
DOI: 10.1007/s00145-014-9191-z
J Cryptol (2016) 29:156–219

Concurrent Knowledge Extraction in Public-Key Models∗

Andrew Chi-Chih Yao
Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University, Beijing, China

andrewcyao@tsinghua.eud.cn

Moti Yung
Google Inc., Mountain View, CA, USA

Columbia University, New York, NY, USA
moti@cs.columbia.edu

Yunlei Zhao†

Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, China
ylzhao@fudan.edu.cn

Communicated by Goldreich

Received 28 September 2011
Online publication 11 November 2014

Abstract. Knowledge extraction is a fundamental notion, modeling machine posses-
sion of values (witnesses) in a computational complexity sense and enabling one to argue
about the internal state of a party in a protocol without probing its internal secret state.
However, when transactions are concurrent, say over the Internet, with players possess-
ing public keys (as is common in cryptography), assuring that entities “know” what they
claim to know, where adversaries may be well coordinated across different transactions,
turns out to be muchmore subtle and in need of re-examination. In such settings, mixing
the public-key structure as part of the language and statements is a natural adversarial
strategy. Here, we investigate how to formally treat knowledge possession by parties
interacting concurrently in the public-key model. More technically, we look into the rel-
ative power of the notion of “concurrent knowledge extraction” (CKE) for concurrent
zero knowledge (CZK) in the bare public-key (BPK) model, where the language and
statements being proved can be dynamically and adaptively chosen by the prover and
may be possibly based on verifiers’ public keys. By concrete attacks against some exist-
ing natural protocols, we first show that concurrent soundness and normal arguments of
knowledge do not guarantee concurrent verifier security in the public-key setting. Here,
roughly speaking, concurrent verifier security says that the malicious concurrent prover
should “know" all the witnesses to all the possibly public-key-related statements adap-

∗ This research was supported in part by the National Basic Research Program of China (973 Program)
Nos. 2007CB807900, 2007CB807901, 2014CB340600; National Natural Science Foundation of China Grant
Nos. 61472084, 61272012, 61033001, 61061130540, 61361136003; Innovation Project (No. 12ZZ013) of
Shanghai Municipal Education Commission; and Joint Project of SKLOLS.

† Corresponding author

© International Association for Cryptologic Research 2014

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-014-9191-z&domain=pdf

Concurrent Knowledge Extraction in Public-Key Models 157

tively chosen and successfully proved in the concurrent sessions. These concrete attacks
serve as a good motivation for understanding “possession of knowledge” for concurrent
transactions with registered public keys, i.e., the subtleties of concurrent knowledge
extraction in the public-key model. This motivates us to introduce and formalize the
notion of CKE, along with clarifications of various subtleties. Two implementations
are then presented for constant-round concurrently knowledge extractable concurrent
zero-knowledge (CZK–CKE) argument for NP in the BPK model: One protocol is
generic and based on standard polynomial-time assumptions, whereas the other proto-
col is computationally efficient and employs complexity leveraging in a novel way. Both
protocols can be practically instantiated for some specific number-theoretic languages
without going through generalNP-reductions. Of independent interest are the discus-
sions about the subtleties surrounding the fundamental structure of Feige–Shamir zero
knowledge in the BPK model.

Keywords. Proof of knowledge, Zero knowledge, Bare public key, Complexity
leveraging, Strong witness indistinguishability, Witness-extended emulator.

1. Introduction

Zero-knowledge (ZK) protocols allow a prover to assure a verifier of validity of theorems
without giving away any additional knowledge (i.e., computational advantage) beyond
validity. This notion was introduced in [48], and its generality was demonstrated in [44,
45,47]. In particular, the fact that any statement inNP can be proved in zero knowledge
[47] has made ZK protocols widely applicable and particularly playing a central role in
protocol design [46,78] (see more in [38,39]). Traditional notion of ZK considers the
security in a stand-alone (or sequential) execution of the protocol. Motivated by the use
of such protocols in an asynchronous network like the Internet, wheremany protocols run
simultaneously, studying security properties of ZK protocols in such concurrent settings
has attracted many research efforts in recent years [2,21,26,32,33]. Informally, a ZK
protocol is called concurrent zero knowledge if concurrent instances are all (expected)
polynomial-time simulatable, namely when a possibly malicious verifier concurrently
interacts with a polynomial number of honest prover instances and schedules message
exchanges as it wishes.
The concept of “proof of knowledge” (POK), informally discussed in [48], was

then formally treated in [8,9,38,40,41]. POK systems, especially zero-knowledge POK
(ZKPOK) systems, play a fundamental role in the design of cryptographic schemes,
enabling a formal complexity theoretic treatment of what it means for a machine to
“know” something. Roughly speaking, a “proof of knowledge” means that a possibly
malicious prover can convince the verifier of an NP statement if and only if it, in fact,
“knows” (i.e., possesses) a witness to the statement (rather than merely conveying the
fact that a corresponding witness exists).With the advancement of cryptographic models
where parties first publish public keys (e.g., for improving round complexity [16]) and
then may choose the statements to prove, knowledge extraction becomes more subtle
(due to possible dependency on published keys) and needs re-examination. Here, we
investigate the relative power of the notion of “concurrent knowledge extraction” in the
concurrent zero-knowledge bare public-key model with adaptive input (language and
statements) selection by malicious provers.

158 A. C.-C. Yao et al.

The BPK model, introduced in [15], is a natural cryptographic model. A protocol in
this model simply assumes that all verifiers have each deposited a public key in a public
file (which are referred to as the key-generation stage), before user interactions take place
(which are referred to as the proof stage). No assumption is made on whether the public
keys deposited are unique or valid (i.e., public keys can even be “nonsensical," where no
corresponding secret keys exist or are known). In many cryptographic settings, availabil-
ity of a public-key infrastructure (PKI) is assumed or required, and in these settings, the
BPK model is, both, natural and attractive (note that the BPK model is, in fact, a weaker
version of PKI where in the latter added key certification is assumed). It was pointed
out in [64] that the BPK model is, in fact, applicable to interactive systems in general.
Protocol soundness in the BPK model (against malicious provers) turned out to be

much more involved than anticipated, as was demonstrated by Micali and Reyzin [64]
who showed that under standard intractability assumptions there are four distinct mean-
ingful notions of soundness, i.e., from weaker to stronger: one-time, sequential, concur-
rent and resettable soundness. Here, we focus on concurrent soundness, which, roughly
speaking, means that a possibly malicious probabilistic polynomial-time (PPT) prover
P∗ cannot convince the honest verifier V of a false statement even when P∗ is allowed
multiple interleaving interactions with V in the public-keymodel. They also showed that
any black-box ZK protocol with concurrent soundness in the BPKmodel (for non-trivial
languages outside BPP) must run at least four rounds [64].
Concurrent soundness only guarantees that concurrent interactions cannot help amali-

cious prover to validate a false statement in the public-key model. However, it does not
prevent a concurrent malicious prover P∗ from validating a true statement but without
knowing any witness to the statement being proved, particularly if the statement chosen
by P∗ is dependent upon verifiers’ public keys. Note that, mixing the public-key struc-
ture as part of the language and statements can be a natural adversarial strategy against
protocols run concurrently in the public-key model. Also, the dependency between the
language/statements being proved and verifiers’ public keys can be inevitable if the pro-
tocols are designed for a set of languages (e.g., all NP languages via NP-reductions
to an NP-complete language, or all languages admitting � protocols without going
through NP-reductions). This potential vulnerability is not merely a theoretic concern:
In fact, most concurrent ZK protocols in the BPK model involve a sub-protocol in
which the verifier proves to the prover the knowledge of the secret key corresponding
to its registered public key. A malicious prover, in turn, can (as we shall show) exploit
these sub-proofs by the verifier in other sessions, without possessing a witness to these
sessions’ statements that are chosen by the malicious prover possibly based on veri-
fiers’ public keys. This issue, in turn, motivates the need for careful definitions and for
achieving concurrent verifier security for concurrent ZK in the BPK model for adap-
tively chosen proofs, so that one can remedy the above security vulnerability. Recall
that knowledge extraction, say POK, is fundamental to cryptographic protocols and is
required by many cryptographic applications.

Key terminology. Throughout this paper, whenever we talk of “(concurrent) verifier
security" in the public-key model, we refer to the security w.r.t. the “(concurrent) POK
property," i.e., the “possession of knowledge" feature against malicious prover who can
adaptively set the language and statements to be proved (possibly based on verifiers’

Concurrent Knowledge Extraction in Public-Key Models 159

public keys) and concurrently interact with honest verifiers in the public-key model.
That is, the (possibly malicious) concurrent prover should “know" all the witnesses to
all the statements adaptively chosen and successfully proved in the concurrent sessions,
in the sense that such witnesses can be efficiently extracted (from the internal state of
the malicious concurrent prover) and that the extracted witnesses should be “indepen-
dent" of honest verifiers’ secret keys. This notion will be named “concurrent knowledge
extraction" in the public-key model.

1.1. Our Contributions

We first investigate the subtleties of concurrent verifier security in the public-key model
in the case of proof of knowledge. Specifically, we show concurrent interleaving andmal-
leating attacks against some existing natural protocols running concurrently in the BPK
model, which shows that concurrent soundness and normal arguments of knowledge
(and also traditional concurrent non-malleability) do not guarantee concurrent verifier
security in the BPK model. With these attacks, a malicious prover plays the role of
concurrent man-in-the-middle (CMIM) and manages to malleate the interactions with
the verifier who proves the knowledge of its secret key in one session into successful
interactions with the verifier in another concurrent session without knowing any witness
to the statement being proved. The separation between traditional POK and CKE in the
BPK model is demonstrated w.r.t. any NP-language, while that between concurrent
soundness and CKE is demonstrated with some languages dependent upon verifiers’
public keys. We emphasize that concurrent soundness holds even when the statements
are maliciously chosen by the prover based on the verifiers’ public keys. These con-
crete attacks serve as a good motivation for understanding “possession of knowledge
on the Internet with registered public keys," i.e., the subtleties of concurrent knowledge
extraction in the public-key model.
Then, we formulate concurrent verifier security that remedies the vulnerability as

demonstrated by the concrete attacks which are of the concurrent man-in-the-middle
nature, along with detailed subtlety clarifications and discussions. The security notion
defined is named concurrent knowledge extraction (CKE) in the public-
key model, which essentially means that for adaptively chosen statements whose valida-
tions are successfully conveyed by a possibly malicious prover to an honest verifier by
concurrent interactions, the prover must “know" the corresponding witnesses in a sense
that the knowledge “known" by the prover can be efficiently extracted and is “indepen-
dent" of honest verifier’s secret key.1 We justify our CKE formulation in the public-key
model and clarify in detail the various subtleties surrounding the CKE definition, which
might be of independent interest. In particular, we show that CKE is strictly stronger than
concurrent soundness in the public-key model (assuming the existence of any one-way
function).
We then present both generic (based on standard polynomial-time assumptions

and employing strong witness indistinguishability [39]) and computationally efficient

1 We use the name of “concurrent knowledge extraction" to make this notion independent of proof and
argument systems. That is, the concept of CKE applies to both proof systems and argument systems, which
uniforms and simplifies the notations.

160 A. C.-C. Yao et al.

(employing complexity leveraging2 [15] in a novel way) black-box implementations of
constant-round CZK–CKE arguments for NP in the BPK model. We also show that
both the generic and efficient CZK–CKE protocols can be practically instantiated for
some number-theoretic languageswithout going through generalNP-reductions. To our
knowledge, they are the first provably secure CZK–CKE protocols in the BPK model.
Along the way, we clarify in depth the various subtleties surrounding the protocol con-
struction and security analysis of CZK–CKE in the BPK model, which might also be of
independent value.

1.1.1. Overview of CKE Formulation in the Public-Key Model

The security notion assuring that a malicious prover P∗ does “know" what it claims
to know, when it is concurrently interacting with the honest verifier V and can set the
language and statements to be proved based on verifiers’ public keys, can informally be
formulated as: for any x , if P∗ can convince V (with public key P K) of “x ∈ L" (for an
NP-language L that may be chosen dependent on verifiers’ public keys) by concurrent
interactions, then there exists a PPTknowledge extractor that outputs awitness for x ∈ L .
This is a natural extension of the normal arguments of knowledge into the concurrent
public-key setting. However, this formulation approach is problematic in the concurrent
public-key setting. The reason is the statements being proved may be related to P K
(which can be inevitable if L is an NP-complete language), and thus, the extracted
witness may be related to the corresponding secret key SK (even just the secret key
as shown by our concrete attack on existing natural protocols). However, for black-
box polynomial-time knowledge extraction (as is the focus of this work), extracting
knowledge of the witness from P∗ requires a secret SK that P∗ does not know. We
clarify that building black-box polynomial-time knowledge extractors without SK seems
impossible (cf. Sect. 5.1). This poses the subtle question: in what sense does P∗ know
the witness if producing it requires something P∗ does not know?
To solve this subtlety, we require the extractedwitness, togetherwith adversary’s view,

to be independent of SK . However, the problem here is how to formalize such indepen-
dence, in particular, w.r.t. a concurrent man-in-the-middle (CMIM) adversary?We solve
this in the spirit of non-malleability formulation [31]. That is, we consider the message
space (distribution) of SK , and such independence is roughly defined as follows: Let SK
be the secret key and SK ′ be an element randomly and independently distributed over the
space of SK , then we require that, for any polynomial-time computable relation R, the
probability Pr[R(w̄, SK , view) = 1] be negligibly close to Pr[R(w̄, SK ′, view) = 1],
where w̄ is the set of witnesses extracted by the knowledge extractor for successful con-
current sessions and view is the view of P∗. This captures the intuition that P∗ does, in

2 Roughly speaking, by complexity leveraging, we specify two different parameters n and n′ for two
cryptographic primitives f and f ′, respectively, such that n and n′ are polynomially related (i.e., any quantity

that is a polynomial of n is also another polynomial of n′, and vice versa) but 2n′ � 2nc
for some constant

c, 0 < c < 1. If we assume f is secure against 2nc
-time adversaries (i.e., sub-exponentially secure), then

we can break the security of f ′ in brute-force in time 2n′
, while still not violating the security of f . This

technique of “complexity leveraging" was first introduced in [15] (and then used in a list of subsequent works)
for achieving resettable ZK in the BPKmodel. In this work, complexity leveraging is employed as a paradigm
to frustrate CMIM attacks.

Concurrent Knowledge Extraction in Public-Key Models 161

fact, “know” thewitnesses to the statementswhose validations are successfully conveyed
by concurrent interactions. Motivation and formal definition of CKE in the public-key
setting, along with in-depth detailed clarifications and justifications, are presented in
Sects. 4 and 5.

1.1.2. Overview of Achieving CZK–CKE in the BPK Model

The starting point is the basic and central Feige–Shamir ZK (FSZK) structure [36]. The
FSZK structure is conceptually simple and is composed of twowitness-indistinguishable
proof of knowledge (WIPOK) sub-protocols. In more detail, letting f be a OWF, in
the first WIPOK sub-protocol with the verifier V serving as the knowledge prover, V
computes (y0 = f (s0), y1 = f (s1)) for randomly chosen s0 and s1; then, V proves to
the prover P the knowledge of the preimage of either y0 or y1. In the secondWIPOK sub-
protocol with P serving as the knowledge prover for an NP-language L , on common
input x , P proves to V the knowledge of either a valid NP-witness w for x ∈ L
or the preimage of either y0 or y1. FSZK is also argument of knowledge and can be
instantiated practically (without going through general NP-reductions) by the �O R

technique [20,82].
Letting (y0, y1) serve as the public key of V and sb (for a random bit b) as the secret

key, the public-key version of FSZK is CZK in the BPK model [82]. However, we
show that the public-key version of FSZK is not of concurrent soundness [81], let alone
of concurrent knowledge extractability.3 We hope to add the CKE property to FSZK
in the BPK model (and thus get concurrent security both for the prover and for the
verifier simultaneously), while maintaining its conceptual simplicity and computational
efficiency.
The subtle point is: We are actually dealing with a CMIM attacker who manages to

malleate, in a malicious and unpredictable way, the public keys and knowledge proof
interactions of the verifier in one session into the statements and knowledge proof inter-
actions in another concurrent session. To add CKE security to FSZK in the BPK model,
some non-malleable tools appear to be required. Here, we show how to do so without
employing such tools.
The crucial idea behind achieving our goal is to strengthen the first sub-protocol to

be statistical WIPOK, and require the prover to first, before starting the second WIPOK
sub-protocol, commit to the supposed witness to cw by running a statistically binding
commitment scheme. This guarantees that if thewitness committed to cw is dependent on
the secret key used by V , there are, in fact, certain differences between the interaction dis-
tribution when V uses SK = s0 and the one when V uses SK = s1. We can, in turn, use
such distribution differences to violate the statistical WI of the first sub-protocol, which
then implies statistical CKE. This solution, however, loses CZK in general, since the
secondWI sub-protocol is run w.r.t. commitments to different values in real interactions
and in the simulation. Specifically, the composition of statistically binding commitment
and regular WI does not preserve the regular WI property. To deal with this problem, we

3 Indeed, FSZKwas not designed for the public-keymodel. But FSZK in the BPKmodel serves as the basis
for a list of constant-round concurrent and resettable ZK works in the BPKmodel [17,24,25,28,68,75,77,79–
81]. We suggest it may be useful to make this issue clear (for better understanding and for correct deployment
of FSZK in the public-key model).

162 A. C.-C. Yao et al.

employ a stronger second sub-protocol, i.e., strong WI argument/proof of knowledge
(strong WIPOK) [38].4 We show that composing statistically binding commitment and
SWI yields a regular WI, and thus, the CZK property is retained.
Employing SWI complicates the protocol structure and incurs protocol inefficiency.

It is, therefore, desirable to keep using any regular WIPOK in the second sub-protocol,
for conceptual simplicity and efficiency. To bypass the subtleties of SWI for the CZK
proof, we employ a double-commitment technique. Specifically, we require the prover
to produce a pair of statistically binding commitments, cw and csk , before starting the
second WIPOK sub-protocol of FSZK, where cw is supposed to commit to a valid NP-
witness for x ∈ L and csk is supposed to commit to the preimage of either y0 or y1. In
real interactions, csk actually commits to 0 and the honest prover uses what is committed
to cw as its witness. However, in the CZK simulation, the simulator tries to first extract
the verifier’s secret key and then commit it to csk . Double commitments can bypass, by
hybrid arguments, the subtleties of SWI for the CZK proof. However, the provable CKE
property with double commitments turns out to be much subtler. Specifically, due to the
double commitments used, the value extracted can be either the value committed to cw or
that to csk . If it is ensured that the valued extracted is always the one committed to cw, we
can get statistical CKE in the same way as the SWI-based solution. By the one-wayness
of f , the value extracted in polynomial time cannot be the preimage of y1−b (recall the
secret key is sb). However, how about the possibility that the value extracted is just the
secret key sb committed to csk? Consider the following adversarial strategy:
Imagine that the malicious prover P∗ commits (w, s0) to (cw, csk) in some session,

where w is a valid witness for the common input x ∈ L chosen by P∗ for that session.
To be precise, P∗ commits a valid witness w to cw, as well as s0 to csk (possibly by
malleating verifier’s public key into csk). Then, possibly by malleating the first WIPOK
sub-protocol concurrent interactions, P∗ successfully finishes the second WIPOK sub-
protocol of the session by using the witness that, in turn, depends upon the secret key
SK ∈ {s0, s1} used by the honest verifier V . In more detail, when SK = s0 (i.e., V uses
s0 as the witness in the first WIPOK sub-protocol interactions), it is the value committed
to csk , i.e., s0, that P∗ uses as the witness in the second WIPOK sub-protocol of the
session. On the other hand, when SK = s1, it is the value committed to cw, i.e.,w, which
could be maliciously related to s1 as the common input x is selected by P∗. For this
adversarial strategy, with non-negligible probability about 1

2 (taken over the random bit
b ← {0, 1} where SK = sb), the value extracted will just be the secret key that is also
used by the extractor itself. However, we do not know how to reach a contradiction under
standard polynomial-time assumptions in general. In particular, this adversarial strategy
does not violate the statistical WI property of the first WIPOK sub-protocol: The values
committed to (cw, csk) are fixed, no matter which secret key is used by the verifier.
Detailed clarification of this adversarial strategy (referred to as Adversarial Strategy 1
in p. 45), as well as that of some more exemplifying adversarial strategies, is given in
Sect. 7.3.1.

4 StrongWI (SWI)was first defined in [38], which actually refers to the issue that is fundamentally different
from WI. Specifically, the issue is whether the interaction with the prover helps a malicious verifier V ∗ to
distinguish some auxiliary information (which is indistinguishable without such an interaction). In particular,
as already noticed in [38], SWI is not preserved under concurrent composition.

