J Cryptol (2015) 28:351-395

DOI: 10.1007/500145-014-9182-0 Journal of

CRYPTOLOGY

Computing on Authenticated Data

Jae Hyun Ahn - Susan Hohenberger*
Johns Hopkins University, Baltimore, MD, USA
indrazit@gmail.com; susan@cs.jhu.edu

Dan Boneh'
Stanford University, Stanford, CA, USA
dabo@cs.stanford.edu

Jan Camenisch*
IBM Research — Zurich, Ruschlikon, Switzerland
jca@zurich.ibm.com

Abhi Shelat®
University of Virginia, Charlottesville, VA, USA
abhi @cs.virginia.edu

Brent Waters'
University of Texas at Austin, Austin, TX, USA
bwaters @cs.utexas.edu

Communicated by Tal Rabin.

Received 13 June 2012
Online publication 18 April 2014

Abstract. In tandem with recent progress on computing on encrypted data via fully
homomorphic encryption, we present a framework for computing on authenticated data

* Supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL) under contract FA8750-11-2-0211, the Office of Naval Research under contract NO0014-
11-1-0470, NSF CNS 1154035 and 1228648, a Microsoft Faculty Fellowship and a Google Faculty Research
Award.

f Supported by NSF, DARPA, and AFOSR. Applying to all authors, the views and conclusions contained
in this document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US government.

¥ This work has been funded by the European Community’s Seventh Framework Programme (FP7/2007-
2013) under Grant Agreement No. 216483 (PrimeLife).

§ Supported by NSF CNS-0845811 and TC-1018543, Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under contract FA8750-11-2-0211, and a Microsoft
New Faculty Fellowship.

1 Supported by NSF CNS-0915361, CNS-0952692 and CNS-1228599, AFOSR Grant No. FA9550-08-
1-0352, DARPA PROCEED, DARPA N11AP20006, Google Faculty Research Award, the Alfred P. Sloan
Fellowship, Microsoft Faculty Fellowship, and Packard Foundation Fellowship.

© International Association for Cryptologic Research 2014

352

J. H. Ahn et al.

via the notion of slightly homomorphic signatures, or P-homomorphic signatures. With
such signatures, it is possible for a third party to derive a signature on the object m’
from a signature of m as long as P (m, m") = 1 for some predicate P which captures the
“authenticatable relationship" between m’ and m. Moreover, a derived signature on m’
reveals no extra information about the parent m. Our definition is carefully formulated
to provide one unified framework for a variety of distinct concepts in this area, including
arithmetic, homomorphic, quotable, redactable, transitive signatures, and more. It in-
cludes being unable to distinguish a derived signature from a fresh one even when given
the original signature. The inability to link derived signatures to their original sources
prevents some practical privacy and linking attacks, which is a challenge not satisfied
by most prior works. Under this strong definition, we then provide generic construc-
tions for all univariate and closed predicates, and specific efficient constructions for a
broad class of natural predicates such as quoting, subsets, weighted sums, averages, and
Fourier transforms. To our knowledge, these are the first efficient constructions for these
predicates (excluding subsets) that provably satisfy this strong security notion.

Keywords. Authentication, Homomorphic signatures, Quotable signatures.

1. Introduction

In tandem with recent progress on computing any function on encrypted data, e.g., [33,
56,59], this work explores computing on unencrypted signed data. In the recent years,
several independent lines of research touched on this area:

e Quoting/redacting: [1,20-22,36,39,46,58] Given Alice’s signature on some mes-

sage m anyone should be able to derive Alice’s signature on a subset of m. Quoting
typically applies to signed text messages where one wants to derive Alice’s sig-
nature on a substring of m. Quoting can also apply to signed images where one
wants to derive a signature on a subregion of the image (say, a face or an object)
and to data structures where one wants to derive a signature of a subset of the data
structure such as a sub-tree of a tree.

Arithmetic: [15-17,26,32,40,63,65] Given Alice’s signature on vectors vy, ...,
vk € [, anyone should be able to derive Alice’s signature on a vector Vv in the
linear span of vy, ..., V. Arithmetic on signed data is motivated by applications to
secure network coding [31]. We show that these schemes can be used to compute
authenticated linear operations such as computing an authenticated weighted sum
of signed data and an authenticated Fourier transform. As a practical consequence
of this, we show that an untrusted database storing signed data (e.g., employee
salaries) can publish an authenticated average of the data without leaking any other
information about the stored data. Recent constructions go beyond linear operations
and support low degree polynomial computations [15].

Transitivity: [8,9,37,45,50,51,54,64] Given Alice’s signature on edges in a graph
G anyone should be able to derive Alice’s signature on a pair of vertices (u, v) if
and only if there is a path in G from u to v. The derived signature on the pair (u, v)
must be indistinguishable from a fresh signature on (u, v) had Alice generated one
herself [45]. This requirement ensures that the derived signature on (u, v) reveals
no information about the path from u to v used to derive the signature.

In this paper, we put forth a general framework for computing on authenticated data
that encompasses these lines of research and much more. While prior definitions mostly

Computing on Authenticated Data 353

contained artifacts specific to the type of malleability they supported, and thus, were hard
to compare to one another, we generalize and strengthen these disparate notions into a
single definition. This definition can be instantiated with any predicate, and we allow
repeated computation on the signatures (e.g., it is possible to quote from a quoted signa-
ture). During our study, we realized that the “privacy” notions offered by many existing
definitions are, in our view, insufficient for some practical applications. We therefore
require a stronger (and seemingly a significantly more challenging to achieve) prop-
erty called context hiding. Under this definition, we provide two generic solutions for
computing signatures on any univariate, closed predicate; however, these generic con-
structions are not efficient. We also present efficient constructions for three problems:
quoting substrings in Sect. 4, a subset predicate in Sect. 5, and a weighted average over
data in Sect. 6 (which captures weighted sums and Fourier transforms). Our quoting
substring construction is novel and significantly more efficient than the generic solu-
tions. For the problems of subsets and weighted averages, we show somewhat surprising
connections to respective existing solutions in attribute-based encryption and network
coding signatures.

After the appearance of the conference version of this work, this concept was explored
further. Attrapadung, Libert, and Peters [3] studied an even stronger notion of privacy,
which they called complete context-hiding, and later [4] provided efficient quotable
and linearly homomorphic signatures satisfying this strong notion. Chase, Kohlweiss,
Lysyanskaya, and Meiklejohn [27] extended the context-hiding definition of Attrapadung
et al. to allow for adversarially generated keys and signatures and studied applications
to anonymous credentials. Recently, Deiseroth, Fehr, Fischlin, Maasz, Reimers, and
Stein [29] explored computing on authenticated data when the predicates may be adjusted
or combined.

1.1. Overview

A general framework Let M be some message space and let 2M be its powerset.
Consider a predicate P : DM x M — {0, 1} mapping a set of messages and a message
to a bit. Loosely speaking we say that a signature scheme supports computations with
respect to P if the following holds:

Let M C M be a set of messages and let m’ be a derived message, namely
m’ satisfies P(M, m’) = 1. Then there exists an efficient procedure that can
derive Alice’s signature on m’ from Alice’s independent signatures on all of
the messages in M.

For the quoting application, the predicate P is defined as P(M, m’) = 1iff m' is a quote
from the set of messages M. Here, we focus on quoting from a single message m so that
P is false whenever M contains more than one componentl, and thus use the notation
P(m, m’) as shorthand for P({m}, m’). The predicate P for arithmetic computations is
defined in Appendix 2.3 and essentially says that P ((V], ..., Vi), V) is true whenever
v is in the span of vy, ..., Vg.

IWe leave it for future work to construct systems for securely quoting from two messages (or possibly
more) as defined next.

354 J. H. Ahn et al.

‘We emphasize that signature derivation can be iterative. For example, given a message-
signature pair (m, o) from Alice, Bob can publish a derived message-signature pair
(m’, o) for an m’ where P(m, m’) holds. Charlie, using (m’, o), may further derive a
signature o” on m”. In the quoting application, Charlie is quoting from a quote which
is perfectly fine.

Security We give a clean security definition that captures two properties: unforgeability
and context hiding. We briefly discuss each in turn and give precise definitions in the
next section.

e Unforgeability captures the idea that an attacker may be given various derived
signatures (perhaps iteratively derived) on messages of his choice. The attacker
should be unable to produce a signature on a message that is not derivable from
the set of signed messages in his possession. For example, suppose Alice generates
(m, o) and gives it to Bob who then publishes a derived signature (m', 0”). Then
an attacker given (m’, o’) should be unable to produce a signature on m or on any
other message m” such that P(m’, m") = 0.

e Context hiding captures an important privacy property: a signature should reveal
nothing more than the message being signed. In particular, if a signature on m’ was
derived from a signature on m, an attacker should not learn anything about m other
than what can be inferred from m’. This should be true even if the original signature
on m is revealed. For example, a signed quote should not reveal anything about the
message from which it was quoted, including its length, the position of the quote,
whether its parent document is the same as another quote, whether it was derived
from a given signed message or generated freshly, etc.

Defining context hiding is an interesting and subtle task. In the next section, we give a
definition that captures a very strong privacy requirement. We discuss earlier attempts
at defining privacy following our definition in Sect. 2.4; while many prior works use a
similar sounding intuition as we give above, most contain a fundamental difference to
ours in their formalization.

We note that notions such as group or ring signatures [7,13,23,28,53] have consid-
ered the problem of hiding the identity of a signer among a set of users. Context hiding
ensures privacy for the data rather than the signer. Our goal is to hide the legacy of how
a signature was created.

Efficiency We require that the size of a signature, whether fresh or derived, depend only
on the size of the object being signed. This rules out solutions where the signature grows
with each derivation.

Generic Approaches We begin with two generic constructions that can be inefficient.
They apply to closed, univariate predicates, namely predicates P(M,m’) where M
contains a single message (P is false when |M| > 1) and whereif P(a,b) = P(b,c) =1
then P(a, c) = 1. The first construction uses any standard signature scheme S where
the signing algorithm is deterministic. (One can enforce determinism using PRFs [34]).
To sign a message m € M, one uses S to sign each message m’ such that P(m,m’) = 1.
The signature consists of all these signature components. To verify a signature for m, one
checks the signature component corresponding to the message m. To derive a signature

Computing on Authenticated Data 355

m’ from m, one copies the signature components for all m” such that P(m’, m") = 1.
Soundness of the construction follows from the security of the underlying standard
scheme S and context hiding from the fact that signing in S is deterministic.

Unfortunately, these signatures may become large consisting up to | M| signature
components—impacting both the signing time and signature size. Our second generic
construction alleviates the space burden by using an RSA accumulator. The construction
works in a similar brute force fashion where a signature on m is an accumulator value on
all m’ such that P(m,m’) = 1. While this produces short signatures, the time compo-
nent of both verification and derivation are even worse than the first generic approach.
Thus, these generic approaches are too expensive for most interesting predicates. We
detail these generic approaches and proofs in Sect. 3, where we also discuss a generic
construction using NIZK.

Our Quoting Construction. We turn to more efficient constructions. First, we set out to
construct a signature for quoting substrings?, which although conceptually simple is non-
trivial to realize securely. As an efficiency baseline, we note that the brute force generic
construction of the quoting predicate would result in n> components for a signature on n
characters. So any interesting construction must perform more efficiently than this. We
prove our construction selectively secure.® In addition, we give some potential future
directions for achieving adaptive security and removing the use of random oracles.
Our construction uses bilinear groups to link different signature components together
securely, but in such a way that the context can be hidden by a re-randomizing step in
the derivation algorithm. A signature in our system on a message of length n consists
of nlgn group elements; intuitively organized as 1gn group elements assigned to each
character. To derive a new signature on a substring of £ characters, one roughly removes
the group elements not associated with the new substring and then re-randomizes the
remaining part of the signature. This results in a new signature of ¢ 1g £ group elements.
The technical challenge consists in simultaneously allowing re-randomization and pre-
serving the “linking” between successive characters. In addition, there is a second option
in our derive algorithm that allows for the derivation of a short signature of Ig £ group
elements; however, the derive procedure cannot be applied again to this short signature.
Thus, we support quoting from quotes, and also provide a compression option which
produces a very short quote, but the price for this is that it cannot be quoted from further.

Computing Signatures on Subsets and Weighted Averages Our final two contributions are
schemes for deriving signatures on subsets and weighted averages on signatures. Rather
than create entirely new systems, we show connections to existing Attribute-Based En-
cryption schemes and Network Coding Signatures. Briefly, our subset construction ex-
tends the concept of Naor [14] who observed that every IBE scheme can be transformed
into a standard signature scheme by applying the IBE KeyGen algorithm as a signing

ZA substring of x| ...x, is some x; ...x; where i, j € [1,n] andi < j. We emphasize that we are not
considering subsequences. Thus, it is not possible, in this setting, to extract a signature on “I like fish” from
one on “I do not like fish”.

3Following an analog of [24], selective security for signatures requires the attacker to give the forgery
message before seeing the verification key.

356 J. H. Ahn et al.

algorithm. Here we show an analog for known Ciphertext-Policy (CP) ABE schemes.
The KeyGen algorithm which generates a key for a set S of attributes can be used as a
signing algorithm for the set S. For known CP-ABE systems [10,41,62] it is straightfor-
ward to derive a key for a subset §” of S and to re-randomize the signature/key. To verify
a signature on S we can apply Naor’s signature-from-IBE idea and encrypt a random
message X to a policy that is an AND of all the attributes in S and see if the signature
can be used as an ABE key to decrypt to X. Signatures for subsets have been previously
considered in [37, §6.4], but without context hiding requirements. We provide further
details in Sect. 5. Our construction for weighted sums is presented in Sect. 6, where we
discuss how this applies to Fourier transforms.

2. Definitions

Definition 2.1 (Derived messages) Let M be a message space and let P : 2M x M —
{0, 1} be a predicate from sets over M and a message in M to a bit. We say that a message
m’ is derivable from the set M C M if P(M,m’) = 1. We denote by P*(M) the set
of messages derivable from M by repeated derivation. That is, let P?(M) be the set of
messages derivable from M and for i > 0 let P/ (M) be the set of messages derivable
from P'=1(M). Then P*(M) := UX,P'(M).

We define the closure of P, denoted P*, as the predicate defined by P*(M,m) = 1
iff m € P*(M).

A P-homomorphic signature scheme IT for message space M and predicate P is a
triple of PPT algorithms:

KeyGen(1*): the key generation algorithm outputs a key pair (pk, sk). We treat the
secret key sk as a signature on the empty tuple ¢ € M™. We also assume that pk is
embedded in sk.

SignDerive (pk, ({0 }menm, M), m’, w): the algorithm takes as input the public key, a
set of messages M C M and corresponding signatures {o;,}mem, a derived message
m’ € M, and possibly some auxiliary information w. It produces a new signature o’
or a special symbol _L to represent failure. For complicated predicates P, the auxiliary
information w serves as a witness that P (M, m’) = 1. To simplify the notation we often
drop w as an explicit argument.

