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Abstract. IND-CCA (indistinguishability under adaptive chosen-ciphertext attacks)
is a central notion of security for public-key encryption, defined and targeted in many
papers. Non-triviality of the notion requires that the adversary not query the challenge
ciphertext to the decryption oracle. We point out that this “no-challenge-decryption”
condition can be formalized in several different ways and the literature is not consistent,
sometimes doing it one way, sometimes another, and assuming it makes no difference.
We show that the latter perception is incorrect. It does make a difference, for the result-
ing notions are not equivalent. Specifically, we consider four notions corresponding to
whether challenge decryption is disallowed in both phases of the adversary’s attack or
just in the second, and, orthogonally, whether the disallowance is “penalty” or “exclu-
sion” based. We show that the notions are not all equivalent for public-key encryption
(PKE). We then show that, in contrast, they are equivalent for key-encapsulation mech-
anisms (KEMs). Our work shows that subtle foundational issues exist even with notions
that are supposedly well-established and unambiguous, and highlights the need to be
careful and precise with regard to “minor” definitional “details”.
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1. Introduction

Cryptography is founded on definitions. Results in cryptography are meaningful, clear
or useful to the extent that this is true of the definitions they make and target. An unam-
biguous interpretation of results requires clear and unambiguous definitions.

The pioneering work of Goldwasser and Micali [21] defined the IND-CPA (Indis-
tinguishability under chosen-plaintext attack) notion of security for public-key encryp-
tion (PKE). Naor and Yung [31] subsequently defined indistinguishability under non-
adaptive chosen-ciphertext attack, where the adversary is allowed access to a decryption
oracle prior to seeing the challenge ciphertext but not after. The notion now universally
accepted as the “right” target is IND-CCA, indistinguishability under adaptive chosen-
ciphertext attack, where the adversary is allowed access to the decryption oracle both
before and after seeing the challenge ciphertext, but cannot query the challenge cipher-
text itself. The basic idea goes back to Rackoff and Simon [36], but the form of the
definition currently in use is from [4,12]. It is now defined and targeted in hundreds of
papers.

There is a consensus, in the community, on what IND-CCA is supposed to mean, yet
we see it formalized in different ways in different places. Not only papers, but even
textbooks [14,20,24,30] have adopted differing formalisms, yet all seem to think they
refer to the same notion. This paper shows that for PKE they do not. It goes on to show
that for KEMs they do.

1.1. The PKE Case

We begin by recalling the definitional template. The underlying experiment picks a
public key pk and matching secret key sk, and then provides pk to the adversary A.
The latter runs in two phases in both of which is has access to an oracle for decryption
under sk. It ends its first phase by outputting a pair M0, M1 of messages. The experiment
picks a challenge bit b at random, encrypts Mb under pk, and returns the resulting
challenge ciphertext C∗ to A. The latter now enters its second phase, which it ends by
outputting a bit b′. We say that A wins if b = b′. Security requires that the probability
of winning minus 1/2 is negligible.

If A can query the challenge ciphertext C∗ to its decryption oracle, it can easily
win the above game. The definition accordingly disallows such a challenge-decryption
query.

At first glance this “no-challenge-decryption” condition seems clear and unambigu-
ous. A closer look shows otherwise. We now discuss two issues or dimensions in the
formalization and see how this gives rise to four possible notions of IND-CCA that we
will relate.

It is clear that we must disallow a challenge-decryption query in the second phase
of the attack, but what about the first? To be more precise, let Sj denote the set of all
decryption queries made by A in phase j (j = 1,2). Then we have two options: at
the end of the experiment, when we can evaluate this condition, either disallow C∗ ∈ S2
(denote this “S” for “second”) or disallow C∗ ∈ S1 ∪S2 (denote this “B” for “both”). The
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A wins if A is valid if

IND-CCA-SP (b = b′) ∧ (C∗ /∈ S2)

IND-CCA-BP (b = b′) ∧ (C∗ /∈ S1 ∪ S2)

IND-CCA-SE (b = b′) (C∗ /∈ S2)

IND-CCA-BE (b = b′) (C∗ /∈ S1 ∪ S2)

Fig. 1. Summary of our IND-CCA notions for PKE.

basic rationale for the no-challenge-decryption condition, namely that if the adversary
queries C∗ it wins trivially, holds true regardless of the phase in which the query is made
and thus supports either choice.

The existence of this choice having been pointed out, one’s first reaction may be
that it does not matter, meaning the two are equivalent. This turns out not to be true.
Before we get there, however, let us discuss another definitional issue. Namely, what
exactly does “disallow” mean? Again there are two options. The first option is to have
the experiment, after the adversary has completed, test whether C∗ is in an undesired
set (S2 or S1 ∪ S2, depending on whether we do “S” or “B”) and, if so, return false,
meaning declaring the adversary to have lost. We call this a penalty (“P”) style notion
since the adversary is being penalized, a posteriori, for its actions. In the literature,
however, it is more common to not have the experiment impose a penalty but just say,
outside of the experiment, that the adversary is “not allowed” or just “may not” make
a challenge-decryption query. But what exactly (meaning, formally) does this mean? It
seems to us that the natural interpretation, and the one intended by the authors, is that
we are quantifying over all (polynomial-time) adversaries that never make a challenge-
decryption query, meaning have zero probability of doing so in the experiment. We refer
to this as an exclusion (“E”) style notion since certain adversaries are a priori excluded
from consideration.

With two options (“B” or “S”) in the first dimension and another two (“P” or “E”) in
the second we obtain four notions. Figure 1 summarizes them. The first column shows
the winning condition for A, namely, the condition under which the experiment re-
turns true. The second column shows when A is valid, meaning we quantify only over
(polynomial-time) adversaries for which the validity condition holds with probability
one in the experiment. See Sect. 3 for formal definitions.

