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Abstract. AES is the most widely used block cipher today, and its security is one of
the most important issues in cryptanalysis. After 13 years of analysis, related-key at-
tacks were recently found against two of its flavors (AES-192 and AES-256). However,
such a strong type of attack is not universally accepted as a valid attack model, and in
the more standard single-key attack model at most 8 rounds of these two versions can
be currently attacked. In the case of 8-round AES-192, the only known attack (found
10 years ago) is extremely marginal, requiring the evaluation of essentially all the 2128

possible plaintext/ciphertext pairs in order to speed up exhaustive key search by a fac-
tor of 16. In this paper we introduce three new cryptanalytic techniques, and use them
to get the first non-marginal attack on 8-round AES-192 (making its time complexity
about a million times faster than exhaustive search, and reducing its data complexity to
about 1/32,000 of the full codebook). In addition, our new techniques can reduce the
best known time complexities for all the other combinations of 7-round and 8-round
AES-192 and AES-256.
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1. Introduction

The Rijndael block cipher [5] was developed in the late 1990s by Joan Daemen and
Vincent Rijmen, and was selected as the Advanced Encryption Standard (AES) in 2001
[15]. Over the last ten years it replaced the Data Encryption Standard (DES) in most ap-
plications, and had become the block cipher of choice for any new security application.
It has three possible key sizes (128, 192, and 256 bits), and in 2003 the US government
had publicly announced that AES-128 can be used to protect classified data up to the
level of “secret”, and that AES-192 and AES-256 can be used to protect classified data
up to the level of “top secret”.

Due to its importance and popularity, the security of AES had attracted a lot of at-
tention, and is considered one of the hottest areas of research in cryptanalysis. A major
breakthrough was the recent discovery of related-key attacks on the full versions of
AES-192 and AES-256 [1,2] which are faster than exhaustive search, but have imprac-
tical complexities. In another line of research [3], related-key attacks requiring practical
time complexity of 245 were found on AES-256 with up to 10 rounds, and related-key
attacks requiring semipractical time complexity of 270 were found on AES-256 with 11
rounds (the full AES-256 algorithm has 14 rounds, so none of these attacks endanger
the security of AES in real applications).

The main weakness of AES-192 and AES-256 exploited in these attacks was their
extremely simple key schedule. In a related-key attack model, this made it possible to
cancel data differences with corresponding key differences over many rounds of AES.
This created a very high probability differential characteristic, which led to a greatly im-
proved time complexity. However, such attacks make a very strong assumption that the
attacker can ask the encryption box to modify the unknown key in a known way. Some
of these attacks even assume that the attacker can obtain a large number of related keys,
or that he can obtain related intermediate subkeys—see [1] for a discussion of these
possibilities. Consequently, related-key attacks are important considerations during the
design and certification stage of new ciphers, but are not considered a realistic threat in
practical security protocols which use the block cipher in a standard way.

In this paper we consider the classical attack model of a single key and multiple
known or chosen plaintext/ciphertext pairs. In this model the attacker has to deal with
the very well designed data path of AES, and cannot directly benefit from its weak
key schedule. Consequently, there are no known attacks which are faster than exhaus-
tive search on any one of the three flavors of AES, and the best we can do is to at-
tack reduced-round versions of AES. In the case of AES-256, the largest number of
rounds we can attack faster than the 2256 complexity of exhaustive search is 8. In the
case of AES-192 the reference complexity of exhaustive search is reduced to 2192, and
while there is one attack on 8-round AES-192 which was published [11], it is extremely
marginal: It requires the evaluation of essentially all the possible plaintext/ciphertext
pairs under the unknown key, and even then the time required to derive the key is only
16 times faster than the 2192 complexity of exhaustive search (one can argue that given
the complete codebook of size 2128, there is no need to find the actual key in order
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to easily decrypt any given ciphertext . . . ). In the case of AES-128, there is no known
attack on its 8-round version, and the best we can do is to attack its 7-round version.

In order to improve all these known attacks, and especially the marginal attack on
8-round AES-192 which no one was able to improve upon in the last ten years, we de-
velop three new cryptanalytic techniques. Our starting point is the attack on 7-round
AES developed by Gilbert and Minier [12], which constructs a large table of 272 en-
tries, where each entry contains a sequence of 256 byte values. This idea was extended
to 8-round AES by Demirci and Selçuk [6], who constructed an even larger table of
2192 entries (again containing sequences of 256 byte values, which are constructed in
a slightly modified way). Due to the 2200 time required just to construct this table, this
attack is worse than exhaustive search for 8-round AES-192, and can only be applied to
8-round AES-256.

Our first new idea (called multiset tabulation) is to replace the sequence of 256-byte
values in each table entry by the multiset of its values. Even though we lose some infor-
mation, we show that it is still possible to use such a table in order to discard with very
high probability incorrect key guesses. This modification makes it possible to reduce the
number of table entries (and thus also the time required to prepare the table) by a factor
of 28. A much bigger saving (by a factor of 257) in the size of the table is obtained by
another new technique which we call differential enumeration. It uses some truncated
differential (which need not have particularly high or low probability, as required in
standard or impossible differential attacks) in order to enumerate the entries of such a
table in a much more efficient way: Instead of directly enumerating state values, the
attacker derives them indirectly by enumerating the input and output differential values
of certain internal S-boxes. By reducing the space complexity in such a major way, we
can now trade it off with the high time complexity of the Demirci and Selçuk attack in
order to get greatly improved attacks. Finally, we develop a new key bridging technique
which exploits the weak key schedule of AES by using the following surprising obser-
vation: In the particular case of 8-round AES-192, it is possible to compute one byte of
the whitening subkey (used before the first round) directly from four bytes of the last
subkey (used at the end of the eighth round), even though they are separated by eight
consecutive key mixing stages. Since our attack requires guessing of these five subkey
bytes in the first and last rounds, we get an extra saving of 28 in our time complexity.
By combining these three techniques, we can now break this previously marginal case
in about one millionth of the complexity of exhaustive search.

Our new results are summarized and compared with the best previously known
single-key attacks in Table 1. As can be seen in this table, our time complexities for

Table 1. Comparing the time complexities of the best previous attacks and our new attacks.

Rounds AES-128 AES-192 AES-256 AES-IND

8 Best Published N/A 2188∗ 2204∗ 2212†

Our Results N/A 2172 2196 2204

∗Square.
†Meet in the middle.
AES-IND—AES with independent subkeys.
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8-round AES are considerably better than the best previous results for both AES-192
and AES-256. In addition, our attack can overcome any possible enlargement of the key
size and improvement of the key schedule of 8-round AES, since we can directly find
all the subkeys of AES-IND (in which they are independently chosen) with just a little
higher complexity.

The rest of this paper is organized as follows. In Sect. 2 we describe the AES block
cipher and introduce our notation. In Sect. 3 we describe the techniques used in previous
attacks on reduced-round AES, and analyze their complexity. In Sect. 4 we introduce the
multiset tabulation technique and prove its validity by rigorous probabilistic analysis.
The differential enumeration technique is introduced in Sect. 5. In Sect. 5.1 we introduce
the key bridging technique, prove its validity, and discuss when it can be applied to
improve other attacks on AES. We use our new techniques in Sect. 6 to improve the
best known attacks on 7-round AES, and in Sect. 7 to improve the best known attacks
on 8-round AES. In Appendix A we analyze another improvement of the Demirci–
Selçuk attack on 7-round AES proposed in [7] and show that its time complexity is
significantly higher than claimed by the authors. Finally, we summarize our results in
Sect. 8.

2. A Short Description of AES

The advanced encryption standard (AES) [5] is an SP-network that supports key sizes
of 128, 192, and 256 bits. A 128-bit plaintext is treated as a byte matrix of size 4 × 4,
where each byte represents a value in GF(28). An AES round applies four operations to
the state matrix:

– SubBytes (SB)—applying the same 8-bit to 8-bit invertible S-box 16 times in par-
allel on each byte of the state,

– ShiftRows (SR)—cyclic shift of each row (the ith row is shifted by i bytes to the
left, where the row numbering starts from 0),

– MixColumns (MC)—multiplication of each column by a constant 4 × 4 matrix
over the field GF(28), and

– AddRoundKey (ARK)—XORing the state with a 128-bit subkey.

We outline an AES round in Fig. 1.
In the first round, an additional AddRoundKey operation (using a whitening subkey)

is applied, and in the last round the MixColumns operation is omitted. Rounds which
include the MixColumns operation are called full rounds.

