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Abstract.  We introduce the rebound attack as a variant of differential cryptanal-
ysis on hash functions and apply it to the hash function Whirlpool, standardized by
ISO/IEC. We give attacks on reduced variants of the 10-round Whirlpool hash func-
tion and compression function. Our results are collisions for 5.5 and near-collisions for
7.5 rounds on the hash function, as well as semi-free-start collisions for 7.5 and semi-
free-start near-collisions for 9.5 rounds on the compression function. Additionally, we
introduce the subspace problem as a generalization of near-collision resistance. Finally,
we present the first distinguishers that apply to the full compression function and the
full underlying block cipher W of Whirlpool.

Key words. Hash functions, Cryptanalysis, Near-collision, Distinguisher

1. Introduction

A cryptographic hash function H maps a message m of arbitrary length to a fixed-length
hash value /. Informally, a cryptographic hash function has to fulfill the following three
classical security requirements: preimage resistance, second preimage resistance and
collision resistance. The resistance of a hash function to these attacks depends in the first
place on the length N of the hash value. Regardless of how a hash function is designed,
an adversary will always be able to find preimages or second preimages after trying
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out about 2V different messages. Finding collisions requires a much smaller number
of trials: about 2V/2 due to the birthday paradox. A function is said to achieve ideal
security if these bounds are guaranteed.

Although a satisfying formal definition of the collision resistance requirement is ap-
parently still lacking, some recent work on the hash functions MD4, MDS5 and SHA-1
has convinced many cryptographers that at least these hash functions can no longer be
considered secure against collision attacks [10,11,15,62,63]. As a consequence, peo-
ple have evaluated alternative hash-function designs in the SHA-3 competition orga-
nized by NIST. During this competition, not only the three classical security require-
ments have been considered. Researchers have looked at (semi-)free-start collisions,
near-collisions, or other non-random properties. Since then, every demonstration of a
‘behavior different from that expected of a random oracle’ [47] is considered suspect,
and so are weaknesses that are demonstrated only for the compression function and not
for the full hash function.

In this paper, we provide a detailed analysis of the hash function Whirlpool. This
hash function is based on a dedicated block cipher W, which was designed according
to the Wide Trail design strategy. It is the only hash function standardized by ISO/IEC
(since 2000) [24] that does not follow the MD4 design strategy.

Contributions The first contribution of this paper is to give an in-depth account of
the rebound attack. The rebound attack is a variant of differential cryptanalysis heavily
optimized to the cryptanalysis of hash functions, and is at the same time a high-level
model for hash-function cryptanalysis. The rebound attack can be used to construct
various types of collisions. Thus far, it has been very successful on designs that copy
the simple byte-oriented structure of AES.

Our second contribution is the introduction and definition of the subspace problem, as
a natural extension and formalization of the near-collision requirement. We give bounds
for the difficulty of the subspace problem in the generic (ideal) case for both, one-
way functions and permutations. Finally, we show subspace distinguishers for the full
compression function of Whirlpool, thereby demonstrating the first deviation from the
ideal model of this function.

Parts of this work have appeared in abridged form in [35,42]. New in this paper are
the extended descriptions of the rebound attacks, a proper definition for both subspace
problems and proofs on the lower bound of the query complexity of these problems in
the generic case, and a survey of related work.

Organization In Sect. 2, we describe the rebound attack. We introduce two subspace
problems in Sect. 3 and give bounds for their difficulty in the generic case. We describe
the hash function Whirlpool in Sect. 4. We start by discussing classical attacks on re-
duced variants of the Whirlpool hash function in Sect. 5. Next, we discuss classical
attacks on reduced variants of the Whirlpool compression function in Sect. 6. Finally,
we give subspace distinguishers for the compression function in Sect. 7, and for the
underlying block cipher W in Sect. 8. We conclude in Sect. 9.
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2. The Rebound Attack

The rebound attack was proposed in [42] for the cryptanalysis of AES-based hash func-
tions. It is a differential attack, using several new techniques to improve upon existing
results. In this section, we first give an introduction to differential cryptanalysis and its
application to hash functions. Then, we give a high-level overview of the rebound attack
and discuss extensions, applications and related work.

2.1. Differential Cryptanalysis of Block Ciphers

Differential cryptanalysis is a general tool in the cryptanalysis of symmetric primitives.
Originally devised to cryptanalyze DES [2], it has later been applied to other block
ciphers, stream ciphers and hash functions. A differential attack exploits predictable
propagation of the difference between a pair of inputs of a cryptographic primitive, to
the corresponding outputs.

The description of the difference patterns at the input, the intermediate values and
the output of the cryptographic primitive, is called a characteristic, or sometimes dif-
ferential path or trail. A pair that exhibits the differences of the characteristic, is called
a right pair. The fraction of right pairs over all input pairs, possibly averaged over all
keys (when the primitive is keyed), is called the probability of the trail.

Truncated differentials were proposed in [31] as a tool in block cipher cryptanalysis.
While in a standard differential attack, the full difference between two inputs/outputs
is considered, in the case of truncated differentials, the differences are only partially
determined, e.g. for every byte, one only checks if there is a difference or not.

2.2. Differential Cryptanalysis of Hash Functions

Differential attacks on hash functions have already been described in [53], based on the
analysis of DES reduced to 15 instead of 16 rounds. Also the attacks on MD4 [15],
SHA [6], MDS5 [63], and SHA-1 [62] are differential attacks. As a consequence of the
successful attacks by Wang et al., almost every hash function has been analyzed regard-
ing its resistance against differential cryptanalysis since then.

If we apply differential cryptanalysis to a hash function, a collision for the hash func-
tion corresponds to a right pair for a trail through that hash function, with output dif-
ference zero. Similarly, a near-collision corresponds to a right pair for a trail with an
output difference of low Hamming weight. It follows that differential cryptanalysis of
hash functions is intuitively very similar to differential cryptanalysis of block ciphers.
However, there are also important differences between these two cases, which can be
observed also in the rebound attack.

In the case of block ciphers, an adversary that wants to find a right pair can usually
do little better than simply trying out pairs (other attempts have been made in [5]). The
needed effort is proportional to the inverse of the probability of the trail. Since hash
functions do not have a secret key, an adversary can do better than that. In principle,
an adversary could simply write out the equations that determine whether a pair is a
right pair and solve them. In practice, these equations are highly nonlinear and difficult
to solve. However, it is often possible to determine some of the message bits, thereby
increasing the probability that a random guess for the remaining part of the solution will
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Fig.1. A schematic view of the rebound attack. The attack consists of an inbound and two outbound phases.

be correct. Typically, the equations arising from the first steps of the hash function are
easier to solve, because they do not yet depend on all message words. These techniques
are known in the literature under the name message modification techniques [63].

In general, an attack on a hash function using differential cryptanalysis consists of
the following three main steps:

1. Find a trail with a high probability.
2. Determine some message bits by applying message modification techniques.
3. Find the remaining message bits by guess-and-verify.

2.3. The Rebound Attack

The rebound attack [42] consists of two phases, called inbound and outbound phase, as
shown in Fig. 1. According to these phases, the compression function, internal block
cipher or permutation of a hash function is split into three sub-parts. Let W be a block
cipher, then we get W = Wy, o W;;, o Wy,,.. The part of the inbound phase is placed in
the middle of the cipher and the two parts of the outbound phase are placed next to the
inbound part. In the outbound phase, two high-probability (truncated) differential trails
are constructed, which are then connected in the inbound phase. Similar to message
modification, the freedom in the message, key-inputs or (internal) state variables is used
to efficiently fulfill most conditions of a differential trail.

2.3.1. Related Work

The idea of placing the most expensive part of the differential trail in the middle was
previously used in the cryptanalysis of the compression function of MD5 [14] and the
hash function Tiger [28,40,44] Also, inside-out techniques (as used in the rebound at-
tack), were used in the application of second order differentials in the cryptanalysis of
block ciphers in the Boomerang attack [61]. Truncated differentials were used in the
cryptanalysis of the hash function Grindahl in [51].

2.3.2. Constructing a Trail

As in all differential attacks we first need to construct a “good” (truncated) differen-
tial trail. A good trail used for a rebound attack should have a high probability in the
outbound phases and can have a rather low probability in the inbound phase. Two prop-
erties are important here: First, the system of equations that determine whether a pair
follows the differential trail in the inbound phase, should be under-determined. Then,
many solutions (starting points for the outbound phase) can be found efficiently by
using guess-and-determine strategies. Second, the outbound phases need to have high
probability in the outward direction.
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2.3.3. Inbound Phase

The inbound part of a trail is defined such that the corresponding system of equations is
under-determined. When searching for solutions, we first guess some variables such that
the remaining system is easier to solve. Hence, the inbound phase of the attack is similar
to message modification in an attack on hash functions. The available freedom in terms
of the actual values of the internal variables is used to find a solution deterministically
or with a very high probability. Hence, also a differential trail with a high Hamming
weight (and hence, a low probability) can be used in the inbound phase.

2.3.4. Outbound Phase

In the outbound phase, we verify whether the solutions of the inbound phase also follow
the differential trail in the outbound parts. Note that in the outbound phase, there are
usually only a few or no free variables left. Hence, a solution of the inbound phase will
lead to a solution of the outbound phase with a low probability. Therefore, we aim for
narrow (truncated) differential trails in the outbound parts, which can be fulfilled with
a probability as high as possible (in the outward directions). The advantage of using an
inbound phase in the middle and two outbound phases at the beginning and end is that
one can construct differential trails with a higher probability in the outbound phase.