The left-hand side of Fig. 2 summarizes the relations we show between the no-
tions. An implication IND-CCA-X → IND-CCA-Y means every PKE scheme that is
IND-CCA-X secure is also IND-CCA-Y secure. A separation IND-CCA-X � IND-CCA-Y
means we give an example of a PKE scheme that is IND-CCA-X secure but not
IND-CCA-Y secure. Only a minimal set of relations is explicitly shown; others fol-
low. For example, IND-CCA-BE � IND-CCA-SE, since otherwise we would contradict
shown separations.

These results show that disallowing a challenge-decryption query in both phases re-
sults in a strictly weaker notion than disallowing it only in the second phase, and this
is true for both penalty- and exclusion-style formulations. That is, IND-CCA-SP and
IND-CCA-BP are not equivalent, and also IND-CCA-SE and IND-CCA-BE are not equiv-
alent. Another interesting fact is that if the challenge-decryption query is disallowed
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only in the second phase then it makes no difference whether this is by penalty or ex-
clusion (that is, IND-CCA-SE and IND-CCA-SP are equivalent), but, in contrast if the
challenge-decryption query is disallowed in both phases, an exclusion-style formulation
results in a strictly weaker notion than a penalty-style formulation (that is, IND-CCA-BE
does not imply IND-CCA-BP). One of the conclusions from this is that the “S” notions
should be preferred, not only because they are stronger but also because the penalty-
and exclusion-style formulations are equivalent.

One might at first think that (contrary to our claim) IND-CCA-SP and IND-CCA-BP
are equivalent. Why? To explain, let us say that a PKE scheme is “smooth” if the num-
ber of possible ciphertexts is large (super-polynomial) for any message. (See Sect. 5
for a more precise definition.) Now reason as follows: first, any smooth IND-CCA-BP
scheme is IND-CCA-SP since the adversary cannot predict, hence query, the challenge
ciphertext in the first phase; second, even an IND-CPA scheme must be smooth, else we
could break it by re-encrypting the challenge messages until the challenge ciphertext
is seen. What is the catch? It is that the second claim is false. As our proof of Theo-
rem 3.1 shows, even an IND-CCA-BP (let alone IND-CPA) scheme need not be smooth:
“weak” messages, meaning ones with few corresponding ciphertexts, can exist without
contradicting IND-CCA-BP security as long as they are hard to find without access to a
decryption oracle.1

Our work was sparked by seeing variations in the formalization of the “no-challenge-
decryption” condition in the literature. For example, [4,12,18,28,29,37,38] define what
in our taxonomy is IND-CCA-SE. However, many works [10,11,19,32–34,40] simply
have a phrase like “the adversary is not allowed to query the challenge ciphertext to the
decryption oracle.” On the one hand, since no phase is indicated, this could be inter-
preted as IND-CCA-BE. On the other hand, since the challenge ciphertext is not defined
in the first phase, it could be interpreted as IND-CCA-SE. But our results say that these
notions are different.

Penalty-style formulations are rarer, but [2] defines IND-CCA-SP and [1] de-
fines IND-CCA-BP. (This definition is for HIBEs, but this gives PKE for hierar-
chies of depth 0.) The single-user definition in [3] is IND-CCA-SE but the multi-
user definition is in the BE style. Moving to textbooks, Goldreich [20, Sect. 5.4.1.1],
Delfs and Knebel [14, Definition 9.17] and Katz and Lindell [24, Sect. 10.6] define
IND-CCA-SE while Menezes, Van Oorschot and Vanstone [30, Sect. 8.1.1] seem to
define IND-CCA-BE.

In order to have firm foundations—in particular a unique interpretation and common
understanding of results—it is important to have definitional unity, meaning that differ-
ent definitions intending or claiming to represent the same notion should really do so.
Our work is a step to this end. Our work also highlights a general definitional issue that
we feel needs to be addressed with more care. Namely, in many instances one has a
choice between formalizing something in a penalty or exclusion style. One should take
care to ascertain that the resulting notions are equivalent, for as our results show this

1 The first claim above—namely that IND-CCA-BP implies IND-CCA-SP for smooth schemes—is actually
true, and useful because “real” schemes are typically (unconditionally) smooth. Interestingly, IND-CCA-BE
fails to imply IND-CCA-SE even for smooth schemes, indicating a further weakness of exclusion-style for-
mulations. See Sect. 5 for more information.
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Fig. 2. Relations between the various IND-CCA security notions for PKE schemes (left) and KEMs (right).
An arrow IND-CCA-X → IND-CCA-Y is an implication and a barred arrow IND-CCA-X � IND-CCA-Y is a
separation. Dotted lines denote trivial implications. The numbers next to the solid lines indicate the theorems
establishing them.

is not always true. Finally, we think our results are an interesting illustration of how
seemingly minor definitional elements affect the power of the notion.

1.2. The KEM Case

Cramer and Shoup [13] show that an IND-CCA PKE scheme can be obtained by com-
bining an IND-CCA KEM (Key-Encapsulation Mechanism) with an IND-CCA DEM
(Data Encapsulation Algorithm). This has proved to be a powerful and useful paradigm,
leading to increased interest in KEMs [7,15,25,26,39]. When, in this light, we revisit
the definition of IND-CCA for KEMs we find that there arise the same issues regard-
ing challenge decryption as in the PKE case. We again obtain four notions that we
denote as before, with the notion of [13], in our taxonomy, being IND-CCA-SE. Our
results resolving the relations among the notions are depicted on the right-hand side
of Fig. 2. We see an interesting contrast with the PKE case of the left side of the same
figure, namely that in the KEM case the notions are all equivalent. Intuitively this is
true because in the KEM case the role of the encrypted “message” is played by a sym-
metric key not under adversarial control. Our results make crucial use of smoothness:
we show that IND-CCA-BP implies IND-CCA-SP (unlike for PKE) by first showing that
any IND-CCA-BP KEM is smooth (unlike for PKE) and then showing that any smooth
IND-CCA-BP KEM is IND-CCA-SP (this was true also for PKE).