The number of rounds depends on the key length: 10 rounds for 128-bit keys, 12
rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are numbered
0, . . . ,Nr − 1, where Nr is the number of rounds (Nr ∈ {10,12,14}). For the sake of
simplicity we shall denote AES with n-bit keys by AES-n, e.g., AES with 128-bit keys
(and thus with 10 rounds) is denoted by AES-128. We use AES to mean all three variants
of AES.

The key schedule of AES takes the user key and transforms it into Nr + 1 subkeys of
128 bits each. The subkey array is denoted by W [0, . . . ,4 · Nr + 3], where each word of
W [·] consists of 32 bits. Let the length of the key be Nk 32-bit words, then the first Nk
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Fig. 1. An AES round.

words of W [·] are loaded with the user supplied key. The remaining words of W [·] are
updated according to the following rule:

– For i = Nk, . . . ,4 · Nr + 3, do
• If i ≡ 0 mod Nk then W [i] = W [i − Nk] ⊕ SB(W [i − 1]≪ 8) ⊕ RCON[i/Nk],
• Else if Nk = 8 and i ≡ 4 mod 8 then W [i] = W [i − 8] ⊕ SB(W [i − 1]),
• Otherwise W [i] = W [i − 1] ⊕ W [i − Nk],

where RCON[·] is an array of pre-determined constants, and ≪ denotes rotation of the
word by 8 bits to the left.

2.1. The Notations Used in the Paper

In the sequel we use the following definitions and notations:
The state matrix at the beginning of round i is denoted by Xi , and its bytes are denoted

by 0,1,2, . . . ,15, as described in Fig. 1. Similarly, the state matrix after the SubBytes
and the ShiftRows operations of round i are denoted by Xi(SB) and Xi(SR), respectively.

We denote the subkey of round i by ki , and the first (whitening) key by k−1, i.e.,
ki = W [4 · (i + 1)]||W [4 · (i + 1) + 1]||W [4 · (i + 1) + 2]||W [4 · (i + 1) + 3]. In some
cases, we are interested in interchanging the order of the MixColumns operation and
the subkey addition. As these operations are linear they can be interchanged, by first
XORing the data with an equivalent subkey and only then applying the MixColumns
operation. We denote the equivalent subkey for the altered version by ui , i.e., ui =
MC−1(ki). The bytes of the subkeys are numbered by 0,1, . . . ,15, in accordance with
the corresponding state bytes.

We use the following notations for intermediate encryption values: The intermediate
state at the beginning of round i in the encryption of P j is denoted by X

j
i , and its

bytes are denoted by X
j
i,l , for 0 ≤ l ≤ 15. Similarly, the intermediate values after the

SubBytes and the ShiftRows operations of round i are denoted by X
j

i(SB),l and X
j

i(SR),l ,
respectively.

In our attacks we mostly consider the encryption of δ-sets, which are structured sets
of 256 plaintexts {P 0,P 1, . . . ,P 255} in which one active byte assumes each one of
the 256 possible values exactly once, and each one of the other 15 bytes is a (possibly
different) constant. A state byte is called balanced if the XOR of its 256 values during
the encryption of a δ-set is zero.

In all the observations considering reduced-round versions of AES, the numbering of
the rounds starts with round 0. When we analyze the behavior of some consecutive inner
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rounds of AES, we shift the round numbering accordingly, depending on the number of
rounds we add at the beginning.

Finally, we measure the time complexity of all the attacks in units which are equiv-
alent to a single encryption operation of the relevant reduced-round variant of AES.
We measure the space complexity in units which are equivalent to the storage of a sin-
gle plaintext (namely, 128 bits). To be completely fair, we charge for all the operations
carried out during our attacks, and in particular we do not ignore the time and space
required to prepare the various tables we use. Note that in this sense, all the standard
time/memory tradeoff attacks are worse than exhaustive search due to their lengthy pre-
processing phase.

3. Previous Work

The first attack developed against AES was the Square attack, which was found by its
designers [4]. The Square attack is based on the following observation:

Observation 1. Consider the encryption of a δ-set through three full AES rounds. The
set of 256 corresponding ciphertexts is balanced, i.e., the XOR of the 256 values in each
one of its 16 bytes is zero.

The observation follows easily from the structure of AES, as demonstrated in Fig. 2.
This property is the basis of many attacks on reduced-round variants of AES. For

example, it can be used to attack 6-round AES by adding one round at the top and two
rounds at the bottom. In a naive version of such an attack, the adversary guesses four
bytes of the key k−1 in order to construct a collection of 256 plaintexts which form a
δ-set at state X1 (e.g., if the active byte of the δ-set is byte 0, bytes 0,5,10,15 of k−1).
Then she guesses four bytes of the equivalent subkey u5 and one byte of the equivalent
subkey u4, and checks whether the 256 intermediate values in one byte of the state X4
sum up to zero. (For example, if the byte to be checked is byte 0, then the subkey bytes
the adversary should guess are byte 0 of u4 and bytes 0,7,10,13 of u5.) This naive
version requires 232 chosen plaintexts and about 272 encryptions. In [11], the attack was

Fig. 2. The development of a δ-set through 3 rounds of AES, where A stands for an active byte, B stands
for a balanced byte, and C stands for a constant byte.
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improved using partial sums and other techniques, which reduced the time complexity
to the practical value of 242 encryptions. The resulting attack is the best known attack
on 6-round AES.

In [12], Gilbert and Minier proposed to refine the information on the intermediate
encryption values of the δ-sets exploited in the attack. Their attack is based on the
following observation:

Observation 2. Consider the encryption of a δ-set through three full AES rounds. For
each one of the 16 bytes of the ciphertext, we can define a sequence of 256 values for this
byte by ordering the plaintexts according to the value of their active byte. Then any such
sequence is fully determined by just nine byte parameters, which are complex functions
of the constants in the δ-set and the key bytes. Consequently, for any fixed byte position,
there are at most 272 possible sequences when we consider all the possible choices of
keys and δ-sets (out of the (28)256 = 22048 “theoretically possible” 256-byte sequences,
and out of the 2256+15×8 = 2376 sequences which could be potentially defined by the
choice of 15 constant bytes and 256 key bits).

This observation was used in [12] to mount an attack on 7-round AES-128 with time
complexity slightly smaller than that of exhaustive key search. Since the attack algo-
rithm is a bit complex and not used in our paper, we omit it here.

In [6], Demirci and Selçuk extended the observation of [12] by another round. They
showed the following:

Observation 3. Consider the encryption of a δ-set through four full AES rounds. For
each of the 16 bytes of the state, the ordered sequence of 256 values of that byte in the
corresponding ciphertexts is fully determined by just 25 byte parameters. Consequently,
for any fixed byte position, there are at most 2200 possible sequences when we consider
all the possible choices of keys and δ-sets (out of the (28)256 = 22048 “theoretically
possible” 256-byte sequences, and out of the 2256+15×8 = 2376 sequences which could
be potentially defined by the choice of 15 constant bytes and 256 key bits).1

This observation was used in [6] to mount attacks on 7-round and 8-round variants of
AES-256. The attack on 7-round AES-256 is roughly as follows:

1. Preprocessing phase: Compute all the 2192 possible values of the 255-byte se-
quence given in Observation 3, and store them in a hash table.

2. Online phase:
(a) Guess the value of four bytes in the whitening key k−1 and of one byte in k0,

and for each guess, construct a δ-set from the data. (For example, if the active
byte of the δ-set is byte 0, then the guessed bytes are bytes 0,5,10,15 of k−1

1 In [6] the authors note that the function fc1,...,c25 (x) can be written as fc1,...,c25 (x) = gc1,...,c24 (x) ⊕
c25, and thus one can reduce the number of possible sequences by picking some x0, and considering the
augmented function f ′

c1,...,c24
(x) = fc1,...,c25 (x) − fc1,...,c25 (x0) = gc1,...,c24 (x) − gc1,...,c24 (x0). In this

case, the number of parameters is reduced to 24, the number of “interesting” entries in each sequence is
reduced to 255 (as f ′(x0) = 0, independently of the choice of x0 and c1, . . . , c24), and the number of possible
sequences is reduced to 2192.
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and byte 0 of k0. Note that byte 0 of k0 is used only to compute the order of
the values in the δ-set.)

(b) Guess four bytes of the equivalent subkey u6 and one byte of the equivalent
subkey u5 and partially decrypt the ciphertexts of the δ-set to obtain the se-
quence of 256 intermediate values of one byte of the state X5. (For example,
if the byte to be checked is byte 0, then the subkey bytes the adversary should
guess are byte 0 of u5 and bytes 0,7,10,13 of u6.)