Concurrent Knowledge Extraction in Public-Key Models 163

To overcome this technical difficulty, we employ complexity leveraging in a novel
way. Specifically, on the system parameter n, we assume the OWF f is hard against
sub-exponential 2nc

-time adversaries for some constant c, 0 < c < 1. However, the
commitment csk is generated on a relatively smaller security parameter nsk such that
nsk and n are polynomially related (i.e., any quantity that is a polynomial of n is also
another polynomial of nsk and vice versa) but poly(n) · 2nsk � 2nc

. This complexity
leveraging ensures that, with at most negligible probability, the value extracted can be
the secret key sb committed to csk , from which the correctness of knowledge extraction
(and then the statistical CKE security) is established. The reasoning is as follows. For
any i , 1 ≤ i ≤ s(n), suppose that, with non-negligible probability p, an s-concurrent
malicious P∗ can successfully finish the i th sessionwith csk committing to sσ ,σ ∈ {0, 1},
when the honest verifier (and also the extractor) uses sσ as its secret key. Then, by the
statistical WI property of the firstWIPOK sub-protocol, with the same probability p, P∗
successfully finishes the i th session with csk committing to sσ , when the honest verifier
uses s1−σ as the secret key. In the latter case, we can open csk to get sσ by brute-force in
poly(n)·2nsk -time, which, however, violates the sub-exponential hardness of yσ because
poly(n) · 2nsk � 2nc

.
We stress that complexity leveraging via the sub-exponential hardness assumption on

verifier’s public key is only for provable security analysis to frustrate concurrent man-in-
the-middle. Both CZK simulation and CKE knowledge extraction are still in polynomial
time (recall that we focus on black-box polynomial-time concurrent knowledge extrac-
tion in this work).We suggest that the use of complexity leveraging for frustratingCMIM
adversaries could be a useful paradigm, different from the uses of complexity leveraging
in existing works for protocols in the BPK model (e.g., [15,80]).
The CZK–CKE protocols from FSZK are roughly depicted in Fig. 1. Both the generic

and efficient CZK–CKE protocols can be practically instantiated for some specific
number-theoretic languages without going through general NP-reductions. We also
show that all other FSZK possible component variants within the given protocol struc-
ture of Fig. 1 are essentially not provably (black-box) CZK–CKE secure in the BPK
model, which is, perhaps, somewhat puzzling. More details about the protocol construc-
tions and security analysis of CZK–CKE in the BPK model are given in Sects. 6 and 7.

P V
PK : (f(s0), f(s1))

Statistical WIPOK(s0 ∨ s1)

Generic CZK-CKE:

x ∈ L
w: (x, w) ∈ RL

cw = C(w)

Strong WIPOK((x,w) ∈ RL ∨ w ∈ {s0, s1})

Efficient CZK-CKE (with leveraging: csk vs. PK):

cw = C(w), csk = C(v)

WIPOK((x,w) ∈ RL ∨ v ∈ {s0, s1})

Fig. 1. Depiction of CZK–CKE from FSZK .

164 A. C.-C. Yao et al.

1.2. Related Works

In general, the issue of concurrent composition of proof of knowledge could be traced
back to the works [31,43]. The subtlety of argument of knowledge (AOK) in the BPK
model was first observed in [29,30], where four distinct (namely one-time, sequential,
concurrent and resettable) AOK notions were demonstrated with some unnatural pro-
tocols in the BPK model. By comparison, our separation between CKE and AOK in
the BPK model is demonstrated with attacks on some naturally existing protocols (par-
ticularly, the fundamental FSZK protocol in the BPK model). Also, we separate CKE
and concurrent soundness in the BPKmodel. The formulation approach of BPK concur-
rent AOK in [30] is significantly different from ours, with more details and discussions
presented in Sect. 5.1.

Concurrent ZK (actually, resettable ZK that is stronger than CZK) arguments forNP
with aprovable sub-exponential-timeCKEproperty in theBPKmodelwerefirst achieved
in [80], which, however, are available only for sub-exponentially hard languages and
sub-exponentially hard verifier public keys. We note that the techniques used in [80] do
not render CZK with polynomial-time concurrent knowledge extraction, and the subtle
issues of knowledge extraction independence were not realized and formalized there.
Two constructions for concurrent ZK arguments with sequential soundness in the

BPK model under standard assumptions were proposed in the incomplete work of [82].
However, the security proof of concurrent soundness turned out to be flawed, as observed
independently in [28,81]. One construction was fixed to be concurrently sound in [28],
and the other construction was fixed to be concurrently sound in [24] following the spirit
of [28]. Given these works, the current work further shows that the concurrently sound
CZK arguments of [24,28] do not capture CKE and are not concurrently knowledge
extractable when it comes to proofs of knowledge.
Though we separate concurrent knowledge extraction from concurrent soundness and

traditional argument of knowledge in the public-keymodel, to our knowledge the similar
results for parallel/concurrent composition of proof/argument of knowledge in the plain
model are unknown. For example, though the Goldreich–Kahan (GK) protocol [42] is
constant-round ZK proof for NP , it is still unknown whether the GK protocol is POK
(in particular no attack is known to show that the GK protocol is indeed not POK). Based
on the GK protocol, constant-round ZKPOK for NP is recently provably achieved in
[62]. The notion of strong proof of knowledge (SPOK), where the knowledge extractor
is required to run in strict polynomial time (rather than expected polynomial time),
is introduced in [41] (see also [38]). The separation between SPOK and traditional
POK (i.e., the existence of an interactive protocol that is POK but not SPOK) was
conjectured in [41], which was later (partially) answered in [5,6]. The work [8] (see also
[38]) discussed the difficulties with parallel repetition of proof of knowledge. Soundness
error reduction under parallel repetition for argument systems, where the same argument
protocol is run many times in parallel on the same fixed common input, were explored
in [10,54,71].

Recently, the first constant-round simultaneously resettable zero-knowledge argument
of knowledge in the BPK model under standard complexity assumptions was achieved
by Cho, Ostrovsky, Scafuro and Visconti [17], which is referred to as the COSV protocol
for presentation simplicity. At the heart of the COSV protocol is a celebrating building

Concurrent Knowledge Extraction in Public-Key Models 165

tool, i.e., constant-round simultaneously resettable witness-indistinguishable argument
of knowledge (rWIAOK, for short) for NP in the plain model. The rWIAOK protocol
is, in turn, based on the statistical ZKAOK protocol by Pass and Rosen [70]; as a conse-
quence, the COSV protocol uses both non-black-box ZK simulation and non-black-box
knowledge extraction. TheCOSVprotocol is a strengthening of the (double-commitment
based) efficient CZK–CKE protocol presented in Sect. 7 of this work, where the regular
WIAOK in Stage 1 and Stage 3 is replaced by rWIAOK, which may, in some sense,
further highlight the applicability of the efficient CZK–CKE protocol structure. The
issue of CKE was not defined or discussed in [17], where AOK is relative to stand-alone
protocol run. However, as to be discussed in Sect. 7.2 (p. 37) and Sect. 7.1 (p. 44), we
observe that the COSV protocol seems to achieve computational (non-black-box) CKE
security in the BPK model (the actual analysis is left for future work). In comparison
with the possible rWIAOK-based solution, the efficient CZK–CKE protocol presented
in this work enjoys (1) muchmore efficient computational and round complexity, as well
as being able to be practically instantiated without going through NP-reductions; (2)
black-box ZK simulation and black-box knowledge extraction; and (3) statistical CKE.
A new model for round-efficient concurrent security, named the bounded player (BP)

model, was recently introduced by Goyal, Jain, Ostrovsky, Richelson and Visconti [50].
The BP model is a further relaxation of the BPK model, as well as that of the bounded
concurrency model [1]. In the BP model, the number of players is bounded; but unlike
in the BPK model, there is no synchronization barrier between the key-generation stage
and the proof stage. On the other hand, unlike in the bounded concurrency model, the
number of sessions that may be involved is not a priori bounded. As discussed in [50],
the BPmodel is strictly weaker than the BPKmodel. For example, while constant-round
black-box CZK exists in the BPK model, non-black-box CZK simulation is necessary
even for sub-logarithmic-round CZK in the BP model as achieved in [50]. Constant-
round CZK in the BP model was recently achieved in [51], which might shed light on
solving constant-round CZK in the plain model that is the central open problem in this
area. But the issue of CKE was not considered in [50,51]. From our observations, the
formulation and clarifications of CKE presented in this workmay be extended or adapted
to the BP model. We also observe that the protocols in [50,51] may not directly render
the CKE security. The study of CZK–CKE in the BPmodel is left as an interesting future
research direction.

1.3. Organization

We recall basic notions and tools in Sect. 2. In Sect. 3, we describe (an augmented
version of) the BPK model with adaptive language selections based on public keys. In
Sect. 4, we present the motivation, by concrete attacks on naturally existing protocol, for
concurrent knowledge extractability in the public-key model. In Sect. 5, we formulate
CKE in the BPKmodel andmake clarifications and justification of the CKE formulation.
In Sect. 6, we present the generic implementation of constant-round CZK–CKE argu-
ments for NP in the BPK model under standard hardness assumptions. In Sect. 7, we
present the efficient implementations of constant-round CZK–CKE arguments for NP
in the BPK model with the usage of complexity leveraging in a minimal and novel way,
and discuss and clarify in depth the various subtleties. In particular, we present and dis-

166 A. C.-C. Yao et al.

cuss the practical instantiations of both the generic and efficient CZK–CKE arguments
for some number-theoretic languages without going through general NP-reductions.
We conclude this work by suggesting some open questions for future investigations in
Sect. 8.

2. Preliminaries

In this section, we briefly recall some basic definitions and the corresponding construc-
tions that are to be used in this work. The reader, who is familiar with these basics, can
skip them (particularly, the constructions) on the first reading and will be referred back
to them as needed in the subsequent sections.
We use standard notations and conventions below for writing probabilistic algo-

rithms, experiments and interactive protocols. If A is a probabilistic algorithm, then
A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and coins r . We let
y ← A(x1, x2, . . .) denote the experiment of picking r at random and letting y be
A(x1, x2, . . . ; r). If S is a finite set then |S| is its cardinality, and x ← S is the operation
of picking an element uniformly at random from S. If α is neither an algorithm nor a
set then x ← α is a simple assignment statement. We denote by N the set of natural
numbers. By [R1; . . . ; Rn : v], we denote the set of values that a random variable v

can assume, due to the distribution determined by the sequence of random processes
R1, R2, . . . , Rn . By Pr[R1; . . . ; Rn : E], we denote the probability of event E , after the
ordered execution of random processes R1, . . . , Rn . A string x is always assumed to be
binary, and |x | denotes its binary length.

It should be noted that, for presentation simplicity, the notation “xi ∈ x̄ ," where x̄
is assumed to be the vector (x1, x2, . . . , xk) is abused informally to emphasize the fact
that xi is the i th entry of the vector x̄ . For instance, the statement “for xi ∈ x̄ ," 1 ≤
i ≤ k, is equivalent to “for the i th entry of x̄ ." Throughout this work, unless otherwise
specified, we denote by n (usually presented in unary as 1n) the underlying security
parameter.
Letting 〈P, V 〉 be a probabilistic interactive protocol, then the notation (y1, y2) ←

〈P(x1), V (x2)〉(x) denotes the random process of running interactive protocol 〈P, V 〉
on common input x , where P (resp., V) has private input x1 (resp., x2), and y1 (resp.,
y2) is the output of P (resp., V). We assume without loss of generality that the output
of both parties P and V at the end of an execution of the protocol 〈P, V 〉 contains a
transcript of the communication exchanged between P and V during such execution.

The security of cryptographic primitives and tools presented in this section is defined
with respect to uniform polynomial-time or sub-exponential-time algorithms. When
it comes to non-uniform security, we refer to non-uniform polynomial-time or sub-
exponential-time algorithms.

Definition 2.1. one-way function A function f : {0, 1}∗ −→ {0, 1}∗ is called a one-
way function (OWF) if the following conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such
that on input x algorithm A outputs f (x) (i.e., A(x) = f (x)).

Concurrent Knowledge Extraction in Public-Key Models 167

2. Hard to invert: For every probabilistic polynomial-time (PPT) algorithm A′, every
positive polynomial p(·), and all sufficiently large n’s, it holds Pr[A′(f (Un), 1n) ∈
f −1(f (Un))] < 1

p(n)
, where Un denotes a random variable uniformly distributed

over {0, 1}n . A OWF f is called sub-exponentially strong if for some constant c,
0 < c < 1, for every sufficiently large n, and every circuit C of size at most 2nc

,
Pr[C(f (Un), 1n) ∈ f −1(f (Un))] < 2−nc

.

Definition 2.2. ((public-coin) interactive argument/proof system [14,48]) A pair of
interactive machines, 〈P, V 〉, is called an interactive argument system for a language L
if both are PPT machines and the following conditions hold:

• Completeness. For every x ∈ L∩{0, 1}n , there exists a string w∈ {0, 1}poly(n) such
that for every string z∈ {0, 1}∗, Pr[〈P(w), V (z)〉(x) = 1] = 1.

• Soundness. For every polynomial-time interactive machine P∗, and for all suf-
ficiently large n’s and every x /∈ L of length n and every w, z∈ {0, 1}∗,
Pr[〈P∗(w), V (z)〉(x) = 1] is negligible in n.

An interactive protocol is called a proof for L , if the soundness condition holds against
any (even power unbounded) P∗ (rather than only PPT P∗). An interactive system is
called a public-coin system if at each round the prescribed verifier can only toss coins
and send their outcome to the prover.

Commitment schemes enable a party, called the sender, to bind itself to a value in the
initial commitment stage, while keeping the value secret against a potentially malicious
receiver (this property is called hiding). Furthermore, when the commitment is opened
by a potentially malicious sender in a later decommitment stage, it is guaranteed that
the “opening” can yield only the single value determined in the commitment phase (this
property is called binding). Commitment schemes come in two different flavors: statis-
tically binding computationally hiding and statistically hiding computationally binding.

Definition 2.3. (statistically/perfectly binding bit commitment scheme [11,38]) A pair
of PPT interactive machines, 〈P, V 〉, is called a statistically/perfectly binding bit com-
mitment scheme, if it satisfies the following:

Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that

Pr

[
(α, β) ← 〈P(b), V 〉(1n);

(t, (t, v)) ← 〈P(α), V (β)〉(1n)
: v = b

]
= 1.

Computationally hiding. For all sufficiently large n’s, any PPT adversary V ∗, the
following two probability distributions are computationally indistinguishable:

[(α, β) ← 〈P(0), V ∗〉(1n) : β], and

[(α′, β ′) ← 〈P(1), V ∗〉(1n) : β ′].

Statistically/perfectly binding. For all sufficiently large n’s, and any (even computa-
tional power unbounded) adversary P∗, the following probability is negligible in n (or

168 A. C.-C. Yao et al.

equals 0 for perfectly binding commitments):

Pr

⎡
⎣ (α, β) ← 〈P∗, V 〉(1n);

(t, (t, v)) ← 〈P∗(α), V (β)〉(1n);
(t ′, (t ′, v′)) ← 〈P∗(α), V (β)〉(1n)

: v, v′ ∈ {0, 1} ∧
v �= v′

⎤
⎦ .

Below, we recall some classic perfectly binding commitment schemes.
One-round perfectly binding (computationally hiding) commitments can be based on

any one-way permutation (OWP) [11,47]. Loosely speaking, given aOWP f with a hard-
core predict b (cf. [38]), on the security parameter n one commits a bit σ by selecting
x ∈ {0, 1}n uniformly at random and sending (f (x), b(x) ⊕ σ) as a commitment, while
keeping x as the decommitment information.
Let p and q be primes, p = 2q + 1 and |p| = n, and g be an element of Z∗

p of order
q. We assume the decisional Diffie–Hellman (DDH) assumption holds on the cyclic
group indexed by (p, q, g) (i.e., the sub-group of Z∗

p generated by g). For practical
perfectly binding commitment scheme, in this work we use the DDH-based ElGamal
(non-interactive) commitment scheme [34]. To commit to a value v ∈ Zq , the committer
randomly selects u, r ∈ Zq , computes h = gu mod p and sends (h, ḡ = gr , h̄ =
gvhr) as the commitment. The decommitment information is (r, v). Upon receiving the
commitment (h, ḡ, h̄), the receiver checks that h, ḡ, h̄ are elements of order q in Z

∗
p. It

is easy to see that the commitment scheme is of perfectly binding. The computational
hiding property is from the DDH assumption on the subgroup of order q ofZ∗

p (for more
details, see [34]). We also note that in [63] Micciancio and Petrank presented another
implementation of DDH-based perfectly binding commitment scheme with advanced
security properties.
Statistically binding commitments can be based on any one-way function (OWF) but

run in two rounds [53,65]. On the security parameter n, letting P RG : {0, 1}n −→
{0, 1}3n be a pseudorandom generator, the Naor’s OWF-based 2-round public-coin per-
fectly binding commitment scheme works as follows. In the first round, the commitment
receiver sends a random string R ∈ {0, 1}3n to the committer. In the second round, the
committer uniformly selects a string s ∈ {0, 1}n at first; then to commit a bit 0, the
committer sends P RG(s) as the commitment; to commit a bit 1, the committer sends
P RG(s) ⊕ R as the commitment. Note that the first-round message of Naor’s commit-
ment scheme can be fixed once and for all and, in particular, can be posted as a part of
public key in the public-key model.

Definition 2.4. (trapdoor bit commitment scheme [36]) A trapdoor bit commitment
scheme (TC) is a quintuple of probabilistic polynomial-time algorithmsTCGen,TCCom,
TCVer, TCKeyVer and TCFake, such that
Completeness. For any security parameter n, and any bit b ∈ {0, 1}, it holds that:

Pr

[
(T C P K , T C SK)←TCGen(1n);
(c, d)←TCCom(1n , T C P K , b)

: TCKeyVer(1n , T C P K)=TCVer(1n , T C P K , c, b, d)=1

]
=1.

Concurrent Knowledge Extraction in Public-Key Models 169

Computationally binding. For all sufficiently large n’s and for any PPT adversary A,
the following probability is negligible in n:

Pr

[
(T C P K , T C SK)←TCGen(1n);

(c, v1, v2, d1, d2)←A(1n, T C P K)
:

v1, v2 ∈ {0, 1}∧
v1 �= v2

∧
TCVer(1n, T C P K , c, v1, d1)=TCVer(1n, T C P K , c, v2, d2)=1

]
.

Perfectly (or computationally) hiding. For all sufficiently large n’s and any T C P K
such that TCKeyVer(1n, T C P K) = 1, the following two probability distributions are
identical (or computationally indistinguishable):

[(c0, d0) ← TCCom(1n, T C P K , 0) : c0], and

[(c1, d1) ← TCCom(1n, T C P K , 1) : c1].

Perfect (or computational) trapdoorness. For all sufficiently large n’s and any
(T C P K , T C SK) ∈ {TCGen(1n)}, ∃v1 ∈ {0, 1}, ∀v2 ∈ {0, 1} such that the follow-
ing two probability distributions are identical (or computationally indistinguishable):

[
(c1, d1) ← TCCom(1n, T C P K , v1);

d ′
2 ← TCFake(1n, T C P K , T C SK , c1, v1, d1, v2)

: (c1, d ′
2)

]
, and

[(c2, d2) ← TCCom(1n, T C P K , v2) : (c2, d2)].

Feige–Shamir trapdoor commitments (FSTC) [36]. Based on Blum’s protocol for
directed Hamiltonian cycle (DHC), Feige and Shamir developed a generic (computa-
tionally hiding and computationally binding) trapdoor commitment scheme [36], under
any one-way permutation or any OWF (depending on the underlying perfectly binding
commitment scheme used). The T C P K of the FSTC scheme is (y = f (x), G) (for
OWF-based solution, T C P K also includes a random string R serving as the first-round
message of Naor’s OWF-based perfectly binding commitment scheme), where f is a
OWF and G is a graph that is reduced from y by the Cook-Levin NP-reduction. The
corresponding trapdoor is x (or equivalently, a Hamiltonian cycle in G). The following
is the description of the Feige–Shamir trapdoor bit commitment scheme, on the security
parameter n.

Round-1. Letting f be a OWF, the commitment receiver randomly selects an element
x of length n in the domain of f , computes y = f (x), reduces y (by Cook-Levin
NP-reduction) to an instance of DHC, a graph G = (V, E) with q = |V | nodes,
such that finding a Hamiltonian cycle in G is equivalent to finding the preimage of y.
Finally, it sends (y, G) to the committer. We remark that to get OWF-based trapdoor
commitments, the commitment receiver also sends a random string R of length 3n.

Round-2. The committer first checks the NP-reduction from y to G and aborts if G is
not reduced from y. Otherwise, to commit to 0, the committer selects a random per-
mutation, π , of the vertices V , and commits (using the underlying perfectly binding
commitment scheme) the entries of the adjacency matrix of the resultant permutated
graph. That is, it sends a q-by-q matrix of commitments so that the (π(i), π(j))-entry

170 A. C.-C. Yao et al.

is a commitment to 1 if (i, j) ∈ E , or is a commitment to 0 otherwise. To commit to
1, the committer commits an adjacencymatrix containing a randomly labeled q-cycle
only.

Decommitment stage. To decommit to 0, the committer sends π to the commitment
receiver along with the revealing of all commitments, and the receiver checks that
the revealed graph is indeed isomorphic to G via π . To decommit to 1, the com-
mitter only opens the entries of the adjacency matrix that are corresponding to the
randomly labeled cycle, and the receiver checks that all revealed values are 1 and the
corresponding entries form a simple q-cycle.