As shorthand we write Sign(sk, m) := SignDerive(pk, (sk, €), m, -) to denote that
any message can be derived when the original signature is the signing key. For a set
of messages M = {my,...,my} C M™ it is convenient to let Sign(sk, M) denote
independently signing each of the k£ messages, namely:

Sign(sk, M) := (Sign(sk, m)), ..., Sign(sk, my)).

Verify (pk, m, o): given a public key, message, and purported signature o, the algorithm
returns 1 if the signature is valid and O otherwise.
We assume that testing m € M can be done efficiently, and that Verify returns 0 if

Computing on Authenticated Data 357

Correctness We require that for all key pairs (sk, pk) generated by KeyGen(1") and for
all M € M* and m’ € M we have:

o if P(M,m") = 1 then SignDerive(pk, (Sign(sk, M), M), m") # L, and
o for all signature tuples {o,,};mep such that o’ < SignDerive(pk, ({0 }mer, M),
m') # 1, we have Verify(pk, m’, 0') = 1.

In particular, correctness implies that a signature generated by SignDerive can be used as
an input to SignDerive so that signatures can be further derived from derived signatures,
if allowed by P.

Derivation efficiency In many cases it is desirable that the size of a derived signature
depend only on the size of the derived message. This rules out signatures that expand
as one iteratively calls SignDerive. All the constructions in this paper are derivation
efficient in this sense.

Definition 2.2. (Derivation-Efficient) A signature scheme is derivation-efficient if there
exists a polynomial p such that for all (pk, sk) < KeyGen(l)‘), set M € M*, signa-
tures {0y }mem < Sign(sk, M) and derived messages m’ where P(M, m’) = 1, we
have

|SignDerive(pk, {0 merr. M, m")| = p(h, |m']).

2.1. Security: Unforgeability

To define unforgeability, we extend the basic notion of existential unforgeability with
respect to adaptive chosen-message attacks [35]. The definition captures the idea that
if the attacker is given a set of signed messages (either primary or derived) then the
only messages he can sign are derivations of the signed messages he was given. This is
defined using a game between a challenger and an adversary .A with respect to scheme
IT over message space M.

— Game Unforg(I1, A4, A, P):

Setup: The challenger runs KeyGen(1*) to obtain (pk, sk) and sends pk to A. The
challenger maintains two sets 7 and Q that are initially empty.

Queries: Proceeding adaptively, the adversary issues the following queries to the chal-
lenger:

e Sign(m € M): the challenger generates a unique handle &, runs Sign(sk, m) —
o and places (h, m, o) into a table T'. It returns the handle % to the adversary.

e SignDerive(h = (hy, ..., hy), m’): the oracle retrieves the tuples (h;, o;, m;)
inT fori = 1,...,k, returning L if any of them do not exist. Let M :=
(mi,...,my)and {0 }mem = {01, ..., ox}. If P(M, m’') holds, then the oracle

generates a new unique handle /’, runs SignDerive (pk, ({0y }mep, M), m') —
o’ and places (h', m’, o) into T, and returns /' to the adversary.

e Reveal(h): Returns the signature o corresponding to handle 4, and adds (o’, m”)
to the set Q.

Output: Eventually, the adversary outputs a pair (¢/, m’). The output of the game is 1
(i.e., the adversary wins the game) if:

358 J. H. Ahn et al.

o Verify(pk, m’, 0’) = 1 and,
o let M C M be the set of messages in Q then P*(M, m’) = 0 where P* is the
closure of P from Definition 2.1.

Else, the output of the game is 0. Define Forg 4 as the probability that Pr[Unforg(IT,
A, x, P)=1].

Interestingly, for some predicates it may be difficult to test if the adversary won the
game. For all the predicates we consider in this paper, this will be quite easy.

Definition 2.3. ((Unforgeability) A P-homomorphic signature scheme IT is unforge-
able with respect to adaptive chosen-message attacks if for all PPT adversaries A, the
function Forg 4 is negligible in A.

A P-homomorphic signature scheme IT is selective unforgeable with respect to
adaptive chosen-message attacks if for all PPT adversaries .4 who begin the above game
by announcing the message m’ on which they will forge, Forg 4 is negligible in A.

Properties of the definition By taking P to be the equality oracle, namely P(x, y) = 1
iff x = y, we obtain the standard unforgeability requirement for signatures.

Notice that Sign and SignDerive queries return handles, but do not return the actual sig-
natures. A system proven secure under this definition adequately rules out the following
attack: suppose (m, o) is a message signature pair and (m’, o’) is a message-signature
pair derived from it, namely o’ = SignDerive(pk, o, m, m’). For example, suppose m’
is a quote from m. Then given (m’, ¢’) it should be difficult to produce a signature on m
and indeed our definition treats a signature on m as a valid forgery.

The unforgeability game imposes some constraints on P: (1) P must be reflexive, i.e.,
P(m,m) =1 for all m € M, (2) P must be monotone, i.e., P(M,m') = P(M’',m’)
where M C M’. It is easy to see that predicates that do not satisfy these requirements
cannot be realized under Definition 2.3.

2.2. Security: Context Hiding (a.k.a., Privacy)

Let M be some set and let m’ be a derived message from M (i.e., P(M,m’) = 1).
Context hiding captures the idea that a signature on m’ derived from signatures on M
should reveal no information about M beyond what is revealed by m’. For example, in
the case of quoting, a signature on a quote from m should reveal nothing more about m:
not the length of m, not the position of the quote in m, etc. The same should hold even
if the attacker is given signatures on multiple quotes from m.

We put forth the following powerful statistical definition of context hiding and discuss
its implications following the definition. We were most easily able to leverage a statistical
definition for our proofs, although we also give an alternative computational definition
in Sect. 2.3.

Definition 2.4. (Strong Context Hiding) Let M C M* and m’ € M be messages such
that P(M, m') = 1. Let (pk, sk) < KeyGen(1") be a key pair. A signature scheme
(KeyGen, SignDerive,, Verify) is strongly context hiding (for predicate P) if for all
such triples ((pk, sk), M, m’), the following two distributions are statistically close:

Computing on Authenticated Data 359

{(sk, {omImem < Sign(sk, M), Sign(sk, m")}, /.,

{(sk, {om}mem < Sign(sk, M), SignDerive(pk, ({om}menm, M), m"))} 1y -

The distributions are taken over the coins of Sign and SignDerive. Without loss of
generality, we assume that pk can be computed from sk.

The definition states that a derived signature on m’, from an honestly-generated origi-
nal signature, is statistically indistinguishable from a fresh signature on m’. This implies
that a derived signature on m’ is indistinguishable from a signature generated indepen-
dently of M. Therefore, the derived signature cannot (provably) reveal any information
about M beyond what is revealed by m’. By a simple hybrid argument the same holds
even if the adversary is given multiple derived signatures from M.

Moreover, Definition 2.4 requires that a derived signature look like a fresh signature
even if the original signature on M is known. Hence, if for example someone quotes
from a signed recommendation letter and somehow the original signed recommendation
letter becomes public, it would be impossible to link the signed quote to the original
signed letter. The same holds even if the signing key sk is leaked.

Thus, Definition 2.4 captures a broad range of privacy requirements for derived sig-
natures. Earlier work in this area [19,20,22,39] only considered weaker privacy require-
ments using more complex definitions. The simplicity and breadth of Definition 2.4 is
one of our key contributions.

Definition 2.4 uses statistical indistinguishability meaning that even an unbounded
adversary cannot distinguish derived signatures from newly created ones. In Sect. 2.3,
we give a definition using computational indistinguishability which is considerably more
complex since the adversary needs to be given signing oracles. In the unbounded case
of Definition 2.4 the adversary can simply recover a secret key sk from the public key
and answer its own signature queries which greatly simplifies the definition of context
hiding. All the signature schemes in this paper satisfy the statistical Definition 2.4.

As mentioned above, the context-hiding guarantee applies to all derivations that begin
with an honestly-generated signature. One might imagine a scenario where a malicious
signer creates a signature that passes the verification algorithm, but contains a “water-
mark” that allows the signer to detect if other signatures are derived from it. To prevent
such attacks from malicious signers, we could alter the definition so that indistinguisha-
bility holds for any derivative that results from a signature that passed the verification
algorithm.

2.3. A Computational Definition of Context Hiding

For systems that are strongly context hiding, unforgeability follows from a simpler game
than that of Sect. 2.1. In particular, it suffices to just give the adversary the ability to obtain
top level signatures signed by sk. In this section, we define this simpler unforgeability
game and prove equivalence to Definition 2.3 using strong context hiding.

Let (KeyGen, SignDerive, Verify) be a P-homomorphic signature scheme for pred-
icate P and message M. Consider the following game to model context hiding:

Setup: The challenger runs the algorithm (pk, sk) < KeyGen(1*) to obtain the public
key pk and the secret key sk, and gives pk to the adversary.

360 J. H. Ahn et al.

Query Phase 1: Proceeding adaptively, the adversary may query any of the three oracles
from the unforgeability game:

e Sign(m € M): (same as in the unforgeability game)
o SignDerive(i € Z,m’): (same as in the unforgeability game)
e Reveal(i € 7Z): (same as in the unforgeability game)

Challenge: At some point, the adversary issues a challenge (m, m") where P(m,m’)
= 1 for any m,m’ € M. The challenger computes the following three values: o <«
Sign(sk, m), oy < Sign(sk, m’), and o1 < SignDerive(pk, o, m, m’). The challenger
then picks a random b € {0, 1} and returns (o, o) to the adversary. Note: there are no
restrictions on m, m’ other than that they be in the message space; in particular, they
could be equal and one or both could have been previously signed.

Query Phase 2: Proceeding adaptively, the adversary may query the oracles from Phase
1.

Output: Eventually, the adversary will output a bit 5" and is said to win if b = b’.

We define AdvfiH to be the probability that adversary .4 wins in the above game minus
1

j .

Definition 2.5. (Context Hiding) For a predicate P and message space M, a P-
homomorphic signature scheme (KeyGen, Sign, SignDerive, Verify) is context hiding
if for all probabilistic polynomial time adversaries .A, AdviH is negligible in A.

2.3.1. Relation to Strong Context Hiding

Lemma 2.6. A homomorphic signature scheme that is strongly context hiding is context
hiding.

Proof. Let I1 = (KeyGen, SignDerive, Verify) be a homomorphic signature scheme
and let A be an adversary that has advantage Adng (IT) = p(X) in the context-hiding
game. The advantage probability for A is taken over the random coins of the key gener-
ation, random coins of the Sign and SignDerive operations used in the first query phase,
the random coins used by algorithm A, and the random coins used by the rest of the
experiment. Therefore by an averaging argument, there must exist some particular key
pair (PK, SK) < KeyGen(1%; z1), some particular random tape z4 for the Sign and
SignDerive operations used in the first query phase, some particular random coins z 4
for A, and some particular message pair (m, m’) output by A over which the probability
of A winning the context-hiding game in this case is at least p(1). Let the values of the
random tapes be given as non-uniform advice.

We show how this information can be used to construct a (non-uniform) adversary A’
that distinguishes {(SK, o, Sign(SK, m’)} from {(SK, o, SignDerive(PK, o, m, m’)}
with probability p(A) for the triple ((PK, SK), m, m’). Thus, if I is strongly con-
text hiding, then p(A) must be exponentially small, and so IT must also be context-
hiding.

The adversary A’ works as follows: On input the challenge tuple (SK, o, 0’), A’
begins to run the context-hiding experiment for A(PK; z4). A’ answers the queries that
A asks by using SK and the random tape z, to run Sign and SignDerive. When A

Computing on Authenticated Data 361

outputs a challenge message pair (m, m’) (which must occur by construction), then A’
answers with (o, 0’). A" answers the second-phase queries of A using SK and fresh
random coins. Finally, when A outputs b’, A" echoes this answer as output and halts.

First observe that A’ performs a perfect simulation of the context-hiding game. When
the input pair (o, o) corresponds to (Sign(SK, m), Sign(SK, m’)), then A" simulates
the context-hiding game for » = 0. In the other case, A’ simulates the context-hiding
game for b = 1. Therefore, A’ distinguishes

{(SK, Sign(SK,m), Sign(SK, m") } g, .,
{(SK, Sign(SK, m), SignDerive(PK, o, m, m’))}SK !

with probability p(}). (]
2.3.2. Simplified Unforgeability Under Strong Context Hiding

We now show how the strong context hiding property can help simplify the security
argument for unforgeability. In particular, we introduce a weaker notion of unforgeability
in which the adversary only makes calls to the Sign oracle and immediately receives a
signature.

— Game NHU(IT, A, A, P): This game is the same as the Unforg(I1, A, A, P) game
with the exception that only the following query is allowed:

— Sign(m € M): the oracle computes o <« Sign(SK,m), adds m to Q and
returns o.

Note, the only difference between game NHU and the standard unforgeability game for
a signature scheme is that in this game, the adversary only wins if it produces a forgery
on a signature m* such that for all m € Q, P(m, m*) = 0, whereas in the standard
unforgeability game, the adversary wins if it produces a signature on any message that
isnotin Q.

Definition 2.7. A quoteable signature scheme ITis NHU-unforgeable if for all efficient
adversaries .4, it holds that Pr[NHU(IT, A4, &, P) = 1] < negl (1) for some negligible
function A.

Lemma 2.8. A signature scheme that is NHU-unforgeable and strongly context hiding
is Unforg-unforgeable.

Proof. Our plan is to present a series of hybrid experiments that are meant to simplify
the quotable unforgeability game.

Hybrid H;(I1, A, A, P) Consider the first hybrid experiment H; which is the same
as the unforgeability game Unforg(IT, A, A, P), with the exception that all Sign and
SignDerive queries are lazily evaluated. That is, when .4 makes a query, the experiment
responds in the following way:

— Sign(m): generate a handle i and record information (i, 7, m, €) in T and return
i

362 J. H. Ahn et al.

— SignDerive(i, m'): retrieve (i, z, m, -) from T, return _L if it does not exist or if
P(m,m’) # 1, generate a new handle i’, record (i’, ?, m’, i) in T, and return i’

— Reveal(i): retrieve (i, z,m,i1) from T (returning L if it does not exist). If
z #7, then return z. Otherwise, if i = €, then compute ¢ <« Sign(SK, m),
replace the entry (i, z, m, €) with (i, o, m, €), and return o. Finally, if i; # €,
then recursively call z; < Reveal(iy), obtain (iy, -, m1,-) from T and compute
o < SignDerive(PK, z1, m1, m). Replace the entry with (i, o, m, i1), and return
o.

O
Claim 2.9. Pr[H|(I1, A, A, P) = 1] = Pr[Unforg(I1, A, A, P) = 1].

This claim follows by inspection. For any query that is eventually revealed, the same
operations are performed in both H; and the original game. For any query that is never
revealed, no operation in Hj is performed; but this does not affect the view of the
adversary, and therefore does not affect the output of the adversary.

Hybrid H, ;(I1, A, A, P) The second hybrid is the same as H; except that the first i
queries to Reveal are answered using Reveal, described below, and the remaining queries
are answered as per Hy: (The only difference is that Sign(SK, my) is used in place of
SignDerive(P K, z1, m, m) in the second to last sentence.)

