (from adjacent outgoing buffer)

INITIALIZATION OF VARIABLES:

27 for every N € G

28 for every incoming edge E(A,N)e G,A# Rand N # S

29 Initialize IN; ## Set each entry in IN to L
30 p,FR,Hgp =1,

31 Sb,SbOUT,H, HOUT:();RR:—I;

32 for every outgoing edge E(N,B) € G,B# Sand N # R

33 Initialize OUT; ## Set each entry in OUT to L
34 p,Hpp,RR,FR=1,;

35 sb,d, H, Hy =0;

End Setup

Fig. A.L.

Pseudo-code for internal nodes’ setup for the edge-scheduling adversarial model.

680 Y. Amir, P. Bunn, and R. Ostrovsky

Sender and Receiver’s Additional Setup
DEFINITION OF ADDITIONAL VARIABLES FOR SENDER:
36 M :={my,my, ...} = Input Stream of Messages;
37 «k €[0..D] = Number of packets corresponding to current codeword the sender has knowingly inserted;

INITIALIZATION OF SENDER’S VARIABLES:
38 Distribute Packets; ## See Fig. A4
39 k=0;

DEFINITION OF ADDITIONAL VARIABLES FOR RECEIVER:
40 Ir €[D] x ({0, nPul= Storage Buffer to hold packets corresponding to current codeword;
41 k € [0..D] := Number of packets received corresponding to current codeword;

INITIALIZATION OF RECEIVER’S VARIABLES:
42 kK =0;
43 Initialize IR, ## Sets each element of I to L
End Sender and Receiver’s Additional Setup

Fig. A.2. Additional code for sender and receiver setup.

Transmission T
01 for every N € G

02 forevery t <2 (3D) ## The factor of 2 is for the 2 stages per round

03 if t (mod 2) =0 then: ## STAGE 1

04 for every outgoing edge E(N,B) € G, N #R,B# S

05 if Hrpp= 1:send (H, L, 1); else: send (H — 1, Hgp, FR);

06 receive (Hyy, RR); ## If nothing rec’d, set Hy =RR= L1

07 Reset Outgoing Variables;

08 for every incoming edge E(A,N) e G,N #S,A#R

09 send (H, RR);

10 SbOUT =0; FR=1;

11 receive (H, L, 1) or (H, Hgp, FR); ##1f H=_1 or FR > RR, set sbpyr=1; and
Hoyr=HFp; O.W. set Hoyr=H; sboyr=0;

12 else if t (mod 2) =1 then: ## STAGE 2

13 for every outgoing edge E(N,B) e G, N #R,B# S

14 if Hpy # L then: ## Received B’s info.

15 Create Flagged Packet,

16 if (sb=1 or (sb=0 and Hpy7 > Hjy)) then:

17 Send Packet;

18 for every incoming edge E(A,N) e G,N #S,A#R

19 Receive Packet;

20 if N ¢ {S, R} then: Re-Shuffie;

21 else if N = R then: Receiver Re-Shuffle;

22 else if N = S then: Sender Re-Shuffle;

23 if t =2(3D) — 1 then: End of Transmission Adjustments;

End Transmission T

Fig. A.3. Routing rules for edge-scheduling adversarial model.

Authenticated Adversarial Routing

24 Reset Outgoing Variables

25 ifd=1:

26 d=0;

27 ifRR= 1 or L #FR>RR

28 sb=1,

29 ifRR# L:

30 if L #FR <RR:

31 if N=S then: x =« +1;

32 OUT[HFp] = L; Fill Gap;

33 FR,p,Hpp=1;sb=0; H=H — 1;

34 if Ll #RR<FRand L# Hpp<H:
35 Elevate Flagged Packet;

36 Create Flagged Packet
37 ifsb=0and H > Hyy:
38 p=OUT[H]; Hpp=H; FR=t;

39 Send Packet
40 d=1,
41 send (p, FR);

42 Receive Packet

43 receive (p, FR);

44 if Hoyp = L:

45 sb=1;

46 if Hgp > H or (Hgp =1 and H < 2n):
47 else if SbOUT =1or HOUT > H:

48 if p=_1:

681

N sent a packet previous round

Did not receive conf. of packet receipt

B rec’d most recently sent packet

Remove p from OUT, shifting
down packets on top of p if necessary

B did not receive most recently sent packet

Swap OUT[H] and OUT[HFp]; Set Hpp = H;

Normal Status, will send top packet

Did not Rec. A’s height info.

Hgp=H+1;

A packet should have been sent
Packet was not rec’d

49 sb=1;

50 ifHGP>Hor(HGP=J_andH<2n): HGP=H+1;

51 else if RR < FR: ## Packet was rec’d and should keep it

52 if Hpp=1: Hgp=H+1; ## If no slot is saved for p, put it on top

53 sb=0;IN[Hgpl=p; H=H+1; Hgp=1; RR=1t;

54 else: ## Packet was rec’d, but already had it

55 sb =0; Fill Gap; Hgp = L; ## See comment about Fill Gap on line 57 below
56 else: ## A packet should NOT have been sent

57 sb =0; Fill Gap; Hgp = L;

58 End of Transmission Adjustments

If packets occupied slots above the
Ghost Packet, then Fill Gap will Slide
those packets down one slot

59 for every outgoing edge E(N,B) e G,N #R, B# S:

60 if Hpp # L:
61 OUT|[HFpp] = L; Fill Gap;

62 d,sb=0; FR,Hpp,p=1;H=H — 1;

Remove any flagged packet p from OUT, shifting
down packets on top of p if necessary

63 for every incoming edge E(A,N) e G, N # S, A# R:

64 Hgp = 1;sb=0; RR=—1; Fill Gap;
65 if N #S, R then: Re-Shuffle;

66 if N =S then: Distribute Packets;

67 if N=R then: « =0; Clear Ip;

68 Distribute Packets

69 « =0; For each outgoing buffer OUT: Hpyr = 2n;

Re-balance buffers at end of each transmission

Set each entry of I to L

70 Clear all outgoing buffers. Fill each out. buffer with new codeword packets from M;

Fig. A.4. Routing rules for edge-scheduling adversarial model (continued).

682

71 Re-Shuffle

72

73

74

75
76
71
78

(M, Bp) = Find Maximum Buffer

(m, Bt) = Find Minimum Buffer

if Packet Should Be Re-Shuffled:

Adjust Heights

SIGN N =SIGy N + (M —m —1);
Shuffle Packet

Re-Shuffle

79 Adjust Heights

80
81
82
83
84
85
86
87

if Br is an Out. Buffer and Hrp > Hoyr:
M=M-1,

if Br is an Inc. Buffer and IN[Hy + 1] # L:
M=M+1,

if By is an Out. Buffer and OUT[Hpyr] = L:
m=m-—1;

if Br is an Inc. Buffer and Hgp # L:
m=m+1;

88 Shuffle Packet

89
90
91
92
93
94

Brlm+1]1=Br[M];

Bp[M]=1;

HBT :HBT +1;

Hpp=Hp, — |;

if Br is an Inc. Buffer and L. # Hgp> Hy, then:
Hgp=Hy + 1;

95 Sender Re-Shuffle

96

Fill Packets;

97 Receiver Re-Shuffle

98

99

100
101
102
103
104

for every incoming edge E(A, R) € G:
if Hpy > 0:
if /N[1] is a packet for current codeword:
IRlk]=IN[l];k =k +1;
Hiy=0;IN[1]=1; Hgp=1;
if > D —3n> then:
Decode and output message;

Y. Amir, P. Bunn, and R. Ostrovsky

Node N finds its fullest buffer Br with height M,
breaking ties by 1) selecting incoming buffers over
outgoing buffers, then 2) Round-Robin

Node N finds its emptiest buffer By with height m,
breaking ties by 1) selecting outgoing buffers over
incoming buffers, then 2) Round-Robin

A packet should be re-shuffled if M —m > 1 or

B is an Inc. Buffer
B is an Out. Buffer

Adjust M, m to account for Ghost, Flagged packets.

##M—m:land[

Only used for (node-contr. + edge-sched.) protocol

Hpp and Hoyr refer to By ’s info. If true,

then a Flagged packet is top-most non-null packet
IN and Hpy refer to Bg’s info. If true,

then there is a Ghost Packet creating a gap

OUT and Hpyr refer to By ’s info. If true,

then there is a Flagged packet creating a gap

Hgp and Hjy refer to By ’s info. If true,

then there is a Ghost Packet creating a gap

HBT is the height of B

HBF is the height of Bp

Hgp and Hjy refer to By ’s info. Since Br lost a
packet, slide Ghost Packet down into top slot

Fills each outgoing buffer with codeword packets not
yet distributed, adjusting each Hpyr appropriately

Reset R’s Inc. Buffer to be open
R rec’d a packet along this edge this round
Also, see comments on 104 below

R can decode by Fact 1
Also, only keep codeword packets corresponding
to next message in future rounds

Fig. A.5. Re-shuffle rules for both edge-scheduling and (node-controlling + edge-scheduling) protocols.

Authenticated Adversarial Routing 683

Appendix B. Edge-Scheduling Protocol: Pseudo-Code Intensive
Claims and Proofs

In this section we prove that our pseudo-code is consistent with the claimed properties
that the Slide protocol of Sect. 4 enjoys.

The following lemma begins to link the pseudo-code with the high-level description
of what the Slide protocol is doing. Recall that a buffer is in normal (respectively prob-
lem) status whenever its status bit sb is zero (respectively one). Also, an outgoing buffer
is said to have a flagged packet if Hpp # 1, and the flagged packet is the packet in
the outgoing buffer at height Hrp. Notice that because the pseudo-code is written se-
quentially, things that conceptually happen simultaneously appear in the pseudo-code
as occurring consecutively. In particular, when packets are moved between buffers, up-
dating the buffers’ contents and updating the height variables does not happen simulta-
neously in the code, which explains the wording of the first sentence in the following
lemma.

Lemma B.1. Ar all times (i.e. all lines of code in Figs. A.3, A4, and A.5) EX-
CEPT when packets travel between buffers ((A.3.32-33), (A.4.52-53), and (A.5.89—
90)), along any (directed) edge E(A, B) for any pair of internal nodes (A, B), we
have

1. If Hgp > Hjy or Hgp = L, then Hgp = Hy + 1 or Hgp = L and IN[i] # L Vi €
[1..Hy] and IN[i]= L Vi € [Hjy + 1..2n].

2. If L # Hgp < Hyy, then IN[i] £ L Vi € [1..Hgp — 1] and Vi € [Hgp + 1..Hjy +
1], and IN[i]= L Vi € [Hyy +2..2n] and IN[Hgp] = L.

3. If L # Hpp > Hoyr, then sb =1 and OUT[i] # L Vi € [1..Hoyr — 1] and
OUT[Hpp] # L.

4. If Hrp = L or Hpp < Hoyr, then OUT[i] # L Vi € [1..Hoyr]-

5. The height of IN, as defined by the number of packets in IN (i.e. non-_L entries of
IN), is equal to the value of Hjy .

6. The height of OUT, as defined by the number of packets in OUT (i.e. non-null
entries of OUT), is equal to the value of Hoyr.

7. Whenever (A.4.53) is reached, Hgp € [1..2n] and Hyy € [0..2n — 1].

Whenever (A.3.32) is reached, Hpp # 1 and Hoyr € [1..2n].

9. At all times (even those listed in the hypothesis above), Hiy, Hoyr € [0..2n]
and Hgp, Hpp € (L U [1..2n]) (so the domains of these variables are cor-
rect).

®©

Additionally, during any call to Re-Shuffle:

10. Whenever the conditional statement on line (A.5.74) is satisfied, one packet
will pass between buffers. In particular, there will be a buffer that was stor-
ing the packet before the call to Re-Shuffle that will not be storing (that
instance of) the packet after the re-shuffle. Similarly, there will be another
buffer that has filled a vacant slot with (an instance of) the packet in ques-
tion.

11. Flagged packets do not move. More precisely, if Hpp # L just before any call
to Re-Shuffle, then Hpp and OUT[HFp] will not change during that call to Re-
Shuffle.

684 Y. Amir, P. Bunn, and R. Ostrovsky

12. Either Hgp does not change during re-shuffling or Hgp has decreased fo equal
Hiy + 1. Also, if Hgp # L, then IN[Hgp] does not get filled at any point during
re-shuffling.

13. If Hiv < 2n before Re-Shuffling, then Hpy < 2n after Re-Shuffling.

Proof of Lemma B.1. We prove each Statement of the Lemma above simultaneously
by using induction on the round and line number as follows. We first prove the Lemma
holds at the outset of the protocol (base case). We then notice that the above variables
only change their value in the lines mentioned in the hypothesis of the Lemma and
lines (A.3.28), (A.3.35), (A.4.38), (A.4.46), (A.4.50), (A.4.55), (A.4.57), (A.4.61-62),
(A.4.64), and (A.5.91-94). In particular, we use the induction hypothesis to argue that
as long as the statement of the Lemma is true going into each of these lines, then it will
remain true when the protocol leaves each of these lines. Using this technique, we now
prove each Statement listed above.

BASE CASE At the outset of the protocol, Hgp and Hrp = 1, Hpy and Hoyr = 0,
and all entries of IN and OUT are L (A.1.29-31) and (A.1.33-35) so Statements 1-6 and
9 are true (Statements 7, 8, and 10-13 are specific to certain lines of the pseudo-code,
and there is nothing to prove for these in the base case).

INDUCTION STEP We now prove that each of the above statements hold after leav-
ing lines (A.3.28), (A.3.32-33), (A.3.35), (A.4.38), (A.4.46), (A.4.50), (A.4.52-53),
(A.4.55), (A.4.57), (A.4.61-62), (A.4.64), (A.5.89-90), and (A.5.91-94), provided they
held upon entering these lines.

Lines (A.3.28) Statement 3 is the only relevant statement, since only sb is changed
on line (A.3.28). However, since sb is set to one on this line, there is no chance that
Statement 3 becomes false upon leaving (A.3.28) if it was frue upon enter this line. In
other words, if Statement 3 were to be false, it would not be because of line (A.3.28).

Lines (A.3.32-33) The variables in Statements 1, 2, 5, and 7 do not change in these
lines, and Statements 10—13 are not relevant here, and hence these statements remain
valid by the induction hypothesis. Statement 3 is vacuously true, since Hpp is set to L at
the end of line (A.3.33). Also, Statement 9 will remain valid as long as Statement 8 does,
as Hrp is set to L on line (A.3.33), and Hoyr € [0..2n] would follow from Statement
8 since upon entering these lines, Hoyr € [1..2n] (Statement 8), and so subtracting 1
from H on line (A.3.33) ensures that Hoyr will remain in [0..2n — 1] C [0..2n]. The
first part of Statement 8, that Hrp # L when (A.3.32) is reached, follows immediately
from Claim B.6 below together with the fact that (A.3.30) must have been satisfied to
reach (A.3.32). The second part of Statement 8 is proved below.

We next prove Statement 6. Anytime lines (A.3.32-33) are reached, the decrease
of one by Hoyr on (A.3.33) represents the fact that OUT should be deleting a packet
on these lines. Since the induction hypothesis (applied to Statement 6) guarantees that
Hoyr matches the number of packets (non-bottom entries) of OUT before lines (A.3.32—
33), the changes to Hpyr and the height of OUT on these lines will exactly match/cancel
provided OUT does actually decrease in height by 1 (i.e. provided OUT[Hfp] # L).

Authenticated Adversarial Routing 685

Since Hpp is changed (A.3.33) after deleting a packet (A.3.32), we may apply the in-
duction hypothesis to Statements 3 and 4 to argue that OUT[HFp] # L as long as the
value of Hrp was not L when line (A.3.32) was reached. This was proven above for the
first part of Statement 8.

Statement 4 follows from the argument above as follows. Upon leaving line (A.3.33),
Hpp = 1, so we must show OUT[i] # L Vi € [1..Hoyr]. As was argued above,
Hpp # 1 when (A.3.32) is reached. If Hpp > Hpoyr when (A.3.32) is reached, then
by the induction hypothesis applied to Statement 3, on that same line OUT[i] # L Vi €
[1..Hoyr — 1]. Then when Hpyr is reduced by one on (A.3.33), we will have that
OUT[i] # L Vi € [1..Hpyr], as required.

If on the other hand Hrp < Hoyr when (A.3.32) is reached, then by the induction
hypothesis applied to Statement 4, on that same line OUT[i] # L Vi € [1..Hoyr]. The
packet at height Hrp will be deleted on (A.3.32) and the packets on top of it shifted
down one if necessary, so that after (A.3.32) but before (A.3.33), we will have that
OUT[i] # L Vi € [1..Hoyr — 1]. Then when Hpyr is reduced by one on (A.3.33), we
will have that OUT[i] # L Vi € [1..Hoyrl], as required.

The second part of Statement 8 also follows from the arguments above as follows.
First, it was shown in the proof of Statement 6 that OUT[Hrp] # L when (A.3.32) is
reached. In particular, the height of OUT is at least one going into (A.3.32), and then
the induction hypothesis applied to Statement 6 implies that Hoyr > 1 when (A.3.32)
is reached, and the induction hypothesis applied to Statement 9 implies that Hoyr < 2n
when (A.3.32) is reached.

Line (A.3.35) Since only Hrp and OUT are modified on (A.3.35), we need only verify
Statements 3, 4, 6, and 9 remain true after leaving (A.3.35). Since Hpp is gets the value
max(Hoyr, Hrp) on (A.3.35), Statement 9 will be true by the induction hypothesis
(applied to Statement 9). Also, the height of OUT does not change, as (A.3.35) only
swaps the location of two packets already in OUT, so Statement 6 will remain true.

Statement 3 is only relevant if Hpp > Hoyr before reaching (A.3.35), since otherwise
Hpp = Hopyr upon leaving (A.3.35), and Statement 3 will be vacuously true. On the
other hand, if Hgp > Hopyr, then line (A.3.35) is not reached since (A.3.34) will be
false.

In order to reach (A.3.35), Hrp # L on (A.3.34), and so both Hpyr and Hpp are
not equal to L when (A.3.35) is entered (Claim B.6), and hence Hrp # L upon leaving
(A.3.35). Also, since (A.3.35) is only reached if Hrp < Hoyr (A.3.34), we use the
induction hypothesis (applied to Statement 4) to argue that before reaching (A.3.35),
we had that OUT[i] # L Vi € [1..Hoyr]. In particular, both OUT[HFp] and OUT[Hopyr]
are storing a packet, and the call to Elevate Flagged Packet simply swaps these packets,
so that after the swap, it is still the case that OUT[i] # L Vi € [1..Hpyr]. Since in this
case Hrpp = Hoyr after line (A.3.35), Statement 4 will remain true.

Line (A.4.38) Hpp is the only relevant value changed on (A.4.38), so it remains to
prove the relevant parts of Statements 3, 4, and 9. We will show that whenever (A.4.38)
is reached, Hoyr € [1..2n] and OUT[Hpyr] # L. If we can show these two things, we
will be done, since when Hpgp is set to Hpoyr on (A.4.38), Statement 9 will be true,
Statement 4 will follow from the induction hypothesis applied to either Statement 3 or

686 Y. Amir, P. Bunn, and R. Ostrovsky

4, and Statement 3 will not be relevant. By the induction hypothesis (applied to State-
ment 9), Hoyr € [0..2n] when (A.4.38) is reached. The fact that (A.4.38) was reached
means that the conditional statement on the line before (A.4.37) was satisfied, and thus
OUT is in normal status (sb = 0) and Hoyr € [1..2n] (the latter is true by the induction
hypothesis applied to Statement 9 with respect to Hyy and Hpyr). By the induction
hypothesis (applied to Statement 3), the fact that sb = 0 going into (A.4.37) implies
that Hrp = L or Hrp < Hopyr going into (A.4.37), and then the induction hypothesis
(applied to Statement 4) says that OUT[Hpoyr] # L when (A.4.38) is entered.

Lines (A.4.46) and (A.4.50) The parts of Statements 1, 2, and 9 that involve changes to
Hgp are the only statements that are affected by these lines. If the conditional statement
on these lines are not satisfied, then no values change, and there is nothing to prove. We
therefore consider the case that the conditional statement is satisfied. Then Hgp is set to
Hjiy + 1 on these lines, and hence Statement 2 is vacuously satisfied. Since we are as-
suming Hgp changes value on (A.4.46) or (A.4.50), the conditional statement says that
Hgp = L or Hgp > Hjy going into (A.4.46) (respectively (A.4.50)). By the induction
hypothesis (applied to Statement 1), IN[i] # L forall 1 <i < Hyy, and IN[i] = L for all
i > Hjy. Therefore, since IN and Hjy do not change on (A.4.46) or (A.4.50), Statement
1 will remain true upon leaving these lines. Finally, for Statement 9, we need only show
Hgp € [1..2n] upon leaving line (A.4.46) (respectively line (A.4.50)). If Hgp > Hiy
going into line (A.4.46) (respectively line (A.4.50)), then the change to Hgp is non-
positive, and so the induction hypothesis applied to Statements 1 and 9 guarantee Hgp
will be in [1..2r] upon leaving these lines. On the other hand, if Hgp = L going into
either of these lines, then Hjy < 2n, and the induction hypothesis applied to Statement
9 indicates that Hyy € [0..2n — 1] going into these lines, and hence Hgp € [1..2n] upon
leaving either line.

Lines (A.4.52-53) Statements 1, 2, 5, 7, and 9 are the only statements that are af-
fected by these lines. Notice that Hgp necessarily equals L when leaving (A.4.53), so
Statement 2 is vacuously satisfied.

We prove Statement 1 first. Recall that the height of an incoming buffer refers to the
number of (non-ghost) packets the buffer currently holds. Since Hgp will necessarily
equal L when leaving line (A.4.53), we must show that IN[i] # L Vi € [1..Hjy] and
IN[i]= L Vi e[Hy + 1..2n] upon leaving line (A.4.53). Both of these follow immedi-
ately from the induction hypothesis applied to Statements 1 and 2, as follows. By the in-
duction hypothesis applied to Statements 1, 2, and 9, either Hgp = 1, 1 < Hgp < Hn,
or Hgp = Hjy + 1 < 2n when line (A.4.52) is reached. We consider each case:

e If Hsp = Hjy + 1 when we reach line (A.4.52), then by the induction hypothe-
sis (applied to Statement 1) it will also be true that IN[i] # L Vi € [1..Hy] and
IN[i] = L Vi € [Hjy + 1..2n] when this line is reached. While on line (A.4.53),
first IN[Hgp] = IN[Hpy + 1] is filled with a packet, and then Hjy is increased by
one, and so Statement 1 will remain true by the end of line (A.4.53).

e If 1 < Hgp < Hjy when the protocol reaches (A.4.52), then also when this line
is reached we have that (by the induction hypothesis applied to Statement 2)
IN[i] # LVie[l..Hgp — 1] and Vi € [Hgp + 1..Hjy + 1], and IN[i] = L Vi €
[Hin +2..2n] and IN[Hgp] = L. When a packet is inserted into slot Hgp and Hjy

Authenticated Adversarial Routing 687

is increased by one on line (A.4.53), we will therefore have that all slots between
1 and (the new value of) Hyy will have a packet, and all other slots will be L, and
thus Statement 1 will hold.

e If Hgp = L going into line (A.4.52), then Hgp will be set to Hyy + 1 on this line,
and then we can repeat the argument of the top bullet point, provided Hjy +1 < 2n.
If sboyr = 1, then Statement 4 of Lemma B.12 states that Hgp 7 L when (A.4.52)
is reached, contradicting the fact we are in the case Hgp = L. So we may assume
sboyr = 0, and then the fact that (A.4.52) was reached means that (A.4.47) must
have been satisfied because Hoyr > Hjpy. Since both of these variables live in
[0..21] by the induction hypothesis applied to Statement 9, we conclude Hjy < 2n
on (A.4.47), and it cannot change value between then and (A.4.52).

The first part of Statement 7 is proven in the above three bullet points. For the sec-
ond part, if sboyr = 0 when (A.4.47) was evaluated earlier in the round, then the fact
that (A.4.53) was reached means Hoyr > Hjy, and then the second part of Statement
7 follows from the induction hypothesis applied to Statement 9. If on the other hand
sboyr = 1 when (A.4.47) was evaluated, then the second part of Statement 7 follows
from Statement 5 of Lemma B.12.

We now prove Statement 5. There are two relevant changes made on line (A.4.53)
that affect Statement 5: a packet is added to IN[Hgp] and Hjy is increased by one.
The argument in the preceding paragraph showed that when (A.4.53) is reached, Hgp €
[1..2n] and IN[Hgp] = L, and therefore the net effect of (A.4.53) is to increase the
number of packets stored in IN by one and to increase Hjy by one. Therefore, since
Statement 5 was true going into line (A.4.53) by the induction hypothesis, it will remain
true upon leaving (A.4.53).

It remains to prove the parts of Statement 9 not yet proven, namely that at all times
Hjy € [0..2n] and Hgp € L U [1..2n]. As was proven in the third bullet point above,
if (A.4.52) is satisfied, then Hjy < 2n, and hence the change there does not threaten
the domain of Hgp. Also, (A.4.53) sets Hgp to L, which is again in the valid domain.
Meanwhile, on (A.4.53) Hjy is changed to Hpy + 1 <2n, where the inequality follows
from the induction hypothesis applied to Statement 7.

Line (A.4.55), (A.4.57), and (A.4.64) Since IN and Hgp are the only relevant quan-
tities that change value on these lines, only the relevant parts of Statements 1, 2, and
9 must be proven. Since Hgp is set to L on these lines, Statement 9 is immediate
and Statement 2 is vacuously true. It remains to prove Statement 1. If Hgp = L go-
ing into (A.4.55), (A.4.57), or (A.4.64), then Hgp and IN will not change, and the
inductive hypothesis (applied to Statement 1) will ensure that Statement 1 will con-
tinue to be true upon exiting any of these lines. If 1 < Hgp < Hpy when (A.4.55),
(A.4.57), or (A.4.64) is entered, then we may apply the induction hypothesis to State-
ment 2 to conclude that IN[i] # L Vi € [1..Hgp — 1] and Vi € [Hgp + 1..Hjy + 1],
and IN[i] = L Vi € [Hjy + 2..2n] and IN[Hgp] = L. In particular, there is a gap in IN
where a “ghost packet” is being stored, and this gap will be filled when Fill Gap is
called on (A.4.55), (A.4.57) or (A.4.64). Namely, this will shift all the packets from
height Hgp + 1 through Hjy 4+ 1 down one spot, so that after Fill Gap is called,
IN[i] # L Vi € [1..Hjy] and IN[i] = L Vi € [Hjy + 1..2n], which is Statement 1. Fi-
nally, if Hgp > Hjy when (A.4.55), (A.4.57) or (A.4.64) is entered, then Fill Gap

688 Y. Amir, P. Bunn, and R. Ostrovsky

will not do anything, and so IN will not change. Since Statement 1 was true going
into these lines (by our induction hypothesis), it will remain true upon exiting these
lines.

Line (A.4.61-62) The only relevant variables to change values on these lines are
sbout, Hour, Hrp, and OUT, so we need only verify that Statements 3, 4, 6, and 9
remain true after leaving (A.4.61-62). First note that Hrp # L upon reaching (A.4.61)
(since (A.4.60) must be satisfied to reach (A.4.61-62)), so the induction hypothesis
(applied to Statements 3 and 4) implies that OUT[Hrp] # L when (A.4.61) is reached.
Therefore, by the induction hypothesis applied to Statement 6, Hoyr > 1 when (A.4.61)
is reached, and hence Hpyr € [1..2n] upon reaching (A.4.61) by the induction hypoth-
esis (applied to Statement 9). In particular, when Hoyr is reduced by one on (A.4.62),
we will have that Hpyr € [0..2n — 1] upon leaving (A.4.62), as required. Also, Hrp
will be set to L upon leaving (A.4.62), so Statement 9 remains true.

Statement 6 also follows from the fact that OUT[Hrp] # L when (A.4.61) is reached,
as follows. Since (by induction) Statement 6 was true upon reaching (A.4.61), the packet
deleted from OUT on (A.4.61) is accounted for by the drop in Hpoyr on (A.4.62).

Statement 3 is vacuously true upon leaving (A.4.62), so it remains to prove State-
ment 4. This argument is identical to the one used to prove Statement 4 in lines (A.3.32—
33) above.

Lines (A.5.89-94) We first prove Statements 10—13, and then address Statements 1-9.
We first prove that before Shuffle Packet is called on (A.5.77), we have that Bp[M] # L
and Br[m + 1] = L, from which Statement 10 follows.

e If Br is an outgoing buffer and Hrp = L or Hpp < Hp,, then M = Hp, (the
conditional statement on lines (A.5.80) and (A.5.82) will fail), and then Br[M] #
L by the induction hypothesis applied to Statement 4.

e If B is an outgoing buffer and Hrp > Hp,., then M = Hp, — 1 (the conditional
statement on line (A.5.80) will pass), and then BF[M] # L by the induction hy-
pothesis applied to Statement 3 or 4 (that M = Hp, — 1 is greater than zero follows
from the fact that Hp, > 2 in order for (A.5.74) to be true, since m > 0 by the in-
duction hypothesis applied to Statement 9, and then the comment on (A.5.74),
together with the fact that Br is an outgoing buffer, means that Hp, > 2).

e If B is an incoming buffer and Br[M + 1] # L, then (A.5.82) is satisfied and M
is set to M + 1 on line (A.5.83), and thus for the new value of M, Brp[M] # L
after line (A.5.83).

e Suppose Bp is an incoming buffer and BF[M + 1] = L. Notice that the induc-
tion hypothesis applied to Statement 2 and the fact that Bp[M + 1] = L imply
that Hgp = L or Hgp > Hjy = M. Therefore, the induction hypothesis applied to
Statement 1 implies that Bp[M] # L.

e If Br is an outgoing buffer and Br[m] = L, then the conditional statement on line
(A.5.84) will be satisfied, and hence m is set to m — 1. Thus after line (A.5.85),
Brlm+1]= L.

e If By is an outgoing buffer and Br[m] 7% L, then the induction hypothesis applied
to Statements 3, 4, and 6 imply that Br[m + 1] = L.

Authenticated Adversarial Routing 689

e If By is an incoming buffer and Hgp = L, then the value of m is not changed
on line (A.5.86), and so m + 1 = Hpy + 1. The induction hypothesis applied to
Statement 1 then implies that By[m + 1] = L.

e If Br is an incoming buffer and Hgp # L, then Br[Hjy + 2] = L by the induc-
tion hypothesis applied to Statement 2, and thus after m is changed to m + 1 on
(A.5.87), we have that By[m + 1] = By[Hjy + 2] = L, as required.

For Statements 11-13, we need to change notation slightly, since Re-Shuffling can oc-
cur between two buffers of any types (except outgoing to incoming). To prove these
statements, we therefore treat four cases: (1) Br is an outgoing buffer, (2) Br is an
incoming buffer, (3) Br is an outgoing buffer, (4) Br is an incoming buffer. We then
prove the necessary statements in each case.

Case 1. The value of BF[M] = OUT[M] is changed on line (A.5.90), and hence State-
ment 11 will hold provided M # Hpp. The top two bullet points above guarantee
that this is indeed the case. Statements 12 and 13 are not relevant unless B7 is an
incoming buffer, which will be handled in case 4 below.

Case 2. For Statement 13, the only relevant change to Hjy is on line (A.5.92), where
Hjn decreases in value, and hence Statement 13 will remain true. For the first part
of Statement 12, the only place Hgp can change is line (A.5.94). But if Hgp does
change value here, then the conditional statement on the previous line guarantees that
Hgp decreases to Hpy + 1. Statement 11 and the second part of Statement 12 are not
relevant to this case.

Case 3. The value of Br[m + 1] = OUT[m + 1] is changed on line (A.5.89), and hence
Statement 11 will hold provided m + 1 # Hpp. But we have already shown State-
ment 10 remains true, and in particular the slot that is filled on line (A.5.89) was
vacant. If Hpp # L, then by the induction hypothesis applied to Statements 3 and 4,
OUT[HFp] # L, and hence OUT[m + 1] = L implies that m + 1 # Hpp. Statements
12 and 13 are not relevant to this case.

Case 4. Since Br is an incoming buffer, the condition on line (A.5.74) implies that
the value of m (which is the height of Br) on line (A.5.73) must be at most 2n — 2
(M —m > 1 and M, m € [0..2n] by induction hypothesis applied to Statement 9).
Therefore, when the height of Br is increased by one on line (A.5.91), it will be at
most 2n — 1, and so Statement 13 will remain true. For the second part of Statement
12, we must show that the value of m 4 1 on line (A.5.89) is not equal to Hgp. In
the case that Hgp # L on line (A.5.86), the value of m will change to Hpy + 1 on
line (A.5.87), and then the induction hypothesis applied to Statement 1 implies that
Hgp < Hjy + 1 =m and so Hgp % m + 1 on line (A.5.89). Statement 11 and the first
part of Statement 12 are not relevant for this case.

It remains to verify Statements 1-9. There are two parts to proving Statements 1 and 2:
we must show they hold when Bp is an incoming buffer and also when B7 is an in-
coming buffer. For the latter part, Statements 1 and 2 will be true if we can show that
anytime an incoming buffer’s slot is filled as on line (A.5.89), the slot was either slot
Hjy + 1 (in the case that Hgp = L) or Hjv + 2 (in the case that Hgp % L). These
facts follow immediately from the definition of m on line (A.5.73) and lines (A.5.86—
87) and (A.5.89). For the former part, Statements 1 and 2 will remain true provided
the packet taken from Br on line (A.5.89) is the top-most packet in Br. Looking at

690 Y. Amir, P. Bunn, and R. Ostrovsky

the conditional statement on line (A.5.82), if IN[Hjy + 1] # L, then by the induction
hypothesis applied to Statements 1 and 2, we must have that IN[Hpy + 1] is the top-
most non-null packet, which is the packet that will be taken from Bfr on line (A.5.89)
(since in this case M = Hjy is changed to Hyy + 1 on line (A.5.83)). On the other hand,
if IN[Hpy + 1] = L on line (A.5.82), then the induction hypothesis applied to State-
ments 1 and 2 imply that IN[Hyy] is the top-most non-null packet, which is exactly the
packet taken on line (A.5.89) (since the conditional statement on line (A.5.82) will not
be satisfied, and hence the value of M will not be changed on line (A.5.83)).

Similarly, there are two parts to proving Statements 3 and 4: we must show they hold
when BF is an outgoing buffer and also when Br is an outgoing buffer. The former
part will be true provided the packet taken from Bfr on line (A.5.89) is the top-most
non-flagged packet. If Hpp = _L, then there is no flagged packet, and hence the packet
taken from Bp will be the top packet, i.e. the packet in index Br[Hoyr] (see lines
(A.5.72), (A.5.80-81), and (A.5.89)). If Hrp # L and Hrp < Hoyr, then investigating
those same lines also shows the top packet will be taken from B (which is not flagged
since Hpp < Hoyr by assumption). If Hrp > Hoyr, then line (A.5.80) will be satisfied,
shifting the value of M to Hpoyr — 1 on line (A.5.81). By the induction hypothesis
applied to Statement 3, this new value of M corresponds to the top-most non-flagged
packet of Bfr.