(c) Check whether the sequence exists in the hash table. If not, discard the key
guess.

The data complexity of the attack is 232 chosen plaintexts. The time complexity of
the online phase is relatively modest at 280, but the space complexity and the time
complexity in encryption operations required to prepare this large table are about 2200.
These complexities are worse than exhaustive search for both AES-192 and AES-128.
However, Demirci and Selçuk presented a tradeoff, which makes it possible to decrease
the memory complexity at the expense of increasing both the data and the online time
complexities. This results in an attack on 7-round AES-192 with data complexity of 296

chosen plaintexts, and time and space complexities of 2144.
The attack in [6] can be extended to 8-round AES-256 by guessing the full subkey

of the last round. This increases the time complexity of the online phase from 280 to
2208 encryptions, and makes it impossible to rebalance the parameters in order to attack
8-round AES-192.

Finally, in a more recent paper, Demirci et al. [7] claim that by optimizing their
technique they can also attack 7-round AES-128 faster than exhaustive search. However,
as we show in Appendix A, the analysis of [7] is flawed, and the correct running time
of the attack is about 232 times more than claimed, and in particular greater than the
complexity of exhaustive key search for the 128-bit key version.

4. The Multiset Tabulation Technique

Our first technique improves Observation 3 by replacing the sequence of 256 values with
the multiset of the values. We show by a rigorous probabilistic analysis that although
information is lost in the transformation to a multiset, the new table still allows the
adversary to discard all the incorrect key guesses with an overwhelming probability.

Observation 4. Consider the encryption of a δ-set {P 0,P 1, . . . ,P 255} through four
full AES rounds.

For each 0 ≤ l ≤ 15, the (un-ordered) multiset2 [X0
4,l ⊕X0

4,l ,X
1
4,l ⊕X0

4,l , . . . ,X
255
4,l ⊕

X0
4,l] is fully determined by the following 24 byte parameters:

– The full 16-byte state X0
2.

– Four bytes of the state X0
1. (For example, if the active byte of the δ-set is byte 0

then these are bytes 0,1,2,3.)

2 Unlike sets, elements can occur multiple times, and the multiset retains this multiplicity along with the
values.
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– Four bytes of the subkey k2. (For example, if l = 0 then these are bytes 0,5,10,15.)

Moreover, this multiset can assume only 2184 values out of the
(510

256

) ≈ 2505.2 “theo-
retically possible” values.3

Our variant has several advantages over Observation 3:

– In our variant, the parameters upon which the sequence depends are specified ex-
plicitly. This improvement will be crucial for the major reduction in the number of
parameters which we shall present in the next section.

– The smaller number of possible configurations in our variant (2184 instead of 2192)
allows to reduce the memory requirements of the attack and the time complexity
of the preprocessing phase by a factor of 28.

– Since we consider a multiset instead of an ordered sequence, the adversary does
not need to know the order of the values in the δ-set at the beginning of the four
rounds. This allows to reduce the time complexity of the online phase of the attack
by a factor of 28 (by avoiding the guess of one byte in the subkey k0).

Proof. The proof emphasizes the meet-in-the-middle nature of the observation.
We start with the “bottom side” of the four rounds. First, we observe that if the values

{X0
2,X

1
2, . . . ,X

255
2 } are known, then the knowledge of bytes 0,5,10,15 of k2 yields

the knowledge of the entire first column before the AddRoundKey of round 3 in all the
256 encryptions. Since the AddRoundKey preserves differences, this yields the desired
values of the vector of differences (X0

4,l ⊕ X0
4,l ,X

1
4,l ⊕ X0

4,l , . . . ,X
255
4,l ⊕ X0

4,l).

Second, we note that in order to know the values {X0
2,X

1
2, . . . ,X

255
2 }, it is suffi-

cient to know the value X0
2 which is given as part of the parameters, and the differ-

ences (X0
2 ⊕X0

2,X
1
2 ⊕X0

2, . . . ,X
255
2 ⊕X0

2). Since the ShiftRows, the MixColumns and
the AddRoundKey operations are linear, it is thus sufficient to know the differences
(X0

1(SB) ⊕ X0
1(SB),X

1
1(SB) ⊕ X0

1(SB), . . . ,X
255
1(SB) ⊕ X0

1(SB)).
Now we turn to the “top side” of the four rounds. In round 0, the differences

(X0
0(SB) ⊕ X0

0(SB),X
1
0(SB) ⊕ X0

0(SB), . . . ,X
255
0(SB) ⊕ X0

0(SB)) are known—these are exactly
the 256 possible differences in byte 0 (the rest of the bytes are equal). Note that
the order of the differences is not known, but this does not disturb the adversary
since in our attack she is interested only in the multiset and not in the sequence.
Since the ShiftRows, the MixColumns, and the AddRoundKey operations are linear,
the differences (X0

1 ⊕ X0
1,X

1
1 ⊕ X0

1, . . . ,X
255
1 ⊕ X0

1) are also known. By the struc-
ture of the δ-set, these differences are active in bytes 0,1,2,3 and passive in the rest
of the bytes. Since bytes 0,1,2,3 of X0

1 are given as part of the parameters, bytes
0,1,2,3 of the values {X1

1, . . . ,X
255
1 } are thus also known, and so are bytes 0,1,2,3

of {X0
1(SB),X

1
1(SB), . . . ,X

255
1(SB)}. Since the differences X

j

1(SB) ⊕ X0
1(SB) in all the bytes

except for 0,1,2,3 are zero for all j = 1,2, . . . ,255, this implies that the full vector
of differences (X0

1(SB) ⊕ X0
1(SB),X

1
1(SB) ⊕ X0

1(SB), . . . ,X
255
1(SB) ⊕ X0

1(SB)) is known, as re-
quired above.

Finally, since the multiset depends on 24 byte parameters, it can assume at most 2192

possible values. However, we note that in this count, each δ-set is represented by 28

3 The calculation of the number of possible values is explained at the end of this section.
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multisets, according to the 256 possible choices of P 0. We can then reduce the number
of parameters by one by choosing P 0 such that X0

1,0 = 0 (this is possible since byte 0

in state X1 is active). This reduces the number of possible multisets to 2184, concluding
the proof. �

4.1. Analysis of the Distribution of Sequences

While it is easy to see that in the original Demirci–Selçuk attack, all the wrong subkeys
are discarded with an overwhelming probability, it is far less clear that the same holds
for our multiset tabulation technique. In order to address this issue, we provide in this
section a rigorous analysis of the distribution of the sequences generated in the attacks
described in the paper. The analysis shows that despite the loss of information in our
generation of tables, the adversary is still able to discard all the wrong subkey guesses
with overwhelming probability.

In the analysis, we assume that the sequences obtained during the attack for wrong
key guesses look as they were generated randomly (with the appropriate distribution).
This assumption is very common in cryptanalysis, and in our case it is founded on the
diffusion properties of AES. A wrong subkey guess (even in a single byte) will either
completely change the values in the sequence, or even change the identity of which
elements are taken into consideration (or their order).

The first attack we discuss is the original attack of Demirci–Selçuk, discussed in
Observation 3. In this attack, a vector of 256 entries is evaluated as (f (0), f (1), . . . ,

f (255)), where f (i) = fc1,...,c25(i). As the evaluations of the vector are randomly dis-
tributed (for a wrong subkey, the outcome is expected to be random), we can easily
conclude that there are 22048 possible vectors, all with the same probability, where the
number of “good” vectors (i.e., ones that can be produced by any of the admissible
functions), is only 2200. Hence, the probability that a wrong subkey guess generates a
vector which is admissible is extremely low, 2−2048 · 2200 = 2−1848.

The improved variant of the attack, mentioned in the footnote of the observation,
takes into consideration vectors of 255 elements, which are generated by taking the
previous 256-element vectors, and subtracting the first element from all other elements
(discarding the first entry which is always 0 after this procedure). It is easy to see that
all 256255 = 22040 vectors can appear with the same probability, and as there are 2192

admissible vectors, defined by the function f ′
c1,...,c24

(x) = fc1,...,c25(x) − fc1,...,c25(0),
again, the probability that a wrong subkey generates an admissible vector is 2−2040 ·
2192 = 2−1848.

