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Abstract. In this paper, we highlight the benefits of using genus 2 curves in public-key
cryptography. Compared to the standardized genus 1 curves, or elliptic curves, arithmetic
on genus 2 curves is typically more involved but allows us to work with moduli of half
the size. We give a taxonomy of the best known techniques to realize genus 2-based
cryptography, which includes fast formulas on the Kummer surface and efficient four-
dimensional GLV decompositions. By studying different modular arithmetic approaches
on these curves, we present a range of genus 2 implementations. On a single core of an
Intel Core i7-3520M (Ivy Bridge), our implementation on the Kummer surface breaks
the 125 thousand cycle barrier which sets a new software speed record at the 128-bit
security level for constant-time scalar multiplications compared to all previous genus 1
and genus 2 implementations.

1. Introduction

Since its invention in the 1980s, elliptic curve cryptography [41,50] has become a popu-
lar and standardized approach to instantiate public-key cryptography. The use of elliptic
curves, or genus 1 curves, has been well studied and consequently all of the speed records
for fast curve-based cryptography are for elliptic curves (cf. the ECRYPT online bench-
marking tool eBACS [10]). Jacobians of hyperelliptic curves of high genus have also
been considered for cryptographic purposes, but for large genus there are “faster-than-
generic” attacks on the discrete logarithm problem [2,20,23,27]. Such attacks are not
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known, however, for genus 2 curves. In [29], Gaudry showed that scalar multiplication
on the Kummer surface associated with the Jacobian of a genus 2 curve can be more
efficient than scalar multiplication on the Jacobian itself. Thus, it was proposed (cf. [6])
that hyperelliptic curve cryptography in genus 2 has the potential to be competitive with
its genus 1 elliptic curve cryptography counterpart. One significant hurdle for genus 2
cryptography to overcome is the difficulty of generating secure genus 2 curves: that is,
such that the Jacobian has a large prime or almost prime group order. In particular, for
fast cryptographic implementations, it is advantageous to use special prime fields where
the underlying arithmetic is fast and to generate curves over those fields with suitable
group orders. A major catalyst for this work is that genus 2 point counting methods and
complex multiplication (CM) methods for constructing genus 2 curves with a known
group order have become more practical. Hence, the time is ripe to give a taxonomy
and a cross-comparison of all of the best known techniques for genus 2 curves over
prime fields. The focus on prime fields is motivated by the recommendations made by
the United States’ National Security Agency Suite B of Cryptographic Protocols [55].

In this paper, we set new performance speed records at the 128-bit security level
using genus 2 hyperelliptic curves. For instance, using the Kummer surface given by
Gaudry and Schost [34], we present the fastest curve-based scalar multiplication over
prime fields to date—this improves on the recent prime field record for elliptic curves
from Longa and Sica which was presented at Asiacrypt 2012 [48]. Furthermore, our
implementations on the Kummer surface inherently run in constant time, which is one
of the major steps toward achieving a side-channel resistant implementation [42]. Thus,
we present the fastest constant-time software for curve-based cryptography compared
to all prior implementations.

Another advantage for genus 2 curves is that the endomorphism ring is larger than it is
in the case of genus 1, so it is possible to achieve higher dimensional GLV scalar decom-
positions [26] (without passing to an extension field to make use of GLS [25]). For prime
fields, we implement four-dimensional GLV decompositions on Buhler—Koblitz (BK)
curves [16] and on Furukawa—Kawazoe—Takahashi (FKT) curves [24], both of which
are faster than all prior eBACS-documented implementations. To optimize overall per-
formance, we present implementations based on two different methods that allow fast
modular arithmetic: one based on the special form of the prime using “NIST-like” reduc-
tion [65] and another based on the special form of the prime when using Montgomery
multiplication [51].

In addition, we put forward a multifaceted case for (a special class of) Buhler—Koblitz
curves of the form y> = x> + b. The curves we propose are particularly flexible in
applications because they facilitate both a Kummer surface implementation and a GLV
decomposition. Thus, a simple Diffie—-Hellman style key exchange can be instantiated
using the fast formulas on an associated Kummer surface, but if a more complicated
protocol requires further group operations, one has the option to instead exploit a four-
dimensional GLV implementation using the Buhler—Koblitz form.

The paper is organized as follows. In Sect. 2, we recall the necessary background for
this work. Section 3 outlines the two different approaches for the modular arithmetic.
Section 4, 5 and 6 summarize the state-of-the-art in “generic,” Kummer surface and GLV
implementations, respectively, together with the specific choices and optimizations we
made in each scenario. Section 7 presents our performance results. In Sect. 8, we propose
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a particular family of curves that allow both Kummer surface and GLV implementations.
Section 9 concludes the paper.

2. Preliminaries

We start by recalling some basic facts and notation concerning genus 2 curves in §2.1.
In §2.2, we outline the CM method, which is used several times in this work to generate
secure curves. In §2.3, we briefly review the main techniques used to compute scalar
multiplications.

2.1. Genus 2 Curves

A hyperelliptic genus 2 curve over a field of odd characteristic K can be defined by an
affine model C : y? = f(x), where f(x) has degree 5 or 6 and has no double roots.
We call C a real hyperelliptic curve if the degree of f is 6, and if such an f(x) has
a rational root, then we can isomorphically transform the curve over K so that f has
degree 5 instead, in which case we say C is an imaginary hyperelliptic curve. Arithmetic
is currently slightly faster in the imaginary case.

Unlike genus 1 elliptic curves, in genus 2, the points on the curve do not form a group.
Roughly speaking, unordered pairs of points on the curve form a group, where the group
operation adds two pairs of points by passing a cubic through the four points, finding
the other two points of intersection with the curve, and then reflecting them over the x
axis. More formally, we call this group the divisor class group, which consists of the
degree zero divisors modulo the principal divisors on C. There is a natural isomorphism
between the divisor class group and the K-rational points on J¢, the Jacobian of C,
which is the abelian variety we work with. For genus 2 hyperelliptic curves, each divisor
class has a unique reduced representative consisting of at most two K -rational points
(which are not reflections of each other) minus the point(s) at infinity. The corresponding
elements in the Jacobian can therefore be represented by encoding these two points via
a pair of polynomials, where the x coordinates of the points are the roots of the first
polynomial and the second polynomial is a line passing through the two points. This
encoding is called the Mumford representation; it writes general points D € Jc as
D = (x® + u1x + ug, vix + vp). In order to avoid confusion when x and y are used
as two of the Kummer coordinates in Sect. 5, in this paper we will often abbreviate
the Mumford representation to instead write D = (u1, ug, vi, vo). Following [19], we
will save inversions by introducing an additional coordinate Z to write such points as
D=U;:Uy:Vy:Vy:Z),whereu; = U;/Zandv; = V;/Zfori € {0, 1}and Z # O.

2.2. The CM Method

There are two high-level strategies for constructing cryptographically strong genus 2
curves. The first strategy is point counting, which typically involves fixing a particular
genus 2 curve C (over an underlying field) and using the classical Schoof-Pila [59,62]
algorithm to compute #J¢, repeating the process for different curves until this group order
is prime or almost prime. Until recently, using this technique to compute the group orders
of Jacobians of curves which target the 128-bit security level was infeasible. However,
in their record-breaking work, Gaudry and Schost [34] presented a fast combination
of the Schoof-Pila algorithm and the baby-step giant-step method [63] that manages to
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compute the order of the Jacobian corresponding to any such a curve in around 1,000 CPU
hours. They further integrated an early abort strategy into this extended point counting
routine to find a 128-bit secure curve in over 1,000,000 CPU hours. The Kummer surface
associated with the curve they found is especially attractive for fast implementations,
and we use it to obtain record performance numbers in this work. Even more recently,
on families of curves which have been constructed to have known real multiplication
(RM), Gaudry, Kohel and Smith [33] gave an accelerated Schoof—Pila algorithm and set
a record for RM point counting, computing a 128-bit secure Jacobian in about 3 hours.

The second strategy for finding cryptographically secure genus 2 curves is the CM
method, which we use several times throughout this paper to find curves defined over
prime fields that facilitate fast field arithmetic. The CM method works as follows. For
a smooth, projective, irreducible genus 2 curve, C, over a prime field F, with ordi-
nary Jacobian J¢, the Frobenius endomorphism has a quartic characteristic polynomial
ft) = t* — 5113 + 551> — psit + p?. Let K be the quartic CM field defined by the
polynomial f and fix an embedding of K into the complex numbers. We denote by 7 a
complex root of the polynomial f (7). The roots of f consist of conjugate pairs (7, 77)
and (7r/, '), with the property 7’7’ = 7 = p. If a solution to 77T = p exists in the
field K, then the ideal p = (;r) in Ok has relative norm pp = p (this is the norm relative
to Ko, where K is the real quadratic subfield of K). Thus, given a CM field K and a
prime p, the ordinary genus 2 curves over IF,, with CM by K (i.e., with End(J¢) = Ok)
correspond to generators 7 of principal ideals with relative norm p such that || = /p.
Note that a generator may have to be scaled by a unit in Ok to ensure that || = ,/p.
Since #Jc(Fp) = (1 —m)(1 —7)(1 — 7")(1 —7'), in order to know the possible group
orders for genus 2 curves with CM by K, it suffices to find the prime ideal decomposi-
tion of p in Ok (which determines all possible 7’s). For primes which split completely
into principal ideals in the reflex field of K, there are always two possible group orders
when K # Q(¢s) is Galois cyclic and four possible group orders when K is non-Galois
(see [22, Proposition 4] for the possibilities). When K = Q(¢5) and p = 1 mod 10 (as
used in Sect. 6), p always splits completely into four principal ideals and there are ten
possible group orders in this case.

When a CM field K gives rise to a suitable group order over I, the next problem is
to construct a genus 2 curve with the desired number of points. We use Shimura’s theory
which shows that CM abelian varieties correspond to ideal classes in Ok, and their
invariants are values of the genus 2 Siegel modular functions defined by Igusa; these
invariants can be computed modulo p as roots of the Igusa class polynomials. These
Igusa class polynomials have coefficients in Q and are computationally expensive to
compute. There are three general methods of approaching this computation: the complex
analytic method [72], the Chinese remainder theorem (CRT) method [22], and the p-adic
method [32]. All of the class polynomials we used in this work were taken from Kohel’s
comprehensive Echidna database [43]. Upon computing the Igusa invariants, we can
then reconstruct the curve C/IF ), using the Mestre-Cardona-Quer algorithm [49].