2.3.5. Multiple Inbound Phases

Sometimes, not all available freedom is used in the standard rebound attack. This is
usually the case if some parts of the (internal) state or the freedom of the key schedule
are not needed to find a solution in the inbound phase. In these cases, the attack can often
be extended to more rounds by having one or more independent inbound phases and then
connect the solutions of the inbound phases. Note that this is usually not a trivial task.
However, it is possible in e.g. the compression function attacks on Whirlpool using the
freedom of the round keys (see Sect. 6).

2.4. Extensions and Applications

After the publication of [42] the concept of the rebound attack was applied and ex-
plored in a multitude of papers. This was done in several directions: (1) extending the
length of the inbound part, (2) exploiting additional freedom of free variables in the
inbound phase, (3) studying the underlying basic computational problem that is solved
in the inbound phase, and (4) the application to other cryptanalytic targets and in other
cryptanalytic settings.

1. Extending the length of the inbound part. By adding one round in the inbound
phase of the original attack, the attack is extended to more rounds. This idea was
first introduced for Whirlpool in [35], and independently published for the com-
pression function of the SHA-3 candidate Grgstl under the term super-sbox crypt-
analysis in [20]. An application to the hash function of Grgstl is given in [43] and
variants using half-full super-boxes and experimental evaluations have been pub-
lished in [57,58]. Recently, the inbound phase was further extended by another
round in [26]. In contrast to the earlier results [20,35], this additional round can
only be gained with a much higher attack complexity (22°¢ for an 8 x 8 state as in
Whirlpool) and is not possible for small states such as 4 x 4 in AES.
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2. Exploiting additional freedom. If not all variables are chosen in the inbound phase,
the additional freedom of these variables can be used to improve the rebound
attack. Multiple inbound phases have been used to extend the number of rounds
to attack, as well as to reduce the overall complexity of the attack in [27,29,34,
35,38,49,54]. An alternative tool-based approach to use this additional freedom is
explored in [12,18].

3. Studying the underlying basic computational problem. Alternative algorithmic ap-
proaches to the inbound phase, like start-in-the-middle and linearization methods,
were proposed in [39]. Merging, sorting and filtering lists as a basic technique
needed for rebound attacks were analyzed in a generic way in [48] and [13]. In
addition to a deeper understanding of the problem, this led to improvements on
published rebound attacks.

4. Application to other cryptanalytic targets. Due to its simplicity and prominent
use, AES-like constructions were initially the only type of construction where the
rebound attack idea was applied to. This includes among others the SHA-3 can-
didates Cheetah [65], ECHO [25,27,52,60], Grgstl [23,39,42,52,57], Lane [38,
64], SHAvite-3 [46], and Twister [41]. Rebound attacks also found applications to
other S-box-based SHA-3 candidates like JH [49,54], Keccak [29] and Luffa [16],
and even to ARX constructions like Skein [36,66]. Most of the known rebound
attacks in the literature are differential in nature. An exception is the rotational
rebound attack published in [30]. The rebound idea also found application out-
side the cryptanalysis of key-less primitives by the “long-biclique” attack, a key
recovery of block cipher AES in [4].

3. The Subspace Problem

In [47], NIST requires that a good hash function should fulfill several properties. Along
with the well known security notions of collision resistance and (second) preimage re-
sistance, NIST also requires that any K-bit hash function specified by taking a fixed
subset of the N output bits should possess the same security assertions as the original
function. Note that an attacker can choose the K-bit subset specifically to allow a lim-
ited number of precomputed message digests to collide, but once the subset has been
chosen, finding additional violations of the above notions should again have the generic
complexity.

From a practical application point of view, this requirement makes a lot of sense when
we want to guarantee security in cases where the output space of the hash function is
reduced by means of a simple truncation. However, instead of simply truncating the
hash-function output, the designers might also choose to split the output string in two
halves and xor them together [21,22]. This method is almost as simple as truncation,
but the security requirement on the hash function becomes now that it should be difficult
to construct two messages m, m* such that

H(m) ® H(m*) =z, (D

where z can be any vector with two equal halves. Since the output space of a hash
function could be reduced by an arbitrary linear compression step L, we could formulate
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as generalized requirement that for any linear transformation L, it should be hard to find
two inputs m, m* such that

L(H(m*)® H(m)) =0. 2)

Clearly, the adversary should not be able to choose L, because for all m, m*, it is trivial
to find an L satisfying (2). On the other hand, if we require that the adversary can find
suitable m, m* for any arbitrarily selected L, or for a large subset of them, then, it may
become too difficult to find an adversary for many intuitively bad hash-function designs.
In order to get out of this dilemma, we propose to generalize a bit further by defining
the following problem.

Subspace Problem 1 (Subspace Problem for One-Way Functions). When given a
one-way function f mapping to Fé\' , try to find ¢ input pairs (a;,a’) such that the
corresponding output differences f(a;) ® f (a;‘) belong to a subspace V,,,; C Fév with
dim(V,,;) <n forsomen < N.

Here F, = GF(2) denotes the finite field of order 2.

If f is a hash or compression function, then solving Subspace Problem 1 should be
hard, when n is significantly smaller than N, say n < % Otherwise, the hash function
has a certificational weakness. We show in Sect. 6 how Subspace Problem 1 can be
solved when f is the compression function of Whirlpool, but first we discuss what we

mean when we state that Subspace Problem 1 should be hard.

3.1. On the Hardness of Subspace Problem 1

In this section, we investigate how difficult it is to solve Subspace Problem 1 with-
out using knowledge of the internals of the function f. We measure the difficulty by
counting the number of queries that need to be made to the oracle. We bound the guery
complexity and ignore all other computations, memory accesses etc.

Let us now assume that an adversary is making Q < 2"/? queries to the function f.
We thus get K < (g) differences (e]FéV ) coming from these Q queries. For given n
and ¢t > n, we now want to calculate the probability that among the K corresponding
output differences f(a;) ® f (a;"), we have t vectors (output differences) that belong to
a subspace V,,; C IFQ’ with dim(V,,,) <n.

We need the following fact about matrices over finite fields. Let E(¢, N, d) denote
the number of r x N matrices over I, that have rank equal to d. Then, it is well known
[17,37] that

d—1 d—1

2N_2i . 21_21' .
BN, =]]" 2d) (2,- )=]_[(2N—2l).<;> , 3)
N i=0 2

i=0

where (};), denotes the g-binomial coefficient with g = 2.

Proposition 1. Lef n,t, N € N be given such that t > N > n. We assume a set of K
vectors (output differences) chosen uniformly at random from Fév . Let Pr(K,t, N,n)
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denote the probability that t of these K vectors span a subspace Vi, Fév with
dim(V,,;) < n. Then, we have

K\, _in .
Pr(K,t,N,n)§<t>2 D> E(t.N.d). )

d=0

This probability is upper bounded by

Pr(K,t, N,n) <

K t
(76) o= (N=n)(t=m)+(n+1)_ &)

1
2t
For the proof of Proposition 1, we first need two lemmas.

Lemmal. Lett, N,n €N be suchthatt > N > n. Then,

n
E(t,N,n) < Z E(t,N,d)<2-E(t,N,n).
d=0

Proof. The first inequality is trivial. The second one is equivalent to

n—1

D E(t,N,d)<E(t, N,n)

d=0
and can be proven by induction over n. For n =1, E(¢t, N,0) < E(¢, N, 1) which is
easily seen to be true. So let us assume that

n—2

Y E@.N.,d)<E(@N,n—1)

d=0
holds. To prove the statement, we add E (¢, N, n — 1) to both sides. If we can show that
2E(t,N,n—1) < E(t, N,n), we are done. From (3), we derive

n—2
i t
2E(z,N,n—1)=2E)(2N—2)-(n_1>2,
n—1 ¢
E@t.N.ny=[]@2"-2)- (n) :
i=0 2

Since t > N > n, we have

2,502 0(),

The proof follows from the fact that

t 2t7n+1 -1 t
<”>2: 2n—1 <”—1>2. 0
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Lemma 2. Lett, N,n € N be such thatt > N > n. Then,

2 -2V -2) @ -2)).2@"-2))
=2 = 2 —2j

holds forall0 <i < j<n-—1.

Proof. We show this by proving that for given A > B > C > 0 the function

_(A-0(B-x

Fx) o

has always a positive derivative f’(x) on the interval x € [0, C/2]. Elementary calculus
shows that the derivative of f(x) is

A-0O)B-0)

(C—x)? b

fl=

from which we easily see that the condition f'(x) > 0 is satisfied if
(A—=C)(B—-C)> (C—x)?
holds. The right side is smaller than C?> which means that the statement is equal to
AB > C(A + B).

If we substitute A =2/, B =2V, C = 2" we see that the last inequality holds in our
setting and we are done. U

Now, we are in the position to prove Proposition 1.

Proof of Proposition 1. Remember that E(z, N,d) was defined as the number of
t x N matrices over I, that have rank equal to d. Computing Pr(K, ¢, N, n) exactly
would require the application of the inclusion-exclusion principle since the ranks of the
(If ) considered subspaces are not independent. Therefore, we take (4) as an upper bound
for the probability Pr(K, ¢, N, n).

Simplifying the upper bound consists of two steps. Bounding the binomial coefficient
and bounding the rest. Based on Lemmas 1 and 2 we can estimate the second part of the
probability Pr(K, ¢, N, n) by

n
2NN "E@.N.d)<27"N .2 E(t,N.n)
d=1

<~ t-N+l (2[ - 2"_1) . (ZN _ 211—1) n
=< T

< 2—[-N+l (21’!—1 . 2[—(11—1) . 2N—(n—1))"

— 2—(t—n)(N—n)+(n+l). (6)
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For the binomial coefficient () we combine the simple estimate (X) < K’ /! with the
following inequality based on Stirling’s formula [55]:

V2t eI < 1) < 2w Th e 7
From this we get
K 1 (K-e\
< . (®)
! 2t t
Putting together (6) and (8) proves the proposition. (|

As a corollary, we can give a lower bound for the number of random vectors needed
to fulfill the conditions of the proposition with a certain probability.