— Reveal; (i): retrieve (i, z, m, i1) from T (returning L if it does not exist). If z #?,
then return z. Otherwise, if i; = €, then compute o <— Sign(SK, m), replace the
entry (i, z, m, €) with (i, o, m, €), and return o. Finally, if i} # €, then recursively
callz; < Reveal(iy),obtain (i1, -, my, -) from T and compute o <— Sign(SK, m1).
Replace the entry with (i, o, m, i1), and return o.

Claim 2.10. H, o(I1, A, A, P) is identically distributed to H,(I1, A, A, P).
By inspection.

Claim 2.11. H,;(I1, A, A, P) is identically distributed to H» ;_1(I1, A, A, P) fori >
1.

This claim follows via the strong context-hiding property of the signature scheme because
this property guarantees Sign(SK, m’) and SignDerive(P K, o, m, m’) are statistically
close.

Suppose that .4 makes £ = poly(i) queries. Observe that H ¢(I1, A, A, P) only
evaluates Sign, and only does so on messages that are immediately returned to the
adversary. Thus, H> 4 is syntactically equivalent to the NHU game. Since the H; , game
enables A to produce a forgery with the same probability as Unforg(IT, A, A, P), we
have that Unforg(I1, A, A, P) = NHU(II, A, A, P) which completes the lemma. [

2.4. Related Work

Early work on quotable signatures [19,21,25,36,39,47,48,58] supports quoting from a
single document, but does not achieve the privacy or unforgeability properties we are

Computing on Authenticated Data 363

aiming for. For example, if simple quoting of messages is all that is desired, then the
following folklore solution would suffice: simply sign the Merkle hash of a document.
A quote represents some sub-tree of the Merkle hash; so a quoter could include enough
intermediate hash nodes along with the original signature in any quote. A verifier could
simply hash the quote, and then build the Merkle hash tree using the computed hash and
the intermediate hashes, and compare with the original signature. Notice, however, that
every quote in this scheme reveals information about the original source document. In
particular, each quote reveals information about where in the document it appears. Thus,
this simple quoting scheme is not context hiding in our sense.

The work whose definition is closest to what we envision is the recent work on redacted
signatures of Chang et al. [25] and Brzuska et al. [19] (see also Naccache [49, p. 63]
and Boneh-Freeman [15,16]).* However, there is a subtle, but fundamental difference
between their definition and the privacy notion we are aiming for. In our formulation,
a quoted signature should be indistinguishable from a fresh signature, even when the
distinguisher is given the original signature. (We capture this by an even stronger game
where a derived signature is distributed statistically close to a fresh signature). In con-
trast, the definitions of [15,16,19,25] do not provide the distinguisher with the original
signature. Thus, it may be possible to link a quoted document to its original source
(and indeed it is in the constructions of [15,16,19,25]), which can have negative privacy
implications. Overcoming such document linkage while maintaining unforgeability is
a real technical challenge. This requires moving beyond techniques that use nonces to
link parts of messages.

Indeed, in most prior constructions, such as [19,25], nonces are used to prevent “mix-
and-match" attacks (e.g., forming a “quote" using pieces of two different messages).
Unfortunately, these nonces reveal the history of derivation, since they cannot change
during each derivation operation. Arguably, much of the technical difficulty in our current
work comes precisely from the effort to meet our definition and hide the lineage. We
introduce new techniques in this work which link pieces together using randomness that
can be re-randomized in controlled ways.

Another line of work studies computing on authenticated data by holders of secret
information. Examples include sanitizable signatures [1,20,22,46,48] that allow a proxy
to compute signatures on related messages, but requires the proxy to have a secret key,
and incremental signatures [6], where the signer can efficiently make small edits to his
signed data. In contrast, our proposal is more along the lines of homomorphic encryption
and Rivest’s vision [51], where anyone can compute on the authenticated data.

4As acknowledged in Sect. 2.2 of Boneh-Freeman [15], our definitional notion is stronger than and predates
the “weak context hiding” notion of [15]. Indeed, the fact that [15] uses our framework lends support to its
generality, and the fact that they could not achieve our context- hiding notion highlights its difficulty. Their
“weak” definition, which is equivalent to [19], only ensures privacy when the original signatures remain hidden.
In their system, signature derivation is deterministic and therefore once the original signatures become public
it is easy to tell where the derived signature came from. Our signatures achieve full context hiding so that
derived signatures remain private no matter what information is revealed. This is considerably harder and is
not known how to do for the lattice-based signatures in Boneh-Freeman.

364 J.H. Ahn et al.
3. Generic Constructions for Simple Predicates

Let M be a finite message space. We say that a predicate P : M* x M — {0, 1} is a
simple predicate if the following properties hold:

1. P is false whenever its left input is a tuple of length greater than 1,
2. P is aclosed predicate (i.e., P is equal to its closure P*; see Sect. 2.1).
3. Forallm € M, P(m,m) = 1.

In this section, we present and discuss generic approaches for computing on authen-
ticated data with respect to any simple predicate P. Note that the quoting of substrings
or subsequences (i.e., redacting) are examples of simple predicates.

We begin with two inefficient constructions. The first takes a brute force approach
that constructs long signatures that are easy to verify. The second takes an accumulator
approach that constructs shorter signatures at the cost of less efficient verification. We
conclude by discussing the limitations of a generic NIZK proof of knowledge approach.

3.1. A Brute Force Construction From Any Signature Scheme

Let (G, S, V) be a signature scheme with a deterministic signing algorithm.> One can
construct a P-homomorphic signature scheme for any simple predicate P as follows:

KeyGen(1%): The setup algorithm runs G (1*) — (pk, sk) and outputs this key pair.
Sign(sk, m € M): While Sign is simply a special case of the SignDerive algorithm,
we will explicitly provide both algorithms here for clarity purposes.

The signature o is the tuple (S(sk, m), U = {S(sk, m") | m" € PO({m})}).
SignDerive(pk, o, m, m’): The derived signature is computed as follows. First check
that P(m, m’) = 1. If not, then output L. Otherwise, parse o = (o1, ..., 0x) Where o;
corresponds to message m;. If for any i, V (pk, m;, 0;) = 0, then output L. Otherwise,
the signature is comprised as the set containing o; for all m; such that P (m’, m;) = 1.
Again, by default, let the first sub-signature of the output be the signature on m’.
Verify(pk, m, o): Parse 0 = (o1, ..., o). Output V (pk, m, o).

Efficiency Discussion The efficiency of the above approach depends on the message
space and the predicate P. For instance, the brute force approach for signing a message
of n characters, where P(m, m’) outputs 1 if and only if m’ is a substring of m, will
result in O (n?) sub-signatures (one for each of the O (n?) substrings). If one wanted to
“quote" subgraphs from a graph, this approach is intractable, as a graph of n nodes will
generate an exponential in n number of subgraphs.

Theorem 3.1. (Security from Any Signature) If (G, S, V) is a secure deterministic
signature scheme, then the above signature scheme is unforgeable and context-hiding.

Proof of the above theorem is rather straightforward. The context-hiding property
follows from the uniqueness of the signatures generated by the honest signing algorithms.

5Given a signature scheme with a probabilistic signing algorithm, one can convert it to a scheme with a
deterministic signing algorithm by: (1) including a pseudorandom function (PRF) seed as part of the secret key,
and (2) during the signing algorithm, applying this PRF to the message and using the output as the randomness
in the signature. Given any signature scheme, one can also construct a PRF.

Computing on Authenticated Data 365

The unforgeability property follows from the fact that an adversary cannot obtain a
signature on any message not derivable from those she queried or one could use this
signature to directly break the regular unforgeability of the underlying signature scheme.
The correctness property is actually the most complex to verify: it requires the two
restrictions on the predicate P made above.

3.2. An Accumulator-based Construction

Assumption 3.2. (RSA [52]) Let k be the security parameter. Let a positive integer N
be the product of two random k-bit primes p, g. Let e be a randomly chosen positive
integer less than and relatively prime to ¢ (N) = (p —1)(¢ — 1). Then no PPT algorithm
given (N, e) and a random y € Z}, as input can compute x such that x* = y mod N
with non-negligible probability.

Lemma 3.3. (Shamir [55]) Given x, y € Z, together with a, b € Z such that x* = yb
and gcd(a, b) = 1, there is an efficient algorithm for computing z € Z, suchthat z% = y.

Theorem 3.4. (Prime Number Theorem) Define w(x) as the number of primes no
larger than x. For x > 1,

X
T(x) > —.
lg x

Consider the following RSA accumulator solution which supports short signatures, but
the computation required to derive a new signature is expensive. Let P be any univariate
predicate with the above restrictions.

‘We now describe the algorithms. While Sign is simply a special case of the SignDerive
algorithm, we will explicitly provide both algorithms here for clarity purposes.

KeyGen(1*): The setup algorithm chooses N as a 20A-bit RSA modulus and a random
value a € Zy. It also chooses a hash function H,, that maps arbitrary strings to 2A-bit
prime numbers, e.g., [38], which we treat as a random oracle.® Output the public key
pk = (H), N, a) and keep as the secret key sk, the factorization of N.

Sign(sk,m € M): Let U = P°({m}) = {m’' | m’ € M and P(m,m’) = 1}. Compute
and output the signature as

o = a/ My B o4 N

SignDerive(pk, o, m, m’): The derivation is computed as follows. First check that
P(m,m’) = 1. If not, then output L. Otherwise, let U’ = P°({m’}). Compute and
output the signature as

o = anE”*U’ Hpi) ™ mod N.

6We choose our modulus and hash output lengths to obtain A-bit security based on the recent estimates
of [57].

366 J. H. Ahn et al.

Thus, the signature is of the form gV Mo Hp@d g N
Verify(pk, m, 0): Acceptif and only ifa = o luer B od N where U = PO(m).

Efficiency Discussion In the above scheme, signatures require only one element in Z7,.
However, the cost of signing depends on P and the size of the message space. For ex-
ample, computing an £-symbol quote from an n-symbol message requires O (n(n — £))
evaluations of H, and O (n(n — £)) modular exponentiations. The prime search compo-
nent of H), will likely be the dominating factor. Verification requires O (£?) evaluations
of H, and O (¢%) modular exponentiations, for an £-symbol quote. Thus, this scheme
optimizes on space, but may require significant computation.

Theorem 3.5. (Security under RSA) If the RSA assumption holds, then the above
signature scheme is unforgeable and context-hiding in the random oracle model.

We provide a proof of above theorem by showing the following lemmas.

Lemma 3.6. (Context-Hiding) The homomorphic signature scheme from §3.2 is
strongly context-hiding.

Proof. This property is derived from the fact that a signature on any given message is
deterministic. Let the public key PK be (H), N, a) and challenge be any m, m’ where
P(m,m')y=1.Let U = P°(m) and U’ = P°(m’). Observe that

Sign(sk, m) =0 = a]/l_[uEU Hp (1) mod N
Sign(sk, m/) =00 = al/Hu’eU’ Hp(u/) mod N
SignDerive(pk, (o, m), m') = ollucv—v' Ho() mod N

H
[al/Huequ(“)]n”EUfU s mod N

— a]/l_[u’eU/ Hl’(“,) mod N

:0’0

Because Sign(sk, m’) and SignDerive(pk, (o, m), m’) are identical, for any adversary
A, the probability that A distinguishes the two is exactly 1/2, and so the advantage in
the strong context hiding game is 0.]

Lemma 3.7. (Unforgeability) If the RSA assumption holds, then the Sect. 3.2 homo-
morphic signature scheme is unforgeable in the Unforg game in the random oracle
model.

Proof. Our reduction only works on certain types of RSA challenges, as in [38]. In
particular, this reduction only attempts to solve RSA challenges (N, e*, y) where ¢* is
an odd prime. Fortunately, good challenges will occur with non-negligible probability.
We know that e* is less than and relatively prime to ¢ (N) < N, which implies it
cannot be 2. We also know, by Theorem 3.4, that the number of primes that are less

Computing on Authenticated Data 367

than N is at least lgLN' Thus, a loose bound on the probability of ¢* being a prime is
> (gw)/N = 5y = w7- O

Now, we describe the reduction. Our proof first applies Lemma 2.8, which allows us to
only consider adversaries A that ask queries to Sign oracle in the NHU game. Moreover,
suppose adversary .4 queries the random oracle H,, on at most s unique inputs. Without
loss of generality, we will assume that all queries to this deterministic oracle are unique
and that whenever Sign is called on message M, then H), is automatically called with all
unique substrings of M. Suppose an adversary .A can produce a forgery with probability €
in the NHU game; then we can construct an adversary 3 that breaks the RSA assumption
(with odd prime e*) with probability € /s minus a negligible amount as follows.

On input an RSA challenge (N, e*, y), I5 proceeds as follows:
Setup B chooses 2A-bit distinct prime numbers ey, e, ..., es—1 at random, where all
e; # ¢*. Denote this set of primes as E. Next, B makes a random guess of i* € [1, s]
and saves this value for later. Then it sets

a:= yneieE e".

Finally, B give the public key PK = (N, a) to A and will answer its queries to
random oracle H), interactively as described below.
Queries Proceeding adaptively, B answers the oracle and sign queries made by A as
follows:

1. Hp(x) : When A queries the random oracle for the jth time, B responds with e*
if j =i* withe;if j < i*ande;_; otherwise. Recall that we stipulated that each
call to H,, was unique. Denote x* as the input where H, (x*) = e*.

2. Sign(M):LetU = PO(M).If x* € U, then B aborts the simulation. Otherwise, 3
calls H, on all elements of U not previously queried to H,. Let primes(U) denote
the set of primes derived by calling H), on the strings of U. Then, it computes the

.) e
signature as o := yHgie(E‘P”m“SW” ' mod N and returns (M, o).

Response Eventually, A outputs a valid message-signature pair (M, o), where M is
not a derivative of an element returned by Sign. If M was not queried to H) or if
M # x*, then B aborts the simulation. Otherwise, let U = P°%(x*) — {x*} and
primes(U) denote the set of primes derived by calling H), on the strings of U. It holds
that "/ Tei eprimesct €1 — yHEl‘ eE—primesV) . — 5¢* mod N. Since y, o € Zy and ged(e*,
I cicE—primes(v) ¢i) = 1 (recall, they are all distinct primes), then B can apply the effi-
cient algorithm from Lemma 3.3 to obtain a value z € Zy such that z¢° = y mod N.
B outputs z as the solution to the RSA challenge.

Analysis We now argue that any successful adversary A against our scheme will have
success in the game presented by B. To do this, we first define a sequence of games,
where the first game models the real security game and the final game is exactly the view
of the adversary when interacting with 3. We then show via a series of claims that if A
is successful against Game j, then it will also be successful against Game j + 1.

368 J. H. Ahn et al.

Game 1: The same as Game NHU, with the exception that at the beginning of the game
BB guesses an index 1 < i* < s and e™* is the response of the i *th query to H,.