In addition we show that both the penalty and exclusion versions (IND-CCA-OP and
IND-CCA-OE) of a simple one-phase definition of IND-CCA for KEMs are equivalent to
all the others, simplifying the task of showing that specific KEMs are IND-CCA secure.
IND-CCA-OE was proposed by [26] who showed it is equivalent to IND-CCA-SP when
the KEM encapsulation algorithm induces a uniform distribution on the keyspace, an
assumption we do not make.

1.3. Extensions and Related Work

The notion of Naor and Yung [31] gives the adversary the decryption oracle only in
the first phase. This is sometimes called a non-adaptive attack and the notion has been
denoted IND-CCA-1. When we talk of IND-CCA in this paper, we mean under adaptive
attack: all our notions give the adversary the decryption oracle in both phases. It was
shown in [4] that IND-CCA-1 is strictly weaker than IND-CCA, and this remains true
regardless of the forms of IND-CCA we define that one considers.

IND-CCA is often attributed to Rackoff and Simon [36]. They were indeed the first
to consider adaptive attacks, but they give the adversary access to the decryption oracle
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only in the second phase—which, as shown by [34], is strictly weaker than giving access
in both phases—and their definition is only for random one bit messages. Dolev, Dwork
and Naor [16] do not formally define IND-CCA but their definition of non-malleability
under CCA selects the “SE” option. Definitions of IND-CCA of the form that is now
common seem to begin with the concurrent 1998 works [4,12].

Our definitions and results (including the proofs) for PKE extend also to private-key
(i.e. symmetric) encryption, IBE (Identity-Based Encryption) and HIBE (Hierarchical
IBE). That is, the same four notions again emerge and the relations are as shown on
the left-hand-side of Fig. 2. In the (H)IBE case, most works [6,27] define IND-CCA-SE
but [5] defines IND-CCA-BE.

In the context of relaxed CCA security (RCCA security, [9,22,35]), a variant of the
IND-CCA-SE definition is employed. In the RCCA definition, the adversary gets a com-
pletely unrestricted decryption oracle in the first phase. In the second phase, the adver-
sary may ask for arbitrary decryptions. However, if the decrypted message is one of the
two adversarially chosen challenge messages m0, m1, then the adversary simply gets a
special answer “test” (or “invalid” in [22]) that indicates that either m0 or m1 is
the plaintext. (This rule applies in particular to a decryption of the challenge ciphertext.)

We stress that the RCCA security constitutes a weakening of the IND-CCA-SE def-
inition that is orthogonal to our notion of IND-CCA-BE. In particular, we consider
different formalizations that reflect the same intuitive definition (security under unre-
stricted chosen-ciphertext attacks), while RCCA security captures a different intuition
(re-randomizing the challenge ciphertext is explicitly allowed).

The RCCA and IND-CCA security notions have been proven equivalent to realiz-
ing ideal functionalities in the framework of Universal Composability [8]. In these
proofs [9,23], the IND-CCA-SE variant of IND-CCA security was used. This is another
a hint that the “S” notions are the “right” notions to use.

2. Preliminaries

If x is a string, then |x| denotes its length, while if S is a set then |S| denotes its size.
If k ∈ N then 1k denotes the string of k ones. If S is a set then s ←R S denotes the op-
eration of picking an element s of S uniformly at random. Unless otherwise indicated,
algorithms are randomized and (strictly) polynomial time. By z ←R AO1,O2,...(x, y, . . .)

we denote the operation of running algorithm A with inputs x, y, . . . and access to ora-
cles O1,O2, . . . , and letting z be the output. An adversary is an algorithm or a tuple of
algorithms.

The advantage of an adversary I in inverting a function f : {0,1}∗ → {0,1}∗ is de-
fined for k ∈N as

Advow
f,I(k) = Pr

[
f (x) = f (y) : x ←R {0,1}k;y ←R I

(
1k, f (x)

)]
.

We say that f is one-way if Advow
f,I(·) is negligible for all adversaries I. We say that f

is injective if for all k ∈ N and all x, y ∈ {0,1}k , f (x) = f (y) implies x = y.
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Fig. 3. Experiment Expind-cca-X
PKE,A (k) for X ∈ {SE,BE,SP,BP}. The experiments differ only in how they

compute their final Boolean output, which depends on X as shown.

3. Results for Public-Key Encryption

We begin with definitions.

Syntax An asymmetric encryption scheme PKE = (Kg,Enc,Dec) is a triple of algo-
rithms. The key generation algorithm Kg takes a security parameter 1k and returns a pair
(pk, sk) of matching public and secret keys. The encryption algorithm Enc takes a public
key pk and a message M ∈ {0,1}∗ to produce a ciphertext C. The deterministic decryp-
tion algorithm Dec takes sk and ciphertext C to produce either a message M ∈ {0,1}∗
or a special symbol ⊥ to indicate that the ciphertext was invalid. The consistency re-
quirement is that for all k ∈ N, for all (pk, sk) which can be output by Kg(1k), for all
M ∈ {0,1}∗, and for all C that can be output by Enc(pk,M), we have Dec(sk,C) = M .2

IND-CCA Security We first provide formal definitions and then explanations. An
IND-CCA adversary A = (A1,A2) is a pair of algorithms such that the output of A1
is always a tuple (M0,M1,St) satisfying |M0| = |M1|. Let A be the class of all such ad-
versaries. Let X ∈ {SP,BP,SE,BE}. To an adversary A = (A1,A2) ∈A, a PKE scheme
PKE = (Kg,Enc,Dec) and k ∈N, we associate the experiment Expind-cca-X

PKE,A (k) of Fig. 3.
We define the advantage of A as

Advind-cca-X
PKE,A (k) = 2 Pr

[
Expind-cca-X

PKE,A (k) ⇒ true
] − 1.