Corollary 1. For a given probability p and given N,n,t as in Proposition 1, the
number K of random vectors needed to contain t vectors that span a subspace Vy,; C
]FéV with dim(V,,;) < n with probability p is lower bounded by

K > Lp/2mn) " )
e
Proof. Equation (9) follows immediately from (5). O

Corollary 2. For a given probability p and given N,n,t as in Proposition 1, and the
number of queries Q to f needed to produce t vectors that span a subspace Vi, < ]Fév
with dim(V,,;) < n with probability p is lower bounded by

0> /ﬁ(p@)%2<N—"><';;“—<"+‘>_ (10)
e

Proof. Equation (10) follows from setting K < ((22) =0(Q—-1/2in(9). O

3.2. The Permutation Case

This section is devoted to the study of the Subspace Problem in the case where the
function f is replaced by a permutation 7. In the case of a permutation, one can define
adversaries that are allowed to make forward queries (i.e. to ) and backward queries
(i.e. to 7). Clearly, backward queries render Subspace Problem 1 trivial, since the
adversary can fix pairs with output differences in V,,, and simply ask the backward
queries. Therefore, if we want to define a meaningful subspace problem, we have to
formulate additionally constraints on the inputs.

Subspace Problem 2 (Subspace Problem for Permutations). When given a permu-
tation 7 mapping from F}' to FY, try to find ¢ input pairs (a;, a}) such that a; & a
belong to a subspace V;,, € Fév with dim(V;,) < m and the corresponding output dif-

ferences m(a;) & n(a;“) belong to a subspace V,,; C IFZZV with dim(V,,;) < n for some
m<Mandn<N.
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One can distinguish between two types of adversaries: the non-adaptive adversary and
the adaptive adversary. While in the adaptive setting, the adversary can use the results
of previous queries to select subsequent inputs for the next queries, the adversary has to
decide on the inputs for the queries on beforehand in the non-adaptive setting. In all of
the following, we only consider non-adaptive adversaries.

Now we want to give a bound on the success probability of the adversary for solving
Subspace Problem 2 when it is given oracle access to a permutation 7 and its inverse
7!, The adversary is allowed to make at most Q queries in total to 7 and 7 ~!. Denote
by O the number of queries that the adversary makes to 7, and by Q> = Q — O the
number of queries made to 7.

Let us now start with the O queries to . It is easy to see that by choosing the inputs
in a sub-vector space of dimension m we get K| < (Qzl) input pairs (a;, ;) and hence
input differences a; @ a; belonging to a subspace V;,, C IFQ’ with dim(Vj,) < m. This
approach obviously allows a maximum of 2™ queries.

In order to be able to make more queries, we take the subsequent inputs to be in a
translate of Vj,, that is, we take q;, al.* eu+ Vi, ={u+v|veV,} whereu ¢ V. We
can repeat this several times for different u ¢ V;,. So if we set Q1 =¢q; - 2™ + r; and
ry <2™, q1 > 0, by making Q| queries to 7 we get

2""
K1=q1-<2>+<’21) (11)

input differences a; ® a;k belonging to a vector space V;,, with dim(Vj,) < m.

Analogously to Proposition 1, we first consider the case of differences. Note that the
Q1 queries to 7 are chosen such that the resulting K input differences lie in a subspace
Vin whereas the corresponding output differences can be assumed uniformly distributed
in IFéV .In a similar way, the Q5 queries to 7 ~! result in K output differences in a space
Vour Where again the corresponding input differences are uniformly distributed. So in
total we have K| + K3 pairs of input and output differences.

Proposition 2. Let n,m,t, N € N be given such that t > N > 2n and m < n. We
assume a set of K := K1 + K difference pairs {(a1, b1), ..., (ak, bx)} where b; is uni-
formly distributed in Fév and a; is taken from some subspace Vi, C IFQ’ fori=1,..., K
and where a; is uniformly distributed in Fév and b; is taken from some subspace
Vour CFY fori=K,+1,...,K.

LetPr(K,t, N, m, n) denote the probability that t of these K difference pairs are such
that the input differences span a subspace V;, C Fév with dim(V},) < m and the output
differences span a subspace V,,, € FY with dim(V,,

our & ) < n, simultaneously. Then, we
have

ut

Pr(K,t, N,m,n)

! m n
Kl K2 . . .
fz(h)(t—tl)z NI EG—n,N.DY E@,N,.j). (12)

1=0 i=0 j=0
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This probability can be upper bounded by

t
Pr(K,t,N,m,n) < 1 (g) 2*(an)(t72n)+2(n+]). (13)
T 2rt\ ¢

Proof. The K = K| + K, difference pairs described in the proposition can be seen as
elements (a;, b;) € IFQ’ X IFQ’, where in the first K| pairs, the a;’s can be chosen, and in
the last K5 the b;’s can be chosen by an adversary. In order to have the highest possible
probability for the event in the proposition, these values would always be chosen to be a
fixed difference a # 0 and b # 0. The O difference is impossible when keeping in mind
that they come from queries, so choosing identical differences leads to the smallest
dimension for the difference vectors that can be controlled. So whenever ¢ of the K
difference pairs are selected, and say 1 are taken from the first K pairs, and ¢ — 1 from
the second K pairs, we can start to upper bound the sought probability by (12). This
is because the probability that ¢ of these input differences span a space of dimension at
most m is upper bounded by

m
zf(tftl)NZE(t—ll,N,i)' (14
i=0

Here, we use that #; input differences are identical and we apply Proposition 1 to the
remaining ¢ — #; input differences, where we count the F,-matrices of rank at most m.
The sum in (14) is an overestimation since when the fixed input difference a is not in the
span of the remaining ¢ — #; differences, we would only be allowed to take the matrices
of rank at most m — 1 into account. Analogously, we get for the output differences

n
27NN E@, N, D),

i=0

and since both conditions have to be satisfied simultaneously, we end up with (12).
To further bound (12) we proceed as follows. Without loss of generality, we assume
that m < n and obtain

t Kl K2 n n
27NNTE(t—1,N, i)Y E(t, N, j)
> ()05 2 2

t1=0

as an upper bound for the probability. Using Lemma 3 we can simplify the last sum to

2
<K>2_’N+2E(£,N,n) ,
t 2
(5= (")
P 151 r—n t

Then, we can prove (13) along the same lines as in (6). O

where we used
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Lemma3. Lett, N,neNbesuchthatt > N >2nandt; €{0,1,...,t}. Then,

n n 2
t
E(t—t,N,i E(ti,N,j)<4E(-,N . 15
E (-1, ,l)z (1, N, j) < (2, n> (15)
i=0 j=0
Proof. We first consider the case where t| € {n,n + 1,...,t — n}. This implies that

both #; and ¢ — #; are greater or equal than n. In this case, we can use Lemma 1 to
estimate both sums and we get

n n
D EG—n,N.D)Y E@.N.j)<4E@t—n,N.mE(t1,N.n).
i=0 j=0
The product E(¢t — t;, N,n)E(t;, N, n) can be written as

n—1 (2N _ 21‘)2 . (Zt—tl _ 21') . (2l1 — 21‘)
(2" —2i)?2 ‘

i=0

From this and the fact that (2/~1 — 2f) . (211 — 2%) < (2//2 — 21)2 holds for i € {0, ...,
n — 1} follows the statement of the lemma for ¢y € {n,n +1,...,¢t —n}.

The case #; € {0, 1,...,n — 1}, respectively, t; € {t —n + 1, ..., t}, is symmetric,
so without loss of generality, we only consider the first case. Then, the estimate of
Lemma 1 applied to (15) results in

n

n
D E@—=n.N.D)Y E@.N.j)<4E@t—n.N.m)E@.N.n).
i=0 j=0

We can show
" 2
E@#—n,N,nE(@#,N, 1) < E(E’ N,n>
by splitting the statement into two inequalities:

2
1t
E(z—n,N,n)E(n,N,n)5E<§,N,n) . (17)

Here, (16) can be deduced with similar arguments as Lemma 2. To show (17) we look
at E(t —n, N,n)E(n, N,n)E(t/2, N, n)~? and observe that

n—1 (Zt—n _ 21)(2n _ 21) n—1 or _ 2t—l’l+i _ 2n+i 4 22i
(2[/2 _ 21‘)2 = l_([) 2t _2t/2+i+1 + 22i =L
i

i=

since because of ¢ > 2n, every term in the product is smaller or equal than 1. This proves
the lemma in the case t; € {0, 1, ...,n — 1}, respectively ty e {t —n+1,...,t}. [l
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Now we round up the whole discussion to derive some lower bounds for the number
of differences and the query complexity.