When Br is an outgoing buffer, Statements 3 and 4 will be true provided the packet
given to By takes the first free slot in Br (in particular, the packet will not over-write a
flagged packet’s spot). If Br[Hoyr] # L on line (A.5.84), then the induction hypothesis
applied to Statements 3, 4, and 6 imply that all slots of By between [1..Hpyr] are
non-_L, and all spots above Hpoyr are L. Therefore, (since in this case the conditional
statement on line (A.5.84) fails and hence the value of m does not change on the next
line) the definition of m on line (A.5.73) and line (A.5.89) show that the first free slot
of By will be filled. On the other hand, if Br[Hopyr] = L on line (A.5.84), then by the
induction hypothesis, we must have that Br[Hpyr] is the first free slot of Br, and by
investigating lines (A.5.73), (A.5.84-85), and (A.5.89), this is exactly the spot that is
filled.

Statements 5 and 6 remain true by the fact that Statement 10 was proven true and
lines (A.5.91) and (A.5.92). To satisfy the condition on line (A.5.74), it must be that
Hp, =M >1 and Hp, =m < 2n, and hence the changes made to Hp, and Hp, on
lines (A.5.91) and (A.5.92) will guarantee the parts of Statement 9 regarding Hoyr and
Hjy remain true. Also, Hgp remains in the appropriate domain by induction applied to
Statements 9, 12, and 13. Statements 7, 8, are not relevant. O

Lemma B.2. The domains of all of the variables in Figs. A.1 and A.2 are appropriate.
In other words, the protocol never calls for more information to be stored in a node’s
variable (buffer, packet, etc.) than the variable has room for.

Proof. Below we fix anode N € G and track changes to each of its variables.

Outgoing Buffers OUT (A.1.08). Each entry of OUT is initialized to L on (A.1.33).
After this point, Statement 6 of Lemma B.1 above guarantees OUT will need to hold
at most Hoyr packets, and since Hoyr is always between 0 and 2n (by Statement 9
of Lemma B.1) and packets have size P, the domain for OUT is as indicated.

Authenticated Adversarial Routing 691

Copy of Packet to be Sent p (A.1.09). This is initialized to L on (A.1.34), and is only
modified afterwards on (A.4.38), (A.3.33), and (A.4.62). By Statements 3, 4, and 9
of Lemma B.1, OUT[H] # L when p is set on (A.4.38) (since sb = 0 must have
been true on (A.4.37) in order to reach (A.4.38)), and the changes on (A.3.33) and
(A.4.62) reset p to L. Therefore, the domain of p is as indicated.

Outgoing Status Bit sb (A.1.10). This is initialized to O on (A.1.35), and is only modi-
fied afterwards on lines (A.3.33), (A.3.28), and (A.4.62), all of which change sb to 0
or 1, as required.

Packet Sent Bit d (A.1.11). This is initialized to 0 on (A.1.35), and is only modified
afterwards on lines (A.3.26), (A.4.40), and (A.4.62), each of which change d to O or
1, as required.

Flagged Round Index FR (A.1.12). This is initialized to L on (A.1.34), and is only
modified afterwards on lines (A.4.38), (A.3.33), and (A.4.62). The latter two lines
reset FR to L, while (A.4.38) sets FR to the index of the current stage and round t,
and since there are 3D rounds per transmission and 2 stages per round (A.3.02), so
when FR is set to t on (A.4.38), it will be in [0..6 D], as required.

Height of Outgoing Buffer H (A.1.13). This is initialized to 0 on (A.1.35). After this
point, Statement 9 of Lemma B.1 above guarantees H € [0..2n], as required.

Height of Flagged Packet Hrp (A.1.14). Statement 9 of Lemma B.1 guarantees that
Hprp will lie in the appropriate domain at all times.

Round Adjacent Node Last Received a Packet RR (A.1.15). This is initialized to L on
(A.1.34), and is only modified afterwards when it is received on (A.3.06), where it is
either set to the received value or _L if nothing was received. As discussed below, the
incoming buffer’s value for RR always lies in the appropriate domain, and hence so
will the value received on (A.3.06).

Outgoing Buffer’s Value for Adjacent Node’s Incoming Buffer Height Hyy (A.1.16). This
is initialized to 0 on (A.1.35), and is only modified afterwards on line (A.3.06), where
it is set to the value sent on (A.3.09) by the adjacent node, or _L in case no value was
received. Since the value sent on (A.3.09) will always be between 0 and 2n (by
Statement 9 of Lemma B.1), Hyy has the required domain.

Incoming Buffers IN (A.1.18). Each entry of IN is initialized to L on (A.1.29). After
this point, Statement 5 of Lemma B.1 above guarantees IN will need to hold at
most Hjy packets, and since Hjy is always between 0 and 2n (by Statement 9 of
Lemma B.1) and packets have size P, the domain for IN is as indicated.

Packet Just Received p (A.1.19). This is initialized to L on (A.1.30), and is only mod-
ified afterwards on (A.4.43), where it either is set to the value sent on (A.4.41) or L in
the case no value was received. Since the value sent on (A.4.41) has the appropriate
domain (i.e. the size of a packet, P), in either case p has the appropriate domain.

Incoming Status Bit sb (A.1.20). This is initialized to 0 on (A.1.31), and is only modi-
fied afterwards on lines (A.4.45), (A.4.49), (A.4.53), (A.4.55), (A.4.57), and (A.4.64),
all of which change sb to O or 1 as required.

Round Received Index RR (A.1.21). This is initialized to —1 on (A.1.31), and is only
modified afterwards on lines (A.4.53) and (A.4.64). The former sets RR to the index
of the current stage and round t, and since there are 3 D rounds per transmission and
2 stages per round (A.3.02), setting RR = t as on (A.4.53) will put RR in [0..6D]
as required. Meanwhile, (A.4.64) resets RR to —1. Thus, at all times, RR is in the
appropriate domain.

692 Y. Amir, P. Bunn, and R. Ostrovsky

Height of Incoming Buffer H (A.1.22). This is initialized to 0 on (A.1.31). After this
point, Statement 9 of Lemma B.1 above guarantees H € [0..2n], as required.

Height of Ghost Packet Hgp (A.1.23). Statement 9 of Lemma B.1 guarantees that Hgp
will lie in the appropriate domain at all times.

Incoming Buffer's Value for Adjacent Node’s Outgoing Buffer Height Hoyr (A.1.24).
This is initialized to 0 on (A.1.31), and is only modified afterwards on line (A.3.11),
where it is set to be one of the values sent on (A.3.05) by the adjacent node, or L in
case no value was received. Since the value sent on (A.3.05) (either Hoyr or Hpp)
will always be L or a number between 1 and 2n (see domain argument above for
an outgoing buffer’s height of flagged packet variable Hrp), Hoyr has the required
domain.

Incoming Buffer’s Value for Adjacent Node’s Status Bit sboyr (A.1.25). This is initial-
ized to O on (A.1.31), and is only modified afterwards on lines (A.3.10) and (A.3.11).
Both changes assign sboyr to ‘0’ or ‘1°, as required.

Incoming Buffer’s Value for Adjacent Node’s Flagged Round Index FR (A.1.26). This is
initialized to L on (A.1.30), and is only modified afterwards on lines (A.3.10-11)
and (A.4.43). Each of these times, FR is either set to the value sent by the adjacent
node, or L in the case nothing was received. Since the values sent on (A.3.05) and
(A.4.41) live in [0..6D] U L (see argument above for an outgoing buffer’s variable
FR living in the appropriate domain), so does FR.

Sender’s Count of Packets Inserted k (A.2.37). We want to argue that at all times, «
corresponds to the number of packets (corresponding to the current codeword) that
the sender has knowingly inserted. Lines (A.2.39) and (A.4.69) guarantee that k =0
at the outset of any transmission. The only other place « is modified is (A.3.31) where
it is incremented by one, so we must argue that (A.3.31) is reached exactly once for
every packet the sender knowingly inserts. By “knowingly” inserting a packet, we
mean that the sender has received verification that the adjacent node has received and
stored the packet, and hence the sender can delete the packet.

Suppose that in some round t, the sender sends a packet p as on (A.4.41). By
Claim B.9 below, the sender will not to try and send any other packet besides p to its
neighbor until he receives confirmation of receipt for p. There are two things to show:
(1) If the sender does not receive confirmation of receipt, then « is never incremented
as on (A.3.31), and (2) If the sender does receive confirmation of receipt, then « is
incremented exactly once. By “receiving confirmation of receipt,” we mean that line
(A.3.30) is satisfied in some round t” when the sender’s value for p equals the packet
p sent in round t (see Definition B.8 below). Clearly, (1) will be true since (A.3.31)
will never be reached if (A.3.30) is never satisfied. For (2), suppose that in some later
round t’ > t the sender gets confirmation of receipt for p. Clearly line (A.3.31) is
reached this round, and « is incremented by one there. We must show « will not be
incremented due to p ever again. To see this, p will be deleted on line (A.3.32-33)
of round t’, and therefore this packet can cause the sender to reach (A.3.31) at most
once.*® Thus, at all times « corresponds to the number of packets (corresponding to

36 The sender’s outgoing buffers are filled with (distinct) packets from M at the outset of each transmis-
sion (A.4.70) and during re-shuffling (A.5.96). Since S never receives packets (A.3.08), once a packet p has
left the sender, it will never again be in any of the sender’s (outgoing) buffers. Consequently, whenever p is

Authenticated Adversarial Routing 693

the current codeword) that the sender has knowingly inserted, as desired. Since each
codeword has D packets, the domain for « is as required.

Receiver’s Storage Buffer Iz (A.2.40). Each entry of I is initialized to L on (A.2.43),
after which it is only modified on lines (A.5.101) and (A.4.67). The latter resets Ig,
while the former sets entry « of Ir to the packet in /N[1]. We show below that
k will always accurately represent the number of current codeword packets the re-
ceiver has received, and hence will be a value between O and D. It remains to show
that 7/ N[1] will always hold a packet when (A.5.101) is reached. We use Claim B.5
below which states that for the receiver, anytime Hypy > 0, Hgp = L. Therefore,
whenever (A.5.99) is satisfied, Statement 1 of Lemma B.1 (together with the ar-
gument that IN has the appropriate domain) state that / N[1] will hold a packet, as
required.

Receiver's Number of Packets Received x (A.2.41). We want to show that x always
equals the number of packets corresponding to the current codeword the receiver
has received so far. Lines (A.2.42) and (A.4.67) guarantee that x = O at the out-
set of any transmission. The only other place « is modified is (A.5.101) where it
is incremented by one, so we must argue that (A.5.101) is reached exactly once
for every packet (corresponding to the current codeword) that the receiver re-
ceives. By Statement 1 of Lemma B.1 and Claim B.5 below, anytime (A.5.101) is
reached, IN[1] necessarily stores a packet. This packet is added to I on (A.5.101)
and then is promptly deleted from IN on (A.5.102). By Claim B.15, the receiver
will never enter (A.5.100) twice due to the same packet, and hence (A.5.101) is
reached exactly once for every distinct packet corresponding to the current code-
word (see comments on (A.5.100) and (A.5.104)). Therefore, « always equals the
number of packets corresponding to the current codeword the receiver has received
so far, as desired. Since there are D packets per codeword, x € [0..D], as re-
quired. U

Claim B.3. After re-shuffling, (and hence at the very end/beginning of each round),
all of the buffers of each node are balanced. In particular, there are no incoming buffers
that have height strictly bigger than any outgoing buffers, and the difference in height
between any two buffers is at most one.

Proof. We prove this using induction (on the round index), noting that all buffers
are balanced at the outset of the protocol (lines (A.1.29) and (A.1.33)). Consider any
node N in the network, and assume that its buffers are all balanced at the end of some
round t. We need to show the buffers of N will remain balanced at the end of the next
round t + 1. Let By and B, denote any two buffers of N, and let 4 be the variable
denoting the height of By and h; the height of B,. Suppose for the sake of contradiction
that 1 > hy 4 2 at the end of round t + 1 (after re-shuffling). Let H denote the height
of the maximum buffer in N at the end of t + 1, so H > hy > hy + 2. Also let h
denote the height of the minimum buffer in N attheendof t + 1,s0 h <hp, < H — 2.
But then the Re-Shuffle Rules dictate that N should have kept re-shuffling (A.5.72-74),
a contradiction.

set as on (A.4.38) after round t’, p can never be set to p, and hence on line (A.4.38), it will never be the case
(after round t’) that OUT[Hpp] = p.

694 Y. Amir, P. Bunn, and R. Ostrovsky

Similarly, assume for contradiction that there exists an incoming buffer whose height
hy is bigger than that of some outgoing buffer that has height 4. Let H and / be as
defined above, so we have that 2 < h| < hy < H. In the case that 1, = H, Re-Shuffle
Rules (A.5.72) guarantee that an incoming buffer will be selected to take a packet from.
Also, if h = hy, then Re-Shuffle Rules (A.5.73) guarantee that an outgoing buffer will
be chosen to give a packet to. Therefore, in this case a packet should have been re-
shuffled (A.5.74), and hence we have contradicted the fact that we are at the end of the
Re-Shuffle phase of round t. On the other hand, if 4 5 hy or H % h, then H — h > 2,
and again Re-Shuffling should not have terminated (A.5.74). ([

Lemma B.4. Every change in network potential comes from one of the following three
events:

1. S inserts a packet into the network.

2. R receives a packet.

3. A packet that was sent from one internal node to another is accepted; the verifica-
tion of packet receipt is received by the sending node; a packet is shuffled between
buffers of the same node; or a packet is moved within a buffer.

Furthermore, changes in network potential due to item (1) are strictly non-negative
and changes due to item (2) are strictly non-positive. Also, changes in network non-
duplicated potential due to item (3) are strictly non-positive. Finally, at all times, net-
work packet duplication potential is bounded between zero and 2n> — 8n* + 8n.

Proof. Since network potential counts the heights of the internal nodes’ buffers, it
only changes when these heights change, which in turn happens exclusively when there
is packet movement. By reviewing the pseudo-code, we see that this happens only on
lines (A.4.32), (A.4.35), (A.4.53), (A.4.55), (A.4.57), (A.4.61), (A.4.64), and (A.5.89—
90). Each of these falls under one of the three items listed in the Lemma, thus proving
the first statement in the Lemma. That network potential changes due to packet insertion
by S are strictly non-negative is obvious (either the receiving node’s potential increases
by the height the packet assumed, as on (A.4.53), or the receiving node is R and the
packet does not contribute to potential). Similarly, that potential change upon packet
receipt by R is strictly non-positive is clear, since packets at R do not count towards
potential (see Definition 4.7). Also, since only flagged packets (but not necessarily all
of them) contribute to network packet duplication potential, the biggest it can be is the
maximal number of flagged packets that can exist in the network at any given time, times
the maximum height each flagged packet can have. By Claim B.14, there are at most
(n — 2)? flagged packets in the network at any given time, and each one has maximal
height 2n (Lemma B.1, part 9), so network packet duplication potential is bounded by
2n3 — 8n? + 8n.

It remains to prove that changes in network non-duplicated potential due to item (3)
are strictly non-positive. To do this, we look at all lines on which there is packet move-
ment, and argue each will result in a non-positive change to non-duplicated potential.
Clearly potential changes on lines (A.4.32), (A.4.55), (A.4.57), (A.4.61), and (A.4.64)
are non-positive. Also, if (A.4.35) is reached, if R has already accepted the packet,

Authenticated Adversarial Routing 695

then that packet’s potential will count towards duplicated potential within the outgo-
ing buffer, and so the change in potential as on (A.4.35) will not affect non-duplicated
potential. If on the other hand R has not already accepted the packet, then the flagged
packet still counts towards non-duplication potential in the outgoing buffer. Since the
result of (A.4.35) is simply to swap the flagged packet with the top packet in the buffer,
the net change in non-duplication potential is zero. That changes in potential due to re-
shuffling packets (A.5.89-90) are strictly non-positive follows from Claim B.13 below.
It remains to check the cases that a packet that was transferred between two internal
nodes is accepted (A.4.53). Notice that upon receipt there are two changes to network
non-duplicated potential: it increases by the height the packet assumes in the incoming
buffer it arrived at (A.4.53), and it decreases by the height the packet had in the corre-
sponding outgoing buffer (this decrease is because the flagged packet in the outgoing
buffer will count towards packet duplication potential instead of non-duplicated poten-
tial the instant the packet is accepted). The decrease outweighs the increase since the
packet’s height in the incoming buffer is less than or equal to the height it had in the
corresponding outgoing buffer (Claim B.13). (]

Claim B.5. For any of the receiver’s buffers IN, Hjy = 0 at the start of every round.
Also, anytime Hyjy > 0, Hgp = L.

Proof. H = Hjy is set to O at the outset of the protocol (A.1.31). The first statement
follows immediately from line (A.5.102), where each of the receiver’s incoming buffers
IN have Hjy reset to zero during the re-shuffle phase of every round. For the second
statement, we will show that whenever H changes value from O in any round t, that
Hgp will be set to L at the same time, and neither will change value until the end of
the round when H will be reset to zero during re-shuffling. In particular, the only place
H can change from zero is on (A.4.53). Suppose (A.4.53) is reached in some round
t, changing H from zero to 1, and also changing Hgp to L. Looking at the pseudo-
code, neither H nor Hgp can change value until line (A.5.102), where H is reset to
zero. Therefore, H can only be non-zero between lines (A.4.53) and (A.3.21) (when
Receiver Re-Shuffle is called) of a given round, and at these times Hgp is always equal
to L.]

Claim B.6. Let OUT be any outgoing buffer, and Hrp, FR, and sb denote the height of
it flagged packet, round the packet was flagged, and status bit, respectively (see (A.1.10),
(A.1.12), (A.1.14)). Then Hpp = 1. & FR = 1. Also, anytime OUT has no flagged
packets (i.e. Hrp = L), OUT has normal status (i.e. sb=0).

Proof. The first statement is true at the outset of the protocol (A.1.34), so it will be
enough to make sure that anytime Hpp or FR changes value from L to non-_L (or vice
versa), the other one also changes. Examining the pseudo-code, these changes occur
only on lines (A.3.33), (A.4.38), and (A.4.62), where it is clear Hrp takes on a non-_L
(respectively L) value if and only if FR does.

The second statement is true at the outset of the protocol (A.1.34-35). So it is enough
to show: (1) anytime Hpp is set to L, sb is equal to zero, and (2) anytime sb changes
to one, Hpp # L. The former is true since anytime Hpp changes to L, sb is set to zero

696 Y. Amir, P. Bunn, and R. Ostrovsky

on the same line ((A.3.33) and (A.4.62)), while the latter is true since sb only changes
to one on (A.3.28), which can only be reached if FR # L (A.3.27), which by the first
statement of this claim implies Hpp # L. O

Claim B.7. The following two statements are true:

1. Anytime sboyr is equal to 1 when Create Flagged Packet is called on line (A.3.15),
Hpp # L.

2. Anytime Send Packet is called on line (A.3.17), the flagged packet has height at
least one (i.e. HFp is at least one anytime Send Packet is called).

Proof. We prove the second statement by separating the proof into the following two
cases.

Case 1: sboyr = 0 at the start of Stage 2. Since Send Packet is called, the conditional
statement on line (A.3.16) was satisfied. Therefore, since we are in the case sboyr =
0 on that line (sboyr cannot change values between (A.3.12) and (A.3.16)), then
Hour > Hjn. Tracing Hjy backwards, it was received on line (A.3.06) and represents
the value of Hjy that was sent on line (A.3.09). Using Statement 9 of Lemma B.1,
Hjy > 0 and hence the value of Hoyr on (A.3.16) must be at least one. Since Hoyr
and Hjy cannot change between lines (A.3.15) and (A.3.16) of any round, when
Create Flagged Packet was called, it was still true that sboyr = 0 and Hoyr > Hiy >
0. Therefore, line (A.4.37) will be satisfied and (A.4.38) will set Hpp = Hoyr > 1 as
required.

Case 2: sboyr = 1 at the start of Stage 2. Let t denote some round where shoyr = 1
at the start of Stage 2. Our strategy will be to find the most recent round that sboyr
switched from O to 1, and argue that the value that Hrp acquired in that round has not
changed. So let t(4+ 1 denote the most recent round that sbpoyr had the value O at
any stage of the round. We argue that sboyr = 1 by the end of to+ 1, and sbpoyr =0
at the start of Stage 2 of round t¢ (the round before ty + 1) as follows:

e If shoyr equals 0 by the end of round tg + 1, then it will at the start of round
to + 2, contradicting the choice of ty + 1.

e If sboyr =1 at the start of Stage 2 of round t(, then sboyr must have changed
its value to 0 sometime between Stage 2 of round to and the end of round
to + 1 (since sboyr = 0 at some point of round to + 1 by definition). This
can only happen on line (A.3.33) inside the Reset Outgoing Variables func-
tion of round tg + 1 (this is the only place that sboyr can be set to zero).
However, since sboyr cannot change between the time that Reset Outgoing
Variables is called on line (A.3.07) and the end of the round, it must be that
sboyt was equal to zero at the start of round t + 2, contradicting the choice of
to+ 1.

Now since sboyr = 0 at the start of round to + 1 (it cannot change between Stage
2 of tg and the start of to + 1), and sboyr = 1 by the end of to + 1, it must have
changed on line (A.3.28) of round t(+ 1 (this is the only line that sets sboyr to 1). In
particular, the conditional statements on lines (A.3.25) and (A.3.27) must have been
satisfied, and so d was equal to 1 on line (A.3.25) of round t(+ 1. Since d is reset to

Authenticated Adversarial Routing 697

zero during Stage 1 of every round (A.3.26), it must be that d was switched from O to
1 on line (A.4.40) of round tg (this is the only place d is set to one). Thus, we have
that Send Packet was called on line (A.3.17) of round t(. We are now back in Case 1
above (but for round t(instead of t), and thus Hrp was set to a value of at least 1
on line (A.4.38) of round tg. It remains to argue that Hrp does not decrease in value
between round tg and line (A.3.17) of round t. But Hpp can only change value on
lines (A.3.33), (A.3.35), and (A.4.38). For round tg, the former two of these lines
have both passed when the latter is called (setting Hrp > 1 as in Case 1). Meanwhile,
between tg + 1 and t, we know that (A.3.33) and (A.4.38) cannot be reached, as
this would imply the value of sbpyr is zero sometime after to + 1, contradicting
the choice of to 4+ 1. The only other place Hrp can change is (A.3.35), which can
only increase Hpp. Thus in any case, L % Hpp > 1 when Send Packet is called on
(A.3.17) of round t.

The proof of the first statement follows from the proof given in Case 2 above. U

Definition B.8. We will say that an outgoing buffer gets confirmation of receipt for
a packet p that it sent across its adjacent edge whenever line (A.3.30) (alternatively
line (C.4.46) for the Mal-Slide protocol of Sect. 5) is reached and satisfied and the
packet subsequently deleted (via “OUT[HFp] = L on (A.3.32)) (respectively (C.4.50))

is (a copy of) p.

Claim B.9. Let B, p, and t denote either:

e B is the sender, p is any packet the sender is currently storing, and t = 0 is the
outset of a transmission, OR

e B is an internal node and p is (an instance of) a packet that is accepted by node
B in round t (using the definition of “accepted” from Definition 4.4)

Then:

1. Let t' be the first round after’’ t in which B attempts to send (a copy of) this
packet across any outgoing edge. Then the corresponding outgoing buffer OUT of
B will necessarily have normal status at the start of Stage 2 of t’.

2. If B fails to get confirmation of receipt for the packet in round t + 1 (i.e. either
RR is not received on (A.3.06) of round t’ + 1, or it is received but RR < t’3%),
then OUT enters problem status as on (A.3.28) of round £’ + 1. OUT will remain
in problem status until the end of the transmission or until the round in which it
gets confirmation of receipt (i.e. until RR is received as on (A.3.06) with RR > t/).

3. From the time p is first flagged as on (A.4.38) of round t’ through the time B does
get confirmation of receipt (or through the end of the transmission, whichever
comes first), OUT will not have any other flagged packets, i.e. p = OUT[Hpp] = p
and FR=t'.

37 The Claim remains valid even if t’ is a round in a different transmission than t.
38 Failing the condition on (A.3.30) technically means RR < FR or FR = L ; but in light of Statement 3 of
this claim, FR = t’ for all rounds between t’ and the time B gets confirmation of receipt for p.

698 Y. Amir, P. Bunn, and R. Ostrovsky

Proof. We prove Statement 1 by contradiction. Let t” denote the first round after t
in which B attempts to send (a copy of) p across an edge E (B, C), i.e. t’ is the first
round after t that Send Packet is called by B’s outgoing buffer OUT such that the p that
appears on line (A.4.38) of that round corresponds to p. For the sake of contradiction,
assume that sboyr = 1 at the start of Stage 2 of round t’. Since sboyr cannot change
between the start of Stage 2 and the time that Create Flagged Packet is called on line
(A.3.15), we must have that sboyr = 1 on line (A.4.37) of round t’, and hence (A.4.38)
is not reached that round. In particular, when Send Packet is called on line (A.3.17) (as
it must be by the fact that p was sent during round t’), the packet p that is sent (which
is p) was set in some previous round. Let T denote the most recent round for which j
was set to p as on (A.4.38) (this is the only line which sets p). Then by assumption
t < t/, and OUT had normal status at the start of Stage 2 of round t (in order for
(A.4.38) to be reached). Since OUT had normal status at the start of Stage 2 of round
£, but by assumption OUT had problem status at the start of Stage 2 of round t’, let
T denote the first round such that € < € < t’ and such that OUT had problem status
at the start of Stage 2 of t. Since the only place OUT switches status from normal to
problem is on (A.3.28), this line must have been reached in round t. In particular, this
implies that (A.3.25) was satisfied in round t, which in turn implies that Send Packet
was called in round € — 1 (since d is reset to zero at the end of Stage 1 of every round
as on (A.3.26)). But this is a contradiction, since t < T—1<t/,andso p = p was sent
in a round before t’, contradicting the choice of t’.

For Statement 2, since B sent p in round t’ and OUT had normal status at the start
of Stage 2 of this round, we have that Hoyr > Hyy on line (A.3.16) of round t’ (so
that Send Packet could be called). Since sboyr, Hour, and Hjy cannot change between
(A.3.15) and (A.3.17) of any round, (A.4.37) will be true, and thus FR is set to t’
on (A.4.38) of round t’. Also, d = 1 after the call to Send Packet of round t’ (A.4.40).
Notice that neither FR nor d can change value between the call to Create Flagged Packet
in round t’ and the call to Reset Outgoing Variables in the following round. Therefore,
if B does not receive RR or if RR < FR = t’ when Reset Outgoing Variables is called
in round t’ + 1, then (A.3.25) and (A.3.27) will be satisfied, and hence OUT will enter
problem status on (A.3.28) of round t’+ 1. That OUT remains in problem status until the
end of the transmission or until the round in which RR is received on (A.3.06) with RR >
t’ now follows from the following subclaim. (Warning: the following subclaim switches
notation. In particular, to apply the subclaim here, replace (t, t() of the subclaim with
(t'+1,t))

Subclaim. Suppose that at the start of Stage 2 of some round t, an outgoing buffer
OUT has problem status and 1 # FR = to. Then OUT will remain in problem status
until the end of the transmission or until the round in which RR is received on (A.3.06)
with RR > tg.

Proof. OUT will certainly return to normal status by the end of the transmission
(A.4.62), in which case there is nothing to show. So suppose that £’ > t is such that
OUT first returns to normal status (in the same transmission as t) as on (A.3.33) of
round t’. In particular, lines (A.3.29) and (A.3.30) were both satisfied, so OUT must
have received RR on (A.3.06) earlier in round t’, with RR > FR. If the value of FR on

Authenticated Adversarial Routing 699

line (A.3.30) equals tg, then the proof is complete. We show by contradiction that this
must be the case.

Assume for the sake of contradiction that FR # t(on line (A.3.30) of round t’.
Since FR was equal to t at the start of Stage 2 of round t by hypothesis, FR must
have changed at some point between Stage 2 of round t and round t’. Notice that
between these rounds, FR can only change values on lines (A.3.33) and (A.4.38). Let
t” denote the first round between t and t’ such that one of these two lines is reached.
Note that t” > t, since (A.3.33) already passed by the start of Stage 2 (which is when
the subclaim asserts FR = tg), and (A.4.38) cannot be reached in round t since OUT
has problem status when (A.4.37) of round t is reached (by hypothesis).

e Suppose FR is first changed from FR = tg on (A.3.33) of round t”. First note
that because (A.3.33) is the first time FR changes its value from t, it must be
the case that FR was still equal to tg on (A.3.30) earlier in round t”. Also, since
(A.3.33)isreached in round t”, OUT returns to normal status. Since t’ was defined
to be the first round after t for which this happens, we must have that t” > t/.
But by construction t” < t’, so we must have that t” = t’. However, this is a
contradiction, because our assumption is that FR # tq on line (A.3.30) of round
t’ = t”, but as noted in the second sentence of this paragraph, we are in the case
that FR = t on line (A.3.30) of round t”.

e Suppose FR is first changed from FR = t(on (A.4.38) of round t”. Then (A.4.37)
must have been satisfied, and thus OUT had normal status when Create Flagged
Packet was called in round t”. Since OUT had problem status at the start of Stage 2
of round t (by hypothesis), the status must have switched to normal at some point
between t and t”, which can only happen on (A.3.33). But if (A.3.33) is reached,
then FR will be set to L on this line, which contradicts the fact that FR was first
changed from FR = t(on (A.4.38) of round t”.

This completes the proof of the subclaim. t

For the third Statement, first note that OUT[Hpp] = p as of line (A.4.38) of round t’.
This is the case since sbpoyr = 0 on line (A.3.12) (by Statement 1 of this claim), and
then the fact that Send Packet is called in round t’ means Hpoyr > Hpy on (A.3.16), and
therefore since none of these values change between (A.3.12) and (A.3.16), (A.4.37)
will be satisfied in round t’. Therefore, we will track all changes to OUT and Hpp
from Stage 2 of round t’ through the time p is deleted from OUT as on (A.3.32-33)
of some later round,>® and show that none of these changes will alter the fact that
OUT[Hpp] = p. Notice that (before the end of the transmission) Hpp only changes
value on lines (A.3.33), (A.3.35), and (A.4.38); while OUT only changes values on lines
(A.3.32), (A.3.35), and (A.5.89-90). Clearly the changes to each value on (A.3.35) will
preserve OUT[Hrp] = p, soitis enough to check the other changes. Notice that (A.3.32)
is reached if and only if (A.3.33) is reached, which by Statement 2 of this claim does
not happen until OUT gets confirmation of receipt that p was successfully received by
B’s neighbor, and therefore these changes also do not threaten the validity of State-
ment 3. The change to Hpp as on (A.4.38) can only occur if (A.4.37) is satisfied, i.e.

39 or through the end of the transmission, whichever occurs first.

700 Y. Amir, P. Bunn, and R. Ostrovsky

only if OUT has normal status, and thus again Statement 2 of this claim says this cannot
happen until OUT gets confirmation of receipt that p was successfully received by B’s
neighbor. Finally, lines (A.5.89-90) will preserve OUT[Hrp] = p by Statement 11 of
Lemma B.1.

That FR = t’ from (A.4.38) of t’ through the time B gets confirmation of receipt for
p was proven in the subclaim above. Also, p can only change on (A.3.33) or (A.4.38),
which we already proved (in the proof of the subclaim above) are not reached.]

Claim B.10. At any time, an outgoing buffer has at most one flagged packet.
Proof. This follows immediately from Statement 3 of Claim B.9. (]

Claim B.11. For any outgoing buffer OUT, if at any time its Flagged Round value FR
is equal to t, then OUT necessarily called Send Packet on line (A.3.17) of round t.

Proof. Suppose that at some point in time, FR is set to t. Notice that the only place
FR assumes non-_L values is on (A.4.38), and therefore line (A.4.37) must have been
satisfied in round t. Since the values for sboyr, Hoyr, and Hyy cannot change between
lines (A.3.15) and (A.3.16), the statement on (A.3.16) will also be satisfied in round t,
and consequently Send Packet will be reached in t. (]

Lemma B.12. Suppose that sboyr = 1 when line (A.4.47) is reached in round t on
an edge linking buffers OUT and IN. Further suppose that IN does receive the commu-
nication (p, FR) from OUT on line (A.4.43) of t. Let t(denote the round described by
FR, let h denote the number of packets in OUT in round to, and let h' denote the height
of IN at the start of round to. Then the following are true:

1. to is well-defined (i.e. to # L and to < t).

2. h>h.

3. OUT sent p to IN on line (A.4.41) of round tg. Furthermore, the height of p in
OUT when it is sent on line (A.4.41) of round t is greater than or equal to h.

4. If the condition statement on line (A.4.51) of round t is satisfied, then the value
of Hgp when this line is entered, which corresponds to the height in IN that p
assumes when it is inserted on (A.4.53), satisfies | # Hgp < h' +1 < 2n.

5. If the condition statement on line (A.4.51) of round t is satisfied, then Hypy was
less than 2n at the start of all rounds between tq and t.

Proof of Lemma B.12. We make a series of subclaims to prove the five statements of
the lemma.

Subclaim 1. The value of FR that is sent on (A.4.41) of round t is not L.

Proof. Since (A.4.41) is reached, Send Packet was called on (A.3.17). By Statement 2
of Claim B.7, we have that Hrp > 1 when Send Packet is called, and in particular Hpp #
L on line (A.3.17). Since Hpp cannot change between (A.3.17) and (A.4.41), we have
that Hpp % L on (A.4.41), and hence FR # L on this line (Claim B.6). O

Authenticated Adversarial Routing 701
Subclaim 2. tg is well-defined (i.e. L # tg < t).

Proof. By the definition of to and Subclaim 1, tg # L. Also, by looking at the three
places that FR changes values ((A.3.33), (A.4.38), and (A.4.62)), it is clear that when
FR # 1, FR will always be less than or equal to the current round index. (]

Subclaim 3. t > ty.

Proof. By Subclaim 2, we only have to show t # tg. For the sake of contradiction,
suppose t = tg. By hypothesis, sboyr = 1 when line (A.4.47) of round t = tg is
reached. Notice that shpyr had been reset to 0 on (A.3.10) of round t = tg, so the
only way it can be ‘1’ on (A.4.47) later that round is if it is set to one on (A.3.11). This
can only happen if Hoyr = L or FR > RR. Since (A.4.47) is reached, (A.4.44) must
have failed, and since Hpyr does not change values between the time it is received on
(A.3.11) and (A.4.44), we have that Hoyr # L on (A.3.11). Therefore, we must have
that FR > RR on (A.3.11) of round t = ty.

Notice the value for FR here comes from the value sent by OUT on (A.3.05), and this
happens before line (A.4.38) has been reached in round t = t¢. Therefore, the value
of FR received on (A.3.11) obeys FR < t = t¢ (as noted above, FR can never attain a
value bigger than the current round). Since RR < FR, line (A.3.30) cannot have been
satisfied since the time FR was set to its current value (within a transmission, the values
RR assumes are strictly increasing, see (A.4.53)). Therefore, we may apply Claim B.11
and Statement 2 of Claim B.9 to argue that FR will not be changed on (A.4.38) of round
t = to (since OUT will have problem status), and consequently FR will still be strictly
smaller than t = ty when line (A.4.41) is reached of round t¢. This contradicts the
definition of tg as the value received on line (A.4.43) of round t. O

Subclaim 4. OUT had normal status at the start of Stage 2 of round tq. For every
round between Stage 2 of to + 1 through t — 1, OUT had problem status and FR = t.

