
DOI: 10.1007/s00145-014-9189-6
J Cryptol (2016) 29:61–114

How to Build an Ideal Cipher: The Indifferentiability
of the Feistel Construction∗

Jean-Sébastien Coron
University of Luxembourg, Luxembourg, Luxembourg

jean-sebastien.coron@uni.lu

Thomas Holenstein · Robin Künzler
Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

thomas.holenstein@inf.ethz.ch, robink@inf.ethz.ch

Jacques Patarin
University of Versailles-Saint-Quentin, Versailles, France

jacques.patarin@uvsq.fr

Yannick Seurin
ANSSI, Paris, France

yannick.seurin@m4x.org

Stefano Tessaro
Department of Computer Science, University of California,

Santa Barbara, Santa Barbara, CA, USA
tessaro@cs.ucsb.edu

Communicated by Phillip Rogaway.

Received 23 March 2012
Online publication 1 November 2014

Abstract. This paper provides the first provably secure construction of an invertible
random permutation (and of an ideal cipher) from a public random function that can be
evaluated by all parties in the system, including the adversary. The associated security
goal was formalized via the notion of indifferentiability by Maurer et al. (TCC 2004).
The problem is the natural extension of that of building (invertible) randompermutations
from (private) random functions, first solved by Luby and Rackoff (SIAM J Comput
17(2):373–386, 1988) via the four-round Feistel construction. As our main result, we
prove that the Feistel construction with fourteen rounds is indifferentiable from an
invertible random permutation. We also provide a new lower bound showing that five
rounds are not sufficient to achieve indifferentiability. A major corollary of our result
is the equivalence (in a well-defined sense) of the random oracle model and the ideal
cipher model.

∗ The results of this paper were presented in [19] and [29].

© International Association for Cryptologic Research 2014

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9189-6&domain=pdf

62 J.-S. Coron et al.

Keywords. Random oracle model, Ideal cipher model, Feistel construction,
Indifferentiability.

1. Introduction

1.1. Random Oracles, Random Permutations, and Ideal Ciphers

Hash-functions and block-ciphers are the fundamental building blocks of practical cryp-
tography. A multitude of practical designs for these primitives have been developed
and standardized over the years, and commodity algorithms like the SHA hash-function
family and the Advanced Encryption Standard (AES) find nowadays ubiquitous usage.
Following a well-established approach, we seek to rigorously prove security of applica-
tions using these primitives in the so-called standard model, i.e., via a reduction from
a well-defined security assumption such as collision resistance of hash-functions or
block-cipher pseudorandomness.
Unfortunately, this is not always possible:Manywidely in-use cryptographic schemes

elude standard-model security proofs under non-trivial assumptions, despite a lack of
attacks threatening their security. In these cases, we often settle with proving security in
an ideal modelwhere invocations of the underlying primitive by the scheme are replaced
by calls to a randomized oracle representing an idealized version of the primitive. This
oracle is accessible by all parties, including the adversary. It is well known [6,17,39] that
such proofs deliver solely a heuristic argument. Nevertheless, these security statements
enjoy a natural interpretation in terms of lack of generic structural weaknesses of the
scheme at hand, hence raising hope for secure instantiation via algorithms like SHA-3
and AES.
More concretely, following an approach formalized by Bellare and Rogaway [9] (but

used even earlier by Fiat and Shamir [28]), a hash-function is idealized as a randomized
function R called a random oraclemapping arbitrary bit strings to independent random
n-bit digests. Work on the random oracle model (ROM) encompasses by now thousands
of papers. Many widely employed practical schemes, including OAEP [10], FDH [9],
PSS [11], as well as truly efficient pairing-based cryptography [3,7], only enjoy security
proofs in the ROM.
A corresponding ideal model for block ciphers dates back to Shannon’s work [46].

An ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n associates each κ-bit key k with
an independent randomly chosen permutation Ek on the n-bit strings and allows for
both forward queries E(k, x) = Ek(x) and backward queries E−1(k, y) = E−1

k (y)
for all k, x, y. Again, application examples of the ideal cipher abound, and we only
mention a few. They range from analyses of block-cipher-based hash-function con-
structions (e.g., in [14]), small-domain encryption [12], authenticated key agreement
protocols [8], and block-cipher key extension [13,30], to studying generic related-key
attacks [4]. If κ = 0, we call the ideal cipher a random permutation, and simply denote it
by P : {0, 1}n → {0, 1}n . The random permutation model has been used in the analysis
of hash [2,26,40,41] and block-cipher constructions [5,18,21,27,33].

Build an Ideal Cipher 63

1.2. Building Ideal Primitives and Indifferentiability

It is natural to ask whether one ideal primitive (and hence model) is stronger or weaker
than another one. At first, an ideal cipher seems to provide a stronger structure and
functionality than a randomoracle, as first pointed out in [8]. But, most results in the ICM
ended up having a ROM counterpart, indicating that this may not be true. Conversely,
how to provide a provably sound instantiation of a random oracle using an ideal cipher
is also not immediately clear. In summary, the following two questions appear natural:

Question 1. Can we find an efficient construction C1 invoking a random
oracle R such that CR

1 is “as good as” an ideal cipher E, meaning that any
secure application using E remains secure when using CR

1 instead?

Question 2. Conversely to Question 1, is there C2 such that CE
2 is “as good

as” a random oracle R?

While thefirst questionwas already asked informally in [8], formalizing theproper notion
of being “as good as” has proved itself a difficult task. For instance, indistinguishability
of CR

1 and E is necessary but not sufficient, as the adversary can exploit access to the
underlying primitive R. For this reason, Maurer et al. [39] put forward the notion of
indifferentiability: The system CR

1 is indifferentiable from E if there exists a simulator1

S accessing E such that (CR
1 ,R) and (E,SE) are indistinguishable. The definition ofCE

2
being indifferentiable fromR is analogous, and the notion in fact generalizes to arbitrary
primitives.
As shown in [39], indifferentiability is the “right” notion to instantiate the “as good

as” relation when security of a scheme can be expressed in terms of the real/ideal
world paradigm of simulation-based security frameworks such as [15,38]. However,
with respect to more traditional game-based security definitions, Ristenpart et al. [42]
later showed that indifferentiability is not sufficient to instantiate the “as good as” relation
under a more general view including multistage security games, where the attacker is
forced to forget some information during its attack, while still sufficient for single-stage
security games. Unfortunately, as recently shown by Demay et al. [23], there does not
seem to be any hope to positively answer the above two questions for arbitrary security
games. For this reason, this work focuses on indifferentiability, the strongest notion for
which it currently seems possible answering these questions. We in particular note that
a positive answer to both questions implies that the random oracle and the ideal cipher
models are equivalentwith respect to most security games, namely all single-stage ones.
When focusing on indifferentiability, Question 2 is well understood and has given

rise to an impactful line of research: Coron et al. [16], and long series of subsequent
works, have presented several constructions of random oracles from ideal ciphers lever-
aging hash-function designs such as the Merkle-Damgård construction [22,36] as well
as block-cipher-based compression functions. As a consequence of these results, indif-
ferentiability has become a de facto standard security requirement for hash-function
constructions. In a similar vein, answering Question 1 could provide new approaches
to designing block ciphers from non-invertible primitives. But in contrast, the problem

1 Usually required to be efficient, i.e., with running time polynomial in the number of queries it processes.

64 J.-S. Coron et al.

appears more challenging and has remained unsolved to date. This work fills the gap by
answering this question in the affirmative.

1.3. Our Main Result: Ideal Ciphers Via the Feistel Construction

The main result of this paper is the first positive answer to Question 1 above:

Main Result (Informal) There exists an efficient construction C such that
CR for a random oracle R is indifferentiable from an ideal cipher E.

Our approach relies on the r-round Feistel construction �r , which implements a per-
mutation with a 2n-bit input (x0, x1) (where x0, x1 are n-bit strings), and a 2n-bit output
(xr , xr+1), such that for i = 1, . . . , r , the i-th round computes

xi+1 := xi−1 ⊕ Fi (xi) ,

where F1, . . . ,Fr : {0, 1}n → {0, 1}n are the so-called round functions. Luby and
Rackoff [32] first proved that if the round functions are independent random functions,
then �3 is information theoretically indistinguishable from a random permutation that
does not allow backward queries, whereas �4 is indistinguishable from a full-fledged
random permutation.Canwe expect a similar statement to be true for indifferentiability?
More concretely, is it possible to prove that if the round functions are independent
random functions, �r is indifferentiable from a random permutation for some r ≥ 4?2

Concretely, with F = (F1, . . . ,Fr) being r independent random functions, and P being
a random invertible permutation, we seek for an efficient simulator S such that (�F

r ,F)

and (P,SP) are indistinguishable for all distinguishers making overall a polynomial
number of queries to the given systems.
This suffices to build an ideal cipher form a random oracle R: For each value k of the

ideal cipher key, one implements the r independent random round functions from the
random oracle R by enforcing domain separation, e.g., letting Fk,i (x) = R(k, 〈i〉, x),
where 〈i〉 is the �log r	-bit encoding of i ∈ {1, . . . , r}. The ideal cipher with key k is
implemented by using the Feistel construction with the round functions Fk,1, . . . ,Fk,r .
Dodis and Puniya [24] were the first to study indifferentiability of the Feistel con-

struction. They showed that ω(log n) rounds of the Feistel construction are sufficient
in the honest-but-curious model of indifferentiability, where the adversary only gets to
see queries made by the construction to the round functions, but is not allowed to issue
chosen queries. In the same work, while no positive results for full indifferentiability
where shown, it was first noted that four rounds are insufficient.

Our Contributions This paper provides the first positive result showing indifferentia-
bility of the Feistel construction with a sufficiently large number of rounds, providing
in particular both upper and lower bounds on the number of rounds necessary for indif-
ferentiability:

2 Note that in contrast to the case of indistinguishability considered by Luby and Rackoff, we cannot
construct a non-invertible random permutation from a random oracle, regardless of the number of rounds.
This follows from a well-known result by Rudich [43] and Kahn et al. [31].

Build an Ideal Cipher 65

• First, we start by providing a new lower bound on the number of rounds that are nec-
essary in order to ensure indifferentiability of the Feistel construction: Specifically,
we prove in Sect. 2 that the five-round Feistel construction �5 is not indifferen-
tiable from a random permutation, therefore showing that at least six rounds are
necessary.

• Our main contribution is then given in Sect. 3: We prove that the fourteen-round
Feistel construction �14 is indifferentiable from a random permutation. In terms of
concrete parameters, if �14 implements a permutation on 2n bit strings, whenever
interacting with a distinguisher making q queries overall, the simulator makes at
most 1400q8 queries and runs in time O(q8). The distinguishing advantage is at

most 108·q16
22n

+ 1022·q10
2n .

Somewhat surprisingly, our result does not improve the work of [24] on honest-but-
curious indifferentiability: In particular, we show that this notion is not implied by full
indifferentiability in Appendix 1.

The remainder of the introduction provides a high-level outline of the techniques
behind our contributions, as well as a specification of the formal model and notation
used throughout the paper. Before turning to these, however, we find it appropriate to
provide some background on the time line behind the results that constitute the contents
of this paper and on related results.

Further Background Establishing our main result is the outcome of an intricate line of
works whose end result is summarized by the present paper. Coron et al. [19] presented
a first proof that the six-round Feistel construction �6 with independent random round
functions is indifferentiable from a random permutation. Seurin [44] also presented a
somewhat simpler indifferentiability proof for the ten-round Feistel construction �10.
Upon publication of these works, the stated equivalence of the random oracle and ideal
cipher models has been used for example to infer security in the random oracle model
using an ideal cipher (or random permutation) as an intermediate step [25] and to prove
impossibility of black box constructions from block ciphers [34].
Holenstein et al. [29] then gave a distinguishing attack showing that the proof of [20]

(the full version of [19]) is not correct: For the simulator given in the proof, they exhibit
an attacker that distinguishes with overwhelming advantage. A further stronger attack
appears to succeed against a large class of simulators following the natural approach of
[20], suggesting that it may be difficult to give a proof for six rounds. Later, Seurin [45]
found a distinguishing attack showing that the proof of [44] is also not correct.
The main contribution of Holenstein et al. [29] was a proof that the fourteen-round

Feistel construction is indifferentiable from a random permutation. The proof was par-
tially based on [19], but used several new ideas. More precisely, the simulator is similar
to the one in [44], and for bounding the simulator’s running time, the elegant idea in
[19] is used.
This paper includes both the negative result for five rounds from [19], and the positive

result for fourteen rounds from [29].
We also note that Mandal et al. [37] showed that the six-round Feistel construction

satisfies the weaker notion of public indifferentiability from a random permutation.
Moreover, Lampe and Seurin [33] have adapted the techniques of the present paper to

66 J.-S. Coron et al.

provide a construction of an ideal cipher from a small number of random permutations
using a generalization of the so-called Even-Mansour construction [27]. (An alternative
way to use the Even-Mansour construction for the same goal has been analyzed by
Andreeva et al. [1].)

1.4. Technical Overview

1.4.1. Five Rounds are Not Enough

Let us first briefly address why the five-round Feistel construction is not indifferentiable
from a random permutation. At the high level, we leverage the fact that it is possible—
given oracle access to the round functions—to efficiently find inputs to the construction
that, together with the resulting outputs, satisfy some relation that is hard to satisfy for a
random permutation. More precisely, we show how a distinguisher can find four inputs
(x0, x1), (x ′

0, x
′
1), (x

′′
0 , x ′′

1), and (x ′′′
0 , x ′′′

1) with corresponding outputs (x5, x6), (x ′
5, x

′
6),

(x ′′
5 , x ′′

6), and (x ′′′
5 , x ′′′

6), satisfying the following two relations:

x1 ⊕ x ′
1 ⊕ x ′′

1 ⊕ x ′′′
1 = 0 , x5 ⊕ x ′

5 ⊕ x ′′
5 ⊕ x ′′′

5 = 0.

Since finding such inputs for a random permutation is hard, any efficient simulator
will necessarily fail to return consistent answers to the distinguisher.

1.4.2. Indifferentiability of the 14-Round Feistel Construction

We now discuss the techniques behind our main result. To this end, we first discuss the
basic approach to proving that the r -round Feistel construction�r , for a sufficiently large
number of rounds r ≥ 6, is indifferentiable from a random permutation, and discuss
our concrete instantiation of this approach. For reference, an illustration of the Feistel
construction is provided on Page 11.
Recall that our task is to devise a simulator S that uses a given random permutation

P : {0, 1}2n → {0, 1}2n (accepting both forward and backward queries) to simulate r
independent functions F1, . . . ,Fr so that P is consistent with �r using these simulated
round functions. Concretely, when asked to evaluate Fi on input xi , the simulator needs
to set the value Fi (xi) to some value yi , but could in fact already have set this value
proactively when answering an earlier query.

Our Strategy: Simulation Via Chain Completion To convey the main idea, suppose that
a distinguisher queries the simulated round functions to evaluate �r on input (x0, x1) ∈
{0, 1}2n obtaining the resulting output (xr , xr+1) by computing xi+1 = xi−1 ⊕ Fi (xi)
for all i = 1, . . . , r . Then, (xr , xr+1) must equal the output of P on input (x0, x1),
for otherwise the distinguisher could easily detect it is not interacting with the real
world.3 To this end, the simulator needs to recognize that the queries x1, . . . , xr belong
to an evaluation of �r , and to set the values Fi (xi) to enforce consistency with P. In the
following, a sequence of values x1, . . . , xr such thatFi (xi) is defined by the simulator for

3 Of course, much more is needed, as this is only one specific distinguisher. But it will be convenient right
now to restrict ourselves to thwarting this type of distinguishing attacks.

Build an Ideal Cipher 67

all i = 1, . . . , r , and such that xi+1 = xi−1⊕Fi (xi) for all i = 2, . . . , r−1,will be called
a chain.Partial chains, corresponding to a contiguous subsequence of a chain, are defined
analogously. In addition, such partial chains may also “wrap around”: For example, the
sequence (x1, x2, xr−1, xr) constitutes a partial chain in case P(x0, x1) = (xr , xr+1),
where x0 = x2 ⊕ F1(x1) and xr+1 = xr−1 ⊕ Fr (xr). Also, a length-two partial chain
(xi , xi+1) corresponds simply to two values for which Fi (xi) and Fi+1(xi+1) have been
defined by the simulator. Note that any given chain of length at least two allows to
evaluate forward and backward w.r.t. the Feistel construction. We stress that whether a
sequence is a partial chain or not is a property that depends on the values of the round
functions which have been defined by the simulator so far.
Our simulation strategy will consider a carefully chosen set of relevant partial chains

(i.e., not all types of partial chains will be detected). Upon a query for Fi with input xi ,
the simulator setsFi (xi) to a fresh random value and looks for new relevant partial chains
involving xi , adding them to a FIFO queue. (There may be many new partial chains!)
Then, the simulator repeats the following, until the queue is empty: It removes the first
partial chain from the queue and completes it to a (full) chain x1, x2, . . . , xr such that
P(x0, x1) = (xr , xr+1), where x0 = F1(x1)⊕x2 and xr+1 = Fr (xr)⊕xr−1. In particular,
is sets each undefined Fi (xi) to a fresh uniform random string, with the exception of
two consecutive values F�(x�) and F�+1(x�+1) set adaptively for consistency. We refer
to this step as adapting the values of F�(x�) and F�+1(x�+1) and showing that such
adapting is always possible (for some well chosen �) will be a major challenge of our
analysis below. For example, the simulator could complete the partial chain (x7, x8) as
follows. First, it evaluates backward to obtain (x0, x1), setting each undefined Fi (xi)
to a fresh uniform random string. It then sets (xr , xr+1) := P(x0, x1) and continues to
evaluate backward and forward (again setting undefined values to fresh random strings),
until only F10(x10) and F11(x11) are undefined. These two values are then defined as
F10(x10) := x9⊕ x11, and F11(x11) := x10⊕ x12. However, note that within the process,
new values F j (x j) are defined, whichmay result in new chains being detected and added
to the queue. When the queue is finally empty, the simulator returns Fi (xi).

We now face threemain challenges, and our choice of which partial chains are relevant
and how they are completed will be crucial in order to solve them:

(1) Efficiency We need to show that the simulation terminates with high probability
when answering a query, i.e., early enough the queue becomes empty.

(2) Consistency We need to show that the values F�(x�) and F�+1(x�+1) which are
adapted to ensure consistency are always undefinedwhenever a chain is completed.

(3) Indistinguishability Even if the above two points are successfully shown, it is still
necessary to show that the simulated world cannot be distinguished from the real
world.

Our Instantiation Wewill fix r = 14. As indicated in the illustration on Page 11, upon
a query toF2 orF13, the simulator will detect partial chains of the form (x1, x2, x13, x14),
while upon a query to F7 or F8, it will detect partial chains of the form (x7, x8) (we
henceforth refer to the two subsets of rounds {1, 2, 13, 14} and {7, 8} as detect zones). The
simulator always adapts either F4(x4) and F5(x5), or F10(x10) and F11(x11), depending
on the round function queried when the chain is first detected. (We refer to {4, 5} and

68 J.-S. Coron et al.

{10, 11} as adapt zones.) In particular, note that function values in rounds 3,6,9,12
(which are called the buffer rounds) are always set to uniform random values when
completing. Concretely, upon a query to F2 or F7, in case one or more partial chains
(x1, x2, x13, x14) or (x7, x8) are detected, they will be completed using the adapt zone
{4, 5}. Symmetrically, chains detected upon queries to F13 or F8 are completed using
the adapt zone {10, 11}. Let us now elaborate shortly on how the above three challenges
are addressed.