Corollary 3. Under the preliminaries stated in Proposition 2, the number K of dif-

; ; ) . p
ference pairs such that simultaneously, the input differences span a subspace V; C

]Fév with dim(V},) < m and the output differences span a subspace V,,, Fév with
dim(V},,) < n with probability p is lower bounded by
K Z i(p\/%)%Z(an)(tf%n)fﬂlﬂrl) ‘ (18)
e
Proof. Equation (18) follows immediately from (13). ]

Corollary 4. Under the preliminaries stated in Proposition 2, let Q be the number of
queries to w and w1~ needed to find t difference pairs such that simultaneously, the in-
put differences span a subspace V;, C IFQ’ with dim(V;) < m and the output differences
span a subspace V,,, € FY with dim(V,,,) < n with probability p. Let

out — ut

~ t (N=n)(t=2n)=2(n+1)
R = L(pvamnra
e
Then, Q is lower bounded by

Qz{& if K <2, (19)
K2 ifK > 22n—1
Proof. We see that (11) suggests that an adversary would favor to take the dimension
of the space Vj,, respectively, V,,;, as large as possible (that is, m, respectively n) in
order to produce as many differences as possible from a given number of queries. Equa-
tion (11) gives rise to the easy estimates K| < 2"~'Q; and K, < 2"~ Q5. Together
with m <n, we use (18) to end up with (19) depending on the size of K. Note that this
rough bound combines the best possible cases for an adversary in terms of differences
(by using (18)) and in terms of queries. U

Looking back at Corollary 2, we see that in the case of one-way functions the con-
nection between differences and queries was much more obvious than it is here. This is
caused by the fact that there we had only one type of queries. In the permutation case,
we saw that the strategy of choosing differences/queries on both sides of 7 lead to a
higher bound for the success probability of an adversary. This can be seen as evidence
for preferring this strategy over the one-sided approach.

3.3. Work Related to Subspace Distinguishers

Differential q-collisions as a means to construct distinguishers for a block cipher have
been introduced in [3]. In our terminology, a differential g-collision corresponds to a
set of g input pairs that have input differences in an affine subspace v; + {0} C ]Fév of
dimension 0 (v; # 0) and output differences in an affine subspace v, + {0} C Fé\' of
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dimension 0. An important difference with our approach is that [3] allows an adversary
to specify the input difference and the output difference such that they optimally fit the
block cipher under attack. Since we characterize subspaces only by their dimension, we
impose less constraints on the adversary. The consequence is that for the same distin-
guisher, we get a stronger attack setting but with a lower advantage over the generic
case.

Furthermore, in [20] distinguishers for AES, the first round version of Grgstl, and
ECHO are discussed. Also these distinguishers have some similarities with the sub-
space distinguishers. However, like [3] they allow an adversary to specify which of the
coordinates have to be constant. Secondly, [20] ignores the invertible linear transfor-
mation in the last round of Grgstl and ECHO. We note also that [20] upper bounds the
attack complexity for the generic case, while a lower bound is needed in order to prove
that a distinguisher is indeed valid. Finally, [20] defines new families of AES-like con-
structions by considering keyed linear or nonlinear building blocks, e.g. using keyed
S-boxes. Since neither AES, nor Grgstl uses keyed S-boxes or other similar randomiza-
tion techniques, this construction can be seen as somewhat counter-intuitive.

4. The Hash Function Whirlpool

The Whirlpool hash function is a cryptographic hash function designed by Barreto and
Rijmen in 2000 [1]. It has been evaluated and approved by NESSIE [50] and is stan-
dardized by ISO/IEC [24]. The hash function is commonly considered to be a con-
servative block-cipher-based design with a very conservative key schedule. The design
follows the wide trail design strategy. In this section, we give a detailed account of the
Whirlpool hash function. It includes a discussion of its core design principle, the wide
trail design strategy, and the properties of the employed round transformations with
respect to differential and truncated differential cryptanalysis.

4.1. The Wide Trail Design Strategy

The wide trail design strategy has been proposed in [7,8] and is a method to counter
differential (and linear) attacks. The strategy allows to easily construct upper bounds
for the probability of trails through the primitive. To obtain these bounds, one splits up
a design in a linear and a nonlinear part, each with its own functionality.

We assume here that the nonlinear part is implemented by means of a bricklayer of
S-boxes [8]. The S-boxes S are selected such that for any differential (a, b) # (0, 0),
the fraction of inputs x for which

SX)DSxDda)=>b,

is small. Let ps denote an upper bound for this fraction.

The purpose of the linear part of the primitive is to make sure that there are no narrow
trails, i.e. trails where only a small number of S-boxes has a nonzero input difference.
An S-box with a nonzero input difference is called active. Let z denote a lower bound for
the number of active S-boxes in a trail. Then it follows easily that (ps)* upper bounds
the probability of a trail.
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Fig. 2. An overview of the Whirlpool compression function. The 10-round block cipher W with key sched-
ule and state update is used in Miyaguchi—Preneel mode.

4.2. Whirlpool

Whirlpool is an iterative hash function based on the Merkle-Damgérd design princi-
ple [9,45]. It processes 512-bit message blocks and produces a 512-bit hash value. An
unambiguous padding method is applied to ensure that the message length is a multiple
of 512 bits [1]. Let m = M| M| -- - ||M; be a t-block message (after padding). The
hash value h = H (m) is computed as follows:

Hy=1V,
Hi=W(H;_,Mj))®H;_1®&M;, for0<j<rt,
h = Hi,

where IV is a predefined initial value and W is a 512-bit block cipher used in the
Miyaguchi—Preneel mode (see Fig. 2).

4.3. The Block Cipher W

The block cipher W is designed according to the wide trail strategy and its structure
is very similar to the Advanced Encryption Standard (AES). The state update transfor-
mation and the key schedule update an 8 x 8 state S, respectively K, of 64 bytes in
10 rounds. In one round, the round transformation updates the state by means of the
sequence of transformations

AKo MR o SC o SB,
while the key schedule applies

ACoMRoSCoSB

to the round key. We define a half round of Whirlpool to consist of only the SubBytes
and ShiftColumns layers.

In the remainder of this paper, we use the outline of Fig. 3 for one round. We denote
the resulting state after round i by S; and the intermediate states after SubBytes (SB) by
S8, after ShiftColumns (SC) by SSC and after MixRows (MR) by SMR. The initial state
prior to the first round is denoted by So = M; & H; . The same notation is used for
the key schedule with round keys K; with Ko = H;_;. Note that we changed the names
of some steps of the round transformation of the original description [1] in order to be
more similar to the AES nomenclature [8].



The Rebound Attack and Subspace Distinguishers: Application to Whirlpool 273

Ki1 K38 K¢ KMR K;
L L L L

Si—1 538 53¢ SR Si
[S—B [sj [; AK

» L L L

Fig. 3. One round of the block cipher W, used in the Whirlpool compression function.

4.4, The Round Transformations of W

In the following, we briefly describe the round transformations of the block cipher W
used in the Whirlpool compression function.

4.4.1. SubBytes (SB)

The SubBytes step is the only nonlinear transformation of the cipher. It is a permutation
consisting of an S-box applied to each byte of the state. The 8-bit S-box is composed
of three smaller 4-bit mini-boxes (the exponential E-box, its inverse, and the pseudo-
randomly generated R-box). For a detailed description of the S-box, we refer to [1].

4.4.2. ShiftColumns (SC)

The ShiftColumns step is a byte transposition that cyclically shifts the columns of the
state over different offsets. Column j is shifted downwards by j positions.

4.4.3. MixRows (MR)

The MixRows step is a permutation operating on the state row-by-row. To be more pre-
cise, it is a right-multiplication by an 8 x 8 MDS matrix over F,s. The coefficients of the
matrix are determined in such a way that the branch number of MixRows (the smallest
nonzero sum of active input and output bytes of each row) is 9, which is the maximum
possible for a transformation with these dimensions.

4.4.4. AddRoundKey (AK) and AddRoundConstant (AC)

The key addition in the state update transformation is denoted by AddRoundKey and in
the key schedule by AddRoundConstant, respectively. In this transformation, the state
is modified by combining it with a round key with a bitwise xor operation. While the
round key in the state update transformation is generated by the key schedule, it is a
predefined constant in the key schedule.

4.5. Differential Properties of Round Transformations

In this section, we describe the differential properties of the round transformations of
Whirlpool.
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Table 1. The number of differentials and possible pairs (a, b) for the Whirlpool S-box. The first row shows
the number of impossible differentials and the last row corresponds to the zero differential.

Solutions Frequency
0 39655
2 20018
4 5043
6 740
8 79
256 1

4.5.1. SubBytes (SB)

SubBytes has the following differential properties. Let a,b € {0, 1}3. Exhaustively
counting over all 2!© differentials shows that the number of solutions to the following
equation

Sx)®SxBa)=h, (20)

can only be 0, 2, 4, 6, 8 and 256, which occur with frequency 39655, 20018, 5043, 740,
79 and 1, see Table 1. The task to return all solutions x to (20) for a given differential
(a, b) is best solved by setting up the differential distribution table (DDT) of size 256 x
256 which stores the solutions (if there are any) for each (a, b).

However, it is easy to see that for any permutation S (to be more precise, for any
injective map) the expected number of solutions to (20) is always one:

2O N #x IS @@ @S =b) =210y 2 =1,

b

because for a fixed a, every solution x belongs to a unique b. Since all the S-boxes are
independent, the same reasoning is valid for the full SubBytes transformation.

When propagating differences through the SubBytes layer, truncated differences
propagate with a probability of 1, while standard differences propagate only with a
probability of

#Hrl|Sxoa @S} 278

4.5.2. ShiftColumns (SC)

The ShiftColumns transformation moves bytes and thus, differences to different posi-
tions of a column but does not change their value. Due to the good diffusion property
of ShiftColumns, 8 active bytes of a full active row are moved to 8 different rows of the
state. Hence, ShiftColumns ensures that the 8 bytes of one row of a state are processed
independently in the subsequent MixRows transformation.