Game 2: The same as Game 1, with the exception that A fails if any output of H), is
repeated.

Game 3: The same as Game 2, with the exception that A fails if it outputs a valid forgery
(M, o) where M was not queried to H,.

Game 4: The same as Game 3, with the exception that A fails if it outputs a valid forgery
(M, o) where M # x*.

Notice that Game 4 is exactly the view of the adversary when interacting with B. We
complete this argument by linking the probability of A’s success in these games via a
series of claims. The only non-negligible probability gap comes between Games 3 and
4, where there is a factor 1/s loss.

Define Adv 4[Game x] as the advantage of adversary .4 in Game x.

Claim 3.8. If H, is a truly random function, then
Adv 4[Game 1] = Adv_4[Game NHU].

Proof. The value e* was chosen independently at random by the RSA challenger, just
as H),, would have done.]

Claim 3.9. If H, is a truly random function, then

252
Adv 4[Game 2] = Adv 4[Game 1] — S

Proof. Consider the probability of a repeat occurring when s 2A-bit primes are chosen
atrandom. By Theorem 3.4, we know that there are at least 22k /(2)) 2A-bit primes. Thus,
a repeat will occur with probability < > * s/(2%*/21) = 2521 /2%*, which is negligible
since s must be polynomial in A. (]

Claim 3.10. If H, is a truly random function, then

2
Adv 4[Game 3] = Adv 4[Game 2] — o

Proof. 1If M was never queried to H,, then o can only be a valid forgery if A guessed
the 2A-bit prime that H), would respond with on input M. By Theorem 3.4, there are at
least 2%* /2 such primes and thus the probability of .A’s correct guess is at most 2 /2%,
which is negligible. (]

Claim 3.11.

Adv 4[Game 3]
. .

Adv 4[Game 4] =

Computing on Authenticated Data 369

Proof. At this point in our series of games, we conclude that .4 forges on one of the s
queries to H, and that 1 < i * < s was chosen at random. Thus, the probability that A
forges on the i*th query is 1/s.]

This completes our proof. (]

3.3. On the Limitations of Using a Generic NIZK Proof of Knowledge Approach

Another general approach that one might be tempted to try is to use an NIZK [11]
proof of knowledge system to generate a signature on m’ by proving that one knows
a signature on some m such that P(m,m’) holds. Unfortunately, this approach has
the standard drawback of generality in that it requires circuit-based (nonblack-box)
reductions. In particular, generic NIZK proof systems would require expressing the
signature verification method and quoting predicate into, for example, a boolean circuit,
a 3-SAT formula, or a Hamiltonian-circuit representation. Even if one were to tailor
an NIZK proof of knowledge for these specific statements and therefore avoid costly
reductions, another problem emerges with re-quoting. When a quote is re-quoted, then
the same process happens for both the original signature scheme circuit, the predicate,
and the proof system. Aside from the inefficiency, using standard NIZKPoK systems
would leak information about the size of the original message and quotes, and therefore
would not satisfy our context-hiding property.’

4. A Powers-of-2 Construction for Quoting Substrings

We begin by describing our algebraic setting.

4.1. Bilinear Groups and the CDH Assumption

Bilinear Groups and the CDH Assumption Let G and Gr be groups of prime order p.
A bilinear map is an efficient mapping e : G x G — G which is both: (bilinear) for
allg e Ganda,b < Z,, e(g“, g% = e(g., £)*; and (non-degenerate) if g generates
G, then e(g, g) # 1. We will focus on the Computational Diffie-Hellman assumption in
these groups.

Assumption 4.1. (CDH [30]) Let g generate a group G of prime order p € ©(2*). For
all PPT adversaries A, the following probability is negligible in A: Pr[a, b, <= Z,; z <
Alg, g% 8" 1z =g"l.

4.2. The Quoting Construction

We now provide our main construction for quoting substrings in a text document. It
achieves the best time/space efficiency trade-off to our knowledge for this problem. We

7Using non-interactive CS-proofs [44] in the random oracle model may reduce the size of the proof, but
we do not know how to avoid leaking the size of the theorem statement which also violates the context-hiding
property.

370 J. H. Ahn et al.

will have two different types of signatures called Type I and Type II, where a Type 1
signature can be quoted down to another Type I or Type II signature. A Type II signature
cannot be quoted any further, but will be a shorter signature. The quoting algorithm
will allow us to quote anything that is a substring of the original message. We point out
that the Type I, II signatures of this system conform to the general framework given in
Sect. 2. In particular, we can view a message M as a pair (¢, m) € {0, 1}, {0, 1}*, where
an upper-bound on the length of m is fixed at key generation time. The bit ¢ will identify
the message as being Type I or Type II (assume ¢ = 1 signifies Type I signatures), and
m will be the quoted substring. The predicate

PM = (t,m), M = (t',m') = [1 ift = llandm’is a substring of m;
0 otherwise.

The bit ¢ will indicate whether the new message is Type I or II (i.e., whether the
system can quote further). We note that this description allows an attacker to distinguish
between any Type I signature from any Type II signature since the “type bit" of the
messages will be different, and thus they will technically be two different messages
even if the substring components are equal. For this reason, we will only need to prove
context hiding between messages of Type I or Type II, but not across types. In general,
flipping the bit ¢ will not result in a valid signature of a different type on the same core
message, because the format will be wrong; however, moving from a Type I to a Type
IT on the same core message is not considered a forgery since Type II signatures can be
legally derived from Type 1.

For presentational clarity, we will split the description of our quoting algorithm into
two quoting algorithms for quoting to Type I and to Type II signatures; likewise we
will split the description of our verification algorithm into two separate verification
algorithms, one for each type of signature. The type of signature used or created (i.e.,
bit ¢) will be implicit in the description.

Notation. We use notation m; ; to denote the substring of m of length j starting at
position i.

Intuition: We begin by giving some intuition. We design Type I signatures that allow
re-quoting and Type II signatures that cannot be further quoted, but are ultra-short. For
an original message of length 7, our signature structure should be able to accommodate
starting at any position 1 < i < n and quoting any length 1 < ¢ < (n —i + 1)
substring.®

To (roughly) see how this works for a message of length n, visualize (n + 1) columns
with ([lgn] + 2) rows as in Fig. 1. The columns correspond to the characters of the
message, so if the 14-character message is “abcdefghijklmn"” then there are 15 columns,
with a character in between each column. The rows correspond to the numbers 1gn

8Te(:hnically, our predicate P (m, m") will take the quote from the first occurrence of substring m’ in m,
but for the moment imagine that we allowed quoting from anywhere in m.

Computing on Authenticated Data 371

--» “start” arrow

“start” arrow and
“one” arrow (overlapped)

> “zero” arrow

0 ~a ~ \\siﬂ\, \V .
3y Xi\i\v N\ a path which represents

= = = = =] = B —>—>—> . « »
@ d @ f g h 5 the substring “defgh

Fig. 1. Thetop diagramrepresents a signature on abcdefghijklmn withlength N = 14. Each arrow corresponds
to some group elements in the construction. Logically, whenever the elements corresponding to an arrow are
included in a quoted signature, the characters underneath this arrow are included in the quoted message. The
bold path through the top diagram shows how to construct a Type II signature on defgh; it is very short, but
cannot be re-quoted. The gray box in this figure shows how to construct a Type I signature on cdefghi of length
£ = 7; it includes all the arrows in the lower figure and can be re-quoted. A technical challenge is to enforce
that following the arrows is the only way to form a valid signature.

down to 0, plus an extra row at the bottom.” Each location in the matrix (except along
the bottom-most row) contains one or more out-going arrows. We’ll establish rules for
when these arrows exist and where each arrow ends shortly.

A Type II quote will trace a (Ig n+1)-length path on these arrows through this matrix
starting in a row (with outgoing arrows) of the column that begins the quote and ending
in the lowest row of the first column after the quote ends. The starting row corresponds
to the largest power of two less than or equal to the length of the desired quote. For
example, to quote “bedef”, start in row 2 immediately to the left of “b” (because 2> = 4
is the largest power of two less than 5) and end in row 0 immediately to the right of “f”.
Intuitively, taking an arrow over a character includes it in the quote. A Type II quote on
“defgh" is illustrated in Fig. 1.

A technical challenge is to make this a O (Ig n)-length path rather than a O (n)-length
path. To do this, the key insight is to view the length of any possible quote as the sum
of powers of two and to allow arrows that correspond to covering the quote in pieces
of size corresponding to one operand of the sum at a time. Each location (i, i) in the
matrix (except the bottom-most row) contains:

9The lowest row is intentionally not assigned a number. The second lowest row is row 0. We do this so
that row i can correspond to a jump of length 2*.

372 J. H. Ahn et al.

e a “start” arrow: an arrow that goes down one row and over 2/ columns ending in
(i + 2, i, — 1), if this end point is in the matrix. This adds all characters from
position i, to i, + 2/ — 1 to the quoted substring; effectively adding the largest
power-of-two-length prefix of the quote characters. This arrow indicates that the
quote starts here. These are represented as S; ;, S;, ; pairs in our construction.

e a “one” arrow: an arrow that operates similarly to start arrows and is used to include
characters after a start arrow has been used. These are represented as A; j, E;pairs
in our construction.

e a “zero” arrow: an arrow that goes straight down one row ending in (i, i, — 1).
This does not add any characters to the quoted substring. These are represented as
D; ;, /D\lj pairs in our construction.

A Type II quote always starts with a start arrow and then contains one and zero arrows
according to the binary representation of the length of the quote. In our example of
original message “abcdefghijklmn", we have 15 columns and 5 rows. We will logically
divide our desired substring of “bedef” (length 5 = 22 + 20 = 4 4 1) into its powers-
of-two components “bede"(length 4 = 22) and “f" (length 1 = 2°). To form the Type II
quote, we start in row 2 (since 4 = 22) of column 2 (to the left of *b’) and take the start
arrow (52,2) to row 1 of column 7, take the zero arrow (D7,1) to row 0 of column 7, and
then take the one arrow (A7 o) to the lowest row of column 8. The arrows “pass over"
the characters “bcdef”. Figure 1 illustrates this for quote “defgh".

For a quote of length ¢, the elements on this O (Ig £)-length path of arrows form a very
short Type II signature. For Type I signatures, we include all the elements corresponding
to all arrows that make connections within the columns corresponding to the quote. We
illustrate this in Fig. 1. This allows quoting of quotes with a signature size of O (£1g ¥¢).

It is essential for security that the signature structure and data algorithm enforce that
the quoting algorithm be used and not allow an attacker to “splice” together a quote
from different parts of the signature. We realize this by adding in random “chaining”
variables. In order to cancel these out and get a well-formed Type II quote a user must
intuitively follow the prescribed procedure (i.e., following the arrows is the only way to
form a valid quote).

The Construction: We now describe our algorithms. While Sign is simply a special
case of the SignDerive algorithm, we will explicitly provide both algorithms here for
clarity purposes.

KeyGen(1%): The algorithm selects a bilinear group G of prime order p > 2* with
generator g. Let L be the maximum message length supported and denote n = |1g(L)].
Let H : {0, 1}* - G and H; : {0, 1}* — G be the description of two hash functions
that we model as random oracles. Choose random zo, ..., z,—1, @ € Z,. The secret key
is (20, - - - » Zn—1, @) and the public key is:

PK = (H,H,,g,8%,...,8" ", e(g,)%).

Sign(sk, M = (t,m) € {0, 1} x Z=L): Ifr = 1, signatures produced by this algorithm
are Type I as described below. If # = 0, the Type II signature can be obtained by running
this algorithm and then running the Quote-Type II algorithm below to obtain a quote on
the entire message. The message space is treated as £ < L symbols from alphabet 2.

Computing on Authenticated Data 373

Recall: we use notation m; ; to denote the substring of m of length j starting at position
i
Fori =3tof+1and j =0to [lg(i — 1) — 1], choose random values x; ; € Z,. These
will serve as our random “chaining” variables, and they should all “cancel” each other
out in our short Type II signatures. By definition, setx; —; :=0foralli = 1to ¢ + 1.
A signature is comprised of the following valuesfori = 1tofand j = Oto [1g({—i+1)],
for randomly chosen values r; j € Z:

[start arrow: start and include power j]

Sij=g8% T Hy(m)", Sij =g

Together with the following values for i = 3 to £ and j = 0 to min(|lg(i — 1) —
1], [lg(¢ —i + 1)]), for randomly chosen values rl.”j € ZLp:

[one arrow: include power j and decrease j]

—_— /

X i —X, i r. rl .
Ajj=g"tig "IV H(m 5) 0, Ay =g .

Together with the following values fori =3tof 4 1land j =0to [lg(i — 1) — 1], for
randomly chosen values r;’ j €Lp:

[zero arrow: decrease j|
—_~— /1

'’
Dij=g"

I
Ty

Djj=ghig g

We provide an example of how to form Type II signatures from this construction shortly.
To see why our A; ; and D; ; values start at i = 3, note that Type II quotes at position
i of length 20 = symbol include only the S; ¢ value, where the x. go—; term is O by
definition. Type I quotes at position i of length 2! = 2 symbols include the S; | value
plus an additional D; o term to cancel out the x; 7 o value (leaving only x; 42, —1 = 0).
Quotes at position i of length 2! +1 = 3 symbols include the S; | value plus an additional
Aj42.0 term to cancel out the x;42 0 value (leaving only x;43 —; = 0). Since we index
strings from position 1, the first position to include an A; ; or D; ; valueisi +2 = 3.
SignDerive(pk, o, M = (t,m),M' = (', m’)). If P(M, M’') = 0, output L. Oth-
erwise, if ' = 1, output Quote-Type I(PK, o, m, m’); if ' = 0, output Quote-Type
I(PK, o, m, m’), where these algorithms are defined below.

Quote-Type I(pk, o, m, m'): The quote algorithm takes a Type I signature and produces
another Type I signature that maintains the ability to be quoted again. Intuitively, this
operation will simply find a substring m’ in m, keep only the components associated
with this substring and re-randomize them all (both the x; ; and r; ; terms in every
component).

If m’ is not a substring of m, then output _L. Otherwise, let £’ = |m’|. Determine the first

—

index k at which substring m’ occurs in m. Parse o as a collection of SijsSijs Aijs A,

—

D; j, D; j values, exactly as would come from Sign with £ = |m]|.
First, we choose re-randomization values (to re-randomize the x; ; terms of). Fori = 2
to £ +1and j = 0to [Ig(i — 1) — 1], choose random values y; ; € Z. Set y; 1 :=0

374 J. H. Ahn et al.

foralli = 1to €'+ 1. Later, we will choose #; ; values to re-randomize the r; ; terms of
o.

The quote signature ¢’ is comprised of the following values:

Fori =1to¢ and j =0to |Ig(¢’ — i + 1)], for randomly chosen f; ; € Z,:

Sij = Sitk—1 -8 "I Hg(mi gy 21)" .S ;= Siqk-1,j - 8.