Depending on the scenario, we use the CM method in one of two ways. We either start
by fixing a prime field IF, before searching through many CM fields until we find a curve
whose Jacobian has prime or almost prime group order, or conversely, we start with a
fixed CM field K and then search over many prime fields until we find a suitable curve.
The first approach is used when we do not require curves corresponding to a particular
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CM field or when the defining equation for C is not important, which is the case when
searching for “generic” curves (see §4.2) and for curves facilitating arithmetic on the
Kummer surface (see §5.5). Alternatively, we use the second approach when we need
either a certain defining equation for C (e.g., the GLV curves in §6.2), or if we need to fix
a particular CM field (e.g., the van Wamelen curves in §8.5). Roughly speaking, if we
can afford flexibility in the curves we search for, then this allows us to be picky with the
underlying fields we choose. Conversely, being picky with the curves we seek usually
means we have to be more flexible with the primes we search with.

2.3. Scalar Multiplication

There are many different ways to compute the scalar multiplication. Most approaches,
like the double-and-add algorithm, are based on addition chains [61] and a typical opti-
mization to lower the number of point additions is using windows [14] of a certain width
w > 1. Given the input point P, we compute a lookup table consisting of the multiples
[c]P such that 0 < ¢ < 2% and perform a point addition once every w bits (instead of at
most once per bit). After adding a precomputed multiple, we can “slide” to the next set-bit
in the binary representation of the scalar; such sliding windows [68] lower the number of
point additions required and halve the size of the lookup table since only the odd multi-
ples of P are required. When computing the negation of a group element is inexpensive,
which is the case for both elliptic and genus 2 curves, we can either add or subtract the
precomputed point, reducing the total number of group operations even further; this is
called the signed windows approach [54]. See [9] for a summary of these techniques.
Adding an affine point to a projective point to obtain another projective point, often
referred to as mixed addition, is usually faster than adding two projective points. In order
to use these faster formulas, a common approach is to convert the precomputed projective
points into their affine form. This requires an inversion for each point in the table. Using
Montgomery’s simultaneous inversion method [52], I independent inversions can be
replaced by 3(/ — 1) multiplications and a single inversion, which is typically much faster.

3. Fast Modular Arithmetic Using Special Primes

When performing arithmetic modulo a prime p in practice, it is common to use primes of
a special form since this may allow fast reduction. For instance, in the FIPS 186-3 stan-
dard [69], NIST recommends the use of five prime fields when using the elliptic curve
digital signature algorithm (but see also [4]). A study of a software implementation of
the NIST-recommended elliptic curves over prime fields on the x86 architecture is given
by Brown et al. [15], and in [11], a comparison is made between the performance when
using Montgomery multiplication [51] and specialized multiplication using the NIST
primes. In this section, we describe two different approaches to obtain fast modular
arithmetic. We use the prime pj271 = 2127 _ 1 to illustrate both methods, since this
prime is used in some of our implementations (cf. Sects. 4 and 5).

3.1. Generalized Mersenne Primes

Primes that enable fast reduction techniques are usually of the form 2% £ §, where
5,8 € ZT, and § « 2°. The constant § is small compared to the word size of the
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target architecture, which is typically 32 or 64 bits. Another popular choice is using
a generalized Mersenne prime of the form 2* + > . _¢i, where S is a set of integers
42/ such that |2/| < 2% and the cardinality of S is small. For example, fast reduction
modulo p = 2% — § can be done as follows. For integers 0 < a, b, ¢y, ¢¢, § < 2°, write
c=a-b=cp-2°+cs =cp+5cy, (mod 2°—8)where0 < cp+8c, < (6+1)2°. Atthe
cost of a multiplication by é (which might be a shift depending on the form of §) and an
addition, compute ¢’ = ¢ (mod p) where ¢’ is (much) smaller than ¢, depending on the
size of 8. This is the basic idea behind Solinas’ reduction scheme [65], which is used to
implement fast arithmetic modulo the NIST primes [69]. We refer to this type of reduction
as NIST-like reduction. When computing a - b mod p27; with 0 < a, b < p1271, one
can first compute the multiplicationc =a-b = ¢ - 2128 4 ¢, where 0 < ¢y, ¢o < 2128,
A first reduction step can be computed as ¢’ = (co mod 227y 420 + Lco/ 2127J =c
(mod pi271), such that 0 < ¢’ < 2128 One can then reduce ¢’ further using conditional
subtractions. Modular reduction in the case of p127;1 can therefore be computed without
using any multiplications.

3.2. Montgomery-Friendly Primes

Montgomery multiplication [51] involves transforming each of the operands into their
Montgomery representations and replacing the conventional modular multiplications by
Montgomery multiplications. One of the advantages of this method is that the compu-
tational complexity is usually better than the classical method by a constant factor.

Let r = 2 be the radix of the system and b > 2 be the bit length of a word. Let
p be an n-word odd prime such that #*~! < p < r", and suppose we have an integer
0 < X < p. The Montgomery radix R = r" is a fixed integer such that gcd(R, p) = 1.
The Montgomery residue of X is defined as X = X -Rmod p. The Montgomery prod-
uct of two integers is defined as M (}~( , 17) =X-Y-R ' mod p. Practical instances of
Montgomery multiplication use the precomputed value ;. = —p~! mod r. The inter-
leaved Montgomery multiplication algorithm, in which multiplication and reduction are
combined, computes C = M(A, B) for0 < A,B < p.Let A = Z;:ol a; - ri, where
0 <a; < r,and start with C = 0. Fori = 0 ton — 1, the result C is updated as

C < C+a-B, C<—(C+((,u~C)m0dr)~p)/r.

The division by r can be implemented by a shift, since the precomputed value p ensures
that the least significant digit (b bits) of (C + ((u-C) mod r) - p) is zero. It can be shown
that the final Montgomery product C is0 < C < 2 - p, and therefore, a final conditional
subtraction is needed when complete reduction is required. In order to avoid handling
additional carries in the Montgomery multiplication, which requires more instructions,
our implementations prefer 127-bit moduli over 128-bit moduli. In [45], it is noticed
that fixing part of the modulus can have advantages for Montgomery multiplication. For
instance, the precomputation of . can be avoided when —p~! = %1 (mod r), which
also avoids computing a multiplication by u for every iteration inside the Montgomery
multiplication routine. This technique has been suggested in [1,36,40] as well. When
@ is small, e.g., u = =£1, one could lower the cost of the multiplication of p with
(u - cp) mod r by choosing the n — 1 most significant words of p in a similar fashion as
for the generalized Mersenne primes: | p/2°| = 2% + Diesi
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Consider the prime pjp7; on 64-bit architectures: r = 264 and we have n =
- pf217£mod 264 = 1, so that the multiplication by u can be avoided. Write C =
8

cy - 218 4o 20 4 co with 0 < ¢,c1,¢c0 < 204 Due to the shape of the most-
significant word of p1o71 = (293 — 1) - 264 + (264 — 1), the result of w
can be obtained using only two shift and two 64-bit addition instructions by computing
c2 - 2% 4 ¢ - 2% + ¢1. Similar to the NIST-like reduction, Montgomery reduction in
the setting of p1271 can be computed without using any multiplications.

3.3. Other Arithmetic Operations

Besides fast multiplication and reduction, the whole spectrum of modular operations is
required to implement curve arithmetic. Here, we outline the different approaches we
use.

3.3.1. Modular Inversion

When using the regular representation of integers, one can either use the (binary)
extended GCD algorithm to compute the modular inversion or use the special form

of the modulus to compute the inverse by using modular exponentiations. For instance,

. . 127 _ _ .
in the case of p1271, one can exploit the congruencea>  ~2 =a~! (mod pi271). Thessit-

uation when working in Montgomery form is slightly different. Given the Montgomery
form @ = a2 mod p of an integer a, we want to compute the Montgomery inverse
a—122n = 125" (mod p). This would require a classical inversion and modular
multiplication; however, we found that the approach presented in [13] (which uses the
binary version of the Euclidean algorithm from [38]) is faster in practice. The first step of
this approach computes a value @~ '2F = a=128=P" (mod p), for some 0 < k < 2bn.
This value is then corrected via a Montgomery multiplication with 23?"~%_ This last
multiplication typically requires a lookup table with the different precomputed values
23~k mod p. In the case of p = 2'?7 — 1, one can avoid this lookup table since
2" mod 2127 _ 1 — ot mod 127

3.3.2. Modular Addition/Subtraction

LetO <a,b <2K—c. We compute (a + b) mod (2F — ¢) as ((((@ +¢) + b) mod 2F) —
¢ (1 —carry((a + ¢) + b, 2%))) mod 2. The carry function carry(x, y) returns
either zero or one if x < y or x > y, respectively. The output is correct and bounded by
2k _ ¢ sinceifa+b+c <2k thena +b < 2% — ¢, whileif a + b + ¢ > 2%, then
(@+b+c)ymod2F =a+b— (2K —¢) < 2 — ¢. Note that since a + ¢ < 2%, the
addition requires no carry propagation. Furthermore, ¢ is multiplied with either one or
zero such that this multiplication amounts to data movement.

The modular subtraction (¢ — b) mod (Zk — ¢) is performed by computing (((a —
b) mod 2K) — ¢ - borrow(a — b)) mod 2X. Analogous to the carry function, the bor-
row function borrow(x) returns zero or one if x > 0 or x < 0, respectively. If
a < b, then0 < (@a—b)ymod2¥ —c = a—-b+ @2 -¢) < 2 —¢, and if
a > b, then0 < a — b < 2¥ — ¢. In some scenarios, one can compute additions
as (((a+b) mod 2]‘) +c-carry((a+b), 2]‘)) mod 2%, but we note that here the output
may not be completely reduced and can be greater than or equal to 28 — ¢.
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4. “Generic” Genus 2 Curves and Their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer surface
or when exploiting GLV endomorphisms, we also consider the generic scenario that
employs neither of these techniques.

4.1. Explicit Formulas

‘We make use of the fast formulas for arithmetic on imaginary quadratic curves from [19],
which focus on reducing the total number of multiplications in projective point doublings,
point additions, and mixed additions.! Due to the small size of our fields, the cost of
modular addition and subtraction compared to modular multiplication is relatively high.
Hence, we optimized the formulas from [19] for 128-bit fields by trading some addition
and subtractions for multiplications (see Algorithms 1, 2, and 3).