4.5.3. MixRows (MR)

Since the MixRows operation is a linear transformation, standard differences propagate
through MixRows in a deterministic way. The propagation only depends on the values



The Rebound Attack and Subspace Distinguishers: Application to Whirlpool 275

Table 2. Approximate probabilities (as base 2 logarithms) for the propagation of truncated differences
through MixRows with predefined positions. a denotes the number of active bytes at the input and b the
number of active bytes at the output of MixRows.

a b

0 1 2 3 4 5 6 7 8
0 0 X X X X X X X X
1 X X X X X X X X 0
2 X X X X X X X -8 —0.0017
3 X X X X X X —16 -8 —0.0017
4 X X X X X —24 —16 -8 —0.0017
5 X X X X —-32 —24 —16 -8 —0.0017
6 X X X —40 -32 —24 —16 -8 —0.0017
7 X X —48 —40 -32 —24 —16 -8 —0.0017
8 X —56 —48 —40 -32 —24 —16 -8 —0.0017

of the differences and is independent of the actual value of the state. In case of trun-
cated differences only the position, but not the value of the difference is determined.
Therefore, the propagation of truncated differences through MixRows is probabilistic.

Since the branch number of MixRows is 9, a truncated difference with exactly one ac-
tive byte propagate to a truncated difference with 8 active bytes with a probability of 1.
On the other hand, a truncated difference with 8§ active bytes can result in a truncated
difference with 1 to 8 active bytes after MixRows. The probability of an 8§ to 1 transi-
tion is only 2778 =273 since we need seven out of eight truncated differences to be
zero. In general, the probability of any a to b transition with 1 < a, b < 8 satisfying
a + b > 9 is approximately 2(°~®8 Note that the probability depends on the direction
of the propagation of truncated differences, see Table 2.

4.5.4. AddRoundKey (AK) and AddRoundConstant (AC)

Since AddRoundKey and AddRoundConstant are simple xor operations with a round
key or a constant. Therefore, both standard differences and truncated differences prop-
agate through AddRoundKey and AddRoundConstant in a deterministic way.

4.6. Good Differential Trails

Due to the design of the Whirlpool hash function, constructing good truncated differ-
ential trails is rather simple, as long as there are no differences inserted from the key
schedule. Therefore, we restrict ourselves to trails with no differences in the key sched-
ule and hence chaining value of Whirlpool. This allows us to construct good differential
trails by hand as shown in this section. We use the following notation to specify the
number of active bytes in two subsequent states in the state update:

a U b,
with a the number of active bytes in the first state, b the number of active bytes in the

second state and r; the ith round of Whirlpool. As an example, for one round r; of
Whirlpool, we either get a + b > 9 or a = b = 0, due to the design of the MixRows
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So

Fig. 4. A 4-round differential trail with the minimum number (81) of active S-boxes.

transformation. Hence, for a = 1 we always get
158

It follows from the properties of the ShiftColumns and MixRows transformations that
any 4-round (truncated) differential trail has at least 92 = 81 active S-boxes. Hence,
(ps)? = (27)8! upper bounds the probability of any 4-round differential trail (see
Sect. 4.1). An example differential trail with 81 active S-boxes is given in Fig. 4. Note
that the active byte in state So and state S4 can be placed at any position (state S7 and
S3 change accordingly). The number of active S-boxes in each state for these trails are
as follows:

1582645 8% 1,

This 4-round trail is used to explain the principles of the rebound attack in Sect. 5.1.
Note that this trail can be extended in a simple and straightforward way in the forward
and in the backward direction. We use the following trail to show a near-collision attack
for the Whirlpool hash function in Sect. 5.4:

s 1288 g1 88

Another possibility is to extend the trail by adding rounds in the middle. If we add a
second full active state in the middle, then we still get a valid trail. This trail is used to
extend the rebound attacks on the hash function by one round (see Sects. 5.3 and 5.4):

12582 642 644 85 1.

Moreover, two full active states allow us to place one or two states with 8 active bytes
in between them, such that all properties of the round transformations are still fulfilled:

AN R RES BN NN VLS AN

1
This trail is used as the core for the compression function attacks on Whirlpool in
Sect. 6.

4.7. Related Work on Whirlpool

For the block cipher W that is used in the Whirlpool compression function, Knudsen
described a distinguisher for 6 (out of 10) rounds [32]. It needs 2!?° inputs and has a
complexity of 2'2°. In [33], similar techniques were used to obtain known-key distin-
guishers for 7 rounds of the AES. Furthermore, the designers of Whirlpool describe
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in [1] a key recovery attack against W reduced to 7 rounds with a complexity of about
2245 Tt is an extension of the attack on AES in [19]. Collision attacks in settings differ-
ent from ours, and for the first time also meet-in-the middle preimage attacks on up to
6 rounds of Whirlpool are explored in [56,59].

5. Attacks on the Hash Function

In this section, we describe the application of the rebound attack to reduced variants of
the Whirlpool hash function. First, we describe the basic idea of the attack for Whirlpool
reduced to 4.5 rounds. By improving the inbound phase of the attack, the complexity can
be significantly reduced to about 2% compression function evaluations and negligible
memory requirements. Furthermore, we show how the attack can be extended to 5.5
rounds by adding a second full active state in the inbound phase. The resulting attack has
a complexity of about 2'2° compression function evaluations and memory requirements
of 264,

Second, we present near-collision attacks for the Whirlpool hash function reduced to
6.5 and 7.5 rounds. However, it has to be noted that in both attacks we ignore the padding
procedure of Whirlpool. The attacks are straightforward extensions of the collision at-
tacks on 4.5 and 5.5 rounds, respectively. By adding 2 rounds in the outbound phase,
we get a near-collision for the Whirlpool hash function reduced to 6.5 and 7.5 rounds.

5.1. Collision Attack on 4.5 Rounds

The rebound attack on 4.5 rounds of Whirlpool uses a differential trail with the min-
imum number of active S-boxes according to the wide trail design strategy. For this
attack, the full active state is placed in the middle of the trail (see Fig. 5):

12582 64 5 82 1 25

To find a message pair following this 4.5-round differential trail, we first split the block
cipher W into three sub-ciphers W = W, o W;;, o Wp,,, such that the full active state of
the differential trail is covered by the inbound phase W;,,. We have

Wpyw =SCoSBoAKo MR o SC o SB,

Wi, =MR o SC o SB o AKo MR,
Wy =S8SCoSBoAKo MR o SCo SBo AK.

SC
S(] 51 Sz 53 54 54
| O |_EEEEN | |

SB SB SB H SB

SC SC SC sC SB

MR MR MR [T 1| MR sC

AK AK AK | - — [ AK

11

outbound phase inbound phase outbound phase

Fig. 5. Differential trail for the collision attack on 4.5 rounds of Whirlpool. Black state bytes are active.
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Fig. 6. Inbound phase of the attack on 4.5 rounds of Whirlpool. Black state bytes are active.

In the inbound phase, the actual values of the state are chosen to guarantee that the
differential trail in W;, holds. The differential trail in the outbound phase (Wp,, Wp,,)
is supposed to have a relatively high probability. While standard xor differences are
used in the inbound phase, truncated differentials are used in the outbound phase of the
attack. In the following, we describe the inbound and outbound phase of the attack in
detail.

5.1.1. Inbound Phase

In the inbound phase of the attack, we have to find inputs to W, such that the differential
trail in W;, holds. It can be summarized as follows (see Fig. 6).

1. We start at the output of MixRows of round r3 (Sg’":*) with arbitrary nonzero dif-

ferences at the 8 byte positions indicated on Fig. 6. We propagate the difference
backward. Since we have one active byte in each row of the state, we obtain a full
active state at the output of SubBytes of round 3 (S3SB).

We choose a difference for the active byte in each row at the input of MixRows in
round 7 (stc) and compute forward to the input of SubBytes of round r3 (5>).
Note that this can be done for all 255 (~ 28) values (nonzero difference) of the
active byte for each row independently, which facilitates the attack.

In the next step of the inbound phase, the match-in-the-middle step, we look for a
matching input/output difference of the SubBytes layer of round r3. This is done
as described in Sect. 4.4.1 with a precomputed 256 x 256 S-box lookup table. As
explained in Sect. 4.4.1, the expected number of solutions is one per trial. Note
that we can search for S-box matches for each row of S, and S§°‘B independently.
Since we have 28 candidates for each row of S, (and 1 for each row of S3SB) the
expected number of solutions for each row is 28 (i.e. 2 solutions for each S-box).
Hence, the expected number of solutions for the whole SubBytes layer (8 rows)
equals 264 1n other words, we can find 2%* actual values that follow the differential
trail in the inbound phase with a complexity of about 28 round transformations. It
follows that the amortized cost to compute one solution of the inbound phase is
less than one compression function evaluation.

Since we can repeat these three steps 2% times, we can find 2!?% actual values that
follow the differential trail in the inbound phase.
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5.1.2. Outbound Phase

In contrast to the inbound phase, we use truncated differentials in the outbound phase
of the attack. By propagating the matching differences and state values through the
next SubBytes layers outwards, we get a truncated differential in 8 active bytes in both
backward and forward direction.

In order to get a collision after 4.5 rounds we require that the truncated differen-
tials in the outbound phase propagate from 8 to 1 active byte through the MixRows
transformation, both in the backward and forward direction (see Fig. 5). The propaga-
tion of truncated differentials through the MixRows transformation can be modeled in a
probabilistic way, see Sect. 4.4.3. Since we need to fulfill one 8 to 1 transition in both
the backward and forward direction, the probability of this part of the outbound phase
is 27236 = 27112 Fyrthermore, to construct a collision at the output (after the feed-
forward), we need that the differences at the input and output cancel out. Since only
one byte is active, this has a probability of approximately 2. Hence, the probability
of the outbound phase of the attack is 2112 . 9=8 _ 2-120 [y other words, we need to
generate 220 starting points for the outbound phase to find one collision.