Let ASP
PKE = ABP

PKE = A be the class of all IND-CCA adversaries. Let ASE
PKE be the class

of all A ∈ A such that for all k ∈ N, the probability that C∗ ∈ S2 in Expind-cca-SE
PKE,A (k)

is 0. Let ABE
PKE be the class of all A ∈A such that for all k ∈N, the probability that C∗ ∈

S1 ∪S2 in Expind-cca-BE
PKE,A (k) is 0. We say that PKE is IND-CCA-X secure if Advind-cca-X

PKE,A (·)
is negligible for all A ∈ AX

PKE.

Discussion These notions reflect the different treatments of challenge-decryption
queries along two dimensions. The first dimension is whether decryption of the chal-
lenge ciphertext is disallowed in both (“B”) phases or only in the second (“S”) phase.

2 We note, however, that our results also hold with weaker forms of consistency. This includes the upcom-
ing results for the KEM case.
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The second dimension is how, technically, to disallow this query. Here the first choice is
that the experiment penalizes (“P”) the adversary by returning “false” if it makes a dis-
allowed query, and the second choice (“E”) is that adversaries with non-zero probability
of making the disallowed query are simply not considered.

There is another option in the second dimension, namely to consider the class of
adversaries that have negligible (rather than zero) probability of making a query of the
unallowed type. We do not consider this since we have not found it defined or indicated
in the literature. Indeed, the intent of a typical phrase of the form “the adversary is
not allowed to query the challenge ciphertext to the decryption oracle” seems to be
that such a query is never allowed. Had the writers meant allowed only with negligible
probability, one would have expected it precisely stated as such.

Trivial Implications The trivial implications (dashed arrows) from Fig. 2 should be
clear from the definitions. Briefly, IND-CCA-SP implies IND-CCA-SE because if the
probability that C∗ ∈ S2 is zero then the winning conditions (b = b′) and (b = b′) ∧
(C∗ ∈ S2) are equivalent. The reason for IND-CCA-BP implying IND-CCA-BE is anal-
ogous. IND-CCA-SP implies IND-CCA-BP because the winning condition of the latter
is more stringent than that of the former. IND-CCA-SE implies IND-CCA-BE because
ABE

PKE ⊆ ASE
PKE.

IND-CCA-BP � IND-CCA-SP Theorem 3.1 below shows that for penalty-style no-
tions, disallowing a challenge-ciphertext query in both phases results in a notion strictly
weaker than that resulting from disallowing it only in the second phase. That this is also
true for the exclusion-style notions will follow by combining Theorems 3.1 and 3.2.

Theorem 3.1 [IND-CCA-BP � IND-CCA-SP]. Assume there exist injective one-way
functions and a scheme PKE which is IND-CCA-BP secure. Then there exists a scheme
PKE which is IND-CCA-BP secure but not IND-CCA-SP secure.

Proof. We want to design a scheme PKE = (Kg,Enc,Dec) which is IND-CCA-BP se-
cure but not IND-CCA-SP secure. That is, ability to query the challenge ciphertext in
the first phase should lead to an attack, but, when this is disallowed, the scheme should
be secure. The intuition is as follows. Suppose there was a special message Mweak

and a special ciphertext Cweak such that Enc(pk,Mweak) always (meaning, with prob-
ability one) returns Cweak. Then an adversary could output as its challenge messages
M0 = Mweak and some M1 �= Mweak. If the challenge bit is 0 then the challenge cipher-
text C∗ must be Cweak, and otherwise (by consistency) must be different from Cweak, so,
given C∗ the adversary can always determine the challenge bit, and the scheme is not
IND-CCA-SP. The difficulty is that it is not IND-CCA-BP either. (In fact, it is not even
IND-CPA.) To make it IND-CCA-BP, we ensure that Mweak can only be found by query-
ing Cweak to the decryption oracle in the first phase. However, there is now a difficulty.
Namely, the encryption algorithm Enc needs to return Cweak given pk,Mweak, meaning
it must at some level know Mweak. Yet the adversary, who is given pk,Cweak, and the
description of Enc, must not know Mweak. (Unless it queries Cweak to the decryption
oracle.) To ensure this, we put in pk an image of Mweak under an injective one-way
function. Then neither pk nor Enc reveal Mweak, but Enc can test whether a given input
equals Mweak. We now proceed to the details.
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Fig. 4. Counterexample scheme PKE for proofs of Theorems 3.1 and 3.3. In the first case Nk = {1k} and in
the second case Nk = {0,1}k .

Let f : {0,1}∗ → {0,1}∗ be an injective one-way function and assume that PKE =
(Kg,Enc,Dec) is IND-CCA-BP secure. Consider the scheme PKE = (Kg,Enc,Dec)
whose constituent algorithms are shown in Fig. 4, where Nk is set to {1k}. The ci-
phertext Cweak from the above discussion is (1,1k). Now we want to claim that PKE is
IND-CCA-BP secure but not IND-CCA-SP secure. However, we first check that PKE is
consistent. The reason we want to highlight this (usually trivial) check is that it is the
(only) place we use the assumption that f is injective.

Claim 1. PKE is consistent.

Proof. We have to show that Dec(sk,Enc(pk,M)) = M , always. If f (M) �= Y where
pk = (pk, Y ), this follows from the consistency of PKE. So suppose f (M) = Y . In that
case Enc(pk,M) returns C = (1,1k) which is decrypted by Dec to Mweak. Since f is
injective, we have Mweak = M . �

Claim 2. PKE is not IND-CCA-SP secure.

Proof. Consider adversary A = (A1,A2) ∈ ASP
PKE

that proceeds as follows. Given

pk = (pk, Y ), algorithm A1 queries DEC1(·) on ciphertext C = (1,1k) to obtain Mweak.
It picks M1 ←R {0,1}k \ {Mweak} and returns M0 = Mweak and M1 as the two chal-
lenge messages. A2 obtains a challenge ciphertext C∗ and returns b′ = 0 if C∗ = (1,1k)

and b′ = 1, otherwise. We have Advind-cca-SP
PKE,A

(k) = 1. Note that with probability 1/2,
A queries the challenge ciphertext to the decryption oracle in the first phase which is
why this does not show PKE is IND-CCA-BP insecure. �

Claim 3. PKE is IND-CCA-BP secure.