Addressing Challenge 1 We will show that the recursion stops after at most poly(q)

steps, where q is the overall number of queries of the distinguisher. To this end, we
rely on the observation that unless some unlikely collision occurs, each detected partial
chain (x1, x2, x13, x14) is associated with an earlier P query by the distinguisher (either
a forward query on input (x0, x1) or a backward query on input (x14, x15)); hence, at
most q, such chains will ever be detected and completed. Furthermore, the number of
values F7(x7) that are defined by the simulator is at most 2q: either the distinguisher
queries F7(x7) directly, or the value is defined when completing a chain detected in zone
{1, 2, 13, 14}. As the same argument holds for F8, we get that the total number of chains
that are completed is upper bounded by q + (2q)2.

Addressing Challenge 2 As an illustrative example, suppose that upon setting F2(x2)
uniformly at random, a new chain C = (x1, x2, x13, x14) is detected and enqueued.
The simulator will eventually complete C into a chain (x1, x2, . . . , x14) using the adapt
zone {4, 5}, i.e., it sets xi := Fi+1(xi+1) ⊕ xi+2 for all i = 12, 11, . . . , 5, 4, and
x3 := F2(x2) ⊕ x1, where all undefined values Fi (xi) for i /∈ {4, 5} are set uniformly at
random. Finally, if possible, it sets Fi (xi) := xi−1 ⊕ xi+1 for i = 4, 5.

In order for the final step to be possible, our hope is that F3(x3) and F6(x6) are
unset when C is dequeued, and are set to uniform random values at completion. By
doing so, x4 and x5 also become fresh random values, and hence F4(x4) and F5(x5) are
unset with high probability. The proof that this hope is true is one of our main technical
contributions. We now illustrate the issue for the case of F3(x3).

First, note that when setting F2(x2), the value x3 := x1 ⊕F2(x2) is fresh and random,
and thus with very high probability, at this point, F3(x3) is unset. However, it may be
that many other values are defined after C is detected and before C is completed when
completing other chains: First, C may be detected during the completion of some other
chain, and second, several partial chains containing x2 may be enqueued just before C .
The crucial observation is that by using a FIFO queue, every partial chain C ′ completed
in between either shares the same x2 and is added together with C, or was already in
the queue when defining F2(x2).
For all partial chains C ′ = (x ′

1, x2, x
′
13, x

′
14) of the former type, they must have

x ′
1 �= x1, and hence x ′

3 = x ′
1 ⊕F2(x2) �= x3. Moreover, for those C ′ which were already

in the queue, if they are of the form C ′ = (x ′
1, x

′
2, x

′
13, x

′
14) for x

′
2 �= x2, then we must

have x ′
1 ⊕ F2(x ′

2) �= x3 with very high probability because x3 is fresh and random.
Therefore, we are left with proving that completing chains (x ′

7, x
′
8) which are already

in the queue cannot set F3(x3), except with negligible probability, which is the hardest
part of our analysis.

Build an Ideal Cipher 69

AddressingChallenge 3To seewhyproving indistinguishability can be difficult, consider
a distinguisher which in the ideal world first queries the given permutation P(x0, x1),
giving values (x14, x15). The distinguisher then checks (say) the first bit of x14, and
depending on it, starts querying the simulator to evaluate the Feistel construction from the
top with the input values (x0, x1), or from the bottom with values (x14, x15). Inspection
of our simulator reveals that the choice of the adapt zone of the simulator then depends
on the first bit of x14.
The problem which now comes in is that the randomness inherent in (x14, x15) is

needed in order to show that the values of F in the adapt zones look random. However,
conditioned on using the upper adapt zone, one bit of x14 is already fixed.

In order to solve this problem, we take the following, very explicit approach: we
consider the two experiments which we want to show to behave almost the same and
define a map associating randomness in one experiment to randomness in the other
experiment. We then study this map. This leads to a fine-grained understanding and a
formal treatment of the indistinguishability proof.

1.5. Model and Notational Conventions

The results throughout this paper are information-theoretic and consider random exper-
iments where a distinguisher D interacts with some given system T, outputting a value
D(T). In the context of this paper, such systems consist of the compositionT = (T1,T2)

of two (generally correlated) systems accessible in parallel, where Ti is either a random
primitive (such as a random function F, a random permutation P defined above), or a
construction CT accessing the random primitive T. The advantage �D(T,T′) of a dis-
tinguisherD in distinguishing two systems T and T′ is defined as the absolute difference
∣
∣Pr[D(T) = 1] − Pr[D(T′) = 1]∣∣.
We dispense to the largest extent with a formal definition of such systems (cf. e.g.,

the framework of Maurer [35] for a formal treatment). Most systems we consider will
be defined formally using pseudocode in a RAM model of computation, following the
approach of [13,47]. The time complexity of a system/distinguisher is also measured
with respect to such a model.
Defining indifferentiability is somewhat subtle, as different definitions [16,39] are

used in the literature. In particular, it will be convenient to use the following definition:

Definition 1.1. For a construction C accessing independent random functions F =
(F1, . . . ,Fr),4 we say that CF is indifferentiable from a random permutation P if
there exists a simulator S such that for all polynomially bounded q, the advantage
�D((CF,F), (P,SP)) is negligible for all distinguishers D issuing a total of at most q
queries to the two given systems, and furthermore, there exists a fixed polynomial p(q),
such that S runs in time p(q) except with negligible probability.

Our definition allows exponential worst-case running time of the simulator. However,
given an upper bound on the number q of overall distinguisher queries, the simulator

4 Such a tuple can also be seen as a random primitive.

70 J.-S. Coron et al.

can be made to run in polynomial time by aborting after p(q) steps. This modification
makes the simulator distinguisher dependent, since the simulator cannot see (and count)
queries toP, and consequently cannot determine q. But we point out that this dependence
is quite weak: The simulator only depends on the number of queries the distinguisher
makes. In other words, our definition implies the original one in [39], but does not imply
the stronger one of [16], which requires a universal simulator.

2. The Five-Round Feistel Construction is Not Sufficient

In this section, we prove the following theorem.

Theorem 2.1. The five-roundFeistel construction using five independent random func-
tions is not indifferentiable from a random permutation.

For this, we construct a polynomial-time distinguisher D which, for any polynomial-
time simulator S, distinguishes with overwhelming advantage (P,SP) from (�F,F),
where P is a random permutation, � is a five-round Feistel construction, and F is a
collection of five uniform random functions. Toward this end, we first show the following
lemma.

Lemma 2.2. Let P : {0, 1}2n → {0, 1}2n be a random permutation, and consider a
system issuing at most q queries toP. Denote generically (xi0, x

i
1), (x

i
5, x

i
6) the input/out-

put of P corresponding to the i-th query (independently of whether this is a query to P
or P−1). Then, assuming q ≤ 22n−1, the probability that there exist four queries i1, i2,
i3 and i4 with pairwise different input values such that

{

xi11 ⊕ xi21 ⊕ xi31 ⊕ xi41 = 0

xi15 ⊕ xi25 ⊕ xi35 ⊕ xi45 = 0

is less than q4/2n.

Proof. Denote by Bad the event that such queries exist among all q queries, and by
Badi the event that such queries exist among the first i queries. We will upper bound
Pr[Badi |Badi−1]. Consider the i-th query, and assumewlog that it is a query to P. Then,
Badi happens only if the input is different from all previous inputs and xi5 hits one of at

most
(i−1

3

) ≤ i3 values, hence with probability less than 2ni3/(22n − (i − 1)) ≤ 2i3/2n

(using q ≤ 22n−1). The result follows by summing over i and using
∑q

i=1 i
3 ≤ q4/2. �

The distinguisher D interacts with a system � = (P, F) which is either (P,SP) or
(�F,F). It proceeds as follows (the attack is depicted in Fig. 1):

1. Choose arbitrary values x3, x ′
3, x4 that are pairwise different.

2. Compute x2 = x4 ⊕ F3(x3) and x ′
2 = x4 ⊕ F3(x ′

3).

Build an Ideal Cipher 71

F1

F2 x2

F3 x3

F4 x4

F5 x5

x0 x1

x5 x6

x0 x0 x0 x0

x1 x1 x1 x1⊕ ⊕ ⊕ = 0

x2 x2

x3 x3

x4 x4

x5 x5 x5 x5⊕ ⊕ ⊕ = 0

x6 x6 x6 x6

Fig. 1. The five-round distinguishing attack. The lines with four distinct patterns on the left side represent the
computation paths in the Feistel construction for each input/output (xi0, x

i
1), (x

i
5, x

i
6) involved in the attack .

3. Compute

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = x3 ⊕ F2(x2), x0 = x2 ⊕ F1(x1)

x ′
1 = x ′

3 ⊕ F2(x ′
2), x ′

0 = x ′
2 ⊕ F1(x ′

1)

x ′′
1 = x ′

3 ⊕ F2(x2), x ′′
0 = x2 ⊕ F1(x ′′

1)

x ′′′
1 = x3 ⊕ F2(x ′

2), x ′′′
0 = x ′

2 ⊕ F1(x ′′′
1)

4. If x1, x ′
1, x

′′
1 , x ′′′

1 are not pairwise different, then return 0.
5. Query (x5, x6) = P(x0, x1), (x ′

5, x
′
6) = P(x ′

0, x
′
1), (x ′′

5 , x ′′
6) = P(x ′′

0 , x ′′
1), and

(x ′′′
5 , x ′′′

6) = P(x ′′′
0 , x ′′′

1).
6. If x5 ⊕ x ′

5 ⊕ x ′′
5 ⊕ x ′′′

5 = 0 then return 1, else return 0.

We have the following lemma, from which Theorem 2.1 is a simple consequence.

Lemma 2.3. For any polynomial-time simulator S, there is a negligible function ν such
that the advantage �D((�F,F), (P,SP)) is greater that 1 − ν.

72 J.-S. Coron et al.

Proof. We first show thatD outputs 1 with overwhelming probability when interacting
with (�F,F). Since x3 �= x ′

3 by definition, the probability that F3(x3) �= F3(x ′
3) is

1 − 1/2n . If this inequality holds, we have x2 �= x ′
2. This in turn implies that F2(x2) �=

F2(x ′
2) and x1 �= x ′

1 and x ′′
1 �= x ′′′

1 with probability at least 1 − 3/2n . Thus, with
probability at least 1−4/2n , we have that x1, x ′

1, x
′′
1 , x ′′′

1 are pairwise different, and thus
step 4 does not return. Denote x ′

4 = x2 ⊕ F3(x ′
3) = x ′

2 ⊕ F3(x3) (the last two values are
equal by definition of x2 and x ′

2). Then, computing the Feistel forward, one has:

x5 = x3 ⊕ F4(x4)

x ′
5 = x ′

3 ⊕ F4(x4)

x ′′
5 = x ′

3 ⊕ F4(x ′
4)

x ′′′
5 = x3 ⊕ F4(x ′

4)

Hence, the equality x5 ⊕ x ′
5 ⊕ x ′′

5 ⊕ x ′′′
5 = 0 is always satisfied.

We show that D outputs 0 with overwhelming probability when interacting with
(P,SP).Wemay assume that x1, x ′

1, x
′′
1 , x ′′′

1 are pairwise different, as otherwiseD outputs
0 in step 4.Note that by construction of the distinguisher, the equality x1⊕x ′

1⊕x ′′
1⊕x ′′′

1 =
0 is always satisfied. Consider the union of D and S as a single system interacting with
the random permutation P, and let q be an upper bound on the total number of queries
issued by this system to P. Clearly, q is polynomial if S is polynomial time. Then, by
Lemma 2.2, the probability that x5 ⊕ x ′

5 ⊕ x ′′
5 ⊕ x ′′′

5 = 0 is less than q4/2n , which is
negligible. The result follows. �

3. Indifferentiability of the Fourteen-Round Feistel Construction

We now turn to the main result of this paper. We prove that the fourteen-round Feis-
tel construction is indifferentiable from a random permutation, as summarized by the
following theorem.

Theorem 3.1. The fourteen-round Feistel construction using fourteen independent
random functions is indifferentiable from a random permutation.
For a random permutation on 2n bits and any distinguisher that issues at most q

queries, except with probability 108·q16
22n

, the simulator makes at most 1400q8 queries

and runs in time O(q8). The distinguishing advantage is at most 108·q16
22n

+ 1022·q10
2n .

Even though we state explicit bounds in the theorem, we have not tried to optimize
them, and aim for a simple proof instead.
Moreover, we can extend this result to provide a construction of an ideal cipher from

a random oracle, as we now explain. To implement the ideal cipher, we use a keyed
version of the Feistel construction, which we define as follows. Given a random oracle
R : {0, 1}∗ → {0, 1}n , for understood parameters κ and n, we define the r -round keyed
Feistel construction �̃r = �̃R

r which, on inputs (k, x) for a forward query and (k, y) for

a backward query (where k ∈ {0, 1}κ and x, y ∈ {0, 1}2n) behaves as �Fk
r on a forward

Build an Ideal Cipher 73

query x and on a backward query y, respectively, where Fk = (Fk
1, . . . ,F

k
r) are short-

hands for Fk
i (x) = R(〈i〉‖k‖x). Here, 〈i〉 is the �log r	-bit encoding of i ∈ {1, . . . , r}.

The following theorem states the main result of this paper. It establishes the indiffer-
entiability of the keyed Feistel construction from an ideal cipher. Given that the Feistel
construction is indifferentiable from a random permutation (Theorem 3.1), the proof of
this theorem is not difficult: it relies on standard techniques and is given in Appendix 2.

Theorem 3.2. The fourteen-round keyed Feistel construction using a random oracle is
indifferentiable from an ideal cipher. For an ideal cipher with κ-bit key and 2n-bit inputs,

and any distinguisher that issues at most q queries, except with probability 108·q17
22n

, the

simulator makes at most 1400q8 queries and runs in time O(q8). The distinguishing

advantage is at most 108·q17
22n

+ 1022·q11
2n .

The remainder of this section is devoted to the proof of Theorem 3.1. Our task is
to provide a simulator S with access to a random permutation P such that (P,SP) is
indistinguishable from (�F,F), whereF denotes the random functions used in the Feistel
construction.
We first define the simulator S in Sect. 3.1. Then, we transform (P,SP) stepwise to

(�F,F) to prove indistinguishability. The random functions we consider in this section
are always from n bits to n bits, and the random permutation P is over 2n bits.

3.1. Simulator Definition

We first give a somewhat informal, but detailed description of the simulator. We then
use pseudocode to specify the simulator in a more formal manner.

3.1.1. Informal Description

The simulator provides an interface S.F(k, x) to query the simulated random function Fk

on input x . For each k, the simulator internally maintains a table whose entries are pairs
(x, y) of n-bit values. They denote pairs of inputs and outputs of S.F(k, x). We denote
these tables by S.Gk or just Gk when the context is clear. We write x ∈ Gk whenever x
is a preimage in this table, often identifying Gk with the set of preimages stored. When
x ∈ Gk , Gk(x) denotes the corresponding image.
On a query S.F(k, x), the simulator first checks whether x ∈ Gk . If so, it answers with

Gk(x). Otherwise the simulator picks a random value y and inserts (x, y) into Gk(x).
After this, the simulator takes steps to ensure that its future answers are consistent with
the permutation P.

There are two cases in which the simulator performs a specific action for this. First,
if k ∈ {2, 13}, the simulator considers all newly generated tuples (x1, x2, x13, x14) ∈
G1 × G2 × G13 × G14, and computes x0 := x2 ⊕ G1(x1) and x15 := x13 ⊕ G14(x14).
It then checks whether P(x0, x1) = (x14, x15). Whenever the answer to such a check
is positive, the simulator enqueues the detected values in a queue.5 More precisely, it

5 Recall that a queue is a first in first out data structure.

74 J.-S. Coron et al.

x1G1

x2G2

x3G3

x4G4

x5G5

x6G6

x7G7

x8G8

x9G9

x10G10

x11G11

x12G12

x13G13

x14G14

x0

x15

adapt

adapt

set uniform

set uniform

set uniform

set uniform

x8 detect

x2 detect

x7 detect

x13 detect

Fig. 2. The fourteen-round Feistel with the zones where our simulator detects chains and adapts them. When-
ever a function value G2(x2),G7(x7),G8(x8), or G13(x13) is defined, the simulator checks whether the
values in the dashed zones x7, x8 and x1, x2, x13, x14 (in the colored version these zones are blue) form a
partial chain. In case a chain is detected, it is completed; the function values in the dashed zones x4, x5 or
x10, x11 (in the colored version these zones are red) are adapted in order to ensure consistency of the chain .

enqueues a four-tuple (x1, x2, 1, �). The value 1 ensures that later the simulator knows
that the first value x1 corresponds to G1. The value � describes where to adapt values
of G� to ensure consistency with the given permutation. If k = 2, then � = 4 and if
k = 13 then � = 10. The second case is when k ∈ {7, 8}. Then, the simulator enqueues
all newly generated pairs (x7, x8) ∈ G7 ×G8. It enqueues all these pairs into the queue
as (x7, x8, 7, �), where � = 4 if k = 7 and � = 10 if k = 8 (this is illustrated in Fig. 2).
We call the tuples added to the queue partial chains.
The simulator then does the following, until the queue is empty. (When the queue

is finally empty, the simulator returns the answer to the initial query.) It removes the

Build an Ideal Cipher 75

first partial chain (xi , xi+1, i, �) from the queue, and completes it. This means that we
compute all values x j by evaluating the Feistel construction (making at most one query
to P or P−1), and setting all undefined G j (x j) for j �= {�, �+1} to fresh random values.
The simulator defines the remaining two values in such a way that consistency with P is
ensured, i.e., G�(x�) := x�−1 ⊕ x�+1 and G�+1(x�+1) := x� ⊕ x�+2. If a value for either
of these is defined from a previous action of the simulator, the simulator overwrites the
value (possibly making earlier chains inconsistent).
Whenever a new value Gk(xk) for k ∈ {2, 13} is defined when completing a

chain, the exact same checks as above are performed on the newly generated tuples
(x1, x2, x13, x14), and a new partial chain can be enqueues. Whenever a value Gk(xk)
for k ∈ {7, 8} is defined, the simulator similarly enqueues all new pairs (x7, x8).

In order to make sure the simulator does not complete the same chains twice, the
simulator additionally keeps a set CompletedChains that contains all triples (xk, xk+1, k)
which have been completed previously.Whenever the simulator dequeues a chain, it only
completes the chain if it is not in the set CompletedChains.