Together with the following values for i = 3 to ¢ and j = 0 to min(llg(i — 1) —
1], llg(¢’ —i + 1)]), for randomly chosen ti/,j € ZLp:

Al = Aipkorj - g g I H(m gy 0), AL = Aiprer - g
Together with the following values fori =3to ¢ +1and j = 0to |lg(i — 1) — 1], for
randomly chosen t j € Lp:

th// 4

D} ;= Dipx-1,-g"g g, D =Dip1j-g"
Quote-Type II(pk, o, m, m’): The quote algorithm takes a Type I signature and produces
a Type 11 signature. If P(m, m’) # 1, then output L.

A quote is computed from one start value and logarithmically many subsequent pieces
depending on the bits of |m’|. All signature pieces must be re-randomized to prevent
context-hiding attacks.

Consider the length ¢’ written as a binary string. Let 8’ be the largest index of £/ = |m’|
that is set to 1, where we start counting with zero as the least significant bit. That is,
set B = |1g(¢’)]. Select random values v, vg/_i, ..., vo € Z. Set the start position as

B := S g and kK =k + 28 Then, from j = B’ — 1 down to 0, proceed as follows:
o If the jthbitof ¢'is 1, set B := B - Ay ; - H(my 5;)%, set k' := k' 4+ 2/, and
Zj = Ak’,j -8
e If the jthbitof ¢/ is 0, set B := B - Dy ;- g%V and Z; := Dy ;

To end, re-randomize as B := B - H;(my, p)" and S:= TS';g g"; output the quote as
o' = (B, 3:, Zg_1, ..., 2Zp).

Verify(pk, M = (1, m), 0): If t = 1, output Verify-Type I(pk, m, o). Otherwise, output
Verify-Type ll(pk, m, o), where these algorithms are defined 1mmed1ate1y below.
Verify-Type I(pk, m, o): Parse o as the set of §; ;, Si; o Aijs Ai. j»Dij Di ;. j-Letd =
Im|.

Let X; ; denotee(g, g)*"/. We can compute these values as follows. The value X; | = 1,
since foralli =1tof+1,x;,_1 =0.Fori =3to ¢ +1 and j =0to [lg(G — 1) — 1],
we compute X; ; in the following manner: Let /| = i — 2/ +*land J = j + 1. Next,
compute X; j = (e(g,8)* - e(Hy(my 1), S1.1)) / €(S1,s. g)- The verification accepts
if and only if all of the following hold:

Computing on Authenticated Data 375
e fori =3tofand j =0tomin(llgti — 1) — 1], [lg(¢ —i + 1)]),
e(Aij, 8) = Xi j/Xijpi j—1 - e(H(m; 1)), Ai j)

eandfori =3tof+1land j =0to [Igi — 1) — 1], e(D;;,8) = Xij/Xij-1-
e(g%, D j).
Verify-Type Il(pk, m, 0): We give the verification algorithm for Type II signatures.
Parse o as (B, S, Zg_1, ..., Zp). Let £ = |m| and B be the index of the highest bit of £
that is set to 1. If o does not include exactly 8 Z; values, reject. Set C := 1 and k = 1.
From j = 8 — 1 down to 0, proceed as follows:

e Ifthe jthbitof £is 1, set C := C - e(H(my ,j), Z;) and k := k + 2/;
o If the jthbitof £is 0, set C := C - e(g%, Z;).

Accept if and only if e(B, g) = e(g, g)* - e(Hs(m), E) -C.

Theorem 4.2. (Security under CDH) If the CDH assumption holds in G, then the
above quotable signature scheme is selectively quote unforgeable and context-hiding in
the random oracle model.

Efficiency Discussion This construction presents the best known balance between time
and space complexities. The quotable (Type I) signatures require O (£1g £) elements in
G for a message of length £. The group elements in both types of signatures are elements
of G, and not the target group G7. Typically, elements of the base group are significantly
smaller than elements of the target group. Computing quotes requires O (¢ Ig £) modular
exponentations for a quote of length ¢ for re-randomization. Similarly, verification also
requires O (£ 1g{) pairings.

The non-quotable (Type II) signatures require only O (Ig £) elements in G. Computing
quotes is very efficient as it requires only O (Ig £) modular exponentiations for a quote
of length ¢ for re-randomization. Similarly, verification requires only O (Ig £) pairings.

On Removing the Random Oracle and Obtaining Full Security The quoting construction
above is provably selectively secure in the random oracle model. We now suggest a few
potential avenues for adapting the above construction to full security in the standard
model. First, with an eye to remove the random oracle, we observe that our signatures
share many properties with the private keys of hierarchical identity-based encryption
(HIBE) schemes. To remove the random oracle, while remaining under a selective de-
finition, one might use the Boneh-Boyen techniques [12] to instantiate H (m) = g"h,
where i € G is added to the public key, and there is a method for mapping the message
space to Z. Similarly, one might remove the random oracle by instantiating H with
the Waters hash [60] and applying his proof techniques. This can be viewed as a full
security construction with a reduction to the concrete security parameter by roughly a
factor of (1/0(g))'¢¢, where ¢ is the number of signing queries, and ¢ is the length
of the quote. A direction for achieving full security could be the recent “Dual System”
techniques introduced by Waters [61]. One obstacle in adapting the Waters system is
that it contains “tags” in the private key structure, which would likely make our re-
randomization step difficult for our context-hiding property. Lewko and Waters [42]

376 J. H. Ahn et al.

recently removed the tags, which may make their techniques and construction more
suitable for our application. One drawback in using their HIBE techniques to construct
signatures is that even the signatures resulting from their construction require (slightly
non-standard) decisional complexity assumptions. Thus, it is unknown how to balance
time/space efficiently while achieving full security in the standard model from a simple
computational assumption such as CDH.

4.3. Security Analysis

We now provide a proof of Theorem 4.2 by showing the following lemmas.

Lemma 4.3. (Strong Context-Hiding) The Sect. 4 quotable signature scheme is strongly
context-hiding.

Proof. Given any two challenge messages M = (¢1,m), M’ = (¢, m’) such that
P(M,M"y = 1, we claim that whether t' = 1 or 0, SignDerive(pk, o, M’', M) has
an identical distribution to that of Sign(sk, M), which implies that the two distributions
are statistically close.

{(SK,o < Sign(SK, M), Sign(SK, M")} ¢ 11 41
{(SK, o <« Sign(SK, M), SignDerive(PK, o, M, M/)}SK MM

Let £, £’ denote |m| and |m’| respectively. Let ' = min([I1g(i — 1) —1], [1g(¢ —i +1)]).
Sign(SK, M) is composed of the following values:

Sij = g"‘gfx'*?"-f*‘Hv(miqz,')"li, Si,j=g", fori=1tofand j=0to [Ig(f —i+1)]
Ajj=ghig 0t H(m; 1), A;;j =g, fori=3toland j=0tol
D; ;= ghigrii-1g¥'ii, D; =g, fori=3t0f+1andj=0to0 [lgi —1)—1]

for randomly chosen r; ;, 7/ I ri”j, Xij € Lp.
Case where ' = 1 (TypeISignatures). LetI” = min(|Ig(i —1)—1], [lg(¢’'—i+1)]).
When ¢’ = 1, Sign(SK, M) is composed of the following values:

S/ = gag”‘f/ﬂfv.f—l Hy(m] ;)" 57 =g". fori=1t0f andj=0to lgt' —i+1)]
Al = gig il H(m;,zj)u"’j, é;\/_j/z g"i, fori=3to¢ and j=0to I’
lefj = gtiig Nii-1g%li lefj =g"i, fori=3tof +1landj=0to [lg(i—1)—1]
for randomly chosen v; ;, vlf’j, vlffj, xl.’,j € Zp.
And SignDerive(PK, o, M, M) is Quote-Type I(P K, o, m, m"), which is comprised
of the following:

S =gvg o H; (m})1t S“T =g'ithii fori=1tof and j =0to [lg(t' —i+1)]
Aj = guig M H(ml)1 AL =" fori =3t0 € and j=0t0 T’
J

gD D= g fori =310 ¢ + land j = 0to [lgl — 1) — 1]

—Wi,j-1

Dt{,j =gWiig

Computing on Authenticated Data 377
for randomly chosen #; ;, ti/, i tl.’” Vi) € Zp,, where m’ occurs at position k as a substring
ofm,I =i +k—1and wij = X1+ Vi j-

Since all exponents have been independently re-randomized, one can see by inspec-
tion that SignDerive(pk, o, M’, M) has identical distribution as that of Sign(sk, M’).

Case where ' = 0 (Type II Signatures). Parse m’ = m}jm}}_l ...m({ where m’/

is of length 2/ or a null string where g = [lg(¢)]. £; denotes i-th bit of £ when
we start counting with zero as the least significant bit. m’ occurs at position k of m.

Sign(SK, M) = (B, S, Zg_1, ..., Zp) is the following, for random u, u; € Z,:

B=g* H(mp' [] Hmp [&

; [i -
J<B,t;=1 J'<B. =0

S:gu’ ijgul

Let each m’; start at position s; in m’. SignDerive(PK, o, M, M) = Quote-Type

j >
(PK,o,m,m')is (B, S, Z, ., Z})) such that

Bl

"
zj/(rk+sj/fl,j’+v.f/)

' Thts -1, V)
B' =g Hyomp"™r ™[] Healy 7 [
j<B. =1 J'<B. =0

S'=g

"
re.g+v r Thysi—1, TV
B , Zj =g J

for randomly chosen v,v; € Z,. Since all exponents have been independently re-
randomized, one can see by inspection that SignDerive(PK, o, M, M’) has identical
distribution as that of Sign(sk, M").

Thus, the powers-of-2 construction is strongly context-hiding. (]

Lemma 4.4. (Unforgeability) If the CDH assumption holds in G, then the Sect. 4
quotable signature scheme is selectively unforgeable in the Unforg game in the random
oracle model.

Proof. 'We first apply Lemma 2.8, which allows us to only consider adversaries .4 that
asks queries to Sign oracle in the simpler NHU game.

Suppose an adversary .4 can produce a forgery with probability € in the selective
NHU unforgeability game; then we can construct an adversary B that breaks the CDH
assumption with probability € plus a negligible amount.

We are now ready to describe B which solves the CDH problem. On input the CDH
challenge (g, g%, g”), B begins to run .A and proceeds as follows:

Selective Disclosure A first announces the message M* on which he will forge.

Setup Let L be the maximum size of any messageandletn = |lg(L)].Let M* = (t*, m*)
and £* = |m™*| and let B be the highest bit of £* set to 1 (numbering the least significant
bit as zero). Set e(g, g)* = e(g“, g”), which implicitly sets the secret key o = ab.

378 J. H. Ahn et al.

Fori =0ton — 1, choose arandom v; € Z,, and set

. _ | &b if theith bit of €% is 1;
&= gV otherwise.

Finally, B gives the public key PK = (g, g%, ..., g>!, e(g, 9)%) to A and will
answer its queries to random oracles H and Hj interactively as described below.

Random Oracle Queries Proceeding adaptively, .4 may make any of the following queries
which B will answer as follows:

1. H(x): The random oracle is answered as follows. If the query has been made
before, return the same response as before. Otherwise, imagine dividing up m*
into a sequence of segments whose lengths are decreasing powers of two; that
is, the first segments would be of length 28 where 8 is the largest power of two
less than £*, the second segment would contain the next largest power of two, etc.
Let mz‘) denote the segment of m™ corresponding to power j. If no such segment
exists, let m?j) =_1. Select arandom y € Z,, and return the response as:

iflx] =2/and j < ,Bandmz‘. =X
gV]] J)
Hx) (x is on the selective path);
X) =
by otherwise

(x is not on the selective path).

Note that H (mfj)) is set according to the first method for all segments of m* except
the first segment m?)

2. Hg(x): The random oracle is answered as follows. If the query has been made
before, then return the same response as before. Select a random § € Z, and
return the response as:

s Y R
g° if|x| =2 andmz‘ﬂ)_x,

HS(x) = [bé

g% otherwise.

Note that Hy (m’(“ j)) is set according to the first method only for the first segment
of m*.

Signature and Quote Queries
Sign (M): Let M = (¢, m) and £ = |m|. Recall that 8* is the highest bit of £* set to 1
and that we are counting up from zero as the least significant bit.

We describe how to create signatures.

1. When ¢t = 1 and m* is not a substring of m (Type I Signature Generation):
Here m; ; denotes the substring m of length j starting at position 7. It will help
us to first establish the variables X; ;, which will be set to 1 if on the selective
forgery path and O otherwise. We give a set of “rules” defining terms and make

Computing on Authenticated Data 379

a few observations. Then we describe how the reduction algorithm creates the
signatures.

Rules
Fori =1uptof+1,
For j = |lg(¢ —i + 1)] down to —1,

(@) If j+ 1= p*and m; i1 pj41 =m{;), thenset X; ; = 1.

(b) Else, if j + 1 < f* and (j + 1)th bit of €* is 1 and m; _yj+1 541 = m}, ;) and
Xi—2j+1,j+1 = 1, then set Xi,j = 1.

(c) Elseif j+ 1 < B*and (j 4+ Dthbitof £*is0and X; j4+1 = 1, thenset X; ; = 1.

(d) Else set X; ; = 0.

Observations Before we show how B will simulate the signatures, we make a set of
useful observations.

(a) Foralliand j > B*, X; ; = 0.

(b) Foralli, X; —1 = 0. Otherwise, m;_gx g+ = m™*.

(c) Foralli, j,if X; ; = 1 and X; ;_1 = 0, then the jth bit of £* is 1. If the jth bit
were 0, then X; ;1 would have been set to 1 by Rule 1c.

(d) For all i, j, if X; ; = 0 and X; j_; = 1, then the jth bit of £* is 1. If the jth
bit were 0, then the only way to set X; j_; to 1 would be by Rule 1c, however,
X;,; = 0so Rule 1c does not apply.

(e) Foralli, j,if X; ; = 1and Xi+2,-’j_1 =0, then H(m; »;) = gbV for some known
Y € Zp. Otherwise, X;,; ;j_; would have been set by Rule 1b to be 1.

(f) Foralli, j,if X; j = 0and X; ; ;_; = 1, then H(m, ;) = g"" for some known
Yy € Lp. It X; 1 j—y = land X; j = 0, then X;,; ;| was set to be 1 either
by Rule 1a or Rule lc. If it were Rule 1a, then j = g* and it follows from the
programming of the random oracle that H (m; 5;) = gb7 . 1f it were Rule Ic, then
the jth bit of £* is 0, meaning m ;) cannot be on the selective path and therefore
again H(m; ;) = g,

(g) Foralli, j,if X; »; ;1 =0, then Hs(m;»;) = g% for some known § € Lp. If
Jj # B*, this follows immediately from the programming of the random oracle.
Otherwise, if j = B*, then the only way for Xiy2i,j—1 = 0 would be if mg) #
m’("ﬂ) by Rule la. Thus, it also follows that Hy(m; »;) = g%,

Signature Components Next, fori = 1tof + 1 and j = 0 to |[Ig({ —i + 1)], choose
a random xlf’j € Zp and logically set x; j := xlf’j + X j-(ab).Fori =1to €+ 1,set
xi,—1 := 0 (as consistent with Observation 1b).