Proof. Given an adversary B = (B1,B2) ∈ ABP
PKE

we build A = (A1,A2) ∈ ABP
PKE and

an adversary I against the one-wayness of f such that, for all k ∈ N,

Advind-cca-BP
PKE,B

(k) ≤ Advind-cca-BP
PKE,A (k) + 2Advow

f,I(k). (1)

We start by describing A = (A1,A2) in Fig. 5. Here, A simulates the oracles of B using
the shown subroutines SDECj (·) (j = 1,2). For B, this provides a perfect simulation of
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Fig. 5. Adversary A = (A1,A2) ∈ ABP
PKE for the proof of Claim 3.

experiment Expind-cca-BP
PKE,B

unless Mweak ∈ {M0,M1}. This motivates the definition of the
following events. Event BD is that Mweak ∈ {M0,M1} (for the M0,M1 chosen by B1).
Event ASK is that B1 asks for the decryption of C = (1,1k). We have

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true

]

= Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ ¬BD

] + Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ BD

]
.

(2)

The following takes care of the first summand and uses that A provides a good view for
B unless BD occurs, and that the probability for BD is the same in both experiments:

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ ¬BD

] = Pr
[
Expind-cca-BP

PKE,A (k) ⇒ true∧ ¬BD
]
. (3)

To bound the second summand of (2), we start with

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ BD

]

≤ Pr[BD ∧ ¬ASK] + Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ BD ∧ ASK

]
. (4)

We design an adversary I against the one-wayness of f such that

Pr[BD ∧ ¬ASK] ≤ Advow
f,I(k). (5)

I gets Y = f (Mweak) for uniformly chosen Mweak ∈ {0,1}k and tries to compute Mweak.
To this end, I proceeds as follows:

Alg I(Y )

(pk, sk) ←R Kg(1k);pk ← (pk, Y )

(M0,M1,St) ←R BSDEC1(·)
1 (1k,pk)

If f (M0) = Y then return M0
If f (M1) = Y then return M1
Else return ⊥

Oracle SDEC1(C)

Parse (b,C) ← C

If b = 0 then return Dec(sk,C)

Else return ⊥
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Note that B1 has exactly the same view in experiment Expind-cca-BP
PKE,B

and in the simula-

tion inside I unless it asks for a decryption of (1,1k). Also, I is successful in inverting
f iff Mweak ∈ {M0,M1}. Hence, (5) is true.

Note that the probability of BD ∧ ASK could be high, because nothing prevents B1

from making the decryption query (1,1k) to get Mweak and then setting either M0 or M1

to Mweak. However, we note that if BD ∧ ASK does occur, then B loses with probability
1/2 because C

∗ = (1,1k) with that probability. That is,

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true | BD ∧ ASK

] ≤ 1/2 (6)

On the other hand,

Pr
[
Expind-cca-BP

PKE,A (k) ⇒ true | BD ∧ ASK
] = 1/2. (7)

This is because if BD∧ASK happens then A1 sets bad to true and A2 returns a random
decision b′. Here we also use that by consistency of the scheme, picking M0,M1 from
{0,1}k \ D1, ensures that A1 never queries the challenge ciphertext to the decryption
oracle in the first phase. Now note that the probability of BD ∧ ASK is the same in both
experiments (because until BD ∧ ASK happens, both experiments proceed identically).
Hence, from (6), (7), we get

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ BD ∧ ASK

]

≤ Pr
[
Expind-cca-BP

PKE,A (k) ⇒ true∧ BD ∧ ASK
]
.

Combining this with (4) and (5) yields

Pr
[
Expind-cca-BP

PKE,B
(k) ⇒ true∧ BD

] ≤ Pr
[
Expind-cca-BP

PKE,A (k) ⇒ true∧ BD
] + Advow

f,I.

Combining this with (2) and (3), we finally get (1). �

Remark. We stress that our adversary A against PKE’s IND-CCA-SP security in the
proof of Claim 2 does not query its decryption oracle after receiving the challenge
ciphertext. Hence, PKE is not even IND-CCA-1 secure. (Here IND-CCA-1 security is
defined like IND-CCA-SE security, except that the second stage A2 of the adversary
does not get access to a decryption oracle [4,31].) Since any reasonable form of (full)
IND-CCA security should imply IND-CCA-1 security, we view this as another indication
that IND-CCA-SE security is the “right” definition of IND-CCA security.

IND-CCA-SE ⇒ IND-CCA-SP We already noted that IND-CCA-SP implies
IND-CCA-SE. Theorem 3.2 below says that the converse is true as well, meaning that in
the case where decryption of the challenge ciphertext is disallowed only in the second
phase, the exclusion- and penalty-style notions are equivalent. (We will see below that
this is not true in the case where the decryption of the challenge ciphertext is disallowed
in both phases.) Theorem 3.2 is in fact understood in folklore but we state and prove it
for completeness.
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Theorem 3.2 [IND-CCA-SE ⇒ IND-CCA-SP]. If PKE is IND-CCA-SE secure then
PKE is IND-CCA-SP secure.

Proof. Given an adversary A ∈ ASP
PKE against IND-CCA-SP security of PKE we show

how to build an adversary B ∈ ASE
PKE against IND-CCA-SE security of PKE such that for

all k ∈ N,

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-SE

PKE,B (k). (8)

We let B1 = A1. Algorithm B2, given C∗,St, runs A2 on C∗,St, and finally returns
whatever A2 returns. B2 responds to A2’s oracle queries as follows. When A2 makes
a query C, if C �= C∗, B2 responds with its own decryption oracle, else it returns ⊥
to A2. This ensures that in Expind-cca-SE

PKE,B , we have C∗ /∈ S2 with probability 1. Hence
B ∈ ASE

PKE. Furthermore, (8) holds since a decryption query satisfying C = C∗ directly
implies that A loses. �

IND-CCA-BE � IND-CCA-BP Our final separation shows that in the case where
decryption of the challenge ciphertext is disallowed in both phases, the exclusion- and
penalty-style notions are not equivalent. (This is in contrast to the case where decryption
of the challenge ciphertext is disallowed only in the second phase, as noted above.)