For the multiset sequences used in our attack, the analysis is more delicate. First
we note that each entry X0

4,� ⊕ Xi
4,� (besides the entry i = 0, which is always zero)

is distributed randomly. Hence, we look at 255 values, each chosen uniformly and in-
dependently from the set {0,1, . . . ,255}. While this may seem similar to the previous
attack, we deal with multisets, where the order has no meaning. This results with a sig-
nificantly smaller sample space. In other words, a multiset can be considered as a vector
of 256 counters, each counting how many times a specific entry value for X0

4,� ⊕ Xi
4,�

is encountered, such that the sum of all counters is 255 (considering that 0 is always
counted at least once, and hence we disregard it).

Using selection with repetitions, it is easy to see that the number of possible multisets
can be described by a sequence of 255 place holders and 255 dividers placed in some
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order in a linear array of 510 entries. Hence, the number of repetitions of value i is
defined by the number of place holders between the ith and i +1st dividers. This allows
counting the number of possible multisets as

(510
256

) ≈ 2505.2.
Additionally, we have to consider the fact that the multiset is actually a representative

of a few other vectors (picking a different X0, yields a shifted version of the vector).
As each multiset is a representative of at most 255 other vectors,4 we find that there are
more than 2497.2 possible counter vectors that may be encountered.

However, unlike the prior cases where the sample space was distributed uni-
formly, in this case, we obtain a non-uniform distribution. For example, the multiset
{255,0,0, . . . ,0}, occurs with probability of 2−2040, while the multiset {254,1,0, . . . ,0}
occurs with a larger probability of 255 · 2−2040 (as it does not matter which entry of the
255 values X0

4,� ⊕Xi
4,� is 1). Thus, we cannot claim that the probability of encountering

an admissible multiset when examining a wrong subkey is 2184 · 2−497.2, like in the pre-
vious attacks. It may occur that the admissible multisets have a higher probability than
the non-admissible ones, and hence the probability of encountering them for a wrong
subkey guess is no longer negligible.

In order to overcome this problem, we use Poisson approximation to detect the most
probable multisets, and show that there are more than 2467.6 equiprobable multisets
which are the most probable ones, and thus even if all the admissible multisets are
contained in this class, the probability of obtaining an admissible multiset for a wrong
key guess is still bounded from above by 2184 · 2−467.6 = 2−283.6. Since the adversary
checks less than 2200 wrong key guesses, it follows that all of them are expected to
produce non-admissible multisets with overwhelming probability.

As each value of the multiset (up to the first entry) is chosen randomly, we can ap-
proximate the number of times a specific value appears in the multiset using a Poisson
distribution with a mean value of 255/256. This way, we can conclude that on average
out of the 256 possible values X0

4,� ⊕ Xi
4,� (after removing the X0

4,� ⊕ X0
4,� = 0 entry),

about 94 do not appear, 94 appear once, 47 appear twice, 16 three times, four values
appear four times, and one is expected to appear five times.

As this is the most probable outcome, we look only at these cases, and show that there
are sufficiently many of these. Notably, there are
(

256

94

)
·
(

162

94

)
·
(

68

47

)
·
(

21

16

)
·
(

5

4

)
·
(

1

1

)
= 2238.5 · 2155.0 · 257.4 · 214.3 · 22.3 = 2467.6

possible multisets of this structure. Hence, we can conclude that even though the out-
come space is not uniformly distributed, there is a sufficient number of multisets with
the highest probability, to ensure that the attack succeeds.

5. The Differential Enumeration Technique

Observation 4 shows that the possible multisets depend on 24 explicitly stated param-
eters. In order to reduce the size of the precomputed table, we would like to choose

4 Picking a different starting point X0,� , results in changing all the 255 entries of the multiset by XORing

them with X0,� ⊕ X0. As there are at most 255 other values for X0,�, each multiset belongs to the same
equivalence class with as at most 255 other multisets.
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Fig. 3. The 4-round differential characteristic used in our attack.

the δ-set such that several of these parameters will equal to pre-determined constants.
Of course, the key bytes are not known to the adversary and thus cannot be “replaced”
by such constants. At first glance, it seems that the bytes in the intermediate states X0

1
and X0

2 also cannot be made equal to pre-determined constants by choosing the plain-
texts appropriately, since they are separated from the plaintexts by operations involving
an unknown key. However, we show that by using an expected-probability differential
(i.e., a differential whose probability is not assumed to be especially high or especially
low) for 4-round AES, the plaintext P 0 can be chosen such that the full 128-bit state
X0

2 will assume one of at most 264 particular values (which can be computed in advance
and are independent of the choice of key) instead of 2128 possible values.

Consider a truncated differential for four full AES rounds, in which both the input and
the output differences are non-zero in a single byte (e.g., byte 0 both in the input and in
the output as presented in Fig. 3). The probability of this differential is expected to be
about 2−120,5 and thus it is expected that 2120 randomly chosen pairs with difference
only in byte 0 would contain one pair that satisfies the differential. Moreover, since each
δ-set contains 215 pairs with difference in a single byte, a collection of 2105 randomly
chosen δ-sets in which byte 0 is active is expected to contain a right pair with respect to
the differential. For right pairs, we show the following:

Observation 5. Let (P 1,P 2) be a right pair with respect to the differential (i.e., the
difference P 1 ⊕ P 2 is non-zero only in byte 0, and the difference between the corre-
sponding ciphertexts, C1 ⊕ C2, is also non-zero only in byte 0). Then the intermediate
state X1

2 assumes one of at most 264 prescribed values.

Proof. The proof is a meet-in-the-middle argument. We start with the “top side” of
the four rounds. Due to the structure of AES, the difference between the states X1

1(SB)

and X2
1(SB)

(i.e., the intermediate values after SubBytes of round 1) is non-zero only in

bytes 0,1,2,3. Thus, this difference can assume at most 232 distinct values. Since the
ShiftRows, the MixColumns, and the AddRoundKey operations are linear, this implies
that the difference X1

2 ⊕ X2
2 can assume at most 232 different values.

On the other hand, from the “bottom side” we see that the difference X1
3 ⊕ X2

3 is
non-zero only in bytes 0,5,10,15. Since the ShiftRows, the MixColumns, and the Ad-

5 The probability of 2−120 is based on the assumption that 4-round AES behaves like a random permuta-
tion with respect to this differential, and thus forcing 120 bits to be equal has this probability. Theoretically,
it may be the case that due to the algebraic structure of AES, this differential is impossible, which would
lead to very strong impossible differential attacks on reduced-round variants of AES. However, we could not
find any specific reason why this should be the case, and unfortunately, we cannot check this differential
experimentally due to its extremely low probability.
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dRoundKey operations are linear, this implies that the difference X1
2(SB) ⊕ X2

2(SB) can

assume at most 232 different values.
It is well-known that given the input and output differences of the SubBytes operation,

there is one possibility on average for the actual pair of input/output values.6 Moreover,
this pair of actual values does not depend on the key, and can be easily found by pre-
computing the full difference distribution table of the SubBytes operation. Since for the
right pair we consider, there are at most 232 · 232 = 264 possible pairs of input/output
difference of the SubBytes operation in round 2, there are at most 264 possible values
of the full state X1

2, as asserted. �

It follows from the observation that if we choose the δ-set such that P 0 is a member
of a right pair with respect to this expected-probability differential, we are ensured that
the state X0

2 can assume at most 264 possible values. Moreover, since these values do not
depend on the key and can be computed in advance, this allows to construct the “table
of possible multisets” only for these 264 values, which reduces the size of the table and
the time complexity of the preprocessing phase by a huge factor of 257 as shown below.

Three additional remarks are due.

– First, we note that in order to exploit the expected-probability differential we have
to consider as many as 2113 chosen plaintexts, which increases the data complex-
ity of the attack. However, the resultant tradeoff is advantageous since the data
complexity was smaller than the other complexities.

– Second, in order to detect the right pair with respect to the differential, the adver-
sary has to guess several key bytes in the rounds before and after the differential.
However, it turns out that if the differential is chosen such that the non-zero differ-
ences are in the bytes which are active in the δ-set, these key bytes coincide with
the key bytes that should be guessed in the original Demirci–Selçuk attack. Hence,
this does not increase the time complexity of the online phase of the attack.

– Finally, we note that the total number of possible multisets after the combination
with the differential is not 2184 · 2−64 = 2120, but rather 2127. The reason for this
increase is that in the original attack, the number of multisets is reduced by a fac-
tor of 28 since each δ-set corresponds to 28 different multisets, according to the
possible choices of P 0 (see proof of Observation 4). In the new version of the at-
tack, we are forced to choose P 0 to be one of the members of the right pair w.r.t.
the differential, and thus each δ-set corresponds to only two “special” multisets.7

Therefore, the memory complexity and the time complexity of the preprocessing
phase are reduced by a factor of 257 rather than 264, compared to Observation 4.