Proof. By definition of tg, it equals the value of FR that was received in round t
on line (A.4.43), which in turn corresponds to the value of FR that was sent on line
(A.4.41). Tracing the values of FR backwards, we see that the only time/place FR is set
to a non-_L value (as we know it has by Subclaim 1) is on line (A.4.38), and this must
have happened in round t since FR = t¢ by definition of t(. Therefore, in round to,
line (A.4.38) must have been reached when Create Flagged Packet was called on line
(A.3.15); so in particular sbpoyr must have been zero on line (A.4.37) to have entered
the conditional statement. Since sboyr cannot change between the start of Stage 2 and
line (A.3.15) (where Create Flagged Packet is called), it must have been zero at the start
of Stage 2. This proves the first part of the subclaim. Now suppose there is a round t’
between Stage 2 of tg + 1 and t — 1 such that sboyr = 0 at any time in that round
(without loss of generality, let £’ be the first such round). Since sboyr can only switch
to zero on (A.3.33) inside the call to Reset Outgoing Variables, it must be that this line
is reached in t’, and hence FR is also set to L on this line. Since FR is only assigned
non-_L values on (A.4.38), FR can only assume values at least t’ > tg after this point.
Thus, FR will not ever be able to return to the value of tg, contradicting the fact that

702 Y. Amir, P. Bunn, and R. Ostrovsky

FR = t(during round t. Finally, if FR were to change values at any point during rounds
to+ 1 and t — 1, then we again would have that FR can only assume values at least
t’ > tg after this point, and thus FR will not ever be able to return to the value of t,
contradicting the fact that FR = t(during round t. (]

Subclaim 5. OUT attempted to send p in round t.

Proof. By definition, t(y denotes the value of FR during round t. Since FR can only be
set to to on (A.4.38) of round t, this line must have been reached in t. In particular,
line (A.4.37) was satisfied during the call to Create Flagged Packet of round t, and
hence sb =0 and H > Hjy at that time. Therefore, (A.3.16) will be satisfied when it is
reached in round tg, which implies Send Packet will be called on the following line. The
fact that it was the same packet p that was sent in tg as in t follows from Statement 3
of Claim B.9. (]

Subclaim 6. The height of p in OUT when it is sent in round t is greater than or
equal to h.

Proof. Subclaim 5 stated that OUT attempted to send p in round t, and Subclaim 4
stated that OUT had normal status at the start of t(. Therefore, the packet which was
sent in round to (which is p) was initialized inside the call to Create Flagged Packet
on line (A.4.38). By observing the code there, we see that p is set to OUT[H], i.e. p
has height H in round tg, and Hpp is set to equal H on this same line. By Statement 3
of Claim B.9, p = p will remain the flagged packet through the start of round t, and
OUT[Hpp] = p. By Statement 11 of Lemma B.1, Hpp will not change during any call
to re-shuffle. Indeed, since Subclaim 4 ensures that line (A.4.38) is never reached from
to + 1 through the start of t, the only place Hrp can change value is on (A.3.33)
or (A.3.35). We know the former cannot happen between to 4 1 and the start of t,
since this would imply sboyr is reset to zero on (A.3.33) of that round, contradicting
Subclaim 4. Therefore, Hrp can only change values between to 4+ 1 and the start of t
as on (A.3.35), which can only increase Hrp. Hence, from the time Hpp is set to equal
the height of OUT in round tq as on (A.4.38) (which by definition is 4), Hpp can only
increase through the start of round t. (|

Subclaim 7. h>H'.

Proof. This follows immediately from Subclaims 4 and 5 as follows. Because OUT
tried to send the packet in round t¢ (Subclaim 5) and because OUT had normal status
in this round (Subclaim 4), it must be that the conditional statement on line (A.3.16)
of round t(was satisfied, and in particular that the expression H > Hjy was true.
Since 4 is defined to be the value of H as of line (A.4.38) of round t((Statement 6 of
Lemma B.1), this subclaim will follow if &’ equals the value of Hyy as of line (A.4.38)
of round t. But this is true by Statement 5 of Lemma B.1, since the value of Hjy on
line (A.3.16) comes from the value received on line (A.3.06), which in turn corresponds
to the value of Hjy sent on line (A.3.09). O

Authenticated Adversarial Routing 703

Subclaim 8. If the conditional statement on line (A.4.51) is satisfied in round t, then
OUT ’s attempt to send p in round t failed (i.e. IN did not store p in tg), and further-
more IN did not store p in any round between t¢ and t.

Proof. We prove this by contradiction. Suppose there is some round t € [tg, t — 1]
in which IN stored p. This would mean that line (A.4.51) was satisfied in round t,
and in particular RR is set to € > t(on (A.4.53). But as already noted in the proof of
Subclaim 2, for the remainder of the transmission, FR can never assume the value of
a round before tg. Similarly, once RR changes to £ > t(on (A.4.53) of round t, it
can never assume a smaller (non-_L) value for the rest of the transmission (RR can only
change to a non-_L value on line (A.4.53)). But this contradicts the fact that RR < FR
on (A.4.51) of round t, since by definition of tg, FR = tg on (A.4.51) of round t. O

Subclaim 9. [If the conditional statement on line (A.4.51) is satisfied in round t, then
RR < tg between the start of to through line (A.4.51) of round t. In particular, lines
(A.4.47) and (A.4.51) will be satisfied for any round between to and t for which they
are reached.

Proof. RRis setto —1 at the start of any transmission ((A.1.31) and (A.4.64)). Since
the only other place RR changes value is (A.4.53), it is always the case that the value of
RR is less than or equal to the index of the current round. Thus, RR can only assume a
value greater than (or equal to) to in a round after (or during) to. But this would mean
there was some round between to and t — 1 (inclusive) such that (A.4.53) was reached,
which contradicts Subclaim 8. The fact that (A.4.51) will be satisfied whenever it is
reached now follows immediately from Subclaim 4, since in order to reach (A.4.51),
line (A.4.48) must have failed, which means the communication on line (A.4.43) was
received. The fact that (A.4.47) will be satisfied whenever it is reached follows from the
fact that sboyr will always be set to one on (A.3.11) of each round between t(and t
(the first part of this subclaim says RR < to, and Subclaim 4 says that if FR is received
on (A.3.11), then FR = ty). O

Subclaim 10. [f the conditional statement on line (A.4.51) is satisfied in round t,
then there was no round between to+ 1 and t — 1 (inclusive) in which IN received both
Hoyr and p.

Proof. Suppose for the sake of contradiction that there is such a round, t. Notice that
line (A.4.51) of round t will necessarily be reached (since the conditional statement
of line (A.4.44) will fail by assumption, (A.4.47) will be satisfied by Subclaim 9, and
(A.4.48) will fail by assumption). However, line (A.4.53) cannot be reached in round £
(Subclaim 8 above), and therefore the conditional statement on line (A.4.51) must fail.
This contradicts Subclaim 9. U

Subclaim 11. Ifthe conditional statement on line (A.4.51) is satisfied in round t, then
IN was in problem status at the end of round tq, and remained in problem status until
(at least) line (A.4.53) of round t.

704 Y. Amir, P. Bunn, and R. Ostrovsky

Proof. We first show that sbyy will be set to one on line (A.4.45) or (A.4.49) of round
to. To see this, we note that if (A.4.44) fails in round tg, then necessarily (A.4.47)
and (A.4.48) will both be satisfied. After all, (A.4.47) is satisfied (Subclaim 9), and
then (A.4.48) must be true (by Subclaim 10, since we are assuming (A.4.49) failed).
Thus, sb;y will be set to one on line (A.4.45) or (A.4.49) of round t, as claimed.
Now for every round between tg + 1 and t, Subclaims 9 and 10 imply that either the
conditional statement on line (A.4.44) will be satisfied, or the conditional statements on
lines (A.4.47) and (A.4.48) will both be satisfied, and hence sb;y can never be reset to
zero since lines (A.4.53), (A.4.55), and (A.4.57) will never be reached. O

Subclaim 12. [fthe conditional statement on line (A.4.51) is satisfied in round t, then
between the end of round t(and the time Receive Packet is called in round t, we have
that Hgp # | and Hgp <h’ +1 <2n.

Proof. As in the proof of Subclaim 11, either line (A.4.46) or (A.4.50) will be reached
in round tg (since either line (A.4.45) or (A.4.49) is reached). The value of Hjpy at the
start of round tg is 4’ by definition. Since 2’ < h < 2n (the first inequality is Subclaim 7,
the second is Statements 6 and 9 of Lemma B.1), and since Hjy cannot change value
between the start of tg and the time Receive Packet is called later in tg, we have that
the value of Hjy < 2n when either line (A.4.46) or (A.4.50) is reached. Therefore,
these lines guarantee that | # Hgp < h’ + 1 < 2n after these lines (either because Hgp
satisfied this before these lines, or it was set to Hyy + 1 on these lines). After this, there
are five places Hgp can change its value: (A.4.46), (A.4.50), (A.4.53), (A.4.55), and
(A.4.57). As in the proof of Subclaim 11, lines (A.4.53), (A.4.55), and (A.4.57) will not
be reached at any point between to and t. The other two lines that change Hgp can
only decrease it (but they cannot set Hgp to L). O

Subclaim 13. [f the condition statement on line (A.4.51) of round t is satisfied, then
the value of Hgp when this line is entered, which corresponds to the height in IN that p
assumes when it is inserted on (A.4.53), satisfies Hgp # 1 and Hgp < h' +1 < 2n.

Proof. This follows immediately from Subclaim 12 since p is inserted into IN at
height Hgp (A.4.53). O

Subclaim 14. If the condition statement on line (A.4.51) of round t is satisfied, then
Hiy was less than 2n at the start of all rounds between t(and t.

Proof. Subclaim 12 implies that 2’ < 2n (so Hjy had height strictly smaller than 2n
at the start of round t). Searching through the pseudo-code, we see that Hjy is only
modified on lines (A.4.53), and during Re-Shuffling (A.5.91-92). Between rounds t
and t — 1, line (A.4.53) is never reached (Subclaim 8), and hence all changes to Hjy
must come from Re-Shuffling. But because Hjy was less than 2n when it entered the
Re-Shuffle phase in round tg, Statement 13 of Lemma B.1 guarantees that Hyy will still
be less than 2n at the start of round t. (Il

All statements of the lemma have now been proven.]

Authenticated Adversarial Routing 705

Claim B.13. Every packet is inserted into one of the sender’s outgoing buffers at some
initial height. When (a copy of) the packet goes between any two buffers By # By (either
across an edge or locally during re-shuffling), its height in By is less than or equal to
the height it had in B). If B| = By, the statement remains true EXCEPT for on line
(A.3.35).

Proof. We separate the proof into cases, based on the nature of the packet movement.
The only times packets are accepted by a new buffer or re-shuffled within the same
buffer are lines (A.3.32), (A.3.35), (A.4.53), (A.4.55), (A.4.57), (A4.61), (A.4.64),
(A.5.89-90), and (A.5.101-102). Of these, (A.3.35) is excluded from the claim, and
the packet movement on lines (A.3.32), (A.4.55), (A.4.57), (A.4.61), (A.4.64), and
(A.5.101-102) are all clearly strictly downwards. It remains to consider lines (A.4.53)
and (A.5.89-90).

Case 1: The packet moved during Re-Shuffling as on (A.5.89-90). By investigating the
code on these lines, we must show that m 4+ 1 < M. This was certainly true as of line
(A.5.74), but we need to make sure this did not change when Adjust Heights was
called. The changes made to M and m on (A.5.83) and (A.5.85) will only serve to
help the inequality m + 1 < M, so we need only argue the cases for when (A.5.81)
and/or (A.5.87) is reached. Notice that if either line is reached, by (A.5.74) we must
have (before adjusting M and m) that M — m > 2, and therefore modifying only
M =M — 1 or m =m + 1 will not threaten the inequality m + 1 < M. It remains
to argue that both (A.5.81) and (A.5.87) cannot happen simultaneously (i.e. cannot
both happen within the same call to Re-Shuffle). If both of these were to happen, then
it must be that during this call to Re-Shuffle, there was an outgoing buffer B that
had height 2 or more higher than an incoming buffer B, (see lines (A.5.72-74) and
(A.5.80) and (A.5.86)). We argue that this cannot ever happen. By Claim B.3, at the
end of the previous round, we had that the height of B; was at most one bigger than
the height of B,. During routing, B> can only get bigger (it is an incoming buffer) and
Bj can only get smaller (it is an outgoing buffer) ((A.4.53) and (A.3.33) are the only
places these heights change). Therefore, after Routing but before any Re-Shuffling,
we have again that the height of B was at most one bigger than the height of B,.
Therefore, in order for By to get at least 2 bigger than B», either a packet must be
shuffled into By, or a packet must be shuffled out of B;, and this must happen when
B is already one bigger than B,. But analyzing (A.5.72) and (A.5.73) shows that
this can never happen.

Case 2: The packet moved during Routing as on (A.4.53). In order to reach (A.4.53),
the conditional statements on lines (A.4.47) and (A.4.51) must be satisfied and the
statement on (A.4.48) must fail; so p # L, RR < FR, and either sboyr = 1 or
Houyr > H (or both). We investigate each case separately:

Case A: sboyr = 1 on line (A.4.47). Then Statements 2—4 of Lemma B.12 imply
that the height of the packet in Bj is greater than or equal to the height it will
be stored into in Bj, as desired.

Case B: sboyr =0 and Hoyr > Hjy on line (A.4.47). For notational convenience,
denote the current round (when the hypotheses of Case B hold) by t. First note
that Statements 1 and 2 of Lemma B.1 imply that the height the packet assumes in

706 Y. Amir, P. Bunn, and R. Ostrovsky

B> (Hgp) is less than or equal to Hjy + 1. Meanwhile, since sboyr = 0 (it is set
on (A.3.11) of round t), the value received for Hoyr on (A.3.11) is not L, and the
value for FR received on (A.3.11) is either _L or satisfies FR < RR. Notice that the
case FR < RR is not possible, since then (A.4.53) would not be reached ((A.4.51)
would fail). Therefore, FR = | but Hoyr # L, and so B, received the communi-
cation sent by Bj on (A.3.05) of round t, which had the first of the two possible
forms. In particular, Hrpp = L at the outset of t, and since Hrp cannot change
between the start of a round and line (A.4.38) of the previous round, we must have
that (A.4.37) failed in round t — 1. By this fact and Claim B.6, By had normal sta-
tus when (A.3.16) was reached in round t — 1, and this will not be able to change
in the call to Reset Outgoing Variables of round t because d = 0 (A.3.25) (since d
is reset to zero every round on (A.3.26), it can only have non-zero values between
line (A.4.40) of one round and line (A.3.26) of the following round IF a packet
was sent the earlier round. However, as already noted this did not happen, as the
fact that OUT had normal status and yet (A.4.37) failed in round t — 1 implies
that (A.3.16) will also fail in round t — 1). Therefore, B; has normal status when
Create Flagged Packet is called in round t, and in particular, Hgp is set to Hoyr
on (A.4.38), i.e. the flagged packet to be transferred during t has height Hoyr
in B;.* Putting this all together, the packet has height Hoyr in By and assumes
height Hgp in B,. But as argued above, Hoyr > Hjy + 1 > Hgp, as desired. [

Claim B.14. Before End of Transmission Adjustments is called in any transmission T
(A.4.58-61), any packet that was inserted into the network during transmission T is
either in some buffer (perhaps as a flagged packet) or has been received by R.

Proof. As packets travel between nodes, the sending node maintains a copy of the
packet until it has obtained verification from the receiving node that the packet was
accepted. This way, packets that are lost due to edge failure are backed-up. This is the
high-level idea of why the claim is true, we now go through the details.

First notice that the statement only concerns packets corresponding to the current
codeword transmission, and hence packets deleted as on (A.4.61) do not threaten the
validity of the claim. We consider a specific packet p that has been inserted into the
network and show that p is never removed from a buffer B until another buffer B’ has
taken p from B. We do this by considering every line of code that a buffer could possible
remove p, and argue that whenever this happens, p has necessarily been accepted from
B by some other buffer B’. Notice that the only lines that a buffer could possibly remove
p (before line (A.4.61) of T is reached) are: (A.3.32), (A.4.53), and (A.5.89-90).

Line (A.4.53) This line is handled by Lemma B.1, Statements 1 and 2 (see also
(A.4.52)), which say that whenever a slot of an incoming buffer is filled as on line
(A.4.53), it fills an empty slot, and therefore cannot correspond to removing (overwrit-

ing) p.

40 Sincea packet was necessarily transferred in t by definition of t, and since we already noted sbpyr =0
at the start of t, the fact that a packet was sent means that (A.3.16) was satisfied, and thus Hoyr > Hjy. Since
the values cannot change between (A.3.15) and (A.3.16), we have that line (A.4.37) was necessarily satisfied
in round t.

Authenticated Adversarial Routing 707
Lines (A.5.89-90) These lines are handled by Lemma B.1, Statement 10.

Line (A.3.32) This is the interesting case, where p is removed from an outgoing buffer
after a packet transfer. We must show that any time p is removed here, it has been
accepted by some incoming buffer B’. For notation, we will let t denote the round that
p is deleted from B (i.e. when line (A.3.32) is reached), and tg denote the round that
B first tried to send the packet to B’ as on (A.4.41). By Statement 3 of Claim B.9, tg
is the round that p was most recently set to p as on line (A.4.38) (note that tg < t).
Since line (A.3.32) was reached in round t, the conditional statements on lines (A.3.29)
and (A.3.30) were satisfied, and so L # RR > FR # | when those lines were reached.
By Statement 3 of Claim B.9, FR will equal t(when (A.3.30) is satisfied. Since in any
round t’, the only non-_L value that RR can ever be set to is t’ (A.4.53), and since RR >
to = FR (A.3.30), it must be that (A.4.53) was reached in some round t’ € [to, t].
In particular, B’ stored a packet as on (A.4.53) of round t’, which by Statement 3 of
Claim B.9 was necessarily p.]

Claim B.15. Not counting flagged packets, there is at most one copy of any packet
in the network at any time (not including packets in the sender or receiver’s buffers).
Looking at all copies (flagged and un-flagged) of any given packet present in the network
at any time, at most one copy of that packet will ever be accepted (as in Definition 4.4)
by another node.

Proof. For any packet p, let #, denote the copies of p (both flagged and not) present
in the network (in an internal node’s buffer) at a given time. We begin the proof via a
sequence of observations:

Observation 1. The only time #), can ever increase is on line (A.4.53).

Proof. The only way for #, to increase is if (a copy of) p is stored by a new buffer.
Looking at the pseudo-code, the only place a buffer slot can be assigned a new copy
of p ison lines (A.3.32), (A.3.35), (A.4.53), (A.4.55), (A.4.57), (A.4.61), (A.4.64), and
(A.5.89). Of these, only (A.4.53) and (A.5.89) could possibly increase #,, as the others
simply shift packets within a buffer and/or delete packets. In the latter case, #, does not
change by Statement 10 of Lemma B.1. U

Observation 2. Suppose A (including A = S) first sends a (copy of a) packet p to B
as on (A.4.41) of round tq. Then:

(a) The copy of p in A’s outgoing buffer along E(A, B) (for which there was a copy
made and sent on (A.4.41) of round tq) will never be transferred to any of A’s
other buffers.

(b) The copy of p will remain in A’s outgoing buffer along E(A, B) as a flagged
packet until it is deleted either when A gets confirmation of receipt (see Defini-
tion B.8) in some round t > tq (A.3.32), or at the end of the transmission as on
(A.4.61). In the latter case, define t := 3D (the last round of the transmission)
for Statement (c) below.

708 Y. Amir, P. Bunn, and R. Ostrovsky

(c) Between to and line (A.3.07) of round t, B will accept (a copy of) p from A as
on (A.4.53) at most once. Furthermore, the copy of p in A’s buffer cannot move

to any other buffer or generate any other copies other than the one (possibly)
received by B as on (A.4.53).

Proof. Statement (a) follows from Statement 3 of Claim B.9 and Statement 11 of
Lemma B.1, together with the fact that lines (A.3.32) and (A.4.61) imply that the rel-
evant copy of A will be deleted when it does get confirmation of receipt as in Defini-
tion B.8 (or the end of the transmission). By Statement 3 of Claim B.9, this copy of p
will be (the unique) flagged packet in A’s outgoing buffer to B until confirmation of
receipt (or the end of the transmission), which proves Statement (b). For Statement (c),
suppose that B accepts a copy of p as on (A.4.53) during some round t’ € [to, t].
Then RR will be set to t’ on (A.4.53) of round t’, and RR cannot obtain a smaller
index until the next transmission (A.4.53). By Statement 3 of Claim B.9, FR will re-
main equal to ty from line (A.4.38) of round tgo through the time (A.3.33) of round
t is reached. Therefore, between t’ > t(and line (A.3.33) of round t, we have that
FR = to < t/ < RR, and hence line (A.4.51) can never be satisfied during these times,
which implies (A.4.53) can never be reached again after t’. This proves the first part of
Statement (c). The second part follows by looking at all possible places (copies of) pack-
ets can move or be created: (A.3.32), (A.3.35), (A.4.53), (A.4.55), (A.4.57), (A.4.61),
(A.4.64), and (A.5.89-90). Of these, only (A.4.53) and (A.5.89-90) threaten to move p
or create a new copy of p. However, the first part of Observation 2(c) says that (A.4.53)
can happen at most once (and is accounted for), while Statement 11 of Lemma B.1 rules
out the case that the packet is re-shuffled as on (A.5.89-90). O

Observation 3. No packet will ever be inserted (see Definition 4.5) into the network
more than once. In particular, for any packet p, #, = 0 until the sender inserts it (i.e.
some node accepts the packet from the sender as on (A.4.53)), at which point #, = 1.
After this point, the only way #, can become larger than one is if (A.4.53) is reached,
where neither the sending node nor the receiving node is S or R.

Proof. Since the packets of S are distributed to his outgoing buffers before being in-
serted into the network (A.2.38), (A.4.66), and (A.4.68-70), and since S never receives
a packet he has already inserted (S has no incoming edges (A.3.18) nor shuffles pack-
ets between buffers ((A.3.22) and (A.5.95-96)), a given packet p can only be inserted
along a single edge adjacent to the sender. The fact the sender can insert at most one
(copy of a) packet p along an adjacent edge now follows from Observation 2 above for
A = S. This proves the first part of Observation 3.

By Observation 1, the only place #, can increase is on (A.4.53). Whenever this line
is reached, the copy stored comes from the one received on (A.4.43), which in turn was
sent by another node on (A.4.41). The copy sent on (A.4.41) in turn can only be set on
(A.4.38) (perhaps in an earlier round), so in particular a copy of the packet must have
already existed in an outgoing buffer of the sending node. This proves that when #),
goes from zero to one, it can only happen when a packet is inserted for the first time
by the sender. The rest of Observation 3 now follows from Observation 1, the first part
of Observation 3, the fact that copies reaching R do not increase #, (by definition of

Authenticated Adversarial Routing 709

#,), and the fact R never sends a copy of a packet (A.3.13) and S never accepts packets
(A.3.18). O

Define a copy of a packet p in the network to be dead if that copy will never leave
the buffer it is currently in, nor will it ever generate any new copies. A copy of a packet
that is not dead will be alive.

Observation 4. Ifa (copy of a) packet is ever flagged and dead, it will forever remain
both flagged and dead, until it is deleted.

Proof. By definition of being “dead,” once a (copy of a) packet becomes dead it can
never become alive again. Also, copies of a packet that are flagged remain flagged until
they are deleted by Observation 2(b). (|

Claim B.15 now follows immediately from the following subclaim:

Subclaim. Fix any packet p that is ever inserted into the network. Then at any time,
there is at most one alive copy of p in the network at any time. Also at any time, if there
is one alive copy of p, then all dead copies of p are flagged packets. If there are no alive
copies, then there is at most one dead copy of p that is not a flagged packet.

Proof. Before p is inserted into the network, #, = 0, and there is nothing to show.
Suppose p is inserted into the network in round tg, so that #, =1 by the end of tg
(Observation 3). Since #, = 1, the validity of the subclaim is not threatened. Also, if
this packet is dead, then the proof is complete, as by Observation 3 and the definition
of deadness, no other (copies) of p will ever be created, and hence the subclaim will
forever be true for p. So suppose p is alive when it is inserted. We will show that a
(copy of an) alive packet can create at most one new (copy of a) packet, and the instant
it does so, the original copy is necessarily both flagged and dead (the new copy may be
either alive or dead), from which the subclaim follows from Observation 4. So suppose
an alive copy of p creates a new copy (increasing #,) of itself in round t. Notice that
the only time new copies of any packet can be created is on (A.4.53) (see e.g. proof of
Observation 2). Fix notation, so that the alive copy of p was in node A’s outgoing buffer
to node B, and hence it was B’s corresponding buffer that entered (A.4.53) in round t.
The fact that the alive copy of p in A’s outgoing buffer is flagged and dead the instant
B accepts it on (A.4.53) of round t follows immediately from Observation 2. U

O

Lemma B.16. Suppose that in round t, B accepts (as in Definition 4.4) a packet from
A. Let Oy, p denote A’s outgoing buffer along E(A, B), and let O denote the height
the packet had in O o p when Send Packet was called in round t (A.3.17). Also let Ip
denote B’s incoming buffer along E(A, B), and let I denote the height of Ip 4 at the
start of t. Then the change in non-duplicated potential caused by this packet transfer is
less than or equal to:

—O+I1+1 OR -0 (fB=R) (B.1)

710 Y. Amir, P. Bunn, and R. Ostrovsky

Furthermore, after the packet transfer but before re-shuffling, Ip o will have height
I+1.

Proof. By definition, B accepts the packet in round t means that (A.4.53) was reached
by B’s incoming buffer along E(A, B) in round t. Since the packet is stored at height
Hgp (A.4.53), B’s non-duplicated potential will increase by Hgp due to this packet
transfer (if B = R, then by definition of non-duplicated potential, packets in R do not
contribute anything, so there will be no change). By Statements 1 and 2 of Lemma B.1,
Hgp <1+ 1, and hence B’s increase in non-duplicated potential caused by the packet
transfer is at most / + 1 (or zero in the case B = R). Also, since B had height I at
the start of the round, and B accepts a packet on (A.4.53) of round t, B will have
I + 1 packets in I when the re-shuffling phase of round t begins, which is the second
statement of the lemma (since the height of /p 4 does not change from the start of t
through the start of Re-Shuffling, except when Ip_4 receives the packet on (A.4.53)).
Meanwhile, the packet transferred along E(A, B) in round t still has a copy in O4 g
(until A receives confirmation of receipt from B, see Definition B.8), but by definition of
non-duplicated potential (see Definition 4.7), this (flagged) packet will no longer count
towards non-duplicated potential the instant B accepts it as on (A.4.53) of round t.
Therefore, A’s non-duplicated potential will drop by the value Hrp has when B accepts
the packet on (A.4.53) (Statement 3 of Claim B.9), which equals O since Hpp cannot
change between the time Send Packet is called on (A.3.17) and the time the packet is
accepted on (A.4.53). Therefore, counting only changes in non-duplicated potential due
to the packet transfer, the change in potential is: —O + Hgp < —0 4+ 1+ 1 (or —O in
the case B = R), as desired. O

Lemma B.17. Let C = NNy --- N; be a path consisting of | nodes, such that R = N,
and S ¢ C. Suppose that in round t, all edges E(N;, Nit+1), 1 <i <1 are active for the
entire round. Let ¢ denote the change in the network’s non-duplicated potential caused
by

1. For 1 <i <: Packet transfers across E(Nj, Nij4+1) in round t,
2. For 1 <i <I: Re-shuffling packets into N;’s outgoing buffers during t

Then if On, n, denotes N1’s outgoing buffer along E(Ny, N2) and O denotes its height
at the start of t, we have:

— If On, N, has a flagged packet that has already been accepted by N, before round
t, then:

¢<—-0+I1—-1. (B.2)
— Otherwise,

p<—0+1-2. (B.3)

Proof. (Induction on /).

Authenticated Adversarial Routing 711

BASE CASE: [=2 SoC=N;R.

Case 1: Oy, r had a flagged packet at the start of t that had already been accepted

by N>. Our aim for this case is to prove (B.2) for [=2. If O <2,then —O +[—1>
—142—1=0, and then (B.2) will be true by Lemma 4.11. So assume O > 2.
Since E(Ny, R) is active during t and R had already accepted the packet in some
previous round £ < t, we see that RR > £ (A.4.53), and N; will receive this value
for RR in R’s stage one communication (A.3.06), (A.3.09). By Statement 3 of Claim
B.9, FR < £ < RR, and thus lines (A.3.29-30) will be satisfied in round t, so the
flagged packet is deleted on (A.3.32-33), O gets the value O — 1, and sb is set to ‘0’.
When Create Flagged Packet is called on (A.3.15), a new packet will be flagged since
sb=0and Hoyr =0 —1>1> Hjy =0, with Hpp = Hpoyr = O — 1 and FR =t
(since O > 2, there will be at least one packet left in Oy, g of height O — 1 >0
by Lemma B.1). Letting I denote the height of the receiver’s incoming buffer along
E(N1, R), we see that I = 0 (Claim B.5). Therefore, Hoyr > Hjy, and so the flagged
packet will be sent as on (A.3.17). Since R will receive and store this packet (since
the edge is active and RR < t = FR, lines (A.4.44) and (A.4.48) will fail, while lines
(A.4.47) and (A.4.51) will be satisfied), we apply Lemma B.16 to argue there will be
a change in non-duplication potential that is less than or equal to —(O — 1), which is
(B.2) (for [=2).

Case 2: Either Oy, g has no flagged packet at the start of t, or if so, it has not yet

been accepted by R. Our aim for this case is to prove (B.3) for [= 2. If O =0, then
—0 +1—2=0, and (B.3) is true by Lemma 4.11. So assume O > 1. Then neces-
sarily a packet will be sent during round t ((A.3.16) is necessarily satisfied since by
assumption E(Ny, R) is active during t, Hoyr > 1 by Lemma B.1 and Hjy = 0 by
Claim B.5). We first show that the height of the packet in Oy, g that will be trans-
ferred in round t (which will be the value held by Hrp when Send Packet is called in
round t) is greater than or equal to O (whether or not it was flagged before round t):

e If Op, r did not have any flagged packets at the outset of t, then Hpp = L at the
start of t, and so sb =0 and FR = L at the start of t by Claim B.6. Since Hrp
cannot change between the call to Send Packet in the previous round and the
call to Reset Outgoing Variables in the current round, Statement 2 of Claim B.7
implies no packet was sent the previous round, and hence d = 0 at the start of
t (d was necessarily zero as of (A.3.26) of round t — 1, and as argued did not
change to ‘1’ on (A.4.40) later that round). Consequently, sb will remain zero
from the start of t through the time Create Flagged Packet is called in round t,
and because Hoyr = O > 0 =1 = Hjpy, (A.4.38) will be reached in round t,
setting Hpp to O.

o Alternatively, if Oy, gr does have a flagged packet at the outset of t, we argue
that it will have height at least O when Send Packet is called in round t as
follows. Let to < t denote the round Oy, g first sent (a copy of) the packet
to R. We first show that N; will not get confirmation of receipt from R (as
in Definition B.8) for the packet at any point between rounds tog and t — 1
(inclusive). To see this, note that since we are Case 2, R has not accepted the
flagged packet by the start of t. This means that at all times between t(and the

712 Y. Amir, P. Bunn, and R. Ostrovsky

start of t, RR < to.41 Meanwhile, by Statement 3 of Claim B.9, FR = tg and
Hpp # L at the start of t. Since these do not change values between the start
of t and the time Reset Outgoing Variables is called in round t, line (A.3.34)
guarantees that if Hrp < O, then line (A.3.35) will be reached, and thus in either
case Hrp > O after the call to Reset Outgoing Variables.

Therefore, since R will necessarily receive and accept the flagged packet sent (by the
same argument used in Case 1), we may apply Lemma B.16 to argue that ¢ < —O,
which is (B.3) (for [=2).

INDUCTION STEP Assume the lemma is true for any chain of length less that or equal
to ! — 1, and let C be a chain of length / (/ > 2). Since we will be applying the induction
hypothesis, we extend and change our notation as follows: Let Oy, n; (respectively
IN;,n;) denote the height of N;’s outgoing (respectively incoming) buffer along edge
E(N;, N;) at the start of round t (before, the notation referred to the buffer, now it will
refer to the buffer’s height). Notice that if Oy, n, < I, n,, then:

¢ =< _0N2,N3 + (l - 1) -1 S _INz,N] +l -2 S _ONI,NZ +l - 27 (B4)

where the first inequality is from the induction hypothesis applied to the chain N; ... R,
the second follows from Lemma B.3, and the third follows from the fact we are assum-
ing On,, N, < In,, N, Therefore, both (B.2) and (B.3) are satisfied. We may therefore
assume in both cases below:

On,,N, >INy Ny - (B.5)

Case 1: Oy, N, had a flagged packet at the start of t that had already been accepted

by N». If On, N, = In,, N, + 1, then by the same string of inequalities as in (B.4), we
would have ¢ < —Opy, n, + 1 — 1, which is (B.2). Therefore, it remains to consider
the case:

Ony Ny = Iny Ny + 2. (B.6)

By an analogous argument to the one made in the BASE CASE, a packet will be trans-
ferred and accepted across E(Np, N3) in round t that will cause the non-duplicated
potential to change by an amount less than or equal to:

—ONny, Ny — D)+ Iy Ny + 1 B.7)

Also, when the receiving node N, accepts this packet as on (A.4.53), the height of
the corresponding buffer increases by one on this line. We emphasize this fact for use
below:

Fact 2. After the Routing Phase but before the call to Re-Shuffle in round t, N»’s
incoming buffer along E (N7, N2) has height Iy, y, + 1.

41 By Statement 3 of Claim B.9, the packet flagged in t is the only packet Oy, g can send to R between
to+ 1 and the time R receives this flagged packet. Since we know R has still not accepted this flagged packet
by the outset of t, this means that between t(and t — 1, RR cannot be changed as on (A.4.53). Since RR
begins each transmission equal to —1 ((A.1.31) and (A.4.64)) and can only be changed after this on (A.4.53),
necessarily RR < t(through the start of t.

Authenticated Adversarial Routing 713

Meanwhile, we may apply the induction hypothesis to the chain C' := N, --- R, so
that the change in non-duplicated potential due to contributions 1 and 2 (in the hy-
pothesis of the Lemma) on C’ is less than or equal to:

(@) —Op,,N; + (I —1) —1,if Op,, N, had a flagged packet at the start of t that
had already been accepted by N3.
(b) —Op,,N; + (I — 1) — 2, otherwise.

Adding these contributions to (B.7), we have

¢ <((=On. v, + D+ I, N + 1)+ (=Onyn; + (= 1) —x)
= (_ONl,Nz +l - 1) + (_ONQ,N:; + INz,Nl) + (2 - -x)v (BS)

where x = 1 or 2, depending on whether we are in case (a) or (b) above. By
Claim B.3, —Op, n; + In,, N, s either O or -1. If —Ow, N3 + In, N, = —1, then
(=Ony,N; + Iny,Ny) + (2 — x) <0, regardless whether x =1 or 2, and hence
(B.8) implies (B.2). Also, if x =2, then (=Op, n; + In,,n,) + (2 —x) <0 (by
Claim B.3), and hence (B.8) implies (B.2). It remains to consider the case x = 1
and —On, n; + In,, N, =0, in which case (B.8) becomes

¢ =<(=On,.N, +I -1+ 1. (B.9)

In order to obtain (B.2) from (B.9), we therefore need to account for a drop of at least
one more to ¢. We will obtain this by the second contribution to ¢ (see Statement 2
of this lemma) by arguing:

(a) After the Routing Phase of round t but before the call to Re-Shuffling, the
fullest buffer of N has height Oy, n, + 1, and there is at least one incoming
buffer of N, that has this height. In particular, during the call to Re-Shuffle in
round t, the first buffer chosen to transfer a packet from will be an incoming
buffer of height Oy, N, + 1.