Theorem 3.3 [IND-CCA-BE � IND-CCA-BP]. Assume there exist injective one-way
functions and a scheme PKE which is IND-CCA-BE secure. Then there exists a scheme
PKE which is IND-CCA-BE secure but not secure in the sense of IND-CCA-BP.

Proof. Let f : {0,1}∗ → {0,1}∗ be an injective one-way function and assume
that PKE = (Kg,Enc,Dec) is IND-CCA-BE secure. Consider the scheme PKE =
(Kg,Enc,Dec) of Fig. 4 with Nk = {0,1}k . First we show that PKE is not IND-CCA-BP
secure. Adversary A = (A1,A2) against PKE proceeds as follows. Given pk = (pk, Y ),
adversary A1 queries DEC1(·) on ciphertext (1,1k) to obtain Mweak. It picks M1 ←R
{0,1}k \ {Mweak} and returns M0 = Mweak and M1 as the two challenge messages to the
experiment. A2 obtains a challenge ciphertext C

∗
which is parsed as (s,C). It returns

b′ = 0 if s = 1, and b′ = 1 otherwise. Adversary A wins with probability 1 as long as
C

∗
/∈ S1 which happens with probability 1 − 2−k . Hence Advind-cca-BP

PKE,A
(k) = 1 − 2−k .

Note that the above adversary A is not contained in ABE
PKE since, with probability

2−k , we have C
∗ ∈ S1. Indeed, we can show that PKE is IND-CCA-BE secure. The idea

is again that an adversary needs to use Mweak as one of the challenge messages in order
to win. However, an adversary from ABE

PKE using Mweak as one of the challenge messages
can never make a decryption query C of the form (1,C) in the first phase, since C

∗ =
(1,C) with non-zero probability 2−k/2. Hence, Mweak remains hidden through the one-
way function. Details are similar to the proof of Claim 3 and omitted here. �

4. Results for Key-Encapsulation Schemes

Syntax A keyspace K is a map that associates to any k ∈ N a finite set K(k) ⊆ {0,1}∗
of strings. The elements of K(k) are called keys, and it is required that |K(k)| ≥ 2 for
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Fig. 6. Experiment Expind-cca-X
KEM,A (k), for X ∈ {SE,BE,SP,BP}.

all k ∈ N. A key-encapsulation mechanism (cf. [13]) KEM = (Kg,Enc,Dec) over K
is a triple of algorithms. The key generation algorithm Kg takes a security parameter
1k and returns a pair (pk, sk) of matching public and secret keys. The encapsulation
algorithm Enc takes pk and produces a key K ∈ K(k) together with an encapsulated
ciphertext C. The deterministic decapsulation algorithm Dec takes sk and C to produce
either a key K ∈ K(k) or a special symbol ⊥ to indicate that the ciphertext was invalid.
The consistency requirement is that for all k ∈ N, for all (pk, sk) which can be output
by Kg(1k) and for all (C,K) that can be output by Enc(pk), we have Dec(sk,C) = K .

IND-CCA Security A KEM IND-CCA adversary A = (A1,A2) is a pair of algorithms.
Let B be the class of all such adversaries. Let X ∈ {SP,BP,SE,BE}. To an adversary
A = (A1,A2) and a KEM scheme KEM, we associate the experiment Expind-cca-X

KEM,A (k) in
Fig. 6. We define the advantage of A in the experiment as

Advind-cca-X
KEM,A (k) = 2 Pr

[
Expind-cca-X

KEM,A (k) ⇒ true
] − 1.

Let BSP
KEM = BBP

KEM = B be the class of all IND-CCA adversaries. Let BSE
KEM be the class

of all A ∈ B such that for all k ∈ N, the probability that C∗ ∈ S2 in Expind-cca-SE
KEM,A (k)

is 0. Let BBE
KEM be the class of all A ∈ B such that for all k ∈ N, the probability

that C∗ ∈ S1 ∪ S2 in Expind-cca-BE
KEM,A (k) is 0. We say that KEM is IND-CCA-X secure if

Advind-cca-X
KEM,A (·) is negligible for all A ∈ BX

KEM.
We also consider the following simpler one-phase notions. A one-phase KEM

IND-CCA adversary A consists of a single algorithm. Let X ∈ {OP,OE}. To an adversary
A and KEM, we associate the one-phase experiment Expind-cca-X

KEM,A (k) in Fig. 7. We de-

fine the advantage of A as above. Let BOP
KEM be the class of all one-phase KEM IND-CCA

adversaries. Let BOE
KEM be the class of all A ∈ BOP

KEM such that for all k ∈ N, the proba-
bility that C∗ ∈ S in Expind-cca-OE

KEM,A (k) is 0. We say that KEM is IND-CCA-X secure if

Advind-cca-X
KEM,A (·) is a negligible function for all A ∈ BX

KEM.

Smoothness For k ∈ N we let

SmthKEM(k) = E
[

max
C∈{0,1}∗

Pr
(K,C′)←REnc(pk)

[
C′ = C

]]

where the expected value is taken over all (pk, sk) ←R Kg(k). We refer to SmthKEM(·)
as the smoothness of KEM and say that KEM is smooth if SmthKEM(·) is negliglible. The
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Fig. 7. One-phase experiment Expind-cca-X
KEM,A (k), for X ∈ {OE,OP}.