Definition 2.5. (witness indistinguishability WI [37]) Let 〈P, V 〉 be an interactive
system for a language L ∈ NP , and let RL be the fixed NP witness relation for L .
That is, x ∈ L if there exists a w such that (x, w) ∈ RL . We denote by viewP(w)

V ∗(z)(x) a
random variable describing the transcript of all messages exchanged between a (possibly
malicious) PPT verifier V ∗ and the honest prover P in an execution of the protocol on
common input x , when P has auxiliary input w and V ∗ has auxiliary input z. We say
that 〈P, V 〉 is witness indistinguishable for RL if for every PPT interactive machine V ∗,
and every two sequences W 1 = {w1

x }x∈L and W 2 = {w2
x }x∈L for sufficiently long x , so

that (x, w1
x) ∈ RL and (x, w2

x) ∈ RL , the following two probability distributions are
computationally indistinguishable by any polynomial-time algorithm:

{
view

P(w1
x)

V ∗(z) (x)

}
x∈L , z∈{0, 1}∗

, and

{
view

P(w2
x)

V ∗(z) (x)

}
x∈L , z∈{0, 1}∗

.

Namely, for every polynomial-time distinguishing algorithm D, every polynomial
p(·), all sufficiently long x ∈ L , and all z ∈ {0, 1}∗, it holds that

∣∣∣∣Pr[D(x, z, view
P(w1

x)

V ∗(z) (x)) = 1] − Pr[D(x, z, view
P(w2

x)

V ∗(z) (x)) = 1]
∣∣∣∣ <

1

p(|x |) .

Definition 2.6. (strong witness indistinguishability SWI [38]) Let 〈P, V 〉 and all other
notations be as in Definition 2.5. We say that 〈P, V 〉 is strongly witness indistinguish-
able for RL if for every PPT interactive machine V ∗ and for every two probabil-
ity ensembles {(X1

n, Y 1
n , Z1

n)}n∈N and {(X2
n, Y 2

n , Z2
n)}n∈N, such that each (Xi

n, Y i
n, Zi

n)

ranges over (RL × {0, 1}∗) ∩ ({0, 1}n × {0, 1}∗ × {0, 1}∗), the following holds: If
{(X1

n, Z1
n)}n∈N and {(X2

n, Z2
n)}n∈N are computationally indistinguishable, then so are

{〈P(Y 1
n), V ∗(Z1

n)〉(X1
n)}n∈N and {〈P(Y 2

n), V ∗(Z2
n)〉(X2

n)}n∈N.

WI versus SWI: It is clarified in [39] that the notion of SWI actually refers to issues
that are fundamentally different fromWI. Specifically, the issue iswhether the interaction
with the prover helps V ∗ to distinguish some auxiliary information (which is indistin-
guishable without such an interaction). Significantly different from WI, SWI does not
preserve under concurrent composition. For more detailed clarifications and discussions

Concurrent Knowledge Extraction in Public-Key Models 171

about SWI, the reader is referred to [39]. However, an interesting observation (as shown
in Sect. 6) is: the protocol composing commitments and SWI can be itself regular WI.

Definition 2.7. (system for argument/proof of knowledge [9,38]) Let R be a binary
relation and κ : N → [0, 1]. We say that a probabilistic polynomial-time interactive
machine V is a knowledge verifier for the relation R with knowledge error κ if the
following two conditions hold:

• Non-triviality: There exists an interactive machine P such that, for every (x, w) ∈
R, all possible interactions of V with P on common input x and auxiliary input w
are accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle
machine K such that for every interactive machine P∗, every x ∈ L R , and every
w, r ∈ {0, 1}∗, machine K satisfies the following condition:
Denote by p(x, w, r) the probability that the interactive machine V accepts, on
input x , when interacting with the prover specified by P∗

x,w,r (where P∗
x,w,r denotes

the deterministic strategy of P∗ on common input x , auxiliary input w and random
tape r). If p(x, w, r) > κ(|x |), then, on input x and with oracle access to P∗

x,w,r ,
machine K outputs a solution w′ ∈ R(x) within an expected number of steps
bounded by

q(|x |)
p(x, w, r) − κ(|x |)

The oracle machine K is called a knowledge extractor.

An interactive argument/proof system 〈P, V 〉 such that V is a knowledge verifier for a
relation R and P is a machine satisfying the non-triviality condition (with respect to V
and R) is called a system for argument/proof of knowledge (AOK/POK) for the relation
R.

The above definition of POK is with respect to deterministic prover strategy. POK
also can be defined with respect to probabilistic prover strategy. It is shown that the two
definitions are equivalent for all natural cases (e.g., POK for NP-relations) [9].
We mention that Blum’s protocol for DHC [12] is just a 3-round public-coin WIPOK

for NP , which is recalled below.
Blum’s protocol for DHC [12]. The n-parallel repetitions of Blum’s basic protocol

for proving the knowledge of Hamiltonian cycle on a given directed graph G [12] is just
a 3-round public-coin WIPOK for NP (with knowledge error 2−n) under any one-way
permutation (as the first round of it involves one-round perfectly binding commitments
of a random permutation of G). But it can be easily modified into a 4-round public-coin
WIPOK for NP under any OWF by employing Naor’s 2-round (public-coin) perfectly
binding commitment scheme [65]. The following is the description of Blum’s basic
protocol for DHC:

Common input. A directed graph G = (V, E) with q = |V | nodes.
Prover’s private input. A directed Hamiltonian cycle CG in G.

172 A. C.-C. Yao et al.

Round- 1. The prover selects a random permutation, π , of the vertices V , and commits
(using a perfectly binding commitment scheme) the entries of the adjacency matrix
of the resulting permutated graph. That is, it sends a q-by-q matrix of commitments
so that the (π(i), π(j))-entry is a commitment to 1 if (i, j) ∈ E and is a commitment
to 0 otherwise.

Round- 2. The verifier uniformly selects a bit b ∈ {0, 1} and sends it to the prover.
Round- 3. If b = 0, then the prover sends π to the verifier along with the revealing of all

commitments (and the verifier checks that the revealed graph is indeed isomorphic
to G via π). If b = 1, the prover reveals to the verifier only the commitments
to entries (π(i), π(j)) with (i, j) ∈ CG (and the verifier checks that all revealed
values are 1 and the corresponding entries form a simple q-cycle).

We remark that theWI property of Blum’s protocol for DHC relies on the hiding property
of the underlying perfectly binding commitment scheme used in its first round.
The Lapidot–Shamir protocol (LS protocol) for DHC [59]. The n-parallel repe-

tition of the Lapidot–Shamir basic protocol for proving the knowledge of Hamiltonian
cycle on a given directed graph G [59] is another 3-round public-coin WIPOK for NP
(with knowledge error 2−n) under any one-way permutation (as its first round involves
one-round perfectly binding commitments of a random permutation of G). Again, it
can be easily modified into a 4-round public-coin WIPOK for NP under any OWF by
employing Naor’s 2-round (public-coin) statistically binding commitment scheme [65].
The following is the description of the Lapidot–Shamir basic protocol for DHC (that is
also described in [35]):

Round- 1. The prover P commits an adjacency matrix for a randomly labeled cycle C
of size q (without knowing the Hamiltonian graph to be proved). The commitment
is done bit-by-bit using the one-round OWP-based perfectly binding commitment
scheme.

Round- 2. The verifier V responds with a randomly chosen bit b.
Round- 3. Now, P is given the Hamiltonian graph G = (V, E) with size q = |V | to

be proved and a Hamiltonian cycle CG in G as its private input. If b = 0, then P
opens all commitments (and V checks the revealed graph is indeed a q-cycle). If
b = 1, then P sends a random permutation π mapping CG (i.e., its private witness)
to C (committed to its first-round message), and for each non-edge of G, (i, j) �∈ E
(1 ≤ i, j ≤ q), P opens the value (that should be 0) committed to the (π(i), π(j))-
entry of the adjacency matrix sent in the first-round message (and V checks all
revealed values are 0 and the unrevealed entries in the committed adjacency matrix
constitute a graph that is isomorphic to G via the permutation π).

One salient feature of the LS protocol is that the prover can send the first-round
message with only the knowledge of the size of the Hamiltonian graph to be proved.
Furthermore, it can be easily extended to the case when the prover knows only the lower-
bound l(n) and the upper-bound u(n) of the size of the graph to be proved. In this case, in
the first-round P commits (u(n)−l(n)+1)many adjacencymatrices for (u(n)−l(n)+1)
many cycles with sizes ranging from l(n) to u(n). In the third round, after the size of G
is clear, P only decommits with respect to the unique cycle of according size.
Again, the WI property of the LS protocol for DHC relies on the hiding property of

the underlying perfectly binding commitment scheme (used in its first-round).

Concurrent Knowledge Extraction in Public-Key Models 173

StatisticalWI argument/proof of knowledge (WIA/POK).We employ, in a critical
way, constant-round statistical WIA/POK in this work. We briefly mention two sim-
ple ways for achieving constant-round statistical WIA/POK systems. Firstly, for any
statistical/perfect � protocol (cf. Sect. 2.1), the OR proof (i.e., the �O R protocol) is
statistical/perfect WI proof of knowledge. The second approach is to modify the (par-
allel repetition of) Blum’s protocol for DHC [12] (that is computational WIPOK) into
constant-round statistical WIAOK by replacing the statistically binding commitments
(used in the first round of Blum’s protocol) with constant-round statistically hiding com-
mitments. One-round statistically hiding commitments can be based on any collision-
resistant hash function [23,57]. Two-round statistically hiding commitments can be
based on any claw-free collection with an efficiently recognizable index set [38,42,49],
or based on any collision-resistant hash function (CRHF) [23,57].5 Statistically hiding
commitments can also be based on general assumptions, in particular any OWF, but with
non-constant rounds [55,56,66]).
Argument/proof of knowledge (A/POK) as sub-protocols [61]. Arguments or

proofs of knowledge are often used as sub-protocols within larger protocols. In order
to simulate the rest of the larger protocol subsequent to a successful run of the A/POK
sub-protocol, a simulator needs to run the extractor for the A/POK to obtain some secret
information. This secret information is then used in order to simulate the rest of the
larger protocol.
However, a technical problem arises when using an A/POK sub-protocol in such a

way. Specifically, if the knowledge error κ (as defined in Definition 2.7) is negligible,
the running time of the simulator is not guaranteed to be expected polynomial time. This
technical difficulty was solved by Goldreich and Kahan in [42]. However, the techniques
proposed in [42] are complex, and thus, applying them every time, we need to use an
A/POK sub-protocol is cumbersome. To simplified the matter and to ease modular use
and analysis of A/POK as sub-protocols, Lindell [61] introduces the notion of witness-
extended emulator and presents a general lemma that enables the use of A/POK as
sub-protocols without requiring any complicated analysis.

Definition 2.8. (witness-extended emulator [61]) Let R be a binary relation, and let
〈P, V 〉 be an interactive proof system. Consider a probabilistic expected polynomial-
time machine E = (E1, E2) that is given input x and access to the oracle P∗

x,w,r , where
P∗

x,w,r denotes the strategy of the (possibly malicious) prover P∗ upon common input x ,

auxiliary input w such that (x, w) ∈ R, and random tape r . We denote by view
P∗

x,w,r
V (x)

a random variable describing the view of the honest verifier V in an execution of the
A/POKwith P∗

x,w,r (which consists of the random coins of V and the messages received

from P∗
x,w,r). Let E

P∗
x,w,r

1 (x) and E
P∗

x,w,r
2 (x) denote the random variables representing the

first and second elements of the output of E , respectively. We say that E is a witness-

5 The CRHF-based statistically hiding commitment scheme can be non-interactive, but is only secure
against uniform adversaries or is secure in the sense of “human ignorance" [74].

174 A. C.-C. Yao et al.

extended emulator6 for 〈P, V 〉 and R, if for every interactive function P∗, every
x, w, r ∈ {0, 1}∗, every polynomial p(·) and all sufficiently large x’s,

1. E1 outputs the distribution of V ’s view in a real execution with P∗
x,w,r . Specif-

ically, the following probability ensembles are identical:
{

E
P∗

x,w,r
1 (x)

}
x,w,r

and{
view

P∗
x,w,r

V

}
x,w,r

.

2. The probability that V ’s view (as output by E1) is accepting, and yet E2 does not
output a correct witness ŵ such that (x, ŵ) ∈ R is negligible (in |x |).

Lemma 2.1. (witness-extended emulation lemma [61]) Let R be a binary relation and
let 〈P, V 〉 be an argument/proof of knowledge for R with negligible knowledge error.
Then, there exists a witness-extended emulator E = (E1, E2) for 〈P, V 〉 and R.

2.1. � and �OR Protocols

� protocols are 3-round public-coin protocols satisfying a special honest-verifier zero-
knowledge (SHVZK) property and a special soundness property in the sense of knowl-
edge extraction.

Definition 2.9. (� protocol [19]) A 3-round public-coin protocol 〈P, V 〉 is said to be
a � protocol for an NP-language with relation RL if the followings hold:

• Completeness. If P , V follow the protocol, the verifier always accepts.
• Special soundness. From any common input x of length poly(n) and any pair of
accepting conversations on input x , (a, e, z) and (a, e′, z′) where e �= e′, one can
efficiently computew such that (x, w) ∈ RL . Here a, e and z stand for the first-, the
second- and the third-round message, respectively and e is assumed to be a string
of length k (such that k is polynomially related to the security parameter n) selected
uniformly at random in {0, 1}k .

• Special honest verifier zero knowledge (SHVZK). There exists a probabilistic
polynomial-time simulator S, which on input x (where there exists a w such that
(x, w) ∈ RL), and a random challenge string ê outputs an accepting conversation
of the form (â, ê, ẑ), with the probability distribution that is indistinguishable from
that of the real conversation (a, e, z) between the honest P(w) and V on input x .

The first � protocol (for an NP-language) in the literature can be traced back to
the GMW protocol for graph isomorphism [47], though the name of � protocol is only
adopted later in [19] (we note that the GMW protocol for G3C [47] is 3-round public-
coin SHVZK but not of special soundness, and thus not a� protocol by definition). A�

protocol is called perfect/statistical � protocol, if it is perfect/statistical SHVZK. A �

protocol is called partial witness-independent, if the generation of its first-roundmessage
from prover is independent of (i.e., without using) the witness for the common input.
Since [47], a very large number of � protocols have been developed in the literature.

6 The machine E is named a “witness-extended emulator" due to the fact that the main goal is emulation
while the witness extraction is a tool used to accomplish this goal [61].

Concurrent Knowledge Extraction in Public-Key Models 175

In particular, (the n-parallel repetition of) Blum’s protocol for DHC [12] is a (partial
witness-independent) computational� protocol forNP; that is, the n-parallel repetition
of Blum’s protocol for DHC [12] is also a 3-round (partial witness-independent) WI for
NP . Most practical � protocols for number-theoretic languages (e.g., DLP and RSA
[52,76]) are (partial witness-independent) perfect � protocols. For a good survey of �

protocols and their applications, the reader is referred to [22].
�-Protocol for DLP [76]. The following is a� protocol 〈P, V 〉 proposed by Schnorr

[76] for proving the knowledge of discrete logarithm,w, for a common input of the form
(p, q, g, h) such that h = gw mod p, where on the security parameter n, p is a uniformly
selected n-bit prime such that q = (p − 1)/2 is also a prime, g is an element in Z

∗
p of

order q.

• In the first round, P chooses r at random in Zq and sends a = gr mod p to V .
• In the second round, V chooses a challenge e at random in Z2k and sends it to P .
Here, k is fixed such that 2k < q.

• In the third round, P sends z = r + ew mod q to V , who checks that gz =
ahe mod p, that p and q are primes and that g and h have order q, and accepts iff
this is the case.

� protocol for the q-th root problem (QRP) [52]. Let N be an RSA modulus (i.e.,
the product of two large primes), and let q < N be a prime. Given a value y ∈ ZN , the
qth root problem (QRP) overZ∗

N is to find an element x ∈ ZN such that y = xq mod N .
The QRP problem is assumed to be one-way (without knowing the order of Z∗

N), where
the probability is taken over the random choices of (N , x, y) and the random coins of the
attacker. Note that, if q = 2, the QRP problem is just the square root problem (modulo
N) whose hardness is computationally equivalent to that of factoring N . For q > 2, the
QRP problem can be viewed as a special case of the RSA problem, which is conjectured
to be easier than factoring [13].
Let U = (N , q, y) be the common input, and w ∈ Z

∗
N be the private input, where

y = wq mod N . The following is a � protocol for the QRP problem [52]:

• P chooses r at random in Z∗
N and sends a = rq mod N to V .

• V chooses a challenges e uniformly at random in {0, 1}l and sends e to P , where l
is fixed such that 2l < q.

• P sends z = rwe mod N to V , who checks that a = zq/ye mod N , that q is a
prime, that gcd(a, N) = gcd(y, N) = 1, and accepts iff this is the case.

The OR proof of �-protocols [20]. One basic construction with � protocols is the
OR of a real protocol conversation and a simulated one, called�O R , that allows a prover
to show that given two inputs x0, x1 (for possibly different NP-relations R0 and R1,
respectively), it knows a w such that either (x0, w) ∈ R0 or (x1, w) ∈ R1, without
revealing which is the case (i.e., witness-indistinguishable WI) [20]. Specifically, given
two � protocols 〈Pb, Vb〉 for Rb, b ∈ {0, 1}, with random challenges of, without loss
of generality, the same length k, consider the following protocol 〈P, V 〉, which we call
�O R protocol. The common input of 〈P, V 〉 is (x0, x1), and P has a private input w

such that (xb, w) ∈ Rb.

176 A. C.-C. Yao et al.

• P computes the firstmessage ab in 〈Pb, Vb〉, using xb,w as private inputs. P chooses
e1−b at random, runs the SHVZK simulator of 〈P1−b, V1−b〉 on input (x1−b, e1−b),
and lets (a1−b, e1−b, z1−b) be the output. P finally sends a0, a1 to V .

• V chooses a random k-bit string e and sends it to P .
• P sets eb = e ⊕ e1−b and computes the answer zb to challenge eb using

(xb, ab, eb, w) as input. It sends (e0, z0, e1, z1) to V .
• V checks that e = e0 ⊕ e1 and that conversations (a0, e0, zo), (a1, e1, z1) are
accepting conversations with respect to inputs x0, x1, respectively.

Theorem 2.1. [20] The protocol �O R above is a � protocol for RO R, where RO R =
{((x0, x1), w)|(x0, w) ∈ R0 or (x1, w) ∈ R1}. Moreover, �O R protocols are witness-
indistinguishable (WI) argument or proof of knowledge systems.

The SHVZK simulator of �O R [20]. For a �O R protocol of the above form, denote
by SO R the SHVZK simulator of it, and denote by Sb the SHVZK simulator of the
protocol 〈Pb, Vb〉 for b ∈ {0, 1}. Then on common input (x0, x1) and a random string ê
of length k, SO R((x0, x1), ê) works: It first chooses a random k-bit string ê0, computes
ê1 = ê ⊕ ê0; then, SO R runs Sb(xb, êb) to get a simulated transcript (âb, êb, ẑb) for
b ∈ {0, 1}; finally, SO R outputs ((â0, â1), ê, (ê0, ẑ0, ê1, ẑ1)).

3. The Bare Public-Key Model

We present the definitions of concurrent soundness and concurrent zero knowledge in
the BPK model (cf. [15,64]). The key augmentation with the current formulation, in
comparison with the previous definition of the BPK model, is to explicitly consider
adaptive language and statement selection based on public keys.

3.1. Honest Players in the BPK Model

Let RK EY be an NP-relation validating the public key and secret key pair (P K , SK)

generated by honest verifiers in the BPKmodel, i.e., RK EY (P K , SK) = 1 indicates that
SK is a valid secret key of P K . In this work, the relation RK EY implicitly determines
a one-way function, denoted fK EY , such that the ability of computing SK from P K
implies breaking the one-wayness of fK EY . We assume RK EY , as well as fK EY , is
implicitly specified in P K ; for presentation simplicity, it may be omitted in protocol
specifications.
A protocol 〈P, V 〉 in the BPK model on a security parameter 1n , w.r.t. some key-

validating relation RK EY and some NP-relation RL for an NP-language L , consists
of the following:

• F : A public-key file that is a polynomial-size collection of records (id, P Kid),
where id is a string identifying a verifier and P Kid is its (alleged) public key.When
verifier’s IDs are implicitly specified from the context, for presentation simplicity,
we also just take F as a collection of public keys in protocol specification and
security analysis.

Concurrent Knowledge Extraction in Public-Key Models 177

• P(1n, RL , x, w, F, id, γ): An honest prover that is a polynomial-time interactive
machine, where 1n is the security parameter, x is a poly(n)-bit string in L , w is a
witness such that (x, w) ∈ RL , F is a public file, id is a verifier identity, and γ is
its random tape.

• V : An honest verifier that is a polynomial-time interactive machine, working in two
stages.

1. Key-generation stage: V , on the security parameter 1n and a random tape r ,
outputs a key pair (P K , SK) satisfying RK EY (P K , SK) = 1. V then registers
P K in F as its public key while keeping the corresponding secret key SK in
private.

2. Proof stage: V , on input SK and RL , x ∈ {0, 1}poly(n) (which is supposed to
be in L) and a random tape ρ, performs an interactive protocol with a prover
and outputs “accept" indicating x ∈ L or “reject" indicating x �∈ L .