We assume that our curves are of the form C : y? = x° + f3x3 + fox? + fix +
fo, and count multiplications by the f; as full multiplications, unless they are zero.?
Letting m, s, and a be the cost of F,-multiplications, IF,-squarings, and I ,-additions
or subtractions, respectively, we summarize the modified counts as follows. For D =
(Uy: Uy: Vi: Vy: Z), one can compute [2]D in 34m + 6s + 34a—see Algorithm 1.
For the special GLV curves in Sect. 6, which have f, = f3 = 0, the projective doubling
can be computed using 32m + 6s + 32a. For D = (Uy: Uy: V: Vy: Z) and D' =
(Ui: Uy: V{2 Vg2 Z'), one can compute the projective addition D + D’ in 44m +
4s + 29a—see Algorithm 2. For the mixed addition between the projective point D =
(Ur: Up: Vi: Vo: Z) and the affine point D" = (u) : uy,: v} : v(), one can compute the
projective result D + D’ in 37m + 5s 4+ 29a—see Algorithm 3. Full and mixed additions
cost the same on the special GLV curves. Given these operation counts, our “generic”
implementations performed fastest when using 4-bit signed sliding windows (see §2.3).

4.2. Curves

To find “generic” curves for comparison against the GLV and Kummer techniques, we
searched Kohel’s Echidna database [43] with two fixed primes that facilitate our chosen
techniques for field arithmetic. We terminated the search when we found curves with
Jacobians of prime order. While these curves are not general in the sense that their CM
field is chosen in advance, there is no reason that the corresponding timings obtained
would differ from taking any other generic curve over the same prime fields>, unless such
curves are real (degree-6) curves which cannot be transformed into imaginary (degree-5)
curves.

! Note that the formulas to compute the projective doubling from [19] can be sped up since the first
multiplication to compute U U is redundant.

2 Over prime fields, it is standard to zero the coefficient of the x* term via an appropriate substitution.

3 This is assuming that such generic curves will also have full-sized coefficients.
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Algorithm 1 Projective doubling for general points in the Jacobian of C : y*> = x° +
[+ Hx?+ fi + fo.

Input: P = (Uy: Uy: Vi: Vy: Z) and f>, f3 (curve constants)

Output: [2]P = (U} : U= V' vy Z").

l.U(/)/<—U0-Z 19. <21 38. 14 < 14-Uy 57.Ui/<—2-t2
2.1 < 72 20. 11 < 11 +Vé, 39.13 <213 58. U]” <« Ul/, -1
3.1 <« U12 2l <1 -V 40. t3 <—t32 59. 1 < Ul -1
41321 22.13<—t3+U6/ 4. 3 < 13-Z 60.t4<—t47U1N
5.14 <2 U(’)/ 23. 3« Vi3 42. 10 <21 6l.14 < 1t4-1)

6. 15 < 13+ 14 24, t5 <1314 43.U) <n-Z 62.t4 <147

7. 15 < t5-Uj 25. 17 < tg -1 44. Vl” ~V -Ué/ 63. 7/ « Ué’ -Z
8. 1 — V]2 26. t5 < t5 — 17 45. V) < Vi -1 64. 11 <1 — U/
9.17 < fr-1 27. tg < tg- V1 46. 1) <t — 1y 65. UY(—U{,-Z”
10. 1 < 17 — 15 28. 14 < 14 - 1 47. 15 <12 66. U < t3- Ul
11. tg < t5-Z 29. 14 <14 — 16 48. 13« 213 67. Vl”<—Vl”—tg
12. tg < tg + 5 30. 13 «<— 13- V) 49. 13 <13 — 12 68. Vl” <« VIN 17
13. 1 < f3-1 3Ly <t -1 50. 13 < 1§ — 1) 69. V| 13— V/
4.t <t +1 32.13 < 13—1 51. tg < tg- U 70. V) < Vg 17
15. 14 < 1] — 14 33,1 <1514 52.13 <13 +15 Tt <1 - 13
16. 14 <« t4 + 13 34.t2<—t32~t4 53.15 <2 V/ 72.t1<—t1—t6/
17. Vé’ ~Vy-Z 35.14 <15 54,13 < 13+ 15 73. V(;/ 1 — V0,
18. 1) < Uy - Vj 36. 16 < Uy 14 55. V" <15+ V/ 74. 7" <~ 7" 17

37.t7 < t4-Z 56. t6 < tg -1

4.2.1. Generic Curve Over F, with p = 2'27 — 1.

The CM field K = Q[x]/ ()c4 + 137x 4 4429) has class number 6 [43] and gives rise to
a curve C over IF;, whose Jacobian has prime order

r=28948022309329048848169239995659025138451177973091551374101475732892580332259,

which is 254 bits. A possible degree 5 model is C : y* = x° + f3x° + frx> + fix + fo,
where

f3=34744234758245218589390329770704207149, f>=132713617209345335075125059444256188021,
f1=90907655901711006083734360528442376758, fp=6667986622173728337823560857179992816.

4.2.2. Generic Curve Over F, with p = 2128 _ 173,

The CM field K = Q[x]/(x* + 41x + 389) has class number 1 [43] and gives rise to a
curve C over ¥, whose Jacobian has prime order

r=115792089237316195429342203801033554170931615651881657307308068079702089951781,
which is 257 bits. A possible degree 5 model is C : y> = x> + f3x° + fox? + fix + fo,
where

f3=318258242717201709453901384328569236653, f>=75380722035796344355219475510170298006,
f1=129416082603460579272847694630998099237, fo=143864072772599444046778416709082679388.



Fast Cryptography in Genus 2 37

Algorithm 2 Projective addition between general points in the Jacobian of C : y2 =
X+ 353+ Hrx? + f1 + fo.

Input: P = (Uy: Up: Vi: Vo: 2), Q = (Uy: Uy V]2V Z0).

Output: P+ Q = (U{: Uy : V- Vi Z").

LU < U -7 211y < 13 4. tg —tg—17 60. t] < 1] + 16
2. U6/<—U0~Z/ 22. 13 <—U1”+t3 42.tp <1513 6l. 1 <t — 1t
3.4 < V-2 23. t1p < tjo — 11 43. tg < tg — 12 62. 1 <1 — U(/J/
4.t2<—V6~Z 24. 111 < tg + 111 44, th < t9g —1p 63. 15 <1 - 15

5.t <t —1 25. 19 <14 - 13 45. 1 <t - 13 64. 1 < 19 - 111
6.t2<—U6~Z 26. 14 <1415 46. 1] < t5 - 111 65. 1] <1 - 11
1.3« U -Z 27. t5 < 1] - 5 47. 1) < 1 + 113 66. 1 < Ul 14
8. 14 <131 28. 1 <11 - 112 48. 1) < 12/2 67. te < 16+ 1
9.1 < 1) — Ué/ 29. 13 <1 - 13 49. tip < 2" - 15 68. 15 < 6+ 15
10. t5 <« U]” -1 30. 1) <1t - 112 50. U(,)/ <« U(/), 12 69. 14 <« U(/), 1y
11.t6<—Ui/-U(/)/ 3l.11 <19+ 1 51. t1p < tg - 112 70. 111 < t4 + 111
12. 14 <14 — tg 32.t5 <15+ 13 52.111 < Z' -t Tl 19 <19 - 13
13. t(,(—Vl/-Z 33. 1 < 1) — 14 53. V6/<—l‘11-V0 72. U{(—tg-Z”
14.2" «~7-7 34, ty < t5-7" 54. V{/ <~ 11 Vi 73. U(,)/ 113
15.t7 < V- Z/ 35.13 < 1)1 55. 11 < tg—19 T4, ts < t5-Z"
16. 13 < t7 — Ig 36. 1 « 13 56. 14 < Ul — 14 75. V] <15 = V]
17. t6 < 17 + 15 37.t5 < t5-14 57. 1 < 112 76. Vé’ <~ 1] — V(;/
18. 19 <« U]”2 38. 14 <111y 58. 1 < 13 - I 77. 2" <~ 7" -t
19.t10 < 2" -1 39. U{’ <~ Ui/ - 15 59. 1 «<11-2"

20. tjg <19 + 110 40. 19 <214

5. The Kummer Surface

Gaudry [29] built on earlier observations by Chudnovsky and Chudnovsky [17] to show
that scalar multiplication in genus 2 can be greatly accelerated by working on the
Kummer surface associated with a Jacobian, rather than by working on the Jacobian
itself. Although the Kummer surface is not technically a group, it is close enough to
a group to be able to define scalar multiplications on it and is therefore an attractive
setting for Diffie—Hellman like protocols that do not require any further group opera-
tions [64].

5.1. The Squares-only Kummer Routine

The Kummer surface that was originally proposed for cryptography in [29] is a surface
whose constants are parameterized by the four fundamental theta constants (¥1(0),
92(0), 93(0), 94(0)), and whose coordinates come from the four fundamental theta
functions (91(z), ¥2(z), ¥3(z), ¥4(z)), all of which are values of the classical genus 2
Riemann theta function. Bernstein [6] pointed out that one can work entirely with the
squares of the fundamental theta constants without any loss of efficiency. This provides
more flexibility when transforming a given genus 2 curve into an associated Kummer
surface and makes it easier to control the size of squared fundamental theta constants,
for which small values can give worthwhile speedups. For example, it might be the case
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Algorithm 3 Mixed addition between general points in the Jacobian of C : y> = x° +
[+ Hx?+ fi + fo.

Input: P = (U;: Ugy: Vi: Vo: Z), Q = (uy, ug, vy, vo).

Output: P+ Q = (U] Uy : V- V' Z").