A signature is comprised of the following values:

StartFori = 1tofand j =0to |Ig({ —i + 1)]:

(@) If X; 5 j_1 = 0, then it follows by Observation 1g that Hy (m; 5) = g% for some
known § € Z, so choose random s; ; € Z,, implicitly setr; j := —a/8 +s; ; and
set

Si; = gfxi+2.f,j—1gb33iwj
o —X0j i ri
=g g YV Hs(m; ;)"

Sij =g = g

380 J. H. Ahn et al.

(b) Else X, 5; ;_; = 1,sochooserandomr; j € Zp and with x; 5 ;_; := xlf+2j i1
+ ab set

/
_x. i P T
Si,j =g i+2/,j 1HS(mi,2j) i
O —X 0j i ri
=g"g i+2/,j IHs(mi,zj) i,j

Sij=g".

Across Together with the following values fori =3 to £ and j = 0 to min(|lg(i — 1) —
1], gl =i+ D)
(@) If X; ; = 1 and X;,5; j_; = 1, choose random r; ; € Z, with implicitly set

ij
L / . — /
Xij=x;;taband x; 5 ; | = Xiai i1 + ab and set

x! . 7)6{ . .
Ajj=gg IV H(m; i)

— gx,-,jg*xwz.i,j—l H(mi,zj)r‘!'-"
—~ /
Ajj=g".
(b) Else, if X; ; = 1 and X; »; ;1 = 0, then H(m; »;) = g? for some known
y € Z, by Observation le. Choose random slf’ ;€ Zp, with implicitly set x; ; =
xjjtab,xi g ;= x1{+2.f,j—1 andr; ; := —a/y +s; ; and set

A= gxz,‘jgfxiﬁ-z.i,j—lgb?’si/._/

/
X; ; —X. Jjoi_ . r. .
=g z,jg i+2/,j IH(mi,Z-/) ij

—

Aij=g

/
Tij

(c) Else, if X; ; = 0 and Xi+2j’j_1 =1, then H(m; »;) = gbV for some known y €

Zp by Observation 1f. Choose random s; ; € Z, with implicitly set x; ; = x/ ;,

. — 5/ /A /
Xit2d j—1 = X 07 i + ab and = aly +5; and set

=X byl
Ai,j — gxlvfg t+2/,]—1g VSij

_ Xi i —X. j . . r,/.
_gt,]g i+27,j IH(mi,ZJ)l’/

/
Ajj=g"i.
(d) Else, X; ; =0and Xl-+2_,"j71 = 0, so choose random rl./,j € Zp and set
— . / —~—— 7
Aij=g"ig I H(m), Ay =gl

Down Together with the following values fori =3tof+1and j =0to [lgi —1)—1]:

Computing on Authenticated Data 381

() If X; ; = 1 and X; j—1 = 1, choose random r;/; € Z, with implicitly set x; j =
x;j+abandx;j_1 =x;; | +abandset
D;; = gx’{’fg_x'{’fflng’ffj = gxi,jg_xi,jflngri/,,j

—~— "

r.
Dij=g".

(b) Else, if X; ; = 1 and X; ;_; = 0, then the jth bit of £* is 1 by Observation lc.
Thus z; = bvj, so choose random slffj € Z, with implicitly set x; j = xlf’j + ab,

. o/ "o . ”
Xij—1=X; j_4 and = alvj +si’j and set
! Lol L. L. el
D= g g N1 gbVISIj — gij g Xij-1 g%l
— _ . " "
Dij=g M =gl

(c) Else, if X; ; = 0 and X; ;_; = 1, then the jth bit of £* is 1 by Observation

1d. Thus z; = bvj, so choose random s;'; € Z, with implicitly set x; ; = x; ;,

Xij—1 = xz{,j—l + ab and r{fj =afjvj + si/fj and set

! 4 "

X o —xp iy Jbvise o xp i —xp iy it

Dl,] =g I‘jg Y] g JPj — g lng L] g AN
— a/vi+s .
D;j =g = g

(d) Else, X; ; = 0and X; j_; = 0, so choose random r{fj € 7Z, and set

—_— "

X X, zjr] r
L oXig o Xij—1 o%iTi . — olij
Djj=gig g i, Dy =gt

2. When r = 0 and m # m™* (Type II Signature Generation):
Let £ = |m|,and B = [lg(¢)]. £} denotes the i-th bit of £* when we start counting
with zero as the least significant bit, and ¢; denotes i-th bit of £.
Parse m* as m/’g*m}}*q ...mg where m? is a string of length 2% oranull string. m; is

of length 2 if ¢; = 0, and is null otherwise. Similarly, parse m as mgmg_1 ...my.
BB constructs (B, S‘, Zg_1, ..., Zp) in the following way:
o Ifmg # mjg* then Hy(mg) = g?? for a § which is known to B.
(a) Bsets S := g~%/%*" fora randomly chosen r and B := gP".
(b) For j =B —1downto0, Z; := g/ for arandomly chosen r;, and

—1f¢; =1,then B := B - H(m;)"/.
—1f¢; =0,then B := B - g%"i.

e Otherwise, if 8 = * and mg = mz*, there exists j; < B such that
— L, #F L, or
—Lj,=4; =land H(mj) # H(m3).

so B can construct a signature (B, S', Zg_1, ..., Zp) in the following way.

382 J. H. Ahn et al.

(a) Bsets S := g’ for a randomly chosen r. and B := g%,
(b) For j =B —1downto j;+1land j = j,—1t00, Z; := g’/ for randomly chosen
rj, and
—1If¢; =1,then B:= B - H(m;)"/.
—1If¢; =0,then B := B - g%'J.
(¢) For j = Jy,
—If¢; = 1, whether ij = O or not, B knows y such that H (m ;) = g”V. B sets
Z; = g~ /Y*i for a randomly chosen rj,and B :=B - ghrri.
—If £; = 0 and £ = 1, then B knows v such that g%/ = g Bsets Z; =
g~ %/v*7i for a randomly chosen rj,and B := B - ghvri.
B returns (B, S, Zg_1,...,2Zp).
Response Eventually, A outputs a valid signature o* on M* = (¢*, m*). Recall that

£* = |m*| and B = [lg(£*)]. Here £; denotes i-th bit of £* when we start counting
with zero as the least significant bit. Parse m* as mZml’g_l ...mg where m? is a string

of length 2! (when €7 = 1) or anull string (when £; = 0).
Because of the selective disclosure and setup, 13 knows the following exponents:

— y such that Hy(m}) = g”.
— 8 such that H(m* ;) = g% when ¢ = 1 and j # f.
5j,
— zj when £ =0.
t* is either 1 or 0.
o If r* =1,
s; denotes the position where m} starts. 3 can compute the information of some
x;,j with the following components of o *.
_ Sl,ﬁ — gag_x]”ﬂﬁ"Hs(mZ)r", E]\,_g/z gs
B knows y such that Hs(m;}) = g7, so B can compute g%g "1+2fp1 =

v

Sl_ﬂ/Sl,ﬁ .

—For j =8 —1downto0, , ,
* when f] =1, A.Yj,j = X‘Yj’jg_x‘vjfl’jflH(mjf)r‘vj'j, ASj,j = grsj’j

B knows & such that H(m%) = g%, so B can compute g%/ g~ -1 =
5

ASj,j/ASjJ :

r//

"
L s T s 5 sy s
xwhentj =0, Dy; j =g"7"g i1 g % Dy, j =g

N o
B knows z, so B can compute g i g T I = Dy, j/Ds;.j !
so BB can compute g* i+ g~ =171
BB has the values of g**i/ g~ "i-1/~! for j = B — 1 down to 0 and g%g ™ "1+2.#-1, 50 can
compute
B—1

gO‘g_tzﬁ,ﬁq ng»fj,.ig_x-vjfl,j—l = g¥%g N1l = @
j=0

Computing on Authenticated Data 383

o If 1* =0, _
B parseso* as (B, S, Zg_1, ..., Zp), with

S;chv Z/S—l ZgCﬂila R} ZO gCO

for some ¢, cg_1,...,co € Zp.

B=g* - Hmp) [] HmHs [@Y

j<B, =1 J'<B. €3,=0

because the signature is valid.

— B knows y such that HS(mZ) =g¥. Bsets C := SY.
— From j = 8 — 1 down to 0, B proceeds as:

xIf £; = 1, B knows §; suchthatH(mj) = g% . Bsets C := C-Zj.j ;
*If £; =0, Bknows z;. B sets C :=C~Z;".
Then

C=Hmp* [[He)T [@Y

j<p. €=1 J'<B.€5=0

so B can compute B/C = g°.

Thus, whether #* is 1 or 0, B can solve for g% = g® and correctly answer to the CDH
challenge.

Analysis The distribution of the above game and the security game are identical. Thus,
whenever A is successful in a forgery against our scheme, 5 will solve the CDH chal-
lenge. (]

5. A Construction for Subset Predicates based on ABE

The Subset Predicate We now point out a surprising connection to Attribute-Based En-
cryption (ABE). We show that existing constructions for Ciphertext-Policy ABE [10,
41,62] naturally lead to context hiding quotable signatures for arbitrary message subsets
(as opposed to the substring predicate considered in the previous section). In particular,
let U be a set of strings over an arbitrary alphabet. These strings can be used to encode
elements for different types of sets. A message will be a set of strings from U. A gen-
eral way to define the subset predicate would be P(M, m’) = 1 iff m" C m; for some
m; € M. Recall from Sect. 2 that M is a set of messages, which might have been inde-
pendently authenticated. Here, we want to disallow “collusions” between two different
signatures where m’ is a subset of the union of multiple messages in M, but not any single
one. (Otherwise, this would be trivially realizable from standard signatures schemes).
In other words, our focus here is extracting a subset from a single signed set. Thus, we

384 J. H. Ahn et al.
will restrict our attention in this section to the simple predicate P (m, m’) = 1iff m’ C m.

The Construction at a High-Level Our main tool is an observation of Naor that shows
that secret keys in Identity-Based Encryption [14] can function as signatures. Recall that
in (ciphertext-policy) attribute-based encryption an authority provides secret keys to a
user based on the user’s list of attributes. The main challenge in building such systems is
preventing collusion attacks: two (or more) users with distinct sets of attributes should
be unable to create a secret key for a combination of their attributes.

If we treat elements in a message m C U as attributes, that is, we treat a message
m=1{ay,...,az} € Ut as aset of attributes ay, . . ., ag, then we can define the signature
on m as a set of £ secret keys corresponding to the £ attributes in the message. Verifying
the signature can be done by trying to decrypt some test ciphertext using the secret keys
in the signature. Now, given a signature on m we derive a signature on a subset of the
elements in m by simply removing the secret keys corresponding to elements not in the
subset. For context hiding, we need to re-randomize the resulting set of secret keys. (Not
all CP-ABE schemes may support the removal and re-randomization of secret keys in
this manner, but the schemes of [10,41,62] do).

Since ABE security prevents collusion attacks, it is straight forward to show that
these signatures are unforgeable in the sense of Definition 2.3. Moreover, due to the re-
randomization of secret keys, a derived signature is sampled from the same distribution
as a fresh signature and is independent from the given signature. This implies strong
context hiding in sense of Definition 2.4.

This unexpected connection between quoting and ABE leads to the following theorem,
stated first informally.

Theorem 5.1. (Informal) The Ciphertext-Policy ABE systems in [10,41,62] translate
using Naor’s transformation into a signature scheme supporting quoting for arbitrary
subsets of a message. (Selective) security of the CP-ABE systems imply (selective) un-
forgeability and context hiding.

In other words, when the ABE scheme provides adaptive (resp, selective) security,
then the resulting signature scheme achieves adaptive (resp., selective) unforgeability.
The (third) ABE scheme of Waters [62] provides selective security from the Decisional
Bilinear Diffie Hellman assumption. Adaptive security is proven for the Bethencourt et
al. construction [10], but only in the generic group model. The construction of Lewko et
al. [41] proves adaptive security under certain static assumptions using composite order
groups.

5.1. The Subset Construction from Existing CP-ABE Schemes

We now formalize the intuition and claims of the previous section.

5.1.1. Background: Ciphertext-Policy ABE

Definition 1. (Access Structure [5]) Let{ Py, P, . . ., P,} be aset of parties. A collection
[€ 2tP1-PrPud s monotone if VB, C : if B € ' and B C C then C € I'. An access

Computing on Authenticated Data 385

structure (respectively, monotone access structure) is a collection (resp., monotone col-
lection) " of non-empty subsets of {P}, Ps, ..., P,},ie., I' C 2P P\ (g} The
sets in I" are called the authorized sets, and the sets not in I" are called the unauthorized
sets.

In the context of CP-ABE, the role of the parties is taken by the attributes. Thus, the
access structure I" will contain the authorized sets of attributes. We restrict our attention
to monotone access structures.

Definition 5.2. (CP-ABE Algorithm Specification) A ciphertext-policy attribute-based
encryption system for message space M and access structure space G is a tuple of the
following algorithms:

Setup(1, U) — (PK, MK). The setup algorithm takes as input a security parameter A
and a universe description U, which defines the set of allowed attributes in the system.
It outputs the public parameters PK and the master secret key MK.

Encrypt(PK, m, I') — CT. The encryption algorithm takes as input the public parame-
ters PK, a message m and an access structure I and outputs a ciphertext CT associated
with the access structure.

KeyGen(MK, S) — sk. The key generation algorithm takes as input the master secret
key MK and a set of attributes S and outputs a private key sk associated with the attributes.
Decrypt(sk, CT) — m. The decryption algorithm takes as input a secret key sk associ-
ated with attributes S and a ciphertext CT associated with access structure I" and outputs
a message m if S satisfies I or the error message L otherwise.

The correctness property requires that for all sufficiently large A € N, all universe de-
scriptions U, all (PK, MK) € Setup(A, U), all § C U, all sk € KeyGen(MK, S),
allm € M, allT € G and all CT € Encrypt(PK,m, '), if S satisfies ', then
Decrypt(sk, CT) outputs m.

Security Model for CP-ABE Let I1 = (Setup, Encrypt, KeyGen, Decrypt) be a CP-
ABE scheme for message space M and access structure space G, and consider the
following experiment for an adversary Adv, parameter X, and attribute universe U':
The CP-ABE experiment CP-ABE-EXpagy (A, U):

Start. Setup (X, U) is run to obtain the public parameters PK and master secret key MK.
Phase 1. Adversary Adv is given PK and access to the oracle KeyGen(MK, -), which
generates a private key corresponding to an attribute set of the adversary’s choosing.
Challenge. The adversary outputs two messages mg, m|; € M and a challenge access
structure I'™* such that none of the sets of attributes queried during Phase 1 satisfy it. A
random bit b is chosen and Encrypt(PK, m;,, I'*) is run to produce CT*, which is then
given to the adversary.

Phase 2. The adversary is given access to the oracle KeyGen(MK, -), with the restriction
that it cannot query the oracle on any set of attributes that satisfy I'*.