(b) After the Routing Phase of round t but before the call to Re-Shuffling, the
emptiest buffer of N, has height Oy, vy, — 1, and there is at least one outgoing
buffer of N, that has this height. In particular, during the call to Re-Shuffle
in round t, the first buffer chosen to transfer a packet ro will be an outgoing
buffer of height Oy, y; — 1.

Notice that if we can show these two things, this case will be done, as during the first
call to Re-Shuffle in round t, we willhave M —m > (On, n; +1) — (Opn, N, — 1) =2
(the call to Adjust Heights can only help this inequality since the selection process
on (A.5.72-73) and the two items above guarantee (A.5.80) and (A.5.86) will both
fail if reached), and consequently the re-shuffle on (A.5.89-90) will cause a drop of
at least one to ¢.*?

42 This drop was not already accounted for when we invoked the induction hypothesis, because the defi-
nition of ¢ does not count the re-shuffling in the chain’s first node (however, since N, is actually the second
node in the chain C being considered, it is valid to count its contributions to ¢ based on re-shuffling packets
into ONz,N3).

714 Y. Amir, P. Bunn, and R. Ostrovsky

We first argue (a). As noted at the beginning of Case 1 of the INDUCTION STEP,
Fact 2 implies that there will exist an incoming buffer of the required height (since
we are assuming Oy, n; = In,,n,). Also, at the start of t, since N> has an outgoing
buffer of height Oy, y, (namely, the outgoing buffer along E(N2, N3)), Lemma B.3
guarantees that all of N>’s incoming buffers have height at most Oy, n; at the start
of t; and also that all of N>’s outgoing buffers have height at most Oy, n, + 1 at the
start of t. During the Routing Phase but before the Re-Shuffle Phase of t, outgoing
buffers cannot increase in height (A.3.33) and incoming buffers cannot increase in
height by more than one (A.4.53). Therefore, after transferring packets but before
Re-Shuffling in round t, the fullest buffer in N, has height at most Oy, n; + 1, and
as already argued, at least one incoming buffer has this height. The last part of (a) is
immediate from the selection rules in (A.5.72).
We now argue (b). Since x = 1, we are in the case the outgoing buffer along
E (N3, N3) had a flagged packet at the start of t that had already been accepted by
N3 in some round to < t. By a similar argument that was used in Case 1 of the
BASE CASE, the outgoing buffer along E (N3, N3) will reach lines (A.3.32-33) in
round t. In particular, the height of the outgoing buffer along E (N2, N3) will drop
by one on (A.3.33), and thus this buffer has height Oy, y, — 1 after the call to Reset
Outgoing Variables. Since this height cannot change before the call to Re-Shuffle, this
outgoing buffer has height Oy, n, — 1 after the Routing Phase (but before the call to
Re-Shuffle) in round t. Also, Oy, n; — 1 is a lower bound for the emptiest buffer in
N just before the call to Re-Shuffle in round t, argued as follows. At the start of t,
since N> has an incoming buffer of height Iy, y, = Op,, n; (namely, the incoming
buffer along E(Ni, N2)), Lemma B.3 guarantees that all of N’s incoming buffers
have height at least Oy, n; — 1 at the start of t; and also that all of N,’s outgoing
buffers have height at least Oy, y, at the start of t. During the Routing Phase but be-
fore the Re-Shuffle Phase of t, incoming buffers cannot decrease in height (A.4.53)
and outgoing buffers can decrease in height by at most one (A.3.33). Therefore, after
transferring packets but before Re-Shuffling in round t, the emptiest buffer in N, has
height at least Oy, n; — 1, and as already argued, at least one outgoing buffer has this
height. The last part of (b) is immediate from the selection rules in (A.5.73).

Case 2: Either Oy, n, has no flagged packet at the start of t, or if so, it has not yet

been accepted by N». By the same argument*® used in Case 2 of the BASE CASE,
there will be a packet transferred across E (N1, N») and accepted by N3 in round t,
and this packet will have height at least Oy, n, in N;’s outgoing buffer. Therefore,
by Lemma B.16, the change in non-duplicated potential due to this packet transfer is
less than or equal to:

—ONn N, + Iy + 1. (B.10)

Meanwhile, we may apply the induction hypothesis to the chain C’' := N, --- R, so
that the change in non-duplicated potential due to contributions 1 and 2 (in the hy-
pothesis of the lemma) on C’ is less than or equal to:

43 For the argument in the BASE CASE, we used the fact that the receiver’s incoming buffer had height
zero in order to conclude Hpyr > Hyy (and thus a packet would be sent). Here, we use instead (B.5) to come
to the same conclusion.

Authenticated Adversarial Routing 715

(@) —Op,,N; + (I —1) —1,if Op,, N, had a flagged packet at the start of t that
was already accepted by N3.
(b) —Op,,N; + (I — 1) — 2, otherwise.

Adding these contributions to (B.10), we have

¢ <(=On,. N, + InyN, + D+ (=Opy N, + (1 — 1) — x)
= (_ONl,NZ +l - 2) + (_ONz,N3 + INz,Nl) + (2 _-x)v (Bll)

where x = 1 or 2, depending on whether we are in case (a) or (b) above. Since the
first term of (B.11) matches (B.3) and the latter two terms match the latter two terms
of (B.8), we follow the argument of Case 1 above to conclude the proof. U

We can prove the following lemma, originally stated as Lemma 4.10 in Sect. 4.3, as
a Corollary.

Lemma B.18. If at any point in any transmission T, the number of blocked rounds
is B, then there has been a decrease in the network’s non-duplicated potential by at
least nBr.

Proof. For every blocked round t, by the conforming assumption there exists a chain
C: connecting the sender and receiver that satisfies the hypothesis of Lemma B.17. Let-
ting N1 denote the first node on this chain (not including the sender), the fact that the
round was blocked means that N;’s incoming buffer was full, and then by Lemma B.3,
so was Np’s outgoing buffer along E (N1, N2). Since the length of the chain / is nec-
essarily less than or equal to n, Lemma B.17 says that the change in non-duplicated
potential contributions of ¢ (see notation there) satisfy

p<—Onn,+1—1<—2n4+n—1<-n. (B.12)

Since ¢ only records some of the changes to non-duplicated potential, we use State-
ment 3 of Lemma 4.11 to argue that the contributions not counted will only help the
bound since they are strictly non-positive. Since we are not double counting anywhere,
each blocked round will correspond to a drop in non-duplicated potential of at least —n,
which then yields the lemma. d

Appendix C. Pseudo-Code for Node-Controlling + Edge-Scheduling Protocol

We now modify the pseudo-code from our edge-scheduling adversarial protocol to
pseudo-code for the (node-controlling + edge-scheduling) adversarial model. The two
codes will be very similar, with differences emphasized by marking the line number in
bold. The Re-Shuffle Rules will remain the same as in the edge-scheduling protocol,
with the addition of line (A.5.76) (see Fig. A.5).

716 Y. Amir, P. Bunn, and R. Ostrovsky

Setup
DEFINITION OF VARIABLES:
01 7 := Number of nodes in G;
02 D=3
=
03 T := Transmission index;
04 t:= Stage/Round index;
05 k& := Security Parameter;
06 P := Capacity of edge= O (k + logn);
07 forevery NeP\S

08 BB € [n? + 5n] x {0, 1}, ## Broadcast Buffer

09 DB e [1..n2] x {0, l}P; ## Data Buffer. Holds BL and EN below, and info. as on line 151

10 BLe[l.n— 1] x {0, 1} ## Blacklist

11 EN €[l.n —1] x {0, l}P; ## List of Eliminated Nodes

12 SIGy n € {0, 1}0dogn), ## Holds change in potential due to local re-shuffling of packets

13 forevery N € G

14 SK, {PK}? ## Secret Key for signing, Public Keys to verify sig’s of all nodes

15 for every outgoing edge E(N,B) € G,B# Sand N # R

16 OUT € [2n] x {0, l}P; ## Outgoing Buffer able to hold 2n packets

17 SIGy. g € [D + 3] x {0, 1}0(10gn) ;## Signature Buffer for current trans., indexed as follows:
SIG[1] =net no. of current codeword p’s transferred across E(N, B)
SIG[2] =net change in B’s pot. due to p. transfers across E(N, B)
SIG[3] =net change in N’s pot. due to p. transfers across E(N, B)
SIG[p] =net no. of times packet p transferred across E(N, B)

18 p {0, l}P ul; ## Copy of packet to be sent

19 sb € {0, 1}; ## Status bit

20 de{0,1}; ## Bit indicating if a packet was sent in prev. round

21 FR€[0..8D]U L; ## Flagged Round (index of round N first tried to send p to B)

22 RRe[-1..8D]U L; ## Round Received (index of round that N last rec. a p. from A)

23 H €[0..2n]; ## Height of OUT. Also denoted Hoyr when there’s ambiguity

24 Hpp e[1.2n]U L; ## Height of Flagged Packet

25 Hpy €10.2n]U L; ## Height of incoming buffer of B

26 for every outgoing edge E(N, B) € G, including B= S and N =R

27 bp € {0,]}P; ## Broadcast Parcel received along this edge

28 a €10, l}P ; ## Broadcast Parcel request

29 cpp €10, 1} ## Verification bit of broadcast parcel receipt

30 for every incoming edge E(A,N)e G,A# Rand N # S

31 IN € [2n] x {0, I}P; ## Incoming Buffer able to hold 2n packets

32 SIGa, N €D+ 3] x {0, 1}0Uogn) 4y Signature Buffer, indexed as on line 17

33 p € {0, l}P ul; ## Packet just received

34 sb e {0, 1}; ## Status bit

35 RR € {0, 1}8D; ## Round Received index

36 H €[0..2n]; ## Height of IN. Also denoted Hyy when there’s ambiguity

37 Hgp e[l.2n]U L; ## Height of Ghost Packet

38 Hoyr €10..2n]U L; ## Height of outgoing buffer or height of Flagged Packet of A

39 sbour €10, 1}; ## Status Bit of outgoing buffer of A

40 FRe{0,1 }SD Ul ## Flagged Round index (from adjacent outgoing buffer A)

41 for every incoming edge E(A, N) € G, including A=Rand N =S

42 bp € {0, 17 ## Broadcast Parcel to send along this edge

43 cpp €10, 1} ## Verification bit of packet broadcast parcel receipt

Fig. C.1. Pseudo-code for internal nodes’ setup for the (node-controlling + edge-scheduling) protocol.

Authenticated Adversarial Routing 717

INITIALIZATION OF VARIABLES:
44 forevery N € G
45 Receive Keys; ## Receive {PK}} and SK from KEYGEN
46 Initialize BB, DB, BL, EN, SIGy y; ##SetSIGy y =0, set each entry of DB and BB to L
47 for every incoming edge E(A,N)e G,A# Rand N # S

48 Initialize N, SIG; ## Set each entry in IN to L and each entry of SIG to zero
49 p,Hgp, FR=1;

50 Sb,SbOUT,Cp,H, HOUTZO; RR=—1;

51 for every incoming edge E(A, N) € G, including A=Rand N = §

52 bp=_L;cpp=0;

53 for every outgoing edge E(N,B) € G,B# Sand N # R

54 Initialize OUT, SIG; ## Set each entry in OUT to L and each entry of SIG to zero
54 p,Hrp, FR,RR= 1,

55 sb,d, H, Hy, 0;

57 for every outgoing edge E(N, B) € G, including B=S and N =R

58 bp,a=_L;cpp=0;

Sender’s Additional Setup
DEFINITION OF ADDITIONAL VARIABLES FOR SENDER:
59 M :={my,my,...} = Input Stream of Messages;
60 COPY e[D] x {0, l}P := Copy of Packets for Current Codeword;
61 BBe[3n] x {0, I}P := Broadcast Buffer;
62 DB [l.n3 4+ n?+n] x {0, 1} := Data Buffer, which includes:
63 BLe[l.n] x {0, 1} := Blacklist;
64 EN €[1..n] x {0, l}P := List of Eliminated Nodes;
65 k €[0..D] := Number of packets corresponding to current codeword the sender has knowingly inserted;
66 27 € {0, 1}0(l°g”) := First parcel of Start of Transmission broadcast for transmission T;
67 Br €[0..4D] := Number of rounds blocked in current transmission;
68 F €[0..n — 1] := Number of failed transmissions since the last corrupt node was eliminated;
69 Pr €{0, 1} := Participating List for current transmission;

INITIALIZATION OF SENDER’S VARIABLES:

70 «k=0;

71 B, F=0;

72 21 =(0,0,0,0);

73 Initialize BB, DB, P1; ## Set each entry of DB to L, add £2 to BB, and set P| =G

74 Distribute Packets:;

Receiver’s Additional Setup
DEFINITION OF ADDITIONAL VARIABLES FOR RECEIVER:
75 Iz e[D]x ({0, 1}P UL):= Storage Buffer to hold packets corresponding to current codeword;
76 «k €[0..D] := Number of packets received corresponding to current codeword;
77 ©7€{0, l}O(kHOg”) := End of Transmission broadcast for transmission T;

INITIALIZATION OF RECEIVER’S VARIABLES:
78 «k=0;
79 ©1=1;
80 for every outgoing edge E(R, B) € G:
81 bp,a=1;
82 Initialize Ig; ## Sets each element of 7 to L
End Setup

Fig. C.2. Additional setup code for (node-controlling + edge-scheduling) protocol.

718 Y. Amir, P. Bunn, and R. Ostrovsky

Transmission T
01 for every N € G, N ¢ EN:

02 forevery t <2x(4D) ## The factor of 2 is for the 2 stages per round
03 if t (mod 2) =0 then: ## STAGE 1
04 Update Broadcast Buffer One;
05 for every outgoing edge E(N,B)e G, N #R,B# S
06 if Hrp # L:send (H, L, 1); else: send (H — 1, Hrp, FR);
07 receive Signed(T, t, Hyy, RR, SIG[1], SIG[2], SIG| p]); ## SIG[3], 6th coord sent on line 11, is kept as SIG[2]
08 Verify Signature Two:
09 Reset Outgoing Variables;
10 for every incoming edge E(A,N)€ G,N # S, A # R ##“p” on line 11 refers to last p. rec’d on E(A,N)
11 send Sign(T, t, H, RR, SIG[1], SIG[3], SIG[p]);## If p was from an old codeword, send instead:
Sign(T, t, H, RR, SIG[1], SIG[3], 1)
12 sboyr =0; FR =1,
13 receive (H, L, 1) or (H, Hrp, FR); ## If H =1 or FR>RR, set sboyr=1; and
Hoyr=HFp; O.W.set Hoyr=H; sboyT=0;
14 else if t (mod 2) =1 then: ## STAGE 2
15 Send/Receive Broadcast Parcels:;
16 for every outgoing edge E(N,B) e G, N #R,B# S
17 if Ay # L then:
18 Create Flagged Packet;
19 if sb=1 or (sb=0 and H > Hjy) then:
20 Send Packet,
21 for every incoming edge E(A,N) e G,N #S,A#R
22 Receive Packet,
23 if N ¢ {S, R} and N has rec’d SOT broadcast for T then: Re-Shuffle;
24 else if N = R and N has rec’d SOT broadcast for T then: Receiver Re-Shuffle;
25 elseif N =S then:
26 Sender Re-Shuffle;
27 if All (non-1) values S received on line 07 had Hpy =2n then: fp = B+ 1;
28 if t =2(4D —n) and N = R then: Send End of Transmission Parcel,
29 if t =2(4D) and N = S then: Prepare Start of Transmission Broadcast,
30 if t =2(4D) then: End of Transmission Adjustments;
End Transmission T
31 Okay to Send Packet
N does not have (27, T) in BB OR
N has (27, T) with 21 = (|[EN|, |Br|, F, %), but has not yet rec’d |[EN| parcels as in
line 200b, F parcels as in line 200c, or |Br| parcels as in line 200d OR
32 if { N has rec’d the complete SOT broadcast, but every parcel has not yet passed across E(N, B) OR
N or BeBL OR
N has ©1 € BB, but this has not passed across E(N, B) yet OR

N has BL info. in BB (as on line 115, items 3 or 4) not yet passed across E(N, B)

33 Return False;
34 else: Return True;

35 Okay to Receive Packet

N does not have (27, T) in BB OR
N has (27, T) with 21 = (|[EN|, |Br|, F, %), but has not yet rec’d |[EN| parcels as in
line 200b, F parcels as in line 200c, or |Br| parcels as in line 200d OR
36 if { N has rec’d the complete SOT broadcast, but every parcel has not yet passed across E(A, N) OR
N or AeBL OR
N has @7 € BB, but this has not passed across E(A, N) yet OR
N has BL info. in BB (as on line 115, items 3 or 4) not yet passed across E(A, N) OR

37 Return False;
38 else: Return True;

Fig. C.3. Routing rules for transmission T, (node-controlling + edge-scheduling) protocol.

Authenticated Adversarial Routing 719

39 Reset Outgoing Variables

40 Chp = 0;

41 ifd=1: ## N sent a packet previous round

42 d=0;

43 if RR=_1 or L #FR >RR ## Did not receive conf. of packet receipt

44 sb=1;

45 ifRR# L:

46 if L #FR <RR: ## B rec’d most recently sent packet

47 if N=S then: «k =« +1;

48 Fori =1, 2, p: SIG[i] = value rec’d on line 07;

49 SIG[3] = SIG[3] + HFp; ## If N = S, skip this line

50 OUT[HFp] = L; Fill Gap; ## Remove p from OUT, shifting down packets on top
of p (if necessary) and adjusting SIGy_ y accordingly

51 FR,p,Hrp=1;sb=0;H=H — 1;

52 if L#RR<FRand L # Hrp <H: ## B did not receive most recently sent packet

53 Elevate Flagged Packet; ## Swap packets in OUT[H] and OUT[Hfp]; Set Hpp=H;

54 Create Flagged Packet
55 ifsb=0and H > Hyy: ## Normal Status, will send top packet
56 p=OUT[H]; Hrp=H; FR=1t;

57 Send Packet

58 d=1;

59 if Okay to Send Packet then: ## If p is from an old codeword, send instead:

60 sendSign(T, t, p, FR, SIG[11+1, SIG[3] + Hpp, SIG[p]+1);## Sign(T, t, p, FR, SIG[11, SIG[3] + Hpp, L)

61 Receive Packet

62 receive Sign(T, t — 2, p, FR, SIG[1], SIG[2], SIG[p]); ## SIG[3], 6th coord. sent on line 60, is kept as SIG[2]
63 if Hoyr = L or Okay to Receive Packet is false: ##Did not rec. A’s ht. info, or BB info prevents p. transfer
64 sb=1;

65 if Hgp > H or (Hgp = 1L and H < 2n):

66 Hgp=H+1;

67 elseif sboyr =1 or Hoyr > H: ## A packet should have been sent
68 Verify Signature One;

69 if (Verif_‘y Signature One returns false or ## Signature from A was not valid, or

p =L or p not properly signed by S) then: ## Packet was not rec’d. or was not signed by S
70 sb=1;

71 if HGp > H or (Hgp =1 and H < 2n):

72 HGP =H+1;

73 else if RR < FR: ## Packet was rec’d and should keep it

74 Fori =1, 2, p: SIG[i] = value rec’d on line 62;

75 SIG[3] = SIG[3] + Hgp; ## If N = R, skip this line

76 if HGp=1: Hgp=H+1; ## If no slot is saved for p, put it on top

71 IN[Hgp] = p;

78 sb=0;H=H+1; Hgp=1;RR=¢t;

79 else: ## Packet was rec’d, but already had it

80 sb=0; Fill Gap; Hgp = L; ## See comment about Fill Gap on line 82 below
81 else: ## A packet should NOT have been sent

82 sb =0; Fill Gap; Hgp = L; ## If packets occupied slots above the Ghost

Packet, then Fill Gap will Slide them down one slot,
updating SIGy y to reflect this shift, if necessary
83 Verify Signature One

84 if Signature is Valid and Values are correct ## N verifies the values A sent on line 60 are consistent:
85 Return true; ## Change in SIG[1] and SIG[p] is ‘1’, change in SIG[2] is
86 else: ## at least Hgp, (T, t) is correct and p. has sender’s sig

87 Return false;

88 Verify Signature Two ## N verifies the values B sent on line 11 are consistent:
89 if Signature is NOT Valid or Values are NOT Correct## Change in SIG[1] and SIGp] is ‘1, change in SIG[2]
90 RR, Hjy = 1; ## is at most Hpp, and T and t are correct

Fig. C.4. Routing rules for transmission T, (node-controlling + edge-scheduling) protocol (continued).

720

Y. Amir, P. Bunn, and R. Ostrovsky

91 Send/Receive Broadcast Parcels

92
93
94
95
96
97

98

929

100
101
102
103
104
105
106
107
108

for every outgoing edge E(N, B) € G, including N=R,B =S
receive bp;
Update Broadcast Buffer Two;

for every incoming edge E(A, N) € G, including N=S,A=R
Determine Broadcast Parcel to Send,
send bp;

Update Broadcast Buffer One

for every outgoing edge E(N, B) € G, including N=R,B=S§
if bp # L then:
send ¢p, P
Broadcast Parcel to Request,
send «;
for every incoming edge E(A, N) € G, including N=S,A=R
receive Chps receive «;

if o # L then: Update Broadcast Buffer; ## Update BB to preferentially send o
if cpp =1 then: Update Broadcast Buffer; ## Update BB that bp crossed E(A, N)
cpp =03

109 Update Broadcast Buffer Two

110

111
112
113

N has received full SOT broadcast for T OR
bp is a valid SOT broadcast parcel rec’d in correct order (see 115 and 200)
Here, a “valid” signature means both from B and the from node bp originated from, and

if L #bp has valid sig. and{

a “valid” SOT parcel means that N has already received all SOT parcels that

should have arrived before bp, as indicated by the ordering of line 115, items 2a-2d
Chp = I;
if N = S: Sender Update Broadcast Buffer;
else: Internal Node and Receiver Update Broadcast Buffer,

114 Determine Broadcast Parcel to Send

115

Among all information in BB, choose some bp € BB that has not passed along E(A, N) by priority:
(1) The receiver’s end of transmission parcel O
(2) The sender’s start of transmission (SOT) broadcast, in the order indicated on line 200:
@ (20,7 O (NEeEN,T (0, Fi,T) () (NeBLT,T)
3) (ﬁ , 0, T)=label of a node to remove from the blacklist, see line 165
“4) (N, N , T")=1label of a node N on BL for which N has the complete testimony for T', see line 155
(5) A testimony parcel requested by A as indicated by « (received on line 105)
(6) An arbitrary testimony parcel of a node on N’s blacklist

116 Broadcast Parcel to Request

117
118
119
120
121
122

a=1;
if B is on N’s blacklist and N is missing a testimony from B:
Set « to indicate B’s label and an index of the parcel N is missing from B;
else if DB indicates that B has complete testimony for some node N on BL (see lines 150-151, 155):
if N is missing a testimony of node N:
Set a to the label of the node N and the index of a testimony parcel from N that N is missing;

Fig. C.5. Routing rules for transmission T, (node-controlling 4+ edge-scheduling) protocol (continued).

Authenticated Adversarial Routing 721

123 Internal Node and Receiver Update Broadcast Buffer
Below, a broadcast parcel bp is “Added” only if it is not already in BB. Also, view BB as being
indexed by each bp with n — 1 slots for each parcel to indicate which edges bp has already traversed.
Then when bp is removed from BB, the edge “markings” are removed as well.
124 if bp = O is receiver’s end of transmission parcel (for current transmission T, see line 179):
125 Add bp to BB and mark edge E(N, B) as having passed this info.;
126 else if bp= (827, T) is a first parcel of the sender’s start of transmission (SOT) broadcast (see line 200a):
127 Add bp to BB, and mark edge E (N, B) as having passed this information;
128 if 27 = (* 0, %, %) : Clear all entries of SIG, and set SIGy y = 0;
129 else if bp= (N, T) is from the SOT broadcast indicating a node to eliminate, as on line 200b:
130 Add bp to BB and mark edge E(N, B) as having passed this info.;

131 itN ¢ EN: ## N is just learning N is to be eliminated
132 Add N to EN;
133 Clear all incoming and outgoing buffers, clear all entries of SIG, and set SIGy ny = 0;

134 Clear BB, EXCEPT for parcels from current SOT broadcast; Clear DB, EXCEPT for EN;
135 else if bp= (7', Fi, T) is from the SOT broadcast indicating why a previous trans. failed, as on line 200c:
136 Add bp to BB and mark edge E(N, B) as having passed this information;
137 elseif bp= (N, T, T) is from the SOT broadcast indicating a node to blacklist, as on line 200d:
138 Add N to BL; Add bp to BB and mark edge E (N, B) as having passed this information;
139 Remove outdated info. from BB and DB;
This includes for any trans. T” 9é T/ removing from DB all entries of form (B,N,T"), see line 115, item 4;
and removing from BB: (1) (N, N.T"), see line 115 item 4, and (2) Any testlmnny parcel of N for T
140 it N = N has not already added its own testimony info. corresponding to T’ to BB:
The following reasons for failure come from SOT. See lines 190, 193, and 196-197
The information added in each case will be referred to as the node’s festimony for transmission T/

141 if entrles of SIGy y and SIG correspond to a transmission T #T': Clear SIG and set SIG .,y =0;
142 if T/ failed as in F2: For each i mcommg and outgoing edge, sign and add to BB: (SIG[2], SIG[3] T);
143 Also 51g11 and add (SIGy y,T’) to BB (see line 12 of Fig. C.1);

144 else if T’ failed as in F3: For cach i mcommg and outgoing edge, 51gn and add (SIG[1], T) to BB;
145 else if T’ failed as in F4: For each incoming and outgoing edge, sign and add (SIG[p], T) to BB;
146 if N has received |BLr| SOT parcels of form (N, 7. T) : Clear all entries of SIG and set SIG NN =0;
147 else if bp= Q/ 0, T) is from sender, indicating a node to remove from BL, as on line 165:
148 Remove N from BL; Add bp to BB and mark edge E (N, B) as having passed this information;
149 Remove outdated info. from BB and DB as on line 139 above;
150 else if bp= (B, N. 1) indicates B has a blacklisted node N’s s complete testimony for trans. T':
151 if (N, T/, T)is on N’s blacklist: ~ Add fact that B has N’s complete testimony to DB;
152 else if bp is a testimony parcel for trans. T’ of some node (N, T/, T) on BL, see lines 140-145 and 200d:
153 if bp has valid sig. from N and concerns correct info.:

N finds (/V T/, T) and (T’, Fi, T) in BB (from SOT broadcast) and checks that bp concerns correct info.
154 Add bp to BB, and mark edge E(N, B) as havmg passed this information;
155 if bp completes N’s knowledge of N’s missing testimony for transmission T': Add (N, N, ') to BB;

156 Sender Update Broadcast Buffer ## Below, a parcel bp is “Added” only if it is not in DB
157 if bp = O is receiver’s end of transmission parcel (for current transmission T):
158 Add bp to DB;
159 elseif bp 1ndlcates B has a blacklisted node N s complete testimony for trans. T’:
160 if (N, T/, T) is on S’s blacklist: ~ Add (B, N T') to DB;
161 else if bp is a testimony parcel of some node N on the sender’s blacklist (see lines 140-145):
162 Add bp to DB; R
163 if bp contains faulty info. but has a valid sig. from N Eliminate N,
S checks DB for reason of failure and makes sure N has returned an appropriate value
164 if bp completes the sender’s knowledge of N’s missing testimony from transmission T/
165 Sign (N, 0, T) and add to BB; ## Indicates that N should be removed from blacklist
166 Remove outdated info. from DB; Remove (N T') from BL;
“Outdated” refers to parcels as on 159-160 whose second entry is N

167 if bp completes sender’s knowledge of all relevant testimonies from some transmission:
168 Eliminate N, ## S can eliminate a node. See pf. of Thm. 5.2 for details

Fig. C.6. Routing rules for transmission T, (node-controlling + edge-scheduling) protocol (continued).

722 Y. Amir, P. Bunn, and R. Ostrovsky

169 Eliminate N

170 Add (N,T) to EN,

171 Clear BB, DB (except for EN), and signature buffers;

172 Brp, F=0;

173 PT+] :P\EN,

174 Q¢4 =(|EN|,0,0,0);

175 Sign and Add 274 to BB;

176 for every N € EN, Sign and Add (N, T+ 1) to BB,

177 Halt until End of Transmission Adjustments is called; ## S does not begin inserting p’s until next trans.,
and S ignores all instructions for T until line 30

178 Send End of Transmission Parcel

179 Add signed @p = (b, p',T) to BB ## b is a bit indicating if R could decode, p’ is
the label of a packet R rec’d twice, or else L

180 Prepare Start of Transmission Broadcast

181 ##Let ©p = (b, p/, T) denote Sender’s value obtained from Receiver’s transmission above (as stored in DB)

182 ifb=1 then: ## R was able to decode

183 Clear each entry of signature buffers holding data corresponding to T;

184 Qpy; = (EN|. |BLI, F,0);

185 elseif » =0 then: ## R was not able to decode: a failed transmission

186 F=F+1;
187 Set Pp =P \ (EN UBL) and add (Pr, T) to DB;

188 Foreach N € Pr \ S: Add (N, T) to BL; ## (N, T) records the trans. N was added to BL
189 Clear outgoing buffers;

190 if p/ # L: ## R rec’d a duplicate packet

191 Add (p’, T) to DB; Add SIG[p'] to DB; ## Record that reason T failed was F4

192 L2741 =([EN|, |BL|, F, p');

193 elseif k < D: ## S did not insert at least D packets

194 Add (1, T) to DB; Add SIG[2] and SIG[3] to DB; ## Record that reason T failed was F2

195 Qpy) = (ENJ, BL|, F, 1);

196 else:

197 Add (2, T) to DB; Add SIG[1] to DB; ## Record that reason T failed was F3

198 Qpy) = (ENJ, BL|, F,2);

199 Clear BB and SIG[i] for each i = 1, 2, p; Remove O from DB;

200 Sign and Add to BB: ## The Start of Transmission (SOT) broadcast

(@) (2041, T+D)
(b) For each N € EN, add the parcel (N, T+1)
(c) For each failed transmission T’ since the last node was eliminated, add the parcel (T', Fi, T+1)
Here, Fi is the reason trans. T’ failed (F2, F3, or F4). See pf. of Thm. 5.2 for details
(d) For each N € BL, add a parcel (N, T/, T+1), where T/ indicates the trans. N was last added to BL
201 Br=0;

202 End of Transmission Adjustments =R

203 if N#S: Clear O, BL, all parcels from SOT broadcast, and info. of form (N, 0, T) from BB;

204 for every outgoing edge E(N,B), Be G, N #R,B+#S:

205 if Hpp # L:

206 OUT|[Hpp] = L; Fill Gap; ## Remove any flagged packet j from OUT, shifting
down packets on top of p if necessary

207 sb=0; FR,Hpp,p=1;H=H — 1;

208 for every incoming edge E(A,N), A€ G, A#R:

209 Hgp = 1;sb=0; RR=—1; Fill Gap;

210 if N #S, R then: Re-Shuffle; ## Re-balance buffers at end of each transmission
211 if N =S then: Distribute Packets;

212 if N =R then: « =0; Clear Ig; ## Set each entry of I to L

213 Distribute Packets

214 «k =0; Hoyr =2n; ## Set height of each outgoing buffer to 2n

215 Fill each outgoing buffer with codeword packets;
If T was successful, make new codeword p’s, and fill out. buffers and copy with these.
If T failed or a node was just eliminated, use codeword packets in copy to fill out. buffers.

Fig. C.7. Routing rules for transmission T, (node-controlling + edge-scheduling) protocol (continued).

Authenticated Adversarial Routing 723

Appendix D. Node-Controlling + Edge-Scheduling Protocol: Pseudo-Code
Intensive Proofs

In this section, we give detailed proofs that walk through the pseudo-code of Figs. C.1—
C.7 to argue very basic properties the protocol satisfies. The following lemma will re-
lieve the need to re-prove many of the lemmas of Sect. 4.3 and Appendix B.

Lemma D.1. The differences between the Slide protocol (designed for the edge-
scheduling adversary network model) and the Mal-Slide protocol (for the node-
controlling + edge-scheduling adversary network model) all fall under one of the fol-
lowing cases:

1. Extra variables in the Setup Phase and Initialization Phase

2. Length of transmission and codeword being transmitted in the current transmis-
sion

3. Need to authenticate signatures on packets, as on (C.3.08) and (C.4.68)

Need to check if it is okay to send/receive packets, as on (C.4.59) and (C.4.63)

5. Broadcasting information, i.e. transmission of broadcast parcels and modifica-
tions of Broadcast Buffer, Data Buffer, and Signature Buffer

&

Furthermore, differences as in Cases 3 and 4 can be perfectly simulated by the Slide
protocol in the edge-scheduling adversary model by having an edge fail at the appro-
priate time. Also, differences falling under Case 5 affect the Mal-Slide protocol only
insofar as their affect on the methods Okay to Send/Receive Packet and Verify Signa-
ture One/Two. In particular, the effect of these differences in Mal-Slide can again be
simulated by the Slide protocol in the edge-scheduling adversary model, by introducing
an edge failure at the appropriate time. Finally, between any two honest nodes, the au-
thentications of Case 3 never fail, and Case 4 failures correspond to “wasted” rounds
(see Definition D.30).

Proof. Comparing the pseudo-code of Figs. A.1-A.5 to Figs. C.1-C.7, as emphasized
by line numbers in bold face, it is clear that all differences fall under Cases 1-5 of the
lemma. Also, all of the new methods in Figs. C.3—C.7 fall under Cases 3-5.

As for the differences as in Cases 3 and 4, it is clear that failing Verify Signature
One on (C.4.86-87) is equivalent to the edge failing during Stage 2 (i.e. as if p =
L on (C.4.62) causing (C.4.69) to fail); failing Verify Signature Two on (C.4.89-90)
is equivalent to the edge failing during Stage 1 (since this sets Hyy and RR to L on
(C.4.90), which is equivalent to the communication on (C.3.07) not being received);
failing Okay to Send Packet on (C.4.59) is equivalent to the edge failing during Stage 2
(so that nothing is received on lines (C.3.22/C.4.62)); and failing Okay to Receive Packet
on (C.4.63) is equivalent to the edge failing during Stage 1 (i.e. as if nothing is received
on (C.3.13), so that Hoyr = L on (C.4.63)). Finally, differences as in Case 5 do not
directly affect routing (except their affects captured by Cases 3 and 4) since the transfer
of broadcast parcels and maintenance of the related buffers (signature, broadcast, and
data buffers) happen independently of the routing of codeword packets. This is evident
by investigating the relevant bold lines in Figs. C.3-C.7.

724 Y. Amir, P. Bunn, and R. Ostrovsky

The second part of the last sentence is true by definition of “wasted” (see Defini-
tion D.30), and the first part follows from lines (C.3.11), (C.4.49), (C.4.60), (C.4.75),
and Lemma D.19. O

Lemma D.2. The domains of all of the variables in Figs. C.1 and C.2 are appropriate.
In other words, Mal-Slide never calls for more information to be stored in an honest
node’s variable (buffer, packet, etc.) than the variable has room for.