1.t <vy-Z 18. 17 < Z- U} 36. 16 < 12 54,15 «— 17— 14
2. V(;, <~ Vo—1 19. 13 < t7+13 37. 17 « ;72 55. Vl” <« V]N - 18
3.t < v - Z 20. 17 < 16 - 11 38. 14 <14 - 16 56. 1 <1 -t5
4.t <~ +W; 21. 1 <« U(/)/ -1 39. 1g < U(/)’ -1 57.11 <t + V]N
5.1 <t —Vy 22. Ué’ <« U(,)/ -1 40. U{/ «—2. V(;’ 58. Vl” <« U{, . VO”
6. V' «<—u-2 23. 15 « 16 - Uy 4L U] < U] — 1 59. V" < V' +1
7.13 <—V1”+U1 24, U{/<—V6,-U{/ 4. 12<_U(/)’.12 60. 14 <14 - 13
8. 14 < ug-Z 25. 18 < Vi .13 3.1« t7-Z ol. vV < V-1
9. t5 < Vl” 1y 20. 17 < t7 — 13 4. 17— 17+1 62. VO” 14+ V(;,
10. t¢ <= Uy - Uy 27. 1 <—t17U{, 45. 1 <1 - 13 63. 14 <t - V]
11. tg < tg — t5 28. Ué/ <« U(,)/ — 16 46. U{/ «— Ui’ —-n 64. Vl” <« Vl” -1
12. U < Up—14 29. 13 « U(/)’2 47.13 < U — 18 65. Ul < U{-Z
13. 15 < V| 30. 1 < 11 - Z 48. 13 < 13 - 13 66. Ui: < Uy l,//(’)’
14. 17 <_U12 3. Uf < Uy - 16 49. 13 < 13+ 15 67. U(,)/ <_t7'U(/)/
15. U]l < V' —U; 321 <1y - 15 50. 13 < 13/2 8. V) =2V,
16. tg < t5 — 17 33. Vl//<—t1‘Vl” 5l.ty <~ t7—13 69. 2" < Z 15
17. t5 < t5 +17 34.t5 <t - 15 52. 18 « V]” = Vé’ 70. 17 < Z" - v
35. V) <1716 53. V) < V) - Uy TV <~V -1

that the fundamental theta constants associated with a genus 2 curve cannot be defined
over IF,, but all of their squares can be.

Cosset [18] formally presented the “squares-only” setting, in which the Kummer
surface K is completely defined by the squared fundamentals (a®,b?,c?, d*)
(1000, 92(0)%, 93(0)*, 94(0)°) as

K: E'xyzt = ((x2 + y2 + 22+ t2) — F(xt+yz) — G(xz+ yt) — H(xy + zt))z,

ABCD
I oAp2.212 252 _
where E' =4E“a“b“c°d”, E = P DD @ — PR @D — )
at—bt—ct+dt a* — b+t —a*
F= 242 — b2z 6= 22 —p2gz
4, 14 4 4
at*+b*—c*—d
H= 212 _ 202
a*b* — c4d
A 11 1 1 a®
B 11 —1—11][»?
cCl |1-=11-=1]]c]| M
D 1-1-11 d?

We write (x: y: z: 1) = (91(2)%: 92(2)%: 93(z): 94(z)?) for the coordinates of a
projective point on KC. We present here the four algorithms needed to achieve scalar
multiplication on a Kummer surface using the squared coordinates. Algorithm 4, the
Hadamard transform (H), is a building block used to improve efficiency throughout the
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entire routine: The linear algebra involved in computing A, B, C, D from (az, b2, 2, dz)
in (1) appears numerous times in the formulas for arithmetic on /C, and this is an opti-
mized way to do those operations [6]. Algorithm 5, K(DBL), computes the doubling
[2]P € K of a point P € K, while Algorithm 6, C(DBLADD), computes the pseudo-
addition of the distinct points P, Q € K with known difference P — Q € K. Both
of these algorithms are the squares-only formulas from [18]. Algorithm 7 computes
the scalar multiple [k]P € K of P € K using a genus 2 version [29] of the Mont-
gomery ladder [52]. The six surface constants that appear in the algorithms are defined
as
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Algorithm 4 The Hadamard transform (H).
Input: (x,y,z,1).

Output: H(x, y, z,1).

Lt < x+y tp«<z+t

2.3 «—x—y, lg4 < z7—1t

3.x <t +h, y<t1—1b

4.z« 03+1y, t < 13—14

5. return (x,y,Zz,1).

Algorithm 5 Doubling, X (DBL).

Input: P = (x: y: z: t) and constants yg, zo. f0, Y, Z» £
Output: [2]P = DBL(P).

1. x,y,z,t < H(x,y,2z,1).

2.x < x ,y(—y,z(—z,t(—tz.

3.y <—y-y6, z<—z-z(’), t(—t-t(/).

4. x,y,z,t < H(x,y,z,1).

5. x < x2
6.y« y-y), 2<2-20,1 < t-1.
7. return (x:y:z:1t).

,y<—y2,2<—zz,t<—t2.

Although the formulas in Algorithm 6 are presented for general inputs P, Q, and
P — Q, the inputs to (DBLADD) in the laddering algorithm are always of the form
[m]P and [m + 1]P, so their difference is always the initial point P (see lines 4 and
6 of Algorithm 7). Thus, the inversions in Lines 15 and 16 of Algorithm 6 can all be
precomputed. In fact, since /C is projective we can multiply each coordinate in this line
by any scalar, say x, such that Lines 15 and 16 are modified to compute three multi-
plications: y' < Y - (x/y), 7 < Z - (X/Z),andt’ < T - (f/y), where the quotients
in the parentheses are precomputed and stay fixed throughout the scalar multiplication
[6,29].
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5.2. Extracting the Squared Kummer Surface Parameters from C

In[29], Gaudry showed the relationship between the Kummer surface and the isomorphic
Rosenhain model of the genus 2 curve C, given as

CRos: ¥2 = x(x — D)(x — M) (x — w)(x —v), 3

where the Rosenhain invariants A, i and v are linked to the squared fundamentals by

_a*?* 201+ CDJ/AB) __ a*(1+/CDJAB)
“ a2 M T 2a=JcpjaB) ' T (1 —JCDJ/AB)’

with A, B, C, D as in (1). Since the three Rosenhain invariants are functions of the
four squared fundamentals, there is a degree of freedom when inverting the equations to
compute (az, b2, 2, dz) from (A, w, v). Thus, we can set d?=1 [31] and compute one
set of the squared fundamentals as

2= /)\_M’ B2 — M(M—l)()»—v)’ 22l
v v(v = DA —p) 2

Given a hyperelliptic curve C of genus 2, there are up to 120 unique Rosenhain triples
A, w, v that give an isomorphic representation Cros = C over the algebraic closure [28,
§2.2]. So for a given curve with rational 2-torsion, we can hope that there may be at least
one Rosenhain triple for which the square roots above lie in the same field as A, «, and
v, such that the Kummer surface is also defined over the same field (but see §8.3). If the
2-torsion is rational, then 16 must divide the cardinality of J¢ [29].

A

Algorithm 6 Combined doubling and pseudo-addition, (DBLADD).
Input: P=(x:y:z:1),0=u":y:7:1),
P —Q=(%:y:Z:1),and yo, 20, 10, > 2 1
Output: ([2]P, P + Q) = DBLADD(P, Q, P — Q)
1. x,y,z,t < H(x,y,z,t)
2' x/, y/’ Z/, t/ « H(x/, y/, Z/’ t/)
3. X < x-x/, Y<—y-y(’)
4. Z(—z-zé, T <—t-t(/)

5.x<—x2, y<«<y-Y

6.z« z-Z, t<t-T

7.Y <Y -y, Z«Z-J,T«<T-t
8. x,y,z,t < H(x,y,2,1)

9. X,Y,Z, T «<HX,Y,ZT)

10. x < x2, y(—y2

11.z<—zz, t <« 2

12X <« X2 Yy <12

13. Z < 7%, T < T?

4. y <y -y, 24220, t <11
15. x" <~ X/%, y < Y/

16. 7/ < ZJ)z7, t' < T/t

17. return ((x: y:z: 1), (x': y': 72 1))
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Algorithm 7 Scalar multiplication,
K(SMUL).

Input: P = (x: y: z: 1) and integer
n= Zf;& n;2" withn > 2.
Output: [n]P € K.
1. Py < P, P, =DBL(P).
2. for i = ¢ — 2 down to 0 do
3. if n; =1 then
4 (Pp, Pp) < K(DBLADD)(Pp, P, P)
5. else
6. (Pm, Pp) < K(DBLADD) (P, Pp, P)
7
8

L(xryizit) < Py
.return (x: y:z:t).

5.3. Mapping from I to Jo

The maps from K to Je were originally given by Gaudry [29] and tweaked for the
squares-only case by Cosset [18]. We reproduce them here for completeness, correcting
a sign mistake introduced in the computation of vy in [18]. It should be noted that
the map below is not directly to the Jacobian of C, but rather to the Jacobian of the
isomorphic curve Crqs in Rosenhain form. The map takes P = (x: y: z:1) € K to
D = (uy, ug, vy, vo) or D = (uy, ug, —vi, —vg), where the choice between these two
possibilities is made when we choose the square root in the computation of vg in (5).
We expand the first part of the map (to the u-polynomial of D), to write it as

UxX +uyy + uzz + ust

wex +uly +uzz +ugt

—ug—1,

dyx +dyy +d,z + dit

uy = and u; =
07 dx+dyy+d.z+dit :
where
uy = —0303939203,  ul = —93959293,
uy = —9303959207, u, = 97959207,
u, = 0707020202, ul = 03020202,
w = VPOV, up = —07959307,

For the computation of vy and vy, we have

dy = —03930709507.
24202 4202

dy = =0705910505,

d; = 037939700595,

dy = 930795,0297.  (4)

(=— (ﬁfz(z)07(z)2b2c20;‘ + 92,293 (2)a*d> 04 + 2a2b*c*d? (xz + yi)

+ (P 2 P 2= G+ y2) = Gzt yo) — H(xy+20)

E

a’c* + b*d?

).
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[ ol
Vo =% T2 272923°
(P16 @b=d*V1;,)
u(3) —u(z)(u% 4ur+ @+ DX +p+v)+ A+ vi+vu) + ughpv —|—u1v§
2v0u0 ’

V] =
&)

where the A, u, and v are the particular choice of Rosenhain invariants corresponding
to Cros in (3). The six theta constants z‘/‘iz withi =5, ..., 10 and the six theta functions
z?%(z) with j € {7,9, 11, 12, 14, 16} are all exactly as in [29, §7.3-7.4].