6 Actually, given the input/output differences, with probability of about 1/2 there are no such pairs, with
probability of about 1/2 there are two pairs, and with probability of about 1/256 there are four pairs.

7 We note that while the table of possible multisets is constructed according to one member of the right

pair, it may occur that in the actual attack, the other member is chosen as P 0, and thus the multiset does not
match the table (even for the right key guess). A simple solution is to repeat the attack for both members of
the right pair. A more advanced solution, which allows to save the extra factor two in the time complexity of
the attack, is to store the multisets only up to XOR with a constant value. This can be achieved by a small
modification to the preprocessing phase, consisting of XORing each multiset with the 256 possible byte values
and storing in the table the resulting multiset which is the least in the lexicographic order amongst the 256
possibilities.
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Fig. 4. The subkeys k5, k6, and k7 in the key schedule of AES-192. The known bytes are colored in black,
and the retrieved bytes are colored in gray.

5.1. The Key Bridging Technique

In this section we show that the time complexity of the online phase in the attacks on
8-round AES-192 can be reduced significantly by using key-schedule considerations.
While most of these considerations are simple, one of them is a novel observation, which
we call key bridging technique, that allows the adversary to deduce some subkey bytes
from some other subkey bytes, even though they are separated by many key mixing
steps. At the end of the section, we show that except for its application in our attack, the
key bridging technique can be used to improve two other previously known attacks on
8-round AES.

We start with the attack on 8-round AES-192. Recall that in the online phase of
this attack, the adversary has to guess four bytes of the subkey k−1, one byte of the
equivalent subkey u5, four bytes of the equivalent subkey u6, and the full k7. The exact
number of bytes that should be guessed depends on the choice of the active byte of the
δ-set and of the byte in which the multiset is constructed. It turns out that if the byte
to be examined at the end of round 4 is one of the bytes 1,6,11,12, then the number
of guessed key bytes is reduced by three. Indeed, by the key schedule of AES-192, the
knowledge of k7 yields the knowledge of the first two columns of k6 (and thus also
of u6) and of the last column of k5 (and thus also of u5), see Fig. 4.

If the byte to be checked at the end of round 4 is byte 1, then the bytes to guess are
byte 13 of u5, bytes 3,6,9,12 of u6, and the full subkey k7. However, as shown earlier,
once k7 is guessed, bytes 3,6 of u6 and byte 13 of u5 can be computed from the key
schedule, thus reducing the time complexity of the online phase of the attack by a factor
of 224.

The complexity can be further reduced by another factor of 28 using the following
novel observation:

Observation 6. By the key schedule of AES-192, knowledge of columns 0,1,3 of the
subkey k7 allows to deduce column 3 of the whitening key k−1 (which is actually Col-
umn 3 of the master key).
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The main novelty in this observation is that it exploits the weak key schedule of
AES-192 in order to provide a surprisingly long “bridge” between two subkeys which
are separated by eight key mixing steps (applied in the reverse direction). In particular,
it makes it possible to compute one byte in the whitening subkey k−1 directly from four
bytes in the last subkey k7,8 which saves a factor of 28 in the time complexity of any
attack which has to guess these five subkey bytes. Since guessing key material in the
first and last round is a very common cryptanalytic technique, this observation can have
wide applicability (for example, it can reduce the time complexity of the impossible
differential attack on 8-round AES-192 presented in [16] from 2180 to 2172, which is the
same as our time complexity but in the much stronger attack model of related keys).

Proof. We start with a simpler observation first presented in [10]:
By the key schedule of AES-192, for any k ≥ 2 and for 0 ≤ j ≤ 3, we have

W [6k + j ] ⊕ W [6k + j + 2]
= (

W [6k + j ] ⊕ W [6k + j + 1]) ⊕ (
W [6k + j + 1] ⊕ W [6k + j + 2])

= W
[
6(k − 1) + j + 1

] ⊕ W
[
6(k − 1) + j + 2

]

= W
[
6(k − 2) + j + 2

]
, (1)

where W [·] are the 32-bit words generated by the key-schedule algorithm. Thus,
the knowledge of words W [6k + j ] and W [6k + j + 2] is sufficient to retrieve
W [6(k − 2) + j + 2]. Similarly, it was observed in [10] that for any k ≥ 2, the knowl-
edge of W [6k+1] and W [6(k−1)+5] is sufficient to retrieve W [6(k−2)+1]. Indeed,
we have

W [6k + 1] ⊕ SB
(
W

[
6(k − 1) + 5

]
≪ 8

)

= (
W [6k + 1] ⊕ W [6k]) ⊕ (

W [6k] ⊕ SB
(
W

[
6(k − 1) + 5

]
≪ 8

))

= W
[
6(k − 1) + 1

] ⊕ W
[
6(k − 1)

] ⊕ RCON[k]
= W

[
6(k − 2) + 1

] ⊕ RCON[k]. (2)

Both observations allow to “jump” over one row in the key-schedule algorithm (see
Fig. 5).

Combining the two observations, we see that for any k ≥ 4, the knowledge of
W [6k + 3] and W [6(k − 1) + 5] is sufficient to retrieve W [6(k − 4) + 3]. Indeed, we
have

W [6k + 3] ⊕ SB
(
W

[
6(k − 1) + 5

]
≪ 8

)

= (
W [6k + 3] ⊕ W [6k + 1]) ⊕ (

W [6k + 1] ⊕ SB
(
W

[
6(k − 1) + 5

]
≪ 8

))

= W
[
6(k − 2) + 3

] ⊕ W
[
6(k − 2) + 1

] ⊕ RCON[k]
= W

[
6(k − 4) + 3

] ⊕ RCON[k]. (3)

8 The four bytes of k7 are 0 and 4 (for obtaining byte 0 of W [27]) and bytes 7 and 15 (for obtaining byte 3
of W [23]).
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Fig. 5. Deducing subkeys using the key-schedule algorithm of AES-192.

This already allows us to “jump” over three rows in the key-schedule algorithm.
Finally, in order to prove Observation 6, note that by assumption the words W [32],

W [33], and W [35] are known. Since we have W [33] ⊕ W [35] = W [23] and W [32] ⊕
W [33] = W [27], this implies that W [27] and W [23] are known. By (3) above (with
k = 4), this is sufficient to retrieve W [3], as asserted. �

Since in the 8-round attack, one of the subkey bytes guessed by the adversary is in-
cluded in the column W [3] (regardless of the active byte in the δ-set, since the adversary
guesses a shifted column), this reduces the time complexity by another factor of 28. In
total, the key-schedule considerations reduce the time complexity of the online phase of
the attack on AES-192 by a factor of 232.

In the attack on 8-round AES-256, key-schedule considerations can help the adver-
sary only a little. By the key schedule, the subkey u6 is independent of the subkey k7,
and thus the only subkey byte the adversary can retrieve is the single byte of u5. The
novel observation presented in the case of AES-192 does not hold for AES-256, and
thus the time complexity can be reduced only by a factor of 28.

It is interesting to note that the search for such long key bridges does not require te-
dious hand calculations or great intuition, since it can be easily automated: By choosing
a random key and observing the effect of changing one of its subkey bytes on all the
other subkey bytes, one could discover all the cases in which some bytes depend only
on a limited number of far away other bytes due to a weak avalanche effect. We rec-



Improved Single-Key Attacks on 8-Round AES-192 and AES-256 413

ommend to apply this procedure to any newly designed cryptosystem in order to detect
such unpleasant surprises in advance.

5.2. Application of the Key Bridging Technique to Other Attacks on 8-Round AES-192

The key bridging technique reduces the need to guess subkey material in attacks on
8-round AES-192. As there are other attacks on 8-round AES-192 (most of which are
in the related-key model), we tried to locate these attacks that can benefit from the new
technique.

Before considering the various attacks, we tried to evaluate what type of attacks can
enjoy this technique. We came to the conclusion that such attacks should need a huge
amount of subkey material in the last stages, and at least one byte from W [3] in the
first whitening key. Additionally, it appears that the attack needs to guess both subkeys
simultaneously (rather than guessing one of the subkeys, and computing the second one
using some other technique), as we demonstrate later.

5.2.1. The SQUARE Attack on 8-Round AES-192 [11]

The first attack which we consider as a candidate for improvement is the 8-round attack
SQUARE attack of [11]. In this attack, the adversary guesses the full k7 as well as one
byte of the last column of k−1.