Proof. The proof for variables and buffers that also appear in the Slide protocol fol-
lows from Lemmas B.1 and B.2, since all differences between the Slide protocol and
the Mal-Slide protocol can be simulated by an edge failure in the edge-scheduling ad-
versary model (Lemma D.1). So it remains to prove the lemma for the new variables
appearing in Figs. C.1 and C.2 (i.e. the bold line numbers). The distribution of public
and private keys (C.1.14) is performed by a trusted third party, so these variables are as
specified. Below, when we refer to a specific node’s variable, we implicitly assume the
node is honest, as the lemma is only concerned about honest nodes.

Bandwidth P (C.1.06). We look at all transfers along each directed edge in each stage
of any round. In Stage 1, this includes the transfer of Hoyr, Hrp, FR (C.3.06), cpp,
a (C.3.04), and the seven signed items on (C.3.11). All of these have collective size
O (k +1logn) ((C.1.03-04), (C.1.21), (C.1.23), (C.1.24), (C.1.28), (C.1.29), (C.1.32),
(C.1.35), and (C.1.36)). In Stage 2, this includes the transfer of the seven items on
(C.4.60) and bp (C.3.15). Collectively, these have size O(k + logn) ((C.1.03-04),
(C.1.17), (C.1.18), (C.1.21), and (C.1.42)).

Potential Lost Due to Re-Shuffling SIGy n (C.1.12). This is initialized to zero on
(C.2.46), after which it is only updated on (A.5.76), (C.4.50), (C.4.80), (C.4.82),
(C.6.128), (C.6.133), (C.6.141), and (C.6.146). The first four of these increment
SIGy.n by at most 2n, and the latter four all reset SIGy y to zero. We will see
in Lemma D.18 below that SIGy y will always represent the potential lost due to re-
shuffling in at most one failed transmission, and consequently SIGy y is polynomial
in n, as required.

Broadcast Parcel bp to Receive (C.1.27). This is initialized to L on (C.2.58), after
which it is only updated on (C.5.93). Either no value was received on (C.5.93) (in
which case bp = L), or it corresponds to the value sent on (C.5.97). As discussed
below, the value of bp sent on (C.5.97) lies in the appropriate domain, and hence so
does bp.

Broadcast Buffer Request o (C.1.28). This is initialized to L on (C.2.58), after which
it is only updated as in Broadcast Parcel to Request (C.5.117-122). On (C.5.117),
o is set to L, and on (C.5.119) and (C.5.122), « includes the label of a node and a
testimony parcel (see C.6.142-145), and so « is bounded by O (k + logn) = P as
required.

Outgoing Verification of Broadcast Parcel Bit cp, (C.1.29). This is initialized to zero on
(C.2.58), after which it is only updated as on (C.4.40) and (C.5.111), where it clearly
lies in the appropriate domain.

Broadcast Parcel bp to Send (C.1.42). This is initialized to L on (C.2.52), after which
it is only updated as in Determine Broadcast Parcel to Send (C.5.115). Looking at

Authenticated Adversarial Routing 725

the six types of broadcast parcels on line (C.5.115) and comparing the corresponding
domains of these variables in Figs. C.1 and C.2, we see that in each case, bp can be
expressed in O (k 4 logn) = P bits.

Incoming Verification of Broadcast Parcel Bit ¢, (C.1.43). This is initialized to zero on
(C.2.52), after which it is only updated as on (C.5.105) and (C.5.108). The value it
takes on (C.5.105) will either be set to zero (if no value was received), or it will equal
the value of ¢y, sent on (C.5.101), which as shown above is either a one or zero.
Meanwhile, the value it takes on (C.5.108) is zero, so at all times ¢, equals one or
zero, as required.

First Parcel of Start of Transmission Broadcast 2+ (C.2.66). This is initialized to (0, O,
0,0) on (C.2.72) and is only changed on (C.7.174), (C.7.184), (C.7.192), (C.7.195),
and (C.7.198). In all of these cases, it is clear that 27 can be expressed in O (logn)
bits, as required.

Number of Rounds Blocked 81 (C.2.67). This is initialized to zero on (C.2.71) and is
only changed on (C.3.27), (C.7.172), and (C.7.201). Notice that in the latter two
cases, fr is reset to zero, while S can only be incremented by one on (C.3.27) at most
4D times per transmission by (C.3.02). Since either line (C.7.172) or line (C.7.201)
is reached at the end of every transmission (in the case a node is not eliminated as on
line (C.6.163) or (C.6.168), line (C.7.201) will be reached by the call on (C.3.29)),
Br €[0..4D] at all times, as required.

Number of Failed Transmissions F' (C.2.68). This is initialized to zero on (C.2.71) and
is only changed on (C.7.172) and (C.7.186). Notice that F' is only incremented by one
as on line (C.7.186) when a transmission fails. As was shown in Lemma 5.3, there
can be at most n — 1 failed transmissions before a node can necessarily be eliminated,
in which case F is reset to zero on (C.7.172).

Participating List Pp (C.2.69). This is initialized to G on (C.2.73) and is only changed
on (C.7.173) and (C.7.187); it is clear each time that Pr € G in both places.

End of Transmission Parcel ®1 (C.2.77). This is initialized to L on (C.2.79) and is only
changed on (C.7.179), where it is clear that @1 can be expressed in O (k + logn) bits
as required (packets have size O (k + logn), and the index of a transmission requires
O (logn) bits).

Broadcast Buffer BB (C.1.08). We treat the sender’s broadcast buffer separately below,
and consider now only the broadcast buffer of any internal node or the receiver. Notice
that the broadcast buffer is initially empty (C.2.46). Looking at all places informa-
tion is added to BB (lines (C.5.106-107), (C.6.125), (C.6.127), (C.6.130), (C.6.136),
(C.6.138), (C.6.142-145), (C.6.148-149), and (C.6.154-155), we see that there are
7 kinds of parcels stored in the broadcast buffer, as listed on (C.5.115) (the 7th type
is to indicate which parcel to send across each edge, as on (C.5.106)). We look at
each one separately, stating the maximum number of bits it requires in any broadcast
buffer. For all of the items below, the comments on (C.6.123) ensure that there are
never duplicates of the same parcel in BB at the same time, and also that every parcel
in BB has associated with it n — 1 bits to indicate which edges the parcel has trav-
eled across (see e.g. (C.5.107), (C.6.125), (C.6.127), (C.6.130), (C.6.136), (C.6.138),
(C.6.148), and (C.6.154)). Totaling all numbers below, we see that the BB needs to
hold at most n? 4 5n broadcast parcels, with each parcel needing to record which of
the n — 1 edges it has traversed, which proves the domain on (C.1.08) is correct.

726

Y. Amir, P. Bunn, and R. Ostrovsky

1. RECEIVER’S END OF TRANSMISSION PARCEL ®r. This is added to a

node’s broadcast buffer on (C.6.125), and removed on (C.7.203). Since ev-
ery internal node and the receiver will reach (C.7.203) at the end of every
transmission (C.3.30), and by the inforgibility of the signature scheme, there
is only one valid ¢ per transmission T. Therefore, each node will have at
most one broadcast parcel of this type in BB at any time.

. SENDER’S START OF TRANSMISSION PARCELS. These are added to a

node’s broadcast buffer on (C.6.127), (C.6.130), (C.6.136), and (C.6.138),
and they are removed on (C.7.203). Since every internal node and the re-
ceiver will reach (C.7.203) at the end of every transmission (C.3.30), by the
inforgibility of the signature scheme, for every transmission T, BB stores SOT
parcels corresponding to the current transmission only. Notice that SOT con-
sists of: one parcel for 200a, n — 1 parcels for 200b and 200d together, and
up to n — 1 parcels for 200c (see (C.7.200), and use the fact that S ¢ EN, BL
and Lemma 5.3). Therefore, each node will have at most 2n SOT parcels in
BB at any time.

. LABEL OF A NODE TO REMOVE FROM THE BLACKLIST. Parcels of this

nature are added to a node’s broadcast buffer on (C.6.148) and removed on
(C.7.203). Since every internal node and the receiver will reach (C.7.203) at
the end of every transmission (C.3.30), we argue that in any transmission,
every node will have at most n — 1 parcels in their broadcast buffer corre-
sponding to the label of a node to remove from the blacklist. To see this,
we argue that the sender will add (]V ,0,T) to his broadcast buffer as on
(C.6.165) at most once for each node N e Pr \ S per transmission, and then
use the inforgibility of the signature scheme to argue each node will add a
corresponding broadcast parcel to their broadcast buffer as on (C.6.148) at
most n — 1 times. That the sender will enter line (C.6.165) at most once per
node per transmission is clear since once the sender has reached (C.6.165) for
some node N , the node will be removed from his blacklist on (C.6.166), and
nodes are not re-added to the blacklist until the end of any transmission, as
on (C.7.188). Therefore, once the sender has received some node N’s com-
plete testimony as on (C.6.164), that same line cannot be entered again by the
same node N in the same transmission. In summary, there are at most n — 1
broadcast parcels of this type in any node’s broadcast buffer at any time.

. THE LABEL OF A NODE N WHOSE TESTIMONY IS KNOWN TO N. We

show that for any node N € P\ S, there are at most (n — 1) broadcast parcels
of type 4 (C.5.115) in BB at any time.** This follows from the same argument
as above, where it was shown that (C.6.164) can be true at most once per node
per transmission. The inforgibility of the signature scheme ensures that the
same will be true for internal nodes regarding line (C.6.155), and since this
is the only line on which broadcast parcels of this kind are added to BB,
this can happen at most n — 1 times per transmission. However, we are not
yet done with this case, because broadcast information of this type is not
removed from BB at the end of each transmission like the above forms of

44 The (n — 1) comes from the fact that there are no testimonies for the sender.

Authenticated Adversarial Routing 727

broadcast information. Therefore, we fix N e G, and show that if N adds a
broadcast parcel to BB of form (N, N ,T) as on (C.6.155) of transmission
T, then necessarily BB was not already storing a broadcast parcel of form
(N, N, T") for some other T” # T’ (if T” = T’, then there is nothing to show,
as nothing new will be added to BB by the comments on C.6.123).

For the sake of contradiction, suppose that BB is already storing a parcel
of form (N, N, T") when (C.6.155) of transmission T is entered and N is
called to add (N, N, T') to BB for some T’ # T”. Since (C.6.155) is reached,
we must have that (C.6.152) was satisfied for the bp appearing there. In par-
ticular, N is on N’s version of the blacklist. Since the blacklist is cleared
at the end of every transmission (C.7.203), it must be that (f\7 , T/, T) was
added to N’s version of the blacklist during the SOT broadcast for the cur-
rent transmission T, as on (C.6.137-138). Therefore, all parcels in BB of
form (N, N. T") for T # T’ should have been removed from BB on line
(C.6.139), yielding the desired contradiction.

. TESTIMONY PARCELS. We fix an honest N € G and show that for every

NeG \ {§, N}, there are at most n testimony parcels corresponding to N
in N’s broadcast buffer, and hence N’s broadcast buffer will hold at most
n(n — 2) testimony parcels at any time. Since a single node’s testimony for a
single transmission consists of at most n parcels (see lines (C.6. 142-145)),%
it will be enough to show that for every NeG \ S, at all times N’s broadcast
buffer only holds testimony parcels for N corresponding to a single failed
transmission T’.

For the sake of contradiction, suppose that during some transmission T,
there is some node N € G \ S and two transmissions T’ and T” such that
N’s broadcast buffer holds at least one testimony parcel for N from both T/
and T”. Notice that testimony parcels are only added to BB as on (C.6.154),
and without loss of generality suppose that the testimony parcel of N corre-
sponding to T” was already in BB when one corresponding to T’ is added to
BB as on (C.6.154) of transmission T. As was argued above, since (C.6.154)
is reached in T, (C.6.152) must have been satisfied, and since N’s blacklist is
cleared at the end of every transmission (C.7.203), it must be that a broadcast
parcel of form (7\7 ,T, T), was received earlier in transmission T. Notice that
necessarily T =T, since otherwise line (C.6.153) will not be satisfied. But
then since T” # T/, all testimony parcels of N corresponding to transmission
T” should have been removed from BB on (C.6.139), yielding the desired
contradiction.

Now for N’s own testimony parcels, these are added to BB on (C.6.142—
145). Investigating (C.6.137), (C.6.139), and (C.6.140-145), we see that tes-
timonies of N can occupy BB for at most one failed transmission.
REQUESTED PARCEL FOR EACH EDGE. For any edge E(A, N), N will have
at most one copy of a parcel like o as on (C.5.106) at any time, since the
old version of « is simultaneously deleted when the new one is added on

45 We assume that the signature buffer information for two directed edges E(A, B) and E(B, A) are
combined into one testimony parcel.

728 Y. Amir, P. Bunn, and R. Ostrovsky

(C.5.106). Since each node has (n — 1) incoming edges, BB need hold at
most n — 1 parcels of this form at any time.

Data Buffer DB, Eliminated List EN, and Blacklist BL (C.1.09-11). We treat the sender’s
data buffer separately below, and consider now only the data buffer of any internal
node or the receiver. The data buffer is initially empty (C.2.46). A node N’s data
buffer holds three different kinds of information: blacklist, list of eliminated nodes,
and for each neighbor B € G, alist of nodes N € G for which B knows the complete
testimony (see item 4 on line (C.5.115)). Below, we show that these contribute at
mostn —1,n — 1, and (n — 1)? items (respectively), so that DB requires at most n?
items (of size O (logn)) at any time.

BLACKLIST BL. Each entry of BL is initialized to L on (C.2.46), and BL is only
modified on lines (C.6.134), (C.6.138), (C.6.148), and (C.7.203). BL is an array
with n — 1 entries, indexed by the nodes in G \ S. When a node (ﬁ ,T) is added to
BL as on (C.6.138), this means that the entry of BL corresponding to N is switched
to be T. When a node (ﬁ, T) is removed from BL as on (C.6.148), this means that
the entry of BL corresponding to N is switched to L. Finally, when BL is to be
cleared as on (C.6.134) and (C.7.203), this means that BL each entry of BL is set
to L. Thus, in all cases, BL € [1..n — 1] x {0, 1}©1°8" a5 required.

L1ST OF ELIMINATED NODES EN. Each entry of EN is initialized to L on (C.2.46),
and is only modified on line (C.6.132). EN is an array with n — 1 entries, indexed
by the nodes in G \ S. Here, Wherl\ a node (7\7 ,T) is added to EN, this means
the entry of EN corresponding to N is switched to T. Thus, at all times EN €
[1..n — 1] x {0, 1}0Uogn) g required.

L1ST OF WHICH NEIGHBOR’S KNOWS ANOTHER NODE’S TESTIMONY. Parcels
of this kind are only added to or removed from DB on lines (C.6.134), (C.6.139),
(C.6.149), and (C.6.151). We will now show that for any pair of nodes N,Be
G \ S, the data buffer of any honest node N € G will have at most one item of the
form (B, N, T'), from which we conclude that this portion of N’s data buffer need
hold at most (n — 1)? items. To see this, we fix Band N in G and suppose for the
sake of contradiction that N’s data buffer holds two different parcels (E , N ,T)
and (B, N, T"), for T' # T”. We consider the transmission T for which this first
happens, i.e. without loss of generality, (E N, T) is added to DB as on (C.6.151)
of T. Since the second part of (C.6.151) is reached, the first part of (C.6.151)
must have been satisfied, and since the blacklist is cleared at the end of every
transmission (C.7.203), it must be that a broadcast parcel of form (IV ,T, T) was
received earlier in transmission T. Notice that necessarily T =T, since otherwise
line (C.6.151) will not be satisfied. But then since T £ T’, (B, N, T") should have
been removed from DB as on (C.6.139) of transmission T, yielding the desired
contradiction.

Adding these three contributions together, we see that DB requires at most n? item of
size O(logn), as required.

Outgoing Signature Buffers SIG (C.1.17). Each outgoing signature buffer is initially
empty (C.2.54), and they are only modified on (C.4.48-49), (C.6.128), (C.6.133),
(C.6.141), and (C.6.146). The first of these increments SIG[3] by at most 2, incre-
ments SIG[1], and SIG[p] by at most 1, and increments SIG[2] by at most 2n, and

Authenticated Adversarial Routing 729

the latter four lines all reset all entries of SIG to L. Since Mal-Slide is only intended
to run polynomially long (in n), each entry of SIG is polynomial in n, as required.

Incoming Signature Buffers SIG (C.1.32). Each incoming signature buffer is initially
empty (C.2.48), and they are only modified on (C.4.74-75), (C.6.128), (C.6.133),
(C.6.141), and (C.6.146). The first of these increments SIG[3] by at most 2n, SIG[1]
and SIG[p] by at most 1, and SIG[2] by at most 2n, and the latter four lines all reset
all entries of SIG to L. Since Mal-Slide is only intended to run polynomially long (in
n), each entry of SIG is polynomial in n, as required.

Copy of Packets Buffer COPY (C.2.60). COPY is first filled on (C.2.74) and
(C.7.215), with a copy of every packet corresponding to the first codeword. The only
place it is modified after this is on (C.7.215), where the old copies are first deleted
and then replaced with new ones.

Sender’s Broadcast Buffer BB (C.2.61). In contrast to an internal node’s broadcast
buffer, the only thing the sender’s broadcast buffer holds is the Start of Trans-
mission broadcast (C.7.200) and the information that a node should be removed
from the blacklist, see (C.6.165). Notice that at the outset of the protocol, BB only
holds the Start of Transmission broadcast, which consists only of £2; = (0,0, 0, 0)
(C.2.72-73). After this, the only changes made to BB appear on lines (C.6.165),
(C.7.171), (C.7.199), and (C.7.200). Notice that for every transmission, necessarily
either (C.7.171) or (C.7.199) will be reached, and hence at any time of any trans-
mission T, BB contains parcels corresponding to at most one Start of Transmission
broadcast, and whatever parcels were added to BB so far in T. By investigating line
(C.7.200) and using Lemma 5.3, the former requires at most 2n parcels, and by the
comment on (C.6.156), the latter requires at most n parcels (C.6.165). Therefore, the
sender’s broadcast buffer requires at most 3n parcels, as required.

Sender’s Data Buffer DB, Eliminated List EN, and Blacklist BL (C.2.62-64). We will
show that the sender’s DB needs to hold at most n3 + n2 + n items of size O (logn)
at any time, and that the blacklist and list of eliminated nodes need at most n
slots (of size O(logn)) each. Notice that every entry of DB is initialized to L on
(C.2.73), after which modifications to DB occur only on lines (C.6.158), (C.6.160),
(C.6.162), (C.6.166), (C.7.170-171), (C.7.187-188), (C.7.191), (C.7.194), (C.7.197),
and (C.7.199). The sender’s data buffer holds eight different kinds of information:
end of transmission parcel ®r, testimony parcels, the participating list forup ton — 1
failed transmissions, the reason for failure for up to n — 1 failed transmissions, its
own testimonies for up to n — 1 failed transmissions, the blacklist, list of eliminated
nodes, and for each neighbor B € G, a list of nodes N € G for which B knows the
complete testimony (see item 4 on line (C.5.115)).

1. END OF TRANSMISSION PARCEL @1. Modifications to this occur only on lines
(C.6.158), (C.7.171), and (C.7.199). Every transmission, the inforgibility of the
signature scheme and the comment on line (C.6.156) guarantee that the sender
will add & to DB as on (C.6.158) at most once. Meanwhile, for every trans-
mission, either (C.7.171) or (C.7.199) will be reached exactly once. Therefore,
there is at most one End of Transmission parcel in DB at any time.

2. BLACKLIST BL. We show that BL consists of at most n nodes at any time. More
specifically, we will show that BL lives in the domain [1..n] x {0, 1}0U0g™) j e,
an array with n slots indexed by each N € G, with each slot holding _L (if the

730

Y. Amir, P. Bunn, and R. Ostrovsky

corresponding node is not on the blacklist) or the index of the transmission
in which the corresponding node was most recently added to the blacklist. To
see this, notice that modifications to the blacklist occur only on lines (C.6.166),
(C.7.171), and (C.7.188). “Remgving” anode N from BL as on (C.6.166) means
changing the entry indexed by N to L. “Clearing” the blacklist as on (C.7.171)
means making every entry of the array equal to L. Finally, “adding” a node to
the blacklist as on (C.7.188) means switching the entry indexed by N to be the
index of the current transmission.

. TESTIMONY PARCELS. Modifications to this occur only on lines (C.6.162) and

(C.7.171). We show in Lemma D.3 below that for any node NeP \ S, DB will
hold at most n(n — 1) testimony parcels from N at any time, from which we
conclude that DB need hold at most n(n — 1)? testimony parcels.

. PARTICIPATING L1STS. We will view the participating list corresponding to

transmission T as an array [1..n] x {0, 1}0(103”), where the array is indexed
by the nodes, and an entry corresponding to node N € G is either the index
of the transmission T (if N participated in T) or L otherwise. Therefore, since
each participating list consists of n parcels, we can argue that participating lists
require at most n(n — 1) parcels if we can show that DB need hold at mostn — 1
participating lists at any time. To see this, notice that (C.7.187) is reached only
in the case the transmission failed (C.7.185), and we showed in Lemma 5.3 that
there can be at most n — 1 failed transmissions before a node is necessarily
eliminated and DB is cleared as on (C.7.171).

. REASON TRANSMISSIONS FAILED. Modifications to this occur only on lines

(C.7.171), (C.7.191), (C.7.194), and (C.7.197). Notice that of the latter three,
exactly one will be reached if and only if the transmission failed. Also, each
one of the three will add at most one parcel to DB. Since DB is cleared any time
Eliminate Node is called as on (C.7.171), we again use Lemma 5.3 to conclude
that Reason for Transmission Failures require at most n — 1 parcels of DB.

. SENDER’S OWN TESTIMONY. Parcels of this kind are added to DB on lines

(C.7.191), (C.7.194), and (C.7.197), and removed on (C.7.171). Notice that of
the former three lines, exactly one will be reached if and only if the transmission
failed. Also, each one of the three will add at most n parcels to DB. Since DB is
cleared any time Eliminate Node is called as on (C.7.171), we again use Lemma
5.3 to conclude that Reason for Transmission Failures require at most n(n — 1)
items of size O (logn) of DB.

. LIST OF ELIMINATED NODES EN. Modifications to this occur only on line

(C.7.170). Since EN is viewed as living in [1..n] x {0, 1}°0°8"), “adding” a
node N to EN means changing the entry indexed by N from L to the index of
the current transmission, and hence EN € [1..n] x {0, l}O(k’g").

. THE LABEL OF A NODE N WHOSE TESTIMONY IS KNOWN TO B. Modifica-

tions to this occur only on lines (C.6.160), (C.6.16@, and (C.7.171). We show
in Claim D.5 below that for any pair of nodes B, N € G \ S, DB will hold at
most one parcel of the form (B, N, T') at any time (see e.g. (C.6.160)), from
which we conclude that DB need hold at most (n — 1)? parcels of this type.

Adding together these changes, the sender’s DB needs to hold at most n® + n? 4 n
parcels, as required.

Authenticated Adversarial Routing 731

We have now shown each of the variables of Figs. C.1 and C.2 have domains as indi-
cated. U

Lemma D.3. For any node NeG \ S, the sender’s data buffer will hold at most
n(n — 1) testimony parcels from N at any time. More specifically, for any transmission
T, let {T1, ..., T}} denote the set of (earlier) transmissions such that at some point of T,
foreach 1 <i < j, the sender has at least one testimony parcel from N corresponding
to T;. Then j <n—1 and at this point in T, for every i < j, the sender has N’s complete
testimony for transmission T;.

Proof. We first note that the first sentence follows immediately from the latter two
since each testimony consists of at most n testimony parcels (C.6.142-145). Fix Ne
G\ § and let {Ty, ..., T;} be as in the lemma, ordered chronologically. We first show
that j <n — 1. For the sake of contradiction, suppose j > n. We first argue that for
all 1 <i < j, transmission T; necessarily failed. Fix 1 <i < j. Since DB contains a
testimony parcel from N for transmission T;, it must have been added on (C.6.162) of
some transmission T. Therefore, line (C.6.161) must have been satisfied, and in partic-
ular, (ﬁ , T;) must have been on BL during T. Therefore, (]’\7 , T;) must have been added
to BL as on (C.7.188) of transmission T;, which in turn implies transmission T; failed
(C.7.185). Therefore, transmission T; failed foreach 1 <i < j.

By Lemma 5.3, there can be at most n — 1 failed transmissions before a node is elim-
inated as on (C.7.169-177). Since j > n, considering failed transmissions {Tp, ..., T;},
there must have been a transmission T <T < T; j such that Eliminate N (C.7. 169) was
entered in transmission T. We first argue that T<T; ; as follows. If T=rT; j» then (N T;)
would not be added to BL as on (C.7.188) (once the protocol enters (C.7.169), it halts
until the end of the transmission (C.7.177), thus skipping (C.7.188)). But then (C.6.161)
of any transmission after T; cannot be satisfied for any testimony parcel corresponding
to T}, and hence none of N’s testimony parcels corresponding to T; could be added to
DB after transmission T ;. Similarly, none of N’s testimony parcels corresponding to T ;
can be added to DB before or during transmission T; by Claim D.4 below. This then
contradicts the fact that at some point in time, DB contains one of N’s testimony parcels
corresponding to T ;.

We now see that for _some transmission T < T < T j» Eliminate N is entered dur-
ing T. . Therefore, all of N’s testimony parcels for T are removed from DB on (C.7. 171)
and (N T}) is removed from BL on (C.7.171) of transmission T < T;. Since Ty < T,
(N T1) will never be put on BL as on (C.7. 188) for any transrnlsswn after T, and conse-
quently, (C.6.161) will never be satisfied after T for any of N’s testimony parcels from
T1. Therefore, none of N’s testimony parcels will be put into DB after they are removed
on (C 7.171) of T. Meanwhile, by the end of transmission T < T j» DB cannot have any
of N’s testimony parcels corresponding to T; by Claim D.4 below. We have now con-
tradicted the assumption that DB simultaneously holds some of N’s testimony parcels
from Ty and T;. Thus, j <n — 1, as desired.

We now show that for every i < j, the sender has N’s complete testimony for trans-
mission T; by the start of T (recall that T was the transmission for which there was
some point of T where the list {Tq, ..., T;} existed). First note that Claim D.4 imme-
diately implies that T; < T. If j = 1, there is nothing to prove. Let 1 < j <n — 1, and

732 Y. Amir, P. Bunn, and R. Ostrovsky

for the sake of contradiction suppose there is some i < j such that the sender has at
least one of N'’s testimony parcels for T;, but not the entire report. Let T; > T; denote
the transmission that the testimony parcel corresponding to T; was added to DB as on
(C.6.162) (T; > T; by Claim D.4 below). Since (C.6.162) is entered during transmis-
sion T;, it must be that (C.6.161) was satisfied, and in particular (ﬁ ,T;) was on BL
during T;. Furthermore, since (C.6.161) cannot be reached in any transmission T after
(C.7.188), we must have that (ﬁ, T;) was on BL from the outset of T;. Lemma D.6
below states that for each N € G, N is on BL at most once, i.e. there is at most one
entry of the form (N, T) on BL at any time. Since nodes are only added to BL at the
very end of each transmission (C.7.188), we may conclude that (]'\7 , Ti+1) was not on
BL at the start of T;. Since (]V , Ti+1) was necessarily added to BL as on (C.7.188) of
transmission T;4 1, it must be that Ne Pr,,, (C.7.187-188). In particular, N was not on
the blacklist by the end of T; 1 (C.7.187). Therefore, there must be some transmission
T e [T}, T;+1] such that (ZV, T;) is removed from BL as on (C.6.166) or (C.7.171). Both
of these lead to a contradiction: the first implies the sender has N’s complete testimony
for T; by transmission T;1 < T, contradicting the choice of T;. Meanwhile, (C.7.171)
reached during T implies that all testimonies corresponding to T; should have been re-
moved from DB, and since T > T; > T, (ﬁ , T;) can never be re-added to the blacklist
after this point, and hence no testimony parcels corresponding to T; will be added to DB
after T (as on (C.6.162)), contradicting the fact that DB contains (at least) one testimony
parcel corresponding to (ﬁ , T;) as of transmission T > T} > T, O

Claim D.4. For any N €G and for any transmission T, the sender’s data buffer DB
will never hold any of N'’s testimony parcels corresponding to T before or during trans-
mission T.

Proof. Let N G, and for the sake of contradiction, let T be a transmission such that
DB has one of N’s testimony parcels from T before or during T. Since testimonies are
only added to DB on (C.6.162), this implies that there is some transmission T/ < T such
that (C.6.161) is satisfied at some point of T/ before the Prepare Start of Transmission
Broadcast of transmission T’ is called ((C.6.161) cannot be reached during a transmis-
sion T in which Prepare Start of Transmission Broadcast has already been called). This
in turn implies that (ﬁ , T) was on BL before the Prepare Start of Transmission Broad-
cast of transmission T/ < T was called (since (C.6.161) was satisfied in T"). However,
this contradicts the fact that the only time (]V ,T) can be added to BL is during the
Prepare Start of Transmission Broadcast of transmission T (C.7.188). O

Claim D.5. For any pair of nodes B, N € G\ S, the sender’s data buffer will hold at
most one testimony parcels of the form (B, N, T') at any time.

Proof. Fix B, NeG \ S, and suppose for the sake of contradiction that there are two
transmissions T and T” such that both (B, N. T’) and (B, N.T") are in DB at the same
time (note that T # T” by the comment on C.6.156). Since parcels of this form are only
added to DB on (C.6.160), we suppose without loss of generality that T is a transmission
and t is a round in T such that (B, N, T") is already in DB when (B, N, T) is added
to DB as on (C.6.160) of round t. Since (C.6.160) is reached, (C.6.159) was satisfied,

Authenticated Adversarial Routing 733

S0 in particular (ﬁ , T’) was on the sender’s blacklist at the start of T (since between the
start of T and the satisfaction of (C.6.159), it is not possible that a node gets added to
the blacklist as on (C.7.188)). Let T denote the transmission that (B, N , T”) was (most
recently) added to DB as on (C.6.160) (by assumption that (B, N ,T”) was already in
DB as of T, we see that T < T), and hence (1'\7 , ") was on the sender’s blacklist at the
outset of T. By Lemma D.6 below, T < T, and also (IV , T”) must have been removed
from the blacklist at some point between the outset of T and the outset of T. Notice that
nodes are removed from the blacklist only on (C.6.166) and (C.7.171). However, in both
of these cases, (B, N , ") should have been removed from DB by the outset of T (see
(C.6.166) and (C.7.171)), contradicting the fact that it is still in DB when (B, N, T) is
added to DB in round t of transmission T. O

Lemma D.6. A node is on at most one blacklist at a time. In other words, whenever a
node (N, T) is added to the sender’s blacklist as on (C.7.188), we see that (N, T') ¢ BL
for any other (earlier) transmission T'. Additionally, if (N, T') € BL at any time, then:

1. Transmission T' failed

2. No node has been eliminated since T (up to the current time)

3. The sender has not received N’s complete testimony corresponding to T (as of
the current time)

Proof. The first statement of the lemma is immediate, since the only place a (node,
transmission) pair is added to BL is on (C.7.188), and by (C.7.187), necessarily any such
node is not already on the blacklist. Also, Statement (1) is immediate since (C.7.188) is
only reached if the transmission fails (C.7.185). To prove Statements (2) and (3), notice
that (N, T) is only added to the blacklist at the very end of transmission T/ (C.7.188).
In particular, if (N, T’) is ever removed from the blacklist during some transmission®
T > T’ as on (C.6.166) or (C.7.171), then (N, T') can never again appear on the blacklist
(because T > T', at any point during or after transmission T, (N, T”) can never again be
added to BL as on (C.7.188) since T’ has already passed). Therefore, if during transmis-
sion T a node is eliminated (as on (C.7.169-177)) or the sender receives N’s complete
testimony of transmission T’ (as on (C.6.164)), then N will be removed from the black-
list as on (C.6.166) or (C.7.171), at which point (N, T) can never be added to BL again.
This proves Statements (2) and (3). O

Lemma D.7. For any (N, T) on the sender’s blacklist, the sender needs at most n
parcels from N in order to have N’s complete testimony, and subsequently remove N
from the blacklist as on (C.6.164—165).

Proof. A node’s testimony is formed on lines (C.6.140-145). Investigating the
pseudo-code on those lines, there are at most 2(n — 1) 4 1 tuples (of form (SIG[2],
SIG[3], '), (SIG[1],T"), or (SIG[p], T')) that comprise the testimony (one value for
each of the » — 1 incoming and outgoing buffers, and one additional value if line

46 Since for all transmissions, lines (C.6.166) and (C.7.171) cannot be reached after line (C.7.188), we see
that if (N, T') is removed from the blacklist as on (C.6.166) or (C.7.171) of transmission T, then necessarily
T > T/, since (N, T') can only be added to BL at the very end of transmission T (C.7.188).

734 Y. Amir, P. Bunn, and R. Ostrovsky

(C.6.143) is reached). By the assumption that the bandwidth P = §2(k + logn) is big
enough to allow eight (value, signature) pairs (C.1.06), we can encapsulate the signa-
tures on the incoming and outgoing buffers on any edge into one parcel, so that any
testimony consists of at most n parcels. (|

Lemma D.8. If N € Pr, then the sender is not missing any testimony parcel for N
for any transmission prior to transmission T. In other words, there is no transmission
T’ < T such that N was blacklisted at the end of T (as on C.7.188) and the sender is
still missing testimony information from N at the end of T.

Proof. Nodes are added to the blacklist whenever they were participating in a trans-
mission that failed (C.7.187-88). Nodes are removed from the blacklist whenever the
sender receives all of the testimony information he requested of them (C.6.164-166), or
when he has just eliminated a node (C.7.171), in which case the sender no longer needs
testimonies from nodes for old failed transmissions*’ (and in particular, this case falls
outside the hypotheses of the theorem). Since Pr is defined as non-blacklisted nodes
(C.7.187), the fact that N € Pr implies that N was not on the sender’s blacklist at the
end of T. Also, notice the next line guarantees that a/l nodes not already on the sender’s
blacklist will be put on the blacklist if the transmission fails. Therefore, if N has not
been blacklisted since the last node was eliminated (C.7.169—177), then there have not
been any failed transmissions, and hence the sender is not missing any testimonies. Oth-
erwise, let T/ < T denote the last time N was put on the blacklist, as on (C.7.188). In
order for N to be put on Pr on line (C.7.187) of transmission T, it must have been
removed from the blacklist at some point between T’ and the end of T. In this case, the
remarks at the start of the proof of this observation indicate the sender is not missing
any testimony from N. O

Lemma D.9. After a corrupt node has been eliminated (or at the outset of the proto-
col) and before the next corrupt node is eliminated, there can be at most n — 1 failed
transmissions {T1, ..., Ty—1} before there is necessarily some index 1 <i <n — 1 such
that the sender has the complete testimony from every node on Pr,.

Proof. For the sake of contradiction, assume that transmission T,_; marks the
(n — 1)st transmission {Ty, ..., T,—1} such that for each of these n — 1 failed trans-
missions, the sender does not have the complete testimony from at least one of the
nodes that participated in the transmission. Define the set S to be the set of nodes that
were necessarily not on Pr, |, and initialize this set to be empty.

Since the sender is missing some node’s complete testimony that participated in T,
there is some node Ny € Pr, from which the sender is still missing a testimony parcel
corresponding to T by the end of transmission T,,_;. Notice by Lemma D.8 above that
N1 will not be on Py for any T <T' < T,_1, so put N; into the set S. Now looking at

47 The sender already received enough information to eliminate a node. Even though it is possible that
other nodes acted maliciously and caused one of the failed transmissions, it is also possible that the node just
eliminated caused all of the failed transmissions. Therefore, the protocol does not spend further resources
attempting to detect another corrupt node, but rather starts anew with a reduced network (the eliminated node
no longer legally participates), and will address future failed transmissions as they arise.