Some remarks about our formulation of the BPKmodel are in order. For an interactive
protocol in the BPKmodel, as we shall show in this work, whether or not the underlying
language L being set based on the public keys makes a distinction. Specifically, there
are two cases to consider. One case is that the language L is a priori fixed before honest
verifiers generate public keys. The other case is that the language is set only after public
keys are registered, and in this case, the language may be dependent upon the public
keys (particularly the key-validating relation RK EY and the underlying OWF fK EY).
For the latter case, as we shall show in Sect. 4.2, concurrent soundness does not ensure
concurrent verifier security in public-key model. To our knowledge, this issue was not
made clear in the literature. In addition, as players’ public keys are static and are usually
applied across different cryptographic applications, the static public keys can be viewed
as part of the common input for interactive systems in public-key model. In this sense,
for a protocol 〈P, V 〉 in the BPK model, the time complexity of an interactive machine
depends both upon the underlying language to be proved and upon the registered public
keys (in particular, RK EY and fK EY). For example, suppose the public keys can be
generated with any one-way function fK EY . Then, for different instantiations of the
OWF fK EY , the time complexity of P or V can be different.7

In our formulation, an interactive protocol in the BPKmodel is specifiedw.r.t. both the
key-validating relation RK EY and the underlying language L . Moreover, the underlying
language L , w.r.t. which the protocol will be conducted, can be dependent upon the static
public keys of the honest verifiers (particularly, the relation RK EY and the underlying
OWF fK EY). For example, RL may comprise, or just be equal to, RK EY .We suggest that
this is realistic in practice for cryptographic protocols running concurrently in the public-
key model, where cryptographic applications, and hence, the underlying languages or
statements usually depend upon players’ static public keys.

7 For standard definition of interactive protocol in the plain model [38,48], a “polynomial-time" interactive
machine means, roughly speaking, that its running time is p(|x |) for sufficiently large common input x ∈
{0, 1}∗, where p is some fixed polynomial. The time complexity is defined implicitly w.r.t. a specific language
L alone.

178 A. C.-C. Yao et al.

3.2. The Malicious Concurrent Prover and Concurrent Soundness in BPK Model

Let (P K , SK) be the output of the key-generation stage of V on the security parameter
1n under the key-validating relation RK EY , and RL the NP-relation for a language L
that may possibly depend upon RK EY . An s-concurrent malicious prover P∗ in the BPK
model, for a positive polynomial s is a probabilistic polynomial-time turing machine
that, on the security parameter 1n , P K , RL and an auxiliary string z ∈ {0, 1}∗, performs
an s-concurrent attack against V as follows.

P∗ can perform concurrently at most s(n) interactive protocols (sessions) with (the
proof stage of) V as follows: If P∗ is already running i − 1 (1 ≤ i ≤ s(n)) sessions, it
can select on the fly a common input xi ∈ {0, 1}poly(n) (which may be equal to x j for
1 ≤ j < i) and initiate a new session with the proof stage of V (1n, RL , xi , SK , ρi). P∗
can output a message for any running protocol and always promptly receive the response
from V . That is, P∗ controls at its will the schedule of the messages being exchanged
in all the concurrent sessions. We stress that in different sessions, V uses independent
random tapes in its proof stage (that is, ρ1, . . . , ρs(n) are independent random strings).

We denote by viewV (SK)
P∗ (1n, P K , z), where (P K , SK) ∈ RK EY are generated by V

on the security parameter 1n , the random variable describing the view of P∗ in this
experiment, which consists of its random tape, the auxiliary string z, all messages it
receives including the public key P K and all messages sent by V (1n, RL , xi , SK , ρi)’s
in the s(n) proof stages, 1 ≤ i ≤ s(n).
We then say a protocol 〈P, V 〉, which is w.r.t. some key-validating relation RK EY and

some NP-relation RL , is concurrently sound in the BPK model, if for any sufficiently
large n, for any honest verifier V and all, except for a negligible fraction of, (P K , SK)

output by the key-generation stage of V under RK EY , for any positive polynomial s and
any s-concurrent malicious prover P∗ and any string z ∈ {0, 1}∗, for any string x �∈ L
of length poly(n), the probability that V (1n, RL , SK) outputs “accept x ∈ L” in one of
the s(n) sessions is negligible in n, where the probability is taken over the randomness
of P∗, the randomness of V for key generations and for all the s(n) proof stages.

The above concurrent soundness is defined w.r.t multiple proof stages (sessions) with
the same public key. In this case, we can assume that the auxiliary information z encodes
information collected from protocol executions w.r.t. other public keys that are generated
independently of the public key P K at hand. Note that, as discussed in [64], extension
to the general case, where P∗ interacts with instances of multiple verifiers with multiple
(independently generated) public keys, is direct.

3.3. The Malicious Concurrent Verifier and Concurrent ZK in the BPK Model

An s-concurrent malicious verifier V ∗, where s is a positive polynomial, is a PPT turing
machine that, on input 1n and an auxiliary string z∈ {0, 1}∗, works in two stages:
Stage-1 (key-generation stage). On (1n, z), V ∗ outputs an arbitrary public file F and

a list of s(n) identities id1, . . . , ids(n). Then, V ∗ is given a list of s(n) strings
x̄ = (x1, . . . , xs(n)) ∈ Ls(n) of length poly(n) each, where xi might be equal to x j ,
1 ≤ i, j ≤ s(n).

Stage-2 (proof stage). Starting from the final configuration of Stage 1, V ∗ concur-
rently interacts with s(n)2 instances of the honest prover P: P(1n, F, RL , xi , wi ,

Concurrent Knowledge Extraction in Public-Key Models 179

id j , γ(i, j)), where 1 ≤ i, j ≤ s(n), (xi , wi) ∈ RL and γ(i, j)’s are independent ran-
dom strings. In this stage, V ∗ controls at its will the schedule of the messages being
exchanged in all the concurrent sessions. In particular, V ∗ can output a message
for any running session dynamically based on the transcript up to now and always
promptly receive the response from P .

For any auxiliary string z ∈ {0, 1}∗, any public-key file F output by V ∗(1n, z) in Stage

1 and any x̄ = (
x1, . . . , xs(n)

) ∈ Ls(n), we denote by view
{P(F,RL ,xi ,wi ,id j ,γ(i, j))

′s}
V ∗(z) (1n, x̄)

the random variable describing the view of V ∗ in its second stage of this experiment,
which consists of (z, F, RL , x̄), the randomness of V ∗ in its second stage, and all mes-
sages received from all the s(n)2 prover instances.

Definition 3.1. (concurrent zero knowledge in the BPK model)A protocol 〈P, V 〉 for a
language L with NP-relation RL is (black-box) concurrent zero knowledge in the BPK
model, if there exists a PPT black-box simulator S such that for any sufficiently large n
and every s-concurrent malicious verifier V ∗ the following two distribution ensembles
are indistinguishable:{

view
{P(1n ,F,RL ,xi ,wi ,id j ,γ(i, j))

′s}
V ∗(z) (1n, x̄)

}
x̄∈Ls(n),F∈{0,1}∗,z∈{0,1}∗ , and

{
S(1n, F, RL , x̄, z)

}
x̄∈Ls(n),F∈{0,1}∗,z∈{0,1}∗ .

4. Motivation for Concurrent Knowledge Extraction in the Public-Key Model

In this section, by concrete concurrent interleaving and malleating attacks on some
natural ZK protocols in the public-key setting, we demonstrate that both argument of
knowledge and concurrent soundness do not guarantee concurrent verifier security (i.e.,
fail to ensure knowledge extraction in concurrent executions) in the public-key model.
These concrete attacks serve as a good motivation for understanding “possession of
knowledge on the Internet with registered public keys," i.e., the subtleties of concurrent
knowledge extraction (CKE) in the public-key model.

4.1. AOK Does Not Ensure CKE in the Public-Key Model

We demonstrate this by a concrete attack on the basic Feige–Shamir zero-knowledge
(FSZK) protocol [35,36] in the public-key model. The FSZK protocol is conceptually
simple,which is simply composed of twoWIPOKsub-protocols. Inmore detail, letting f
be a OWF, in the first WIPOK sub-protocol with the verifier V serving as the knowledge
prover, V computes (y0 = f (s0), y1 = f (s1)) for randomly chosen s0 and s1; then,
V proves to the prover P the knowledge of the preimage of either y0 or y1. In the
second WIPOK sub-protocol with P serving as the knowledge prover, on common
input x , P proves to V the knowledge of either a valid NP-witness w for x ∈ L
or the preimage of either y0 or y1. FSZK is zero-knowledge argument of knowledge
and can be practically instantiated (without going through general NP-reductions) by
implementing the underlying WIPOK sub-protocols with the �O R technique [20].

180 A. C.-C. Yao et al.

Though FSZKwas originally proposed in the plain model [35,36], it may appear quite
natural for the verifier to publish (y0, y1) as its public key and set sb (for a random bit
b) as its secret key when deploying FSZK in practice [82]. This public-key version of
FSZK has indeed served as the basis for a list of round-efficient concurrent and resettable
ZK protocols in the literature[17,24,25,28,68,75,77,79,81,82]. However, the following
attack (that was originally presented in [81] and is now combined into this work), on
the �O R-based implementation of FSZK (with the underlying WIPOK implemented by
�O R) in the public-key model, shows that this intuition is wrong.
Let L (WLOG, the NP-complete language directed Hamiltonian cycle (DHC)) be a

language that admits � protocols. We show how a malicious prover P∗ can convince an
honest verifier V (with public key (y0, y1)) of a statement “x ∈ L" without possessing
any witness to“x ∈ L ," by concurrently interacting two sessions with V . The message
schedule of P∗ in the two sessions is specified as follows, which is also diagrammatically
presented in Fig. 2.

1. P∗ interacts with V in the first session and works just as the honest prover does in
the first �O R protocol (i.e., the first WIPOK sub-protocol).

2. When P∗ moves into the second �O R protocol of the first session, and needs to
send V the first-round message, denoted aP , of the second �O R protocol of this
session on common input (x, y0, y1), P∗ suspends the first session and does the
following:

• It first runs the SHVZK simulator (of the underlying � protocol for L) on x to
get a simulated conversation, denoted (ax , ex , zx), for the statement “x ∈ L ."

• Then, P∗ initiates the second session with V . After receiving the first-round
message, denoteda′

V , of thefirst�O R protocol in the second session on common
input (y0, y1) (i.e., V ’s public key), P∗ sets aP = (ax , a′

V) and suspends the
second session.

Fig. 2. Concurrent interleaving attack on FSZK in public-key model .

Concurrent Knowledge Extraction in Public-Key Models 181

3. Now, P∗ continues the execution of the first session and sends aP = (ax , a′
V) to

V as the first-round message of the second �O R protocol in the first session.
4. P∗ runs V further in the first session. After receiving the second-round message

of the second �O R protocol of the first session, denoted by eP (i.e., the random
challenge from V), P∗ sets e′

V = eP ⊕ ex and suspends the first session again.
5. P∗ continues the execution of the second session and sends e′

V = eP ⊕ ex to V as
its random challenge in the second-round of the first �O R protocol in the second
session.

6. After receiving the third-round message of the first �O R protocol in the second
session, denoted z′

V , P∗ sets zP = ((ex , zx), (e′
V , z′

V)) and suspends the second
session again.

7. P∗ continues the execution of the first session again, sending the value zP =
((ex , zx), (e′

V , z′
V)) to V as the last-round message of the first session.

Note that (ax , ex , zx) is an accepting conversation for showing “x ∈ L ,” and
(a′

V , e′
V , z′

V) is an accepting conversation for showing the knowledge of the preim-
age of either y0 or y1, and furthermore, eP = ex ⊕ e′

V . According to the description
of �O R (cf. Sect. 2.1), this means that, from the viewpoint of V , (aP , eP , zP) is an
accepting conversation on common input (x, y0, y1) for the second �O R protocol in the
first session, and thus, P∗ successfully convinced V of the statement “x ∈ L" in the first
session without knowing any witness to it. Moreover, the statement “x ∈ L" can even
be false.

4.2. Concurrent Soundness Does Not Ensure CKE in the Public-Key Model

We next show a concurrent interleaving and malleating attack on the concurrent ZK pro-
tocol of [28,82] that is concurrently sound in the BPKmodel. The attack is demonstrated
w.r.t. a language (set by a malicious prover P∗) that is dependent on verifier’s public key.
Similar to the attack against FSZK in the public-key model, by concurrently interacting
with the honest verifier in two sessions, the malicious prover P∗ can successfully (with
probability 1) malleate the verifier’s interactions in one session into successful inter-
actions in another session on a true (public-key-related) statement without knowing
any witness to the statement being proved. We remark that the concurrent soundness
property of the CZK protocol of [28] still holds, even though the malicious prover can
set the language and statements (to be proved) dependent upon verifiers’ public keys.
This shows a gap between concurrent soundness and concurrent knowledge extraction
in the public-key model, particularly when the language and statements (set by a mali-
cious prover) may be dependent on verifiers’ public keys. Actually, as we shall prove
in Sect. 5, CKE is strictly stronger than concurrent soundness in the public-key model
assuming the existence of OWF.

4.2.1. The Protocol Structure of [31,82]

Key generation. Let f be a OWF that admits � protocols. On the security parameter
n, each verifier V randomly selects two elements in the domain of f , s0 and s1 of
length n each and computes y0 = f (s0) and y1 = f (s1). V publishes (y0, y1) as
its public key while keeping sb as its secret key for a randomly chosen b from {0, 1}

182 A. C.-C. Yao et al.

(For OWF-based implementation, V also publishes a random string rV of length
3n that serves as the first-round message of Naor’s OWF-based perfectly binding
commitment scheme [65].).

Common input.An element x ∈ L of length poly(n), where L is anNP-language that
admits � protocols.

Themain body of the protocol. Themain body of the protocol consists of the following
three phases.

Phase- 1. The verifier V proves to P that it knows the preimage of either y0 or
y1, by executing the �O R protocol on (y0, y1) in which V plays the role of
the knowledge prover. It is additionally required that the first-round message
of the �O R protocol be generated without using the preimage of either y0
or y1 (i.e., partial witness-independent). Denote by aV , eV and zV , the first-,
the second- and the third-round message of the �O R protocol of this phase,
respectively. Here, eV is the random challenge sent by the prover to the verifier
(For OWF-based implementation, P sends a random string rP of length 3n on
the top, which serves as the first-roundmessage of Naor’s OWF-based perfectly
binding commitments and is used by V in generating aV .).
If V successfully finishes the �O R protocol of this phase and P accepts, then
go to Phase 2. Otherwise, P aborts.

Phase- 2. Let T C be a trapdoor bit commitment schemewith the preimage of either
y0 or y1 as the trapdoor. The prover randomly selects a string ê ∈ {0, 1}n and
sends cê = {T CCom(ê1), T CCom(ê2), . . . , T CCom(ên)} to the verifier V ,
where êi is the i th bit of ê.

Phase- 3. Phase 3 runs essentially the underlying � protocol for L , except that
the random challenge now is set by a coin-tossing mechanism. Specifically,
the prover computes and sends the first-round message of the underlying �

protocol, denoted aP , to the verifier V (for OWF-based implementation, aP is
also computed using rV published by V in the key-generation phase); Then, V
responds with a random challenge q; Finally, P reveals ê (committed in Phase
2), sets eP = ê ⊕ q, and computes the third-round message of the underlying
� protocol for L , denoted zP , with eP as the real random challenge.

Verifier’s decision. V accepts if and only if ê is decommitted correctly and eP =
ê ⊕ q and (aP , eP , zP) is an accepting conversation for x ∈ L .

Remark. The above protocol structure is essentially that of the CZK protocol of [82]
(cf. Figure-3 of [82]) and can be implemented based on any OWF. The key difference
in the actual implementations of [28,82] is that the work [28] uses a special trapdoor
commitment scheme in Phase 2, where the decommitment information to 0 or 1 is in
turn committed to two statistically binding commitments, which is critical for achieving
concurrent soundness. We remark that the differences in actual implementations do not
invalidate the attack presented below in Sect. 4.2.2, which is presented with respect to
a more general protocol structure. For presentation simplicity, we refer to the protocol
structure from [28,82] as DVZK.

Concurrent Knowledge Extraction in Public-Key Models 183

Fig. 3. Concurrent interleaving attack on DVZK with P K -related language .

4.2.2. The Concurrent Interleaving and Malleating Attack

With respect to the above protocol structure of the protocols of [28,82], let L̂ be anyNP-
language admitting a� protocol that is denoted by�L̂ (in particular, L̂ can be an empty
set). Then for an honest verifier V with its public key P K = (y0, y1), we define a new
language L = {(x̂, ŷ0, ŷ1)|∃(w, b) ∈ {0, 1}∗ ×{0, 1} s.t. : (x̂, w) ∈ RL̂ ∨ ŷb = f (w)}.
Note that for any string x̂ (whether x̂ ∈ L̂ or not), the statement “(x̂, y0, y1) ∈ L” is
always true as P K = (y0, y1) is honestly generated; that is, the language L is dependent
upon theOWF f used by the honest verifier in key generation, and the verifier’s registered
public key is instantiated as part of a (true) statement in L . Also note that L is a language
that admits � protocols (as �O R protocol itself is a � protocol).

Now, we describe the concurrent interleaving and malleating attack, in which P∗
successfully convinces the honest verifier of the statement “(x̂, y0, y1) ∈ L” for any
arbitrary string x̂ (even when x̂ �∈ L̂) by concurrently interacting with V in two sessions.
For ease of understanding, the message schedule of P∗ in the two sessions is also
diagrammatically presented in Fig. 3.

1. P∗ initiates the first session with V and works just as the honest prover does in
Phase 1 and Phase 2 of the first session.

2. Denote by cê the Phase 2 message of the first session, i.e., cê commits to a random
string ê of length n.

3. When P∗ moves into Phase 3 of the first session and needs to send V the first-round
message, denoted aP , of the � protocol of Phase 3 of the first session on common
input (x̂, y0, y1), P∗ suspends the first session and does the following:

• P∗ first runs the SHVZK simulator of�L̂ (i.e., the� protocol for L̂) on x̂ to get
a simulated conversation, denoted (ax̂ , ex̂ , zx̂), for the (possibly false) statement
“x̂ ∈ L̂ ."

184 A. C.-C. Yao et al.

• Then, P∗ initiates the second session with V (For OWF-based implementation,
P just sends rP = rV as its first message to V , where rV is the random string
registered by V as a part of its public key for OWF-based implementation.).
After receiving the first-round message, denoted a′

V , of the �O R protocol of
Phase 1 of the second session on common input (y0, y1) (i.e., V ’s public key),
P∗ sets aP = (ax̂ , a′

V) and suspends the second session.

4. Now, P∗ continues the execution of the first session and sends aP = (ax̂ , a′
V) to V

as the first-round message of the � protocol of Phase 3 of the first session, where
a′

V is the one received by P∗ in the second session.
5. After receiving the second-round message of Phase 3 of the first session, denoted

q (i.e., the random challenge from V), P∗ sets eP = ê ⊕ q, where ê is the random
string committed to cê at Phase 2 of the first session, and then suspends the first
session again.

6. P∗ continues the second session and sends e′
V = eP ⊕ ex̂ (= ê ⊕ q ⊕ ex̂) as the

second-round message of the �O R protocol of Phase 1 of the second session.
7. After receiving the third-round message of the �O R protocol of Phase 1 of the

second session, denoted z′
V , P∗ suspends the second session again.

8. P∗ continues the execution of the first session again, reveals ê committed to cê
at Phase 2 of the first session and sends to V zP = ((ex̂ , zx̂), (e

′
V , z′

V)) and the
decommitment information of ê in the last-round message of the first session.

Note that (ax̂ , ex̂ , zx̂) is an accepting conversation for the (possibly false) statement
“x̂ ∈ L̂ ,” and (a′

V , e′
V , z′

V) is an accepting conversation for showing the knowledge of
the preimage of either y0 or y1, and furthermore, ex̂ ⊕e′

V = eP = ê⊕q. According to the
description of �O R (cf. Sect. 2), this means that, from the viewpoint of V , (aP , eP , zP)

is an accepting conversation of Phase 3 of the first session on common input (x̂, y0, y1).
That is, P∗ successfully convinced V of the statement “(x̂, (y0, y1)) ∈ L” (even if x̂ �∈ L̂
or x̂ is just an empty string) in the first session but without knowing any corresponding
NP-witness. This demonstrates that the protocol of [28,82] also fails to be a proof
of knowledge (fails knowledge extraction) in concurrent executions (note that it was
not designed as such, since this new issue is the notion we put forth here). We note
that the above attack does not violate the concurrent soundness of the CZK protocol
of [28], which does indeed hold even though the malicious prover can set languages
and statements depending upon verifiers’ public keys. Specifically, with our attack, the
statement (x̂, y0, y1) is always a true statement for the public-key-dependent language
L . But our attack shows that, when the underlying language and statements may be
dependent upon verifiers’ public keys, the CKE property of the protocol of [28] loses in
general (particularly considering x̂ �∈ L̂ or x̂ is just an empty string), which indicates a
gap between concurrent soundness and concurrent knowledge extraction in the public-
key model (see more clarifications in Proposition 5.1, p. 30).

Remark. The above attack is demonstrated w.r.t. a concrete language with the �O R

technique, where the dependency of the language L and statements (being proved) upon
verifier’s public key P K can be trivially checked. In general, the language L can be any
NP-complete language, and a concurrent malicious prover P∗ can adaptively select
(public-key-dependent) statements for all sessions and then reduce the statements by

Concurrent Knowledge Extraction in Public-Key Models 185

NP-reductions to the statements for the NP-complete language L . In this case, in
general it is hard to efficiently determine whether a statement generated by P∗ for the
NP-complete language L is related to verifier’s public keyor not.We suggest thatmixing
the public-key structure as part of the language and statements is a natural adversarial
strategy against cryptographic systems in the public-key model.