3.1.2. The Simulator in Pseudocode

We provide pseudocode to describe the simulator as explained above in full detail below.
Later, during the analysis, we will consider a slightly different simulator T. For this, we
replace whole lines; the replacements are put into boxes next to these lines. The reader
can ignore these replacements at the moment.
First, the simulator internally uses a queue and some hashtables to store the function

values, and a set CompletedChains to remember the chains that have been completed
already. The queue Q provides the procedure Q.Enqueue to add elements to the end
of the queue. The procedure Q.Dequeue removes the element in the front of the queue
and returns it.
The procedure F(i, x) provides the interface to a distinguisher. It first calls the cor-

responding internal procedure Finner, which defines the value and fills the queue if
necessary. Then, the procedure F(i, x) completes the chains in the queue that were not
completed previously, until the queue is empty.
The procedure Adapt adapts the values. It first sets the values in the buffer rounds

(namely rounds 3 and 6, or 9 and 12 in Fig. 2) uniformly at random. It then adapts
the values of G�(x�) and G�+1(x�+1) such that the chain matches the permutation. It
would be possible to simplify the code by removing lines 20 to 25 below, and changing
the parameters in lines 12 and 13 above. The current notation simplifies notation in the
proof.
The procedure Finner provides the internal interface for evaluations of the simulated

function. It only fills the queue, but does not empty it.
The procedure enqueueNewChains detects newly created chains and enqueues

them. Sometimes, chains may be detected which have been completed before, but they
are ignored when they are dequeued.
The helper procedures EvaluateForward and EvaluateBackward take indices k

and � and a pair (xk, xk+1) of input values for Gk and Gk+1, and either evaluate forward
or backward in the Feistel to obtain the pair (x�, x�+1) of input values for G� and G�+1.

76 J.-S. Coron et al.

1 System S: System T(f):

2 Variables:
3 Queue Q
4 Hashtable G1, . . . ,G14
5 Set CompletedChains := ∅
6 public procedure F(i, x)
7 Finner(i, x)
8 while ¬Q.Empty() do
9 (xk, xk+1, k, �) := Q.Dequeue()

10 if (xk, xk+1, k) /∈ CompletedChains then // ignore prev. completed chains
11 // complete the chain
12 (x�−2, x�−1) := EvaluateForward(xk, xk+1, k, � − 2)
13 (x�+2, x�+3) := EvaluateBackward(xk, xk+1, k, � + 2)
14 Adapt(x�−2, x�−1, x�+2, x�+3, �)

15 (x1, x2) := EvaluateBackward(xk, xk+1, k, 1)
16 (x7, x8) := EvaluateForward(x1, x2, 1, 7)
17 CompletedChains := CompletedChains ∪ {(x1, x2, 1), (x7, x8, 7)}
18 return Gi (x)

19 private procedure Adapt(x�−2, x�−1, x�+2, x�+3, �)

20 if x�−1 /∈ G�−1 then

21 G�−1(x�−1) ←R {0, 1}n G�−1(x�−1) := f (� − 1, x�−1)

22 x� := x�−2 ⊕ G�−1(x�−1)

23 if x�+2 /∈ G�+2 then

24 G�+2(x�+2) ←R {0, 1}n G�+2(x�+2) := f (� + 2, x�+2)

25 x�+1 := x�+3 ⊕ G�+2(x�+2)

26 ForceVal(x�, x�+1 ⊕ x�−1, �)

27 ForceVal(x�+1, x� ⊕ x�+2, � + 1)
28

29 private procedure ForceVal(x, y, �)
30 G�(x) := y

31 private procedure Finner(i, x):
32 if x /∈ Gi then

33 Gi (x) ←R {0, 1}n Gi (x) := f (i, x)

34 if i ∈ {2, 7, 8, 13} then
35 enqueueNewChains(i, x)
36 return Gi (x)

37 private procedure enqueueNewChains(i, x):
38 if i = 2 then
39 forall (x1, x2, x13, x14) ∈ G1 × {x} × G13 × G14 do
40 if Check(x2 ⊕ G1(x1), x1, x14, x13 ⊕ G14(x14)) then
41 Q.Enqueue(x1, x2, 1, 4)

Build an Ideal Cipher 77

42 else if i = 13 then
43 forall (x1, x2, x13, x14) ∈ G1 × G2 × {x} × G14 do
44 if Check(x2 ⊕ G1(x1), x1, x14, x13 ⊕ G14(x14)) then
45 Q.Enqueue(x1, x2, 1, 10)
46 else if i = 7 then
47 forall (x7, x8) ∈ {x} × G8 do
48 Q.Enqueue(x7, x8, 7, 4)
49 else if i = 8 then
50 forall (x7, x8) ∈ G7 × {x} do
51 Q.Enqueue(x7, x8, 7, 10)
52

53 private procedure Check(x0, x1, x14, x15)

54 return P(x0, x1) = (x14, x15) return R.Check(x0, x1, x14, x15)

55 private procedure EvaluateForward(xk, xk+1, k, �):
56 while k �= � do
57 if k = 14 then

58 (x0, x1) := P−1(x14, x15) (x0, x1) := R.P−1(x14, x15)

59 k := 0
60 else
61 xk+2 := xk ⊕ Finner(k + 1, xk+1)

62 k := k + 1
63 return (x�, x�+1)

64 private procedure EvaluateBackward(xk, xk+1, k, �):
65 while k �= � do
66 if k = 0 then

67 (x14, x15) := P(x0, x1) (x14, x15) := R.P(x0, x1)

68 k := 14
69 else
70 xk−1 := xk+1 ⊕ Finner(k, xk)
71 k := k − 1
72 return (x�, x�+1)

3.1.3. An Example of Chain Completion

We provide an illustrative example of a simulator execution for the following dis-
tinguisher queries: First, choose x9 and x10 arbitrarily. For i = 10, . . . , 14 let
xi+1 := xi−1 ⊕ F(i, xi), define (x0, x1) := P−1(x14, x15), and for i = 1, 2 let
xi+1 := xi−1 ⊕ F(i, xi).
Suppose all hash tables and the queue are initially empty. For the queries F(i, xi)

for i = 10, . . . , 14, Gi (xi) is set uniformly in Finner, as Gi is empty before the call.
After the call to Finner, the queue is empty: only for i = 13, enqueueNewChains
is called, but since G14 is empty at this point, no chain is enqueued. In F(1, x1),
G1(x1) is set uniformly in Finner, and no chain is enqueued. Finally, when F(2, x2)

78 J.-S. Coron et al.

is called, G2(x2) is set uniformly at random in Finner, and enqueueNewChains(2, x2)
is called. In this call, the tuple (x1, x2, x13, x14) makes Check evaluate to true,
and (x1, x2, 1, 4) is enqueued. When the call to Finner returns in F, (x1, x2, 1, 4)
is dequeued. As it is not in CompletedChains, the chain gets completed as follows.
EvaluateForward(x1, x2, 1, 2) returns (x2, x3) where x3 = x1 ⊕G2(x2), and no new
entries are added to Gi ’s. In EvaluateBackward(x1, x2, 1, 6), for i = 14, . . . , 10,
we have xi ∈ Gi already, and for i = 9, . . . , 7, letting xi = xi+2 ⊕ G(xi+1),
the values G(xi) are defined uniformly in Finner. When G(x7) is defined in Finner,
enqueueNewChains enqueues (x7, x8, 7, 4), and this is the only chain that is enqueued
during EvaluateBackward. Finally, for x6 := x8 ⊕ G(x7), Adapt(x2, x3, x6, x7, 4)
is called, and both (x1, x2, 1), (x7, x8, 7) are added to CompletedChains. Thus, when
(x7, x8, 7) is dequeued in the next iteration, it is skipped. Finally, Q is empty, and F
returns G2(x2).

3.2. Proof of Indifferentiability

In this section, we provide the indifferentiability analysis.

3.2.1. Overview

Our overall plan is to show that for any deterministic distinguisher D that makes at most
q queries6, the probability that D outputs 1 when interacting with (P,SP) differs by at
most poly(q)

2n from the probability it outputs 1 when interacting with (�F,F), where �

is a fourteen-round Feistel construction, and F is a collection of 14 uniform random
functions.
We denote the scenario where a distinguisher D interacts with (P,SP) by S1, and

the scenario where D interacts with (�F,F) by S4. Both S1 and S4 are depicted in
Fig. 3. The scenarios S2 and S3 will be intermediate scenarios, that we describe in the
following. When we use the term “execution of Si”, we always have a fixed (determin-
istic) distinguisher in mind, without mentioning it explicitly. Also, whenever we prove
a statement about an “execution of Si”, this means that the statement holds for any fixed
distinguisher that issues at most q queries in scenario Si .

The transition from S1 to S2 To obtain S2 from S1, we replace the random permuta-
tion P by a two-sided random function R. Informally, R can be described as follows.
Fresh queries are always answered with uniform random bitstrings, and once a query
R(x0, x1)was answered by choosing uniform random (x14, x15), the systemwill answer
consistently in the future, i.e., future queries will be answered as R(x0, x1) = (x14, x15)
and R−1(x14, x15) = (x0, x1). Clearly, it may happen that when a random answer for
the second query R(x ′

0, x
′
1) for some (x ′

0, x
′
1) �= (x0, x1) is chosen randomly, it again

equals (x14, x15). It is very intuitive that such collisions occur only with small probabil-
ity. Also, given that collisions rarely occur, it is intuitive that R behaves like a random
permutation. We make the randomness used by the simulator and R explicit, and write

6 We may assume that D is deterministic, since we are only interested in the advantage of the optimal
distinguisher, and for any probabilistic distinguisher, the advantage can be at most the advantage of the optimal
deterministic distinguisher.

Build an Ideal Cipher 79

D

0/1

SP

D

0/1

TR

fp

D

0/1

TΨ

h

D

0/1

FΨ

S1 S2 S3 S4

Fig. 3. Scenarios used in the indifferentiability proof .

S2(f, p) for the scenario where the simulator (now denoted by T(f)) uses randomness
from f and R(p) uses randomness from p. In Lemma 3.6 we formally prove that P
and R(p) can be distinguished only with negligible probability. This, together with the
fact that the simulator is efficient in S2 (as discussed below), directly gives that S1 and
S2(f, p) can be distinguished with negligible probability for uniformly chosen f and
p. This is formally stated in Lemma 3.11, and treated in Sect. 3.4.

The simulator is efficient in S2 It is easier to prove the simulator’s efficiency in scenario
S2. Lemmas 3.4 and 3.5 state that the query complexity and the running time, respec-
tively, are poly(q).Weare going to prove the simulator’s efficiency inS2 before analyzing
the transition from S1 to S2, since we need it there (i.e., for proving Lemma 3.11). This
is treated in Sect. 3.3.

The simulator is efficient in S1 This directly follows from the fact that the simulator is
efficient in S2, and S1 and S2 can be distinguished only with negligible probability. The
formal statement can be found in Lemma 3.10.

The transition from S2 to S3 In scenario S3, we replace the two-sided random function
R(p) by the fourteen-round Feistel construction�(h), which uses randomness in h. The
same randomness h is accessed by the simulator T(h). The main part of our indifferen-
tiability proof is to show thatS2(f, p) for uniform random (f, p) andS3(h) for uniform
random h can be distinguished only with negligible probability. This is formally stated
in Lemma 3.37, which will be proved in Sect. 3.5. The proof of this lemma is the main
part of the indifferentiability proof. A large part of the proof consists in showing that
the simulator does not overwrite a value in calls to ForceVal. An interesting feature of
the proof is that in a second part it directly maps pairs (f, p) to elements h = τ(f, p)
such that S2(f, p) and S3(h) behave the same for most pairs (f, p), and the distribution
induced by τ is close to uniform.

80 J.-S. Coron et al.

The transition from S3 to S4 It follows by definition that whenever a query is answered
by the simulator in S3, then it is answered with the corresponding entry of h that is used
in � (see Lemma 3.38). Since S2 and S3 are close, and in S2 the simulator is efficient,
this implies that with overwhelming probability the simulator gives an answer after a
polynomial number of steps inS3.7 This implies thatS3 andS4 can be distinguished only
with negligible probability, as stated in Lemma 3.39, which will be proved in Sect. 3.6.
We now describe the two intermediate scenarios S2(f, p) and S3(h) in detail.

3.2.2. Detailed Description of the Second Scenario

Scenario S2(f, p) is similar to S1. However, instead of the simulator S we use the
simulator T(f), and instead of a random permutation P we use a two-sided random
function R(p). The differences between these systems are as follows:

Explicit randomness We make the randomness used by the simulator explicit.
Whenever S sets Gi (xi) to a random value, T(f) takes it from f (i, xi) instead,
where f is a table which contains an independent uniform random bitstring of
length n for each i ∈ {1, 2, . . . , 14} and xi ∈ {0, 1}n . This modification does
not change the distribution of the simulation, because it is clear that the simulator
considers each entry of f at most once.
As can be seen in the pseudocode below, the randomness of the two-sided random
functionR(p) is also explicit: It is taken from p(↓, x0, x1) or p(↑, x14, x15), a table
in which each entry is an independent uniform random bitstring of length 2n.
When we say that some entry of a table is “queried”, this just means that the entry
is read from the table.

Two-sided random function We replace the random permutation P by a two-
sided random function R(p) (see below for pseudocode). This function keeps a
hashtable P that contains elements (↓, x0, x1) and (↑, x14, x15). Whenever the
procedure R.P(x0, x1) is queried, R checks whether (↓, x0, x1) ∈ P , and if so,
answers accordingly. Otherwise, an independent uniform random output (x14, x15)
is picked (by considering p), and (↓, x0, x1) as well as (↑, x14, x15) are added to
P , mapping to each other.

Check procedure The two-sided random function R has a procedure Check(x0,
x1, x14, x15). If (↓, x0, x1) ∈ P , it returns true if P maps (↓, x0, x1) to (x14, x15),
and false otherwise. If (↑, x14, x15) ∈ P , it returns true if P maps (↑, x14, x15) to
(x0, x1), and false otherwise. If both (↓, x0, x1) /∈ P and (↑, x14, x15) /∈ P , Check
returns false. The simulator T(f) also differs from S in that T(f).Check simply
calls R.Check.

Pseudocode for T(f) can be obtained by using the boxed contents on the right hand
side in the pseudocode of S instead of the corresponding line. For the two-sided random
function R, the pseudocode looks as follows:

1 System Two-sided random function R(p):
2 Variables:

7 It is actually not hard to see that the simulator always gives an answer in S3 after a finite number of
steps, but we don’t need to show this as S2 and S3 behave almost the same anyway.

Build an Ideal Cipher 81

3 Hashtable P
4

5 public procedure P(x0, x1)
6 if (↓, x0, x1) /∈ P then
7 (x14, x15) := p(↓, x0, x1)
8 P(↓, x0, x1) := (x14, x15)
9 P(↑, x14, x15) := (x0, x1) // (May overwrite an entry)

10 return P(↓, x0, x1)
11

12 public procedure P−1(x14, x15)
13 if (↑, x14, x15) /∈ P then
14 (x0, x1) := p(↑, x14, x15)
15 P(↓, x0, x1) := (x14, x15) // (May overwrite an entry)
16 P(↑, x14, x15) := (x0, x1)
17 return P(↑, x14, x15)
18

19 public procedure Check(x0, x1, x14, x15)
20 if (↓, x0, x1) ∈ P then return P(↓, x0, x1) = (x14, x15)
21 if (↑, x14, x15) ∈ P then return P(↑, x14, x15) = (x0, x1)
22 return false

Note that theCheck procedure never returns true in line 21, because P(↑, x14, x15) =
(x0, x1) implies that (↓, x0, x1) ∈ P . Still, we think this is the most intuitive way of
writing the Check procedure.

3.2.3. Detailed Description of the Third Scenario

InS3(h), we replace the above two-sided random functionR(p) by a Feistel construction
�(h). Similar to S2, h is used to make the randomness explicit. �(h) is defined as
follows:

1 System �(h):
2

3 Variables:
4 Hashtable P
5

6 public procedure P(x0, x1)
7 for i := 2 to 15 do
8 xi := xi−2 ⊕ h(i − 1, xi−1)

9 P(↓, x0, x1) := (x14, x15)
10 P(↑, x14, x15) := (x0, x1)
11 return (x14, x15)
12

13 public procedure P−1(x14, x15)
14 for i := 13 to 0 step −1 do
15 xi := xi+2 ⊕ h(i + 1, xi+1)

16 P(↓, x0, x1) := (x14, x15)

82 J.-S. Coron et al.

17 P(↑, x14, x15) := (x0, x1)
18 return (x0, x1)
19

20 public procedure Check(x0, x1, x14, x15)
21 if (↓, x0, x1) ∈ P then return P(↓, x0, x1) = (x14, x15)
22 if (↑, x14, x15) ∈ P then return P(↑, x14, x15) = (x0, x1)
23 return false

We define S3(h) to be the scenario where the distinguisher interacts with
(�(h),T(h)�(h)). Note that the randomness used by � and T is the same, and we
call it h.

3.2.4. Indifferentiability

We will prove the following four lemmas.

Lemma 3.10. Consider an execution of S1. Then with probability at least 1− 2·107·q16
22n

,

the simulator runs for at most O(q8) steps and issues at most 1400q8 queries to P.
Lemma 3.11. The probability that a fixed distinguisher answers 1 in S1 differs at most

by 4·107·q16
22n

from the probability that it answers 1 inS2(f, p) for uniform random (f, p).
Lemma3.37.Theprobability that a fixed distinguisher answers 1 inS2(f, p) for uniform

random (f, p) differs at most by 1021·q10
2n from the probability that it answers 1 in S3(h)

for uniform random h.
Lemma 3.39. The probability that a fixed distinguisher answers 1 inS3(h) for uniformly

chosen h differs at most by 1021·q10
2n from the probability that it answers 1 in S4.

Collecting these results allows to prove Theorem 3.1.

Proof of Theorem 3.1. Fix a distinguisher D which makes at most q queries. Lem-
mas 3.11, 3.37, and 3.39 give that the probability thatD outputs 1 inS1 = (P,SP) differs
at most by

4 · 107 · q16
22n

+ 2 · 10
21 · q10
2n

<
108 · q16

22n
+ 1022 · q10

2n

from the probability that it outputs 1 in S4 = (�F,F). Lemma 3.10 gives the desired
bounds on the running time and query complexity of the simulator. �

3.3. Complexity of the Simulator

In this section, we show that the simulator is efficient in scenario S2(f, p) for any f, p.
Throughout the paper, for a hashtable G we denote by |G| the number of entries in G.

Lemma 3.3. Consider an execution of S2(f, p) for some (f, p). Then, the simulator
dequeues at most q times a partial chain of the form (x1, x2, 1, �) for which (x1, x2, 1) /∈
CompletedChains.