5.4. Twist Security

There is an additional security consideration when working on the Kummer surface
because a random point on K can map to either the curve Cros = C or its twist Cl/zos =
[29, §5.2]. As long as the public generator P € K is chosen so that it maps back to
JCros» then any honest party participating in a Diffie-Hellman style protocol computes
with multiples of P that also map back to J¢, .. However, an attacker could feed a party
another point P’ € K that (unbeknownst to the party) maps back to C ., and on return
of [s]P’, attack the discrete logarithm problem on the twist instead. It is undesirable to
include a check of which curve the Kummer points map to, because the maps above
are overly involved. The best solution is to compute curves where both J¢ and Jor have
large prime order subgroups. The ideal situation is to have Jo = 16 -r and Jor = 16-1/,
where r and r’ are large primes (or almost primes) of the same size. Such curves and
their associated Kummer surfaces are called twist-secure [33,34].

5.5. Curves and Their Kummers

Our implementations use two different Kummer surfaces defined over the prime fields
with p = 2127 — 1 and p = 2'2® — 34827. In the case of p = 2!%7 — 1, we use the
twist-secure curve found by Gaudry and Schost [34]. For the prime p = 2128 — 34827,
we used the CM method to generate a twist-secure genus 2 curve.

5.5.1. Kummer Surface over p = 2127 — 1.

Gaudry and Schost [34] label the curve as C11,—-22.—19,—3, since the squared fundamental
theta constants are (az, b2, 2, d2) = (11, —22, —19, —3). A corresponding degree 5
isomorphic Rosenhain model is given by the constants

1=28356863910078205288614550619314017618, 11=154040945529144206406682019582013187910,
v=113206060534360680770189432771018826227.

The group orders of J¢ = Je, . and Jor = Jcﬁos are given by 2*.r and 2.7/, respectively,
where

r=1809251394333065553414675955050290598923508843635941313077767297801179626051,
r’'=1809251394333065553571917326471206521441306174399683558571672623546356726339,
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which are 250- and 251-bit primes, respectively. The corresponding Kummer surface C
is parameterized by

E’'=37299146226279590906389874065895056737, F=145242473685766417331928186098925456110,
G=81667768061025231231209905783624370749, H=54058235547640725801037772083642107170.

Since the curve is twist-secure, we are free to choose any generator, for example the
generator

P=(Py: Py: P;: P)=[2](1: 1: 1:78525529738642755703105688163803666634)

has order r on K. The identity element is O = (a”: b*: ¢>: d*) € K.

5.5.2. Kummer Surface over p = 2128 — 34827.

For this prime, we found a twist-secure Kummer surface with CM by the quartic field
K =Q[x]/ (x*425x+1 55) which has class number 4 [43]. One choice of the Rosenhain
model is given by the constants

A=4577873896448729347807790734465324421,  11=234789861994364729479821884660190521407,
v=174333573523192164016359058694895260480.

The group orders of J¢ = Je,  and Jor = Jcﬁos are given by 2*-r and 2%/, respectively,
where

r=7237005577332262213873777499831869959603008537304907265194947995580039622121,
r'=7237005577332262214072595626254115559239653709785542361513021741721255316601,

which are 252- and 253-bit primes, respectively. One choice of the squared fundamentals
corresponding to the above Rosenhain triple is

a?=201243713144713214956272800789965999200, h2=14683676287690243626376147504319634360,
¢2=337904041799211257424383908244663970063, d*=1.

The corresponding Kummer surface K is parameterized by

E’=253880210280671006989033320516440357350, F=159016999959358912503454506705451672908,
G=7299826301158047577381442639475232907, = H=13793062916001283675618873430828756806.

A generator on K with order r that maps back to Je,  is P = (Py: Py: P,: P;) where

P.=1, Py=295122894880835761537997219301486683608,
»=116829357115721232420761146513526735912, P;=99251552912154476320478841520348830750.

The identity element O = (@*: b*: ¢*: d* e K.

5.6. Implementation Details and Side-channel Resistance

From Algorithm 7, it is clear that for every bit in the scalar, except the first one, the com-
bined double and pseudo-addition routine (Algorithm 6) is called. The main branch, i.e.,
checking if the bit is set (or not), can be converted into straight-line code by masking the
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in- and output appropriately. In this case, since no lookup tables are used, the algorithm
and runtime become independent of the input. The only input-dependent value is the
scalar n whose bit-size can differ, meaning that the total runtime could potentially leak
the value of the most significant bits. In order to make the implementation run in constant
time, either we can increase the scalar via addition of the subgroup order, or we can arti-
ficially increase the running time by computing on dummy values such that the compu-
tation of JC(DBLADD) occurs exactly [log, ()] — 1 times after calling X(DBL) once only.
We note that we incur a cost of 16m+9s-+32a each time X(DBLADD) is called, where
6 of the multiplications are by surface constants. For the curve over p = 2!27 — 1 found
by Gaudry and Schost (see §5.5), the 6 surface constants are yo = —1/2,z9 = —11/19,
to = —11/3, y) = =3, z5, = —33/17, and t; = —33/49, where it is immediately clear
that the multiplications by yo and y;, are less expensive than full I, multiplications. As
we mentioned in §5.1, the projective nature of /C allows us to simultaneously multiply
the coordinates of any point on /C by a constant factor. From Algorithm 6, we can see that
this also permits us to rescale either set of the surface constants, i.e., we are free to scale
those appearing on Line 14 (yo, zo and #) and/or those appearing on Lines 3 and 4 (y,), z,
and #() of Algorithm 6 by any nonzero factor in ,. To determine the best scaling of the
surface constants, we must first note that the expressions in (2) were already scaled so that
two original constants xq and x(/) both became 1 (and were thus omitted), meaning that
any scaling must be simultaneously applied to the four constants xg, yo, zo, and g or the
four constants x), ¥}, z(,, and #). As it stands, multiplications by zo = —11/19 and 1 =
—11/3 are treated as full multiplications in IF,, so suppose we clear the denominators
of this first set of constants to instead take (xo, yo, 20, f0) = (—114,57, 66, 418). In
this case, all four of the multiplications are now by “single-word” constants, which are
naturally faster than full F,, multiplications where both operands occupy two machine
words. In our implementations, however, we found that the code ran faster when the
constants were essentially left unchanged, save for the scaling of (xo, yo, 20, f0) =
{a,-1/2,-11/19, —11/3) to (xo, yo, z0, t0) = (2, —1, —22/19, —22/3), where the
multiplication by 2 is slightly faster than the division by 2. We optimized all of the
obvious combinations of scalings at the assembly level, such as clearing the smallest
denominator only, but this always destroyed one of the constants being 1, which was not
made up for by the benefit of reducing two-word constants into one-word constants.

6. GLV in Genus 2

The Gallant-Lambert—Vanstone (GLV) method [26] significantly speeds up scalar mul-
tiplication on algebraic curves that admit an efficiently computable endomorphism ¢ of
degree d > 1, by decomposing the scalar k into d “mini-scalars,” all of which have bit-
lengths that are approximately 1/d that of k. The d scalar multiplications corresponding
to each of these mini-scalars can then be computed as one multi-scalar multiplication of
length ~ log, (k)/d, which effectively reduces the number of required doublings by a
factor of d.

6.1. Endomorphisms

In general, algebraic curves over prime fields do not come equipped with a useful endo-
morphism ¢, which means that we have to use special curves to take advantage of the
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GLV method. For genus 1 elliptic curves, Gallant et al. suggested the curves y> = x> +b
and y?> = x3+ax, which both allow a two-dimensional decompositions over prime fields.
On the other hand, the genus 2 analogues of these curves, Buhler—Koblitz (BK) curves
of the form y2 = x> + b [16] and Furukawa—Kawazoe—Takahashi (FKT) curves of the
form y? = x° + ax [24], have ¢’s whose minimal polynomials are of degree 4, which
means that we can achieve four-dimensional scalar decompositions on genus 2 curves
over prime fields. We note that the Jacobians of FKT curves are not absolutely simple,
so BK curves are likely to be the preferred option in practice. Besides the two families
above that offer four-dimensional GLV decompositions, families of genus 2 curves with
RM facilitate two-dimensional scalar decompositions [33,44]. To give an idea of the
expected performance in such scenarios, we also present timings for a two-dimensional
GLYV decomposition on FKT curves. However, we note that the curves in [33] are likely to
be even faster, since they can be found over special prime fields (e.g., with p = 2127 —1).

6.1.1. Dimension-4 GLV on BK Curves

To achieve a four-dimensional GLV on curves of the form C : y?> = x> 4 b, we require
p =1 (mod 10), so that the non-trivial fifth roots of unity are in I ,. Buhler and Koblitz
showed how we can compute the group order of J¢ efficiently in this scenario [16] (also
see [24, §6]), and we note that Jacobians of these curves can have prime order. Take any
& # 1 suchthat 1 = 555 € I, and observe that if (x, y) € C, then (&sx, y) € C. This
induces an endomorphism ¢ on the Jacobian that is defined on full degree elements as
¢ : (uy, ug, vy, vo) — (&suy, észuo, ég‘vl, Vo), which costs only 3 multiplications in IF,
because the & are all precomputed. The minimal polynomial of ¢ is 7% + T3 + T2 +
T+1=0.

6.1.2. Dimension-4 GLV on FKT Curves

Curves of the form C : y> = x> 4 ax need to be defined over fields of characteristic
p = 1 (mod 8), so that the eighth roots of unity are all found in IF,. Computing the
cardinality of J¢ in this scenario is also efficient [24]. Since the point (x, y) = (0,0) € C
induces a point of order 2 on J¢, the best we can do is to find a curve whose Jacobian
is of order two times a prime. Let £ # 1 be a primitive eighth root of unity in FF,, and
observe that if (x, y) € C, then (Egzx, &3y). The induced endomorphism on full degree
Jacobian elements is ¢ : (uy, ug, vi, vg) (Eszul,éguo, ng, &svp), which costs 4
multiplications in IF, and which satisfies the minimal polynomial T4 +1=0.

6.1.3. Dimension-2 GLV on FKT Curves

The reason we chose FKT curves for the two-dimensional example is because we can take
the endomorphism (]52 : (uy, ug, vy, Vo) > (Egul, ug, $86v1, ggvo), which has minimal
polynomial 7241 = 0. For the Buhler—Koblitz curves, we can still get a two-dimensional
decomposition by defining ¢ : (x, y) > ((§5+&5 1)x, y) on C and extending Z-linearly
under the canonical embedding of C in J¢. In this case, ¢ satisfies the minimal polynomial
T?>4+T —1in Je.
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6.2. Curves

We searched for BK and FKT curves over prime fields I, for 127-bit primes that are
suited to Montgomery style reduction and for 128-bit primes that are suited to the NIST-
style modular reduction. There are only a few isomorphism classes for both types of
curves over any particular prime field, so we had to search numerous primes before
we found cryptographically suitable curves. Since the definitions of both prime forms
encompass a vast number of primes, we were able to find a field (in both cases) that
simultaneously gave a prime order BK and an FKT curve with an optimal cofactor of 2.