Since we can find one starting point (solution of the inbound phase) with an amor-
tized cost of less than one compression function evaluation, we can find a collision for
the Whirlpool hash function reduced to 4.5 rounds with a complexity of about 2'2%
compression function evaluations and negligible memory.

5.2. Improving the Collision Attack on 4.5 Rounds

In this section, we show how the complexity of the collision attack presented in the
previous section can be improved significantly. The main idea is to extend the inbound
phase of the attack by 1 round such that one 8 to 1 transition of the outbound phase is
covered in the inbound phase of the attack. This improves the probability of the out-
bound phase significantly from 27120 to 27368 = 2764 In other words, we need to
construct only 2% instead of 2!%° starting points for the outbound phase of the attack
in the inbound phase. In the following, we show how to find inputs that follow the dif-
ferential trail in the inbound phase of the attack with the following sequence of active
bytes:

12582 645 3.

Note that the attack is very similar to the attack on the hash function Grgstl in [39]. It
can be summarized as follows.

1. Similar to the previous section, we first choose a difference for the 8 active bytes
at the output of MixRows of round r3 (Sg"R) and propagate backward to get the
differences of the full active state at the output of SubBytes of round r3 (S3SB).

2. In the second step, we choose a difference for the active byte in each row at the
input of MixRows of round r; (SZSC) and compute forward to the input of SubBytes
of round r3 (S,). Again, we can choose 23 differences for each row and compute
each row independently.

3. Next, we look for a matching input/output difference of the SubBytes layer of
round r3 for each row of S> and SSSB independently. This is done with a pre-
computed 256 x 256 lookup table as described in Sect. 4.4.1. Since the expected
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number of solutions per trial is one and we have 28 candidates for each row of S,
the expected number of solutions for each row equals 28, i.e. 2 solutions for each
S-box.

4. For all 28 solution of each row of S>, we compute backward to S;. Since MixRows
works independently on each row and since SubBytes, ShiftColumns, and Ad-
dRoundKey are byte-wise operations, this determines only 8 bytes of S; and the
according differences (active bytes). In detail, we get 28 candidates for each active
byte in S| after testing all 2 solutions for each row of S, independently. Hence,
we get 2%* candidates for the 8 active bytes in row 1 of Sy after this step of the
attack with a complexity of about 2% round transformations.

5. In order to follow the differential trail in the inbound phase of the attack, we have
to guarantee that the differences in S; propagate from 8 to 1 active byte through
the MixRows transformation in the backward direction. Therefore, we compute all
28 differences of the single active byte at the input of MixRows in round r; (Slsc)
forward to the input of SubBytes in round r; (S7) and check for a match. Since
we have 2% candidates for the active bytes in S, i.e. 28 for each active byte,
the expected number of solutions is 2% after testing all 28 candidates for the one
active byte in SISC. In other words, we get 28 solutions (actual values) that follow
the differential trail in the inbound phase of the attack with a complexity of about
28 round transformations.

Since the probability of the outbound phase of the attack is 274, we need to repeat

steps 1-5 about 2°° times to generate 2%* starting points for the outbound phase of the
attack. Since we can find 28 starting point for the outbound phase with a complexity of
28 we can construct a collision for the Whirlpool hash function reduced to 4.5 rounds
with a complexity of about 264

5.3. Collision Attack on 5.5 Rounds

In this section, we present a collision attack for the Whirlpool hash function reduced
to 5.5 rounds with a complexity of about 2'34~* and memory requirements of 2*, with
0 < s < 64. The attack is a straightforward extension of the collision attack on 4.5
rounds of Whirlpool described in Sect. 5.1. By using super S-boxes [35] and adding
one round in the inbound phase, we can extend the attack to 5.5 rounds (see Fig. 7). In
the 5.5 round collision attack, we use the following sequence of active bytes:

r

1585645645851 55
Again, we split the block cipher W into three sub-ciphers W = Wy, 0 Wy, 0 Wp,,, such
that the full active states of the trail are covered by the inbound phase W;,, while the

So S1 Sa S3 Sy Ss S5¢
n EEmn )

| T
SB SB SB SB } [ SB
SsC sC SsC SsC sC SB

MR MR MR MR [T T MR sC
AK AK AK AK | 1 AK

outbound phase inbound phase outbound phase

Fig. 7. Differential trail for the collision attack on 5.5 rounds of Whirlpool.
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S5° Ss S5° 53 53° Sy
3 P
, 1] S I
i B
step 1 step 3 step 2

Fig. 8. The inbound phase of the collision attack on 5.5 rounds of Whirlpool.

trail in the outbound phase (Wp,,, Wp,,) can be fulfilled with a relatively high probability.
We have

Wiw =SC o SBoAKo MR o SC o SB,
Win =MRoSCoSBoAKoMRoSCoSBoAKo MR,
Wy =8Co0SBoAKoMRoSCoSBoAK.

Since the outbound phase is identical to the attack on 4.5 rounds, we only discuss the
inbound phase of the attack here (see Fig. 8).

Again, we have to generate 2!?0 starting points in the inbound phase of the attack.
This can be summarized as follows.

1. Start at the input of MixRows in round r» (S?C) with arbitrary nonzero differences
in the 8 byte positions indicated on Fig. 8. Propagate the difference forward to the
input of SubBytes in round r3 (S2). Since we have one active byte in each row of
the state, this results in a full active state S;.

2. Start with an arbitrary difference in the 8 active bytes at the output of MixRows
in round r4 (SE"R) and compute backward to the output of SubBytes in round r4
(SfB). Again, since we start with one active byte in each row, we get a full active
state in SfB.

3. Next, we have to connect the states S, and SfB such that the differential trail holds.
Note that this can be done for each row of SfB independently, which facilitates the
attack. It can be summarized as follows.

(a) For all 2%* actual values of the first row of SfB compute backward to S, and
check if the differential trail holds. Since MixRows works on each row in-
dependently and ShiftColumns and SubBytes are byte-wise operations, this
determines 8 bytes of S, and the according differences. Hence, after testing
all 2% candidates, the expected number of inputs such that the differential trail
holds is one.

(b) Do the same for row 2—8 of SfB.

After testing each row independently, the expected number of solutions is one.

Hence, we expect to get one actual value for state SfB (and S7) such that the

differential trail holds. This step has a total complexity of about 2% round com-

putations.

To summarize, we can compute one starting point for the outbound phase of the attack
with a complexity of about 264, Since we need 2! starting points in the inbound phase,
the collision attack has a complexity of about 2184,
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Note that the complexity of the inbound phase can be significantly reduced at the
cost of higher memory requirements. By saving 2° candidates for the differences (active
bytes) in Sz, we can do a standard time/memory trade-off with a complexity of about
2184=s and memory requirements of 2* with 0 < s < 64. Hence, by setting s = 64,
we can find a collision for the Whirlpool hash function reduced to 5.5 rounds with a
complexity of about 2129 and memory requirements of 264,

5.4. Near-Collision for Whirlpool

The strategy used in the collision attacks on 4.5 and 5.5 rounds can be reused to mount
near-collision attacks on 6.5 and 7.5 rounds on the Whirlpool hash function ignoring the
padding procedure. This is done by adding one round at the beginning and one round
at the end of the trail. The result is a near-collision attack on 6.5 and 7.5 rounds of the
hash function Whirlpool. We use the following sequence of active bytes

r

8§ —

1582 6488515803

for the near-collision attack on 6.5 rounds, and

8512858 mBmEg8 128058

for the near-collision attack on 7.5 rounds. In the following, we summarize the attack
for 7.5 rounds. Note that the attack on 6.5 rounds works similarly. Since the inbound
phase is identical to the collision attack on 5.5 rounds, we only discuss the outbound
phase here. For more details we also refer to Figs. 9 and 10.

First, note that the 1-byte difference at the beginning and end of the 5.5 round trail
always result in 8 active bytes after one MixRows transformation. Thus, we can go both
backward and forward 1 round with no additional costs. After the feed-forward, the
position of two active bytes match. Hence, we have 8§ 48 — 2 = 14 active bytes (at most).
With a probability of 2710, the overlapping bytes cancel out each other and we end with
only 12 active bytes. It follows that the outbound phase of attack has a probability of
about 27112 to construct a near-collision in 64 — 14 = 50 bytes and 27?3 to construct a
near-collision in 64 — 12 = 52 bytes. Hence, we have to construct 2!'? and 2!?8 starting
points in the inbound phase of the attack to find a near-collision in 50 and 52 bytes,
respectively. Since in the collision attack on 5.5 rounds one can construct 2% starting
points in the inbound phase of the attack with a complexity of about 24 and memory
requirements of 2° with 0 <s < 64 (see Sect. 5.3), the attack has a complexity of about
2176=s and 219275 respectively. Both attacks have memory requirements of 2°.

Note that the attack on 6.5 rounds works similarly, except for the inbound phase of
the attack. Since one can find a solution for the inbound phase with an average com-
plexity of 1 (see Sect. 5.1), we can construct a near-collision in 50 and 52 bytes with
a complexity of about 2112 and 2?3, respectively. Similar to the collision attack on 4.5
rounds, one can improve the complexity of the attack by a factor of 2°¢. Again, we ex-
tend the inbound phase of the attack by one round such that one 8 to 1 transition of the
outbound phase is covered by the inbound phase of the attack (see Sect. 5.2). Hence,
we can construct a near-collision in 50 and 52 bytes for the Whirlpool hash function
reduced to 6.5 rounds with a complexity of about 23¢ and 272, respectively.
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6. Attacks on the Compression Function

In this section, we present attacks on the Whirlpool compression function. Since in
an attack on the compression function, the attacker has full control over the chaining
variable input, this freedom is used to extend the previous attacks to more rounds. In
detail, we can show a semi-free-start collision for the Whirlpool compression function
reduced to 7.5 rounds and a semi-free-start near-collision for 9.5 rounds. The basic idea
is to extend the inbound phase by having multiple small inbound phases, which can
be connected by choosing the subkeys of W accordingly. The outbound phase of the
attacks are identical to the previous attacks on the Whirlpool hash function on 5.5 and
7.5 rounds (see Sect. 5). In the following we describe both, the multiple inbound phases
and the outbound phase of the attack in detail.