Build an Ideal Cipher 83

Proof. Consider such a dequeue call and let (x1, x2, 1, �) be the partial chain dequeued
for which (x1, x2, 1) /∈ CompletedChains. The chain (x1, x2, 1, �) must have been
enqueued when (x2 ⊕ G1(x1), x2, x14, x13 ⊕ G14(x14)) was detected in line 40 or 43
of enqueueNewChains. Since neither G1(x1) nor G14(x14) are ever overwritten, this
means that we can find a unique 4-tuple (x0, x1, x14, x15), where x0 = x2 ⊕G1(x1) and
x15 = x13 ⊕ G14(x14), associated with (x1, x2, 1) for which Check(x0, x1, x14, x15)
was true at the moment (x1, x2, 1, �) was enqueued. We can now find a unique query to
p which corresponds to (x0, x1, x14, x15): since Check(x0, x1, x14, x15) was true, there
must have been a call to P or P−1 in R(p) where either p(↓, x0, x1) = (x14, x15) or
p(↑, x14, x15) = (x0, x1), respectively, was accessed in line 7 or 14 of R(p). This call
to P or P−1 was made either by the distinguisher or the simulator. We argue that this call
cannot have been issued by the simulator. The simulator issues such calls only when it
completes a chain (i.e., within calls to EvaluateBackward and EvaluateForward
in F), and after this completion, it adds (x1, x2, 1) to CompletedChains (in line 17 of F).
During this chain completion (in lines 12 to 17 of F), no calls to Q.Dequeue occur, and
so it is not possible that (x1, x2, 1) /∈ CompletedChains when it was dequeued. Thus,
we found a unique query to P or P−1 of the distinguisher associated with this dequeue
call. Finally, note that after (x1, x2, 1) is completed by the simulator, (x1, x2, 1) is added
to CompletedChains. Thus, there are at most q such dequeue calls. �

Lemma 3.4. Consider an execution of S2(f, p) for some (f, p). Then, at any point in
the execution we have |Gi | ≤ 6q2 for all i . Furthermore, there are at most 6q2 queries
to both R.P, and R.P−1, and at most 1296q8 queries to R.Check.

Proof. We first show that |G7| ≤ 2q and |G8| ≤ 2q. Assignments G7(x7) := f (7, x7)
andG8(x8) := f (8, x8) only happen in two cases: either when the distinguisher directly
queries the corresponding value using F, or when the simulator completes a chain
(x1, x2, 1, �) which it dequeued. There can be at most q queries to F, and according
to Lemma 3.3 there are at most q such chains which are completed, which implies the
bound.
The setGi can only be enlarged by 1 in the following cases: if the distinguisher queries

F(i, ·), if a chain of the form (x1, x2, 1, �) is dequeued and not in CompletedChains, or
if a chain (x7, x8, 7, �) is dequeued and not in CompletedChains. There are at most q
events of the first kind, at most q events of the second kind (using Lemma 3.3), and at
most |G7| · |G8| ≤ 4q2 events of the last kind, giving a total of 2q + 4q2 ≤ 6q2.
A query to R.P or R.P−1 can be made either by the distinguisher, or by the simulator

when it completes a chain. At most q events of the first kind, and at most q +4q2 events
of the second kind are possible. Thus, at most 6q2 of these queries occur. The number
of Check queries by the simulator is bounded by |G1 ×G2 ×G13 ×G14| ≤ (6q2)4. �

Lemma 3.5. Consider an execution of S2(f, p) for some (f, p). Then the simulator
runs in time O(q8).

Proof. We first establish the following claims: (i) The total number of chains
that are dequeued and not in CompletedChains is at most 5q2. (ii) Any call to
enqueueNewChains runs in time O(q6) and in each such call Q.Enqueue is called

84 J.-S. Coron et al.

at most 216q6 times. (iii) The total number of calls to enqueueNewChains is at most
24q2. (iv) The total number of calls to Finner is at most q+14 ·6q2. (v) The total number
of calls to Q.Enqueue is at most 216 · 24q8.

To see (i), note that by Lemma 3.3, the number of chains of the form (x1, x2, 1, �)
that are dequeued and not in CompletedChains is at most q. Furthermore, the number
of chains of the form (x7, x8, 7, �) that are dequeued and not in CompletedChains is at
most |G7| · |G8| ≤ 4q2.
Part (ii) can be seen as follows: By Lemma 3.4, we have that for all i , |Gi | ≤ 6q2.

Thus for any i , the number of iterations in the forall loop of enqueueNewChains is at
most (6q2)3 = 216q6.
To see (iii), note that enqueueNewChains is called only in Finner, and as |Gi | ≤ 6q2

for all i and values of Gi are never overwritten, enqueueNewChains is called at most
4 · 6q2 times.
To prove item (iv), note that calls Finner only occur in procedures F,

EvaluateBackward, and EvaluateForward. The first case occurs at most q
times, as F is only queried by the distinguisher. Calls to EvaluateBackward and
EvaluateForward only occur in case a chain is dequeued and not in CompletedChains.
By (i), this occurs at most 6q2 times. In each of the four calls to EvaluateBackward
and EvaluateForward, Finner is called at most 14 times, and thus in total Finner is
called at most 4 ·14 ·6q2 times. Summing up gives that Finner is called at most q+336q2

times.
Finally, (v) follows as by (ii) and (iii).
We now bound the simulator’s running time. First note that each call to Adapt,

ForceVal, and Check runs in time O(1). By (v), at most 216 · 24q8 chains are ever
dequeued, and by (i) at most 5q2 of them are ever completed. Thus, the number of steps
within EvaluateBackward and EvaluateForward (excluding the steps within calls
to Finner) is bounded by O(q2), and the number of steps within F (excluding the steps
within Finner, EvaluateBackward and EvaluateForward) is bounded by O(q8).
By items (ii) and (iii), the total running time of enqueueNewChains is bounded by
O(q8). By (iv), the total running time of Finner (excluding the steps within calls to
enqueueNewChains) is bounded by O(q2). This implies that the simulator runs in
time O(q8). �

3.4. Equivalence of the First and the Second Scenarios

In this section, we show that for uniformly chosen (f, p) and any D, the probability that
D outputs 1 in scenario S2(f, p) differs only by

poly(q)
2n from the probability it outputs 1

in scenario S1. As a side-result, we will obtain that the simulator is efficient in S1 with
overwhelming probability. To show the first claim, we first note that clearly the simulator
can take the randomness from f without any change. Secondly, instead of the procedure
Check in the simulator S, we can imagine that the randompermutationP has a procedure
P.Check which is implemented exactly as in line 53 of S, and S.Check simply calls
P.Check. The following lemma states that such a system P is indistinguishable from
R as above, which we will use to prove our claim. The proof is neither surprising nor
particularly difficult.

Build an Ideal Cipher 85

Lemma 3.6. Consider a random permutation over 2n bits, to which we add the proce-
dure Check as in line 53 of the simulator S. Then, a distinguisher which issues at most
q ′ queries to either the random permutation or to the two-sided random function R has

advantage at most 6(q ′)2
22n

in distinguishing the two systems.

Throughout the proof, we will consider distinguishers that issue at most q ′ queries.
For the indistinguishability proof we will use four scenarios E1, . . . ,E4, where E1 will
correspond to D interacting with P, and E4 to D interacting with R. E2 and E3 are
intermediate scenarios.

Scenario E1: D interacts with P′(p), which is defined as follows: The proce-
dures P′.P and P′.P−1 are the same asR.P andR.P−1. The Check procedure
is defined as

1 public procedure P′(p).Check(x0, x1, x14, x15)
2 if (↓, x0, x1) ∈ P then return P(↓, x0, x1) = (x14, x15)
3 if (↑, x14, x15) ∈ P then return P(↑, x14, x15) = (x0, x1)
4 return P(x0, x1) = (x14, x15) //Note that the proc.P′.P is called!

Finally, p is the table of a uniform random permutation (i.e., p(↓, x0, x1) =
(x14, x15) if and only if p(↑, x14, x15) = (x0, x1)).

In E2, we introduce an alternative way to sample the random permutation.

Scenario E2: D interacts with P′′(p). In P′′, the procedure P′′.P is defined
as follows:

1 public procedure P′′.P(x0, x1)
2 if (↓, x0, x1) /∈ P then
3 (x14, x15) := p(↓, x0, x1)
4 if (↑, x14, x15) ∈ P then
5 (x14, x15) ←R {0, 1}2n \ {(x ′

14, x
′
15)|(↑, x ′

14, x
′
15) ∈ P}

6 P(↓, x0, x1) := (x14, x15)
7 P(↑, x14, x15) := (x0, x1)
8 return P(↓, x0, x1)

The procedure P′′.P−1 is defined analogously, i.e., picks (x0, x1) from p, and
replaces it in case (↓, x0, x1) ∈ P . The procedure Check is defined as in
P′.Check above. Finally, the entries of p are chosen uniformly at random
from {0, 1}2n .

We next replace the table p of the random permutation by a table that has uniform
random entries:

Scenario E3: D interacts with P′(p), where the entries of p are chosen
uniformly at random from {0, 1}2n .

Finally, we consider the experiment where D interacts with our two-sided random
function.

Scenario E4: D interacts with R(p), where the entries of p are chosen uni-
formly at random from {0, 1}2n .

86 J.-S. Coron et al.

The only difference between E3 and E4 is the change in the last line in the procedure
Check.
Our goal is to prove that the consecutive scenarios behave almost identically. We state

a lemma for each transition from Ei to Ei+1.
We first note that E1 corresponds to an interaction with P: If we let D interact with P

(adding a Check-procedure to P in the most standard way, i.e., as in the simulator S),
then this behaves exactly as E1.

Lemma 3.7. (Transition from E1 to E2) The probability that a fixed distinguisher
answers 1 in E1 equals the probability that it answers 1 in E2.

Proof. TheprocedureCheck is the same inboth scenarios. Furthermore, a distinguisher
can keep track of the table P and it is also the same in both scenarios, and so we only
need to consider the procedures P and P−1: the procedure Check could be a part of the
distinguisher.
Now, in both scenarios, the values chosen in the procedures P and P−1 are chosen

uniformly at random from the set of values that do not correspond to an earlier query.
Thus, E1 and E2 behave identically. �

Lemma 3.8. (Transition from E2 to E3) The probability that a fixed distinguisher

outputs 1 in E1 differs by at most
(q ′)2
22n

from the probability that it outputs 1 in E3.

This proof is very similar to the proof that a (one-sided) random permutation can be
replaced by a (one-sided) random function.

Proof. ConsiderE2 and letBadQuery be the event that in Pwe have (↑, x14, x15) ∈ P ,
or in P−1 we have (↓, x0, x1) ∈ P . We show that this event is unlikely and that the two
scenarios behave identically if BadQuery does not occur in E2.

There are at most q ′ queries to P or P−1 in an execution ofE2, since eachCheck query
issues at most one query to P. Observe that each table entry in p is accessed at most
once and thus each time p is accessed it returns a fresh uniform random value. Since for
each query there are at most q ′ values in P , and p contains uniform random entries, we

have Pr[BadQuery occurs in E2] ≤ (q ′)2
22n

. The scenarios E2 and E3 behave identically

if BadQuery does not occur. Thus,
∣
∣
∣Pr[D outputs 1 in E2] − Pr[D outputs 1 in E3]

∣
∣
∣ ≤

Pr p[BadQuery occurs in E2] ≤ (q ′)2
22n

. �

Lemma 3.9. (Transition from E3 to E4) The probability that a fixed distinguisher

outputs 1 in E3 differs by at most
5(q ′)2
22n

from the probability that it outputs 1 in E4.

Proof. The event BadCheck occurs for some p if P′.Check returns true in the last
line in E3 in an execution using p. The event BadOverwrite occurs for some p if
either in E3 or in E4, in any call to P or P−1, an entry of P is overwritten.8 The event

8 It would actually be sufficient to consider the scenario E3 here, but we can save a little bit of work by
considering both E3 and E4.

Build an Ideal Cipher 87

BadBackwardQuery occurs if in E3 there exist (x0, x1), (x∗
14, x

∗
15) such that all of the

following hold:

(i) The query P(x0, x1) is issued in the last line of a Check query, and P(↓, x0, x1)
is set to (x∗

14, x
∗
15) = p(↓, x0, x1).

(ii) After (i), the query P−1(x∗
14, x

∗
15), or the query Check(x0, x1, x∗

14, x
∗
15) is issued.

(iii) The query P(x0, x1) is not issued by the distinguisher between point (i) and point
(ii).

We show that these events are unlikely and that E3 and E4 behave identically if the
events do not occur for a given p.

For BadCheck to occur in a fixed call P′.Check(x0, x1, x14, x15), it must be that
(↓, x0, x1) /∈ P and (↑, x14, x15) /∈ P . Thus, in the call P(x0, x1) in the last line
of Check, P(↓, x0, x1) will be set to a fresh uniform random value p(↓, x0, x1),
and this value is returned by P. Therefore, the probability over the choice of p that
P(x0, x1) = (x14, x15) is at most 1

22n
. Since Check is called at most q ′ times, we see

that Pr p[BadCheck] ≤ q ′
22n

.
We now bound the probability that BadOverwrite occurs in E3. This only hap-

pens if a fresh uniform random entry read from p collides with an entry in P .
Since there are at most q ′ queries to P and P−1 and at most q ′ entries in P , we

get Pr p[BadOverwrite occurs in E3] ≤ (q ′)2
22n

. The same argument gives a bound on

BadOverwrite in E4, and so Pr p[BadOverwrite] ≤ 2(q ′)2
22n

.
We next estimate the probability of (BadBackwardQuery ∧ ¬BadCheck) in E3.

Consider any pairs (x0, x1), (x∗
14, x

∗
15) such that (i) holds. Clearly, since BadCheck

does not occur, the Check query returns false. Now, as long as none of the queries
P(x0, x1), P−1(x∗

14, x
∗
15) or Check(x0, x1, x∗

14, x
∗
15) is made by the distinguisher, the

value (x∗
14, x

∗
15) is distributed uniformly in the set of all pairs (x ′

14, x
′
15) for which

Check(x0, x1, x ′
14, x

′
15) was not queried. Thus, the probability that in a single query,

the distinguisher queries one of P−1(x∗
14, x

∗
15) or Check(x0, x1, x∗

14, x
∗
15) is at most

q ′
22n−q ′ ≤ 2q ′

22n
(assuming q ′ < 22n

2). Since there are at most q ′ Check queries, we find

Pr
p
[(BadBackwardQuery ∧ ¬BadCheck)] ≤ 2(q ′)2

22n
.

We proceed to argue that if the bad events do not occur, the two scenarios behave
identically. Thus, let p be a table such that none of BadCheck, BadBackwardQuery,
and BadOverwrite occurs.

We first observe that the following invariant holds in both E3 and E4: after any call to
P, P−1 or Check, if P(↓, x0, x1) = (x14, x15) for some values (x0, x1, x14, x15), then
P(↑, x14, x15) = (x0, x1), and vice versa. The reason is simply that no value is ever
overwritten in the tables, and whenever P(↑, ·, ·) is set, then P(↓, ·, ·) is also set.
Next, we argue inductively that for a p for which none of the bad events occur, all

queries and answers in E3 and E4 are the same.
For this, we start by showing that (assuming the induction hypothesis), if a triple

(↓, x0, x1) is in P in the scenario E4, then the triple is in P in E3 as well, and both have

88 J.-S. Coron et al.

the same image (x14, x15). This holds because of two reasons: First, in E4, each such
entry corresponds to an answer to a previously issued query to P or P−1. This query was
also issued inE3, and at that point the answer was identical, so that the entry P(↓, x0, x1)
was identical (this also holds if the response in E3 is due to the entry P(↑, x14, x15),
because we saw above that this implies P(↓, x0, x1) = (x14, x15)). Since the event
BadOverwrite does not occur, the property will still hold later. (We remark that entries
in the table P in E3 may exist which are not in E4.)
We now establish our claim that all queries and answers of the distinguisher in E3 and

E4 are the same.
Consider first a P-query P(x0, x1). If (↓, x0, x1) ∈ P in E4, the previous paragraph

gives the result for this query. If (↓, x0, x1) /∈ P in both E3 and E4, the same code is
executed. The only remaining case is (↓, x0, x1) ∈ P in E3 and (↓, x0, x1) /∈ P in E4.
The only way this can happen is if the query P(x0, x1) was invoked previously from a
query to Check in E3, in which case the same entry p(↓, x0, x1) was used to set P , and
we get the result.
Next, we consider a P−1-query P−1(x∗

14, x
∗
15). Again, the only non-trivial case is

if (↑, x∗
14, x

∗
15) ∈ P in E3 and (↑, x∗

14, x
∗
15) /∈ P in E4. This is only possible if

during some query to Check(x0, x1, ·, ·) in E3, the last line invoked P(x0, x1), and
(x∗

14, x
∗
15) = p(↓, x0, x1). Since it also must be that until now the distinguisher never

invoked P(x0, x1) (otherwise, P(↑, x∗
14, x

∗
15) = (x0, x1) in E4), this implies that the

event BadBackwardQuery must have happened.
Finally, consider a call Check(x0, x1, x14, x15) to Check. In case (↓, x0, x1) ∈ P in

E4 and in case (↓, x0, x1) /∈ P in E3, line 20 behaves the same in both E3 and E4. If
(↓, x0, x1) ∈ P in E3 and (↓, x0, x1) /∈ P in E4, then in E4, Check returns false. In
E3, Check can only return true if the event BadBackwardQuery occurs.

The second if statement in Check (in E4 this is line 21 of R) can only return false in
both E3 and E4: otherwise, the first if statement in Check (in E4 this is line 20 of R)
would already have returned true. This is sufficient, because the event BadCheck does
not occur, and so the last line of Check in both scenarios also returns false.

Thus,

∣
∣
∣Pr
p
[D outputs 1 in E3] − Pr

p
[D outputs 1 in E4]

∣
∣
∣

≤ Pr
p
[(BadCheck ∨ BadOverwrite ∨ BadBackwardQuery)]

≤ q ′

22n
+ 2(q ′)2

22n
+ 2(q ′)2

22n
≤ 5(q ′)2

22n
.

�

Proof of Lemma 3.6. Since E1 corresponds to an interaction with P, while E4 corre-
sponds to an interaction withR, Lemma 3.6 now follows immediately fromLemmas 3.7,
3.8, and 3.9 as

∣
∣
∣Pr[D outputs 1 in E1] − Pr[D outputs 1 in E4]

∣
∣
∣ ≤ (q ′)2

22n
+ 5(q ′)2

22n
≤ 6(q ′)2

22n
.

�

Build an Ideal Cipher 89

We are now able to prove that the simulator is efficient in S1 with overwhelming
probability.

Lemma 3.10. (Efficiency of the simulator) Consider an execution of S1. Then, with

probability at least 1 − 2·107·q16
22n

, the simulator runs for at most O(q8) steps and issues

at most 1400q8 queries to P.

Proof. By Lemmas 3.4 and 3.5, in S2(f, p) for uniform (f, p), there are at most
6q2 + 1296q8 ≤ 1400q8 queries to R(p), and the simulator runs in time r(q) ∈ O(q8)
for some function r .
Toward a contradiction suppose there exists a distinguisher D that issues at most q

queries such that in S1 the simulator runs for more than r(q) steps or makes more than

1400q8 queries to P, with probability larger than 2·107·q16
22n

. We define a new distinguisher
D′ that consists of D and the simulator together. D′ outputs 1 if and only if the simulator
takesmore than r(q) steps ormore than 1400q8 queries are issued byD and the simulator
(i.e., D′ stops and outputs 1 immediately before the 1400q8 + 1’st query is issued, so
that D′ never issues more than 1400q8 queries). Then D′ issues at most 1400q8 queries

and distinguishesR(p) from Pwith probability larger than 2·107·q16
22n

>
6(1400q8)2

22n
, which

contradicts Lemma 3.6. We conclude that such a distinguisher D cannot exist. �

Finally, this allows us to conclude that scenarios S1 and S2 can be distinguished only
with negligible probability.

Lemma 3.11. (Transition from S1 to S2) The probability that a fixed distinguisher

answers 1 in S1 differs at most by 4·107·q16
22n

from the probability that it answers 1 in
S2(f, p) for uniform random (f, p).