6.2.1. GLV Curves over a 127-bit Prime Field

Let pio7n = (293 — 27443) - 2% 4 1. This is a Montgomery-friendly prime (see §3.2)
where u = —p1_217m mod 2 = —1. The Jacobians of the curves Cpk /F ., : > =
x% + 17 and Cxr/F p,yy,, ¢ ¥° = x° + 17x have orders #Jc,, = r and #Jope, =2 -1/,
where

r=28948022309328876595115567994214488524823328209723866335483563634241778912751,
r'=14474011154664438299023932553432254007696198466166455661883334092795880233441

are 254- and 253-bit primes, respectively.

6.2.2. GLV Curves over a 128-bit Prime Field

Let piogs = 2128 —24935. The Jacobians of the curves Cpk /F g, : ¥> = x> +37 and
CerT/Fp o, : y2 = x3 + 37x have orders #Joy = r and #Jc. . = 2 - 1/, respectively,
where

r=115792089237316195401210495125503591471546519982099914586091636775415022457661,
r'=57896044618658097706542424143127279595817201688638085882569066869306899160801.

are 256- and 255-bit primes, respectively.

6.3. Scalar Decomposition via Division

At Eurocrypt 2002, Park, Jeong and Lim [58] gave an algorithm for performing GLV
decomposition via division in the ring Z[¢] generated by ¢. This algorithm is very simple
and effective in decomposing the scalar k quickly: In the four-dimensional cases (BK and
FKT), it takes 20 multiplications to fully decompose k, and in the two-dimensional case,
the decomposition totals just 6 multiplications. For the curves we used, this algorithm
performed slightly better on average than the (conservative) numbers quoted in [58,
Table 4]. Table 1 gives the statistics from 1, 000, 000 decompositions of random scalars
in [0, r) in each scenario. Each of the columns report the percentage frequency at which
k decomposed into vectors with the given maximal bit length. For example, consider the
third row which reports the statistics corresponding to four-dimensional decompositions
on Buhler-Koblitz curves with r being 254 bits. The third column indicates that around
21% of scalars decomposed to 4 mini-scalars where the maximum bit length was 64,
while the fourth column reports that around 59% of scalars decomposed to 4 mini-scalars
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Table 1. Statistics for 1,000,000 scalar decompositions in each of the GLV scenarios .

Curve/prime-GLV  r (bits) max{|kg|} (bits) / freq. (%)
dimension

CrRT/Fpiymm-2 253 126 5005 125 37.39 124 9.40 123 238 122 058 <121 0.20
CEkT/Fpg,-2 255 127 5008 126 37.47 125 935 124 233 123 058 <122 0.20
CBK/Fpiym -4 254 64 2104 63 5924 62 1818 61 1446 60 009 <59 0.0
CEKT/Fpiymm-4 253 63 100 62 6029 61 3561 60 292 59 0.8 <58 0.0l
CBK/Fppg, -4 256 65 000 64 37.59 63 5616 62 585 61 037 <60 0.03
CEKT/Fppag, -4 255 64 2338 63 6426 62 1160 61 072 60 004 <59 0.00

Each row reports a different scenario and the columns across a row show the percentage frequency correspond-
ing to decompositions with a maximum “mini-scalar” length. The final column accounts for all decompositions
whose maximum “mini-scalar” length were below a particular bound

{ki1, ko, k3, k4} where the maximum bit length was 63. The most common maximum
length and its percentage frequency are shown in bold for each scenario.

6.4. Computing the Scalar Multiplication

We describe two approaches to implement the scalar multiplication. The d-dimensional
decomposition of the scalar k results in d smaller scalars k;, for 0 < £ < d. The

first approach precomputes the 2¢ different points L; = g;(; (U—[J mod 2) - Py for

0 < i < 29 and stores them in a lookup table. When processing the j" bit of the
scalar, the precomputed multiple L; is added, fori = Zg;é 2t (le‘—fJ mod 2). Hence,
besides the minor bit-fiddling overhead to construct the lookup table index, this requires
computing at most a single curve addition and a single curve doubling per bit of the
maximum of the k;’s. The second approach [25] is very similar to using signed windows
for a single scalar (see §2.3). We start by precomputing the multiples Ly(c) = [c]Py
for d different tables: one corresponding to each scalar k,. When computing the scalar

multiplication, the j part (of width w bits) in the scalar k; determines which point needs

to be added (or subtracted), namely Z‘g;é +Ly (L%J mod 2% ), where the addition
or subtraction depends on the addition—subtraction chain used. Thus, an addition to the
running value has to be made only once every w bits and combining the lookup table
values takes at most d — 1 additions, so one needs at most d additions per w bits. The
optimal value for w depends on the dimension d, the bit-size of k;, and the cost of
(mixed) additions and doublings. There are multiple ways to save computations in this
latter approach. After computing the multiples in the first lookup table L, the values
for the d — 1 other tables can be computed by applying the map ¢ to the individual
point in the lookup table [25]. Since the computation of the map ¢ only takes three or
four multiplications (depending on the curve used), this is a significant saving compared
to computing the group operation which is an order of magnitude slower. Furthermore,
since the endomorphism costs the same in affine or projective space, one can convert the
points in L to affine coordinates using Montgomery’s simultaneous inversion method
see §2.3) and obtain all of the affine points in the other lookup tables very efficiently
through the application of ¢. This means the faster mixed addition formulas can be
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Table 2. Performance timings in 103 cycles of various programs calculating a [log, ()]-bit scalar multipli-
cation, using genus g arithmetic .

Primitive g CT field char p [logy (r)] #Aut s 103 cycles
curve25519 [4,8] 1 v 2255 _ 19 253 2 125.8 182
ecfp256e [37] 1 X 2256 _ 587 255 2 1268 227
2-GLV [48] 1 X 2256 _ 11733 256 6 127.0 145
surf127eps [35] 2 v/ 2127 _ 735 251 2 1248 236
NISTp-224[39,69] 1 2224 2% 11 224 2 1118 302
NISTp-256 [69] 1 2 ) 256 2 127.8 658
(a) generic127 2 X 2127 254 2 1268 295
(b) generic127 2 X 2127 _ 254 2 126.8 248
(b) generic128 2 X 2128 _ 173 257 2 1278 364
(a) Kummer 2 v 2127 251 2 124.8 139
(b) Kummer 2 v 2127 251 2 124.8 122
(b) Kummer 2 v 2128 _ 937 253 2 125.8 174
(a) GLV-4-BK 2 X P2 254 10 125.7 156
(a) GLV-4-FKT 2 X ' 253 8 1253 156
(a) GLV-2-FKT 2 X 2 253 8 1253 220
(b) GLV-4-BK 2 X 2128 _ 24935 256 10 126.7 164
(b) GLV-4-FKT 2 X 2128 _ 24935 255 8 126.3 167
(b) GLV-2-FKT 2 X 2128 _ 24935 255 8 126.3 261

The curve characteristics, such as the prime p, the cardinality r, the size of the automorphism group #Aut,
and the security level s = log, (,/ sgag;)» are stated as well. Here, p; = 2256 _ 2224 4 9192 4 996 4 1 apg

pp =204 (293 —27443) + 1. If an implementation runs in constant time (CT), we indicate this with “v/,” if
not with “X.” and if unknown with “?”

applied when adding any element in a lookup table. In our implementations, the first
approach is faster in the four-dimensional case and the second approach is faster in the
two-dimensional case.

7. Results and Discussion

In §7.1, we discuss our code and the benchmarking environment we used. We present
the main results in §7.2 and discuss them further in §7.3. In §7.4, we report timings in the
case of key-pair generation, i.e., when a fixed public generator allows for precomputation
before the scalar is known.

7.1. Benchmark Setting and Code

All of the implementations in Table 2 were run on an Intel Core i7-3520M (Ivy Bridge)
processor at 2893.484 MHz with hyperthreading turned off and over-clocking (“turbo
boost”) disabled. The implementations labeled (a) use the Montgomery-friendly primes.
They have been compiled using Microsoft Visual Studio 2012 and run on 64-bit Win-
dows, where the timings are obtained using the time stamp counter instruction rdtsc
over several thousand scalar multiplications. The implementations labeled (b) use the
NIST-like approach and have been compiled with gcc 4.6.3 to run on 64-bit Linux,
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where the timings are obtained using the SUPERCOP toolkit for measuring the per-
formance of cryptographic software (see [10]). The implementations labeled (b) are
publicly available through [10] 4. Both (a) and (b) perform a final modular inversion to
ensure that the output point is in affine form: This is the standard setting when computing
a Diffie-Hellman key exchange.

7.2. Results

Table 2 summarizes the performance and characteristics of various genus g curve
implementations. For the security estimate, we assume that the fastest attacks possi-
ble are the “generic algorithms,” where we specifically use the complexity of the Pollard
rho [60] algorithm that exploits additional automorphisms [21,73]. If r is the largest
prime factor of a group with #Aut automorphisms, we compute the security level s as

s = logy( %)5. We also indicate whether the implementation runs in constant time,

an important step toward achieving side-channel resistance [42].

The implementations in the top part of the table are obtained from eBACS, except
for [69] and [48]. The standardized NIST curves [69], one of which is at a lower secu-
rity level, are both obtained from the benchmark program included in OpenSSL 1.0.1.%
The implementation from [48] is not publicly available, but the authors gave us a pre-
compiled binary which reported its own cycle count so that we could report numbers
obtained in our test environment. All of these implementations were run on our hard-
ware.