6.1. Multiple Inbound Phases

In this section, we describe the two inbound phases and how to connected them in detail.
We use the following sequence of active bytes for the attack:

8 L4285 8% 645 3,

In order to find inputs following the differential trail, we split the attack into two parts
(see Fig. 11. In the first part, we have two inbound phases: one in round 1-2 and one in
4-5, with active bytes 8 — 64 — 8 each. In the second part, we need to find values for
the subkeys to connect the resulting differences in the 8 active bytes and the 64 (byte)
values of the state between round 2 and 4.

6.1.1. Part I (Two Independent Inbound Phases)

This part of the attack consists of two inbound phases in round 1-2 and 4-5 and is given
as follows:

1. Inbound Phase 1 (round 1-2):

(a) Start with 8 active bytes at the output of AddRoundKey in round r; (S>) and
propagate backward to the output of SubBytes in round (SZSB).

(b) Start with 8 active bytes (1 in each row) at the input of MixRows in round r;
(S ISC) and propagate forward to the input of SubBytes in round r; (S7). Again,
this can be done for all 28 differences (value of the active byte) and for each
row independently.

So

Part 1 Part 1
(inbound phase 1) (inbound phase 2)

Fig. 11. Multiple inbound phases in the attack on the compression function of Whirlpool.
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(c) Next, we look for a matching input/output difference of the SubBytes layer of
round r, for each row of S; and stB independently. This can be implemented
with a precomputed 256 x 256 lookup table as described in Sect. 4.4.1. Since,
on average, we get one solution per trial and we have 2% candidates for each
row of S1, the expected number of solutions for each row is 28 i.e. 2 solutions
for each S-box. After finishing this step we have 24 inputs (2 for each S-box
of Sp) that follow the differential trail in round 1-2.

2. Inbound Phase 2 (round 4-5): Do the same as in step 1 for rounds 4-5.

Note that after this part of the attack, we get 2%4 candidates for S;B and 2% candidates
for Sy with a complexity of about 2° round transformations.

6.1.2. Part 2 (Connecting the Two Inbound Phases)

In the second part of the attack, we have to connect the results of the two inbound
phases. In detail, we have to ensure that the differences in the 8 active bytes (a 64-bit
condition) as well as the actual values of stB and S4 (a 512-bit condition) match by
choosing the subkeys K>, K3 and K4 accordingly. In other words, we have to solve the
following equation:

MR(SC(SB(MR(SC(SB(MR(SC(S5®)) @ K2))) ® K3))) @ Ka =S4 (21)

with
K3 =MR(SC(SB(K2))) & C3, o)
K4=MR(SC(SB(K3))) & Cj.

Since we have 2% candidates for SZSB, 264 candidates for S4 and can choose from 2512

values for the subkeys (K>, K3 or K4 because of (22)), the expected number of solutions
is 264,
Since SQAR = MR(SC(SZSB)), we can rewrite (21) as follows:

MR(SC(SB(MR(SC(SB(SYR @ K»))) @ K3))) ® Ka = Sa. (23)

Note that in the Whirlpool block cipher the order of ShiftColumns and SubBytes can
always be changed without affecting the output of one round. In order to make the sub-
sequent description of the attack easier, we do this here and get the following equation:

MR(SC(SB(MR(SB(SC(SYR @ K»))) @ K3))) @ Ka = Sa. 24)

Furthermore, MixRows and ShiftColumns are linear transformations and hence we can
rewrite the above equation as follows:

SB(MR(SB($: ® K»)) ® K3) @ K3° = X 25)

with §, = SC(SMR), K, = SC(K>), K58 = SB(K3), X =SC™/(MR™!(S4 & C4)).
Figure 12 shows how the sequence of operations between state S%"H and S of the

Whirlpool state update and key schedule are changed. In the following, this equivalent

description is used to connect the values and differences of the two states Sy and X.
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original description:

Cy

K3 K4

K>
~o_ .- ﬂ\\\‘_/,/

alternative description:

Cz 03 C4
Ks K3 K3B Cy
Sa X

Fig. 12.  We change the sequence of operations to get an equivalent description of W.

K K K3®
Sa Sa S:EAR S3 SEB X
AK m AK

[«]
L L

Fig. 13. The second part (connecting the two inbound phases) of the attack on the compression function
using the alternative description of W.

Remember that the differences of stB and S4 have already been fixed in Part 1 of
the attack. Since ShiftColumns, MixRows and AddRoundKey are linear transformations,
also the differences of 5‘2 and X are fixed. However, we can still choose from 264 can-
didates for each of the states 5‘2 and X, since we found 2% candidates for S2SB and 264
candidates for S4 in Part 1 of the attack. Note that we can compute and store the can-
didates of S, (from S;B) and X (from S4) row-by-row and independently. Hence, both
the complexity and memory requirements for this step are 2% instead of 264

Now, we use (25) to determine the subkey K> such that we get a solution for the
connected inbound phases and hence, a starting point for the outbound phase of the
attack. Note that we can solve (25) for each row of the states independently. It can be
summarized as follows (see Fig. 13).

1. Since AddRoundKey is a linear transformation, we can compute the 8-byte differ-
ence in Sy (from Sz) and SfB (from X). We want to stress that these differences
are the same for all 2%* candidates of the state 5’2 and all 2% candidates of the
state X, respectively.

2. Choose arbitrary values for the first row of S and compute forward to obtain the
differences and values of the first row of ng'R. Again, since AddRoundKey is a
linear transformation, this also determines the difference of S3.

3. Next, we choose the first row of the key K3 such that the differential of the S-box
between S3 and SfB holds. This can be done similar as in the inbound phase with

a precomputed 256 x 256 lookup table as described in Sect. 4.4.1.
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4. Once the first row of K3 is fixed we can also compute the first row of K 2 and K fB.

This also determines the first row (64 bits) of 5’2 and the first row (64 bits) of X.
Remember that we have 2% candidates for state 5'2 and 2% candidates for state X
due to step 1. Hence, the expected number of compatible candidates for both Sy
and X equals 1. In other words, we can connect the values and differences of the
first row of S, and X with an amortized complexity of one.

5. Next, we have to connect the values of 5'2 and X for rows 2-8. Note that this can
be done independently for each row by a simple brute-force search over all 264
values of the corresponding row of K. Since we have to connect 64 bits and we
test 204 values for each row of K- 2, the expected number of solutions is one.

Since we can repeat the above procedure 26* times with different values for the first
row of Sy, we get in total 2% solutions (matches) connecting state S to state X with a
complexity of 2!?8 and memory requirements of 28. In other words, we get 264 starting
points for the outbound phase of the attack. Hence, the amortized complexity to find
one starting point for the outbound phase is 264

Note that Step 5 can be implemented using a precomputed lookup table of size 2128,
In this lookup table each row of the key K> (64 bits) is saved for the corresponding two
rows of S, and X (64 bits each). Using this lookup table, we can find one starting point
for the outbound phase with an amortized complexity of one. However, the complexity
to generate this lookup table is 2! It is important to note that one can construct a total
of 2192 starting points in the extended inbound phase to be used in the outbound phase
of the attack.

6.2. Outbound Phase

In the outbound phase of the attack, we further extend the differential trail backward and
forward. By propagating the matching differences and state values through the adjacent
SubBytes layers, we get a truncated differential in 8 active bytes in each direction. These
truncated differentials need to follow a specific active byte pattern to result in a semi-
free-start collision for 7.5 rounds and a semi-free-start near-collision for 9.5 rounds,
respectively. In the following, we describe the outbound phase of the two attacks in
detail.

6.2.1. Semi-Free-Start Collision for 7.5 Rounds

By adding 1 round in the beginning and 1.5 rounds at the end of the trail, we get a
semi-free-start collision for 7.5 rounds for the compression function of Whirlpool with
the following sequence of active bytes:

158264388 85 6420 g% 1 75 1,

For the differential trail to hold, we require that the truncated differentials in the out-
bound phase first propagate from 8 to 1 active byte through the MixRows transformation,
both in the backward and forward direction (see Fig. 14). Since the transition from 8
active bytes to 1 active byte through the MixRows transformation has a probability of
about 27¢, and the exact value of the input and output difference in one byte has to
match after the feed-forward to get a semi-free-start collision, the outbound phase has
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a probability of 272968 = 27120 In other words, we have to generate 2'?° starting
points (for the outbound phase) in the extended inbound phase of the attack.

Since we can find one starting point with an average complexity of about 2% and
memory requirements of 28, we can find a semi-free-start collision with a complexity of
about 2120+64 — 2184 The complexity of the attack can be reduced to 2120 42128 ~ 2128
by using a precomputed lookup table of size 2'?% when connecting the two inbound
phases of the attack.