Authenticated Adversarial Routing 735

T, there must be some node N, € Pr, from which the sender is still missing a testimony
parcel from T, by the end of transmission T,_1. Notice that N, # N since Ny ¢ Pr,,
and also that N> ¢ Pr, | (both facts follow from Lemma D.8 above), so put N> into
S. Continue in this manner, until we have found the (n — 2)th distinct node that was
put into S due to information the sender was still missing by the end of T,,_;. But then
|S| = n — 2, which implies that all nodes, except for the sender and the receiver, are not
on Pr, , (the sender and receiver participate in every transmission by Lemma D.23).
But now we have a contradiction, since Lemma D.24 says that transmission T, _1 will
not fail. O

We set the following notation for the remainder of the section. T will denote a trans-
mission, G will denote the set of non-eliminated nodes at the start of T, Pr will denote
the participating list for T, and Hr will denote the uncorrupted nodes in the network.
If the transmission is clear or unimportant, we suppress the subscripts for convenience,
writing instead G, P, and H.

Lemma D.10. For any honest node A € G and any transmission T, A must receive
the complete Start of Transmission (SOT) broadcast before it transfers or re-shuffles
any packets. Additionally, the signature buffers SIGa 4 and SIG* of any honest node
A € G are always cleared upon receipt of the complete SOT broadcast (and hence
before any packets are transferred to/from/within A).

Proof. Fix an honest node A € G and a transmission T. If A has not received the full
Start of Transmission (SOT) broadcast for T yet, then A will not transfer any packets
(C.4.59), (C.3.31-33), (C.4.63) and (C.3.35-37). Also, since A re-shuffled packets at
the very end of the previous transmission (C.7.210), and as just mentioned A does not
send or receive any packets until it receives the full SOT broadcast, no packets will be
re-shuffled, as there will have been no change in the heights of the buffers since the
end of the previous transmission, and thus line (A.5.74) will not be satisfied.*8 This
proves the first part of the lemma. Also, since (C.4.63) will always be satisfied, (C.4.78)
can never be reached, and so RR will remain equal to —1 ((C.2.50) and (C.7.209)).
This in turn implies (C.4.46) cannot be satisfied before the full SOT broadcast has been
received. Putting these facts together, the signature buffers cannot change as on (C.4.48—
50), (C.4.74-75), (C.4.80), or (C.4.82) before A receives the complete SOT broadcast.
Therefore, before A has received the complete SOT broadcast, changes to the signature
buffers are confined to the ones appearing on lines (C.6.128), (C.6.133), (C.6.141), and
(C.6.146), all of which clear the signature buffers.

Suppose now that A has received the full SOT broadcast for T. Recall that part of
the SOT broadcast contains 21 = (|EN|, |BL|, F, *), where EN refers to the eliminated
nodes, BL is the sender’s current blacklist, F is the number of failed transmissions since
the last node was eliminated, and the last coordinate denotes the reason for failure of the
previous transmission (in the case it failed), see lines (C.7.174), (C.7.184), (C.7.192),
(C.7.195), (C.7.198), and (C.7.200). If |BL| = 0, then A will clear all its entries of SIG*

48 If A =R, then re-shuffling of packets also does not occur until R receives the full SOT broadcast. See
lines (A.5.97-102), which were necessarily reached at the end of the previous transmission.

736 Y. Amir, P. Bunn, and R. Ostrovsky

and SIG4 4 on (C.6.128). Otherwise, |BL| > 0, and N will clear all its entries of SIGA
and SIG 4 4 when it learns the last blacklisted node on (C.6.146). Therefore, in all cases
A’s signature buffers are cleared by the time it receives the full SOT broadcast, and in
particular before it transfers any packets in transmission T. O

In order to prove a variant of Lemma 4.10 in terms of the variables used in the Mal-
Slide protocol, we will need to first restate and prove variants of Lemmas 4.11, B.16,
and B.17. We begin with a variant of Lemma 4.11 (the first five statements correspond
directly with Lemma 4.11, the others do not, but will be needed later):

Lemma D.11. For any honest node A € G and at all times of any transmission:

1. For incoming edge E(S, A), all changes to SIGA [3]s,4 are strictly non-negative.
In particular, at all times:

0 < SIG*[3]s.4. (D.1)

2. For outgoing edge E(A, R), all changes to SIGA[S]A,R are non-negative.49 In
particular, at all times:

0 < SIG*[3]4.x. (D.2)

3. For outgoing edges E(A, B), where B # R, all changes to the quantity
(SIGA [3]a.B — SIGA [2]14.B) are strictly non-negative. This remains true even if B
is corrupt. In particular, at all times:

0< > (SIG*3la.p — SIG*[2]4.5). (D.3)
BeP\{A,S}

4. For incoming edges E(B, A), where B # S, all changes to the quantity
(SIGA [2].4 — SIGA [31B,4) are strictly non-negative. This remains true even if B
is corrupt. In particular, at all times:

0< Y (SIG*21.4—SIG*3]5.4). (D.4)
BeP\{A,S}

5. All changes to SIG 4 4 are strictly non-negative. In particular, at all times:
0<SIG4 . 4. (D.5)

6. The net decrease in potential at A (due to transferring packets out of A and re-
shuffling packets within A’s buffers) in any transmission is bounded by A’s po-
tential at the start of the transmission, plus A’s increase in potential caused by
packets transferred into A. In particular:

SIGaa + Y SIG*3lap<(4n’—6n)+ Y SIG'[3lza. (D)
BeP\A BeP\A

49 51IGA(3] along outgoing edges measures the decrease in potential as a positive quantity. Thus, a positive

value for SIGA[3] along an outgoing edge corresponds to a decrease in non-duplicated potential.

Authenticated Adversarial Routing 737

7. The number of packets transferred out of A in any transmission must be at least as
much as the number of packets transferred into A during the transmission minus
the capacity of A’s buffers. In particular:

4n* — 8n > Z (SIG*[11p,4 — SIG*[114.3). (D.7)
BeP\A

8. The number of times a packet p corresponding to the current codeword has been
transferred out of A during any transmission is bounded by the number of times
that packet has been transferred into A. In particular:>°

0>) (SIG®[pla.s — SIG*(pls.a). (D.8)
BeP

Proof. We prove each inequality separately, using an inductive type argument on a
node A’s signature buffers. First, note that all signature buffers are cleared at the out-
set of the protocol (C.2.46), (C.2.48), and (C.2.54). Also, anytime the signature buffers
are cleared as on (C.6.128), (C.6.133), (C.6.141), and (C.6.146), then all of the state-
ments (except possibly Statement 8, which depends on values from potentially corrupt
nodes B € G) will be true. So it remains to check the other places signature buffers can
change values ((C.4.48-50), (C.4.74-75), (C.4.80), (C.4.82), and (A.5.76)), and argue
inductively that all such changes will preserve the inequalities of Statements 1-7 (State-
ment 8 will be proven separately). Since all of these lines represent packet movement,
they can only be reached if A has received the complete SOT broadcast for the current
transmission (by Lemma D.10), and so we may (and do) assume this is the case in each
item below. In particular, Lemma D.10 states that because we are assuming A has re-
ceived the complete SOT broadcast for transmission T, all of A’s signature buffers will
be cleared before any changes are made to them.
We now prove Statements 1-8 of the lemma.

1. Aside from being cleared, in which case (D.1) is trivially true, the only changes
made to SIGA[3] s.4 occur on (C.4.75), where it is clear that all changes are non-
negative since Hgp is non-negative (Statement 9 of Lemma B.1 together with
Lemma D.1).

2. Aside from being cleared, in which case (D.2) is trivially true, the only changes
made to SIG* [3]4,r occur on (C.4.49), where it is clear that all changes are non-
negative since Hpp is non-negative (Statement 9 of Lemma B.1 together with
Lemma D.1).

3. Fix B € P\ {S, A}. Intuitively, this inequality means that considering directed
edge E(A, B), the decrease in A’s potential caused by packet transfers must be
greater than or equal to B’s increase, which is a consequence of Lemma 4.11.
We will track all changes to the relevant values in the pseudo-code and argue
that at all times and for any fixed B € G (honest or corrupt), if A is honest,

50 Notice that (D.8) is the only statement of the Lemma that involves quantities in the neighbors’ signature
buffers (in addition to A’s buffers). Since there is no assumption made about the honesty of the neighbor’s of
A, this may seem problematic. However, we show in the proof that regardless of the honesty of A’s neighbors
B € G, (D.8) will be satisfied if A in honest.

738

Y. Amir, P. Bunn, and R. Ostrovsky

then 0 < SIGA[3] A.B — SIGA [2]4,B. All changes to these values (aside from be-
ing cleared) occur only on (C.4.48-49) since here we are considering A’s values
along outgoing edge E(A, B). Notice that Hrp cannot change between (C.3.08)
of some round and (C.4.49) of the same round. Since lines (C.4.48-49) are only
reached if Verify Signature Two accepts the signature (otherwise RR is set to L
on (C.4.90) and hence (C.4.45) will fail), we see that SIGA [2]4,B changes by at
most the value that Hpp had on (C.4.89) (see comments on line (C.4.88-90)),
and this is the value sent/received on lines (C.3.07) and (C.3.11) and eventually
stored on (C.4.48). Meanwhile, when SIGA [3]4,B changes, for honest nodes it
will always be an increase of Hpp (C.4.49), and as noted above, this value of
Hpgp is the same as it had on (C.4.89). Therefore, for honest nodes, whenever
the relevant values change on (C.4.48-49), the change will respect the inequality
SIGA[31a.8 — SIG*[2]4.5 > Hpp — Hpp =0.

. Fix B € P\ {S, A}. Intuitively, this inequality means that considering directed

edge E(B, A), the decrease in B’s potential caused by packet transfers must be
greater than or equal to A’s increase, which is a consequence of Lemma 4.11.
We will track all changes to the relevant values in the pseudo-code and argue
that at all times and for any fixed B € G (honest or corrupt), if A is honest,
then 0 < SIGA [2]g.a — SIGA[3] B.A- All changes to these values (aside from be-
ing cleared) occur only on (C.4.74-75) since here we are considering A’s values
along incoming edge E(B, A). When SIG*[2] B.4 changes on (C.4.74), they take
on the values sent by B on (C.4.60) and received by A on (C.4.62). However, in
order to reach (C.4.74), the call to Verify Signature One on (C.4.69) must have
returned true. In particular, the comments on (C.4.84-86) require that A verify
that the change in SIGA[2] B.A that B sent to A is at least Hgp bigger than the
previous value A had from B. Meanwhile, when SIGA [3]15.4 changes (C.4.75),
for honest nodes it will always be an increase of Hgp. Therefore, since for honest
nodes Hgp cannot change between (C.4.84) of some round and (C.4.75) later in
the same round, whenever the relevant values change on (C.4.74-75), the change
will respect the inequality SIGA[2]3.4 — SIG*[3]p.4 > Hgp — Hgp = 0.

. Intuitively, this inequality says that all changes in potential due to packet re-

shuffling should be strictly non-positive (S/G4 4 measures potential drop as a
positive quantity), which is a consequence of Lemma 4.11. All changes made
to SIGa,a (aside from being cleared) occur on (A.5.76), where the change is
M + m — 1. The fact that this quantity is strictly non-negative for honest nodes
follows from Claim B.13.

. Since the inequality concerns SIG4, 4 and SIG[3] (along both incoming and outgo-

ing edges), we will focus on changes to these values when a packet is transferred
(or re-shuffled). More specifically, we will look at a specific packet p and consider
p’s affect on A’s potential during each of p’s stays in A, where a “stay” refers to
the time A receives (an instance of) p as on (C.4.77) to the time it sends and gets
confirmation of receipt (as in Definition B.8) for (that instance of) pS! We fix p
and distinguish between the four possible ways p can “stay” in A, and describe
the affect that each stay will have on (D.6):

SEA given packet p may have multiple stays in A during a single transmission, one for each time A sees p.

Authenticated Adversarial Routing 739

(a)

(b)

(©)

The stay is initiated by A receiving p during T and then sending p at some later
round of T, and getting confirmation of p’s receipt as in Definition B.8. More
specifically, the stay includes an increase to some incoming signature buffer
SIGA[3] as on (C.4.75), possibly some movement due to packet re-shuffling
within A’s buffers, and then an increase to some outgoing signature buffer
SIGA [3] as on (C.4.49). Let B denote the edge along which A received p in
this stay, and B’ denote the edge along which A sent p. Then SIGA[3] B.A
will increase by Hgp on (C.4.75) when p is accepted. Let M denote the
value of Hgp when p is received. The packet p is eventually re-shuffled to
the outgoing buffer along E(A, B’). Let m denote the value of Hgp when
(C.4.49) is reached, so that the change to SIGA [3]4,p’ due to sending p is m.
By Statement 3 of Claim B.9 (which remains valid since A is honest and by
Lemma D.1), any packet that is eventually deleted as on (C.4.50-51) will be
the flagged packet, and so the packet that is deleted did actually have height m
in A’s outgoing buffer. In particular, the packet began its stay in an incoming
buffer at height M, and was eventually deleted when it had height m in some
outgoing buffer. In particular, since SIG4 4 accurately tracks changes in po-
tential due to re-shuffling (Statement 1 of Lemma D.18), we see that during
this stay of p, SIG4 4 changed by M — m. Therefore, considering only p’s
affect on the following terms, we have>?

Ap(SIGa A+ SIGA (314 p — SIG*[315,4) = (M —m) +m — M =0. (D.9)

The stay begins at the outset of the protocol, i.e. p started the transmission in
one of A’s buffers, and the stay ends when p is deleted (after having been sent
across an edge) in some round of T. More specifically, there is no incoming
signature buffer SIGA[3] that changes value as on (C.4.75) due to this stay of
p, but there is an increase to some outgoing signature buffer SIGA[3] as on
(C.4.49). Using the notation from (a) above with the exception that M denotes
the initial height of p in one of A’s buffers at the start of T, then considering
only p’s affect on the following terms, we have

Ap(SIGa, 4 +SIG*31a p) = (M —m)+m=M. (D.10)

The stay is initiated by A receiving p during T, but p then remains in A through
the end of the transmission (either as a normal or a flagged packet). More
specifically, the stay includes an increase to some incoming signature buffer
SIGA[3] as on (C.4.75), but there is no outgoing signature buffer SIGA[3] that
changes value as on (C.4.49) due to this stay of p. Using the notation from
(a) above with the exception that m denotes the final height of p in one of A’s
buffers at the end of T,>® then considering only p’s affect on the following
terms, we have

Ap(SIGa. 4 —SIG*[315,4) = (M —m) — M = —m <0. (D.11)

52 The notation A p is meant to denote the fact that we are considering the affect of p’s stay on each of the
variables listed in the equation.

3t p was a flagged packet that was deleted as on (C.7.206), then let m denote the height p had just
before it was deleted, i.e. the value of Hpp when (C.7.206) is reached.

740

Y. Amir, P. Bunn, and R. Ostrovsky

(d) The stay begins at the outset of the protocol, i.e. p started the transmission
in one of A’s buffers, and p remains in A’s buffers through the end of the
transmission (either as a normal or a flagged packet). More specifically, in this
case there is no incoming signature SIG*[3] that changes value as on (C.4.75)
due to this stay of p, and there is no outgoing signature buffer SIG4[3] that
changes value as on (C.4.49) due to this stay of p. Letting M denote the initial
height of p in one of A’s buffers at the start of T and m the final height of p
in one of A’s buffers at the end of T (see footnote 53), then considering only
p’s affect on the following terms, we have

Ap(SIGs A)=M—m <M. (D.12)

We note that the above four cases cover all possibilities by Claim B.15 (which
remains valid since A is honest, and Lemma D.1). We will now bound SIG4 4 +
> pep\aSIG*[31a.3 — SIG*[3]5.4 by adding all contributions to SIG4 4 and

SIGA[3] A.p and SIGA [31p,4 from all stays of all packets and for all adjacent
nodes B, B’ € P.>* Notice that ignoring contributions as in Case (c) will only
help our desired equality, and contributions as in Case (a) are zero, so we consider
only packet stays as in (D.10) and (D.12). Since these contributions to potential
correspond to the initial height the packet had in one of A’s buffers at the outset of
T, the sum over all such contributions cannot exceed A’s potential at the outset of
T, which for an honest node A is bounded by 2(n —2)2n(2n +1)/2 < 4n> — 6n>.
Intuitively, this inequality means that because a node can hold at most 2(n —2)(2n)
packets at any time, the difference between the number of packets received and the
number of packets sent by an honest node will be bounded by 412 — 8n. During
a transmission T, the only places the quantities SIG[1] change (aside from being
cleared) are on (C.4.74) and (C.4.48). As with the proof of Statement 6 above, we
consider the contribution of each packet p’s stay in A:>
(a) The stay is initiated by A receiving p during T and then sending p at some
later round of T, and getting confirmation of p’s receipt as in Definition B.8.
More specifically, the stay includes an increase to some incoming signature
buffer SIGA[1] as on (C.4.74) and then an increase to some outgoing signature
buffer SIGA[1] as on (C.4.48). Let B denote the edge along which A received
p in this stay, and B’ denote the edge along which A sent p. Since A will be
verifying that B (respectively B’) signed the correct values (see comments on
(C.4.84-86) and (C.4.88-90)), we see that SIGA[I]B,A will increase by 1 on
(C.4.74) due to receiving p for the first time, and SIGA[1] A.p’ Will increase
by 1 when it receives confirmation of receipt for sending p as on (C.4.48).
Therefore, considering only p’s affect on the following terms, we have

Ap(SIGA 11,4 — SIG*[1]4,p) =1~ 1=0. (D.13)

54 Since A is honest, it will never send/receive packets from any node not in P by Lemma D.20.

55 Note that necessarily p is a packet corresponding to the current codeword, since packets corresponding
to old codewords do not increment SIG[1], see comments on (C.4.59-60) and (C.3.11). Therefore, there are
only two cases to consider.

Authenticated Adversarial Routing 741

(b) The stay is initiated by A receiving p during T, but p then remains in A through
the end of the transmission (either as a normal or a flagged packet). More
specifically, the stay includes an increase to some incoming signature buffer
SIGA [1] as on (C.4.74), but there is no outgoing signature buffer SIGA [1] that
changes value as on (C.4.48) due to this stay of p. Using the notation from (a)
above, then considering only p’s affect on the following terms, we have

Ap(SIG*[11p,4) = 1. (D.14)

We note that the above two cases cover all possibilities by Claim B.15 (which
remains valid since A is honest, see Lemma D.1). We now add all contributions to
SIGA [1]4,p5 and SIGA [1]p,4 from all stays of all packets from all neighbors in P.
Notice that the only non-zero contributions come from packets stays as in (D.14),
and these contributions will correspond to packets that are still in A’s buffers at
the end of the transmission. Since an honest node A can end the transmission with
at most 2(n — 2)(2n) packets, summing over all such contributions results cannot
exceed 4n? — 8n, as required.

8. Intuitively, this is saying that an honest node cannot output a packet more times
than it inputs the packet (see Claim B.15). Note that this is the only place in the
lemma that depends on testimonies not originating from A (SIG®[p] is a testi-
mony parcel from B). A priori, there is the danger that a corrupt B can return a
faulty testimony, thereby falsely implicating A. However, because SIGB[p]4 p in-
cludes a valid signature from A (C.4.74), the inforgibility of the signature scheme
guarantees that the only way a corrupt node B can falsely implicate A in this
manner is by reporting out-dated signatures. But if A is honest, then SIGB[p]a p
is strictly increasing in value as the transmission progresses (the only place it
changes is (C.4.74), which comes from the value received on (C.4.62), corre-
sponding to the value sent on (C.4.60)), and hence a corrupt B cannot “frame”
A by reporting outdated signatures for SIGB[pla.B; indeed such a course of ac-
tion only helps the inequality stated in the lemma. Also notice that (other than
out-dated signatures) the only place B gets valid signatures from A is on (C.4.62),
and this value is one higher than the value that A itself is recording (C.4.60) until
A updates SIGA [pla.p on (C.4.48). We argue in case (b) below, that whenever
B has received an updated SIGB [pla, B as on (C.4.74) but A has not yet updated
SIGA[p] A, as on (C.4.48) (and so these two values differ by one), then Case (b)
will contribute —1 to the sum in (D.8), and therefore the difference of +1 be-
tween SIGZ [pla,p and SIGA [pla,p will exactly cancel. These two facts allow us
to argue (D.8) by using SIGA[p]A’B instead of SIG® [pla.s.

During a transmission T, the only places the quantities SIG[p] change (aside
from being cleared) are on (C.4.74) and (C.4.48). As with the proof of Statements
6 and 7 above, we consider the contribution of each packet p’s stay in A:°
(a) The stay is initiated by A receiving p during T and then sending p at some

later round of T, and getting confirmation of p’s receipt as in Definition B.8.

56 Note that necessarily p is a packet corresponding to the current codeword, since packets corresponding
to old codewords do not increment SIG[p], see comments on (C.4.59-60) and (C.3.11). Therefore, there are
only two cases to consider.

742 Y. Amir, P. Bunn, and R. Ostrovsky

More specifically, the stay includes an increase to some incoming signature
buffer SIGA[p] as on (C.4.74) and then an increase to some outgoing signature
buffer SIGA[p] as on (C.4.48). Let B denote the edge along which A received
p in this stay, and B’ denote the edge along which A sent p. Since A will be
verifying that B (respectively B’) signed the correct values (see comments on
(C.4.84-86) and (C.4.88-90)), we see that SIGA [p1B.a will increase by 1 on
(C.4.74) due to receiving p for the first time, and SIGA[p] 4,p Will increase
by 1 when it receives confirmation of receipt for sending p as on (C.4.48).
Therefore, considering only p’s affect on the following terms, we have

Ap(SIGA[pla.p — SIG*[plg,a) =1—1=0. (D.15)

(b) The stay is initiated by A receiving p during T, but p then remains in A through
the end of the transmission (either as a normal or a flagged packet). More
specifically, the stay includes an increase to some incoming signature buffer
SIGA[p] as on (C.4.74), but there is no outgoing signature buffer SIGA[p] that
changes value as on (C.4.48) due to this stay of p. Using the notation from (a)
above, then considering only p’s affect on the following terms, we have

Ap(=SIGH[1]p,4) = 1. (D.16)

We note that the above two cases cover all possibilities by Claim B.15 (which
remains valid since A is honest, see Lemma D.1). We now add all contributions
to SIGA[pla,p and SIGA[plB. 4 from all stays of p from all neighbors in P (note
that it is enough to consider only neighbors in P by Lemma D.20). Notice that
(D.15) does not contribute anything, so we have

> " (SIG*(pla.s — SIG*[pls.4) = —x., (D.17)
BeP

where x is the number of times Case (b) occurs. Notice that (D.8) concerns
SIGB[p] A,B (as opposed to SIGA[pla.p). However, since B cannot report val-
ues of SIGP [pla, g from previous transmissions,”’ the only inaccurate value that
B can report in its testimony parcel concerning SIG[p] A,B 18 by using an older
value from T. As discussed above, cheating in this manner only serves to help
(D.8). On the other hand, if B does report the valid value for SIGB [pla.p (e
not outdated), then Lemma D.19 guarantees that SIGB [pla.B — SIGA[p]A)B <lI,
with equality if SIGB [pla, B has been updated as on (C.4.74) and SIGA [pla, B has
not yet been updated after this point as on (C.4.48). Notice that every time this
happens, we fall under Case (b) above, and in particular it can happen at most x

57 We are only interested in packets p corresponding to the current codeword, and all signatures that A

provides for SIGB| Pla, g include the transmission index, so A’s honesty plus the inforgibility of the signature
scheme imply that all of B’s signatures from A from old transmissions will not be valid.

Authenticated Adversarial Routing 743

times (see definition of x above). Therefore:

> (SIGPpla.p — SIGA[pl.a) <x+ Y _ (SIG*[pla.s — SIG*[pl3.)
BeP BeP

=x—x=0,
which is (D.8).

All statements of the theorem have now been proven. U
We now prove a variant of Lemma B.16.

Lemma D.12. Suppose that A, B € G are both honest nodes, and that in round
t, B accepts (as in Definition 4.4) a packet from A. Let O p denote A’s outgoing
buffer along E(A, B), and let H denote the height the packet had in O 4 g when Send
Packet was called in round t (C.3.20). Also let Ip 4 denote B’s incoming buffer along
E(A, B), and let I denote the height of Ip s at the start of t. Let Agp denote the
change in potential caused by this packet transfer, from B’s perspective. More specifi-
cally, define

o :=SIGB([214 5 — SIGB[3)4 5 (D.18)

and then A@p measures the difference between the value of pp at the end of t and the
start of t. Then:

App>=H—1—1 OR Apg>H (fB=R). (D.19)

Furthermore, after the packet transfer but before re-shuffling, Ip o will have height
I+1.

Proof. By definition, B accepts the packet in round t means that (C.4.77) was reached
in round t, and hence so was (C.4.74-75). In particular, SIGB[3] A, Will increase by
Hgp on (C.4.75) (if B = R, then SIG[3] A, will not change on this line—see comment
there). By Statements 1 and 2 of Lemma B.1 (which remain valid since B is honest by
Lemma D.1), Hgp < I + 1, and hence SIGE [3]4,p will increase by at most I 4- 1. Also,
since B had height I at the start of the round, and B accepts a packet on (C.4.77) of
round t, B will have I + 1 packets in I when the re-shuffling phase of round t begins,
which is the second statement of the lemma.

Meanwhile, SIG? [2]4,p will change on (C.4.74) to whatever value B received on
(C.4.62) (as sent by A on (C.4.60) earlier in the round). Since A is honest, this value is
Hpp larger than A’s current value in SIGA [3]4a,B (C.4.60). By Lemma D.19, the value
of SIGA[3] A, at the start of t equals the value of SIGB[2] A, B at the start of t (before
B has accepted the packet). Therefore, the change in SIGB[2] A, from the start of the
round to the end of the round will be the value of Hrp = H when A reached (C.4.60)
in round t (by definition of H and Statement 3 of Claim B.9). Since these are the only
places SIGB[3]A,B and SIGB[Z]A,B change, we see that Ayp = H — Hgp>H —1—1,
as desired (if B = R, then App = H). O

The following is a variant of Lemma B.17.

744 Y. Amir, P. Bunn, and R. Ostrovsky

Lemma D.13. Let C = NN, ... N be a path consisting of | honest nodes, such that
R =N, and S ¢ C. Suppose that in some non-wasted round t, all edges E(N;, Ni11),
1 <i < are active for the entire round. Let A¢ denote the following changes during
round t:

1. For 1 <i <, changes to gy, (see notation of Lemma D.12),
2. For 1 <i <1, changes to SIGy; n; as on (A.5.76), when B is an outgoing buffer

Then if On, n, denotes N1’s outgoing buffer along E(N1, N2) and O denotes its height
at the outset of t, we have:

— If On,,n, has a flagged packet that has already been accepted by N, before
round t, then:

Ap>0—1+1. (D.20)
— Otherwise,

Ap>0—1+2. (D.21)

Proof. Since A and B are honest, we use Lemma D.1 (since the present lemma ex-
cludes wasted rounds) and then follow exactly the proof of the analogous claim for the
edge-scheduling model (Lemma B.17). In particular, the exact proof can be followed,
using the fact that signature buffers record accurate changes in non-duplicated potential
(Statement 1 of Lemma D.18), and using Lemma D.11 in place of Lemma 4.11, and
Lemma D.12 in place of Lemma B.16. (]

Lemma D.14. [f at any point in any transmission T, the number of blocked rounds is
Br, then the participating honest nodes of G will have recorded a drop in non-duplicated
potential of at least n(Br — 4n>). More specifically, the following inequality is true:

n(r—4n’) < > SIGaa+) > (SIG*[215,4 — SIG*[3]5,4).
AeH\S AeH\S BEP\{A,S}
(D.22)

Proof. For every blocked, non-wasted round t, by the conforming assumption there
exists a chain Cr connecting the sender and receiver that satisfies the hypothesis of
Lemma D.13. Letting N; denote the first node on this chain (not including the sender),
the fact that the round was blocked (and not wasted) means that N;’s incoming buffer
was full (see Lemma D.1), and then by Lemma B.3, so was N;p’s outgoing buffer
along E (N7, N3). Since the length of the chain [is necessarily less than or equal to
n, Lemma D.13 says that the change of A¢ (see notation there) in round t satisfies

Ap>On N, —I+1>22n—n+1>n. (D.23)

Since A¢ only records some of the changes to the signature buffers, we use Lemma D.11
to argue that the contributions not counted will only help the bound since they are
strictly non-negative. Since we are not double counting anywhere, each non-wasted,
blocked round will correspond to an increase in A¢ of at least n, which then yields the
lemma since the number of wasted rounds is bounded by 4n3 (Lemma D.31). O

Authenticated Adversarial Routing 745

Lemma D.15. [f there exists A, B € G such that one of the following inequalities is
not true, then either A or B is necessarily corrupt, and furthermore the sender can
identify conclusively®® which is corrupt:>®

1. SIG®[214.5 < SIG*[3]4.5 + 2n,
2. SIG*[31s.4 — SIG5[2]s5.4 < 2n, (D.24)
3. [SIG*[11p,a —SIG®[11p,a| <1 and |[SIG*[11a,5 — SIGE[114,5| < 1.

Proof. As in the first paragraph of the proof of Lemma D.11, we may assume that
both A and B have received the full Start of Transmission broadcast for T, so SIGA
and SIG® should both be cleared (if A and B are both honest) of its values from the
previous transmission before being updated with values corresponding to the current
transmission T. We prove each statement separately:

1. That either A or B is necessarily corrupt follows from Lemma D.19. It remains
to show that the sender can identify a node that is necessarily corrupt. We begin
by assuming that SIGB[2] A, and SIGA [3]14,8 have appropriate signatures corre-
sponding to T (otherwise, they either would not have been accepted as a valid tes-
timony parcel on (C.6.161), or a node will be eliminated as on C.6.163). We now
show that if the inequality in Statement 1 is not true for some A, B € G, then A is
necessarily corrupt. Notice that if A is honest, then SIGA[3] A,B 1s monotone in-
creasing (other than being cleared upon receipt of the SOT broadcast, SIG*[3]4.p
is only updated on C.4.49). Similarly, other than being cleared upon receipt of the
SOT broadcast, SIGB[2] A, 1s only updated on (C.4.74), and tracing this back-
wards, this comes from the value received on (C.4.62) which in turn was sent on
(C.4.60). Therefore, since B cannot forge A’s signature (except with negligible
probability or in the case A and B are both corrupt and colluding), SIG®[2]4 p
can only take on values A sent B as on (C.4.60). Meanwhile, as mentioned, if A is
honest, SIGA[3] A,B 1s monotone increasing, and thus an honest A will never send
a value for SIGA [3]4,8 on (C.4.60) of some round that is smaller than a value it
sent for SIGA [3]4, 5 on (C.4.60) of some earlier round. Therefore, since the value
A is supposed to send B on (C.4.60) is SIGA[3]4.p + Hrp < SIG*[3]4.p +2n (the
inequality follows from Statement 9 of Lemma B.1 and Lemma D.1), unless A is
corrupt or B has broken the signature scheme, B will never have a signed value
from A such that SIGZ[2] AB>2n+ SIGA[3] A, B. Therefore, if the inequality in
the first statement is not satisfied, A is necessarily corrupt (except with negligible
probability).

2. That A is necessarily corrupt follows from Lemma D.19 and the fact that the
sender cannot be corrupted by the conforming restriction placed on the adversary.

3. Note that the two statements are redundant, since the second is identical to the first
after swapping the terms on the LHS and re-labeling. We therefore only consider

58 As long as the adversary does not break the signature scheme, which will happen with all but negligible
probability, the sender will never falsely identify an honest node.

59 The values of the quantities SIGE and SIG# all correspond to a common transmission T and refer to
values the sender has received in the form of testimonies for T as on (C.6.161).

746

Y. Amir, P. Bunn, and R. Ostrovsky

the second inequality of Statement 3. That either A or B is necessarily corrupt fol-
lows from Lemma D.19. It remains to show that the sender can identify a node that
is necessarily corrupt. As in the proof of Statement 1 above, we begin by assum-
ing that SIGB[1]4,p and SIGA[1] A, have appropriate signatures corresponding
to T (otherwise, they either would not have been accepted as a valid testimony
parcel on (C.6.161), or a node will be eliminated as on C.6.163). We now show
that if |SIGA[1]A,B — SIGB[I]A,B| > 1 for some A, B € G, then either A or B is
necessarily corrupt, and the sender can identify which one is corrupt.

Notice that the quantities SIGB[1] A, and SIGA[1] A,p include the round in
which the quantity last changed ((C.3.11) and (C.4.60)). Let t p denote the round
SIGB[1] A, indicates it was last updated (which has been signed by A), and t4
denote the round SIGA[1] A, indicates it was last updated (which has been signed
by B). Note that these quantities refer to the values returned to the sender in the
form of testimony parcels, and node A (respectively B) has signed the entire par-
cel SIGA[1] A, (respectively SIGB[1] A,B), indicating this is indeed the parcel he
wishes to commit to as his testimony. We assume |SIGA [1]a.B— SIGB [1]a.Bl > 1,
and break the proof into the following two cases:

Case 1: t4 > tp. We will show that B is corrupt. Notice that the fact that A
has a valid signature on SIGA[I] A, from B for round t4 means that (with
all but negligible probability that A could forge B’s signature, or if A and B
are both corrupt, allowing A to forge B’s signature) B sent communication
as on (C.3.11) of t4 with the fifth coordinate equal to the value A used for
SIGA [1]4, . In particular, this fifth coordinate represents the value B has stored
for SIGB[I]A,B during t 4. Since tp < t4, B did not update SIGB[I]A,B from
tp through the end of T, and hence the value for SIGB[1] A, that B returns
to the sender in its testimony should be the same as the value B sent to A on
(C.3.11) of round t 4, which as noted above equals the value of SIGA[1] A, that
A returned in its testimony. However, since this is not the case (SIGB [1]a.B #
SIGA [1]a,B), B has returned an outdated signature and must be corrupt.

Case 2: t4 <tp. If t4 =tp =0, i.e. both nodes agree that they did not update
their signature buffers along E (A, B) in the entire transmission (except to clear
them when they received the SOT broadcast), then necessarily both SIGA[1] A.B
and SIGB[I] A, B should be set to L, so if one of them is not L, the node signing
the non-_L value can be eliminated. So assume that one of the nodes has a valid
signature from the other for some round in T (since we are in Case 2, we may
assume that tp > 0). We will show that A is corrupt in a manner similar to
showing B was corrupt above. Indeed, since B has a valid signature from A on
SIGB[1] A, from round tp, unless A and B are colluding or B has managed
to forge A’s signature, this value for SIGE[1] A, comes from the communica-
tion sent by A on (C.4.60). In particular, since t4 < tp and A claims he was
not able to update SIGA[I] A, after round t 4, the value A signed and sent on
(C.4.60) should be exactly one 1 more than the value stored in SIGA[1] A,B as
of line (C.3.07) of round t 4, the latter of which was returned by A in its tes-
timony (by definition of t 4 and the inforgibility of the signature scheme). But
since |SIGA[1]A,B — SIGB[I]A,B| > 1, this must not be the case, and hence A
is corrupt. |

Authenticated Adversarial Routing 747
Corollary D.16. If there exists a node A € G such that

4n —dn® <SIGaa + Y SIGP[214.5 — SIG*(3]3.4. (D.25)
BeP\A

then either a node can be eliminated as in Statement 1 of Lemma D.15 or as in State-
ment 6 of Lemma D.11.