5. Formulating Concurrent Knowledge Extraction in the Public-Key Model

Now, we proceed to formulate concurrent verifier security in light of the above concrete
attacks presented in Sect. 4. Note that these concrete attacks are of man-in-the-middle
(MIM) nature and are related to malleability of protocols. The security notion assuring
that a malicious prover P∗ does “know” what it claims to know, when it is concur-
rently interacting with the honest verifier V in the public-key model, can informally be
described as follows. For any x , if P∗ can convince V (with public key P K) of “x ∈ L”
(for an NP-language L) by concurrent interactions, then there exists a PPT knowledge
extractor that outputs a witness for x ∈ L . This is a natural extension of the normal
arguments of knowledge into the concurrent settings in the public-key model. However,
such a definition does not work for polynomial-time black-box knowledge extraction
in the public-key model, as is the focus of this work. The reason is: The statements
being proved may be related to P K , and thus, the extracted witness may be related to
its corresponding secret key SK .8 However, in knowledge extraction, the PPT extractor
may have already possessed SK (the difficulty or impossibility of CKE directly from
P K without knowing SK is discussed and clarified in Sect. 5.1). To solve this subtlety,
we require the extracted witness, together with adversary’s view, to be independent of
SK . However, the problem here is how to formalize such independence, in particular,
w.r.t. a concurrent MIM?We solve this in the spirit of non-malleability formulation [31].
That is, we consider the message space (distribution) of SK , and such independence is
roughly formulated as follows: letting SK be the secret key and SK ′ be an element ran-
domly and independently distributed over the space of SK , then we require that, for any
polynomial-time computable relation R, the probability Pr[R(w̄, SK , view) = 1] be
negligibly close to Pr[R(w̄, SK ′, view) = 1], where w̄ is the set of witnesses extracted
by the knowledge extractor for successful concurrent sessions and view is the view of the
adversary P∗. This captures the intuition that P∗ does, in fact, “know” the witnesses to
the statements whose validations are successfully conveyed by concurrent interactions.

Definition 5.1. (concurrent knowledge extraction (CKE) in the public-key model) We
say that a protocol 〈P, V 〉 is concurrently knowledge extractable in the BPK model
w.r.t. some key-validating relation RK EY and some NP-relation RL , if for any positive
polynomial s(·), any s-concurrent malicious prover P∗ defined in Sect. 2, there exists a
pair of (expected) polynomial-time algorithms S (the simulator) and E (the extractor)
such that for any sufficiently large n, any auxiliary input z ∈ {0, 1}∗ and any polynomial-
time computable relation R (with components drawn from {0, 1}∗ ∪{⊥}), the followings
hold, in accordance with the experiment ExptCKE(1n, z) described below (p. 26):

8 Actually, for the malicious prover strategies of the concrete attacks presented in Sect. 4, the extracted
witness will just be the same secret key used by the knowledge extractor.

186 A. C.-C. Yao et al.

ExptCKE(1n , z)

The simulator S = (SK EY , SP RO O F):
(P K , SK , SK ′) ←− SK EY (1n), where the distribution of (P K , SK) is identicalwith that of the output
of the key-generation stage of the honest verifier V , RK EY (P K , SK) = RK EY (P K , SK ′) = 1 and
the distributions of SK and SK ′ are identical and independent. In other words, SK and SK ′ are two
random and independent secret keys corresponding to P K .

(str, sta) ←− S P∗(1n , P K , z)
P RO O F (1n , P K , SK , z); that is, on input (1n , P K , SK , z) and with oracle

access to P∗(1n , P K , z), the simulator S outputs a simulated transcript str , and some state information
sta to be transferred to the knowledge extractor E .
We denote by S1(1n , z) the random variable str (in accordance with the above processes of SK EY
and SP RO O F). For any (P K , SK) ∈ RK EY and any z ∈ {0, 1}∗, we denote by S1(1n , P K , SK , z)

the random variable describing the first output of S P∗(1n , P K , z)
P RO O F (1n , P K , SK , z), i.e., str specific to

(P K , SK).
The knowledge extractor E:
w ←− E(1n , sta, str). On input (sta, str), E outputs a list of witnesses to statements whose valida-
tions are successfully conveyed in str .

• Simulatability. The following two ensembles are identical (or computationally
indistinguishable in general).9

{
S1(1

n, P K , SK , z)
}
(P K ,SK)∈RK EY ,z∈{0,1}∗ , and{

viewV (SK)
P∗ (1n, z, P K)

}
(P K ,SK)∈RK EY ,z∈{0,1}∗ (cf. Section 3.2).

• Secret key independent knowledge extraction. E , on input (1n, str, sta), out-
puts witnesses to all statements successfully proved in accepting sessions in str .
Specifically, E outputs a list of strings w = (w1, w2, . . . , ws(n)), satisfying the
following:

– wi is set to be ⊥, if the i th session in str is not accepting (due to abortion or
verifier verification failure), where 1 ≤ i ≤ s(n).

– Correct knowledge extraction for (individual) statements: In all other cases
(i.e., for successful sessions), it holds that (xi , wi) ∈ RL with overwhelming
probability, where xi is the common input selected by P∗ for the i th session in
str .

– (Joint) knowledge extraction independence (KEI): Pr[R(SK , w, str) = 1]
is negligibly close to Pr[R(SK ′, w, str) = 1].

The probabilities are taken over the randomness of S in the key-generation stage
(i.e., the randomness for generating (P K , SK , SK ′)) and in all proof stages, the
randomness of E , and the randomness of P∗. If the KEI property holds for any (not
necessarily polynomial-time computable) relation R, we say the protocol 〈P, V 〉
satisfies statistical CKE and statistical KEI.

9 For all CZK–CKE protocols achieved in this work, we actually have perfect simulatability.

Concurrent Knowledge Extraction in Public-Key Models 187

5.1. Discussion and Justification of the CKE Formulation

Wefirst note that the above CKE formulation follows the simulation-extraction approach
of [70] (which is also used in [7]). Here, the key augmentation, besides some other
adaptations in the public-key model, is that the property of knowledge extraction
independence (KEI) is explicitly required. Though the CKE and KEI notions are
formulated in the public-key model, they are actually applicable to protocols in the
plain model, in general, in order to capture knowledge extractability against concurrent
adversaries interacting with honest players of secret values.
On extending the Bellare-Goldreich (BG) quantitative approach for stand-alone

POK into the concurrent setting. We note that, besides the subtle KEI issue, there
are some difficulties (or inconveniences) to extend the Bellare-Goldreich quantitative
approach for stand-alone POK [8,9,38] (i.e., the quantitative definition of expected
knowledge extraction time that is in inverse proportion to the probability the adversary
convinces of the statement) into the concurrent setting. Below, we consider two possible
approaches to extend the Bellare-Goldreich quantitative approach (for stand-alone POK)
into the concurrent setting.
The first approach (as considered in [30]) is: For each of the concurrent sessions,

we consider the probability that the adversary (i.e., the concurrent malicious prover
P∗) successfully finishes the session. Denote by pi the probability that the adversary
successfully finishes the i th session. Note that this probability is particularly taken over
the random coins of P∗ and all random coins of the honest verifier instances in all
concurrent sessions. However, within the simulation-extraction formulation framework,
it is difficult to give a precise quantitative definition of the knowledge extraction time
inversely proportional to pi . The reason is as follows when we apply the underlying
stand-alone knowledge extractor (guaranteed by the Bellare-Goldreich POK definition)
on the successful i th session in the simulated transcript, the knowledge extraction is
actually with respect to the probability, denoted p′

i , that P∗ successfully finish the i th
session when the coins of the honest verifier instances in all other sessions except the
i th one are fixed (i.e., determined by the simulated transcript). Clearly, p′

i can be totally
different from pi (e.g., pi may be non-negligible, but p′

i can be negligible), and thus, the
knowledge extraction time w.r.t p′

i can be totally different from that w.r.t pi in general.
The second approach is to separate the simulation and knowledge extraction. Specif-

ically, besides indistinguishable simulation, we separately require (regardless of the
simulated transcript) that for any statement x selected adaptively by the adversary on
the fly in the concurrent attack, if the adversary P∗ can, with probability px , convince
the honest verifier of the statement “x ∈ L" (in one of the s(n) sessions) by concurrent
interactions, the knowledge extraction time should be in inverse proportion to px . We
note that this approach does not work. On the one hand, suppose P∗ convinces x ∈ L in
one of the s(n) sessions (e.g., the i th session) with some non-negligible probability, but
with negligible probability in all other sessions. In this case, it is okay if the knowledge
extraction is w.r.t the i th session, but will fail w.r.t other sessions. On the other hand,
one may argue that to remedy the above subtlety, we can add a (polynomial-time) bound
on the knowledge extraction in each session, but this solution fails if the adversary con-
vinces of the statement “x ∈ L" with negligible probability in all sessions. In general,
it may be hard to predict the two different cases for knowledge extraction, i.e., the case

188 A. C.-C. Yao et al.

when P∗ succeeds with negligible probability in all sessions and the case when P∗ may
succeed with non-negligible probability in some (but not all) sessions.
CKE with secret keys versus CKE with public keys In our CKE formulation, the

simulator/extractor possesses verifier’s secret key w.r.t. a simulated public key. In this
case, explicitly requiring the KEI property is crucial for correctly formulating CKE,
or otherwise in general, we cannot ensure that the concurrent malicious prover P∗
does indeed know the witnesses to statements being successfully proved. A natural and
intuitive strengthening of the CKE formulation might be the simulator/extractor only
uses the public key of the honest verifier. Specifically, for any concurrent malicious
P∗ there exists a PPT simulator/extractor that, only on the public key of the honest
verifier (without knowing the corresponding secret key), outputs an indistinguishable
simulated transcript together with all the witnesses to accepting sessions. In this case,
as the simulator/extractor does not possess the secret key of the honest verifier, the KEI
property can be waived. Needless to say, CKE only with verifier public key is more
desirable, which also better fits the spirit of non-malleability. By comparison, CKE
with verifier’s secret key mainly ensures that, whenever an honest verifier is convinced
of a list of NP-statements (chosen adaptively by P∗ via concurrent interactions), the
corresponding witnesses can be efficiently extracted by the honest verifier (of public key
P K and secret key SK) itself, and the extracted witnesses are independent of verifier’s
secret key.
Below, we discuss some difficulties of achieving CZK protocols with black-box

polynomial-timeCKE in theBPKmodel, as is the focus of thiswork. Thefirst observation
is:We do not know how to achieve, with known construction techniques, constant-round
black-box polynomial-timeCKE (whether ZK or not) with only public keys. In particular,
with known techniques for constant-round black-box CZK in the BPKmodel, constant-
round CZK–CKEwith only public keys will imply constant-round CZK (actually, possi-
bly concurrently non-malleable ZKAOK) in the plain model by viewing verifiers’ public
keys as a part of common inputs, which is, however, impossible at least in the black-box
sense [16]. Roughly speaking, the underlying reason is that, in order for a protocol in
the BPK model to become CKE secure with only public keys, all messages generated
by the honest verifier using its secret key should be efficiently simulatable (i.e., zero
knowledge) according to the CKE definition. In more detail, a constant-round black-
box CZK protocol in the BPK model is usually composed of two sub-protocols: One
sub-protocol is referred to as the verifier sub-protocol, in which V plays the role of the
prover using its secret key as the witness w.r.t. a statement relative to V ’s public keys;10

and the other sub-protocol is referred to as the prover sub-protocol, in which the prover
P proves to V on the common statement and V ’s public keys. Note that we assume
provers do not register keys in the BPK model. Then, by the simulatability property
required in the CKE formulation, CKE with only public keys implies that the verifier
sub-protocol is CZK (i.e., the concurrent interactions of the verifier sub-protocol can be

10 To our knowledge, some exceptions are the constant-round concurrent/resettable ZK protocols in the
public-key model [27] or in the bounded player model [51], where verifiers’ secret keys are used only for
generating signatures. This paradigm, i.e., using signatures for achieving round-efficient concurrent/resettable
ZK, was introduced in [27] and was also used in [18,60] for other reasons. But as signatures are not efficiently
simulatable, the round-efficient concurrent/resettable ZK protocols with this approach cannot be CKE secure
merely with public keys. Indeed, the CKE issue is beyond the consideration there.

Concurrent Knowledge Extraction in Public-Key Models 189

simulated in polynomial time) in the plain model. Moreover, a malicious prover actually
plays the CMIM role between the verifier sub-protocol and the prover sub-protocol. If
some building tools are employed in both sub-protocols, to ensure concurrent knowledge
extraction we actually need the verifier CZK sub-protocol to be secure against CMIM
attacks.
On the other hand, as constant-round CZKAOK exists in the BPK model [28,68,

75,77], one may propose to additionally require the honest provers also to register
public keys, and then let verifier use a constant-round CZKAOK protocol to prove the
knowledge of its secret key in the verifier sub-protocol. For ease of reference, we refer
to the BPK model variant, where both provers and verifiers register public keys, as
generalized BPK model. The problems with this approach are as follows.

• Firstly, consider potential CZK–CKE solutions with this approach, i.e., using
CZKAOK in the generalized BPK model as the verifier sub-protocol. For all the
existing CZKAOK protocols [28,68,75,77] (to be used as the verifier sub-protocol
in the generalized BPK model), the CZK simulator S for the whole composed
protocol, say the potential CZK–CKE solution, needs to possess the secret keys
of honest provers. But CZK simulation (for the whole composed protocol) in the
generalized BPK model should be based only upon honest provers’ public keys.
That is, the actions of the prover instances in the generalized BPK model should be
efficiently simulated from the common statements and their public keys (without
knowing the corresponding NP-witnesses or their secret keys).

• Secondly, even if we allow the CZK simulator S to possess honest provers’ secret
keys, we need to ensure that: (1) the knowledge extracted by the CZK simulator S
from themalicious verifier V ∗ should just be the secret keys corresponding to public
keys registered by V ∗; and (2) the knowledge extracted should not be efficiently
derived from honest provers’ secret keys possessed by S, or otherwise, in general,
V ∗ may not necessarily “know" the knowledge extracted or the CZK simulation
(with honest provers’ secret keys) can be trivially meaningless. Note that V ∗ may
register public keys based on honest provers’ public keys. In a sense, we need to
require the underlying constant-round CZKAOK protocols in the BPKmodel (used
as the verifier sub-protocol) have already been CKE secure, while CKE is just our
goal to achieve.

Another approach to bypass the black-box CKE obstacle is to employ a constant-
round non-black-box concurrent (non-malleable) ZK protocol by verifiers to prove the
knowledge of their secret keys. In this case, knowledge extraction is also non-black-
box, i.e., the knowledge extractor needs to possess the code of the malicious prover
P∗. However, achieving constant-round non-black-box concurrent ZK protocols under
standard (black-box) complexity assumptions is a fundamental open problem in the lit-
erature. Also, black-box CKE and non-black-box CKE are incomparable in general, and
as discussed in [3,4], black-box simulation and knowledge extraction is more desirable
than their non-black-box counterparts. Finally, we mention that CZK with black-box
sub-exponential-time CKE (only with verifiers’ public keys) in the BPK model is still
possible, which is implied in [80] but is meaningful only for sub-exponentially hard
languages.

190 A. C.-C. Yao et al.

We also note that knowledge extraction with verifier secret key is not unique to this
work. To our knowledge, for most existing black-box constant-round CZK (stand-alone
or sequential) AOK protocols in the BPK model (e.g., [28,68,75,77]), when arguing
about the black-box stand-alone or sequential AOK property, it is implicitly assumed
that the knowledge extractor possesses verifier’s secret key w.r.t. a simulated public
key. One exception is the work [4], which particularly achieves constant-round (non-
round-optimal) CZK with non-black-box sequential AOK in the BPK model, where the
knowledge extractor does not possess verifier’s secret key but possesses the code of the
concurrent malicious prover.
Taking adversary’s view into account for capturing KEI. We note that explicitly

taking account of the view of the adversary, i.e., str , is necessary for the completeness of
KEI formulation. Specifically, consider the following (seemingly impossible) case that:
for any extractedwi ∈ w̄,wi = P RFs(SK), where the seed s could be either a part of the
adversary’s random tape or a value computed from its view. In other words, the witnesses
extracted are always dependent on the secret key used by the simulator/extractor, and
thus, the adversary may not necessarily be aware of the extracted knowledge. Clearly,
such cases are excluded by taking account of adversary’s view in the KEI formulation.
Note that the KEI definition is quantified over any polynomial-time relations. However,
without taking account of adversary’s view, Pr[R(SK , w̄) = 1] is still negligibly close
to Pr [R(SK ′, w̄) = 1] in this case for any polynomial-time computable relation R.
More on the KEI Property. With the KEI definition, we are actually formulating

the independence of the witnesses, used (“known”) by the concurrent malicious prover
P∗, on the secret key (witness) used by the verifier who may in turn play the role of
knowledge prover in some sub-protocols. Note that amalicious prover P∗ can adaptively
select the language and statements to be proved in the concurrent sessions, and mixing
the public-key structure as part of the languages and statements can be a natural attack
strategy against cryptographic systems in the public-key model.
We consider some special cases where the KEI property may be trivially satisfied or

waived. Firstly, in case the languages and statements being proved are independent of
verifiers’ public keys, it seems that we can trivially get rid of the KEI property. However,
there are some problems with this observation.

• If a CKE protocol is used as a building tool or sub-protocol in a larger system in the
public-key model, as users’ keys play an essential role (e.g., for round efficiency) in
cryptographic systems in the public-keymodel, the actual languages and statements
to the underlying CKE protocol (within the run of the larger system) are usually
related to users public keys. In other words, restricting CKE protocols to work only
for languages and statements independent of users’ keys can significantly limit the
applicability of CKE protocols.

• In general, it is hard to efficiently detect the dependency between verifier’s public
key and statements being proved. For example, supposing the protocol is for an
NP-complete language, P∗ can form arbitrary languages and statements (some of
them may be related to verifier’s public key P K , and some of them may be not),
and then reduce the arbitrary languages and statements to the underlying NP-
complete language. In this case, in general it seems hard to efficiently determine

Concurrent Knowledge Extraction in Public-Key Models 191

the dependency between P K and the statements chosen by P∗, even if all the secret
keys corresponding to P K are known.

Consider another case where verifier’s secret key has a special (unnatural) structure
such that knowing a secret key allows one to efficiently compute any other secret key. In
this case, we can have an extractor that outputs a random and independent secret key. In
case any secret key of the verifier is always a witness to all the statements being proved
by the malicious prover P∗, the CKE property can be trivially satisfied. However, the
problem with this observation is as follows.

• To our knowledge, all known natural OWFs underlying key generation do not
satisfy this property, i.e., knowing one secret key allows efficiently computing any
other secret key.

• In general, the random and independent secret key, computed and output by the
extractor based on the knowledge of the secret key possessed, is not necessarily, or
can be used to derive, a witness to the statements being proved by the malicious
prover P∗. For example, the protocol is designed for a language that is independent
of P K , or for anNP-complete language. Recall that the CKE formulation requires
correct knowledge extraction for all the statements being successfully proved.

We also note that our KEI formulation implicitly assumes that verifier’s public key
corresponds to multiple secret keys, which, however, can typically be achieved with the
common key-pair trick [67]. In general, we suggest cryptography literature may wel-
come diversified approaches for modeling and achieving security goals of cryptographic
systems, particularly witnessed by the history of public-key encryption.
CKE versus concurrent soundness We show that, assuming any OWF, CKE is a

strictly stronger notion for concurrent verifier security than concurrent soundness in the
public-key model.

Proposition 5.1. Assuming any OWF, CKE is strictly stronger than concurrent sound-
ness in the public-key model. In particular, there exist protocols in the BPK model that
are concurrently sound CZK arguments of knowledge but not concurrent knowledge
extractable.