The attack starts with guessing four bytes in k−1, and only then the bytes of k7, which
does not affect the usability of the key bridging, as it is easy to reformulate the relations
such that one byte of k7 is deduced from two bytes of k7 and the byte of k−1. While this
suggests that the key bridging technique may be used, the special nature of the attack,
prevents gaining the expected factor of 28 in the time complexity of the attack.

The way the attack of [11] works, after guessing the four bytes of k−1, a set of 2104

ciphertexts, called a herd, is identified, and is partially decrypted. The partial decryp-
tion is done in steps. Firstly, a few bytes of k7 are guessed, and the partial decryption
reduces the set of values for further decryption to a smaller set, which are then partially
decrypted under a newly guessed subkey byte(s), which in turn results in a smaller set,
and so on, until one byte is determined. Following this fact, obtaining the “free” byte
of k7 is done after a sufficient number of key bytes were already guessed. Hence, the
outcome is that the peak number of operations (key guesses times the size of the set of
values, and which is met several times throughout the execution of the attack), is not
reduced. What can be reduced, is the number of times this peak is reached, implying
that instead of having 10 such peaks, we can reduce the number of “peaks” to just three.
This suggests an improvement of about 3 times in the running time of the attack, i.e.,
to 2186.3.

5.2.2. The Related-Key Impossible Differential Attack on 8-Round AES-192 [16]

In [16] three related-key impossible attacks on 8-round AES-192 are reported. In all
of these attacks parts of the key k7 are guessed, and some pairs (which satisfy some
differential conditions) are then analyzed in the first round, and candidate values for
k−1 are obtained. Then, the candidate subkey (as a whole) is found to be illegitimate
(as it suggests that an impossible event has occurred). All three variants of the attack
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analyze two bytes in k−1 which are part of W [3]. They differ by the number of bytes
from k7 that are guessed, and the amount of data used in each attack.

The first variant of the attack requires 264.5 chosen plaintexts, and takes 2177 time.
This variant allows computing the two bytes of k−1 immediately (due to the key bridg-
ing). For each subkey guess (composed of 14 bytes from k7), there are 271 pairs, each
suggesting one value on average for 8 bytes of k−1. Obviously, if the two bytes of k−1
disagree with the bridged key bytes, we can discard the pair. On the other hand, for each
14-byte guess of k7, there are only 248 (rather than 264) possible subkeys in k−1. Hence,
while the number of useful pairs is reduced to 271 ·2−16 = 255 pairs, the probability that
a wrong subkey guess for k0 remains is reduced to 248 · (1 − 2−48)255 = 248 · e−128 ≈
2−136. This in turn, implies that the number of wrong 14-byte key guesses that remain
is 2112 · 2−136 = 2−24. This probability is slightly smaller than in the original attack
(where the analysis reveals that the probability of a wrong subkey to remain is 2−8),
and hence, one may consider reducing the data complexity with no effect on the data
complexity. This can be done, but the amount of data needed is reduced to 264.43, which
in turn suggests a negligible reduction in the time complexity.

The other two variants faces very similar results. In these variants less key material is
guessed in the last round, which in turn allows to compute only one byte of k−1 using
the key bridging technique. This time, each analyzed pair has probability 2−8 to offer a
consistent solution with the key byte suggested by the key bridging, and there are 256

possible subkeys to discard in the first round.
It is easy to see that the advantage of applying our key bridging technique in this

situation is quite small. This follows the fact that in this specific impossible differential
attack, the majority of the time complexity is identifying the pairs that we need to ana-
lyze. Once the pairs are detected, the suggested subkey in the first round can be easily
computed rather than guessed.

5.2.3. On Key Bridging in Attacks on 8-Round AES-256

One may consider applying the same key bridging technique to AES-256. The main
problem we faced when trying to apply this technique to AES-256 is the fact that our
attack, like many other attacks on AES, require that the last round is without Mix-
Columns. This can be easily justified by the fact that one can switch the order of the last
MixColumns with the AddRoundKey (with the appropriate change to the last subkey
from ki to ui ). While knowing a full column from ui allows computing the respective
column of ki , in our attack on AES-256, the bytes from u6 that are guessed (along with
the full u7), give one byte of u−1 in the third column. Unfortunately, this is insufficient
to gain information about a byte of k−1.

6. Our New Attack on 7-Round AES

In this section we present our new attack on 7-round AES. First we present the basic
variant of the attack, which is used later as part of the 8-round attack. Then we show
how to improve the attack using alteration of the expected-probability differential and
time/memory/data tradeoffs, such that the resulting time complexity will be lower than
the complexity of all previously known attacks on 7-round AES (in all its three flavors).
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6.1. The Basic Attack

In this attack, the byte with non-zero difference in the expected-probability differential
is byte 0, both in the input and in the output differences. The active byte of the δ-set
and the byte that is checked in the state X5 are taken to be byte 0 as well. The attack
works similarly if these bytes are replaced by any other pair of bytes, as long as the
correspondence between the differential and the δ-set is preserved.

The algorithm of the basic attack is as follows.

1. Preprocessing phase: Compute the 2127 possible values of the “special” multisets
defined by Observations 4 and 5, and store them in a hash table.

2. Online phase:
(a) Phase A—Detecting the right pair:

i. Ask for the encryption of 281 structures of 232 plaintexts, such that in each
structure, bytes 0,5,10,15 assume the 232 possible values and the rest of
the bytes are constant.

ii. For each structure, store the ciphertexts in a hash table and look for pairs
in which the difference in bytes 1,2,3,4,5,6,8,9,11,12,14,15 is zero.9

Since this is a 96-bit filtering, only 248 pairs are expected to remain.
iii. For each remaining pair, guess bytes 0,5,10,15 of k−1 and check whether

the difference in the state X1 is non-zero only in byte 0. For each key
guess, about 224 pairs are expected to remain for each key guess.

iv. For each remaining pair, guess bytes 0,7,10,13 of u6 and check whether
the difference in the state X5 is non-zero only in byte 0. For each key
guess, only one pair is expected to remain.

(b) Phase B—Checking the δ-set:
i. For each guess of the eight subkey bytes made in Phase A and for the cor-

responding pair, take one of the members of the pair, denote it by P 0, and
find its δ-set using the knowledge of bytes 0,5,10,15 of k−1. This can be
done by considering the state X0

1, XORing it with the 255 possible values
which are non-zero only in byte 0, and decrypting the 255 obtained values
through round 0 using the known subkey bytes. The resulting plaintexts
are the other members of the δ-set.

ii. Guess byte 0 of u5, and using the knowledge of bytes 0,7,10,13 of u6,
partially decrypt the ciphertexts of the δ-set to obtain the multiset [X0

5,0 ⊕
X0

5,0,X
1
5,0 ⊕ X0

5,0, . . . ,X
255
5,0 ⊕ X0

5,0].
iii. Check whether the multiset exists in the hash table. If not, discard the key

guess (possibly using auxiliary techniques such as repetition of the attack
with a different output byte).

(c) Retrieving the rest of the key: For each remaining key guess, retrieve the rest
of the key by exhaustive key search.

It is clear that the time complexity of the online phase of the attack is dominated
by encrypting 2113 plaintexts, and hence, the data and time complexity of this part of

9 In the description of our attack we assume that the last round does not contain the MixColumns operation.
If it does contain it, one can swap the order of the last round’s MixColumns and AddRoundKey and apply the
attack with the respective changes.
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the attack is 2113. The memory complexity is 2129 128-bit blocks, since each multiset
contains about 512 bits of information and its representation can be easily compressed
into 512 bits of space. The time complexity of the preprocessing phase of the attack is
approximately 2127 · 28 · 2−3 = 2132 encryptions.

6.2. Altering the Expected-Probability Differential

Our first improvement reduces the data and time complexities of the attack by a factor
of 28 without affecting the memory requirements.

We observe that the time complexity of most components of the attack is significantly
lower than the time required to encrypt the plaintexts. Therefore, a tradeoff that would
decrease the data complexity, even at the price of increasing the time complexity of the
other parts of the attack, may reduce its overall complexity.

Such tradeoff is achieved by slightly modifying the expected-probability differential
used in the attack. Instead of requiring the input difference to be non-zero only in byte 0,
we can allow the difference to be non-zero also in one of the bytes 5,10,15. These bytes
are chosen such that the number of possible differences in the state X2 is not increased,
and thus the memory complexity is preserved.