Proof. Toward a contradiction assume that there exists a distinguisher D that issues at

most q queries and distinguishes with probability larger than 4·107·q16
22n

. We now define a
distinguisher D′ for P and R(p) as follows: D′ consists of D and the simulator together.
D′ counts the total number of queries of both D and the simulator, and whenever the
query limit of 1400q8 queries is exceeded,D′ stops and outputs 1. Otherwise,D′ outputs
whateverD outputs. The query limit is never reached inS2 by Lemma 3.4, and inS1 this

occurs with probability at most 2·10
7·q16

22n
by Lemma 3.10. By definition,D′ issues at most

1400q8 queries. Clearly, D′ still distinguishes with probability at least (4−2)·107·q16
22n

. But
this contradicts Lemma 3.6, as the probability that D′ outputs 1 when interacting with

P differs by at least 2·107·q16
22n

>
6(1400q8)2

22n
from the probability that it outputs 1 when

interacting with R(p). Thus, such a D cannot exist. �

90 J.-S. Coron et al.

3.5. Equivalence of the Second and the Third Scenarios

This section contains the core of our argument: We prove Lemma 3.37, which states that
S2(f, p) and S3(h) have the same behavior for uniformly chosen (f, p) and h. We let
G = (G1, . . . ,G14) be the tuple of tables of the simulator T(f) in the execution.

3.5.1. Overview and Intuition

Bad events and good executions in S2(f, p) We will define the events BadP, BadlyHit,
and BadlyCollide, which should occur with small probability over the choice of (f, p)
in an execution of S2(f, p). Intuitively, the event BadP occurs if, when an entry of p
is read by the simulator, an unexpected collision with values in P or G occurs. The
event BadlyHit captures unexpected collisions produced by assignments of the form
Gi (x) := f (i, x), and the event BadlyCollide happens if after such an assignment two
chains that are defined byG and P suddenly lead to the same value, even though this was
not expected. Finally, we call (f, p) good if none of these events occur in an execution
of S2(f, p). We are going to prove that a randomly chosen pair (f, p) is good with high
probability (Lemma 3.22).

Properties of good executions in S2(f, p): No values are overwrittenWe will establish
the following property for executions of S2(f, p) for good (f, p).

(i) No call to ForceVal overwrites an entry. That is, for any call to ForceVal of the
form ForceVal(x, ·, �), we have x /∈ G� before the call. (Lemma 3.31)

Proving this requires a careful analysis of good executions and is one of our main
technical contributions. We now give a proof sketch.
A partial chain is a triple (xk, xk+1, k). Given a partial chain, e.g., (x3, x4, 3), it

may be possible to move “forward” or “backward” one step in the Feistel construction,
i.e., if x4 ∈ G4, we may obtain x5 = x3 ⊕ G4(x4), and if x3 ∈ G3, we may obtain
x2 = x4 ⊕ G3(x3). Entries in P may also allow such moves: for example, in case of a
partial chain (x0, x1, 0), moving backward is possible if (↓, x0, x1) ∈ P . We say that
two partial chains are equivalent if it is possible to reach one chain from the other by
moving forward and backward as described, given the tables G and P . Note that this
relation is not necessarily symmetric, as BadP may occur. We say that a partial chain
is table-defined if it is possible to move both one step backward and one step forward
using G and P . Intuitively, this just means that the two values that describe the partial
chain are in the tables G, P .

Now suppose (f, p) is good. Then, as BadP does not occur, at any point in the
execution equivalence between partial chains is an equivalence relation (Lemma 3.23).
Next,we show that the equivalence relation among table-defined chains persists: If two

partial chainsC and D are table-defined, then assignments of the form Gi (x) := f (i, x)
and assignments to P in R do not change the equivalence relation between C and D
(Lemma 3.25). Furthermore, calls to ForceVal do not change this equivalence relation,
given that the buffer rounds (namely rounds 3 and 6 or 9 and 12) around the adapt zones
(see Fig. 2) are still undefined when Adapt is called (Lemma 3.26(c)).
Next we show that indeed the buffer rounds are still undefined when Adapt is called:

We first show that they are undefined when a chain is enqueued for which no equivalent
chain was enqueued previously (Lemma 3.29), and then, using that the equivalence

Build an Ideal Cipher 91

relation among chains persists, we show that they are still undefined when the chain is
dequeued (Lemma 3.30). The proof of the latter crucially relies on the fact that the event
BadlyCollide does not occur.

Finally, we conclude (i) as follows: As the buffer rounds around the adapt zones are
still undefined when Adapt is called, the calls to ForceVal do not overwrite a value,
as otherwise BadlyHit would occur (Lemma 3.26(a)).

Further properties of good executions in S2(f, p) We say that the distinguisher com-
pletes all chains if for each query to P(x0, x1) or (x0, x1) = P−1(x14, x15) by the
distinguisher, it issues the corresponding Feistel queries to F in the end of the execution
(i.e., it emulates a call to EvaluateForward(x0, x1, 0, 14)). We may assume that the
distinguisher completes all chains: This multiplies the number of queries at most by a
factor of 15, and themodified distinguisher achieves at least the advantage of the original
distinguisher.
For such a modified distinguisher, (i) implies the following properties for good (f, p):

(ii) At the end of an execution of S2(f, p), for any table entry P(↓, x0, x1) =
(x14, x15), emulating an evaluation of the Feistel construction on x0, x1 using the
tables G also yields (x14, x15). The analogous statement holds for P(↑, x14, x15).
(Lemma 3.32)

(iii) The number of calls to Adapt equals the number of queries to p(·, ·, ·) made by
the two-sided random function. (Lemma 3.33)

It is intuitive that (ii) holds: As the distinguisher completes all chains, by (i) no values
are ever overwritten, and BadP does not occur, it follows that for each query to p there
will be a chain completion. Furthermore, the values corresponding to this chain will not
be changed afterward. To prove (iii), we will give a one-to-one mapping betweenAdapt
calls and queries to p.

Mapping randomness of S2 to randomness of S3 Our final goal is to prove that S2(f, p)
for random (f, p) and S3(h) for random h cannot be distinguished. For this, we give a
map τ that maps pairs (f, p) to tables h as follows. If (f, p) is good, run a simulation
of S2(f, p) in which the distinguisher completes all chains. Consider the tables G at
the end of this execution, and for any i and x let h(i, x) := Gi (x) in case x ∈ Gi , and
h(i, x) := ⊥ otherwise. If (f, p) is not good, let τ(f, p) := λ. Now (i) and (ii) allow us
to show that S2(f, p) behaves exactly as S3(τ (f, p)) for good (f, p), in the sense that
all queries and answers to f (or h) by the simulator, and all queries and answers to R
(or �) are identical in both scenarios (Lemma 3.35).
Finally, using (iii) we can argue that the distribution τ(f, p) for random (f, p) is

close to uniform, if the ⊥ entries of τ(f, p) are replaced by uniform random entries.
This implies that S2 and S3 cannot be distinguished (Lemma 3.37).

3.5.2. Partial Chains

Evaluating Partial Chains A partial chain is a triple (xk, xk+1, k) ∈ {0, 1}n×{0, 1}n×
{0, . . . , 14}. Given such a partial chain C , and a set of tables T.G and R.P , it can be
that we can move “forward” or “backward” one step in the Feistel construction. This is
captured by the functions next and prev. Additionally, the functions val+ and val− allow

92 J.-S. Coron et al.

us to access additional values of the chain indexed by C , val+ by invoking next, and
val− by invoking prev. The function val finally gives us the same information in case
we do not want to bother about the direction.

Definition 3.12. Fix a set of tablesG = T.G and P = R.P in an execution ofS2(f, p).
Let C = (xk, xk+1, k) be a partial chain. We define the functions next, prev, val+, val−,
and val with the following procedures (for a chain C = (xk, xk+1, k), we let C[1] = xk ,
C[2] = xk+1 and C[3] = k):

1 procedure next(xk, xk+1, k):
2 if k < 14 then
3 if xk+1 /∈ Gk+1 then return ⊥
4 xk+2 := xk ⊕ Gk+1(xk+1)

5 return (xk+1, xk+2, k + 1)
6 else if k = 14 then
7 if (↑, x14, x15) /∈ P then return ⊥
8 (x0, x1) := P(↑, x14, x15)
9 return (x0, x1, 0)

10

11 procedure prev(xk, xk+1, k):
12 if k > 0 then
13 if xk /∈ Gk then return ⊥
14 xk−1 := xk+1 ⊕ Gk(xk)
15 return (xk−1, xk, k − 1)
16 else if k = 0 then
17 if (↓, x0, x1) /∈ P then return ⊥
18 (x14, x15) := P(↓, x0, x1)
19 return (x14, x15, 14)
20

21 procedure val+i (C)

22 while (C �= ⊥) ∧ (C[3] /∈ {i − 1, i}) do
23 C := next(C)

24 if C = ⊥ then return ⊥
25 if C[3] = i then return C[1] else return C[2]
26

27 procedure val−i (C)

28 while (C �= ⊥) ∧ (C[3] /∈ {i − 1, i}) do
29 C := prev(C)

30 if C = ⊥ then return ⊥
31 if C[3] = i then return C[1] else return C[2]
32

33 procedure vali (C)

34 if val+i (C) �= ⊥ return val+i (C) else return val−i (C)

We use the convention that ⊥ /∈ Gi for any i ∈ {1, . . . , 14}. Thus, the expression
vali (C) /∈ Gi means that vali (C) = ⊥ or that vali (C) �= ⊥ and vali (C) /∈ Gi . Further-

Build an Ideal Cipher 93

more, even though next and prev may return ⊥, according to our definition of partial
chains, ⊥ is not a partial chain.
Equivalent Partial Chains We use the concept of equivalent partial chains:

Definition 3.13. For a given set of tables G and P , two partial chains C and D are
equivalent (denoted C ≡ D) if they are in the reflexive transitive closure of the relations
given by next and prev.

In other words, two partial chains C and D are equivalent if C = D, or if D can be
obtained by applying next and prev finitely many times on C .
Note that this relation is not an equivalence relation, since it is not necessarily symmet-

ric.9 However, wewill prove that formost executions ofS2(f, p) it actually is symmetric
and thus an equivalence relation. Furthermore, it is possible that two different chains
(x0, x1, 0) and (y0, y1, 0) are equivalent (e.g., by applying next 15 times). While we
eventually show that for most executions of S2(f, p) this does not happen, this is not
easy to show, and we cannot assume it for most of the following proof.
3.5.3. Bad Events and Good Executions

As usual in indistinguishability proofs, for some pairs (f, p) the scenario S2(f, p) does
not behave as “it should.” In this section, we collect events which we show later to occur
with low probability. We later study S2(f, p) for pairs (f, p) for which these events do
not occur.
All events occur if some unexpected collision happens to one of the partial chains

which can be defined with elements of G1, . . . ,G14 and P .

Definition 3.14. The set of table-defined partial chains contains all chainsC for which
next(C) �= ⊥ and prev(C) �= ⊥.

If C = (xk, xk+1, k) for k ∈ {1, . . . , 13}, then C is table-defined if and only if xk ∈ Gk

and xk+1 ∈ Gk+1. For k ∈ {0, 14}, C is table-defined if the “inner” value is in G1 or
G14, respectively, and a corresponding triple is in P .
Hitting Permutations Whenever we call the two-sided random function, a query to the
table p may occur. If such a query has unexpected effects, the event BadP occurs.

Definition 3.15. The event BadP occurs in an execution of S2(f, p) if immediately
after a call (x14, x15) := p(↓, x0, x1) in line 7 of R we have one of

• (↑, x14, x15) ∈ P ,
• x14 ∈ G14.

Also, it occurs if immediately after a call (x0, x1) := p(↑, x14, x15) in line 14 of R we
have one of

9 The symmetry can be violated if in the two-sided random functionR an entry of the table P is overwritten.

94 J.-S. Coron et al.

• (↓, x0, x1) ∈ P ,
• x1 ∈ G1.

If BadP does not occur, then we will be able to show that evaluating P and P−1 is a
bijection, since no value is overwritten.

Chains Hitting Tables Consider an assignment Gi (xi) := f (i, xi) and a partial chain
C that is table-defined after this assignment. Unless something unexpected happens,
such an assignment allows evaluating next(C) at most once more.

Definition 3.16. The event BadlyHit occurs if one of the following happens in an
execution of S2(f, p):

• After an assignment Gk(xk) := f (k, xk) there is a table-defined partial chain
(xk, xk+1, k) such that prev(prev(xk, xk+1, k)) �= ⊥.

• After an assignment Gk(xk) := f (k, xk) there is a table-defined partial chain
(xk−1, xk, k − 1) such that next(next(xk−1, xk, k − 1)) �= ⊥.

Furthermore, if the above happens for some partial chain C , and C ′ is a partial chain
equivalent to C before the assignment, we say that C ′ badly hits the tables.
To illustrate the definition, we give two examples. First, the event BadlyHit occurs

if x1 ∈ G1, the assignment G2(x2) := f (2, x2) occurs, and just after that we have
x3 := x1 ⊕ G2(x2) ∈ G3(x3). Clearly (x1, x2, 1) is table-defined after the assignment,
next(x1, x2, 1) = (x2, x3, 2), and next(x2, x3, 2) �= ⊥ because x3 ∈ G3. Second, the
event BadlyHit occurs if x2 ∈ G2, the assignment G1(x1) := f (1, x1) occurs, and just
after that we have for x0 := G1(x1)⊕x2 that (↓, x0, x1) ∈ P. Clearly (x1, x2, 1) is table-
defined after the assignment, prev(x1, x2, 1) = (x0, x1, 0), and prev(x0, x1, 0) �= ⊥
because (↓, x0, x1) ∈ P.
We will later argue that the eventBadlyHit is unlikely, because a chain only badly hits

the tables if f (k, xk) takes a very particular value. For this (and similar statements), it is
useful to note that the set of table-defined chains after an assignmentGk(xk) := f (k, xk)
does not depend on the value of f (k, xk), as the reader can verify.

Colliding Chains Two chains C and D collide if after an assignment suddenly
vali (C) = vali (D), even though this was not expected. More exactly:

Definition 3.17. The event BadlyCollide occurs in an execution of S2(f, p), if for an
assignment of the form Gi (xi) := f (i, xi) there exist two partial chains C and D such
that for some � ∈ {0, . . . , 15} and σ, ρ ∈ {+,−} all of the following happen:

• Before the assignment, C and D are not equivalent.
• Before the assignment, valσ� (C) = ⊥ or valρ� (D) = ⊥.
• After the assignment, valσ� (C) = valρ� (D) �= ⊥.
• After the assignment, C and D are table-defined.

Finally, we say that a pair (f, p) is good if none of the above three events happen in
an execution of S2(f, p).

Build an Ideal Cipher 95

To illustrate the above definition, we give three examples. In all of these, we assume
that the tables G and P only contain the values we explicitly mention.
In the first example, suppose (x1, x3, x4) ∈ G1 × G3 × G4, the assignment G2(x2) :=
f (2, x2) occurs, and just after this assignment, we have x1 ⊕ G2(x2) = x3. In this case
the event BadlyCollide occurs for the given assignment and the chains C = (x1, x2, 1),
D = (x3, x4, 3): before the assignment, C and D are not equivalent because
next(x1, x2) = ⊥, and val+3 (C) = ⊥, val−3 (D) = x3. After the assignment C and
D are table-defined, and val+3 (C) = val−3 (D) = x3. (In this case, C and D are actually
equivalent after the assignment.)
For the second example, suppose (x1, x4, x5) ∈ G1 × G4 × G5, let x3 := G4(x4) ⊕ x5,
the assignment G2(x2) := f (2, x2) occurs, and just after this assignment we have
x1 ⊕G2(x2) = x3. In this case the event BadlyCollide occurs for the given assignment
and the chains C = (x1, x2, 1), D = (x4, x5, 4): before the assignment, C and D are
not equivalent because next(x1, x2) = ⊥, and val+3 (C) = ⊥, val−3 (D) = x3. After the
assignment C and D are table-defined, and val+3 (C) = val−3 (D) = x3. (In this case, C
and D are not equivalent after the assignment.)
In the third example, let x1, x ′

1, x0, x
′
0 be such that x1 �= x ′

1 and x0 �= x ′
0. Sup-

pose x1 ∈ G1, (↓, x0, x1), (↓, x ′
0, x

′
1) ∈ P, let x2 := x0 ⊕ G1(x1), the assignment

G1(x ′
1) := f (1, x ′

1) occurs, and just after this assignment we have x ′
0 ⊕ G1(x ′

1) = x2.
In this case the event BadlyCollide occurs for the given assignment and the chains
C = (x0, x1, 0), D = (x ′

0, x
′
1, 0): before the assignment, C and D are not equivalent

and val+2 (C) = x2, val
+
2 (D) = ⊥. After the assignment C and D are table-defined,

and val+2 (C) = val+2 (D) = x2. (Also in this case, C and D are not equivalent after the
assignment.)

3.5.4. Bad Events are Unlikely

In this subsection, we show that all the bad events we have introduced are unlikely.

Hitting Permutations We first show that the event BadP is unlikely.

Lemma 3.18. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables
satisfy |Gi | ≤ T for all i and |P| ≤ T at any point in the execution. Then, the probability

over the choice of (f, p) of the event BadP is at most 2T 2

2n .

Proof. For any query to p, only 2 events are possible. In both cases, these events have
probability at most T

2n . Since at most T positions of p can be accessed without violating
|P| ≤ T we get the claim. �

Chains Hitting Tables We now show that the event BadlyHit is unlikely.

Lemma 3.19. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables
satisfy |Gi | ≤ T for all i and |P| ≤ T at any point in the execution. Then, the probability

over the choice of (f, p) of the event BadlyHit is at most 30 T 3

2n .

Proof. We first bound the probability of the first event, i.e., that after the assign-
ment Gk(xk) := f (k, xk), there is a table-defined chain C = (xk, xk+1, k) such that

96 J.-S. Coron et al.

prev(prev(C)) �= ⊥. This can only happen if xk+1 ⊕ Gk(xk) has one of at most T dif-
ferent values (namely, it has to be in Gk−1 in case 14 ≥ k ≥ 2 or in P together with x1
in case k = 1). Thus, for fixed xk+1 ∈ Gk+1, the probability that prev(prev(C)) �= ⊥
is at most T/2n . Since there are at most T possible choices for xk+1 (this also holds if
k = 14) the total probability is at most T 2/2n .
The analogous probability for next is exactly the same and thus the probability of

BadlyHit for one assignment is at most 2 · T 2/2n . In total, there are at most 14 · T
assignments of the form Gk(xk) := f (k, xk), and thus the probability of BadlyHit is at
most 28T 3/2n . �

Colliding Chains We next show that it is unlikely that chains badly collide. First, we
give a useful lemma which explains how the chains behave when they do not badly hit
G: for each σ ∈ {+,−}, at most one value valσi (C) can change from ⊥ to a different
value.

Lemma 3.20. Consider a set of tables G and P, xk /∈ Gk, fix a partial chain C, and
suppose that C does not badly hit the tables due to the assignment Gk(xk) := f (k, xk),
and C is table-defined after the assignment. Then, for each σ ∈ {+,−} there is at most
one value i such that valσi (C) differs after the assignment from before the assignment.
Furthermore, if some value changes, then it changes from ⊥ to a different value, and

i =
{

k + 1 if σ = +
k − 1 if σ = −,

and valσk (C) = xk before the assignment.