Proof. It is easy to see that CKE implies concurrent soundness in the public-keymodel.
Specifically, supposing that for some (P K , SK) ∈ RK EY , some NP-language L and
some string x �∈ L , P∗ can convince V (SK) of the false statement “x ∈ L” with
non-negligible probability in real execution, then with essentially the same probability
(up to at most a negligible gap) P∗ can convince the simulator S(SK) of x ∈ L in
ExptCKE(1n, z) by the property of simulatability, which, however, contradicts the secret
key independent knowledge extraction property.
Then, the proposition is direct from the attack demonstrated in Sect. 4.2.2 on the CZK

protocol of [28] that is both concurrently sound and normal argument of knowledge and
can be implemented based on any OWF. Specifically, for the specific strategy of P∗
of the concurrent interleaving and malleating attack presented in Sect. 4.2.2, supposing
x̂ �∈ L̂ or just L̂ is empty, the witness extracted by any polynomial-time knowledge
extraction algorithm E (with SK = sb as its input) must be the preimage of either y0 or
y1. However, according to the one-wayness of f used in the key-generation stage, with

192 A. C.-C. Yao et al.

overwhelming probability the extracted witness will be the preimage of yb conditioned
on E outputs a witness. Specifically, consider the simulator/extractor emulates the key
generation of the honest verifier, except that the value y1−b is received externally as
its input. Now, define the relation R to be R(w, SK , ·) = 1 if f (w) = f (SK). Then,
conditioned on E outputs awitness, with overwhelming probability the extractedwitness
(i.e., the preimage of yb) is always related to SK = sb, but can be related to a random
and independent SK ′ with negligible probability under the relation R. Thus, the CZK
protocol of [28] is not concurrently knowledge extractable in the public-key model. �

6. Generic CZK–CKE in the BPK Model

In this section, we present the generic constant-round CZK–CKE arguments for NP
in the BPK model under standard hardness assumptions. The starting point is the basic
FSZK structure [35,36]. For the FSZK structure presented in Sect. 4.1, letting (y0, y1)
serve as the public key of V and sb (for a random bit b) as the secret key, it is shown in
[82] that such a public-key version of FSZK is CZK in the BPK model. However, as we
just demonstrated in Sect. 4.1, the public-key version of FSZK is neither concurrently
knowledge extractable nor concurrently sound in the BPK model (indeed, FSZK was
not designed for the public-key model). We hope to add the CKE property to FSZK in
the BPK model (and thus get concurrent security both for the prover and for the verifier
simultaneously), while retaining its conceptually simple structure as well as the ability
of practical instantiations.
The subtle point here is: We are actually facing and dealing with a concurrent MIM

adversary, who manages to malleate, in a malicious and unpredictable way, the public
keys and knowledge proof interactions of the verifier in one session into the statements
and knowledge proof interactions in another concurrent session. To add CKE security to
FSZK in the BPK model, some non-malleable (may be inefficient) building tools seem
to be intrinsically required. In this work, we show how to do so without employing any
non-malleable building tool.
The idea is to strengthen the first sub-protocol to be statistical WIPOK and require

the prover to first commit, before starting the second WI sub-protocol, the supposed
witness to cw by running a statistically binding commitment scheme C . This guarantees
that if the witness committed to cw is dependent on the secret key used by V , there are
indeed some differences between the interaction distribution when V uses SK = s0
and that when V uses SK = s1, and we can then use such distribution differences to
violate the statistical WI of the first sub-protocol. However, this solution loses CZK in
general, as the second WI sub-protocol is run w.r.t. commitments to different values in
real interactions and in the simulation. This problem can be overcome by using a stronger
second sub-protocol, i.e., the strong WI (SWI) [38]. We show that the composition of
commitment and SWI itself is regular WI, and thus, CZK property is retained.
The generic construction is depicted in Fig. 4 (p. 32). As we shall see in Sect. 7.1, we

can also have a practical (8-round) instantiation of this generic CZK–CKE construction
under the DDH assumption for the DLP-based number-theoretic language without going
through general NP-reductions.

Concurrent Knowledge Extraction in Public-Key Models 193

Key Generation. Let f : {0, 1}n → {0, 1}m be any OWF, where 1n is the system security parameter.
Each verifier V randomly and independently selects two strings s0, s1 from {0, 1}n, randomly selects a bit
b ← {0, 1}, computes yb = f(sb) and sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as
its public key, and keeps SK = sb as its secret key. Define RKEY = {((y0, y1), s)|y0 = f(s) ∨ y1 = f(s)}.

Common input. An element x ∈ L ∩ {0, 1}poly(n), where L is any NP-complete language with the
corresponding NP-relation RL.

P ’s private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L. Here, we assume without loss of
for any x ∈ L ∩ {0, 1}poly(n) is of the same length poly(n).

Stage-1. V proves to P that it knows the preimage of y0 or y1, by running a statistical WIA/POK protocol
for NP , in which V plays the role of knowledge prover. The witness used by V in this stage is sb.

Stage-2. If V successfully finishes Stage-1, P does the following: it computes and sends cw = C(w, rw),
where C is a statistically-binding commitment scheme and rw is the randomness used for committing
to w.

Stage-3. Define a new NP-language L = {(x, y0, y1, cw)|∃(w, rw) s.t. cw = C(w, rw)∧[(x, w) ∈ RL∨(y0 =
f(w) ∨ y1 = f(w))]} Then, P proves to V that it knows a witness for (x, y0, y1, cw) ∈ L , by running
a strong WI argument/proof of knowledge (WIA/POK) protocol for NP .

generality that the witness

Fig. 4. Generic CZK–CKE argument 〈P, V 〉 forNP in the BPK model.

6.1. Security Analysis

Notes on the underlying hardness assumptions and round complexity. If the OWF f
used in key generation admits statistical� protocols (and thus, we can use�O R in Stage
1), andwe use Feige–Shamir ZK (FSZK) of [36] (withWI is replaced by�O R) to replace
SWI of Stage 3, the protocol depicted in Fig. 4 can be based on any OWF admitting
statistical � protocols and runs in eight rounds in total. Recall that any (auxiliary input)
zero-knowledge protocol itself is strong WI (cf. Proposition 4.6.3 of [38]). If we use in
Stage 1 themodifiedBlum’s protocol forDHCwith constant-round statistically/perfectly
hiding commitments (cf. Section 2, p. 14) and FSZK in Stage 3, the protocol depicted
in Fig. 4 can be based either on any claw-free collection with efficiently recognizable
index set or on any collision-resistant hash function and runs in nine rounds. Here, if
one party uses Naor’s OWF-based 2-round statistically binding commitment scheme C ,
the first-round message of C can be merged with the last preceding message from the
other party.
Commit-then-SWI is regular WI. Consider the following protocol composing a

statistically binding commitment and SWI:

Common input: x ∈ L for an NP-language L with corresponding NP-relation RL .
Prover auxiliary input: w such that (x, w) ∈ RL .
The commit-then-SWI protocol (consisting of two stages):

Stage- 1: The prover P computes and sends cw = C(w, rw), where C is a statisti-
cally binding commitment and rw is the randomness used for commitment.

Stage- 2: Define a new language L ′ = {(x, cw)|∃(w, rw) s.t. cw = C(w, rw) ∧
RL(x, w) = 1}. Then, P proves to V that it knows a witness to (x, cw) ∈ L ′,
by running a SWI protocol.

194 A. C.-C. Yao et al.

One interesting observation for the above commit-then-SWI protocol is that commit-
then-SWI itself is a regular WI for L .

Proposition 6.1. Commit-then-SWI itself is a regular WI for the language L.

Proof. (of Proposition 6.1). For any PPT malicious verifier V ∗ possessing some auxil-
iary input z ∈ {0, 1}∗, and for any x ∈ L and two (possibly different) witnesses (w0, w1)

such that (x, wb) ∈ RL for both b ∈ {0, 1}, consider the executions of commit-then-SWI:
〈P(w0), V ∗(z)〉(x) and 〈P(w1), V ∗(z)〉(x).
Note that for 〈P(wb), V ∗(z)〉(x), b ∈ {0, 1}, the input to SWI of Stage 2 is (x, cwb =

C(wb, rwb)), and the auxiliary input to V ∗ at the beginning of Stage 2 is (x, cwb , z).
Note that (x, cw0 , z) is indistinguishable from (x, cw1 , z). Then, the regular WI property
of the whole composed protocol follows from the SWI property of Stage 2. �

Theorem 6.1. The protocol depicted in Fig. 4 is a constant-round concurrently knowl-
edge extractable concurrent zero-knowledge (CZK–CKE) argument for NP in the BPK
model.

Proof. The completeness of the protocol 〈P, V 〉 can be easily checked.
Concurrent zero knowledge.
To build a black-box expected polynomial-time CZK simulator S from scratch, where

S does not know at the onset any secret keys corresponding to public keys in the public
file, we resort to the techniques proposed in [15,75].
For any s(n)-concurrent malicious verifier V ∗ (defined in Sect. 3) and any NP-

language L , the simulator S runs V ∗ as a subroutine on input x̄ = (x1, . . . , xs(n)) ∈
Ls(n) (where xk might equal xk′ , 1 ≤ k �= k′ ≤ s(n)), and the public file F =
(P K1, . . . , P Ks(n)). The simulator maintains a straight-line main-thread of the sim-
ulation, while invoking at most s(n) extraction threads. Specifically, whenever the mali-
cious verifier V ∗ (run by S) successfully finishes Stage 1 of the i th session w.r.t. an
“uncovered" public key P K j (for which S does not know the corresponding secret key
SK j yet) in themain-thread simulation, 1 ≤ i ≤ s(n)2 and 1 ≤ j ≤ s(n), S suspends the
main-thread simulation and invokes an extraction thread, denoted Ext (i, j), to extract
(i.e., “cover") the secret key SK j by running the knowledge extractor ensured by the
WIA/POK of Stage 1. After SK j is covered, S resumes the main-thread simulation by
using SK j as thewitness in generating Stage 2 and Stage 3messages for all sessionsw.r.t.
P K j . In order to get a modular analysis, we actually apply Lindell’s witness-extended
emulator as per Definition 2.8 in the extraction thread. The simulator S is described in
Fig. 5 (p. 34).

For any i, j , 1 ≤ i ≤ s(n)2 and 1 ≤ j ≤ s(n), and for any Ci, j and anyωi, j , denote by
pi, j the probability that the extraction thread Ext (i, j) is invoked (w.r.t.ωi, j and Ci, j) in
themain-thread simulation. Denote by p′

i, j the probability that the combined determined

knowledge prover P̂(i, j) (defined for Ext (i, j)) convinces the stand-alone knowledge
verifier of the statement “P K j ∈ L K EY " (in other words, the probability that E1 outputs
a successful conversation). By the specification of P̂(i, j) defined for Ext (i, j), we have
that pi, j = p′

i, j . Then, by the witness-extended emulation lemma [61] (cf. Lemma
2.1, Section 2), we have that each extraction thread takes expected polynomial time

Concurrent Knowledge Extraction in Public-Key Models 195

Security parameter: 1n.
Common input: x̄ = (x1, · · · , xs(n)) ∈ Ls(n).
Main-thread transcript: tr, which is initialized to be {x̄}.
Covered-key set: C, which is initialized to be an empty set.

Main-thread simulation: During the simulation, the simulator S always keeps updating and extending
tr to include the transcript generated in the main-thread so far, which is not always explicitly specified for
presentation simplicity.

Step-1: Select a random tape for V ∗, and run the key-generation phase of V ∗ to obtain the public file
F = (PK1, · · · , PKs(n)), and extend tr to include F .

Step-2: Run V ∗(tr) (i.e., run V ∗ starting from the updated transcript tr), and work as follows (to further
extend tr):

Case-1. V ∗ stops. In this case, S returns the main-thread transcript tr generated so far and stops.

Case-2. V ∗ fails in successfully finishing some session. In this case, S aborts that session, and goes
to Step-2 (with extended transcript).

Case-3. V ∗ successfully finishes the statistical WIA/POK of Stage-1 in some session w.r.t. a covered
public key PKj ∈ C, 1 ≤ j ≤ s(n). In this case, S generates Stage-2 and Stage-3 messages of
that session (and any subsequent sessions w.r.t. PKj) by using the extracted secret key SKj

as the witness.

Case-4. V ∗ successfully finishes the statistical WIA/POK of Stage-1 in the i-th session, 1 ≤ i ≤
s(n)2, w.r.t. an uncovered public key PKj , 1 ≤ j ≤ s(n). In this case, S suspends
extending the main-thread transcript tr, invokes the extraction-thread procedure Ext(i, j)
described below (in order to extract the secret key SKj with overwhelming probability in
expected polynomial-time). If the output returned by Ext(i, j) is “⊥”, S aborts and outputs
“⊥” indicating simulation failure. If Ext(i, j) returns back SKj, S sets C = C {(PKj, SKj)},
and goes to Step-2 to resume extending the main-thread tr, where the Stage-2 and Stage-3
messages of the i-th session (and any subsequent sessions w.r.t. PKj) will be generated by
using SKj as the witness.

Extraction-thread Ext(i, j):

1. Denote by Ci,j the updated covered-key set upon invoking Ext(i, j), and by tri,j the extended main-
thread transcript just before V ∗ sends the first-round message of Stage-1 of the i-th session w.r.t. a
public key PKj in the main-thread simulation. Denote by ωi,j the set of random coins for V ∗ and
the random coins used by the simulator S in the main-thread simulation except those to be used for
simulating the prover messages in Stage-1 of the i-th session.
Combine V ∗ and the main-thread simulation of the simulator S excluding the random coins used by
S for simulating Stage-1 of the i-th session, including tri,j , Ci,j , ωi,j , into a deterministic knowledge
prover P̂ (i,j). The knowledge-prover P̂ (i,j) only interacts with a stand-alone knowledge-verifier of
the underlying statistical WIA/POK of Stage-1, by running V ∗(tri,j) (i.e., running V ∗ starting from
tri,j) internally and mimicking S in the main-thread simulation with the aid of Ci,j , except that:
(1) the messages belonging to Stage-1 of the i-th session are relayed between the internal V ∗ and
the external stand-alone knowledge-verifier; (2) whenever V ∗ (run internally by P̂ (i,j)) successfully
finishes, for the first time, Stage-1 of a session w.r.t. an uncovered public key not in Ci,j , P̂ (i,j) just
stops.

2. For the witness-extended simulator E = (E1, E2) w.r.t. P̂ (i,j) and RKEY [71], define the output
of E1 to be the messages received from P̂i,j and the random coins used by S for simulating the
prover-messages in Stage-1 of the i-th session in the main-thread. Then, invoke E2 on input PKj

and run P̂ (i,j) to answer oracle queries to P̂ (i,j) from E2.

3. In case SKj was not extracted (i.e., E2 outputs “⊥”), output “⊥” indicating failure. Otherwise,
output SKj. Note that the extraction-thread does not introduce any transcript into the main-thread.

Fig. 5. CZK simulation with main-thread and extraction threads.

196 A. C.-C. Yao et al.

and fails in covering the public key in question with only negligible probability (i.e.,
the knowledge error κ in Definition 2.7). What buried here by the witness-extended
emulation lemma is the Goldreich-Kahan technique [42]: Specifically, the algorithm E2
needs to first estimate the probability pi, j within a constant factor and then to use the
estimated probability to ensure expected polynomial running time. As pi, j = p′

i, j , E2

can run P̂(i, j) instead to estimate the probability pi, j . Here, the fact that pi, j = p′
i, j is

crucial to ensure expected polynomial-time CZK simulation.
As there are only at most s(n) public keys to be covered in the simulation (i.e.,

only at most s(n) extraction threads can be invoked), we have that S works in expected
polynomial time.Also, by thewitness-extended emulation lemmaof [61], the probability
that S outputs “⊥" (due to key-coverage failure in any of the invoked extraction threads)
is also negligible. Then, the indistinguishability between the main-thread simulation
output and the real interaction transcript is reduced to the (stand-alone) WI property of
commit-then-SWI, by the following hybrid arguments.
For each xk ∈ x̄, 1 ≤ k ≤ s(n), denote by wk the corresponding NP-witness such

that (xk, wk) ∈ RL . On input x̄ = (x1, . . . , xs(n)) ∈ Ls(n) and the corresponding NP-
witnesses w̄ = (w1, . . . , ws(n)), and the public file F = (P K1, . . . , P Ks(n)), the i th
hybrid experiment Hi , 1 ≤ i ≤ s(n)2 + 1, is defined as follows: Until the beginning of
the i th Stage 2 (more precisely, the beginning of the i th commit-then-SWI) on a common
statement xk ∈ x̄ w.r.t. a public key P K j ,11 where 1 ≤ j, k ≤ s(n), Hi acts just as the
CZK simulator does (by invoking extraction threads). In particular, if the i th commit-
then-SWI is reached w.r.t. an uncovered public key P K j (i.e., V ∗ successfully finished
the Stage 1 interactions w.r.t. an uncovered public key P K j just prior to the beginning
of the i th commit-then-SWI), Hi will first cover it by invoking an extraction thread.
However, from the start of the i th Stage 2 and on, Hi works in a straight-line manner
(without further invoking extraction threads) as follows: for all the remaining commit-
then-SWI interactions (namely for any î th commit-then-SWI, î ≥ i), Hi acts just as the
honest prover does by using the NP-witnesses in w̄;12 but for any i ′th commit-then-
SWI, i ′ < i , that has not been completed up to the start of the i th commit-then-SWI,
Hi still works as the simulator does by using the extracted secret key as the witness.13

Clearly, the output of H1 is statistically close to the real view of V ∗, as the only difference
between H1 and the real interactions of V ∗ is that H1 may potentially abort due to the first
key-coverage failure which, however, occurs with negligible probability. On the other
hand, the output of Hs(n)2+1 is identical to the output of the simulator S. Supposing the
output of the simulator S is distinguishable from the real view of V ∗, there must exit an
i, 1 ≤ i ≤ s(n)2, such that the output of Hi and that of Hi+1 can be distinguishable.
Note that the differences between Hi and Hi+1 are as follows:

11 Note that the i th commit-then-SWI (that is ordered by the occurrence of each Stage 2 message) may
not necessarily be within the i th session (that is ordered by the occurrence of the first round, namely the first
message of Stage 1, of each session).

12 Note that if the i th commit-then-SWI is reached w.r.t. an uncovered public key P K j , the corresponding
secret key SK j will be extracted but will never be used within the i th commit-then-SWI.

13 Note that, according to the specification of the hybrid experiment Hi , for the i ′th commit-then-SWI w.r.t.
P K j ′ , i ′ < i , P K j ′ must have been covered before the start of the i th commit-then-SWI.

Concurrent Knowledge Extraction in Public-Key Models 197

Difference- 1. In Hi , the witness used in the i th commit-then-SWI (w.r.t. a common
statement xk and public key P K j) is the true NP-witness wk , while in Hi+1 the
witness used in the i th commit-then-SWI is the extracted secret key SK j .

Difference- 2. Hi+1 may additionally abort due to secret key-coverage failure for the
(i +1)th commit-then-SWI, in case the (i +1)th commit-then-SWI is reached w.r.t.
an uncovered public key (i.e., V ∗ successfully finished the Stage 1 interactions w.r.t.
an uncovered public key just before the start of the (i + 1)th commit-then-SWI).

Now, consider another variant, denoted H ′
i , which acts as Hi does, except that it uses

the extracted secret key SK j for the i th commit-then-SWI. It is clear that the output
of H ′

i and that of Hi+1 are statistically close, as the only difference between H ′
i and

Hi+1 is the above Difference 2 that can occur with negligible probability. Then, the
indistinguishability between Hi and H ′

i is reduced to the stand-alone WI property of

commit-then-SWI, as follows. Specifically, we consider another algorithm Ĥi , which
mimics Hi but with the following modifications: The transcript of the i th commit-
then-SWI (w.r.t. common statement xk and public key P K j) is generated by externally
interactingwith a commit-then-SWI prover P̂i , where thewitness used by P̂i on common
input (xk, P K j) is eitherwk or SK j . Clearly, if P̂i useswk (resp., SK j) as its witness, the
output of Ĥi is identical to that of Hi (resp., H ′

i). Here, a key point is that from the start of

the i th commit-then-SWI, the algorithm Ĥi does not invoke extraction threads any longer,
and thus, the external interactionswith P̂i will never be rewound. Finally, a point of being
worthy noting is that the normal WI property is defined with respect to probabilistic
(strict) polynomial-time algorithms, but here Ĥi works in expected polynomial time.
However, by Markov’s inequality, it is easy to see that if the WI property of a protocol
holds with respect to any probabilistic strict polynomial-time algorithms, then it also
holds with respect to any expected polynomial-time algorithms. A detailed treatment of
this issue can also be found in [80].
(Statistical) concurrent knowledge extraction.
According to the CKE formulation, for any s-concurrent malicious prover P∗ (cf.

Sect. 2) we need to build a pair of algorithms (S, E). The simulator S, on input (1n, z),
works as follows: It first perfectly emulates the key-generation stage of the honest verifier,
getting P K = (y0, y1) and SK = sb and SK ′ = s1−b for a random bit b. Then, S runs
P∗ on (1n, P K , RL , z), where the random coins used by P∗ is set by S. In the proof
stages, S perfectly emulates the honest verifier with the secret key SK . Finally, whenever
P∗ stops, S outputs the simulated transcript str , together with the state information sta
set to be (P K , SK , SK ′, z) and the random coins used by S. Note that the simulated
transcript str is identical to the view of P∗ in the real execution.