This change reduces the data complexity of the attack to 2105, since it allows the
adversary to use structures of size 216 that contain 231 pairs with the input difference of
the differential. On the other hand, the change requires to guess four additional bytes of
k−1 in order to detect the right pair (if the additional byte is byte 5, then the additional
guessed bytes are 3,4,9,14). As a result, the number of pairs remaining after the first
filtering step of the attack is increased to 272 (instead of 248). For each such pair, there
are 224 possible values of 12 subkey bytes (8 bytes of k−1 and 4 bytes of u6) for which
that pair satisfies the expected-probability differential. As in the 8-round attack, these
values can be found with time complexity of 224 table look-ups for each pair, using the
early abort technique. Thus, the time complexity of Phase A of the modified attack is
296 table look-ups.

At Phase B, we observe that since the value of bytes 3,4,9,14 of k−1 is irrelevant to
the examination of the δ-set, the phase has to be performed only 216 times for each of the
272 pairs (instead of 224 times). Thus, its time complexity is 272 ·216 ·28 ·28 ·2−3 = 2101

encryptions. Therefore, the overall time complexity of the attack is still dominated by
the encryption of the plaintexts, and thus both the data and the time complexity of the
attack are reduced to 2105.

6.3. Using Several Differentials in Parallel

Our second improvement further reduces the data and time complexities by a factor of
5 without affecting the memory requirements.

We observe that the data complexity can be reduced by using several differentials
in parallel. Since there is no specialty in the choice of the active byte at the input and
the output of the original differential, there are 256 possible differentials that can be
used in parallel. In the basic 7-round attack this improvement leads to a data/memory
tradeoff: The attack requires the “active” bytes of the δ-set to correspond to the non-zero
difference bytes of the differential, and altering the active bytes of the δ-set requires
preparing a different precomputed table for each choice of the bytes. As a result, the
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data complexity can be reduced by factor of up to 256, but the memory requirement is
increased by the same factor. Since the memory complexity is the dominant one in the
7-round attack, this tradeoff is not profitable.

However, in the modified attack the data complexity can be reduced (though by a
small factor) without affecting the memory complexity. We observe that since the addi-
tional “active” byte in the expected-probability differential is not used in the analysis of
the δ-set, it can be chosen without affecting the memory complexity. There are six possi-
ble ways to choose this byte (bytes 5,10,15 in the input and bytes 1,2,3 in the output),
and five of them can be used in parallel with the same set of chosen plaintexts.10 This
reduces the data complexity of the attack by a factor of 5 without affecting the memory
complexity. Since the time complexity is dominated by encrypting the plaintexts, it is
also reduced by a factor of 5. Therefore, the data and time complexities of the modified
attack are smaller than 2103. In the sequel, we assume for the sake of simplicity that
these complexities are equal to 2103.

6.4. Time/Memory/Data Tradeoffs

Our third improvement is a fine tuning of the complexities using a simple tradeoff be-
tween data, time, and memory as proposed in [6]. In the preprocessing phase, we pre-
compute the table only for some of the values, and then for each key guess, we perform
the attack for several δ-sets in order to compensate for the missing part of the table. For
each n ≥ 0, this tradeoff decreases the memory complexity and the time complexity of
the preprocessing phase by a factor of 2n, and increases the data complexity and the
online time complexity by the same factor 2n. The resulting complexities lie on the fol-
lowing tradeoff curve: Data complexity—2103+n chosen plaintexts, Time complexity—
2103+n encryptions, Memory requirement—2129−n AES blocks, for any n ≥ 0. Choos-
ing n = 13, all the three complexities are equalized at 2116, which is lower than the time
complexities of all known attacks on 7-round AES, in all its three flavors (see Table 2).

7. Extension to Attacks on 8-Round AES-192 and AES-256

In this section we present the first non-marginal attack on 8-round AES-192. The data
complexity of the attack is 2113 chosen plaintexts, the memory requirement is 2129 128-
bit blocks, and the time complexity is 2172 encryptions. A variant of the attack can be
applied to 8-round AES-256. The data and memory requirements remain unchanged,
but the time complexity is increased to 2196 encryptions, since most of the key-schedule
considerations presented in Sect. 5.1 apply only to AES-192. We present the attack on
AES-192; the attack on AES-256 is similar.

In the attack presented below, we choose the non-zero byte in the output difference of
the expected-probability differential to be byte 1. Accordingly, the byte to be checked
in the δ-set is also chosen as byte 1. This change is required in order to apply the
key-schedule considerations presented in Sect. 5.1. The only non-zero byte in the input

10 In order to do it, the adversary considers structures of size 296 each, in which bytes 1,6,11,12 are

constant and the other bytes take all the 296 possible values. This allows to use bytes 5 and 10 as the additional
active byte in the input of the differential. All three additional bytes cannot be used in parallel, since this would
require structures of size 2128.
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Table 2. A comparison of previous results with our new attacks.

Rounds Key size Complexity Attack type & source
Data (CP) Memory Time MinMax∗

7 128 2112.2 2112.2 2117.2 MA 2117.2 Impossible Differential [13]
290.4 2106 2117.2 MA 2117.2 Impossible Differential [14]
2103+n 2129−n 2103+n 2116 Our Results (Sect. 6)

192 19 · 232 19 · 232 2155 2155 SQUARE [11]
246+n 2192−n 294+n 2143 Meet in the Middle [6]
291.2 2139.2 2101 2139.2 Impossible Differential [13]
2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [13]
2103+n 2129−n 2103+n 2116 Our Results (Sect. 6)

256 21 · 232 21 · 232 2172 2172 SQUARE [11]
234+n 2204−n 282+n 2143 Meet in the Middle [6]
292 2125 2163 MA 2163 Impossible Differential [13]
2113.8 2113.8 2118.8 MA 2118.8 Impossible Differential [13]
2103+n 2129−n 2103+n 2116 Our Results (Sect. 6)

8 192 2127.997 2128 2188 2188 SQUARE [11]
2113+n 2129−n 2172+n 2172 Our Results (Sect. 7)

256 234+n 2206−n 2205.6+n 2205.8 Meet in the Middle [6]†

234+max(n−24,0) 2208−n 2206+n MA 2208 Meet in the Middle [7]‡

289.1 297 2229.7 MA 2229.7 Impossible Differential [13]
2127.997 2128 2204 2204 SQUARE [11]
2113+n 2129−n 2196+n 2196 Our Results (Sect. 7)

∗The lowest time complexity which exceeds the other complexities via the tradeoff option (if such a tradeoff
exists).
†[6] estimates the cost of partial encryption as 2−8 of an encryption. As there are at least six columns which

take part in the partial encryption/decryption, we believe that 2−2.4 is a more accurate estimate.
‡The complexity is higher than claimed in [7] due to a flaw in the analysis.
CP—Chosen plaintext. MA—Memory Accesses.
Time complexity measures the online time in encryption units unless mentioned otherwise.
Memory complexity is measured in AES blocks.

difference of the differential and the only active byte of the δ-set can be still chosen
arbitrarily, as long as they are the same. Without lose of generality, in the sequel we
assume that this byte is byte 0.

A trivial generalization of the 7-round attack presented in Sect. 6 to eight rounds is to
guess the full k7, and for each guess, decrypt all the ciphertexts through the last round
and apply the 7-round attack. While this generalization is sufficiently good for the basic
Demirci–Selçuk attack where the data and time complexities of the online phase of the
7-round attack are low, in our attack it leads to an extremely high time complexity.
Specifically, the first part of the online phase (namely, detecting the right pair) would
require time complexity of 2113 · 2128 = 2241 encryptions, which is significantly higher
than the 2192 computations of exhaustive search.

Instead, we use an early abort technique that was described in [13]. We present here
the technique only briefly, and refer the reader to [13] for the full details.
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In the following, the adversary examines each of the 2113 ·231 = 2144 pairs separately,
and her goal is to detect the subkey candidates for which that pair satisfies the expected-
probability differential. Note that this approach differs from the usual approach where
subkey material is guessed and for each guess of the subkey, the adversary obtains the
corresponding right pairs.