Proof. We give the proof for σ = +, the other case is symmetric. First, we see that
if val+i (C) �= ⊥ before the assignment, then it does not change due to the assignment.
This follows by induction on the number of calls to next in the evaluation of val+, and
by noting that Gk(xk) := f (k, xk) is not called if xk ∈ Gk in the simulator.
Thus, suppose that val+i (C) = ⊥. This means that during the evaluation of val+i (C)

at some point the evaluation stopped. This was either because a queried triple was not
in P , or because a value x j was not in G j during the evaluation. In the first case, the
evaluation of val+i (C) will not change due to an assignment to Gk(xk). In the second
case, the evaluation can only change if it stopped because val+k (C) = xk . Then after the
assignment, val+k+1(C) will change from ⊥ to a different value. Since C is table-defined
after the assignment and does not badly hit the tables under the assignment, val+k+1(C) /∈
Gk+1 after this assignment (in case k + 1 < 15), and (↑, val+14(C), val+15(C)) /∈ P (in
case k + 1 = 15). Thus, there is only one change in the evaluation. �

Instead of showing that BadlyCollide is unlikely, it is slightly simpler to consider the
event (BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP).

Lemma 3.21. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables
satisfy |Gi | ≤ T for all i and |P| ≤ T at any point in the execution. Then, the probability

of the event (BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) is at most 17 000 T 5

2n .

Build an Ideal Cipher 97

Proof. If the event (BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) happens for a pair (f, p),
then there is some point in the execution where some assignment Gk(xk) := f (k, xk)
makes a pair (C, D) of partial chains collide as in Definition 3.17. After this assignment,
both (C, D) are table-defined, and valσ� (C) = valρ� (D).

We distinguish some cases: first suppose that val−� (C) = val−� (D) = ⊥ before the
assignment, and val−� (C) = val−� (D) �= ⊥ after the assignment. Since BadlyHit does
not happen, Lemma 3.20 implies that before the assignment, val−�+1(C) = val−�+1(D),
and furthermore � + 1 ∈ {1, . . . , 14}. Also, since C �≡ D before the assignment, it
must be that before the assignment val−�+2(C) �= val−�+2(D). However, this implies that
val−� (C) �= val−� (D) after the assignment. Therefore, this case is impossible and has
probability 0.
Next, we consider the case val−� (C) = ⊥, val−� (D) �= ⊥ before the assignment, and

val−� (C) = val−� (D) after the assignment. Since D is table-defined after the assign-
ment, and we assume BadlyHit does not occur, by Lemma 3.20 the value val−� (D)

does not change due to the assignment. Since val−� (C) = val−�+2(C) ⊕ G�+1(x�+1),
and G�+1(x�+1) is chosen uniformly at random, the probability that it exactly matches
val−� (D) is 2−n .
The next two cases are similar to the previous ones, we give them for completeness.

The first of these two is that val+� (C) = val−� (D) = ⊥ before the assignment, and
val+� (C) = val−� (D) �= ⊥ after the assignment. However, due to Lemma 3.20 this is
impossible: we would need both k = � + 1 and k = � − 1 for both values to change as
needed.
Then, we have the case that ⊥ = val+� (C) �= val−� (D) before the assignment, and

val+� (C) = val−� (D) after the assignment. Again, val−� (D) does not change by the
assignment byLemma3.20, and also similarly to before, the probability that val+�−2(C)⊕
f (� − 1, val−�−1(C)) = val+� (D) is 2−n .
Bounds on the probability of the 4 remaining cases follow by symmetry of the con-

struction.
There are 4 possibilities for the values of σ and ρ. As previously, there can be at most

14 · T assignments of the form Gk(xk) := f (k, xk). For each assignment, there are at
most 15 ·T 2 possibilities for a chain to be table-defined before the assignment. Since the
chains that are table-defined after the assignment, but not before must involve xk , there
are at most 2 · T possibilities for a fixed assignment. Thus the probability of the event

(BadlyCollide ∧ ¬BadlyHit ∧ ¬BadP) is at most 4·14·T ·(15·T 2+2·T)2

2n ≤ 4·14·172·T 5

2n . �

Most Executions are Good We collect our findings in the following lemma:

Lemma 3.22. Suppose for some T ∈ N, S2(f, p) is such that for any (f, p) the tables
satisfy |Gi | ≤ T for all i and |P| ≤ T at any point in the execution. Then, the probability

that a uniform randomly chosen (f, p) is not good is at most 18 000 · T 5

2n .

Proof. This follows immediately from Lemmas 3.18, 3.19, and 3.21. �

98 J.-S. Coron et al.

3.5.5. Properties of Good Executions

We now study executions of S2(f, p) with good pairs (f, p). One of the main goals of
this section is to prove Lemma 3.31, which states that no call to ForceVal overwrites a
previous entry. However, we later also use Lemma 3.32 (in good executions, evaluating
the Feistel construction for a pair (x0, x1) leads to P(x0, x1)—if not, it would be silly to
hope that our simulator emulates a Feistel construction), and Lemma 3.33 (the number
of times Adapt is called in T(f) is exactly the same as the number of times the table p
is queried in R(p)).
We first state two basic lemmas about good executions:

Lemma 3.23. Consider an execution of S2(f, p) with a good pair (f, p). Then, we
have:

(a) For any partial chain C, if next(C) = ⊥ before an assignment Gi (xi) := f (i, xi)
or a pair of assignments to P inR, then if C is table-defined after the assignment(s),
next(next(C)) = ⊥.
For any partial chain C, if prev(C) = ⊥ before an assignment Gi (xi) := f (i, xi)
or a pair of assignments to P inR, then if C is table-defined after the assignment(s),
prev(prev(C)) = ⊥.

(b) For all partial chains C and D, we have next(C) = D ⇐⇒ prev(D) = C.
(c) The relation ≡ between partial chains is an equivalence relation.

Proof. For assignments of the form Gi (xi) := f (i, xi), (a) follows directly since
BadlyHit does not occur. For the assignments to P, it follows because BadP does not
occur.
The statement (b) is trivial for chains C = (xk, xk+1, k) with k ∈ {0, . . . , 13}, since

evaluating the Feistel construction one step forward or backward is bijective. For k = 14
we get (b) because BadP does not occur: no value is ever overwritten in a call to P or
P−1, and thus evaluating P and P−1 is always bijective.
To see (c), observe that the relation ≡ is symmetric because of (b), and it is reflexive

and transitive by definition. �

Lemma 3.24. Consider an execution ofS2(f, p)with a good pair (f, p). Suppose that
at any point in the execution, two table-defined chains C and D are equivalent. Then,
there exists a sequence of partial chains C1, . . . ,Cr , r ≥ 1, such that

• C = C1 and D = Cr , or else D = C1 and C = Cr ,
• Ci = next(Ci−1) and Ci−1 = prev(Ci),
• and each Ci is table-defined.

Proof. SinceC ≡ D, D can be obtained fromC by applying next and prev finitelymany
times. A shortest such sequence can only apply either next or prev, due to Lemma 3.23
(b). The resulting sequence of chains is the sequence we are looking for (possibly
backwards)—note that the last bullet point also follows by Lemma 3.23 (b). �

We first show that assignments Gi (xi) := f (i, xi) and also assignments to P in R do
not change the equivalence relation for chains which were defined before.

Build an Ideal Cipher 99

Lemma 3.25. Consider an execution of S2(f, p) with a good pair (f, p). Let C and
D be two table-defined partial chains at some point in the execution. Suppose that after
this point, there is an assignment Gi (xi) := f (i, xi) or a pair of assignments to P in R.
Then C ≡ D before the assignment(s) if and only if C ≡ D after the assignment(s).

Proof. Suppose that C ≡ D before the assignment. We apply Lemma 3.24 to get a
sequence C1, . . . ,Cr of table-defined chains. This sequence still implies equivalence
after the assignment, since no value in P or G can be overwritten by one of the assign-
ments considered (recall thatBadP does not occur), i.e., the conditions ofDefinition 3.13
still hold if they held previously, thus C ≡ D after the assignment(s).
Now suppose that C and D are equivalent after the assignment. Again consider the

sequence C1, . . . ,Cr as given by Lemma 3.24. Suppose first that the assignment was
Gi (xi) := f (i, xi). If xi was not part of any chain, thenC1, . . . ,Cr are a sequence which
show the equivalence of C and D before the assignment. Otherwise, there is j such that
the chainsC j−1 andC j have the formC j−1 = (xi−1, xi , i−1) andC j = (xi , xi+1, i). It
is not possible that C j = Cr , as C j is not table-defined before the assignment. After the
assignment next(next(C j−1)) �= ⊥ which is impossible by Lemma 3.23 (a). Suppose
now we have a pair of assignments to P , mapping (x0, x1) to (x14, x15). If (x14, x15, 14)
is not part of the sequence connecting C and D after the assignment, the same sequence
shows equivalence before the assignment. Otherwise, next(next(x14, x15, 14)) = ⊥ by
Lemma 3.23 (a), as before. �

Next, we show that calls to ForceVal also do not change the equivalence relation
for previously defined chains. Also, they never overwrite a previously defined value.
However, we only show this under the assumption x�−1 /∈ G�−1 and x�+2 /∈ G�+2.
Later, we will see that this assumption is safe.

Lemma 3.26. Consider an execution of S2(f, p) with a good pair (f, p). Let � ∈
{4, 10} and suppose that for a callAdapt(x�−2, x�−1, x�+2, x�+3, �) it holds that x�−1 /∈
G�−1 and x�+2 /∈ G�+2 before the call.
Then, the following properties hold:

(a) For both calls ForceVal(x, ·, j) we have x /∈ G j before the call.
(b) Let C be a table-defined chain before the call to Adapt, i ∈ {1, . . . , 14}. Then,

vali (C) stays constant during both calls to ForceVal.
(c) If the chains C and D are table-defined before the call to Adapt, then C ≡ D

before the calls to ForceVal if and only if C ≡ D after the calls to ForceVal.

Proof. Before Adapt is called, EvaluateForward and EvaluateBackward make
sure that all the values x�−1, x�−2, . . . , x0, x15, . . . , x�+3, x�+2 corresponding to
(x�−2, x�−1, �−2) are defined in P andG. By Lemma 3.23 (b), all partial chains defined
by these values are equivalent to (x�−2, x�−1, �−2). Furthermore, since x�−1 /∈ G�−1 and
x�+2 /∈ G�+2, these are the only partial chains that are equivalent to (x�−2, x�−1, � − 2)
at this point.
By our assumption, x�−1 /∈ G�−1 and x�+2 /∈ G�+2, and thus the procedure Adapt

defines G�−1(x�−1) := f (� − 1, x�−1) and G�+2(x�+2) := f (� + 2, x�+2). These

100 J.-S. Coron et al.

assignments lead to x� /∈ G� and x�+1 /∈ G�+1, as otherwise the event BadlyHit would
occur. This shows (a).
We next show (b), i.e., for any C the values vali (C) stay constant. For this, note first

that this is true for table-defined chainsC that are equivalent to (x�−2, x�−1, �−2) before
the call to Adapt: vali gives exactly xi both before and after the calls to ForceVal.
Now consider the table-defined chains that are not equivalent to (x�−2, x�−1, � − 2)

before the call to Adapt. We show that for such a chain C , even val+i (C) and val−i (C)

stay constant, as otherwiseBadlyCollidewould occur. A value valσi (C) can only change
during the execution of ForceVal(x�, ·, �) if valσ� (C) = x�. But this implies that
the assignment G(x�−1) := f (� − 1, x�−1) in Adapt made the two partial chains
C and (x�−2, x�−1, � − 2) badly collide. For this, note that C is table-defined even
before the assignment, since it was table-defined before the call to Adapt. More-
over, (x�−2, x�−1, � − 2) is table-defined after the assignment. The argument for
ForceVal(x�+1, ·, � + 1) is the same. Thus, this establishes (b).

We now show (c). First, suppose that C ≡ D before the calls to ForceVal. The
sequence of chains given by Lemma 3.24 is not changed during the calls to ForceVal,
since by (a), no value is overwritten. Thus, the chains are still equivalent after the calls.
Now suppose that C ≡ D after the calls to ForceVal. As by Lemma 3.23 (c), ≡

is symmetric, we may distinguish the following two cases. In the first case, C and D
are equivalent to (x�−2, x�−1, � − 2). By definition of Adapt, the only partial chains
equivalent to (x�−2, x�−1, � − 2) after the Adapt call are the partial chains with the
values x0, x1, . . . , x14, x15 corresponding to (x�−2, x�−1, �− 2). Only the partial chains
on the values x�−2, . . . , x0, x15, . . . , x�+3 were table-defined before the call to Adapt,
and as we observed in the first paragraph, these chains were equivalent before the calls
to ForceVal.

In the second case, C and D are not equivalent to (x�−2, x�−1, �− 2). Let C1, . . . ,Cr

be the sequence given by Lemma 3.24. If C and D were not equivalent before the calls
to ForceVal, there is i such that before the call, Ci was table-defined, but Ci+1 was
not. Then, val+(Ci) changes during a call to ForceVal, contradicting the proof of (b).
Thus, the chains must have been equivalent before the calls. �

Equivalent chains are put into CompletedChains simultaneously:

Lemma 3.27. Suppose that (f, p) is good. Fix a point in the execution ofS2(f, p), and
suppose that until this point, for no call to ForceVal of the form ForceVal(x, ·, �) we
had x ∈ G� before the call. Suppose that at this point C = (xk, xk+1, k) with k ∈ {1, 7}
and D = (ym, ym+1,m) with m ∈ {1, 7} are equivalent. Then, C ∈ CompletedChains
if and only if D ∈ CompletedChains.

Proof. We may assume k = 1. We first show that the lemma holds right after C was
added to CompletedChains. Since the chain was just adapted, and using Lemma 3.23 (b),
the only chains which are equivalent to C are those of the form (vali (C), vali+1(C), i).
Thus both C and D are added to CompletedChains, and D is the only chain with index
m = 7 that is equivalent to C .

Now, the above property can only be lost if the event BadP occurs or else if a value
is overwritten by ForceVal. Thus, we get the lemma. �

Build an Ideal Cipher 101

If the simulator detects a chain (x7, x8, 7) for which val+ is defined for sufficiently
many values, a chain equivalent to it was previously enqueued:

Lemma 3.28. Consider an execution of S2(f, p) with a good pair (f, p). Suppose
that at some point, a chain C = (x7, x8, 7) is enqueued for which val+2 (C) ∈ G2 or
val−13(C) ∈ G13. Then, there is a chain equivalent to C which was previously enqueued.

Proof. We only consider the case val+2 (C) ∈ G2, the other case is symmetric. Define
(x0, x1, x2, x13, x14, x15) :=(val+0 (C), val+1 (C), val+2 (C), val+13(C), val+14(C), val+15(C)).
All these must be different from ⊥, since otherwise val+2 (C) = ⊥.

At some point in the execution, all the following entries are set in their respective
hashtables: G1(x1),G2(x2),G13(x13),G14(x14), and P(↑, x14, x15). The last one of
these must have been G2(x2) or G13(x13): if it was P(↑, x14, x15), then the event BadP
must have happened. If it was G1(x1), then the event BadlyHit must have happened (as
(x0, x1, 0) is table-defined after the assignment). Analogously, G14(x14) cannot have
been the last one. Thus, since G2(x2) or G13(x13) was defined last among those, the
simulator will detect the chain and enqueue it. �

If a chainC is enqueued for which previously no equivalent chain has been enqueued,
then the assumptions of Lemma 3.26 actually do hold in good executions. The following
two lemmas state that these assumptions hold at the moment the chains are enqueued
(this is captured by Lemma 3.29), and then that they still hold when the chains are
dequeued (this is captured by Lemma 3.30).

Lemma 3.29. Consider an execution of S2(f, p) with a good pair (f, p). Let C be
a partial chain which is enqueued in the execution at some time and to be adapted at
position �. Suppose that at the moment the chain is enqueued, no equivalent chain has
been previously enqueued.
Then, before the assignment Gk(xk) := f (k, xk) happens which just precedesC being

enqueued, val�−1(C) = ⊥ and val�+2(C) = ⊥.

Proof. We have � ∈ {4, 10}. We will assume � = 4, and due to symmetry of the
construction, this also implies the lemma in case � = 10 for the corresponding rounds.

The assignment sets either the value of G7(x7) or G2(x2) uniformly at random (oth-
erwise, enqueueNewChains is not called in the simulator). Consider first the case that
G2(x2) was just set. Then, before this happened, val

+
3 (C) = ⊥, since x2 /∈ G2. Further-

more, val−6 (C) = ⊥, since otherwise, val−7 (C) ∈ G7, and then (val−7 (C), val−8 (C), 7)
would be an equivalent, previously enqueued chain. This implies the statement in case
G2(x2) is just set. The second case is ifG7(x7)was just set. Then, before the assignment,
val−6 (C) = ⊥, as x7 /∈ G7, and val

+
3 (C) = ⊥, since otherwise val+2 (C) ∈ G2 and so an

equivalent chain would have been previously enqueued, according to Lemma 3.28. �

Lemma 3.30. Consider an execution of S2(f, p) with a good pair (f, p). Let C be
a partial chain which is enqueued in the execution at some time and to be adapted at
position �. Then, either (i) or (ii) holds:

(i) At the moment C is dequeued, we have C ∈ CompletedChains.

102 J.-S. Coron et al.

(ii) At the moment C is dequeued, we have C /∈ CompletedChains, and just before the
call to Adapt for C, we have (val�−1(C) /∈ G�−1) ∧ (val�+2(C) /∈ G�+2).

Proof. Suppose that the lemma is wrong, and let C be the first chain for which it fails.
Because this is the first chain for which it fails, Lemma 3.26(a) implies that until the
moment C is dequeued, no call to ForceVal overwrote a value. Now, consider the set
C of table-defined chains at some point in the execution that is not in anAdapt call, and
before C is dequeued. Because of Lemmas 3.25 and 3.26(c), the equivalence relation
among chains in C stays constant from this point until the moment C is dequeued.
We distinguish two cases to prove the lemma. Consider first the case that at the

moment C is enqueued, an equivalent chain D was previously enqueued. The point in
the execution where C is enqueued is clearly not in an Adapt call, and both C and D
are table-defined. Then, at the moment C is dequeued, clearly D ∈ CompletedChains.
Thus, because of Lemma 3.27 and the remark about equivalence classes of C above, this
implies that C ∈ CompletedChains when it is dequeued.