Fig. 8. Relations between an expanded set of IND-CCA security notions for KEMs. The dotted lines are
trivial implications, and the numbers annotating the solid line implications indicate the theorems establishing
them.

notion of a smooth KEM scheme will play a crucial role in the proof of Theorem 4.4
and may be of independent interest.3

Results Figure 8 depicts our results, which show that all six notions of IND-CCA se-
curity for KEMs are equivalent. The equivalences of the right-hand-side of Fig. 2 are
a consequence. The trivial implications (dashed arrows) of Fig. 8 should be clear from
the definitions. We now prove the two other implications.

IND-CCA-OE ⇒ IND-CCA-BP Theorem 4.1 below shows that security under the
one-phase exclusion-style notion implies security under the two-phase penalty-style no-
tion that disallows challenge decryption in both phases.

Theorem 4.1 [IND-CCA-OE ⇒ IND-CCA-BP]. If KEM is IND-CCA-OE secure then
KEM is IND-CCA-BP secure.

Proof. Let B = (B1,B2) ∈ BBP
KEM. We build an adversary A ∈ BOE

KEM such that for all
k ∈N,

Advind-cca-BP
KEM,B (k) ≤ Advind-cca-OE

KEM,A (k). (9)

A obtains (1k,pk,C∗,K∗
b ) and runs B1 on (1k,pk) and inputs St. Next, A runs B2 on

input (St,C∗,K∗
b ) and outputs whatever B2 returns. During the executions, A needs to

answer B1 and B2’s decapsulation queries. Let C be such a decapsulation query made
by B1 or B2. If C �= C∗ then A answers using its own decapsulation oracle. If C = C∗
is queried, then A aborts. This implies (9) since a successful adversary B ∈ BBP

KEM is

3 In fact, Fujisaki and Okamoto used essentially the same notion (called γ -uniformity in their work) in
their result [18]; the main difference from our notion is the technicality that they quantify over all (pk, sk),
where we only consider the expected value over (pk, sk).
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obliged not to submit C∗ to the decapsulation oracle at any time. Furthermore, by con-
struction, A ∈ BOE

KEM which proves the theorem. �

IND-CCA-BP ⇒ IND-CCA-SP Theorem 4.4 below shows that for penalty-based no-
tions allowing or disallowing a challenge-ciphertext query in the first phase does not
make a difference. First, the following useful lemma shows that for smooth KEMs,
IND-CCA-BP security and IND-CCA-SP security are indeed equivalent.

Lemma 4.2. If KEM is smooth and IND-CCA-BP secure then it is IND-CCA-SP secure.

Proof. Given an adversary A = (A1,A2) ∈ BSP
KEM = BBP

KEM we show that for all k ∈N,

Advind-cca-SP
KEM,A (k) ≤ Advind-cca-BP

KEM,A (k) + Q1(k) · SmthKEM(k), (10)

where Q1(k) is a polynomial upper bound on the number of queries that A1 makes.
Details are similar to the proof of Theorem 5.1 and omitted here. �

Next we show that for KEM schemes IND-CCA-BP security implies smoothness.
This is in contrast to PKE schemes where the counterexample PKE from Fig. 4 shows a
smooth PKE scheme which is not IND-CCA-BP secure.

Lemma 4.3. If KEM is IND-CCA-BP secure, then it is smooth.

Proof. We show that there exists an adversary B = (B1,B2) ∈ BBP
KEM such that for all

k ∈N,

Advind-cca-BP
KEM,B (k) ≥ 1

2
· Smth2

KEM(k). (11)

Adversary B1 obtains 1k,pk and returns St = pk. Adversary B2 obtains (pk,C∗,K∗)
and proceeds as follows. It picks random (K ′,C′) ←R Enc(pk). If C∗ �= C′ then B2
picks a random bit b′ and returns it. If C∗ = C′ then B2 returns b′ = 1 if K ′ = K∗ and
b′ = 0, otherwise.

We now turn to the analysis of B. For any pk and C ∈ {0,1}∗ let

ν(pk,C) = Pr
(K̃,C̃)←REnc(pk)

[C̃ = C]

Ley Cmax(pk) be such that ν(pk,Cmax(pk)) ≥ ν(pk,C) for all C ∈ {0,1}∗. We define
GD as the event that C′ = Cmax(pk) and C∗ = Cmax(pk) in Expind-cca-BP

KEM,B (k). Assume
GD has happened and hence C∗ = C′. If b = 1 then B wins with probability 1 since (by
consistency) K∗ = K ′. If b = 0 then B only loses if the two keys K ′ and K∗ collide.
Since the experiment picks K∗ = K∗

0 uniformly distributed from K(k) this happens with
probability 1/|K(k)| ≤ 1/2.

Pr
[
b = b′ | GD

] = 1

2
· (Pr

[
b = b′ | GD ∧ b = 0

] + Pr
[
b = b′ | GD ∧ b = 1

])

� 1

2

(
1 + 1 − 1

2

)
= 3

4
.
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On the other hand, Pr[b = b′ | ¬GD] ≥ 1/2 as in both cases, C′ = C∗ and C′ �= C∗, we
have Pr[b = b′ | ¬GD] ≥ 1/2. Since B never queries the decapsulation oracle we have

Advind-cca-BP
KEM,B (k) = 2 Pr

[
Expind-cca-BP

KEM,B (k) ⇒ true
] − 1 = 2 Pr

[
b = b′] − 1

= 2
(
Pr

[
b = b′ | GD

] · Pr[GD] + Pr
[
b = b′ | ¬GD

] · (1 − Pr[GD])) − 1

≥ 1

2
· Pr[GD]

It remains to bound Pr[GD]. To this end let

X(pk) = Pr
(K,C)←REnc(pk)

[
C = Cmax(pk)

]
.

Regard X as a random variable over the choice of pk given by (pk, sk) ←R Kg(1k).
Then, taking the expectation over the choice of (pk, sk) we have E[X] ≥ SmthKEM(k)

so

Pr[GD] = E
[
X2] ≥ E[X]2 ≥ Smth2

KEM(k)

due to Jensen’s inequality. This yields (11) and concludes the proof of the claim. �

The preceding two lemmas can be combined to show our main result for KEMs.