The knowledge extraction process is similar to that of [70]. Note that we need to
extract the witnesses to all accepting sessions in str . Given (str, sta), the knowledge
extractor E iteratively extracts witness for each accepting session. Specifically, for any
i , 1 ≤ i ≤ s(n), we denote by Ei the experiment for the knowledge extractor on the i th
session. Ei emulates S with the fixed random coins included in sta, with the exception
that the random coins to be used by the simulator (emulating the honest verifier) for
Stage 3 (i.e., SWIA/POK) of the i th session are no longer emulated internally, but
received externally. The experiment Ei amounts to the execution of the SWIA/POK
between a stand-alone (deterministic) prover and an honest verifier on common input

198 A. C.-C. Yao et al.

(xi , P K , c(i)
w), where c(i)

w is the Stage 2 message sent by P∗ in the i th session. Suppose
that the i th session w.r.t. common input xi is accepting (otherwise, we do not need to
extract a witness for that session and the witness is set to be “⊥”). According to the POK
property of the underlying strong WIA/POK protocol, the knowledge extractor E can
extract (wi , ri) in expected polynomial time with overwhelming probability.
Here, a subtle point needs to be further clarified. Denote by p the probability that Ei

successfully finishes the SWIA/POK on input (xi , c(i)
w), by applying the (stand-alone)

knowledge extractor on Ei , we get that the expected running time is T (n) = p · q(n)
p−κ(n)

,

where q(n)
p−κ(n)

is the running time of the knowledge extractor and κ(·) is the knowledge
error function (see Definition 2.7). However, when p is negligible, as clarified in [61],
T (n) may not be polynomial in n. The technique to deal with this issue is to apply the
technique originally introduced in [42] or the more general witness-extended emulation
lemma deliberated in [61]. The reader is referred to [42,61] for more details about the
technique of dealing with this subtlety.
Now consider the value (wi , ri) extracted by E , which is fully determined by the

single commitment c(i)
w . Clearly such output necessarily falls into one of the following

three cases:

Case- 1. c(i)
w = C(wi , ri) and y1−b = f (wi). Recall that P K = (y0, y1) and

SK = sb.
Case- 2. c(i)

w = C(wi , ri) and yb = f (wi).
Case- 3. c(i)

w = C(wi , ri) and (xi , wi) ∈ RL .

Case 1 can occur only with negligible probability, due to the one-wayness of f .
Specifically, consider that y1−b is given to the simulator as input, rather than being
emulated internally. In more detail, let y = f (s), where s is taken uniformly at random
from {0, 1}n and is unknown to the simulator S and the extractor E . S generates P K
as follows: It first takes a random bit b ← {0, 1} and a random string s′ ← {0, 1}n ,
computes y′ = f (s′), sets yb = y′ and y1−b = y, registers (y0, y1) as the public
key and takes s′ as the corresponding secret key. In this way, S still perfectly emulates
the honest verifier; in particular, the Stage 1 interactions remain statistical WI to the
malicious prover P∗. Then, supposing Case 1 occurs with non-negligible probability, E
breaks the one-wayness of f also with non-negligible probability.

Case 2 can also occur with negligible probability, due to the statistical WI of Stage 1.
Supposing Case 2 occurs with non-negligible probability (and we know Case 1 occurs
with negligible probability), we can simply open c(i)

w ’s by brute-force to violate the
statistical WI of Stage 1. In more detail, consider a brute-force algorithm B that runs P∗
internally as a subroutine andmimics the algorithm S except that: all Stage 1 interactions
on public key (y0, y1) are made by externally interacting with a statistical WI prover
who uses sb for a random bit b ∈ {0, 1} as the witness. The goal of B is to guess the bit
b with probability non-negligibly greater than 1

2 , which then violates the statistical WI
property of Stage 1. It is clear that the view of P∗ under the run of B is identical to that
under the run of S. Supposing with probability p Case 2 occurs under the run of S, with
the same probability it occurs under the run of B. After P∗ stops, B randomly guesses an
i ∈ {1, . . . , s(n)} and opens c(i)

w to wi by brute-force. If f (wi) = yσ for σ ∈ {0, 1}, the
algorithm B just outputs σ ; otherwise, it outputs a random bit. With probability at least

Concurrent Knowledge Extraction in Public-Key Models 199

p
s(n)

, Case 2 occurs w.r.t. the (randomly guessed) i th session, whilewi is the preimage of
y1−b only with negligible probability ε. It is straightforward to calculate that B correctly
guesses b with probability at least p

s(n)
+ 1

2 (1 − p
s(n)

− ε) = 1
2 + p

2s(n)
− 1

2ε, which
violates the statistical WI property of Stage 1.

Remark. We use brute-force opening of c(i)
w , rather than the output of the efficient

knowledge extractor Ei , to obtain sb and reach a contradiction with statistical WI of
Stage 1. This is because Ei rewinds the prover, which, in turn, rewinds Stage 1 inter-
actions. Since regular WI does not have to hold after rewinding, this will not lead to a
contradiction. In more detail, by hybrid arguments, the security analysis of Case 2 can
be reduced to the differences between the outputs of Ei in two respective hybrid exper-
iments Hk−1 and Hk , where 1 ≤ i, k ≤ s(n) and i is not necessarily equal to k. In the
experiment Hk , the witness used in Stage 1 of the first k sessions is s1 (i.e., the preimage
of y1), while that in the remaining s(n) − k sessions is s0. With non-negligible proba-
bility the witness extracted by the knowledge extractor Ei in Hk−1 is s0, and also with
non-negligible probability the witness extracted by Ei in Hk is either s1 or the witnessw

for x ∈ L (but s0 only with negligible probability). Suppose that the Stage 3 interactions
of the i th session and the Stage 1 interactions of the kth session are interleaved, such
that rewinding Stage 3 of the i th session incurs rewinding Stage 1 of the kth session. In
such case, we do not know, to date, how to reach a contradiction with the statistical WI
property of Stage 1 without brute-force opening of c(i)

w . On the other hand, we notice
that the above subtlety and obstacle might be surmounted, if a resettable WIAOK (as
achieved in [17]) is applied in Stage 1.

By ruling out Case 1 and Case 2, now we conclude that for any i , 1 ≤ i ≤ s(n), if the
i th session in str is accepting w.r.t. common input xi selected by P∗, then E will output
a witness wi for xi ∈ L . To finish the proof, we need to further show that knowledge
extraction is independent of the secret key used by the simulator/extractor (i.e., the joint
KEI property). Specifically, we need to show that Pr[R(SK , w̄, str) = 1] is negligibly
close to Pr[R(SK ′, w̄, str) = 1] for any polynomial-time computable relation R, where
w̄ is the list of extracted witnesses (when the simulator/extractor uses SK as the witness
in Stage 1 interactions in str) and SK ′ is the element (output by S in accordance with
ExptCKE(1n, z)) randomly and independently distributed over the space of SK . The joint
KEI property is direct from the statistical WI of Stage 1. Specifically, as the extracted
witnesses arewell defined by the statistically binding c(i)

w ’s, if the joint KEI property does
not hold, we directly extract by brute-force all witnesses wi ’s from c(i)

w ’s in successful
sessions and then apply the assumed existing distinguishable relation R to violate the
statistical WI of Stage 1.
In more detail, for any pair (s0, s1) in key-generation stage and for any auxil-

iary information z, Pr[R(SK , w̄, str) = 1] = 1
2Pr[R(s0, w̄, str) = 1|S/E uses s0

in Stage 1 interactions in str] + 1
2Pr[R(s1, w̄, str) = 1|S/E uses s1 in Stage 1 inter-

actions in str], and Pr[R(SK ′, w̄, str) = 1] = 1
2Pr[R(s0, w̄, str) = 1|S/E uses s1 in

Stage 1 interactions in str]+ 1
2Pr[R(s1, w̄, str) = 1|S/E uses s0in Stage 1 interactions].

Supposing the KEI property does not hold, it implies that there exists a bit α ∈ {0, 1}
such that the difference between Pr[R(sα, w̄, str) = 1|S/E uses s0 in Stage 1 inter-

200 A. C.-C. Yao et al.

actions in str] and Pr[R(sα, w̄, str) = 1|S/E uses s1in Stage 1 interactions in str] is
non-negligible. Now, we can incorporate the (sα, R) into a brute-force algorithm in order
to break the statistical WI of Stage 1. Further details are omitted here. Note that the KEI
property holds against any (not necessarily polynomial-time computable) relation R.
That is, the protocol depicted in Fig. 4 is of statistical CKE. �
On the essential role of strong WI.
We remark that, with respect to the above genericCZK–CKE implementation depicted

in Fig. 4, the SWI at Stage 3 plays an essential role for achieving CZK and CKE
properties simultaneously. In particular, we note that regular WI is insufficient here.
On the one hand, we do not know how to prove the CZK property in general, when
SWI is replaced by a regular WI. The underlying reason is that the composition of a
(single) statistically binding commitment and regular WI is not necessarily to be regular
WI. More detailed clarifications on this subtlety are given with the CZK analysis for the
regular WI-based efficient CZK–CKE protocol in Sect. 7.1 (p. 43), where we employ
double commitments to compose with regular WI for the CZK analysis and have to rely
on complexity leveraging on one of the double commitments for the CKE analysis to go
through. On the other hand, as ZK itself is SWI [38], one may suggest to use a special
ZK (e.g., the FSZK which is composed of two regular WI sub-protocols) to replace
SWI of Stage 3 such that the special ZK can share the regular WI of Stage 1 in the
public-key model, and thus, we only use regular WIPOK at Stage 3. Recall that if we
use FSZK as the underlying Stage 3 strong WI, the first WI sub-protocol of FSZK will
be run on a pair of temporary keys (y′

0, y′
1), where for each σ ∈ {0, 1}, y′

σ = f (tσ) and
tσ ∈ {0, 1}n . We want to remove this WI sub-protocol from FSZK, and just let the Stage
1 WI sub-protocol (that is run on the fixed key pair (y0, y1)) serve in addition as the
first WI sub-protocol of FSZK. However, such a solution loses the CKE property and
even concurrent soundness in general in the public-key model (see the concrete attack to
FSZK in the public-key model [81]). That is, in the security analysis of the SWI-based
generic CZK–CKE implementation, we have relied on the argument/proof of knowledge
of SWI in the plain model that is not affected by concurrent composition in the plain
model. If we replace the SWI by a ZK protocol in the BPK model, then we may require
the ZK protocol have already been CKE secure, which, however, is our goal here.
Still, in Sect. 7, we shall consider more efficient CZK–CKE implementations based

on regular WI. But the situation with such solutions turns out to be much subtler.

7. Efficient CZK–CKE in the BPK Model

In this section, we present the efficient constant-round CZK–CKE arguments forNP in
the BPK model and the practical instantiations. The efficient CZK–CKE protocols rely
on some minor complexity leveraging, in a novel way, to frustrate potential concurrent
MIM. Along the way, we discuss and clarify the various subtleties.
Recall that for the generic CZK–CKE implementation presented in Sect. 6, the strong

WI at Stage 3 plays an essential role for the provable security. However, employing
strong WI complicates the protocol structure and incurs protocol inefficiency. It would
be desirable to keep using regular WI at Stage 3, for conceptually simple protocol
structure as well as for protocol efficiency. To bypass the subtleties of SWI for the CZK

Concurrent Knowledge Extraction in Public-Key Models 201

proof, we employ a double-commitment technique. Specifically, we require the prover
to produce a pair of statistically binding commitments, cw and csk , before starting
the second WI sub-protocol, where cw is supposed to commit to a valid NP-witness
for x ∈ L and csk is supposed to commit to the preimage of either y0 or y1. Double
commitments can bypass, by hybrid arguments, the subtleties of SWI for the CZK proof.
However, the provable CKE property with double commitments turns out to be much
subtler, and we have to employ (some minimal) complexity leveraging, in a novel way,
to frustrate potential CMIM adversarial strategies. This renders us an efficient, as well as
conceptually simple, CZK–CKE solution, which can further be practically instantiated
for some number-theoretic languages.
The efficient construction is depicted in Fig. 6, p. 39. Though double commitments are

used at Stage 2, the strong WIA/POK of Stage 3 in the generic construction is replaced
by any regular WIA/POK here, from which much better efficiency advantage can be
gained.
Notes on the complexity leveraging. We remark that complexity leveraging via the

sub-exponential hardness assumption on verifiers’ public keys is only for provable secu-
rity analysis to frustrate concurrent MIM. Both CZK simulation and CKE knowledge

Key Generation. Let f : {0, 1}n → {0, 1}m be any OWF secure against 2nc

-time adversaries for some
constant c, 0 < c < 1, where 1n is the system security parameter. Each verifier V randomly and indepen-
dently selects strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and sets
y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public key, and keeps SK = sb as its
secret key. Define RKEY = {((y0, y1), s)|y0 = f(s) ∨ y1 = f(s)}

Common input. An element x ∈ L ∩ {0, 1}poly(n), where L is any NP-complete language. Denote by
RL the corresponding NP-relation for L.

P ’s private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L. Here, we assume without loss of
for any x ∈ L ∩ {0, 1}poly(n) is of the same length poly(n).

Complexity leveraging. The system parameter is n, but the statistically-binding commitment csk is
generated on a relatively smaller security parameter nsk. Specifically, suppose the one-wayness of verifier’s
public key holds against 2nc

-time adversaries for some constant c, 0 < c < 1. Letting λ be any constant such
that λ > 1

c , we set n = nλ
sk. Note that n and nsk are still polynomially related. That is, any quantity that

is polynomial in n is also another polynomial in nsk, and vice versa. This complexity leveraging guarantees
that although a poly(n)·2nsk-time adversary can break the hiding property of csk on the security parameter
nsk, it is still infeasible to break the one-wayness of f (because poly(n) · 2nsk 2nc

).

Stage-1. V proves to P that it knows a preimage to one of y0, y1, by running a statistical WIA/POK
protocol, in which V plays the role of knowledge prover. The witness used by V in this stage is sb.

Stage-2. If V successfully finishes Stage-1, P does the following. P ∗ computes and sends cw = C(w, rw)
and csk = C(0n, rsk), where C is a statistically-binding commitment scheme and rw and rsk are the
randomness used for commitments. csk is generated on the smaller security parameter nsk specified
above.

Stage-3. Define a new NP-language L = {(x, y0, y1, cw, csk)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x, w) ∈
RL)∨ (∃(w, rsk , b) s.t. csk = C(w, rsk)∧yb = f(w)∧ b ∈ {0, 1})}. Then, P proves to V that it knows
a witness for (x, y0, y1, cw, csk) ∈ L , by running any WI argument/proof of knowledge (WIA/POK)
protocol for NP .

generality that the witness

Fig. 6. Efficient CZK–CKE argument 〈P, V 〉 forNP in the BPK model.

202 A. C.-C. Yao et al.

extraction are still of polynomial time. We note that the use of complexity leveraging
for frustrating concurrent MIM could be a novel approach, different from the uses of
complexity leveraging in existing works for protocols in the BPK model (e.g., [15]).
Such an approach might also be applied to other scenarios to frustrate potential concur-
rentMIM strategies, while still providing polynomial-time simulation and/or knowledge
extraction and retaining protocol efficiency and conceptually simple protocol structures.
Note also that the complexity leveraging is minimal: It only applies to csk and all other
components of the protocol work on the general system parameter n; also, all compo-
nents except for verifiers’ public keys can be standard polynomially secure. As we shall
see in Sect. 7.3, the complexity leveraging can be waived as long as only concurrent
soundness is concerned. We suggest that though non-standard, sub-exponential hard-
ness assumption may still be viewed as reasonable, which is also used in a large body of
works for fulfilling various cryptographic tasks. Detailed discussions on the subtleties
surrounding the use of complexity leveraging are presented in Sect. 7.3.

On the necessity of double commitments cw and csk . We stress that in the context
of the protocol structure of efficient CZK–CKE depicted above in Fig. 6, mandating
double commitments cw and csk of Stage 2 plays a very crucial role for simultaneously
achieving CZK and CKE in the public-key model. On the one hand, for protocol variants
without either cw or csk , concrete attacks exist, showing that they are not concurrently
knowledge extractable (details are presented in Sect. 9). On the other hand, double
commitments enable us to bypass the need of strong WI of Stage 3 for correct CZK
simulation. Specifically, by employing double commitments the CZK simulation is not
based on the strong WI property of Stage 3, and it is shown that regular WI is sufficient
for correct CZK simulation by hybrid arguments.
Notes on the underlying hardness assumptions and round complexity. First note

that except for the subexponential hardness assumption on the OWF f used in key
generation, all other components for the efficient CZK–CKE protocol can be standard
polynomially secure. If the statistically binding commitment C , used in Stage 2 and in
Blum’s protocol for DHC in Stage 3, is Naor’s OWF-based scheme [65], its first-round
initiation message can be merged with the last-round message from V in Stage 1 (and
actually can be posted as a part of public key of V). Then, if the OWF f used in key
generation admits statistical � protocols (and thus, we can use �O R in Stage 1), the
protocol depicted in Fig. 6 can be based on any sub-exponentially strong OWF admitting
statistical � protocols and runs in six rounds. If we use in Stage 1 the modified Blum’s
protocol for DHC with constant-round statistically hiding commitments (cf. Section
2, p. 14), the protocol depicted in Fig. 6 runs in seven rounds, and is based either on
any collision-resistant hash function together with any sub-exponentially strong OWF,
or on any sub-exponentially strong claw-free collection (with efficiently recognizable
index set). In the latter case (with modified Blum’s protocol for DHC), we can use any
sub-exponentially strong OWF for key generation.

7.1. Practical Instantiations of CZK–CKE

In order to get practical instantiations of the efficient CZK–CKE protocol depicted
in Fig. 6 without going through general NP-reductions, the verifier uses the sub-
exponentially secure DLP-based OWF in key-generation stage: f p,q,g(s) = gs mod p,

Concurrent Knowledge Extraction in Public-Key Models 203

where s ← Zq , p and q are primes, p = 2q + 1 and |p| = n, and g is an element of
Z

∗
p of order q. We also assume the (standard polynomial-time) DDH assumption holds

on the cyclic group indexed by (p, q, g), i.e., the sub-group of order q of Z∗
p. The com-

mon input is (p, q, g, x), where x ∈ Z
∗
p is of order q, and the corresponding witness is

w ∈ Zq such that gw = x mod p.
The statistical WIPOK of Stage 1 is replaced by the �O R of Schnorr’s basic protocol

for DLP [76]. The perfectly binding commitment scheme of Stage 2 is replaced by
the DDH-based ElGamal (non-interactive) commitment scheme [34] (cf. Sect. 2). To
commit to a value v ∈ Zq , the committer randomly selects u, r ∈ Zq , computes h = gu

mod p and sends (h, ḡ = gr , h̄ = gvhr) as the commitment.
For the practical � protocol of Stage 3, by the �O R-technique we need the following

two practical � protocols:

• Apractical� protocol that, given x, cw = (h, ḡ, h̄), proves the knowledge of (w, r)

such that x = gw mod p and ḡ = gr mod p and h̄ = gwhr mod p.
• A practical� protocol that, given y0, y1, csk = (h, ḡsk, h̄sk), proves the knowledge

(w, r) such that either (y0 = gw mod p ∧ ḡsk = gr mod p ∧ h̄sk = gwhr

mod p), or (y1 = gw mod p ∧ ḡsk = gr mod p ∧ h̄sk = gwhr mod p).

Again, by the �O R-technique, if we have a practical � protocol of the first type, then
we can also have a practical � protocol of the second type. Thus, to get the practical
CZK–CKE implementation, all we need now is to develop a practical � protocol of the
first type, which is referred to as �CT P protocol (where “CTP" stands for “commit-
then-proof") for presentation simplicity. Based on the � protocol for DLP [76], such a
�CT P protocol is described in Fig. 7 (p. 41).

We remark that, although the above practical implementation is for specific number-
theoretic language, it is indeed very useful in practical scenarios. Next, we show that
the �CT P protocol depicted in Fig. 7 is indeed a � protocol, and have the following
proposition.

Proposition 7.1. The �CT P protocol depicted in Fig. 7 is a � protocol.

Proof. It is trivial to check that the completeness property holds. Below, we focus on
the properties of special soundness and special honest-verifier zero knowledge.

Common input: (p, q, g, x, h, ḡ, h̄), where x, h, ḡ, h̄ are all elements of order q in p.

Prover’s private input: w, r ∈ such that x = gw mod p, and ḡ = gr mod p and h̄ = gwhr mod p.

Round-1: The prover P selects t0, t1 ← uniformly and independently, computes a0 = gt0 mod p,
a1 = gt1 mod p and a2 = ht1 mod p, and sends (a0, a1, a2) to the verifier V .

Round-2: V responds with a challenge e taken uniformly at random from .

Round-3: P computes z0 = t0 + we mod q and z1 = t1 + re mod q, and sends back (z0, z1) to V .

Verifier’s decision: V accepts if gz0 = a0x
e mod p, gz1 = a1ḡ

e mod p and hz1 = a2(h̄/x)e mod p.

Fig. 7. �CT P protocol based on DLP .

204 A. C.-C. Yao et al.

• Special soundness. From two accepting conversations w.r.t. the same Round 1 mes-
sage,

((a0, a1, a2), e, (z0, z1)) and ((a0, a1, a2), e′, (z′
0, z′

1)), we can computew = z0−z′
0

e−e′

mod q, and r = z1−z′
1

e−e′ mod q.
• Perfect SHVZK. The SHVZK simulator S works as follows: on common input

(x = gw, ḡ = gr , h̄ = gwhr = xhr) and a given random challenge e ∈ Zq ,
it selects z0, z1 uniformly and independently from Zq , then it sets a0 = gz0x−e,
a1 = gz1 ḡ−e and a2 = hz1(h̄/x)−e, and outputs ((a0, a1, a2), e, (z0, z1)) as the
simulated transcript. Denote by t̂0 = z0 − we and t̂1 = z1 − re, we have that:
a0 = gt̂0 ,a1 = gt̂1 anda2 = ht̂1 .As z0 and z1 are takenuniformly and independently
from Zq , we have that t̂0 and t̂1 are distributed uniformly and independently over
Zq , from which the perfect SHVZK property follows. �

On practical instantiations of generic CZK–CKE.We observe that the same tech-
nique can also be applied to obtain a practical instantiation (without going through
general NP-reduction) of the general CZK–CKE protocol depicted in Fig. 4 (with the
�O R-based implementation of FSZK serving as the underlying SWI protocol in Stage
3) for the same DLP-based number-theoretic language. The resultant practical instanti-
ation is based on the (polynomially secure) DDH assumption, but is more complex and
less computationally efficient due to the use of �O R-based implementation of FSZK.
In more detail, by the �O R-technique, practical instantiation of the generic CZK–CKE
protocol is reduced to obtaining a practical �O R protocol for the language L ′ defined in
Fig. 4. When casted within the practical instantiation, on system parameters (p, q, g),
L ′ = {(x = gw, y0, y1, cw = (h, ḡ, h̄))|∃(w, r) s.t. cw = gwhr ∧ [x = gw ∨ (y0 =
gw ∨ y1 = gw)]}. Again, such a �O R protocol for L ′ is reduced to the above �CT P

protocol.