The second case is when C has no equivalent chain which was previously enqueued.
It is sufficient to show (val�−1(C) /∈ G�−1) ∧ (val�+2(C) /∈ G�+2) at the moment
C is dequeued: this property still holds after executing EvaluateBackward and
EvaluateForward, as otherwise BadlyHit or BadP occurs.
To simplify notation we assume � = 4 and show val3(C) /∈ G3, but the argument is

completely generic. From Lemma 3.29 we get that before the assignment which led to
C being enqueued, val3(C) = ⊥. Suppose val3(C) ∈ G3 at the time C is dequeued.
This cannot have been true just after the assignment which led to C being enqueued, as
this would imply that BadlyHit occurred. So it must be that G3(val3(C)) was set dur-
ing completion of a chain D. This chain D was enqueued before C was enqueued and
dequeued afterC was enqueued.Also, at themomentC is dequeued, val3(C) = val3(D).
From the point C is enqueued, at any point until C is dequeued, it is not possible that
C ≡ D: We assumed that there is no chain in the queue that is equivalent to C when C
is enqueued, and at the point C is enqueued both C and D are table-defined. Further-
more, this point in the execution is not during an Adapt call. Therefore, by our initial
remark, the equivalence relation between C and D stays constant until the moment C is
dequeued.
Consider the last assignment to a table before val3(C) = val3(D) �= ⊥ was true.

We first argue that this assignment cannot have been of the form Gi (xi) := f (i, xi),
as otherwise the event BadlyCollide would have happened. To see this, we check the
conditions for BadlyCollide for C and D. By Lemma 3.29, the assignment happens
earliest right beforeC is enqueued, in which caseC is table-defined after the assignment.
Since D is enqueued before C , also D is table-defined after the assignment. If the
assignment happens later, both C and D are table-defined even before the assignment.
Furthermore, we have already seen that C ≡ D is not possible. Clearly, val3(C) = ⊥ or
val3(D) = ⊥ before the assignment, and val3(C) = val3(D) �= ⊥ after the assignment.
The assignment cannot have been of the form P(↓, x0, x1) = (x14, x15) or

P(↑, x14, x15) = (x0, x1), since val can be evaluated at most one step further by
Lemma 3.23(a). Finally, the assignment cannot have been in a call to ForceVal, because
of Lemma 3.26(b).

Build an Ideal Cipher 103

Thus, val3(C) /∈ G3 when C is dequeued, and the same argument holds for the other
cases as well. �

The following lemma is an important intermediate goal. It states that the simulator
never overwrites a value in G in case (f, p) is good.

Lemma 3.31. Consider an execution of S2(f, p) with a good pair (f, p). Then, for
any call to ForceVal of the form ForceVal(x, ·, �) we have x /∈ G� before the call.

Proof. Assume otherwise, and let C be the first chain during completion of which the
lemma fails. Since the lemma fails for C , C /∈ CompletedChains when it is dequeued.
Thus, Lemma 3.30 implies that val�−1(C) /∈ G�−1 and val�+2(C) /∈ G�+2 just before
Adapt is called for C , and so by Lemma 3.26(a) we get the result. �

We say that a distinguisher completes all chains, if, at the end of the execution, it
emulates a call to EvaluateForward(x0, x1, 0, 14) for all queries to P(x0, x1) or to
(x0, x1) = P−1(x14, x15) which it made during the execution.

Lemma 3.32. Consider an execution of S2(f, p) with a good pair (f, p) in which
the distinguisher completes all chains. Suppose that during the execution P(x0, x1),
resp. P−1(x14, x15) is queried by the simulator or the distinguisher. Then, at the end
of the execution it holds that P(↓, x0, x1) = (

val+14(x0, x1, 0), val
+
15(x0, x1, 0)

)

, resp.
P(↑, x14, x15) = (

val−0 (x14, x15, 14), val
−
1 (x14, x15, 14)

)

.

Proof. If the query P(x0, x1) was made by the simulator at some point, then this was
while it was completing a chain. Then, right after it finished adapting we clearly have
the result. By Lemma 3.31 no value is ever overwritten. Since the event BadP does not
occur, the conclusion of the lemma must also be true at the end of the execution.
Consider the case that P(x0, x1)was queried by the distinguisher at some point. Since

it eventually issues the corresponding Feistel queries, it must query the corresponding
values x7 and x8 at some point. Thus, x7 ∈ G7 and x8 ∈ G8 at the end of the execution.
One of the two values was defined later, and in that moment, (x7, x8, 7) was enqueued
by the simulator. Thus, it is dequeued at some point. If it was not in CompletedChains
at this point, it is now completed and the conclusion of the lemma holds right after this
completion. Otherwise, it was completed before it was inserted in CompletedChains,
and the conclusion of the lemma holds after this completion. Again, by Lemma 3.31
no value is ever overwritten, and again BadP never occurs; hence, the conclusion also
holds at the end of the execution.
The case of a query P−1(x14, x15) is handled in the same way. �

Lemma 3.33. Consider an execution of S2(f, p) with a good pair (f, p) in which the
distinguisher completes all chains. Then, the number of calls to Adapt by the simulator
equals the number of queries to p(·, ·, ·) made by the two-sided random function.

Proof. Since the event BadP does not occur, the number of queries to p(·, ·, ·) equals
half the number of entries in P at the end of the execution.

104 J.-S. Coron et al.

For each call to Adapt, there is a corresponding pair of entries in P: just
before Adapt was called, such an entry was read either in EvaluateForward or
EvaluateBackward. Furthermore, for no other call to Adapt the same entry was
read, as otherwise a value would have to be overwritten, contradicting Lemma 3.31.
For each query to p(·, ·, ·), there was a corresponding call to Adapt: if the query

to p occurred in a call to P by the simulator, then we consider the call to Adapt just
following this call (as the simulator only queries P right before it adapts). If the query
to p occurred in a call by the distinguisher, the distinguisher eventually queries the
corresponding Feistel chain. At the moment it queries G8(x8), consider the set of chains
that have been enqueued until now and are equivalent to (x7, x8, 7) at this point. Let C
be the chain that was enqueued first among the chains in this set. By Lemma 3.31 no
values are overwritten, and thus the query to p made in one of EvaluateBackward or
EvaluateForward during the completion of C is exactly the query we are interested
in, and we associate the subsequent Adapt call to it. �

3.5.6. Mapping Randomness of S2 to Randomness of S3

We next define amap τ whichmaps a pair of tables (f, p) either to the special symbolλ in
case (f, p) is not good, or to a partial table h. A partial table h : {1, . . . , 14}×{0, 1}n �→
{0, 1}n∪{⊥} either has an actual entry for a pair (i, x), or a symbol⊥which indicates that
the entry is unused. This map will be such that S2(f, p) and S3(τ (f, p)) have “exactly
the same behavior” for good (f, p). In the following, whenever we talk about executions
of S2(f, p) and S3(h), we assume that they are executed for the same distinguisher.

Definition 3.34. The function τ(f, p) is defined as follows: If (f, p) is good, run a
simulation of S2(f, p) in which the distinguisher completes all chains. Consider the
tables G at the end of this execution, and for any i and x let h(i, x) := Gi (x) in case
x ∈ Gi , and h(i, x) := ⊥ otherwise. If (f, p) is not good, let τ(f, p) := λ.

For a table h �= λwe say “h has a good preimage” if there exists (f, p) such τ(f, p) =
h (in which case (f, p) is good).

Lemma 3.35. Suppose h has a good preimage. Consider any execution of S3(h) and
suppose the distinguisher completes all chains. Then, S3(h) never queries h on an index
(i, x) for which h(i, x) = ⊥. Furthermore, the following two conditions on (f, p) are
equivalent:

(1) The pair (f, p) is good and τ(f, p) = h.
(2) The queries and answers to the two-sided random function in S2(f, p) are exactly

the same as the queries and answers to the Feistel construction in S3(h); and
h(i, x) = f (i, x) for any query (i, x) issued to f or h by the simulator.

Proof. We first show that (1) implies (2). It is sufficient to show the following:

• When the simulator sets Gi (x) := f (i, x) in S2(f, p), then Gi (x) = f (i, x) in the
end of the execution (and thus by definition of τ we have h(i, x) = f (i, x)).

Build an Ideal Cipher 105

• When the simulator or the distinguisher queries P(x0, x1) or P−1(x14, x15) it gets
the same answer in S2(f, p) and S3(h).

To see the first point, note that if the simulator sets Gi (xi) := f (i, xi) in S2(f, p),
this value will remain unchanged until the end of the execution since table entries in G
are never overwritten (Lemma 3.31), and thus h will be set accordingly by definition of
τ .

Now consider a query to P(x0, x1) by the simulator or the distinguisher (queries to P−1

are handled in the same way). Recall that we assume that the distinguisher completes
all chains. Because of Lemma 3.32, the answer of the query to P is exactly what we
obtain by evaluating the Feistel construction at the end in scenario S2. But each query
in the evaluation of the Feistel construction was either set as Gi (xi) := f (i, xi) or in a
ForceVal call, and in both cases the values of h must agree, since in good executions no
value is ever overwritten (Lemma 3.31). Thus, the query to P is answered by the Feistel
in S3(h) in the same way.
We now show that (2) implies (1). So assume that (2) holds, and let (fh, ph) be a good

preimage of h. As (fh, ph) satisfies (1), and (1) implies (2) as shown above, condition
(2) holds for (fh, ph). As we assume that (2) holds for (f, p), we see that in the two
executions S2(fh, ph) and S2(f, p) all queries to the two-sided random function are
the same, and also the entries f (i, x) and fh(i, x) for values considered match. This
implies that (i) (f, p) is good, and (ii) τ(f, p) = τ(fh, ph). To see this, note that the
simulator’s behavior only depends on the query answers it sees, and so all the steps of
the simulator in S2(f, p) and S2(fh, ph) are identical. So (i) follows because if a bad
event occurred in S2(f, p), it would also occur in S2(fh, ph), and (ii) follows because
the tables G must be identical in the end of the executions of S2(f, p) and S2(fh, ph).

Finally, we argue that S3(h) never queries h on an index (i, x) for which h(i, x) = ⊥.
Let (fh, ph) be a good preimage of h. Clearly (1) holds for h and (fh, ph), which implies
(2) as shown above. Thus, it cannot be that a query to h in S3(h) returns ⊥, as otherwise
the answers in S2(fh, ph) and S3(h) would differ. �

Lemma 3.36. Suppose h has a good preimage. Pick (f, p) uniformly at random. Then,

Pr
(f,p)

[(f, p) is good ∧ τ(f, p) = h] = 2−n|h|, (1)

where |h| is the number of pairs (i, x) for which h(i, x) �= ⊥.

Proof. Let (fh, ph) be a good preimage of h. We first show that

Pr
(f,p)

[all queries and answers inS2(f, p) andS2(fh, ph) are identical] = 2−n|h|. (2)

To see this, note that every query to f is answered the same with probability 2−n , and
every query to p with probability 2−2n . Because of Lemma 3.33 the number |h| of non-
nil entries in h is exactly the number of queries to f plus twice the number of queries to
p.

106 J.-S. Coron et al.

We now conclude that

2−n|h| = Pr
(f,p)

[all queries and answers inS2(f, p) andS2(fh, ph) are identical]
= Pr

(f,p)
[all queries and answers inS2(f, p) andS3(h) are identical]

= Pr
(f,p)

[(f, p) is good ∧ τ(f, p) = h].

The first equality is Equation 2 above. The second equality follows because (fh, ph) is
good and τ(fh, ph) = h, which by Lemma 3.35 (direction (1) �⇒ (2)) gives that
all queries and answers in S2(fh, ph) and S3(h) are identical. The third equality then
follows by Lemma 3.35, where we use the equivalence (1) ⇐⇒ (2). �

Lemma 3.37. (Transition from S2 to S3) The probability that a fixed distinguisher D

answers 1 in S2(f, p) for uniform random (f, p) differs at most by 1021·q10
2n from the

probability that it answers 1 in S3(h) for uniform random h.

Proof. First, modifyD such that it completes all chains, i.e., for each query to P(x0, x1)
or to (x0, x1) = P−1(x14, x15)which itmade during the execution (to either the two-sided
random function inS2 or the Feistel construction inS3), it issues the corresponding Feis-
tel queries to F in the end (i.e., it emulates a call to EvaluateForward(x0, x1, 0, 14)).
We denote the modified distinguisher by D′. This increases the number of queries of the
distinguisher by at most a factor of 15. Furthermore, any unmodified distinguisherD that
achieves some advantage will achieve the same advantage as the modified distinguisher
D′, and it is thus sufficient to bound the advantage of D′.
We now consider the following distribution that outputs values h∗. To pick an element

h∗, we pick a pair (f, p) uniformly at random. If τ(f, p) = λ, we set h∗ := λ. Otherwise,
we let h := τ(f, p), and then for each entry in h where h(i, x) = ⊥ we replace the
entry by a string that is chosen independently and uniformly at random from {0, 1}n . The
result is h∗. Let H be the random variable that takes values according to this distribution.
We now claim that the probability that any fixed table h∗ �= λ is output is at most

2−n|h∗|. To prove this, we first show that it cannot be that two different values h �= λ

which both have a good preimage can yield the same h∗. Toward a contradiction assume
that h �= λ and h′ �= λ are different and both have a good preimage, and they yield
the same h∗. Let (fh, ph) and (fh′ , ph′) be good preimages of h and h′, respectively.
Then, Lemma 3.35 (direction (1) �⇒ (2)) implies that the queries and answers in
S2(fh, ph) and S3(h) are the same. Furthermore, since S3(h) never queries h on an
index (i, x) where h(i, x) = ⊥ (Lemma 3.35), we get that the queries and answers in
S3(h) and S3(h∗) are the same. Arguing symmetrically for (fh′ , ph′), we see that the
queries and answers in S3(h′) and S3(h∗) are the same, and so the queries and answers
in S2(fh, ph) and S2(fh′ , ph′) must be the same. Since the simulator’s behavior only
depends on the query answers it sees, we get that all the steps of the simulator in
S2(f, p) and S2(fh, ph) are identical. In particular, the tables G must be identical
in the end of the execution, and thus by definition of τ , this implies that h = h′, a
contradiction.

Build an Ideal Cipher 107

We now calculate the probability of getting a fixed table h∗ �= λ. In the first case,
suppose there exists h with a good preimage that can lead to h∗. Let ρ be the randomness
that is used to replace the ⊥ entries in h by random entries. We have

Pr
(f,p),ρ

[H = h∗]
= Pr

(f,p),ρ
[(f, p) is good ∧ h = τ(f, p) can lead to h∗ ∧ filling with ρ leads to h∗].

Now, as we have seen above, no two different values for h can yield the same h∗. Thus,
we can assume that h∗ = (h, ρ∗), where h is the unique table that leads to h∗, and ρ∗
stands for the entries that occur in h∗, but are ⊥ in h. Then, the above probability equals

Pr
(f,p),ρ

[(f, p) is good ∧ τ(f, p) = h ∧ ρ = ρ∗]
= Pr

(f,p)
[(f, p) is good ∧ τ(f, p) = h] · Pr

ρ
[ρ = ρ∗]

= 2−n|h| · 2−n(|h∗|−|h|) = 2−n|h∗|.

The first equality above holds because ρ is chosen independently and uniformly at
random, and the second equality follows by Lemma 3.36 and since ρ is chosen uniformly
at random.
In the second case, there exists no h with a good preimage that can lead to h∗. Then

we have Pr
(f,p),ρ

[H = h∗] = 0, and so in both cases

Pr
(f,p),ρ

[H = h∗] ≤ 2−n|h∗|. (3)

This implies that the statistical distance of the distribution over h∗ which we described
to the uniform distribution is exactly the probability that (f, p) is not good. For com-
pleteness, we give a formal argument for this. Consider H as above, and let U be a
random variable taking uniform random values from {0, 1}|h∗|. We have

d(U, H) = 1

2

∑

h∗

∣
∣Pr[U = h∗] − Pr

(f,p),ρ
[H = h∗]∣∣

= 1

2

∣
∣Pr[U = λ]
︸ ︷︷ ︸

=0

− Pr
(f,p),ρ

[H = λ]
︸ ︷︷ ︸

= Pr
(f,p)

[(f,p) is not good]

∣
∣ + 1

2

∑

h∗ �=λ

∣
∣Pr[U = h∗] − Pr

(f,p),ρ
[H = h∗]∣∣

= 1

2
Pr

(f,p)
[(f, p) is not good] + 1

2

∑

h∗ �=λ

Pr[U = h∗]
︸ ︷︷ ︸

=1

−1

2

∑

h∗ �=λ

Pr
(f,p),ρ

[H = h∗]
︸ ︷︷ ︸

=1− Pr
(f,p)

[(f,p) is not good]
= Pr

(f,p)
[(f, p) is not good],

where the third equality uses (3).

108 J.-S. Coron et al.

We proceed to argue that Pr
(f,p)

[(f, p) is not good] is small. InS2(f, p), by Lemma 3.4

we have that |Gi | ≤ 6 · (15 · q)2 and |P| ≤ 6 · (15 · q)2, where the additional factor of
15 comes in because the distinguisher completes all chains. By Lemma 3.22,

Pr
(f,p)

[(f, p) is not good] ≤ 18 000 · (6 · (15 · q)2)5

2n
<

1020 · q10
2n

.

By Lemma 3.35 (direction (1) �⇒ (2)), for good (f, p), the behavior of S2(f, p)
and S3(H) is identical. Thus,

∣
∣ Pr
(f,p)

[D′ outputs 1 in S2(f, p)] − Pr
(f,p),ρ

[D′ outputs 1 in S3(H)]∣∣
≤ Pr

(f,p)
[(f, p) is not good].

Furthermore,

∣
∣ Pr
(f,p),ρ

[D′ outputs 1 in S3(H)] − Pr[D′ outputs 1 in S3(U)]∣∣ ≤ d(H,U)

= Pr
(f,p)

[(f, p) is not good],

and therefore

∣
∣ Pr
(f,p)

[D′ outputs 1 in S2(f, p)] − Pr[D′ outputs 1 in S3(U)]∣∣

≤ 2 · Pr
(f,p)

[(f, p) is not good]

<
1021 · q10

2n
,

using our bound on the probability that (f, p) is good above. �

3.6. Equivalence of the Third and the Fourth Scenarios

In S3, the distinguisher accesses the random functions through the simulator. We want
to show that the distinguisher can instead access the random functions directly.

Lemma 3.38. Suppose that in S3(h) the simulator T(h) eventually answers a query
F(i, x). Then, it is answered with h(i, x).

Proof. The simulator T(h) either sets Gi (x) := h(i, x) or Gi (xi) := xi−1 ⊕ xi+1
in a call to Adapt. For pairs (i, x) which are set by the first call the lemma is clear.
Otherwise, consider the Adapt call: just before the call, the Feistel construction was
evaluated either forward or backward in a call to �(h).P(x0, x1) or �(h).P−1(x14, x15).
Since�(h) evaluates P and P−1 with calls to h, the value Gi (xi)must be h(i, x) as well.

�

Build an Ideal Cipher 109

Lemma 3.39. (Transition from S3 to S4) The probability that a fixed distinguisher

answers 1 inS3(h) for uniformly chosen h differs at most by 1021·q10
2n from the probability

that it answers 1 in S4.

Proof. By Lemma 3.37, the probability that the distinguisher outputs 1 does not differ

by more than 1021·q10
2n in S2 and S3. As the simulator is efficient in S2 by Lemma 3.5,

this implies that with probability 1 − 1021·q10
2n the simulator must give an answer in S3.

Thus, using Lemma 3.38 we get that that the probability that the distinguisher answers

1 differs in S3 and S4 by at most 1021·q10
2n . �

Acknowledgements

It is a pleasure to thank Ueli Maurer for his insightful feedback. We also would like
to thank the reviewers of the Journal of Cryptology for their very detailed comments,
which helped us in substantially improving the presentation of the paper. Robin Kün-
zler was partially supported by the Swiss National Science Foundation (SNF), Project
No. 200021-132508.