Theorem 4.4 [IND-CCA-BP ⇒ IND-CCA-SP]. If KEM is IND-CCA-BP secure then
KEM is IND-CCA-SP secure.

Proof. Combining Lemmas 4.2 and 4.3, we see that there exists an adversary
B ∈ABP

KEM (from Lemma 4.3), such that for any given adversary A ∈ ASP
KEM = ABP

KEM
and any k ∈ N, we have

Advind-cca-SP
KEM,A (k) ≤ Advind-cca-BP

KEM,A (k) + Q1(k) · SmthKEM(k)

≤ Advind-cca-BP
KEM,A (k) + Q1(k) ·

√
2Advind-cca-BP

KEM,B (k), (12)

where Q1(k) is a polynomial upper bound on the number of decryption queries that A
makes. Since both Advind-cca-BP

KEM,A (k) and Advind-cca-BP
KEM,B (k) are negligible by assumption,

this proves the theorem. �

Remark 4.5. The reduction of Theorem 4.4 expressed by (12) is not tight: in general
the smoothness of a KEM can only be bounded by the square root of the IND-CCA-BP
advantage. However, nearly all practical KEM scheme are unconditionally smooth, i.e.
SmthKEM(k) = O(2−k). For example, this is true for Diffie–Hellman-based schemes. In
this case the reduction is tight, i.e. it only loses an additive factor of Q1(k)/2k .

5. Relations for Smooth PKE Schemes

We mentioned earlier some intuition for why one might think that disallowing decryp-
tion of the challenge ciphertext in both phases is equivalent to disallowing it only in
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Fig. 9. Implications and separations between the various IND-CCA security notions for PKE schemes with
smooth ciphertexts.

the second phase, namely that, even for IND-CPA schemes, there must be, for every
message, a large number of corresponding ciphertexts, and hence an adversary would
be unable to predict (and hence query) the challenge ciphertext in the first phase. The
counterexample of Theorem 3.1 shows this intuition is false in general; in the scheme
PKE we build there, there is a message, namely Mweak, encryption of which can re-
sult in just one ciphertext, and yet the scheme is IND-CCA-BP (and hence IND-CPA)
secure but not IND-CCA-SP secure. However, we now claim that the basic intuition
mentioned above is still right in the sense that if indeed, for every message, there is a
large number of corresponding ciphertexts—we will call this property smoothness—
then indeed IND-CCA-BP implies IND-CCA-SP. Where the intuition went wrong was
in thinking smoothness is implied by security properties like IND-CPA or IND-CCA-BP.
(The scheme of Theorem 3.1 shows it is not.) Interestingly, we will, however, see that
IND-CCA-BE and IND-CCA-SE are not equivalent even for smooth schemes, indicating
the weakness of exclusion-based definitions. To detail all this we now define smoothness
formally. For any k ∈N and any scheme PKE = (Kg,Enc,Dec), we let

SmthPKE(k) = E
[

max
M∈{0,1}∗,C∈{0,1}∗

Pr
C∗←REnc(pk,M)

[
C = C∗]]

where the expected value is taken over all (pk, sk) ←R Kg(k). We refer to SmthPKE(k)

as the smoothness of PKE and say that PKE is smooth if SmthPKE(·) is negliglible.
Smooth practical schemes include the ElGamal scheme [17] and the Cramer–Shoup

scheme [12]. For these schemes, SmthPKE(k) ≤ 2−k . On the other hand, the scheme
PKE from Theorem 3.1 is not smooth: For any (pk, sk), for the message Mweak and
the ciphertext C = (1,1) we have Pr[C = Enc(pk,Mweak)] = 1 so SmthPKE(k) = 1.
The relations between the different IND-CCA notions for PKE schemes with smooth
ciphertexts are summarized in Fig. 9. The difference between this and Fig. 2 is that
IND-CCA-BP now implies IND-CCA-SP.

Theorem 5.1. If the scheme PKE is IND-CCA-BP secure and smooth, then it is also
IND-CCA-SP secure.

Proof. Given an adversary A = (A1,A2) ∈ ASP
PKE = ABP

PKE we show that for all k ∈N,

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-BP

PKE,A (k) + 2Q1(k) · SmthPKE(k), (13)

where Q1(k) is a polynomial upper bound on the number of decryption queries of A1.
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We define the event BD in Expind-cca-BP
PKE,A to hold when C∗ ∈ S1. Then

Advind-cca-SP
PKE,A (k) ≤ Advind-cca-BP

PKE,A (k) + Pr[BD]. (14)

On the other hand we have Pr[BD] ≤ Q1(k) · SmthPKE(k) because for any given
first phase query C, the smoothness property of PKE guarantees that Pr[C = C∗] ≤
SmthPKE(k). Substituting into (14) yields (13), and thus the claimed statement. �

However, Theorem 5.2 below shows that, even for smooth schemes, the equivalence
between allowing challenge decryption queries in both or just the second phase does
not carry over to the case of exclusion-based definitions.

Theorem 5.2 [IND-CCA-BE � IND-CCA-SE]. Assume there exist injective one-way
functions and a smooth scheme PKE which is IND-CCA-BE secure. Then there exists a
smooth scheme PKE which is IND-CCA-BE secure but not IND-CCA-SE secure.

Proof. Assume PKE is IND-CCA-BE secure and smooth. We use the IND-CCA-BE
secure PKE scheme PKE from the proof of Theorem 3.3 (Fig. 4 with Nk = {0,1}k).
Note that SmthPKE(k) ≤ SmthPKE(k) + 2−k and hence PKE is smooth.

Consider the adversary A = (A1,A2) used in the proof of Theorem 3.3 to attack
IND-CCA-BP security of the scheme. Since A2 never queries the decryption oracle we
have A ∈ ASE

PKE. Furthermore, A wins with probability 1, always, and hence PKE is not
IND-CCA-SE secure. �
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