7.3. Discussion

The first thing to observe from Table 2 is that the standard NISTp-256 curve and the
genus 2 curve “generic128” (see Sect. 4) offer the highest level of security. This “generic”
genus 2 implementation is our slowest performing implementation, yet is it still 1.80
times faster than the NIST curve at the same security level. Interestingly, all our Kum-
mer and four-dimensional GLV implementations manage to outperform the previous
fastest genus 2 implementation [35]. Prior to this work, the fastest curve arithmetic
reported on eBACS was due to Bernstein [4], while Longa and Sica [48] held the over-
all software speed record over prime fields. We note that the former implementation
runs in constant time, while the latter does not. Even though our GLV implemen-
tations do not currently run in constant time, we note that they can be transformed
into constant time implementations following, for instance, the techniques from [48].
Our approach (b) on the Kummer surface sets a new software speed record by break-

4 The EBAT is available through http://hhisil.yasar.edu.tr/files/hisil20140312genus?2.tar.gz, and a set of
Magma files implementing scalar multiplications on Jacobians of genus 2 curves or on the associated Kum-
mer surface are available through http://research.microsoft.com/en-us/downloads/ecd909b7-40af-4fd2-a215-
b681e22d7084.

5 Recent work [12] shows that when #Aut > 2, our estimates for the security level are slightly pessimistic.

6 Note that to enable this implementation using the techniques described in [39], OpenSSL needs to be
configured using “./Configure enable-ec_nistp_64_gcc_128.”


http://hhisil.yasar.edu.tr/files/hisil20140312genus2.tar.gz
http://research.microsoft.com/en-us/downloads/ecd909b7-40af-4fd2-a215-b681e22d7084
http://research.microsoft.com/en-us/downloads/ecd909b7-40af-4fd2-a215-b681e22d7084
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ing the 125k cycle barrier for constant time implementations at the 128-bit security
level.

We note that Table 2 reports implementations over prime fields only. For elliptic curves
defined over quadratic extensions of large prime fields, Longa and Sica [48] report a non-
constant time scalar multiplication in 91,000 cycles on the Sandy Bridge architecture,
while their constant time version runs in 137,000 cycles. Over binary fields, Aranha et
al. [3] perform a scalar multiplication on the Koblitz curve K-283 in 99,000 cycles on
Sandy Bridge, while Oliveira et al. [57] recently announced a new speed record of 75,000
cycles on the same architecture. We note that both of these binary field implementations
do not run in constant time.

With respect to the different arithmetic approaches from Sect. 3, we conclude that
when using the prime 2!?7 — 1, the NIST-like approach is the way to go. In the more
general comparison of 2128 —¢; versus 264 (263 —¢,) £ 1 for NIST-like and Montgomery-
friendly primes, respectively, we found that the Montgomery-friendly primes outperform
the former in practice. This was a surprising outcome and we hope that implementers of
cryptographic schemes will consider this family of primes as well. The implementations
(b) of “generic” and Kummer surface arithmetic highlight the practical advantage of the
prime 2'?7 — 1 over the prime 2!2® — ¢;: In both instances, the former is around 1.4
times faster than the latter.

7.4. Generating Key Pairs With Precomputation

Two cycle counts are reported for all of the implementations of Diffie-Hellman secret
sharing benchmarked on eBACS [10]. The first is the “time to compute a shared secret,”
which corresponds to the variable point scalar multiplications that we reported in Table 2.
The second is the “time to generate a key pair," which corresponds to fixed-point scalar
multiplications that allow precomputations on a known public generator. Our timings
for the second case are reported in Table 3, where our fixed-point scalar multiplications
employ the fixed-point comb method [47] and simultaneous addition technique [46].
In both settings, precomputed tables larger than 512 KB did not lower the cycle count.
This is due to the size of the cache on our Intel Core 17, but this threshold size might be
different on other platforms. We note that this technique (and the performance numbers
in Table 3) only applies to the generic and GLV curves and that precomputation will not
give rise to such drastic speedups in the case of the Kummer surface implementations.

Table 3. Performance timings in 103 cycles of y2 = f(x),deg(f) = 5 with NIST-like reduction and pre-
computation.

Field char Storage (KB) 103 cycles Field char Storage (KB) 103 cycles
2127 64 53 2128 ¢ 64 81

128 42 128 62

256 36 256 53

512 33 512 49

1024 33 1024 49

2048 33 2048 49
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8. Kummer Chameleons

In this section, we explore curves that facilitate both efficient scalar multiplications on
the Kummer surface and efficient scalar multiplications on the Jacobian using a GLV
decomposition. Such curves give cryptographers the option of taking either route depend-
ing on the protocol at hand: For Diffie-Hellman protocols, working on the associated
Kummer surface is the most efficient option, but if the pseudo-addition law on the Kum-
mer surface is insufficient, the GLV method can be used on an associated curve. Since
these curves can morph depending on the scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate four-dimensional GLV decompo-
sitions. We start with the FKT family of curves to show an unfortunate drawback which
prohibits us from using this Kummer/GLV duality over prime fields. We then move to
the BK family of curves which does allow this duality in practice and provide some
example Kummer chameleons in this case. For these special families, we also show the
benefits of computing the Kummer surface parameters analytically (i.e., over C). This
approach tells us when we can (or cannot) expect to find practical Kummer parameters
using the technique of extracting IC from Cres in §5.2. It can additionally reveal when
we are likely to find small surface constants, which guarantees solid speedups in prac-
tice. For an overview of computations involving the analytic Jacobian of a hyperelliptic
curve, we refer to [71].

8.1. Recognizing Kummer Parameters over C

We use an analytic approach to assist us in generating Kummer surfaces which are
associated with a particular CM field. For each CM field, there is a collection of period
matrices which correspond to the isomorphism classes of Jacobians of genus 2 curves
with CM by that field, and thus with known possible group orders (see [71]). The theta
functions can be evaluated at these period matrices, and approximations of the complex
values of the associated theta constants can be used to recognize the minimal polynomials
that they satisfy.

Although it can be difficult to analytically recognize the theta constants themselves,
for special families it is often possible to recognize quotients of certain theta constants.
In Tables 4 and 6, we give the minimal polynomials satisfied by all of the parameters
required for the Kummer surface implementation for the FKT and BK families: The
values E', F, G, H, yo, 20, to, y(/), 16 and t(/) (as defined in Sect. 5). The coefficients of
these minimal polynomials can be reduced modulo any prime p, and so for any p for
which the polynomials have a consistent choice of roots modulo p, they can be used to
define a Kummer surface over IF, such that the associated group order of J¢ is known
(from the CM field).

8.2. The Kummer Surface of FKT Curves

For curves of the form y? = x> + ax, the complex values (and corresponding minimal
polynomials) of the required Kummer parameters are given in Table 4. We note that
once we choose i = +/—1 by sufficiently extending F p (if necessary), all of the required
constants are determined. Observe that two of the six surface constants that appear in
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Table 4. Kummer parameters (and their minimal polynomials) over C for the FKT family.

K param. E F,G,H Yo, 0 20 Yo 1o 20

Valuee C 17 +31i B+1i)/2 1 1—i 344 —3—4i
Min. poly. xZ—34x+1250 2x2—6x+5 x—1 x2—2x+2 x2—6x+25 xZ4+6x+25

Table S. Quotients appearing in the maps from K to the u-polynomial of D € J¢p, - for FKT curves.

uy /g uy/ur  ugfup  ul/uj H;/u; ul fuy dy/dy  dy/d; d;/dy  ui/dy  uj/dy

i1 i—1 1—i
! 1 2i ST B | i !
2 2 2

—1—i

each iteration of (SMUL) (of Algorithm 6) are 1, which immediately results in two
fewer multiplications.

We further note that it is possible to recognize quotients of theta constants that appear
in the maps from K to Jeg . in (4). In the case of FKT curves, Table 5 gives the values
of all the quotients we need, which allows us to simplify the expressions in the map

to the u-polynomial of a divisor D € Jgg,. as up = (i__zf))f__leiéfi;féﬁﬁitv
(2+2i)x—2y—2z+(1—i)t

(—Dr—@r2nyt2eia U0~ 1. Alth(?ugh the expressions for tbe y-po%ynorpial (?xpand to

be more complicated, leaving them in factored form allows similar simplifications. The

above maps take points on the Kummer surface points on X to points in Jg . or Jclr2 ,
0s

U =

where Crog : y2 =x(x—1D)(x—A)(x —w)(x —v), and for which we can also recognize
the Rosenhain invariants in C as A = (i + 1)/2, u = i and v = i + 1. Now, to reduce
these values modulo p, we note that if p = 1 (mod 4), then i = v/—1 € F,, and the
Rosenhain model defined by those values is defined over IF,. The curve C : y? = x4ax
can be rewritten as y2 =x(x—a)(x+a)(x —ai)(x +ai), where « is a non-trivial fourth
root of —a. Clearly C and Cros can only be isomorphic over IF, if @ € IF,, which implies
that Je is isogenous over I, to the product of two elliptic curves [24, Lemma 4]. Thus,
C is not suitable for cryptographic applications in this case, since the group order of J¢
is a product of factors of at most half the size of the total. If instead p = 3 (mod 4),
theni € F 2 \F, and from Table 4, it follows that the Kummer surface K is defined over
IF 2, which destroys the arithmetic efficiency of the group law algorithms. Therefore,
we conclude that the FKT family does not yield a secure and efficient (Gaudry-style)
Kummer surface over prime fields.

8.3. The Kummer Surface of BK Curves

For curves of the form y? = x> 4 b, the minimal polynomials for the required Kummer
parameters are given in Table 6. Since these polynomials have degree larger than two,
writing down the correct root corresponding to each Kummer parameter becomes more
involved. Furthermore, these polynomials tell us that we cannot expect any Kummer
constants to automatically be small. Nevertheless, they do help us deduce when it is
possible to find practical Kummer parameters. For example, # is a root of ds(—x2),
which does not have any rootsin I, when p = 11 (mod 20), yet splits into linear factors
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Table 6. Kummer parameters (and their minimal polynomials) over C for the Buhler—Koblitz family.

Kummer parameter Minimal polynomial

E.F x2 —20x — 400, x8 — 11x0 + 46x* — 96x2 + 121

G, H X8 — 1120 4+ 46x* —96x2 + 121, %2 4+ x — 1

Y05 20 ol x L — b ext +x2 41

10, ¥g X8 —x0 4 xt —xZ 1, x% — 16x3 +46x2 — 16x + 1

240 1 25x8 — 100x7 + 460x° + 580x + 286x% + 36x% — 4x? —dx + 1

when p =1 (mod 20). In fact, all of the polynomials in Table 6 split into linear factors
inF, for p = 1 (mod 20); this agrees with our experiments which always extracted
working Kummer parameters for BK curves when p = 1 (mod 20) and always failed
to do so when p = 11 (mod 20).