Note that if (P 1,P 2) is a right pair, then the corresponding intermediate states
(X1

6(SR),X
2
6(SR)) have non-zero difference only in bytes 3,6,9,12. Hence, in each col-

umn of X6(SR) there are only 28 possible differences. Since the MixColumns and Ad-
dRoundKey operations are linear, this implies that in each column of X7 there are only
28 possible differences, and thus only 232 · 28 = 240 possible pairs of actual values.
In the technique presented in [13], the adversary considers these 240 pairs in advance,
encrypts them through round 7, and stores the actual values before the last AddRound-
Key operation in a hash table, sorted by the output difference. In the online phase of
the attack, for each examined pair, the adversary considers each shifted column (e.g.,
bytes 0,7,10,13) independently, and accesses the hash table in the row corresponding
to the ciphertext difference. It is expected that 240 · 2−32 = 28 values appear in each
row. Since the table gives the actual values before the AddRoundKey operation, and the
ciphertexts are the values after that operation, each of the pairs in the table suggests one
value for the 32-bit subkey corresponding to that shifted column.

Therefore, for each examined pair, and for each shifted column, the adversary obtains
a list of 28 candidates for the 32-bit subkey corresponding to that column. In a basic
variant of the attack, the adversary aggregates these suggestions to 232 suggestions for
the full k7, and for each suggestion, she decrypts the ciphertext pair through round 7.
Then she uses a similar precomputed table for round 6 to get a list of 28 possible values
of bytes 3,6,9,12 of u6. For each such value, the adversary checks whether the relations
between bytes 3,6 of u6 and the subkey k7 described in Sect. 5.1 hold. If not, the
subkey guess is discarded. Since this is a 16-bit filtering, the adversary is left with
224 candidates for the full k7 and bytes 3,6,9,12 of u6. Finally, using a precomputed
table also in round 0, the adversary obtains a list of 28 possible values of bytes 0,

5,10,15 of k−1. For each such value, the adversary checks whether the relation between
byte 15 of k−1 and the subkey k7 described in Sect. 5.1 holds. If not, the subkey guess
is discarded. Since this is an 8-bit filtering, the adversary is left with 224 candidates
for the full k7, bytes 3,6,9,12 of u6, and bytes 0,5,10,15 of k−1. For each of these
candidates, (P 1,P 2) is a right pair w.r.t. the expected-probability differential, and the
second-phase of the attack can be applied.

The time complexity of this procedure is 240 simple operations for each examined
pair, or 2144 · 240 · 2−8 = 2176 encryptions in total.

The time complexity can be slightly reduced by using a more sophisticated precom-
puted table in order to check the consistency between bytes 3,6 of u6 and the subkey k7.
The table takes bytes 3,6 of MC−1(X6) in both pairs, along with bytes 2,3,5,6 of u7, and
returns the consistent values for bytes 3,6 of u6, if there are any. The precomputation
is done by trying all possible candidates for the pair of bytes for MC−1(X6) along with
the corresponding bytes of u6, to see if the decrypted values satisfy the linear relation
on the differences before the SubBytes operation of round 5. If this is the case, the en-
try corresponding to the MC−1(X6) values and all subkeys of u7 which satisfy the key
relation is stored with the respective u6 bytes. We note that for each key and each pair,
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there is probability of 2−8 that the condition is satisfied, and thus, only 256 of the entries
in the table are nonempty.

At the second part of the online phase of the attack, performed for each of the 2144

pairs (P 1,P 2) and each of the 224 subkeys corresponding to the pair, the adversary
constructs a δ-set and checks whether the corresponding multiset appears in the table.
Note that while in the 7-round attack this phase requires guessing an additional subkey
byte (which is byte 13 of u5), in this attack that subkey byte can be derived from the
subkey k7. The time complexity of the second part is 2168 · 28 · 2−4 = 2172 encryptions.

Therefore, the overall memory requirement of the attack is 2129 128-bit blocks (as in
the basic version of the 7-round attack), the data complexity is 2113 chosen plaintexts,
and the time complexity is 2172 encryptions. These complexities improve significantly
over the only previously known attack on AES-192, which is a Square attack [11] re-
quiring almost the entire codebook and time complexity of 2188 encryptions.

8. Summary

In this paper we introduced three new cryptanalytic techniques which can be used to
improve the best known complexities of all the known attacks on 7 and 8 round versions
of AES, as detailed in Table 2. In particular, we describe the first real attack on 8-
round AES-192 which does not use the full codebook in order to marginally improve
the time complexity of exhaustive search. However, all our attacks have impractical
complexities, and thus they do not endanger the security of any fielded system.

8.1. Follow-up Work

Recently, the attacks presented in this paper have been extended and improved in two
follow-up works.

In [9] (which was accepted to EUROCRYPT 2013), our attack is improved by finding
a better way to exploit the differential enumeration technique, and by adding several
other auxiliary techniques. The improved technique allows to attack 7-round AES-128
with overall complexity of 299 and to mount the first known attack on 9-round AES-
256 (with overall complexity of 2203). This makes the technique proposed in this paper
(along with its enhancement presented in [9]) the most effective technique in attacks
on all three variants of AES (other than the marginal improvements offered by biclique
cryptanalysis of the AES).

Another recent improvement of the attacks is due to [8]. Using computer-aided
search, a series of new key relations was found, allowing to mount attacks on 8-round
AES-192 with overall complexity of 2140, as well as attacks with a very low data com-
plexity (though in exchange for a significant increase in the time and memory complex-
ities).

Appendix A. Analysis of the Meet-in-the-Middle Attack on 7-Round AES
proposed in [7]

For the sake of completeness, we present in this appendix a detailed analysis of the
improved meet-in-the-middle attack on 7-round AES proposed in [7] and show that the
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time complexity of this attack is much higher than that of exhaustive key search (for
AES-128) or higher than claimed (for AES-192 and AES-256).

The attack of [7] is based on several improvements of the observations used in [6]:

1. The number of parameters that determine the values of the examined byte in the
output of 4-round AES can be reduced from 25 to 24 by picking some x0, and
considering the augmented function f ′

c1,...,c24
(x) = fc1,...,c25(x) − fc1,...,c25(x0).

This improvement is used in our attack as well.
2. The number of parameters can be further reduced to 15, under a restriction on the

plaintexts that holds with probability 2−72. In order to find a δ-set that satisfies
the restriction, the authors suggest to repeat the attack for 272 different δ-sets. We
note that this improvement is equivalent to the time/memory tradeoff presented
in [6] that suggested to prepare the precomputed table only for some values of
the 25 parameters and compensate for it by repeating the attack with more sets
of plaintexts. Actually, the proposal of [7] is a partial case of the time/memory
tradeoff, where the precomputed table is prepared only for those 2120 = 2192 ·2−72

values of the parameters which satisfy the 72-bit restriction. Another equivalent
suggestion would be to fix nine of the 24 constants to zero. Thus, this suggestion
does not improve over [6].

3. The time complexity and the memory requirements can be slightly reduced by
keeping only 32 of the ciphertext values corresponding to a δ-set, instead of all
the 256 values. This improvement is not used in our attack since it cannot be
applied simultaneously with our multiset tabulation technique, and the gain of the
multiset tabulation technique is greater than that of this improvement.

The attack algorithm in [7] is essentially similar to that of the basic attack in [6] and
thus is omitted here.

The authors analyze the attack and conclude that the data complexity is 280 chosen
plaintexts, the time complexity of the online phase is 2113 encryptions, the memory
complexity is 2122 128-bit blocks, and the time complexity of the preprocessing is 2123

encryptions. Unfortunately, there is a flaw in the analysis. The exact flaw is in the time
complexity of Steps (5)–(6) of the attack. The authors write:

In the key search phase, for every combination of Kfinal, we do partial de-
cryption over 280 ciphertexts which makes 2120 partial decryptions and for
every combination of Kinit and K

(1)
11 , we do partial encryption over 280

plaintexts which makes 2120 partial encryptions . . . Therefore the process-
ing complexity of the attack is comparable to 2113 encryptions.

The complexity described by the authors is indeed the complexity of Steps (3)–(4)
of the algorithm. However, the time complexity of the matching phase (Steps (5)–(6))
that is not mentioned in the analysis is much higher. Since the matching phase has
to be performed for every combination of guesses of Kfinal (bytes 0, 7, 10, and 13
of k7 and byte 0 of u6 in this paper’s notations), Kinit (bytes 0,5,10, and 15 of k−1

in our notations), and K
(1)
11 (byte 0 of k0), the equivalent of, its time complexity is at

least 240 · 240 · 280 = 2160 operations, which is much higher than claimed (and exceeds
exhaustive key search time for AES-128). Hence, the improved attack presented in [7]
cannot be considered a valid attack on 7-round AES-128.
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We note that in [7], the authors also present an extension of the collision attack pre-
sented by Gilbert and Minier [12]. Since this extension is not used by the authors to
mount an attack on AES, we do not discuss it here.
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