Guess. The adversary outputs a guess b’ of b. The output of the experiment is defined
to be 1 if and only if b’ = b.

386 J. H. Ahn et al.

Definition 5.3. (CP-ABE Security) A CP-ABE scheme I is secure for attribute uni-
verse U if for all probabilistic polynomial-time adversaries Adyv, there exists a negligible
function negl such that:

Pr[CP-ABE-Expagy 1 (A, U) = 1] < negl(%).

We say that a system is selectively secure if we add an Init stage before Start where the
adversary outputs the challenge access structure I'* (instead of waiting until Challenge
to do so).

5.1.2. CP-ABE with Key Reduction

Our construction requires that the holder of a private key can efficiently “remove” at-
tributes from his private key and then re-randomize the remaining private key. We for-
malize this as follows.

Definition 5.4. (CP-ABE with key reduction) We say that a CP-ABE system for at-
tribute universe U supports key reduction if there exists an efficient algorithm

KeyReduce(PK, sk, S, S’) — sk’. The key reduction algorithm takes as input the
public parameters PK with a private key sk associated with attribute set S and outputs
a private key sk’ associated with attribute set S’, if S’ C S, and L otherwise.

such that if (PK, MK) € Setup(:,U) and ' € S C U, then for all such tuples
(MK, S, §"), the following two distributions are statistically close:

{(MK, sk < KeyGen(MK, S), KeyGen(MK, "))}k ¢ ¢
{(MK, sk < KeyGen(MK, S), KeyReduce(PK, sk, S, S/))}MK’ s

The distributions are taken over the coins of KeyGen and KeyReduce.

It is not a coincidence that this definition strongly resembles the context-hiding defin-
ition presented earlier. Fortunately, we observed that several existing CP-ABE schemes
support key reduction. In fact, we are not aware of any prior bilinear map-based schemes
that do not support key reduction, although it is possible to construct contrived counterex-
amples'? and it seems plausible that such schemes could naturally arise in the bilinear,
lattice, or other settings.

Claim 5.5. The Ciphertext-Policy ABE systems in [10, Sect. 4.2], [41, Sect. 2.3.1],
[62, Sect. 6] support key reduction.

Proof. We argue this claim by providing a key reduction algorithm for each scheme.
In all cases, the output is perfectly indistinguishable from the normal key generation
algorithm.

190ne can build a contrived example that does not support key reduction. For instance, suppose we took
an existing CP-ABE scheme and added a standard signature (from the authority) on the set S of attributes
associated with the key. Then add to the decryption algorithm a check for the existence of a valid signature
on the key and that the key matches this signature before proceeding with decryption.

Computing on Authenticated Data 387

The BSW Construction [10, Sect. 4.2]

e Setup(r, U) — (PK, MK): The algebraic setting is a bilinear group G of prime
order p with generator g. The public parameters PK are G, g, p.h = gP, f =
gl/ﬂ, e(g, 8)%, where B,a € Z,, and the description of a hash function H :
{0, 1}* — G. The master secret key MK is (PK, 8, g%).

o KeyGen(MK, S) — sk: The key generation algorithm chooses random r, r; € Z),
for each attribute i € S. The private key sk is:

S, D= gl@tn/B, Dj =g H()", D} =g"iVjes.

o KeyReduce(PK, sk, S, S") — sk’: The key reduction algorithm chooses random
r', r! for each attribute i € S" and outputs the private key sk as:

S/7 D = Dgr /B — g(a+r+r)//5’

D) =D;g H(j)7 =g+ H()"™I. D] =D;g'i =g VjeS.

The LOSTW Construction [41, Sect. 2.3.1]

e Setup(r, U) — (PK, MK): The algebraic setting is a bilinear group G of order
N = pip2p3 (3 distinct primes). We let G, denote the subgroup of order p; in
G. The public parameters PK are N, g, g%, e(g, g)%, T; = g* for all attributes
i € U,where g € G, and a, «, 5; € Zy. The master secret key MK is PK, « and
a generator X3 € G,.

e KeyGen(MK, S) — sk: The key generation algorithm chooses a random t € Zy
and random elements Ry, R(/), R; € Gp,. The private key sk is:

S, K=g“¢"Ro, L=¢g'R;, Ki =T/R; Vi €§.

o KeyReduce(PK, sk, S, S') — sk’: The key reduction algorithm chooses a random
t" € Zy and random elements Zo, Z(, Z; € G, and outputs the new private key
sk’ as:

S, K = Kg" Zo = g*¢" "Ry Zo, L' = Lg" Z) = ¢"*" Ry Z}),
K =KT'Z, =T"""RiZ;VieS.

The Waters Construction [62, Sect. 6]

e Setup(r, U) — (PK, MK): The algebraic setting is a bilinear group G of prime
order p with generator g. Let n,,ax be the maximum number of nodes in an access
formula and let |U| be the number of attributes in U. The public parameters PK are
G,g,p. g% e, % (hit,....h1u)s ..., (Bppge1s -+ Py, u), Where all h;
values are elements in G. The master secret key MK is (PK, g%).

388 J. H. Ahn et al.

e KeyGen(MK, S) — sk: The key generation algorithm choosesrandom 1y, ..., t,,,,. €
Zp. The private key sk is:

S, K= 80(8(”', Ll = gtl, ey L"max = gl"max’
Nmax
t:
Vx € S, KX = H hjj‘x'
j=1

o KeyReduce(PK, sk, S, S") — sk’: The key reduction algorithm chooses random
t,....ty € Zp. The private key sk’ is:

> "Nima

S/, K = Kgati — gaga(t|+tl’)’ L,l _ ngt{ — gt1+t{, o
L - L +1,

n max
Nmax max

’

i t
g Nmax — g nmax

Nmax Nmax

t ti+t’

/ ! J _ J J

VxeS,KX_Kx Ilhj,x_ |Ihj,x .
j=1 j=1

5.1.3. The Subset Signature Construction

Let IT = (Setup 4 3, Encrypt 4 g, KeyGen 4 -, Decrypt 4) be a CP-ABE scheme
that supports key reduction with the algorithm KeyReduce 4 5 .. Let IT have an arbitrary,
finite and efficiently-samplable'! message space M and access structure space G that
supports AND gates. Let U be a set of strings over an arbitrary alphabet. We construct
a signature scheme that supports computing on authenticated subsets of U as follows.

KeyGen(1*): Run Setup AB E(l’\, U) to obtain the key pair (pk, sk), which will serve
as the public and secret keys of the signature scheme.

Sign(sk, m € U): Run KeyGen 4z (sk, m) to obtain an ABE private key which will
be treated as the signature o.

SignDerive(pk, o, m, m’): First, check if P(m, m’) = 1. If not, output _L. Otherwise,
run KeyReduce 4 5 (pk, o, m, m’) to obtain the new signature ¢’ and output it.
Verify(pk, m, 0): Recall that m is a set of attributes. Create an access structure I" that is
the AND of all attributes in m. Choose arandom value x € M.RunEncrypt 4z (pk, x, I')
to obtain CT. Output 1 if and only if Decrypt 45 (0, CT) = x.

Efficiency The efficiency of the subset signature construction is closely linked to the
efficiency of the ABE scheme employed. Recall that messages to be signed are sets of
strings. The signing algorithm for a message m corresponds directly to the time for the
CP-ABE scheme to produce a private key for the set of attributes in m. Thus, signing
time is likely to scale with the size of the message. For the CP-ABE schemes discussed
above, computing a signed subset requires a re-randomization of the remaining subset
elements, and thus scales with the size of the subset. The verification time is dominated by
an encryption under the AND of all attributes in m (the message being verified) together

H'We mean that it is possible to efficiently sample elements from the set uniformly at random.

Computing on Authenticated Data 389

with a decryption of the resulting ciphertext using the subset signature as the private key.
Overall, an efficient CP-ABE scheme will result in a practical subset performance.

5.1.4. Security Analysis

Theorem 5.6. [fI1is (resp., selectively) secure for attribute universe U with respect to
Definition 5.3, then the above subset signature scheme is (resp., selectively) unforgeable
with respect to Definition 2.3 and strongly context hiding with respect to Definition 2.4.

Proof. We argue this theorem in two parts. [

Lemma 5.7. (Strong Context Hiding) If I1 is a CP-ABE scheme that supports key
reduction, then the above subset signature scheme is strongly context hiding under
Definition 2.4.

Proof. This follows directly from the key reduction property of the CP-ABE scheme.
Let (pk, sk) < KeyGen(1*) be a key pair. A signature scheme (KeyGen, SignDerive,
Verity) is strongly context hiding for the simple subset predicate P if for all such triples
((pk, sk), m, m") where P(m,m’) = 1, the following two distributions are statistically
close:

{(sk, o < Sign(sk, m), Sign(sk, m’))}sk’m’m,
{(sk, o < Sign(sk, m), SignDerive(pk, o, m,m’))}

sk,m,m’

where the distributions are taken over the random coins of Sign and SignDerive. If we
substitute the signature algorithms for their underlying CP-ABE algorithms, we have
the following two distributions:

{(sk,0 < KeyGen g (sk, m), KeyGen,pp(sk,m"))},
{(sk, o < KeyGen 5 (sk, m), KeyReduce,z; (pk, o, m,m’))}

sk,m,m’

where the distributions are taken over the random coins of KeyGen,pyr and
KeyReduce 4z . The statistical closeness of these distributions is directly guaranteed
by the key reduction specification when the predicate is satisfied, i.e., m’ C m. U

Lemma 5.8. (Unforgeability) If I1 is a (resp., selectively) secure CP-ABE scheme that
supports key reduction, then the above subset signature scheme is (resp., selectively)
unforgeable in the Unforg game.

Proof. We first apply Lemma 2.8, which allows us to only consider adversaries .4 that
asks queries to Sign oracle in the simpler NHU game.

We deal with the non-selective case first. Suppose an adversary A can produce a
forgery with probability € in the NHU selective unforgeability game; then we can con-
struct an adversary B that breaks the selective security of the CP-ABE scheme with key
reduction with probability 1/2 + €/2. BB begins to run A and proceeds as follows:

390 J. H. Ahn et al.

Setup When B receives the public parameters pk from its challenger, it passes these on
as the signature public key to A.

Sign When A queries Sign(m), B queries its key generation oracle on m and returns the
response to A.

Response If A does not output a valid forgery, then B simply chooses and outputs a
random bit. If A outputs a valid message-signature pair (m*, o*), where m* is not a
subset of any message queried to Sign, then 3 picks two arbitrary messages mo, m in
the message space of the CP-ABE scheme. It outputs these to its challenger together
with a challenge access structure, which is the AND of all attributes in m*. (Recall that
in this signature scheme messages are sets of strings). This challenge access structure
is allowed, under the CP-ABE security experiment, because none of the other private
keys created by the oracle can satisfy it. Once the challenge ciphertext CT* is returned,
B simply uses the private key o* to decrypt CT* and to then state which of the two
challenge messages was encrypted.

The Selective Case Suppose an adversary A can produce a forgery with probability €
in the NHU selective unforgeability game; then we can construct an adversary 3 that
breaks the selective security of the CP-ABE scheme with key reduction with probability
€ plus a negligible amount. 3 behaves as above, except that prior to Setup there is a
selective disclosure phase where A first announces the message m™* on which he will
forge. B then announces to its challenger that its challenge access structure will be the
AND of all attributes in m™*. This information is latter used, as before, in 3’s Response
phase, where now .A will only output o *.

Analysis The following analysis applies to both the selective and non-selective cases.
The view of A when interacting with B is identical to its view when interacting with a
real NHU game challenger. Whenever A correctly produces a forgery, then 3 correctly
identified the challenge message. Whenever A fails to produce a forgery, then B guesses
the challenge message with probability 1/2. Thus, if A succeeds with probability €, then
B succeeds with probability € + (1 —€)/2 = 1/2 + €/2. O

6. Computing Weighted Averages and Fourier Transforms

So far we only constructed schemes for univariate predicates P. We now give an example
where one computes on multiple signed messages. Let p be a prime, n a positive integer,
and 7 a set of tags. The message space M consists of pairs:

M=T xF

Now, define the predicate P as follows: P(e, m) = 1 for all m € M and'?

12Recall, the signature on € is the output the KeyGen algorithm.

Computing on Authenticated Data 391

_ t=t =---=1t, and
P(((r],vl),...,(rk,vw), (t,v)) =1 [v e Span (v e)
Thus, given signatures on vectors vy, .. ., V¢ grouped together by the tag 7, anyone can

create a signature on a linear combination of these vectors. This can be done iteratively
so that given signed linear combinations, new signed linear combinations can be created.
Unforgeability means that if the adversary obtains signatures on vectors vy, ..., v, for
particular tag € 7 then he cannot create a signature on a vector outside the linear span
of vi, ..., Vk.

Signature schemes for this predicate P are presented in [2,15-18] while schemes
over Z (rather than IF) are presented in [32]. These schemes were originally designed
to secure network coding where context hiding is not needed since there are no privacy
requirements for the sender (in fact, the sender is explicitly transmitting all his data to
the recipient). The question then is how to construct a system for predicate P above that
is both unforgeable and context hiding. Fortunately, we do not need to look very far. The
linearly homomorphic signature schemes in [17] can be shown to be context hiding. We
state this in the following theorem.

Theorem 6.1. If the CDH assumption holds in group G, then the signature scheme
NCS from [17] is unforgeable and context-hiding in the random oracle model, assum-
ing tags are generated independently at random by the unforgeability challenger when
responding to Sign queries.

Unforgeability is Theorem 6 in [17], which holds only when tags #; € 7 are generated
independently at random by the signer. While context hiding has not been considered
before for this scheme, it is not difficult to show that the scheme is context hiding. The
scheme is unique in the sense that every vector v has a unique valid signature.'3 It is
easy to show that any homomorphic unique signature must be context hiding and hence
NCS; is context hiding.

Viewed in this way, the scheme NCS; gives the ability to carry out authenticated
addition on signed data. Consider a server that stores signed data samples sy, ..., s, in
FF,. The signature on sample s; is actually a signature on the vector (s;|e;) €]F’;,H, where
e; is the ith unit vector in]FZ. The server stores (i, s;) and a signature on (s;|e;). (The
vector e; need not be stored with the data and can be reconstructed from i when needed).
Using SignDerive, the server can compute a signature o on the sum (3_/_; s;, 1, ..., 1).
Since the schemes are context hiding, the server can publishthe sum >"7_, s5; mod p and
the signature o on the sum and (provably) reveal no other information on the original
data. The “augmentation” (1, ..., 1) proves that the published message really is the
claimed sum of the original samples (the tag t prevents mix-and-match attacks between
different data sets). We can similarly publish a sum of any required subset.

More generally, the server can publish an authenticated inner product of the samples
s 1= (s1, ..., s») with any public vector ¢ €), without leaking additional information
about the samples. This is needed, for example, to publish a weighted average of the

3Recall that in unique signatures [43] in addition to the regular unforgeability requirement there is an
additional uniqueness property: for any honestly generated public key pk and any message m in the message
space, there do not exist values o1, 07 such that 01 # o, and yet Verify(pk, m, o1) = Verify(pk, m, o2) = 1.