Proof. Suppose no node can be eliminated because of Statement 1 of Lemma D.15,
so that for all B € G:

SIGB[214.3 < SIG[3]4.5 + 2n. (D.26)
Then if (D.25) is true, we have

4’ —4n® <SIGaa + Y SIGP[2)4.5 — SIG*[31p.4
BeP\A

<SIGaa +20° + Y SIGA[3]a.5 — SIG* (3], (D.27)
BeP\A

where the second inequality follows from applying (D.26) to each term of the sum.
Therefore, A can be eliminated by Statement 6 of Lemma D.11. O

Corollary D.17. In the case a transmission fails as in F2, the increase in network
potential due to packet insertions is at most 2nD + 2n®. In other words, either there
exists a node A € G such that the sender can eliminate A, or the following inequality is

IFM6160

> SIG*315.4 <2nD + 2n°. (D.28)
AeP\S

Proof. If the inequality in Statement 2 of Lemma D.15 fails for any node A € P\ S,
the sender can immediately eliminate A. So assume that the inequality in Statement 2
of Lemma D.15 holds for every A € P\ S. The corollary will be a consequence of the
following observation:

Observation. [f a transmission T fails as in F2, then:

> SIG®[2]5.4 < 2nD. (D.29)
AeP\S

Proof. Let «r denote the value that x had at the end of T. Then a transmission falling
under F2 means that «¢ is less than D (C.7.193-194). The structure of this proof will
be prove the following facts:

60 The values of the quantities SIG” correspond to some transmission T and refer to values the sender has
received in the form of testimonies for T as on (C.6.161).

748 Y. Amir, P. Bunn, and R. Ostrovsky

Fact 3. For any A € P\ S, anytime SIGS[Z]S,A is updated as on (C.4.48), it will
always be the case that 2n * SIG3[1] S.A > SIG3[2] s.A. In particular, the final value
for SIGS[Z] s.A at the end of T is less than or equal to 2n times the final value for
SIGS[1]s.4.

Fact4. Attheendof T:), p\s SIGS[1]5.4 = K.

Before proving these facts, notice that they imply:

Z SIGS[2]s.4 < Z 2n % SIGS[1]5. 4 = 2nkp < 2nD (D.30)
AeP\S AeP\S

as required.

Fact 3 is immediate, since for any A € P \ S, whenever SIGS [2]s.4 is updated as
on (C.4.48), the statement on (C.4.45) must have been satisfied, and so the statement
on (C.4.89) must have been false. In particular, the change in SIGS[1] s.A was exactly
one, and the change in SIGS[Z] 5.4 was at most Hrp < 2n, where the inequality comes
from Statement 9 of Lemma B.1 and Lemma D.1 (see comments on lines (C.4.88—
90)). Fact 4 is also immediate, as ¥ and SIGS [1]s, 4 all start the transmission with value
zero (or L) by lines (C.2.54), (C.2.70), (C.7.199), and (C.7.214), and then « is incre-
mented by one on line (C.4.47) of the outgoing buffer along some edge E (S, N) if and
only if SIGS[I] s.N is incremented by one as on (C.4.48) (as already argued, changes to
SIGS[I] s.4 as on (C.4.48) are always increments of one, see e.g. the comments on lines
(C.4.88-90)). O

The corollary now follows immediately from the following string of inequalities:

2nD > Z SIGS[2]5.4
AeP\S

> -2+) SIG*Blsa
AeP\S

where the top inequality is the statement of the Observation and the second inequality
comes from applying the inequality in Statement 2 of Lemma D.15 to each term of the
sum.]

Lemma D.18. For any honest node N € G and for any transmission T:

1. Upon receipt of the complete Start of Transmission (SOT) broadcast for transmis-
sion T, SIGy y will be cleared. After this point through the end of transmission T,
SIGN N stores the correct value corresponding to the current transmission T (as
listed on (C.1.12)).

2. Suppose that N transfers at least one packet during T (i.e. N sends or receives at
least one packet, as on (C.4.60) or (C.4.74-78)). Then through all transmissions
after T until the transmission and round (T',t' € T') that N next receives the
complete SOT transmission for T, one of the following must happen:

(a) All of N’s signature buffers contain information (i.e. neighbors’ signatures)
pertaining to T, OR

Authenticated Adversarial Routing 749

(b) All of N’s signature buffers are clear and N'’s broadcast buffer (or the Data
Buffer in the case N = S) contains all of the information that was in the sig-
nature buffers at the end of T, OR

(¢) (N, T, T) is not on the blacklist for transmission T’

3. If N has received the full SOT broadcast for T, then all parcels in N’s broadcast
buffer (see footnote 60) BB corresponding to some node N’s testimony are current
and correct. More precisely:

(a If (]V ,T) is on the sender’s blacklist, and at any time N has stored a parcel of
N’s corresponding testimony in its broadcast buffer BB, then this parcel will
not be deleted until (]v ,T) is removed from the sender’s blacklist.

) If (ﬁ T, T') is a part of the SOT broadcast of transmission T, then upon
receipt of this parcel, all of N’s testimony parcels in N’s broadcast buffer
correspond to transmission T and are of the form as indicated on (C.6.141—
144), where the reason for failure of transmission T' was determined as on
(C.7.190), (C.7.193), or (C.7.196).

4. If at any time N is storing a parcel of the form (B, N, T) in its broadcast buffer
(indicating B knows N s complete testimony for transmission T), then this will
not be deleted until (N ,T) has been removed from the blacklist.

Proof. Fix an honest N € G and a transmission T. We prove each statement sepa-
rately:

1. The first part of statement 1 is Lemma D.10. To prove the second part, we track
all changes to SIGy n and show that each change accurately records the value
SIGy y is supposed to hold. The only changes made to SIGy y after receiving
the full SOT broadcast occur on lines (A.5.76), (C.4.50), (C.4.80), and (C.4.82).
Meanwhile, SIGy n is supposed to track all packet movement that occurs within
N’s own buffers (i.e. all packet movement except packet transfers). The only
places packets move within buffers of N are on lines (A.5.89-90), (C.4.50),
(C.4.80), and (C.4.82). By the comments on lines (C.4.50), (C.4.53), (C.4.80),
and (C.4.82), it is clear that SIG y appropriately tracks changes in potential due
to the call to Fill Gap, while packet movement as on (C.4.53) does not need to
change SIGy n as packets are swapped, and so there is no net change in potential.
In terms of re-shuffling (A.5.89-90), we see that every packet that is re-shuffled
causes a change in SIGy y of M —m — 1 (A.5.76). Notice the actual change in
potential matches this amount, since a packet is removed from a buffer at height
M (A.5.90), reducing the height of that buffer from M to M — 1 (a drop in poten-
tial of M), and put into a buffer at height m + 1, increasing the height of the buffer
from m to m + 1 (an increase of m + 1 to potential).

2. If N = S, there is nothing to show, since the sender’s signature buffers’ informa-
tion is stored as needed on (C.7.191), (C.7.194), and (C.7.197), and they are then
cleared at the end of every transmission on (C.7.171) or (C.7.199). For any N # S,
we show that from the time N receives the full SOT broadcast in a transmission
T through the next transmission T” in which N next hears the full SOT broad-
cast, either all of N’s signature buffers contain information from the last time they
were updated in some round of T, or they are empty and either this information

750

Y. Amir, P. Bunn, and R. Ostrovsky

has already been transferred to N’s broadcast buffer or N is not on the blacklist
for transmission T’ (this will prove Statement 2). During transmission T, there
is nothing to show, as all changes made to any signature buffer over-write ear-
lier changes, so throughout T, the signature buffers will always contain the most
current information. It remains to show that between the end of T and the time
N receives the full SOT broadcast of transmission T/, the only change that N’s
signature buffers can make is to be cleared, and this can happen only if either the
information contained in them is first transferred to N’s broadcast buffer, or if
(N, T, T) does not appear in the SOT broadcast of transmission T/ (and hence the
signature information will not be needed anyway). To do this, we list all places in
the pseudo-code that call for a change to one of the signature buffers or remov-
ing data from the broadcast buffer, and argue that one of these two things must
happen. In particular, the only places the signature buffers of N change (after ini-
tialization) are: (C.4.48-49), (C.4.50), (C.4.74-75), (C.4.80), (C.4.82), (C.6.128),
(C.6.133),(C.6.141), (C.6.146), and (A.5.76). The only place that information that
was once in one of N’s signature buffers is removed from the broadcast buffer is
(C.6.134).

First notice that because N transfers a packet in transmission T, N must have
received the complete SOT broadcast for transmission T (Lemma D.10). For all
rounds of all transmissions between T + 1 and the time N receives the full SOT
broadcast for transmission T', lines (C.4.48-51), (C.4.74-78), and (A.5.76) will
never be reached by N (see Lemma D.10 and its proof). Similarly, lines (C.4.80)
and (C.4.82) will never be reached since (C.4.63) will always be satisfied.

It remains to consider lines (C.6.128), (C.6.133), (C.6.141), (C.6.146), and
(C.6.134); the first four clear the signature buffers, and the last clears the broad-
cast buffer. So it remains to argue that if any of these lines are reached, either the
broadcast buffer is storing all of the information that the signature buffers held at
the end of T, or (N, T, T') cannot appear as part of the SOT broadcast of transmis-
sion T'. Line (C.6.128) is clearly covered by the latter case, since if a parcel of this
form is received in some transmission T € [T + 1..T'], then (N, T) is not on the
sender’s blacklist as of T > T, and hence (N, T) will never be able to be re-added
to the blacklist after this point (see (C.7.188)). Similar reasoning shows that line
(C.6.146) is covered by one of these two cases: If N reaches line (C.6.146) in some
transmission T € [T+ 1..T’], then either N will add the information in its signature
buffers into its broadcast buffers as on (C.6.142—145) before reaching (C.6.146),
or else N was not on the blacklist as of T, and hence it is impossible for (N, T, T')
to be a part of the SOT broadcast for transmission T/. Now suppose N reaches
(C.6.133-134) in some round of a transmission T > T indicating that a node N is
to be eliminated. In order to reach (C.6.133—134) in transmission T, N must not
have known that N was to be eliminated before that point (C.6.131), and since N
received the complete SOT broadcast of transmission T (by Lemma D.10 together
with the hypotheses that N is honest and transferred a packet in T), N must have
been eliminated in some transmission T > T. In particular, if T =, then (N, T)
can never be added to the blacklist (since (C.7.188) cannot be reached in trans-
mission T if Eliminate Node is reached in that transmission); while if T > T, then

Authenticated Adversarial Routing 751

(N, T) will be cleared from the blacklist as on (C.7.171) (if it was on the black-
list), and as already remarked, (V, T) can never again appear on the blacklist after
this.

Now suppose (C.6.141) is reached in some transmission T > T and the signa-
ture buffers are cleared on this line. Now before line (C.6.141) was reached, by
induction on the number of transmissions that have occurred since T, one of the
three statements, (2a), (2b), or (2¢), was true at the end of transmission T — 1.
If (2b) or (2c) was true, then changes made on (C.6.141) will not affect the fact
that (2b) or (2c¢) will remain true. Therefore, assume that we are in Case (2a)
before reaching (C.6.141), i.e. that when (C.6.141) is reached in transmission T,
N’s signature buffers contain the information that they had at the end of T. Since
(C.6.141) was reached during T, it must have been that for some T: (N, T, T) was
received on (C.6.137) as part of the SOT broadcast for transmission T. We first
argue T > T. To see this, since N is honest, it will not transfer any packets in T if
it is on its own version of the blacklist ((C.3.31-33) and (C.3.35-37)). Since we
know that N did transfer packets in transmission T (by hypothesis), and also N
received the full SOT broadcast of that same transmission (Lemma D.10), either
N was not on the blacklist as of the start of transmission T, or N received infor-
mation as on (C.6.147) indicating N could be removed from the blacklist. Both
of these cases imply that by the end of T and beyond, (N, T) can never be on the
blacklist for any T < T. Thus, T > T, as claimed. Since we are assuming Case (2a),
if T =, then (C.6.141) will not be satisfied. On the other hand, if T > T, then N
has appeared on the blacklist for some transmission after T, and then Lemma D.6
guarantees that (N, T) is not on the blacklist as of T > T, which as noted above
implies (N, T, T') cannot be part of the SOT broadcast of transmission T'.

3. For Statement (3a), we track all the times parcels are removed from N’s broadcast
buffer BB, and ensure that if ever N removes a testimony parcel belonging to N
for some transmission T, then (ﬁ ,T) is no longer on the sender’s blacklist. If
N = §, notice the only place that information concerning other nodes’ testimony
parcels is removed from the sender’s data buffer is (C.7.171), and at this point N
is not on the blacklist since the blacklist is cleared on this same line.

If N # S, changes to BB occur only on lines (C.6.134), (C.6.139), (C.6.149),
(C.6.142-145), and (C.6.154). The former three lines remove things from BB,
while the latter lines add things to BB. In terms of Statement (3a), we must ensure
whenever one of the former three lines is reached, there will never be a testimony
parcel from N and corresponding to transmission T that is removed from BB if
(ﬁ ,T) is on the blacklist. Looking first at line (C.6.134), suppose that N reaches
line (C.6.134) in some transmission T > T. If (N, T, T) was not a part of the SOT
broadcast of transmission T, then there is nothing to show (since N is not on the
blacklist as of the outset of T). So suppose that (ﬁ ,T,T) was a part of the SOT
broadcast of transmission T. Since reaching line (C.6.134) requires that N has
newly learned that a node has been added to EN (C.6.131), let N’ denote this
node, and let T denote the round that N’ was eliminated from the network as on
(C.7.169-177). First note that necessarily T < T. After all, the blacklist will be
cleared on line (C.7.171) of round T’, and hence if (ﬁ ,T) is still on the blacklist as
of the outset of T, it must have been added afterwards. We now argue that because

752

Y. Amir, P. Bunn, and R. Ostrovsky

T’ < T, the priority rules of transferring broadcast information will dictate that
all honest nodes will necessarily learn N has been eliminated before they learn
that (N ,T) is on the blacklist. From this, we will conclude that when N reaches
(C.6.134) in transmlssmn T and learns that N’ should be eliminated, that N has
not yet learned that (N T) is on the blacklist, and hence N’s broadcast buffer will
not be storing any of N’s testimony parcels for T (C.6.152).

It remains to show that any honest node A € G will learn that N’ has been elim-
inated before they learn (N T) is on the blacklist. So fix an honest node A €G.
Suppose A first learns (N T) is on the blacklist via a parcel of the form (N T X)
that it received as on (C.6.137) of transmission X. Clearly, X > T, since (N T)
can only be put on the blacklist at the very end of transmission T. Therefore, since
T < T < X, we see that (N/,X) will be a part of the SOT broadcast for trans-
mission X, indicating that N’ has been eliminated (C.7.200). Since A is honest,
it will therefore receive (N, X) before it receives (N ,T, X) (see priority rules for
receiving broadcast parcels, (C.5.110) and (C.5.115))

We next consider when the testimony parcels are removed from BB as on
(C.6.139). In this case, N has received a SOT broadcast parcel of form (N T, T)
(C.6.137), and N is removing from BB all of N’s testimony parcels correspond-
ing to transmissions other than T. First note that Lemma D.6 guarantees that N is
on at most one blacklist at any time. Since N received a SOT parcel of the form
(N ST, T) during transmission T, it must be that (N ,T) was on the sender’s black-
list at the outset of T/, and since nothing can be added to the blacklist until the very
end of a transmission (C.7.188), only (N ,T) can be on the sender’s blacklist at the
outset of T/. This case is now settled, as we have shown that N does not remove
any of the testimony parcels from N corresponding to T on (C.6.139), and this is
the only transmission for which N can be on the blacklist (at least through T”).

To complete Statement (3a), it remains to consider line (C.6.149). But this is
immediate, since if at any time the sender removes (N ,T) from the blacklist,
then (N ,T) can never again be re-added (since nodes are added to the black-
list at the very end of a transmission (C.7.188), they are not removed as on
(C.6.166) or (C.7.171) until at least the next transmission, at which point the same
(node, transmzsszon) pair (N T) can never again be added to the blacklist as on
(C.7.188) since T has already passed). Therefore, when N reaches (C.6.149), if
the items deleted from BB correspond to N , then N must have received a broad-
cast parcel of form (N ,0,T) as on (C.6.147), indicating that N was no longer on
the blacklist. Consequently, the status parcels deleted will never again be needed
since (N ,T) can never again be on the blacklist.

Statement (3a) of the current lemma (now proven) states that no testimony par-
cel still needed by the sender will ever be deleted from a node’s broadcast buffer.
Statement (3b) states that a node’s broadcast buffer will not hold extraneous tes-
timony parcels, i.e. testimonies corresponding to multiple transmissions for the
same node. This is immediate, since whenever a node N learns a node (N ,T)
is on the blacklist as on (C.6.137), then N will immediately delete all of its tes-
timony parcels from N corresponding to transmissions other than T’ (C.6.139).
The fact that the stored parcels have the correct information (i.e. that they address
the appropriate reason for failure as on (C.6.142—145)) follows from the fact that

Authenticated Adversarial Routing 753

N will only initially store a testimony parcel if it contains the correct information
(C.6.153).

4. There are three lines on which the broadcast parcels of the kind relevant to
Statement (4) are removed from N’s broadcast buffer: (C.6.134), (C.6.139), and
(C.6.149). We consider each of these three lines. Suppose first that the parcel
(B, N T) is removed from N’s broadcast buffer as on line (C.6.134) of some
transmission T’. In particular, N learns for the first time in the SOT broadcast of
transmission T’ that some node N has been eliminated. Let T denote the trans-
mlssmn that the sender eliminated this node (as on (C.7.169— 177)) If T > T, then
(N ’7 will be cleared from the blacklist on line (C.7.171) of T, and hence when
(B, N T) is removed from N’s broadcast buffer in transmission T/ > T, (N T)
will no longer be on the blacklist, as required. Therefore, assume T<T (equal-
ity here is impossible since lines (C.7.169-177) and (C.7.188) can never both be
reached in a single transmission, see e.g. (C.7.177)). Let X denote the transmis-
sion in which N ﬁrst learned that (N T) was on the blacklist, i.e. N received a
parcel of the form (N T, X) on (C.6.137) of transmission X. Clearly, X > T, since
(N T) can only be added to the blacklist at the end of T (C.7.188). Also, X < T,
since by hypothesis a parcel of the form (B, N, T) is removed from N’s broad-
cast buffer on line (C.6.134) of T/, and this parcel can only have been added to
N’s broadcast buffer in the first place if N already knew that (N T) was black-
listed (C.6.151). Lastly, X > T/, since T < T implies that N was eliminated be-
fore (N ,T) was added to the blacklist, and therefore by the priorities of send-
ing/receiving broadcast parcels ((C.5.110) and (C.5.115)), we see that an honest
N will learn that N has been eliminated before it will learn that (N ,T) is on the
blacklist. Combining these inequalities shows that X > T/ and X < T/, so X = T".
But this implies that when (C.6.134) is reached in T/, N does not yet know that
(N ,T) is on the blacklist, and consequently the parcel (B, N, T) cannot yet be
stored in N’s broadcast buffer, which contradicts the fact that it was removed on
(C.6.134) of T'. Therefore, whenever (C.6.134) is reached, either (N ,T) will no
longer be on the blacklist, or there will be no parcels of the form (B, N , FD that
are removed.

Suppose now that the parcel (B, N, T) is removed from N’s broadcast buffer as
on line (C.6.139) or (C.6.149) of some transmission T. In either case, by looking
at the comments on these lines together with Lemma D.6, (N , @ has already been
removed from the blacklist if a parcel of the form (B, N , @ is removed on either
of these lines. O

Lemma D.19. If A, B € G are honest (not corrupt), in any transmission T for which
both A and B have received the full SOT broadcast:

1. Between the time B accepts a packet from A on line (C.4.77) through the time A
gets confirmation of receipt (see Definition B.8) for it as on (C.4.50), we have:

o SIGB[1]4.5 =1+ SIGA[1]4.55

61 If the packet accepted corresponds to an old codeword, then SIGB[1] AB = SIGA[I] A,B and
SIGB[pla.p =SIGA[1]a.p=L.

754 Y. Amir, P. Bunn, and R. Ostrovsky

o SIGB[pla.p =1+ SIGA[pla.p (see footnote 61)

o SIGE [2]lap =M + SIGA [3]a.B, where M is the value of Hrp on (C.4.60)
(according to A’s view) in the same round in which (C.4.77) was reached
by B

o SIGB[3]4.3 = m + SIGA[2]4.p, where m is the value of Hgp on (C.4.75)
(according to B’s view) in the same round in which (C.4.77) was reached
by B

2. At all other times, we see that SIGB[1]14.p = SIG*[1]a.5, SIGB[2]a.5 =
SIG*(3]a.8. SIG®[31a.8 = SIG*[2]4.5. and SIG®[pla.p = SIG*[pla.p for
each packet p that is part of the current codeword.

Proof. The structure of the proof will be as follows. We begin by observing all sig-
nature buffers are initially empty (C.2.48) and (C.2.54), and that for any transmission
T, both SIG* and SIG® are cleared before any packets are transferred (Lemma D.10).
We will then focus on a single transmission for which A and B have both received
the full SOT broadcast, and prove that all changes made to SIG* and SIG? during
this transmission (after the buffers are cleared upon receipt of the SOT broadcast) re-
spect the relationships in the lemma. Since the only changes occur on lines (C.4.48—49)
and (C.4.74-75), it will be enough to consider only these 4 lines. Furthermore, if lines
(C.4.48-49) were reached x times by A in the transmission, and lines (C.4.74-75) were
reached y times by B, then:

(a) Eithery=xory=x+1

(b) Neither set of lines can be reached twice consecutively (without the other set
being reached in between)

(c) Lines (C.4.74-75) are necessarily reached before lines (C.4.48—49) (i.e. in any
transmission, necessarily y will change from zero to 1 before x does).

Notice that the top statement follows from the second two statements, so we will only
prove the bottom two below.

We begin by proving Statements (a)—(c). We first define x more precisely: x begins
each transmission set to zero, and increments by one every time line 50 is reached (just
after A’s signature buffers are updated on lines (C.4.48-49)). Also, define y to begin
each transmission equal to zero, and to increment by one when line (C.4.74) is reached
(just before B’s signature buffers are updated on lines (C.4.74-75)). Statement (c) is
immediate, since RR begins every round equal to —1 (lines (C.2.50) and (C.7.209)),
and can only be changed to a higher index on (C.4.78). Therefore, (C.4.46) can never
be satisfied before (C.4.78) is reached, which implies (C.4.48) is never reached before
(C.4.74) is. We now prove Statement (b). Suppose lines (C.4.48-49) are reached in
some round t. Notice since we are in round t when this happens, and because RR can
never have a higher index than the current round index, and the most recent round RR
could have been set is the previous round, we see that B’s value for RR (and the one A
is using on the comparison on (C.4.45-46)) is at most t — 1. Also, Hrp and FR will be
set to L on (C.4.51) of t. If FR ever changes to a non-_L value after this, it can only
happen on (C.4.56), and so the value it takes must be at least t. Therefore, if at any time
after t we see that FR # L, then if RR has not changed since t — 1, then (C.4.46) can
never pass, since RR < t — 1 < t < FR. Consequently, (C.4.78) must be reached before

Authenticated Adversarial Routing 755

(C.4.48-49) can be reached again after round t, and hence so must (C.4.74-75). This
shows that (C.4.48-49) can never be reached twice, without (C.4.74-75) being reached
in between.

Conversely, suppose lines (C.4.74-75) are reached in some round t. Notice since
we are in round t when this happens, and because FR can never have a higher index
than the current round index, we see that A’s value for FR (and the one B is using
on the comparison on (C.4.73)) is at most t. Also, RR will be set to t on (C.4.78) of
round t, and RR cannot change again until (at some later round) (C.4.73) is satisfied
again (or the end of the transmission, in which case there is nothing to show). If line
(C.4.56) is NOT reached after (C.4.74-75) of round t, then FR can never increase to
a larger round index, so FR will remain at most t. Consequently, line (C.4.73) can
never pass, since if B receives the communication from A on line (C.4.62), then by the
above comments RR > t > FR. Consequently, (C.4.56) must be reached before (C.4.73)
can be reached again after round t. However, by Statement 3 of Claim B.9, (C.4.56)
cannot be reached until A receives confirmation of receipt from B (see Definition B.8),
i.e. (C.4.56) can be reached after (C.4.74-75) of round t only if lines (C.4.48-49) are
reached.

We now prove the lemma by using an inductive argument on the following claim:

Claim. Every time line (C.4.74) is reached (and y is incremented), we see that equal-
ities of Statement 2 of the lemma are true, and between this time and the time line
(C.4.48) is reached (or the end of the transmission, whichever comes first), we see that
the equalities of the first statement of the lemma are true.

To prove that the claim is true at the outset of any transmission T, notice that be-
fore lines (C.4.74-75) are reached for the first time, but after both nodes have received
the transmission’s SOT broadcast, all entries to both signature buffers are L, and so
the claim is true for the base case. We must consider for the induction step two cases:
(1) y increases by one (and hence lines (C.4.74-75) will make changes to the signa-
ture buffers); and (2) x increases by one (and hence lines (C.4.48—49) have just made
changes to the signature buffers). We use the induction hypothesis to assume that the
lemma is true at some point, and show that it will continue to be true whenever y and x
are incremented by one.

Since (c) guarantees that y gets incremented first, consider a round t in which y is
incremented by one (i.e. line (C.4.74) is reached). Since neither x nor y can change be-
tween lines (C.3.20) and (C.3.22), by the induction hypothesis we see that the equalities
of the second statement of the lemma are true when A sends the communication as on
(C.4.60) of round t (since y has not been incremented yet at this stage of t). Since A
has actually sent (SIGA[1]+ 1, SIGA[p] + 1, SIGA[3] + Hrp), and these are the quanti-
ties that B stores on line (C.4.74), and also B updates SIG®[3] by increasing it by Hgp
on (C.4.75), we see that the first statement of the lemma will be true after leaving line
(C.4.75) (and in particular the claim remains true). More specifically, letting M denote
the value of Hpp (respectively letting m denote the value of Hgp) when (C.4.60) (re-
spectively (C.4.74)) is reached in round t, we will see that immediately after leaving
(C.4.75):

756 Y. Amir, P. Bunn, and R. Ostrovsky

1. SIGB[114.3 =1+ SIG*[1]4.5

2. SIGB[pla.p =1+ SIG*[pla.s
3. SIGB[2]a.p = M + SIG*[3]4 5
4. SIGB[3]a.p =m + SIG*[2] 4.5

as required by Statement 1 of the Lemma. By Statement (b) above, either the signature
buffers along E (A, B) do not change through the end of the transmission, or the next
change necessarily occurs as on (C.4.48—49). In the former case, the Claim certainly re-
mains true. In the latter case, let t’ denote the time that (C.4.48) is next reached. Notice
that t’ > t, as Statement (b) above guarantees (C.4.48) is reached after (C.4.74), and
by examining the pseudo-code, this cannot happen until at least the next round after t.
Also, the fact that (C.4.48) is reached in round t’ implies that (C.4.45) was satisfied,
and in particular, A must have received the communication from B as on (A.3.07) of
round t’. And since t’ > t, the values received on (C.3.07) of round t’ necessarily
reflect the most recent values of SIG? (i.e. B’s signature buffers have already been
updated as on (C.4.74-75) when B sends A the communication on (C.3.11)). Con-
sequently, A will change SIGA[I], SIGA [2], and SIGA[p] to the values B is storing
in SIGB[1], SIG®[3], and SIGB[pJ, respectively. Therefore, the claim (and hence the
lemma) will be true provided we can show that when A updates SIGA[3] as on (C.4.49),
that the new value for SIG4 [3] equals the value stored in SIGB [2]. Since before (C.4.49)
is reached, we have by the induction hypothesis that SIGB[2] AB=M+ SIGA[3] A.B>
it is enough to show that when SIGA[3] is updated on (C.4.49), that the value of Hpp
there equals M. We argue that this by showing Hrp will not change from line (C.4.60) of
round t (when M was set to Hgp) through line (C.4.49) of round t’. To see this, notice
that the only possible places Hpp can change during a transmission are lines (C.4.51),
(C.4.53), and (C.4.56). Clearly, (C.4.51) cannot be reached between these times, since
(C.4.49) is not reached during these times. Also, Statement 3 of Claim B.9 implies
that (C.4.56) cannot be reached between these times either. Finally, (C.4.53) cannot be
reached, since RR will be set to t on (C.4.78) of round t, and by statement (b), (C.4.78)
cannot be reached again until after (C.4.49) is reached in round t’, and hence RR will
be equal to t from (C.4.78) of round t through (C.4.49) of round t’. Also, FR will
not change between these times (also by Statement 3 of Claim B.9), and since the only
non-_L value FR is ever set to is the current round as on (C.4.56), we see that FR < t.
Putting these facts together, we see that for all times between line (C.4.60) of round t
through line (C.4.49) of round t/, either A does not receive RR (in which case RR = L
when (C.4.52) is reached) or A receives RR, which as noted obeys RR = t > FR. In
either case, (C.4.52) will fail, and (C.4.53) cannot be reached. O

Lemma D.20. For any transmission T, recall that Py denotes the list of nodes that
participated in that transmission, and it is set at the end of each transmission on
(C.7.187). For any honest (not corrupt) node A € G, during any transmission T, A
will not exchange any codeword packets with any node that does not get put on Pr at
the end of the transmission.

Proof. Restating the lemma more precisely, for any node N that is NOT put on Pr as
on (C.7.187) and for any honest node A € G, then along (directed) edge E(A, N), A

Authenticated Adversarial Routing 757

will never reach line (C.4.60), and along (directed) edge E(N, A), A will never reach
lines (C.4.67-82). Fix a transmission T in which (C.7.187) is reached (i.e. a node is
not eliminated as on (C.7.169-177) of T), let N ¢ Pr be any node not put on Pr on
(C.7.187) of T, and let A € G be an honest node. Since N ¢ Pr, we see that either
N € EN or N € BL when (C.7.187) is reached. Since no nodes can be added to EN or
BL from the outset of T through line (C.7.187) of T, we musthave N € EN or N € BL as
of either line (C.7.188) or (C.7.170) of a previous transmission. Therefore, either (N, T)
or (N, T, T) is added to the SOT broadcast of transmission T (on (C.7.176) or (C.7.200)
of transmission T — 1), indicating N is an eliminated/blacklisted node. If A has not
received the full Start of Transmission (SOT) broadcast for T yet, then the lemma is true
by Lemma D.10. If on the other hand A has received the full SOT broadcast, then in
particular A has received the parcel indicating that N is either eliminated or blacklisted.
Thus, by lines (C.4.59), (C.3.31-33), (C.4.63) and (C.3.35-37), A will not transfer any
packets with N. (|

Lemma D.21. The receiver’s end of transmission broadcast takes at most n rounds to
reach the sender. In other words, the sender will have always received the end of trans-
mission broadcast by the time he enters the Prepare Start of Transmission Broadcast
segment on (C.3.29).

Proof. By the conforming assumption, for every round t of every transmission there
is a path P between the sender and receiver consisting of edges that are always up and
nodes that are not corrupt. We consider the final n rounds of any transmission, and argue
that for each round, either the sender already knows the end of transmission parcel @,
or there is a new honest node N € G that learns ® for the first time. Since the latter case
can happen at most n — 1 times (the receiver already knows ® when there are n rounds
remaining, see (C.3.28) and (C.7.178-179)), it must be that the sender has learned @ by
the end of the transmission. Therefore, let 4D — n < t < 4D be one of the last n rounds
of some transmission. If the sender already knows @, then we are done. Otherwise, let
Py = NgNj ... N (here No = S and Ny = R) denote the active honest path for round
t that connects the sender and receiver. Since S does not know & but R does, there
exists some index 0 <i < L such that N; does not know ® but N;;; does know ©.
Since edge E(N;, Nj11) is active and the nodes at both ends are honest (by choice of
P+), node N;41 will send N; a broadcast parcel on (C.3.15). Looking at the manner in
which broadcast parcels are chosen (C.5.115), it must be that N;y; will send ® to N;
in round t, and hence N; will learn ® for the first time, which was to be showed. [

Lemma D.22. If the receiver has received at least D — 6n> distinct packets corre-
sponding to the current codeword, he can decode the codeword (except with negligible
probability of failure).

Proof. Fact 1’ guarantees that if the receiver obtains D — 6n3 distinct packets corre-
sponding to a codeword, then he can decode. Since all codeword packets are signed by
the sender to prevent modifying them, the security of the signature scheme guarantees
that any properly signed codeword packet the receiver obtains will be legitimate (except
with negligible probability of failure). (|

758 Y. Amir, P. Bunn, and R. Ostrovsky

Lemma D.23. For every transmission T for which line (C.7.187) is reached:
S, R e PT.

Proof. The participating list Pr is set on line (C.7.187) at the end of every trans-
mission (except transmissions for which a node is eliminated as on (C.7.169—-177)). By
looking at the code there, we must show that S, R ¢ EN U BL at the end of any transmis-
sion for which line (C.7.187) is reached. That an honest node can never be identified as
corrupt and eliminated is the content of the proof of Theorem 5.2, so S, R ¢ EN. Since
S is never put on the blacklist (C.7.188), it remains to show R ¢ BL when (C.7.187)
is reached. Since nodes are removed from the blacklist on line (C.6.166) and not put
on it again until (C.7.188), it is enough to show that if R is ever placed on the black-
list at the end of some transmission T — 1, then it will be removed as on (C.6.166) of
transmission T. If R is ever placed on the blacklist, we argue that: (1) R will learn what
testimony parcels the sender requires of it after at most 2n2 rounds; and (2) S will re-
ceive all of these parcels by at most 4n> rounds later. Therefore, R will necessarily be
removed from the blacklist by round 4n3 + 2102 < 4D (since D > 6n3), as required.
To prove (1), first note that all honest nodes remove the receiver’s end of transmission
parcel for T — 1 at the very end of T — 1 (C.7.203). Therefore, no honest node will
have any End of Transmission Parcel in its broadcast buffer at any point during T until
one is created for the current transmission on (C.7.178-179). Therefore, for the first n°
rounds, the sender’s SOT broadcast will have top priority in terms of sending/receiving
broadcast parcels (C.5.115). Since S and R are connected by an active honest path at
each round, we follow the proof as in Lemma D.21 to argue that for every round be-
tween the outset of T and round n3, either R has learned the full SOT broadcast, or there
is an honest node that is learning a new SOT broadcast parcel for the first time. Since
there are (at most) n nodes, and the SOT broadcast has at most 2n parcels (see proof
of Lemma D.2, and Statement 2 of the Broadcast Buffer therein), it takes at most 2n?
rounds for R to receive the full SOT broadcast, and hence to learn it has been black-
listed. This proves (1).

Upon receipt of this information, R adds the necessary information (i.e. its testimony)
to its broadcast buffer (C.6.137-145). Looking at the proof of Lemma D.31 and in par-
ticular Claim 2 within the proof, edges along the active honest path can take at most
4n* < 4D rounds to communicate across their edges the broadcast information of pri-
orities 1-6 on lines (C.5.115), and since the receiver is connected to the sender every
round via some active honest path (by the conforming assumption), its requested testi-
mony information will necessarily reach the sender within 4n° rounds, proving (2). O

Lemma D.24. For any transmission T, if Py = {S, R}, then the transmission was
necessarily successful.