The only minor drawback for the Kummer surface associated with the BK family is
that, for primes congruent to 1 modulo 5, if the 2-torsion of J¢ or J¢ is defined over
IF),, then 5 divides at least one of the two group orders. Hence, even in the best case the
two group orders have cofactors of 16 and 80, which means either the curve or its twist
will be around 1 bit less secure than the other. In this case, generators on the Kummer
surface should be chosen which map back to the curve with cofactor 16. We give two
examples of these Kummer chameleons below.

8.3.1. BK Kummer Chameleon over a 127-bit Prime Field

Let p = 264 . (2% — 1035383) + 1, and let C/F): y? = x7 + 7°, the quadratic twist C’
of which can be written as C’ : y> = 7(x> 4 7°). The group orders are #Jo = 2% - r and
#Jo =2%.5.r, where

r=1809251394332659353210044721779965716777199535768060758956615770711891100371,
r'=361850278866531870644657474375793908062332565172509431488359127778261331091,

are 250- and 248-bit primes, respectively. A degree 5 Rosenhain model Cros isomorphic
to C is given by the constants

A=10661186819665911293108276192639592333, 1=41446607883878104474654728233964584014,
v=127213099918419761245342755241553487702,

for which one choice of the squared fundamental theta constants is

a?=84491026685045794598730782355659170339, h>=33186841131699432035082366865570982234,
c2=85766492034541656770688027007588903688, d>=1.

The corresponding Kummer surface K is parameterized by

E’'=13918006086331812549080199159745305770, F=18762584066480003760134595205485259983,
G=137599581973583773482954213814600348679, H=85766492034541656770688027007588903688.
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A generator on K with order r that maps back to Jeg . is
P=[2](1,1,1,86011366689699880330600293725419043935).

8.3.2. BK Kummer Chameleon over a 128-bit Prime Field

Let p = 2'% — 12091815, and let C/F,, : y?> = x> + 17°, the quadratic twist C’ of
which can be written as C’ : y> = 17(x> 4 17°). The group orders are #J¢ = 2* - r and
#Jo =2%.5. 1, where

r=7237005577332262215080031836658877787354274212851606663878680202836635096291
r’'=1447401115466452442573268257885216407322324444568217420589854251119792109811,

are 253- and 250-bit primes, respectively. A degree 5 Rosenhain model Crog isomorphic
to C is given by the constants

A=69750747073243793503741945404989703593, u=150179622307743074988869416441414313355,
v=227997816177602308074873451087733623676,

for which one choice of the squared fundamental theta constants is

a%>=311378520185987879249636451466710084857, b*>=194692299483499628396825108659644530161,
c2=77818193869859233086004034646319310321, d>=1.

The corresponding Kummer surface K is parameterized by

E’'=195234409713430807866582263199361727876, F=142475655262409749610168226227930172175,
G=25789434559921498757356883420864617479, H=T77818193869859233086004034646319310321.

A generator on K with order r that maps back to Jg,  is

P=[2](1,1,—1,330547215562037048968388688956419952626).

8.4. Kummer Chameleons with Two-dimensional GLV

Although we have focused on two families of genus 2 curves that offer four-dimensional
GLV over prime fields, there are many more families that offer two-dimensional GLV [33,
44,67]. We especially mention the families studied in [33, §4.3-4.4], which might be
particularly attractive since the techniques in [33] make it practical to find twist-secure
instances over IF,, with p = 2127 _ 1.

8.5. GLV on the Kummer Surface?

Gaudry [30] observed that there is a certain class of Kummer surfaces that come equipped
with a simple endomorphism on the Kummer surface itself. If the squared fundamental
theta constants are related by b*> = a> — ¢*> — d?, then the doubling step in Algorithm 5
can be seen as a map ¢ : K — K composed with itself, which means ¢> = [2], and
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we must have that ¢ = [+/2] on K. It is natural to go looking for these Kummers
within families of genus 2 curves that have RM by /2, whether the RM is explicit and
efficiently computable’ on the Jacobian or not. One such instance comes from the curves
defined over the rationals by van Wamelen [70], the second example of which has CM
by the quartic CM field Q(v/ —2 + V/2). Over the two forms of prime field we prefer,
we used the CM method to find many instances of these curves, and indeed we were
always able to extract several Kummer parameterizations with b> = a® — ¢? — d?: Two
twist-secure examples of these are given at the end of this subsection. The question
now becomes: can we exploit this endomorphism and perform GLV on the Kummer
surface itself?

Since we are limited to pseudo-additions on /C, the standard GLV technique of merging
the mini-scalars and proceeding with a standard addition chain does not apply in this
scenario. In this case, to compute [k]P from P and ¢ (P), we need a two-dimensional
differential-addition chain. Such chains have already been well studied because of their
application to multi-exponentiations in Montgomery coordinates [5,53,66]: In the two-
dimensional case, this means computing [m] P + [n]Q from the three starting values P,
0, and P — Q. This brings forward the main hurdle in achieving GLV on the Kummer
surface, in that after computing Q = ¢ (P), we only have two of the three values that are
needed to start the addition chain. In order to proceed we need either Q + P or Q — P
on IC, which equivalently means we need an explicit and efficient way of computing the
map ¢t = ¢ + [1]orthemap ¢~ = ¢ — [1] on K.

In estimating the performance gain that finding these maps would offer, we must
mention two caveats. Firstly, we note that since the input difference into the pseudo-
addition algorithm is no longer constant throughout the routine, we suffer an extra
6 IF,, multiplications each time it is called—the inverses that were precomputed are
now projectively scaled to on-the-fly multiplications. Furthermore, we are no longer
performing additions and doublings concurrently throughout, and we therefore lose the
benefit of the constant overlap between them. Nevertheless, using either of the chains
given in [5,53] would mean performing less than half the total number of doubling and
pseudo-addition operations than in the standard Kummer case, and this is more than
enough motivation to pose the problem of finding a setting where ¢+ and/or ¢~ are
efficiently computable.

8.5.1. Van Wamelen “[\/z]-on-IC” Curve over a 127-bit Prime Field.

Let p be the Montgomery-friendly prime p = 2% . (293 — 107125) + 1. The group
orders of the Jacobian of C/FF, : y2 = —x +3x* 4+ 2x3 — 6x% — 3x + 1 and its twist
C’ are given as #Jo =27 - r and #Jo = 2% - ¥/, where

r=904625697166511763040116799547618814004487139266761754879956154884593483799,
' =1809251394333023526590934270642281340029094439228748499659037824507445397703,

are 249- and 250-bit primes, respectively. An isomorphic Rosenhain model Cres of C is
defined by the triple

7 These terms are made precise in [33, Def. 1,2].



56 J. W. Bos et al.

A=168171229223321177769186812485517969948, 11=9417430203573952280833540215738464957,
v=158753799019747225488353272269779504992,

for which one choice of the squared fundamental theta constants is

a?=150321345934746312135040529601365675926, ¢>=96985692613693010230188339033665775936,

with d®> = 1 and b?> = a®> — ¢ — d?. The corresponding Kummer surface K is parame-
terized by

E'=16, F=112722080887356168648583571057476016874,
G=39639675051441886978375755957603131604, H=133526895531650151065292246583602218570.

A compact generator on K is
P=[2](1,1,—1,129889658466772916887665811107285236509).

8.5.2. Van Wamelen “[~/2]-on-K” Curve over a 128-bit Prime Field.

Let p be the prime p = 2!2 — 6404735. The group orders of the Jacobian of C JFp
y? = —x +3x* + 2x3 — 6x% — 3x + 1 and its twist C’ are given as #Jo = 2° - r and
#Jo = 2% ./, where

r=3618502788666131107463347962322673561312709571881084013989949351691450367367,
r'=7237005577332262213019677201440096504580481109273330370637841367829704337687,

are both 252-bit primes. An isomorphic Rosenhain model Cros of C is defined by the
triple

A=338853613323961976541294628448051393997, 1=161826994076915014352261046382941880808,
v=177026619247046962189033582065109513190,

for which one choice of the squared fundamental theta constants is

a?=186055185429089423029499828889903742105, ¢2=293311051702477990348906969535446463740,

with d®> = 1 and b?> = a®> — ¢ — d?. The corresponding Kummer surface K is parame-
terized by

E'=16, F=308566990761521795503609453351512063008,
G=308454362983698080867749557083716129230, H=2933673655913898476668369176693444300628.

A compact generator on £ is

P=[2](1,1,—1,328931498180381025899390285257510062396).
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9. Conclusions

We have given a taxonomy of the state of the art in genus 2 arithmetic over prime fields,
with respect to its application in public-key cryptography. We studied two different
approaches to achieve fast modular arithmetic and implemented these techniques in
three settings: on “generic” genus 2 curves, on special genus 2 curves facilitating two-
and four-dimensional GLV decompositions, and on the Kummer surface proposed by
Gaudry [29]. Furthermore, we presented Kummer chameleons; curves which allow fast
arithmetic on the Kummer surface as well as efficient arithmetic on the Jacobian that
results from a GLV decomposition. Ultimately, we highlighted the practical benefits of
genus 2 curves with our Kummer surface implementation—this sets a new software speed
record at the 128-bit security level for computing constant time scalar multiplications
compared to all previous elliptic curve and genus 2 implementations.
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We make note of several works that have appeared since this paper was submitted. The
follow-up work in [7] pointed out that our online Kummer implementation contained a
mistake which might leak secret information to side-channel adversaries. We updated
the code accordingly(http://hhisil.yasar.edu.tr/files/hisil20140312genus?2.tar.gz) and the
subsequent performance numbers are stated in Table 2. We would like to thank the
authors for finding this mistake. In addition, the authors of [7] tailored the use of vector
instructions to give a solid boost to the performance of the Kummer surface routine
described in Sect. 5, and subsequently, their accompanying implementation currently
offers the fastest constant-time scalar multiplications over large prime fields. Finally, the
overall Diffie-Hellman speed record at the 128-bit security level was recently claimed by
Aranha et al. [56], who use a binary field elliptic curve equipped with an endomorphism
to achieve highly efficient, constant-time scalar multiplications in around 60,000 clock
cycles on the Haswell architecture.
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