Appendix 1: A Note on Honest-but-Curious Indifferentiability

In this section, we show that the Feistel construction with up to a logarithmic num-
ber of rounds is not indifferentiable from a random permutation in the honest-but-
curious model [24]. Combined with our main result in the general model, this shows that
honest-but-curious indifferentiability is not implied in general by full indifferentiability.
This does not contradict any result of [24], where it was shown that the Feistel con-
struction with a super-logarithmic number of rounds is indifferentiable from a random
permutation in the honest-but-curious model (we note, though, that [24] proved that for
up to a logarithmic number of rounds of the Feistel construction, indifferentiability in the
honest-but-curious model would have implied indifferentiability in the general model;
but since we show in the following that the premise is false, the implication becomes
void).
Informally, in the honest-but-curious indifferentiability model, the distinguisher can-

not query the round functions of the Feistel construction directly. It can only make two
types of queries: direct queries to the construction, and queries to the construction where
in addition the intermediate round function values are provided. When interacting with
a random permutation P and a simulator S, the first type of queries are sent directly to
P, while the second type are sent to Swhich makes the corresponding query to P, and in
addition provides a simulated transcript of the intermediate round function values. Note
that the simulator S is not allowed to make additional queries to P apart from forwarding
the queries from the distinguisher; see [24] for a precise definition.
The authors of [24] introduced the notion of transparent construction. A construction

CF is said to be transparent if for any x , the value of F(x) can be computed efficiently
by making a polynomial number of queries to CF, where in addition to CF(y) one gets

110 J.-S. Coron et al.

the inputs and outputs of F used by C to compute the answer to each query y. It is
shown in [24] that the Feistel construction with up to a logarithmic number of rounds
is a transparent construction. Namely, the authors construct an extracting algorithm E
achieving the following: given oracle access to �F and the intermediate round function
valuesFi (x) used to compute the answer to any query to the construction, E can compute
the value of Fi (x) for any round i and any x ∈ {0, 1}n . An important property of E is
that it only makes forward queries to the Feistel construction.

Algorithm E implies that for a Feistel construction with up to a logarithmic number
of rounds r , it is possible to find an input message (x0, x1) such that the left half of the
output (xr , xr+1) has an arbitrary value xr (say, 0n), by only making forward queries to
�F: this corresponds to how algorithm E can obtainFr (xr), where r is the last round. But
this task is clearly impossible with a random permutation P: namely, it is infeasible to
find (x0, x1) such that the left half of P(x0, x1) has a fixed arbitrary value bymaking only
forward queries to P. This implies that a simulator in the honest-but-curious model will
necessarily fail (recall that such a simulator only forwards queries from the distinguisher
to P and cannot make additional queries). Therefore, the Feistel construction with up
to a logarithmic number of rounds is not indifferentiable from a random permutation
in the honest-but-curious model. Since our main result is that the Feistel construction
with fourteen rounds is fully indifferentiable from a random permutation, this shows that
honest-but-curious indifferentiability does not imply in general full indifferentiability.

Appendix 2: Building an Ideal Cipher from a Random Oracle

Theorem 3.2. The 14-round keyed Feistel construction using a random oracle is indif-
ferentiable from an ideal cipher. For an ideal cipher with κ-bit key and 2n-bit inputs,

and any distinguisher that issues at most q queries, except with probability 108·q17
22n

, the

simulator makes at most 1400q8 queries and runs in time O(q8). The distinguishing

advantage is at most 108·q17
22n

+ 1022·q11
2n .

Proof (Sketch). The simulator S is built in a nearly black box way from simulator S
from the proof of Theorem 3.1. In particular, for all κ-bit keys k, we run an independent
copy of the simulator S, called Sk , each one maintaining its own state—the only differ-
ence between Sk and S is that queries to P and P−1 are replaced by queries to Ek and
E−1
k .10 Upon a query x ∈ {0, 1}∗, S first checks whether it can be parsed as x = 〈i〉‖k‖x ′

for i ∈ {1, . . . , 14}, k ∈ {0, 1}κ , and x ′ ∈ {0, 1}n . If so, it calls Sk .F(i, x ′), and returns
the resulting answer. Otherwise, S perfectly simulates the random oracle by keeping an
appropriate random table.
We say that a key k is associated with a query Q (and symmetrically, a query Q is

associated with the key k) if it is a query of the form Q = (k, ·) to the Feistel construction
or to the ideal cipher, or it is a query of the form Q = 〈i〉‖k‖x ′ to the random oracle

10 Of course, to avoid running an exponential number of simulator instances, we use lazy evaluation, running
only Sk for keys k that are actually queried.

Build an Ideal Cipher 111

or its simulation. For all integers i ≥ 0, we define a system Hi which keeps track of
keys associated with queries. For the first i distinct keys associated with some query,

queries associated with these keys are always answered by either E or S
E
depending on

the query type, whereas queries associated with later appearing keys are answered by

either�
R
14 orR, depending on the query type. Now, for a distinguisherDmaking overall

at most q queries, we can easily see by inspection that

Pr[D(H0) = 1] = Pr[D(�
R
14,R) = 1] and Pr[D(Hq) = 1] = Pr[D(E,S

E
) = 1] ,

and therefore, using the triangle inequality

�D((�
R
14,R), (E,S

E
)) ≤

q−1
∑

i=0

�D(Hi ,Hi+1) .

For all i ∈ {0, 1, . . . , q − 1}, a 2n-bit random permutation P, and F = (F1, . . . ,F14)

being independent n-bit to n-bit random functions, it is now easy to construct a dis-
tinguisher Di making at most q queries to either of (�F

14,F) and (P,SP) such that
�Di ((�F

14,F), (P,SP)) = �D(Hi ,Hi+1): The distinguisher uses the given system to
simulate queries associated with the i-th key, and simulates the answers to all queries
associated with other keys internally. The indistinguishability bound follows using the
one from Theorem 3.1 for �D(Hi ,Hi+1).
By Theorem 3.1, every Sk can issue too many queries and run for too long with

probability at most 108·q16
22n

, and the overall probability that this happens for some k is
obtained via the union bound. Now, assuming this event does not happen, let qk be the
number of queries associated with key k the distinguisher has made in an execution—
hence

∑

k qk ≤ q. Then, the simulator S has made at most
∑

k 1400q
8
k ≤ 1400q8

queries, and similarly, has run for time at most O(q8). �

The resulting concrete parameters incur an additional factor q loss with respect to the
original bound for the randompermutation case. This is however just to ease exposition—
the same bounds as in Theorem 3.1 can be obtained by giving a more direct proof adding
the handling of keys to the proof of the random permutation case.

References

[1] E. Andreeva, A. Bogdanov, Y. Dodis, B. Mennink, J.P. Steinberger, On the indifferentiability of key-
alternating ciphers, in R. Canetti, J.A. Garay, editors, Advances in Cryptology—CRYPTO 2013 (Pro-
ceedings, Part I), Lecture Notes in Computer Science, vol. 8042 (Springer, Berlin, 2013), pp. 531–550.
Full version available at http://eprint.iacr.org/2013/061

[2] G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, On the indifferentiability of the sponge construction,
in N.P. Smart, editor, Advances in Cryptology—EUROCRYPT 2008, Lecture Notes in Computer Science,
vol. 4965 (Springer, Berlin, 2008), pp. 181–197

[3] D. Boneh, M.K. Franklin, Identity-based encryption from the weil pairing. SIAM J. Comput.32(3),
586–615 (2003)

http://eprint.iacr.org/2013/061

112 J.-S. Coron et al.

[4] M. Bellare, T. Kohno, A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications, in Advances in Cryptology—EUROCRYPT 2003, Lecture Notes in Computer Science, vol.
2656, pp. 491–506 (2003)

[5] A. Bogdanov, L.R. Knudsen, G. Leander, F.-X. Standaert, J.P. Steinberger, E. Tischhauser, Key-
alternating ciphers in a provable setting: encryption using a small number of public permutations—
(Extended Abstract), in D. Pointcheval, T. Johansson, editors, Advances in Cryptology—EUROCRYPT
2012, Lecture Notes in Computer Science, vol. 7237 (Springer, Berlin, 2012), pp. 45–62

[6] J. Black, The ideal-cipher model, revisited: an uninstantiable blockcipher-based hash function, in FSE
2006, Lecture Notes in Computer Science, vol. 4047, pp. 328–340 (2006)

[7] D. Boneh, B. Lynn, H. Shacham, Short signatures from the weil pairing. J. Cryptol.17(4), 297–319
(2004)

[8] M. Bellare, D. Pointcheval, P. Rogaway, Authenticated key exchange secure against dictionary attacks,
in EUROCRYPT00, Lecture Notes in Computer Science, vol. 1807, pp. 139–155 (2000)

[9] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
CCS ’93: Proceedings of the 1st ACM Conference on Computer and Communications Security (ACM,
New York, NY, USA, 1993), pp. 62–73

[10] M. Bellare, P. Rogaway. Optimal asymmetric encryption, in Advances in Cryptology—EUROCRYPT
’94, Lecture Notes in Computer Science, pp. 92–111 (1994)

[11] M. Bellare, P. Rogaway, The exact security of digital signatures—how to sign with RSA and Rabin, in
Advances in Cryptology—EUROCRYPT ’96, Lecture Notes in Computer Science, pp. 399–416 (1996)

[12] J. Black, P. Rogaway, Ciphers with arbitrary finite domains, inCT-RSA 2002, Lecture Notes in Computer
Science, pp. 114–130 (2002)

[13] M. Bellare, P. Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs, in Advances in Cryptology—EUROCRYPT 2006, Lecture Notes in Computer Science, vol. 4004,
pp. 409–426 (2006)

[14] J. Black, P. Rogaway, T. Shrimpton, Black-box analysis of the block-cipher-based hash-function con-
structions from PGV, in Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science,
vol. 2442, pp. 320–335 (2002)

[15] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in FOCS ’01:
Proceedings of the 42nd IEEE Annual Symposium on Foundations of Computer Science, pp. 136–145
(2001)

[16] J.-S. Coron, Y. Dodis, C. Malinaud, P. Puniya, Merkle-Damgård revisited: how to construct a hash
function, in V. Shoup, editor, Advances in Cryptology—CRYPTO 2005, Lecture Notes in Computer
Science, vol. 3621 (Springer, Berlin, 2005), pp. 430–448

[17] R. Canetti, O. Goldreich, S. Halevi, The random oracle methodology, revisited. J. ACM51(4), 557–594
(2004)

[18] S. Chen, R. Lampe, J. Lee, Y. Seurin, J.P. Steinberger,Minimizing the two-round even-mansour cipher, in
J.A. Garay, R. Gennaro, editors, Advances in Cryptology—CRYPTO 2014 (Proceedings, Part I), Lecture
Notes in Computer Science, vol. 8616 (Springer, Berlin, 2014), pp. 39–56. Full version available at http://
eprint.iacr.org/2014/443

[19] J.-S. Coron, J. Patarin, Y. Seurin, The random oracle model and the ideal cipher model are equivalent,
in D. Wagner, editor, CRYPTO, Lecture Notes in Computer Science, vol. 5157 (Springer, Berlin, 2008),
pp. 1–20

[20] J.-S. Coron, J. Patarin, Y. Seurin, The random oracle model and the ideal cipher model are equivalent.
Cryptology ePrint Archive, Report 2008/246, August 2008. Version: 20080816:121712, http://eprint.
iacr.org/, Extended Abstract at CRYPTO 2008

[21] S. Chen, J. Steinberger, Tight security bounds for key-alternating ciphers, in P.Q. Nguyen, E. Oswald,
editors, Advances in Cryptology—EUROCRYPT 2014, Lecture Notes in Computer Science, vol. 8441,
pp. 327–350 (Springer, Berlin, 2014). Full version available at http://eprint.iacr.org/2013/222

[22] I.B. Damgård, A design principle for hash functions, in Advances in Cryptology—CRYPTO ’89, Lecture
Notes in Computer Science, vol. 435, pp. 416–427 (1989)

[23] G. Demay, P. Gazi, M. Hirt, U. Maurer, Resource-restricted indifferentiability, in EUROCRYPT13,
Lecture Notes in Computer Science, vol. 7881, pp. 664–683 (2013)

[24] Y. Dodis, P. Puniya, On the relation between the ideal cipher and the random oracle models, in Theory
of Cryptography—TCC 2006, Lecture Notes in Computer Science, vol. 3876, pp. 184–206 (2006)

http://eprint.iacr.org/2014/443
http://eprint.iacr.org/2014/443
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2013/222

Build an Ideal Cipher 113

[25] S. Dziembowski, K. Pietrzak, D.Wichs, Non-malleable codes, in Innovations in Computer Science—ICS
2010, pp. 434–452 (2010)

[26] Y.Dodis, L. Reyzin, R.L. Rivest, E. Shen, Indifferentiability of permutation-based compression functions
and tree-based modes of operation, with applications to MD6, in O. Dunkelman, editor, Fast Software
Encryption—FSE 2009, Lecture Notes in Computer Science, vol. 5665 (Springer, Berlin, 2009), pp.
104–121

[27] S. Even, Y. Mansour, A construction of a cipher from a single pseudorandom permutation. J. Cryp-
tol.10(3), 151–162 (1997)

[28] A. Fiat, A. Shamir, How to prove yourself: practical solutions to identification and signature problems,
in Advances in Cryptology—CRYPTO ’86, Lecture Notes in Computer Science, vol. 263, pp. 186–194
(1986)

[29] T. Holenstein, R. Künzler, S. Tessaro, The equivalence of the random oracle model and the ideal cipher
model, revisited, in L. Fortnow, S.P. Vadhan, editors, STOC (ACM, New York, 2011), pp. 89–98

[30] J. Kilian, P. Rogaway, How to protect DES against exhaustive key search (an analysis of DESX). J.
Cryptol.14(1), 17–35 (2001)

[31] J.Kahn,M.E. Saks,C.D. Smyth,Adual version ofReimer’s inequality and aproof ofRudich’s conjecture,
in IEEE Conference on Computational Complexity, pp. 98–103 (2000)

[32] M. Luby, C. Rackoff, How to construct pseudorandom permutations from pseudorandom functions.
SIAM J. Comput.17(2), 373–386 (1988)

[33] R. Lampe, Y. Seurin, How to construct an ideal cipher from a small set of public permutations, in
K. Sako, P. Sarkar, editors, Advances in Cryptology—ASIACRYPT 2013 (Proceedings, Part I), Lecture
Notes in Computer Science, vol. 8269 (Springer, Berlin, 2013), pp. 444–463. Full version available at
http://eprint.iacr.org/2013/255

[34] Y. Lindell, H. Zarosim, Adaptive zero-knowledge proofs and adaptively secure oblivious transfer, in
Theory of Cryptography Conference—TCC 2009, Lecture Notes in Computer Science, vol. 5444, pp.
183–201 (2009)

[35] U. Maurer, Indistinguishability of random systems, in Advances in Cryptology—EUROCRYPT 2002,
Lecture Notes in Computer Science, vol. 2332, pp. 110–132 (2002)

[36] R.C. Merkle, A certified digital signature, in Advances in Cryptology—CRYPTO ’89, Lecture Notes in
Computer Science, vol. 435, pp. 218–238 (1989)

[37] A. Mandal, J. Patarin, Y. Seurin, On the public indifferentiability and correlation intractability of the
6-round Feistel construction, in TCC (2012). Full version available at http://eprint.iacr.org/2011/496.
pdf

[38] U. Maurer, R. Renner. Abstract cryptography, in Innovations in Computer Science—ICS 2011, pp. 1–21
(2011)

[39] U. Maurer, R. Renner, C. Holenstein, Indifferentiability, impossibility results on reductions, and appli-
cations to the random oracle methodology, in Theory of Cryptography Conference—TCC 2004, Lecture
Notes in Computer Science, vol. 2951, pp. 21–39, February 2004

[40] P. Rogaway, J.P. Steinberger, Constructing cryptographic hash functions from fixed-key blockciphers,
in D. Wagner, editor, Advances in Cryptology—CRYPTO 2008, Lecture Notes in Computer Science, vol.
5157 (Springer, Berlin, 2008), pp. 433–450

[41] P. Rogaway, J.P. Steinberger, Security/efficiency tradeoffs for permutation-based hashing, in N.P. Smart,
editor, Advances in Cryptology—EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965
(Springer, Berlin, 2008), pp. 220–236

[42] T. Ristenpart, H. Shacham, T. Shrimpton, Careful with composition: limitations of the indifferentiability
framework, in K.G. Paterson, editor, EUROCRYPT, Lecture Notes in Computer Science, vol. 6632
(Springer, Berlin, 2011), pp. 487–506

[43] S. Rudich, Limits on the Provable Consequences of One-way Functions. PhD thesis (1989)
[44] Y. Seurin, Primitives et protocoles cryptographiques à sécurité prouvée. PhD thesis, Université de

Versailles Saint-Quentin-en-Yvelines, UFR de Sciences - École doctorale SoFt - Laboratoire PRiSM
(2009)

[45] Y. Seurin, A note on the indifferentiability of the 10-round feistel construction,March 2011. Unpublished
note available from the author

http://eprint.iacr.org/2013/255
http://eprint.iacr.org/2011/496.pdf
http://eprint.iacr.org/2011/496.pdf

114 J.-S. Coron et al.

[46] C.E. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J.28, 656–715 (1949)
[47] V. Shoup, Sequences of games: a tool for taming complexity in security proofs (2004)

	How to Build an Ideal Cipher: The Indifferentiability of the Feistel Construction
	1. Introduction
	1.1. Random Oracles, Random Permutations, and Ideal Ciphers
	1.2. Building Ideal Primitives and Indifferentiability
	1.3. Our Main Result: Ideal Ciphers Via the Feistel Construction
	1.4. Technical Overview
	1.4.1. Five Rounds are Not Enough
	1.4.2. Indifferentiability of the 14-Round Feistel Construction

	1.5. Model and Notational Conventions

	2. The Five-Round Feistel Construction is Not Sufficient
	3. Indifferentiability of the Fourteen-Round Feistel Construction
	3.1. Simulator Definition
	3.1.1. Informal Description
	3.1.2. The Simulator in Pseudocode
	3.1.3. An Example of Chain Completion

	3.2. Proof of Indifferentiability
	3.2.1. Overview
	3.2.2. Detailed Description of the Second Scenario
	3.2.3. Detailed Description of the Third Scenario
	3.2.4. Indifferentiability

	3.3. Complexity of the Simulator
	3.4. Equivalence of the First and the Second Scenarios
	3.5. Equivalence of the Second and the Third Scenarios
	3.5.1. Overview and Intuition
	3.5.2. Partial Chains
	3.5.3. Bad Events and Good Executions
	3.5.4. Bad Events are Unlikely
	3.5.5. Properties of Good Executions
	3.5.6. Mapping Randomness of S2 to Randomness of S3

	3.6. Equivalence of the Third and the Fourth Scenarios

	Acknowledgements
	Appendix 1: A Note on Honest-but-Curious Indifferentiability
	Appendix 2: Building an Ideal Cipher from a Random Oracle
	References