Proof. 7Pr is set on line (C.7.187). Since the only place the sender adds nodes to the
blacklist is on (C.7.188), which happens at the very end of each transmission, and be-
cause the hypothesis states that every non-eliminated node except for S and R is on
the blacklist when line (C.7.187) of transmission T is reached, it must be the case that
transmission T began with every non-eliminated node on the blacklist, with the possible
exception of the receiver (and the sender who is never blacklisted). Since all internal

Authenticated Adversarial Routing 759

nodes are still blacklisted by the end of the transmission, the sender will never transfer
any packets to any node other than R during transmission T (line (C.4.59) will always
fail for any other node, see (C.3.31-33)). Lemma D.31 indicates there are at most 4n3
rounds that are wasted, and since the only edge the sender can ever use to transfer code-
word packets during T is E(S, R), the conforming assumption implies edge E (S, R)
is active every round of T. We may therefore view the graph as reduced to a single
edge connecting S and R (see Lemma D.20), where there are at least 4D — 4n> > 3D
(non-wasted) rounds per transmission. Since both S and R are honest, correctness is
guaranteed as in the Slide protocol by Lemma D.1. In particular, the transmission will
necessarily be successful. (]

Lemma D.25. No honest node will accept more than one distinct parcel (per node N
per transmission) indicating that N should be removed from the blacklist.

Proof. Line (C.5.110) guarantees that any node A will only accept the parcel if it has
already received the sender’s start of transmission broadcast corresponding to the cur-
rent transmission. In particular, this means that A has received an updated blacklist (and
a list of eliminated nodes) before it accepts any removals from the blacklist. Therefore,
in some transmission T, if A ever does accept the information that a node N should be
removed from the blacklist, then this information will not become out-dated until (if)
N is added to the blacklist again, which can happen at the earliest at the very end of
transmission (C.7.188). Therefore, after receiving the information for the first time that
N should be removed, the comments on line (C.6.123) will guarantee A will not accept
additional blacklist information regarding N until the following transmission, proving
the lemma. O

Lemma D.26. For any node N € G, after receiving the complete SOT broadcast, an
honest node N will transmit along each edge at most once per transmission the fact that
it knows N’s complete testimony.

Proof. Each parcel stored in N’s broadcast buffer BB is accompanied by a list of
which edges the parcel has been successfully transmitted across (see comments on line
(C.6.123)). Therefore, as long as the parcel is not deleted from the broadcast buffer,
line (C.5.115) guarantees that each parcel of broadcast information will only pass along
each edge once, as required. Therefore, it remains to prove the lemma in the case that the
relevant broadcast parcel is deleted at some point in a transmission. Fix a transmission
T and an arbitrary N € G. Since broadcast parcels of the relevant type (i.e. that N has
N’s complete testimony) are only removed on (C.6.139) and (C.6.149), we need only
consider the case that (C.6.149) is reached in transmission T (the former line can only
be reached as part of the SOT broadcast, and therefore lies outside the hypotheses of the
lemma). In particular, we will show that if (C.6.149) deletes from N’s broadcast buffer
the parcel indicating that N knows N’s complete testimony, then N will never again
add a parcel of this form to its broadcast buffer (as on (C.6.155)) for the remainder of T.
But this is immediate, since if N removes this parcel from BB on (C.6.149) of T, then
N must have been removed from the blacklist (see (C.6.147)), and since N cannot be
re-added to the blacklist until the end of T (C.7.188), line (C.6.152) (of N’s code, with

760 Y. Amir, P. Bunn, and R. Ostrovsky

the N that appears there equal to the N used in the present notation) cannot be satisfied
for the remainder of T, and hence (C.6.155) cannot be reached. This proves that once
the parcel is deleted, it cannot be later added in the same transmission, proving the
lemma.]

Lemma D.27. [fthere is a transmission T for which the sender has collected the com-
plete testimonies from every node that participated in T, then the sender can necessarily
identify a corrupt node.

Proof. Each failed transmission falls under F2, F3, or F4, and the lemma is proven for
each case below in Theorems D.28, D.33 and D.34. O

D.1. Handling Failures as in F2: Packet Duplication

The goal of this section will be to prove the following theorem.

Theorem D.28. Suppose transmission T failed and falls under case F2, and at some
later time (after transmission T but before any additional nodes have been eliminated)
the sender has received all of the testimony parcels from all nodes on Pr. Then the
sender can eliminate a corrupt node.

The idea of the proof is as follows. Case F2 of transmission failure roughly cor-
responds to packet duplication: there is a node N € G who is jamming the network
by outputting duplicate packets. Notice that in terms of network potential (see Defi-
nition 4.7), the fact that N is outputting more packets than he is inputting means that
N will be responsible for illegal increases in network potential. Using the information
contained in the testimonies, which include nodes’ signatures on changes of network
potential due to packet transfers and re-shuffling, we will catch N by looking for a node
who caused a greater increase in potential than is possible if it had been acting honestly.
The proof of this fact will require some work. We begin with the following definitions:

Definition D.29. The conforming assumption on the node-controlling and edge-
scheduling adversaries demand that for every round there is a path connecting the sender
and receiver consisting of edges that are “up” and through uncorrupted nodes. We will
refer to this path as the active honest path for round t and denote it by P, noting that
the path may not be the same for all rounds.

Definition D.30. We will say that some round t (of transmission T) is wasted if there
is an edge E(A, B) on that round’s active honest path such that either Okay To Send
Packet (C.3.31) or Okay To Receive Packet (C.3.35) returned false.

Intuitively, a round is wasted if an edge on the active honest path was prevented from
passing a packet either because one of the nodes was blacklisted or because there was
important broadcast information that had to be communicated before packets could be
transferred.

Lemma D.31. There are at most 4n> wasted rounds in any transmission T.

Authenticated Adversarial Routing 761
Proof. We will prove this lemma via two claims.

Claim 1. Every wasted round t falls under (at least) one of the following cases:

1. An edge on Py transfers O1 or a parcel of the sender’s Start of Transmission
(SOT) broadcast

2. An edge on Py transfers the label of a node to remove from the blacklist

3. An edge on Py transfers the information that one of the terminal nodes (on that
edge) has the complete testimony for a blacklisted node

4. A node on Py learns a testimony parcel for a blacklisted node. More specifically,
there is some node (ﬁ , T, T) that was part of the SOT broadcast (i.e. the node
began the transmission on the sender’s blacklist) and some other honest node
N € G such that N learns a new testimony parcel from N corresponding to trans-
mission T'.

Proof. Let t be a wasted round. Denote the active honest path for round t by
Pr = NoNj ... N;. By looking at Okay To Send Packet and Okay To Receive Packet
(C.3.31) and (C.3.35), we first argue that cases 1-3 cover all possible reasons for a
wasted round, except the possibility that one node is on the other’s blacklist. To see this,
we go through each line of Okay To Send Packet and Okay To Receive Packet and con-
sider what happens along a specified edge on P, noting that by assumption this edge is
active and the neighboring nodes are honest, so the appropriate broadcast parcel will be
successfully transferred (C.3.15). In particular, it will be enough to show that for every
reason a round may be wasted, there is a node on P that has broadcast information of
type 14 (see line (C.5.115)) that it has yet to transfer across an adjacent edge on Py, as
then we will fall under cases 1-3 of the Claim.

— If there is a node N; on P that does not know all parcels of the SOT broadcast
(C.7.200), then find the last index 0 < j < i such that N; knows all of SOT but
Njy1 does not (j is guaranteed to exist since S = Ny knows all of SOT and N;
does not). Then N; has broadcast information of type 2 (C.5.115) it has not yet
sent along its edge to Nj 1.

— If there is a node N; on Py that knows @ or all of SOT but has not yet transferred
one of these parcels across an edge of P, or N; knows the complete testimony for
some blacklisted node N and N; has not yet passed this fact along an edge on Py,
then N; has broadcast information of type 1, 2, or 4 (C.5.115).

— If there is a node N; on P that knows of a node N that should be removed from
the blacklist, but it has yet to transfer this information across an edge of P, then
N; has broadcast information of type 3 (C.5.115).

It remains to consider the final reason one of these two functions may return false,
namely when there is some N; on Py that is on the blacklist of either N;_; or N;41. Let
BLg denote the sender’s blacklist at the start of round t.

— If N; ¢ BLg, then there will be some index 0 < j < i 4 1 such that at the start of
round t, N; isnot on N;’s blacklist but N; is on N 1’s blacklist. We may assume
that both N; and N;; have received the full start of transmission broadcast, else
we would be in one of the above covered cases. Since N; is on Nj;1’s blacklist,

762 Y. Amir, P. Bunn, and R. Ostrovsky

N; must have begun the transmission on the sender’s blacklist (all internal nodes’
blacklists are cleared at the end of each transmission (C.7.203) and restored when
they receive the SOT broadcast (C.7.200), (C.6.137-138)). However, since N; is
not on N;’s blacklist as of round t and N; has received the full SOT broadcast,
at some point in T, N; must have received a parcel from the sender indicating N;
should be removed from the blacklist, as on (C.6.147-149). Since N; and N1
are both honest and N; has received the information that N; should be removed
from the blacklist (but N ;1 has not received this information yet), it must be that
this broadcast information of type 3 (C.5.115) has not yet been successfully passed
along E(Nj, Nj41) yet. In particular, N; has broadcast information of priority at
least 3 that he has yet to successfully send to N1, so he will send a parcel of
priority 1, 2, or 3 in round t, which are in turn covered by Statements 1 and 2 of
the Lemma.

— If N; € BLg, then there exists some 0 < j < i such that N; does not have N;’s
complete testimony, but N, does (since N; € BLg implies S does not have the
complete testimony, but &V; has its own complete testimony in its broadcast buffer,
see Statement 2 of Lemma D.18). Then if N;;1 has not yet passed the fact that
it has such knowledge along E(N;;1, N;), then Ny had broadcast information
of type 4, in which case we fall under case 3 of the Claim. On the other hand, if
this information has already been passed along E (N1, N;), then Statement 4 of
Lemma D.18 implies that N; is aware that N;;1 knows the complete testimony
of N; (who by choice of j is on N;’s blacklist), and hence a will necessarily
be set as on (C.5.119 or C.5.122) and sent to N; on (C.5.103)). Consequently,
N1 will receive o (C.5.105) during Stage 1 communication of round t, and will
have broadcast information of type 5 (C.5.115) it has not sent along E(N;, Nj1)
yet. This broadcast parcel can then be sent in Stage 2 communication of round t
(C.3.15), and this is covered by case 4 of the Claim. O

Claim 2. The maximum number of wasted rounds due to Case 1 of Claim 1 is n3, the
maximum number of wasted rounds due to Case 2 of Claim 1 is n>/2, the maximum
number of wasted rounds due to Case 3 of Claim 1 is n3, and the maximum number of
wasted rounds due to Case 4 of Claim 1 is n>.

Proof.

1. ®q is one parcel (C.7.179), and the SOT is at most 2n — 1 parcels (C.7.200), so
together they are at most 2n parcels. Since each honest node will only broadcast
each of these parcels at most once across any edge (as long as the broadcast is
successful, which it will be if the round is wasted due to Case 1) and there are at
most n2/2 such edges, we see that Case 1 can happen at most n> times.

2. Lemma D.25 says that no honest node N will accept more than one distinct parcel
(per transmission) that indicates some node N should be removed from the black-
list. Therefore, in terms of broadcasting this information, N will have at most one
broadcast parcel per transmission per node N indicating N should be removed
from the blacklist. Therefore, it can happen at most n times that an edge adjacent
to an honest node will need to broadcast a parcel indicating a node to remove.

Authenticated Adversarial Routing 763

Again since the number of edges is bounded by n?/2, Case 2 can be responsible
for a wasted round at most 1 /2 times.

3. Lemma D.26 says that for any node N € G that has received the full SOT broad-
cast for transmission T, if N is honest then it will transmit along each edge at most
once (per transmission) the fact that it knows some N’s complete testimony. Since
each node has at most n — 1 adjacent edges and there are at most n nodes in G,
Case 3 can be responsible for a wasted round at most > times.

4. Notice that Case 4 emphasizes the fact that a node on Py learned a blacklisted
node’s testimony parcel. Since there are at most n — 1 blacklisted nodes at any
time (see (C.7.187-188) and Claim D.6), and at most n testimony parcels per
blacklisted node (see (C.6.142-45) and Lemma D.7), an honest node can learn
a new testimony parcel at most n(n — 1) < n? times per transmission (see State-
ment 3 of Lemma D.18 which says honest nodes will not ever “unlearn” relevant
testimony parcels). Since there are at most n nodes, Case 4 can be responsible for
a wasted round at most 7> times.]

Claim 1 guarantees every wasted round falls under Cases 1-4, and Claim 2 says these
can happen at most 4> rounds, which proves the lemma. (]

We now define the notation we will use to describe the specific information the
testimonies contain in the case of F2 (see (C.1.12), (C.1.17), (C.1.32), and (C.6.142—
145)):62

— SIG4, 4 denotes the net decrease in A’s potential due to re-shuffling packets in the
current transmission.

— SIGA(2] A, B denotes the net increase in B’s potential due to packet transfers across
directed edge E (A, B), as signed by B and stored in A’s signature buffer ((C.4.75),
(C.3.11), and (C.3.07)).

- SIG*[2] B, A denotes the net decrease in B’s potential due to packet transfers across
directed edge E(B, A), as signed by B and stored in A’s signature buffer. Notice
that SIGA[2] B.A 1s measured as a positive quantity, see lines (C.4.60), (C.4.62),
and (C.4.74).

- SIGA [3]4, B denotes the net decrease in A’s potential due to packet transfers across
directed edge E(A, B), which is signed by A and stored its own signature buffer.
Notice that SIGA[3] A, B 1s measured as a positive quantity, see line (C.4.49).

— SIGA[3] B.4 denotes the net increase in A’s potential due to packet transfers across
directed edge E (B, A), which is signed by A and stored its own signature buffer
(C.4.75).

Lemma D.32. Suppose transmission T failed and falls under case F2, and at some
later time (after transmission T but before any additional nodes have been eliminated)
the sender has received all of the testimonies from every node on Pr. Then one of the
following two things happens:

62 On a technical point, since our protocol calls for internal nodes to keep old codeword packets in their
buffers from one transmission to the next, packets being transferred during some transmission may correspond
to old codewords. We emphasize that the quantities in SIG4 4, SIG[2], and SIG[3] include old codeword
packets, while SIG[1] and SIG[p] do not count old codeword packets (see (C.3.11) and (C.4.59-60)).

764 Y. Amir, P. Bunn, and R. Ostrovsky
1. There is some node A € G whose testimony indicates that A is corrupt.®®

2. There is some A € G whose potential at the start of T plus the net increase in
potential during T is smaller than its net decrease in potential during T. More
specifically, note that A’s net increase in potential, as claimed by itself, is given by

> SIG*[3]p.4.

BeP\A

Also, A’s net decrease in potential, as documented by all of its neighbors and its
own loss due to re-shuffling, is given by

SIGaa+ Y. SIGP[2]45.
BeP\A

Then case (2) says there exists some A € G such that

4’ —an’+ Y SIGABlpa <SIGaa+ Y. SIGP[20ap. (D3D)
BeP\A BeP\A

where the 4n> —4n? term on the LHS is an upper bound for the maximum potential
a node should have at the outset of a transmission (each of its 2(n — 1) buffers have
height 2n, and hence each have maximum capacity: 21221 i=n2n+1)).

Proof. The idea of the proof is to use Lemma D.14, which argues that in the absence
of malicious activity, the network potential should drop by at least n every (non-wasted)
round in which the sender is unable to insert a packet. Then since the sender could
not insert a packet in at least 3D rounds (case F2 states the sender inserted fewer
than D packets in the 4D rounds of the transmission) and since there are at most
4n3 wasted rounds per transmission, the network potential should have dropped by

at least (n)(3D — 4n3) > 2nD + 8n* (since D = 6)%3 > 12n3 as A < 1/2). However,
this is impossible, since the maximum network potential in the network at the start
of the transmission (which is an upper bounded from the capacity of the network) is
4n* (each of the n — 2 internal nodes can be responsible for at most 4n> to potential,
see e.g. the last sentence of the lemma) plus the maximum amount of network po-
tential increase during transmission T is 2n D (since the sender inserted fewer than D
packets at maximum height 2n), and hence the sum of these is less than 2nD + 8n?,
resulting in a negative network potential. Since network potential can never be neg-
ative, there must be illegal increases to network potential not accounted for above,

63 This includes, but is not limited to: (1) The node has returned a (value, signature) pair, where the value is
not in an appropriate domain; (2) The node has returned non-zero values indicating interaction with blacklisted
or eliminated nodes; (3)The node has reported values for SIGA [3]s, 4 that are inconsistent with the sender’s
quantity SIGS[2] $,A; or (4) The node has returned outdated information in their testimony. By “outdated”
information, we mean that as part of its testimony, A returned a (value, signature) pair using a signature he
received in round t from one of A’s neighbors N, but in N’s testimony, N provided a (value, signature) pair
from A indicating they communicated affer round t and that A was necessarily using an outdated signature
from N.

Authenticated Adversarial Routing 765

and the node responsible for these increases is necessarily corrupt. We now formal-
ize this argument, showing how to find such an offending node and prove it is cor-
rupt.

Let B denote the number of rounds in transmission T that the sender was blocked
from inserting any packets, and P denote the participating list for T.

Obs. 1. [If there exists A € P such that one of the following inequalities is not true,
then A is corrupt.

0<SIGxa. 0= Y (SIG*2]p.4—SIG*[3]p.4).
BeP\{A,S}

Proof. The above inequalities state that for honest nodes, the potential changes due
to re-shuffling and packet transfers are strictly non-positive (this was the content of
Lemma 4.11). This observation is proved as Statements 4 and 5 of Lemma D.11 in
Appendix D. O

Obs. 2. The increase in network potential due to packet insertions is at most 2nD +
2n2. More precisely, either there exists a node A € G such that the sender can eliminate
A, or the following inequality is true:

> SIG*3ls.a <2nD + 20>, (D.32)
AeP\S

Proof. By hypothesis, the sender knowingly inserted less than D packets in transmis-
sion T, and each packet can increase network potential by at most 2n. The sum on the
LHS of (D.32) represents the increase in potential claimed by nodes participating in
T caused by packet insertions. This quantity should match the sender’s perspective of
the potential increase (which is at most 2n D), with the exception of potential increases
caused by packets that were inserted but S did not received confirmation of receipt (see
Definition B.8). There can be at most one such packet per edge, causing an additional
potential increase of at most 2n per edge. Adding this additional potential increase to
the maximum increase of 2nD of the sender’s perspective is the RHS of (D.32). The
proof can be found in Lemma D.17 in Appendix D. t

Obs.3. B >3D —n. (Recall that B denotes the number of blocked rounds in T.)

Proof. Since the sender knowingly inserted fewer than D packets, there could be at
most n packets (one packet per edge) that was inserted unbeknownst to S, and hence
the sender must have been blocked for (at least) all but D + n of the rounds of the
transmission. Since the number of rounds in a transmission is 4D (C.3.02), we see that
B>3D —n. O

Let Hr € Pr denote the subset of participating nodes that are honest (the sender is of
course oblivious as to which nodes are honest, but we will nevertheless make use of Hp

766 Y. Amir, P. Bunn, and R. Ostrovsky

in the following argument). For notational convenience, since transmission T is fixed,
we suppress the subscript and write simply H and P. We make the following simple
observations:

Obs. 4. The following inequality is true:

2nD +4n* —dnd +2n% < Z SIG4 A
AeH\S

+ Y.) (SIGM21p.a —SIG*3]p.4). (D.33)
AeH\S BeEP\{A,S}

Proof. This follows immediately from Observation 3 and Lemma D.14, since:

n(,BT —4n3) 2n(3D —-n —4n3)
>2nD +4n* —4n’ +2n2,

where the first inequality is Observation 3, and the second follows because D =
6n3 /x> 8n3 > 8n —4n® + 3n. O

Obs. 5. Either a corrupt node can be identified as in Obs. 1 or 2, or there is some
A € P such that

4’ —4n® <SIGa s+ Y SIGP[2]a.p —SIG*[3]3.4. (D.34)
BeP\A

Proof. Consider the following inequalities:

2nD +4n* — 4n + 212

< > SIGaa+ Yy > (SIGA[215,4 — SIG*[315,4)
AeH\S AeH\S BEP\{A,S}

<) SIGaa+), > (SIG*121.4 — SIG*[315.4)
AeP\S AeP\S BeP\{A,S}

= Y SIGaa+ Y. > (SIGB[214,5 — SIG*[31p,4). (D.35)
AeP\S AeP\S BEP\{A, S}

Above, the top inequality follows from Obs. 4, the second inequality follows from
Obs. 1, and the third line is a re-arranging and re-labeling of terms. Subtracting

Authenticated Adversarial Routing 767

2nD + 2n? from both sides:

At —dn’ < Y SIGaa+ Y > (SIGB[214,5 — SIG*[315,4)
AeP\S AeP\S BeP\{A,S}
—2nD —2n?
< Y SIGaa+), > (SIGB[214,5 — SIG*[315,4)
AeP\S AeP\S BeP\{A,S}
+) —SIG*[3]s.4
AeP\S
= > SIGaa+ Y. > (SIGB1214,5 — SIG*[31,4)
AeP\S AeP\S BeP\{A,S}
+ Y (SIG®121a.5 — SIG*[3]5.4)
AeP\S
= Y SIGaa+ Y. Y. (SIGP121x5 —SIG*[3].4). (D.36)
AeP\S AeP\S BeP\A

Above, the top inequality is from (D.35), the second follows from Obs. 2, the third
line is because SIG5[2] a,s =0 for all A e G (S never receives a packet from anyone,
see (C.3.21-22)), and the final line comes from combining sums. Using an averaging
argument, this implies there is some A € P \ S such that

4n® —4n® < SIGa 4 + Z (SIGB[214, 5 — SIG*[315,4), (D.37)
BeP\A

which is (D.34). U

Therefore, if a node cannot be eliminated as in Obs. 1 or 2 (which are covered by
Case 1 of Lemma D.32), then Obs. 5 implies that Case 2 of Lemma D.32 is true. O

Proof of Theorem D.28. This Theorem now follows immediately from Lemma D.32
and the fact that anode A € G for which (D.31) is true is necessarily corrupt. Intuitively,
such a node A € G is corrupt since the potential decrease at A is higher than can be
accounted for by A’s potential at the outset of T plus the potential increase due to packet
insertions from the sender. The formal statement and proof of this fact is the content of
Corollary D.16. O

D.2. Handling Failures as in F3: Packet Deletion
The goal of this section will be to prove the following theorem.
Theorem D.33. Suppose transmission T failed and falls under case F3, and at some
later time (after transmission T but before any additional nodes have been eliminated)

the sender has received all of the testimony parcels from all nodes on Pr. Then the
sender can eliminate a corrupt node.

768 Y. Amir, P. Bunn, and R. Ostrovsky

The idea of the proof is as follows. Case F3 of transmission failure roughly corre-
sponds to packet deletion: there is a node N € G who is deleting some packets trans-
ferred to it instead of forwarding them on. Using the testimonies for case F3, which
include nodes’ signatures on the net number of packets that have passed across each
of their edges, we will catch N by looking for a node who input more packets than it
output, and this difference is greater than the buffer capacity of the node.

Proof. We first define the notation we will use to describe the specific information the
testimonies contain in the case of F3 ((C.1.17), (C.1.32), and (C.6.144)):

- SIGA[1] 4,8 denotes the net number of packets that have traveled across directed
edge E(A, B), as signed by B and stored in A’s (outgoing) signature buffer.

- SIGA[1] B.4 denotes the net number of packets that have traveled across directed
edge E(B, A), as signed by B and stored in A’s (incoming) signature buffer.

By the third Statement of Lemma D.15, either a corrupt node can be eliminated, or the
following is true for all A, B € G:

|SIGA[11p,4 — SIG®[115.4| <1 and |SIG*[114,5 — SIG®[11a,5] < 1.
Then summing over all A, B € P:

Z ISIGA[115,4 — SIGB[115,4] < n*. (D.38)
A,BEP,A#B

This in turn implies that

—n* < Y (SIGM1]p.4 — SIGP[1]5.4)
A,BEP,A#B

=>" " (SIGA[]p.4 — SIGA[114.5)

AeP BEP\A

=) SIGR(lpr —) SIG*[Iss

BeP\R BeP\S

+ >0 Y (SIGM11p,4 — SIG*([1]4,5)
A€eP\{R,S} BEP\A

<—6n’+ > Y (SIGM11p.a —SIG [1]4.5).
AeP\{R,S} BEP\A

The first inequality is from (D.38), the second line is from re-labeling and re-arranging
terms, the third line comes from separating out the terms A = § and A = R and noting
that SIGR[1] RB= SIGS[1] B.s = 0 (since the receiver will never output packets to other
nodes and the sender will never input packets, see (C.3.16-20) and (C.3.21-22)), and
the final inequality is due to the fact that we are in case F3, so the sender knowingly
inserted D packets, but the receiver received fewer than D — 61> packets corresponding

Authenticated Adversarial Routing 769

to the current codeword.®* Using an averaging argument, we can find some A € G such
that
4n* —8n<6n®—n< Y (SIG*[1]p.4 — SIG*[1]4.5). (D.39)
BeP\A

where the first inequality is obvious. Statement 7 of Lemma D.11 now guarantees that
A is corrupt.® (|

D.3. Handling Failures as in F4: Packet Duplication 4+ Deletion

The goal of this section will be to prove the following theorem.

Theorem D.34. Suppose transmission T failed and falls under case F4, and at some
later time (after transmission T but before any additional nodes have been eliminated)
the sender has received all of the testimony parcels from all nodes on Pr. Then the
sender can eliminate a corrupt node.

The idea of the proof is as follows. Case F4 of transmission failure roughly corre-
sponds to packet duplication and packet deletion: there is a node N € G who is replac-
ing valid packets with copies of old packets it has already passed on. Therefore, simply
tracking potential changes and net packets into and out of N will not help us to locate
N, as both of these quantities will be consistent with honest behavior. Instead, we use
the fact that case F4 implies that the receiver will have received some packet p (from the
current codeword) twice. We will then use the testimonies, which include nodes’ sig-
natures on the net number of times p has crossed each of their edges, to find a corrupt
node N by looking for a node who output p more times than it input p.

Proof. By definition of F4, the receiver received some packet p (corresponding to
the current codeword) at least twice. Therefore, when (C.7.178-179) is reached, the
receiver will send the label of p back to the sender (which reaches S by the end of the
transmission by Lemma D.21), and this is in turn broadcasted as part of the sender’s start
of transmission broadcast in the following transmission ((C.7.190-192) and (C.7.200)).
We will use the following notation to describe the specific information the testimonies
contain in the case of F4 (see (C.1.17) and (C.1.32)):

- SIGA[pla,p denotes the net number of times p has traveled across directed edge
E(A, B), as signed by B and stored in A’s (outgoing) signature buffer.

— SIGA[plB.a denotes the net number of times p has traveled across directed edge
E(B, A), as signed by B and stored in A’s (incoming) signature buffer.

64 More precisely, F3 states that the sender knowingly inserted at least D packets and the receiver did not
receive any packet (from the current codeword) more than once. By Fact 1/, since we are not in case S1, the
receiver got fewer than D — 6n° distinct packets corresponding to the current codeword.

65 Intuitively, A must be corrupt since the sum on the RHS of (D.39) represents the net number of packets
A input minus the number of packets A output. Since this difference is larger than the capacity of A’s internal
buffers, A must have deleted at least one packet and is necessarily corrupt.

770 Y. Amir, P. Bunn, and R. Ostrovsky

Consider the following string of equalities:

0= > Y (SIG"pls.a—SIG*[p)p.4)

AePr BePr

=3 > (SIGE(pla.s — SIG*[pls,4)

AePr BePr

= > Y (SIGPIplas — SIGA[plp.a)

A€Pr\{R,S} BEPr

+ > (SIGP1plr 5 — SIG[plp.x)
BEPT

+) (SIGP1pls.5 — SIG®[pls.s)
BEPT

= Y Y (SIGPplas — SIGM[plp.a)

AePr\(R,S} BEPr

+ Y (SIG(pls.s — SIGF (s &) (D.40)
BEPT

The first equality is trivial, the second equality comes from re-labeling and re-arranging
the terms of the sum, the third comes from separating out the A =S and A = R
terms, and the final equality results from the fact that R never outputs packets and S
never inputs packets, and hence they will never sign non-zero values for SIG[p]gr,p or
SIG[p]g,s, respectively (see (C.3.16-20) and (C.3.21-22)). Because p was received by
R at least twice (by choice of p) and S will never send any packet to more than one
node,66 we have

> (SIGPpls.s — SIGR[pls.r) < —1. (D.41)
BEPT

Plugging this into (D.40) and re-arranging:

1< >) (SIGPIpla.s —SIG [pls.a). (D.42)
AePr\{R,S} BePr

By an averaging argument, there must be some A € Pr \ {R, S} such that

1< Y (SIGPplas — SIG*pls.a). (D43)
BEPT
Now Statement 8 of Lemma D.11 says that A is necessarily corrupt.®’ O

66 This was proven in Observations 2-3 of Lemma B.15 for the edge-scheduling protocol. However,
the proofs of these observations remain valid in the (node-controlling+edge-scheduling) model because the
sender is honest (by the conforming adversary assumption).

67 Intuitively, A is corrupt since (D.43) says that it has output p more times than it input p.

Authenticated Adversarial Routing 771

(1]
(2]
(3]
(4]

[5]

(6]
(7]
(8]

[91

[10]

(1]
[12]

[13]
[14]

[15]

[16]
[17]

[18]

[19]

References

Y. Afek, E. Gafni, End-to-end communication in unreliable networks, in Proc. of the 7th ACM Symp. on
Principles of Distributed Computing (1988), pp. 131-148

Y. Afek, E. Gafni, A. Rosén, The slide mechanism with applications in dynamic networks, in Proc. of
the 11th ACM Symp. on Principles of Distributed Computing (1992), pp. 35-46

Y. Afek, B. Awebuch, E. Gafni, Y. Mansour, A. Rosen, N. Shavit, Slide—the key to polynomial end-to-
end communication. J. Algorithms 22, 158—186 (1997)

W. Aiello, E. Kushilevitz, R. Ostrovsky, A. Rosén, Adaptive packet routing for bursty adversarial traffic.
J. Comput. Syst. Sci. 60(3), 482-509 (2000)

B. Awerbuch, T. Leighton, Improved approximation algorithms for the multi-commodity flow problem
and local competitive routing in dynamic networks, in Proc. 26th ACM Symp. on Theory of Computing
(1994), pp. 487496

B. Awerbuch, Y. Mansour, N. Shavit, End-to-end communication with polynomial overhead, in Proc. of
the 30th IEEE Symp. on Foundations of Computer Science, FOCS (1989)

B. Awerbuch, D. Holmer, C. Nina-Rotaru, H. Rubens, An on-demand secure routing protocol resilient
to byzantine failures, in Proc. of 2002 Workshop on Wireless Security (2002), pp. 21-30

B. Barak, S. Goldberg, D. Xiao, Protocols and lower bounds for failure localization in the Internet, in
Proc. of Advances in Cryptology—27th EUROCRYPT 2008. LNCS, vol. 4965 (Springer, Berlin, 2008),
pp. 341-360

P. Bunn, R. Ostrovsky, Asynchronous throughput-optimal routing in malicious networks, in Proc. 37th
International Colloquium on Automata, Languages, and Programming. LNCS, vol. 6199 (Springer,
Berlin, 2010), pp. 236-248

P. Bunn, R. Ostrovsky, Secure end-to-end communication with optimal throughput in unreliable net-
works (2013). arXiv:1304.2454

S. Even, O. Goldreich, S. Micali, On-line/off-line digital signatures. J. Cryptol. 9(1), 35-67 (1996)

S. Goldberg, D. Xiao, E. Tromer, B. Barak, J. Rexford, Path-quality monitoring in the presence of
adversaries. ACM SIGMETRICS 36, 193-204 (2008)

O. Goldreich, The Foundations of Cryptography, Basic Applications (Cambridge University Press, Cam-
bridge, 2004)

E. Kushilevitz, R. Ostrovsky, A. Rosén, Log-space polynomial end-to-end communication. SIAM J.
Comput. 27(6), 1531-1549 (1998)

S. Micali, C. Peikert, M. Sudan, D. Wilson, Optimal error correction against computationally bounded
noise, in Proc. of 2nd Theory of Cryptography Conf. LNCS, vol. 3378 (Springer, Berlin, 2005), pp.
1-16

R. Perlmann, Network layer protocols with byzantine robustness. PhD thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology (1988)

S. Rajagopalan, L. Schulman, A coding theorem for distributed computation, in Proc. 26th ACM Symp.
on Theory of Computing (1994), pp. 790-799

L. Schulman, Coding for interactive communication. IEEE Trans. Inf. Theory 42(6), 1745-1756 (1996).
Special issue on Codes and Complexity, Part I. (Preliminary versions: Proc. 33rd FOCS 724-733, 1992
and Proc. 25th STOC 747-756, 1993)

A. Shamir, Y. Tauman, Improved online/offline signature schemes, in Proc. of 21st Advances in Cryp-
tology, CRYPTO 2001. LNCS, vol. 2139 (Springer, Berlin, 2001), pp. 355-367

http://arxiv.org/abs/arXiv:1304.2454

	Authenticated Adversarial Routingt0
	Abstract
	Introduction
	Previous Work
	End-to-End Communication
	Fault Detection and Localization Protocols
	Error Correction in the Active Setting

	Subsequent Work
	Our Results

	Challenges and Naïve Solutions
	Challenges in Dealing with Node-Controlling Adversaries
	Highlights of Our Solution

	The Formal Model
	The Edge-Scheduling Adversarial Model
	The Node-Controlling + Edge-Scheduling Adversarial Model

	Routing Protocol in the Edge-Scheduling Adversarial Model
	Deﬁnitions and High-Level Ideas
	Detailed Description of the Edge-Scheduling Protocol
	Setup
	Routing Phase
	Re-Shufﬂe Rules

	Analysis of the Edge-Scheduling Adversarial Protocol

	Routing Against a (Node-Controlling + Edge-Scheduling) Adversary
	Control Information
	Gathering Control Information
	The Blacklist
	Overview of the Mal-Slide Protocol
	Analysis of the Mal-Slide Protocol

	Conclusion
	Appendix A. Pseudo-Code for the Edge-Scheduling Adversarial Protocol
	Appendix B. Edge-Scheduling Protocol: Pseudo-Code Intensive Claims and Proofs
	Base Case
	Induction Step
	Lines (A.3.28)
	Lines (A.3.32-33)
	Line (A.3.35)
	Line (A.4.38)
	Lines (A.4.46) and (A.4.50)
	Lines (A.4.52-53)
	Line (A.4.55), (A.4.57), and (A.4.64)
	Line (A.4.61-62)
	Lines (A.5.89-94)
	Line (A.4.53)
	Lines (A.5.89-90)
	Line (A.3.32)
	Base Case: l=2
	Induction Step

	Appendix C. Pseudo-Code for Node-Controlling + Edge-Scheduling Protocol
	Appendix D. Node-Controlling + Edge-Scheduling Protocol: Pseudo-Code Intensive Proofs
	Handling Failures as in F2: Packet Duplication
	Handling Failures as in F3: Packet Deletion
	Handling Failures as in F4: Packet Duplication + Deletion

	References