392 J. H. Ahn et al.

original data set. Similarly, recall that the Fourier transform of the data (s, ...,s,)isa
specific linear operator (represented by a specific n x n matrix) applied to this vector.
Therefore, we can publish signed Fourier coefficients of the data. If we only publish
a subset of the Fourier coefficients, then by context hiding, we are guaranteed that no
other information about (s, ..., s,) is revealed.

7. Conclusion and Open Problems

In summary, the goal of this work is the study of computing on authenticated data.
We presented one unified framework for a variety of distinct concepts in this area,
including arithmetic, homomorphic, quotable, redactable, and transitive signatures. The
definition we provide tackles unforgeability as well as a strong notion of privacy, where
an adversary is unable to distinguish a derived signature from a fresh one even when
given the original signature. In this setting, we provide generic constructions for all
univariate and closed predicates, as well as specific efficient constructions for predicates
such as quoting, subsets, weighted sums, averages, and Fourier transforms.

This work leaves open a host of interesting problems. First, one can imagine predicates
that support more complex operations on signed messages. One natural set of examples
are spreadsheet operations such as median, standard deviation, and rounding on signed
data (satisfying unforgeability and context hiding). Other examples include graph algo-
rithms such as computing a signature on a perfect matching in a signed bipartite graph.
Still other examples involve efficiently expanding quoting/redacting to more complex
data types, such as (potentially compressed) graphical images.

A first step in this direction may be to improve upon some of the constructions for
basic predicates presented herein. For example, as discussed at the end of Sect. 4.2, for
quoting/redacting on simple text, it is still unknown how to balance time and space effi-
ciently while achieving full security in the standard model from a simple computational
assumption.

Acknowledgements

We are grateful to the anonymous reviewers of TCC 2012 and the Journal of Cryptology
for their helpful comments.

References

[1] G. Ateniese, D.H. Chou, B. de Medeiros, G. Tsudik, Sanitizable signatures, in ESORICS ’05. LNCS,
vol. 3679 (2005), pp. 159-177

[2] N. Attrapadung, B. Libert, Homomorphic network coding signatures in the standard model, in Public
Key Cryptography—PKC 2011, vol. 6571 (2011), p. 17

[3] N. Attrapadung, B. Libert, T. Peters, Computing on authenticated data: New privacy definitions and
constructions, in ASIACRYPT (2012), pp. 367-385

[4] N. Attrapadung, B. Libert, T. Peters, Efficient completely context-hiding quotable and linearly homo-
morphic signatures, in Public Key Cryptography (2013), pp. 386-404

[5] A. Beimel, Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Israel Institute of
Technology, Technion, Haifa, Israel (1996)

Computing on Authenticated Data 393

(6]
(7]
[8]
[9]
[10]
(1]
[12]
[13]
[14]
[15]

[16]

(17]
(18]

(19]

(20]

[21]
[22]
[23]
[24]

[25]

[26]

(27]

[28]
[29]

M. Bellare, O. Goldreich, S. Goldwasser, Incremental cryptography: the case of hashing and signing, in
CRYPTO ’94. LNCS, vol. 839 (1994), pp. 216-233

M. Bellare, D. Micciancio, B. Warinschi, Foundations of group signatures: formal definitions, simplified
requirements, and a construction based on general assumptions, in EUROCRYPT (2003), pp. 614-629
M. Bellare, G. Neven, Transitive signatures based on factoring and RSA, in ASIACRYPT ’02. LNCS,
vol. 2501 (2002), pp. 397414

M. Bellare, G. Neven, Transitive signatures: new schemes and proofs. I[EEE Transactions on Information
Theory, 51:2133-2151 (2005)

J. Bethencourt, A. Sahai, B. Waters, Ciphertext-policy attribute-based encryption, in [EEE Symposium
on Security and Privacy (2007), pp. 321-334

M. Blum, A. De Santis, S. Micali, G. Persiano, Noninteractive zero-knowledge. SIAM J. Comput.,
20(6):1084-1118 (1991)

D. Boneh, X. Boyen, Efficient selective-ID secure identity-based encryption without random oracles, in
Advances in Cryptology—EUROCRYPT ’04. vol. 3027 (2004), pp. 223-238

D. Boneh, X. Boyen, H. Shacham, Short group signatures, in CRYPTO ’04. LNCS, vol. 3152 (2004),
pp. 45-55

D. Boneh, M.K. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput., 32(3)
(2003)

D. Boneh, D. Freeman, Homomorphic signatures for polynomial functions, in Proc. of Eurocrypt. Cryp-
tology ePrint Archive, Report 2011/018 (2011)

D. Boneh, D. Freeman, Linearly homomorphic signatures over binary fields and new tools for lattice-
based signatures, in Proc. of PKC.LNCS, Cryptology ePrint Archive, Report 2010/453. vol. 6571 (2011),
pp. 1-16

D. Boneh, D. Freeman, J. Katz, B. Waters, Signing a linear subspace: signature schemes for network
coding, in Public-Key Cryptography—PKC ’09. LNCS, vol. 5443 (Springer, Berlin, 2009), pp. 68-87
D. Boneh, M. Hamburg. Generalized identity based and broadcast encryption schemes, in ASIACRYPT.
(2008), pp. 455-470

C. Brzuska, H. Busch, O. Dagdelen, M. Fischlin, M. Franz, S. Katzenbeisser, M. Manulis, C. Onete,
A. Peter, B. Poettering, D. Schroder, Redactable signatures for tree-structured data: definitions and
constructions, in Applied Cryptography and Network Security (ACNS) '08. LNCS, vol. 6123 (2010), pp.
87-104

C. Brzuska, M. Fischlin, T. Freudenreich, A. Lehmann, M. Page, J. Schelbert, D. Schroder, F. Volk,
Security of sanitizable signatures revisited, in Public Key Cryptography. LNCS, vol. 5443 (2009), pp.
317-336

C. Brzuska, M. Fischlin, A. Lehmann, D. Schroder, Santizable signatures: how to partially delegate
control for authenticated data, in BIOSIG 2009 (2009), pp. 117-128

C. Brzuska, M. Fischlin, A. Lehmann, D. Schrdder, Unlinkability of sanitizable signatures, in Public
Key Cryptography (PKC) '10. LNCS, vol. 6056 (2010), pp. 444-461

J. Camenisch, A. Lysyanskaya, Signature schemes and anonymous credentials from bilinear maps, in
Advances in Cryptology—CRYPTO ’04. vol. 3152 (2004), pp. 56-72

R. Canetti, S. Halevi, J. Katz, A forward-secure public-key encryption scheme, in EUROCRYPT (2003),
pp. 255-271

E. Chang, C.L. Lim, J. Xu, Short redactable signatures using random trees, in CT-RSA ’09: Proceedings
of the The Cryptographers’ Track at the RSA Conference 2009 on Topics in Cryptology (2009), pp.
133-147

D. Charles, K.J. K. Lauter, Signatures for network coding. International Journal of Information and
Coding Theory, 1(1):3-14 (2009)

M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn, Malleable signatures: complex unary trans-
formations and delegatable anonymous credentials. Cryptology ePrint Archive, Report 2013/179 (2013).
http://eprint.iacr.org/. Accessed 17 Mar 2014

D. Chaum, E. van Heyst, Group signatures, in EUROCRYPT. LNCS, vol. 547 (1991), pp. 257-265

B. Deiseroth, V. Fehr, M. Fischlin, M. Maasz, N.F. Reimers, R. Stein, Computing on authenticated data
for adjustable predicates. Cryptology ePrint Archive, Report 2013/217 (2013). http://eprint.iacr.org/.
Accessed 17 Mar 2014

http://eprint.iacr.org/
http://eprint.iacr.org/

394

(30]

(31]
[32]

[33]
[34]

(35]

[36]

[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]
[45]

[46]

[47]

[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]

[56]

J. H. Ahn et al.

W. Diffie, M. Hellman, New directions in cryptography. IEEE Transactions on Information Theory,
22:644-654 (1976)

C. Fragouli, E. Soljanin, Network Coding Fundamentals (Now Publishers Inc., Hanover, MA, 2007)
R. Gennaro, J. Katz, H. Krawczyk, T. Rabin, Secure network coding over the integers, in Public Key
Cryptography—PKC ’10. LNCS, vol. 6056 (Springer, Berlin, 2010), pp. 142-160

C. Gentry, A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009)

0. Goldreich, S. Goldwasser, S. Micali, How to construct random functions (extended abstract), in FOCS
(1984), pp. 464-479

S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks. SIAM J. Comput., 17(2):281-308 (1988)

S. Haber, Y. Hatano, Y. Honda, W. Horne, K. Miyazaki, T. Sander, S. Tezoku, D. Yao. Efficient signature
schemes supporting redaction, pseudonymization, and data deidentification, in ASTACCS ’08 (2008), p.
353-362

A. Hevia, D. Micciancio, The provable security of graph-based one-time signatures and extensions to
algebraic signature schemes, in ASTACRYPT ’02. LNCS, vol. 2501 (2002), pp. 379-396

S. Hohenberger, B. Waters, Realizing hash-and-sign signatures under standard assumptions, in EURO-
CRYPT ’09. LNCS, vol. 5479 (2009), pp. 333-350

R. Johnson, D. Molnar, D. Song, D. Wagner, Homomorphic signature schemes, in CT-RSA (Springer,
Berlin, 2002), pp. 244-262

M. Krohn, M. Freedman, D. Mazieres. On-the-fly verification of rateless erasure codes for efficient
content distribution, in Proc. of IEEE Symposium on Security and Privacy (2004), pp. 226-240

A.B. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters. Fully secure functional encryption:
attribute-based encryption and (hierarchical) inner product encryption, in EUROCRYPT (2010)

A.B. Lewko, B. Waters, New techniques for dual system encryption and fully secure HIBE with short
ciphertexts, in TCC ’10. LNCS, vol. 5978 (2010), pp. 455-479

A. Lysyanskaya, Unique signatures and verifiable random functions from the DH-DDH separation, in
CRYPTO (2002), pp. 597-612

S. Micali, Computationally sound proofs. SIAM J. Comput., 30(4):1253—-1298 (2000)

S. Micali, R.L. Rivest, Transitive signature schemes, in CT-RSA ’02. LNCS, vol. 2271 (2002), pp.
236-243

K. Miyazaki, G. Hanaoka, H. Imai, Digitally signed document sanitizing scheme based on bilinear maps,
in ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information, computer and communica-
tions security (2006), pp. 343-354

K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, S. Tezuka, H. Imai, Digitally signed
document sanitizing scheme with disclosure condition control. I[EICE Trans. Fundam., E88-A(1):239—
246 (2005)

K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura, Digital document sanitizing
problem. IEICE Technical, Report, 103:61-67 (2003)

D. Naccache, Is theoretical cryptography any good in practice? CHES 2010 invited talk (2010). www.
iacr.org/workshops/ches/ches2010. Accessed 13 Jun 2012

G. Neven, A simple transitive signature scheme for directed trees. Theor. Comput. Sci., 396(1-3):277—
282 (2008)

R. Rivest, Two signature schemes. Slides from talk given at Cambridge University (2000). http://people.
csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf. Accessed 13 Jun 2012

R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems. Commun. ACM, 21(2):120-126 (1978)

R.L. Rivest, A. Shamir, Y. Tauman, How to leak a secret: theory and applications of ring signatures, in
Essays in Memory of Shimon Even (2006), pp. 164—186

S.F. Shahandashti, M. Salmasizadeh, J. Mohajeri, A provably secure short transitive signature scheme
from bilinear group pairs, in Security and Communication Networks. LNCS, vol. 3352 (2005), pp. 60-76
A. Shamir, On the generation of cryptographically strong pseudorandom sequences. ACM Trans Comput
Syst, 1:38-44 (1983)

N.P. Smart, F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes,
in Public Key Cryptography—PKC ’10. LNCS, vol. 6056 (Springer Berlin, 2010), pp. 420443

www.iacr.org/workshops/ches/ches2010
www.iacr.org/workshops/ches/ches2010
http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf
http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf

Computing on Authenticated Data 395

[57] N. Smart. ECRYPT2 Yearly Report on Algorithms and Keysizes (2008-2009), Revision 1.0. Edited by
Smart (2009). http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf. Accessed 13 Jun 2012

[58] R. Steinfeld, L. Bull, Y. Zheng, Context extraction signatures, in Information Security and Cryptology
(ICISC). LNCS, vol. 2288 (2001), pp. 285-304

[59] M. van Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully homomorphic encryption over the integers,
in Advances in Cryptology—EUROCRYPT ’10. LNCS, vol. 6110 (Springer, Berlin, 2010), pp. 2443

[60] B. Waters, Efficient identity-based encryption without random oracles, in Advances in Cryptology—
EUROCRYPT ’05. vol. 3494 (2005), pp. 320-329

[61] B. Waters, Dual system encryption: realizing fully secure IBE and HIBE under simple assumptions, in
Advances in Cryptology—CRYPTO ’09. vol. 5677 (2009), pp. 619-636

[62] B. Waters, Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure
realization, in Public Key Cryptography—PKC ’11 (2011), pp. 53-70

[63] L. Wei, S.E. Coull, M.K. Reiter, Bounded vector signatures and their applications, in ASIACCS ’11.
(2011), pp. 277-285

[64] X.Yi, Directed transitive signature scheme, in CT-RSA ’07. LNCS, vol. 4377 (2007), pp. 129-144

[65] F.Zhao, T. Kalker, M. Médard, K. Han, Signatures for content distribution with network coding, in Proc.
Intl. Symp. Info. Theory (ISIT) (2007)

http://people.csail.mit.edu/rivest/Rivest-CambridgeTalk.pdf

	Computing on Authenticated Data
	1. Introduction
	1.1. Overview

	2. Definitions
	2.1. Security: Unforgeability
	2.2. Security: Context Hiding (a.k.a., Privacy)
	2.3. A Computational Definition of Context Hiding
	2.3.1. Relation to Strong Context Hiding
	2.3.2. Simplified Unforgeability Under Strong Context Hiding

	2.4. Related Work

	3. Generic Constructions for Simple Predicates
	3.1. A Brute Force Construction From Any Signature Scheme
	3.2. An Accumulator-based Construction
	3.3. On the Limitations of Using a Generic NIZK Proof of Knowledge Approach

	4. A Powers-of-2 Construction for Quoting Substrings
	4.1. Bilinear Groups and the CDH Assumption
	4.2. The Quoting Construction
	4.3. Security Analysis

	5. A Construction for Subset Predicates based on ABE
	5.1. The Subset Construction from Existing CP-ABE Schemes
	5.1.1. Background: Ciphertext-Policy ABE
	5.1.2. CP-ABE with Key Reduction
	5.1.3. The Subset Signature Construction
	5.1.4. Security Analysis

	6. Computing Weighted Averages and Fourier Transforms
	7. Conclusion and Open Problems
	Acknowledgements
	Reference