6.2.2. Semi-Free-Start Near-Collision for 9.5 Rounds

As in the attack on the Whirlpool hash function, the semi-free-start collision attack on
7.5 rounds can be further extended by adding one round at the beginning and one round
at the end of the trail in the outbound phase. The result is a semi-free-start near-collision
for 9.5 rounds of the compression function with the following sequence of active bytes
(see Fig. 15):

8512850458588 1 hg 158558

Since the 1-byte difference at the beginning and end of the 7.5 round trail always
results in 8 active bytes after one MixRows transformation, we can go backward 1 round
and forward 1 round with no additional cost. Using the feed-forward, the positions of
two active S-boxes match and cancel one another with a probability of 271°. Hence, we
get a semi-free-start near-collision in 50 and 52 bytes for the compression function of
Whirlpool with a complexity of about 2!76 and 2176416 = 2192 respectively. Again, by
using a precomputed lookup table (size 2!?®) when we connect the two inbound phases,
the complexity of the attack can be reduced significantly. The result is a semi-free-start
near-collision for 9.5 rounds of Whirlpool with a complexity of about 2128,

7. Distinguisher for the Whirlpool Compression Function

Now, we show how the compression function attack described in Sect. 6 can be used
to show a certificational weakness in the full Whirlpool compression function. To be
more precise, we show how to distinguish the Whirlpool compression function from
a random (that is, randomly selected) one-way function using the results described in
Sect. 3.

Obviously, the difference between two Whirlpool states can be seen as a vector in
the vector space of dimension N = 512 over F,. The crucial observation is that the
attack of Sect. 6 can be interpreted as an algorithm that can find ¢ difference vectors in
]Fg12 (output differences of the compression function) that form a subspace V,,,; C F 312
with dim(V,,,) < 128. To see this, observe that by extending the differential trail from
9.5 to 10 rounds, the 8 active bytes in Sls(? always result in a full active state S, due
to the properties of the MixRows transformation. Thus the near-collision is destroyed.
However, even though after the application of MixRows and AddRoundKey the state S;¢
is fully active in terms of truncated differences, the xor differences in Sjq still belong
to a subspace of an of dimension at most 64 due to the properties of MixRows. If we
look again at Fig. 15, both the differences in Sy (respectively the message block M)
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Fig. 16. Comparison of our compression function distinguishers for 10 rounds of Whirlpool (C, C’) with

the generic lower bound Q.

and the differences in § f’g’ can be seen as (difference) vectors belonging to subspaces of
]Fg12 of dimension at most 64. Therefore, after the feed-forward, we can conclude that
the differences at the output of the compression function form a subspace V,,; C Fglz
with dim(V,;) < 128

We use the attack of Sect. 6 to find ¢ input differences such that the corresponding
output differences form a vector space V,,;,; of dimension n < 128. This has a complexity
of C =1-2'"6, or C" =1-2!"? 4218 using a precomputation step with complexity 223,
Note that ¢ < 2192=112 — 280 qye to the restrictions in the extended inbound phase of
the attack (see Sect. 6.1). Now the main question is for which values of ¢ our attack is
more efficient than the generic attack. In other words, how do we have to choose ¢ such
that we can distinguish the compression function of Whirlpool from a random one-way
function.

Figure 16 shows the complexities of our dedicated attack without (C) and with (C”)
precomputation, together with the lower bound Q of the query complexity in the generic
case (cf. Sect. 3). The complexities are given as a function of the number of pairs ¢
belonging to a subspace of dimension n = 128 with output size N = 512 and probability
p = 1. The figure shows that the Subspace Problem for the full Whirlpool compression
function is easier to solve than for a random one-way function when we take e.g. t = 2'2.
The bound for an attack is then about 2'8% and both our attacks have a lower complexity.
The probability to solve the corresponding Subspace Problem when making Q = 2'88
queries to a random one-way function is about 2739833 This follows from Proposition 1.
Therefore, we get a distinguishing attack on the full Whirlpool compression function.
Note that by using a precomputation table as described in Sect. 6, our attack complexity

reduces to 2128 fore.g. r =2°.
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8. Distinguisher for the Block Cipher W

Next to our result on the compression function of Whirlpool, we now show how the
subspace distinguisher for the compression function of Whirlpool can also be used to
distinguish the full block cipher W in the open-key model [33].

8.1. Known-Key Distinguisher for 8 Rounds

In this section, we present a known-key distinguisher for the block cipher W reduced
to 8 rounds. In the known-key model, the adversary is given the key and the goal is to
distinguish the given permutation from a randomly selected permutation on the plaintext
space of the block cipher.

This can be done by using the hardness of Subspace Problem 2 described in Sect. 3.2.
That is, for a given permutation we have to find ¢ plaintext pairs (p;, p}), such that
the differences p; @ p; form a subspace Vi, C Fé"’ with dim(V;;) < m and for the
corresponding ciphertext pairs the differences ¢; @ ¢ form a subspace Vy,; © IB‘Q’ with
dim(V,,;) < n. Section 3.2 provides lower bounds for the query complexity of a non-
adaptive adversary when trying to solve Subspace Problem 2 for a random permutation
to which only black-box access is admissible.

For the block cipher W reduced to 8 rounds and for a given key, the attack of Sect. 5.4
can be interpreted as an algorithm to find # plaintext pairs (p;, p}) with p; ® p; belong-
ing to a vector space of dimension m < 64, such that for the corresponding ciphertext
pairs the differences ¢; @ ¢ form a vector space of dimension n < 64. The resulting
complexity is about Cy = 7 - 2!76~ with memory requirements of 2° and 0 < s < 64.
So in other words, we have found a solution for Subspace Problem 2 in the case of W
reduced to 8 rounds.

Figure 17 compares the complexity Cs of our dedicated attack with negligible mem-
ory (s = 0) and with time-memory trade-off (s = 64), with the lower bound Q of the
query complexity in the generic case (cf. Sect. 3.2). The complexities are given as a
function of the number of pairs ¢ belonging to a subspace of dimension m = 64 at the
input and n = 64 at the output, for a function with size N = 512 and probability p = 1.

The figure shows that the Subspace Problem for the Whirlpool block cipher, reduced
to 8 rounds in the known-key setting, is easier to solve than for a random permutation
when we take e.g. r = 2!9. The complexity of the attack is then about 2'36=5 The
probability for a non-adaptive adversary to solve the corresponding Subspace Problem 2
when making Q = 230~ queries to a random permutation is a2 27330955 This follows
from Proposition 2.

8.2. Chosen-Key Distinguisher for 10 Rounds

In the chosen-key setting, an adversary is also given control over the key-input. The goal
of a distinguishing attack in this setting is to be able to distinguish the block cipher W
from an ideal cipher. Again, we want to use something similar as Subspace Problem 2
for this task.

For the block cipher W with keys k; we want to find ¢ triples (p;, p}, k;) such that
the plaintext differences p; & p;‘ form a subspace V;,, C IFQV with dim(Vj,;) < m and for
the corresponding ciphertext pairs the differences ¢; @ ¢} form a subspace Vo,r C Fév
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Fig. 17. Comparison of our known-key block cipher distinguishers for 8 rounds of Whirlpool (Cg, Cgq)

with the generic lower bound Q.

with dim(V,,;) < n. Since the parameters of the subspace problem are exactly the same
as for the known-key distinguisher on 8 rounds, we get the same lower bound Q for the
generic query complexity as in the previous section.

The above task can be solved along the same lines as it was done in Sect. 7. Namely,
we use the 9.5-round near-collision attack on the Whirlpool compression function of
Sect. 6 to solve the above described problem. The only difference to Sect. 7 is that
in the block cipher case, we omit the feed-forward. Thus, our attacks finds ¢ triplets
(pi, p}, ki) confining to the above conditions with a complexity of C =1 - 2176 without
precomputation, or C’ = ¢ - 212 4 2128 with precomputation.

We use Fig. 18 to compare the complexities of our dedicated attack with negligible
memory (C) and with precomputation (C’), with the lower bound Q of the query com-
plexity in the generic case. Again, the complexities are given as a function of the number
of pairs # belonging to a subspace of dimension m = 64 at the input and n = 64 at the
output, for a function with size N = 512 and probability p = 1. We get chosen-key
distinguishers for 10 rounds of W for t =210,

Note that in our setting, a non-adaptive adversary is not able to exploit the fact that
he can choose the keys, since he has to decide upon his queries on beforehand to solve
the Subspace Problem 2. This is the reason why we can again use Proposition 2 with
Q =222 to show that the success probability for such an adversary is ~ 27285119 for a

randomly selected cipher.

9. Concluding Remarks

In this paper, we have described the rebound attack on hash functions and its application
to the hash function Whirlpool in detail. Using the rebound attack we presented an
updated security analysis of the Whirlpool hash function and compression function. Our
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Fig. 18. Comparison of our chosen-key block cipher distinguishers for 10 rounds of Whirlpool (C, C’) with

the generic lower bound Q.

results are collisions for 5.5 and near-collisions for 7.5 rounds on the hash function,
as well as semi-free-start collisions for 7.5 and semi-free-start near-collisions for 9.5
rounds on the compression function.

We have also introduced two subspace problems as a natural generalization of near-
collision resistance for the cases of one-way functions and permutations. We have used
the rebound attack to show that the compression function of Whirlpool is not resistant
against distinguishers based on the subspace problem. An interesting property of both
subspace problems is that the associated distinguishers are not affected by the pres-
ence of an invertible linear transformation at the end of the compression function or its
underlying block cipher. This property corresponds to the common intuition that invert-
ible linear transformation at the start or the end do not affect the security of a primitive,

which it is not satisfied by the usual definition of near-collision resistance.

Thus far, the rebound attack has been applied mostly to hash functions based on or
inspired by the AES design principle. This can be interpreted as a weakness of the AES
design, but one can also argue that the simple structure accelerates the understanding of
new AES-based designs. This simplifies the development of attacks which increases the
confidence in such a design. In this sense, we expect more results also on other types of

hash functions in the future.
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