7.2. Security Analysis

Theorem 7.1. The protocol depicted in Fig. 6 is concurrently knowledge extractable
CZK argument for NP in the BPK model.

Proof. The completeness of the protocol 〈P, V 〉 can be easily checked.

Concurrent zero knowledge.
For any s(n)-concurrent malicious verifier V ∗ (defined in Sect. 3) and any NP-

language L , the black-box CZK simulator S runs V ∗ as a subroutine on input x̄ =
(x1, . . . , xs(n)) ∈ Ls(n) (here, xk might equal xk′ , 1 ≤ k �= k′ ≤ s(n)) and the public file
F = (P K1, . . . , P Ks(n)). S follows themain-thread/extraction thread approach as in the
proof of Theorem 6.1 and works as follows: S acts just as the honest prover does in Stage
1 of any session. In Stage 2 of the i th session on a common input xk and with respect
to a public key P K j , 1 ≤ i ≤ s(n)2 and 1 ≤ k, j ≤ s(n), if P K j is still uncovered,
by the witness-extended emulation lemma [61], S first invokes an extraction thread to
successfully extract the secret key SK j with overwhelming probability (otherwise, S
aborts). After SK j is extracted or P K j has already been covered prior to Stage 2 of the

Concurrent Knowledge Extraction in Public-Key Models 205

i th session, S computes c(i)
w = C(0poly(n), r (i)

w) and c(i)
sk = C(SK j , r (i)

sk). Then, S runs

theWIA/POK protocol with V ∗ in Stage 3 of the session with (SK j , r (i)
sk) as the witness.

Finally, in case S does not abort (due to key-coverage failures), S outputs the transcript
generated in the main-thread whenever V ∗ stops. Below, for presentation simplicity, we
denote the combination of Stage 2 and Stage 3 of each session by “double-commitments-
then-WI."
On input x̄ = (x1, . . . , xs(n)) ∈ Ls(n), denote by w̄ = (w1, . . . , ws(n)) the correspond-

ing NP-witnesses such that for each k, 1 ≤ k ≤ s(n), (xk, wk) ∈ RL . To show that the
output of S is indistinguishable from the view of V ∗ in real concurrent interactions, we
first consider another mental simulator M . M takes the witness list w̄ as an additional
input and works just as S does, except that for any i , j and k, where 1 ≤ i ≤ s(n)2

and 1 ≤ j, k ≤ s(n), in Stage 2 of the i th session on common input xk w.r.t. P K j , M

computes c(i)
w = C(wk, r (i)

w), wherewk is the witness for the common input xk . Note that
the witness actually used by M in Stage 3 is still SK j committed to c(i)

sk , just as S does.
That is, theNP-witnesses committed to cw’s are never used by either S or M for Stage 3
interactions. The computational indistinguishability between the output of M and that of
S is then from the computational hiding property of the underlying commitment scheme
C used in Stage 2. Otherwise, by a simple hybrid argument, we can violate the hiding
property of the commitment scheme C . Then, by another hybrid argument that is similar
to that used in the proof of Theorem 6.1 (p. 33) but is actually more complicated due to
the structure differences between commit-then-SWI and double-commitments-then-WI,
the indistinguishability between the output of M and the real view of V ∗ is reduced to
the regular WI property of Stage 3.
In more detail, on input x̄ = (x1, . . . , xs(n)) ∈ Ls(n) and the corresponding NP-

witnesses w̄ = (w1, . . . , ws(n)), and the public file F = (P K1, . . . , P Ks(n)), the i th
hybrid experiment Hi , 1 ≤ i ≤ s(n)2 + 1, is defined as follows. Until the beginning
of the i th Stage 314 on a common statement xk ∈ x̄ w.r.t. a public key P K j , where
1 ≤ j, k ≤ s(n), Hi acts just as the above algorithm M does by invoking extraction
threads and committing both the actualNP-witnesses in w̄ and the extracted secret keys
to Stage 2 messages. In particular, if P K j was uncovered, Hi has covered it by invoking
an extraction thread before the start of Stage 2 of that session. However, from the start
of the i th Stage 3 and on, Hi works in a straight-line manner (without further invoking
extraction threads) as follows:

• For all Stage 2 messages appearing after the staring of the i th Stage 3, Hi works
as the honest prover does by committing an NP-witness in w̄ (resp., 0n) to the
corresponding cw (resp., csk).

• For all the remaining Stage 3 interactions (namely, for any î th Stage 3, î ≥ i), Hi

just uses the NP-witnesses in w̄ (that is committed to the corresponding cw) as
the witness. Note that the Stage 2 message corresponding to the î th Stage 3 may
potentially be set before the start of the i th Stage 3. But for any i ′th Stage 3, i ′ < i ,
that has not been completed up to the start of the i th Stage 3, Hi still works as

14 Again, the i th Stage 3 (that is ordered by the occurrence of the first message of each Stage 3) may not
necessarily be within the i th session (that is ordered by the occurrence of the first message of Stage 1 of each
session).

206 A. C.-C. Yao et al.

M does by using the extracted secret key (that is committed to the corresponding
csk) as the witness. Note that for the i ′th Stage 3, i ′ < i , its corresponding Stage 2
message must have been set before the start of the i th Stage 3.

There are two differences between the output of H1 and the real view of V ∗: (1) For
every Stage 2message prior to the beginning of the first Stage 3 in H1, the corresponding
csk commits to an extracted secret key, while in the real view of V ∗ it commits to 0n .
However, the extracted secret keys committed to csk’s in H1 are never used for Stage 3
interactions. Again, by the hiding property of the underlying commitment scheme, it can
be shown by a simple hybrid argument that such a difference can only cause negligible
distinguishability gap. (2) H1 may potentially abort due to key-coverage failure before
the beginning of the first Stage 3, which also occurs with negligible probability by the
witness-extended emulation lemma [61]. Thus, the output of H1 is computationally
indistinguishable from the real view of V ∗. On the other hand, the output of Hs(n)2+1 is
identical to the output of M . Supposing the output of the algorithm M is distinguishable
from the real view of V ∗, there must exist an i, 1 ≤ i ≤ s(n)2, such that the output of
Hi and that of Hi+1 are distinguishable. Note that the differences between Hi and Hi+1
are:

Difference-1. In Hi , the witness used in the i th Stage 3 (w.r.t. a common statement xk

and public key P K j) is the true NP-witness wk (committed to the corresponding
cw), while in Hi+1 the witness used in the i th Stage 3 is the extracted secret key
SK j (committed to the corresponding csk).

Difference-2. Hi+1 may additionally abort due to secret key-coverage failure between
the start of the i th Stage 3 and that of the (i + 1)th Stage 3.

Difference-3. For Stage 2 messages between the start of the i th Stage 3 and that of the
(i + 1)th Stage 3, the corresponding csk’s in Hi (resp., Hi+1) commit to 0n (resp.,
the extracted secret keys).

Now, consider another variant, denoted H ′
i , which acts as Hi does, except that it uses

the extracted secret key SK j (committed to the corresponding csk) as the witness for
the i th Stage 3. The output of H ′

i and that of Hi+1 differ on the above Difference 2
and Difference 3. Firstly, Difference 2 can occur with only negligible probability. For
Difference 3, the key observation is that the values committed to these csk’s (between
the start of the i th Stage 3 and that of the (i + 1)th Stage 3) are never used for Stage
3 interactions in either Hi or Hi+1. This means that, with a simple hybrid argument,
by the computational hiding property of the underlying commitment scheme the distin-
guishability gap between H ′

i and Hi+1 caused by Difference 3 is also negligible. Thus,
the output of H ′

i and that of Hi+1 are computationally indistinguishable. Finally, the
indistinguishability between Hi and H ′

i is reduced to the WI property of the i th Stage

3, as follows. Specifically, we consider another algorithm Ĥi who generates (cw, csk),
where cw (resp., csk) commits to wk (resp., SK j) and gives (cw, csk) together with the
corresponding decommitments to an external prover P̂i . Ĥi mimics Hi , except that the
transcript for the i th Stage 3 (w.r.t. common statement xk and public key P K j and the
Stage 2 message (cw, csk)) is generated by externally interacting with P̂i on common
input (cw, csk), where the witness used by P̂i is either wk (committed to cw) or SK j

(committed to csk). Clearly, if P̂i uses wk (resp., SK j) as its witness, the output of Ĥi

Concurrent Knowledge Extraction in Public-Key Models 207

is identical to that of Hi (resp., H ′
i). And the distinguishability between Hi and H ′

i then

violates the WI property of Stage 3.15 Again, the fact that the algorithm Ĥi does not
further invoke extraction threads from the start of the i th Stage 3 is critical to allow
the above reduction, as it ensures that the external interactions with P̂i will never be
rewound.
(Statistical) concurrent knowledge extraction.
According to the CKE formulation, for any s-concurrent malicious prover P∗ (defined

in Sect. 2) we need to build two algorithms (S, E). The constructions of the algorithms
(S, E) are almost identical to those in the proof of Theorem 6.1, and the reader is referred
there for details. For each i , 1 ≤ i ≤ s(n), denote by (wi , ri) the output of E for the i th
session that was accepting in the transcript str output by S. That output satisfies one of
the following three cases.

Case- 1. c(i)
sk = C(wi , ri) and y1−b = f (wi), where c(i)

sk and c(i)
w are the double

statistically binding commitments sent at the Stage 2 of the i th session, C is the
underlying statistically binding commitment scheme, and SK = sb.
Case- 2. c(i)

sk = C(wi , ri) and yb = f (wi).

Case- 3. c(i)
w = C(wi , ri) and (xi , wi) ∈ RL .

As in the proof of Theorem 6.1, Case 1 can occur only with negligible probability,
due to the one-wayness of f .

Proposition 7.2. Case 2 occurs with negligible probability.

Proof. (of Proposition 7.2). Before embarking on the actual proof, we first point out
that the proof technique for ruling out Case 2 in the proof of Theorem 6.1 fails here.
Specifically, in contrast to the proof of Theorem 6.1, brute-force opening of c(i)

sk and c(i)
w

will, in general, not violate the statisticalWI property of Stage 1 assuming Case 2 occurs
with non-negligible probability. This will be well demonstrated by some exemplifying
adversarial strategies to be presented and discussed in Sect. 7.3.1 (p. 45). Instead, we
will use the statistical WI of Stage 1 and the complexity leveraging together to break
the sub-exponential one-wayness of f in the subsequent proof. Also, as discussed in
Sect. 7.2 (p. 37), we cannot use the output of the efficient knowledge extractor to reach
a contradiction with WI of Stage 1 (and consequently waive the need of complexity
leveraging), unless we employ a resettable WIAOK in Stage 1.
Supposing Case 2 occurs with non-negligible probability, this means that for some

(s0, s1, b), where s0, s1 ∈ {0, 1}n and b ∈ {0, 1}, when the simulator S uses sb as the

15 Here, we remark that if only a single statistically binding commitment was used in Stage 2 (that commits
to either wk or sk j), the above hybrid argument would fail in general, as the external prover P̂i will be run on
different statements for experiments Hi and H ′

i , respectively. Specifically, for simulating the experiment Hi

(resp., H ′
i), the common input to P̂i will be a commitment to wk (resp., SK j). In this case, the traditional WI

property, which is defined w.r.t. a pair of witnesses to the same fixed common statement, cannot be used to
derive any contradiction here. This is also the reason that we have employed strong WI for the generic CZK–
CKE construction depicted in Fig. 4, where Stage 2 consists of only a single statistically binding commitment
but the composition of commit-then-SWI ensures regular WI. We also remark that the problem is inherent to
the composition of statistically binding commitment then WI. It seems that the composition of statistically
hiding commitment then WI can still be WI.

208 A. C.-C. Yao et al.

witness for simulating Stage 1 interactions, with non-negligible probability p(n), the
c(i)

sk in the simulated transcript str output by S is a commitment of sb. Otherwise, Case
2 will trivially occur with negligible probability. However, due to the statistical WI of
Stage 1, with almost the same probability p(n), the c(i)

sk in the simulated transcript str
output by S, when it uses s1−b as the witness for simulating Stage 1 interactions, is still
a commitment of sb. As in the proof of Theorem 6.1, the value committed to c(i)

sk can be
brute-force extracted in time poly(n) ·2nsk � 2nc

. Now, supposing yb = f (sb) is given
to the simulator as input externally, and y1−b and Stage 1 interactions are simulated
by the simulator (with s1−b as the witness), this implies that there exists an algorithm
that can break the one-wayness of yb in poly(n) · 2nsk � 2nc

-time with non-negligible
probability, which violates the sub-exponential hardness of yb. �

Remark. Notice that in the above proof, we relied on the string str produced by S in
order to derive a contradiction. It was essential that str is (almost) independent of which
secret key S uses, because Stage 1 is statistical WI, which then ensures that, in case Case
2 occurs, each of s0 and s1 is committed to str with non-negligible probability. Because
str does not give us sb explicitly, we have obtained it by brute-force in order to contradict
the sub-exponential one-wayness of f via complexity leveraging. We would try to use
the same approach of having S use the other secret key s1−b, but instead of complexity
leveraging, use knowledge extractor for Ei to obtain sb. Unfortunately, this does notwork
in general, because the actual witness used by P∗ in Stage 3, and thus the output of the
knowledge extractor, may depend on which secret key S uses, and may not necessarily
be sb as expected but be the witness for xi ∈ L due to the double commitments used
in Stage 2. Recall that CKE is considered w.r.t. the capability of convincing of even
true statements (yet without “knowing” corresponding NP-witnesses), in contrast to
concurrent soundness only w.r.t. that of convincing of false statements. Specifically,
though P∗ commits sb to str with non-negligible probability when S uses s1−b as the
witness of Stage 1, P∗ may not use it as the witness of Stage 3 in this case; rather,
P∗ uses the witness wi for xi ∈ L that is committed to c(i)

w as the witness of Stage
3, and then, the extracted witness will just be wi (rather than sb as expected) in this
case. We do not know how to provably rule out such potential adversarial strategies
without employing the complexity leveraging. Detailed clarifications of the subtleties
are presented in Sect. 7.3, where we also show that the efficient CZK–CKE protocol
depicted in Fig. 6 is still concurrently sound under standard polynomial-time hardness
assumptions without complexity leveraging.

By ruling out Case 1 and Case 2, now we conclude that for any i , 1 ≤ i ≤ s(n), if the
i th session in str is accepting w.r.t. common input xi selected by P∗, then E will output
a witness wi for xi ∈ L . To finish the proof, we need to further show that knowledge
extraction is independent of the secret key used by the simulator/extractor (i.e., the joint
KEI property). Specifically, we need to show that Pr[R(SK , w̄, str) = 1] is negligibly
close to Pr[R(SK ′, w̄, str) = 1] for any polynomial-time computable relation R, where
w̄ is the list of extracted witnesses (when the simulator/extractor uses SK as the witness
in Stage 1 interactions in str) and SK ′ is the element (output by S in accordance with
ExptCKE(1n, z)) randomly and independently distributed over the space of SK . The joint

Concurrent Knowledge Extraction in Public-Key Models 209

KEI property is direct from the statistical WI of Stage 1. Specifically, as the extracted
witnesses are well defined by the statistically binding c(i)

w ’s, if the joint KEI property
does not hold, we directly extract by brute-force all the witnesses wi ’s from c(i)

w ’s of
successful sessions and then apply the assumed existing distinguishable relation R to
violate the statistical WI of Stage 1. The remaining analysis is the same as that in the
proof of Theorem 6.1. �

7.3. On the Subtleties without Complexity Leveraging

In this section, we clarify the subtleties and justify the necessity of the (minimal) com-
plexity leveraging on csk for the efficient CZK–CKE construction. We first discuss some
concurrent man-in-the-middle (MIM) adversarial strategies potentially used by themali-
cious prover P∗, which we do not know how to provably rule out without employing the
complexity leveraging. Then, we show that the efficient CZK–CKE protocol depicted in
Fig. 7 is still concurrently sound under standard polynomial secure assumptions merely,
i.e., without complexity leveraging.

7.3.1. On the Use of Complexity Leveraging Against Man-in-the-Middle

The key difficulty of ruling out Case 2 without complexity leveraging lies in the double
commitments used in Stage 2 (and the fact that CKE is considered mainly for proving
true statements). Specifically, to successfully finish the i th session on a true statement
xi ∈ L , for any i , 1 ≤ i ≤ s(n), an s-concurrent adversary P∗ has double choices: It can
use either the value committed to c(i)

sk or that committed to c(i)
w as the witness in Stage 3

regular WI. This is in sharp contrast to the commit-then-SWI-based generic CZK–CKE
(depicted in Fig. 4), where to successfully finish the i th session P∗ has to use the value
committed to (determined by) the unique Stage 2 commitment c(i)

w as the witness in the
Stage 3 SWI. To illustrate the subtlety, consider the following two potential adversarial
strategies.
Adversarial Strategy-1. P∗ commits a valid witness w (for xi ∈ L) to c(i)

w , and
commits a secret key, say s0, to c(i)

sk in Stage 2 of the i th session (possibly by malleating

verifier’s public keys into xi and c(i)
sk), where xi ∈ L is a true statement adaptively

selected by P∗ for the i th session. Then, possibly by malleating the Stage 1 concurrent
interactions, P∗ always uses the valid witness w in Stage 3 of the i th session in case
the honest verifier V uses s1 as the witness in Stage 1 interactions (note that w could be
maliciously related to s1 as well, as the common input xi is selected by P∗), but uses s0
as the witness in Stage 3 in case V uses s0 as the witness in Stage 1 interactions.

Adversarial Strategy-2.Suppose SK = sb where b ← {0, 1}; that is, V uses sb as the
witness during Stage 1 interactions. Then, depending on the bit b, P∗ works as follows.
On the one hand, with non-negligible probability p, P∗ commits (w, sb) to (c(i)

w , c(i)
sk)

in Stage 2 of the i th session on a true statement xi ∈ L (possibly by malleating verifier’s
public keys into c(i)

w and c(i)
sk)), where w is a valid witness for xi ∈ L . Then, possibly

by malleating the Stage 1 concurrent interactions, P∗ successfully finishes Stage 3 of
the session with sb as the witness. On the other hand, with the same probability p, P∗

210 A. C.-C. Yao et al.

commits (w, s1−b) to (c(i)
w , c(i)

sk) in Stage 2 of the i th session, but successfully finishes
Stage 3 of the session with w as the witness.
Note that the concurrent malicious prover P∗ actually amounts to a concurrent MIM

who manages, by concurrent interleaving interactions, to malleate verifier’s public keys
and Stage 1 interactions (here, it plays the role of the verifier) into successful Stage
2 and Stage 3 interactions (here, it plays the role of the prover). Both of the above
two exemplifying adversarial strategies indicate the failure of knowledge extraction cor-
rectness. Specifically, with non-negligible probability, the value extracted (when using
SK = sb for a random bit b) is just the preimage of yb committed to c(i)

sk ; that is, Case
2 in the CKE analysis of Theorem 7.1 occurs with non-negligible probability. However,
no contradiction can be reached in order to rule out Case 2 without resorting to the
complexity leveraging. In particular, they do not violate the statistical WI of Stage 1.
For Adversarial Strategy 1, the values committed to (c(i)

w , c(i)
sk) are fixed. For Adversarial

Strategy 2, with probability 2p the value committed to c(i)
w is w, and with probability p

the value committed to c(i)
sk is s0 (resp., s1), no matter which secret key (whether s0 or

s1) is used in the Stage 1 interactions. As a consequence, for both of the demonstrated
adversarial strategies above, brute-force opening of c(i)

sk and c(i)
w does not break the sta-

tistical WI property of Stage 1.16 As we do not employ any non-malleable building tools
and we are actually facing a concurrent MIM P∗, the above MIM adversarial strategies
could be potential. In general, we do not know how to provably rule out such seemingly
impossible adversarial strategies, without resorting to the complexity leveraging.
We suggest that the use of complexity leveraging for frustrating concurrent MIM

could be a novel approach, different from the uses of complexity leveraging in existing
works (e.g., [15,80]). Such an approach may be possibly of independent interest and
can be applied in other scenarios to frustrate potential concurrent MIM, while still
providing polynomial-time simulation and/or knowledge extraction as well as retaining
the protocol efficiency and conceptually simple protocol structure.

7.3.2. Concurrent Soundness without Complexity Leveraging

One key point allowing the above two potential concurrent MIM adversarial strategies
is: P∗ may use the NP-witness w for xi ∈ L (committed to c(i)

w) in Stage 3 interac-
tions, which may potentially depend on which secret key S uses in Stage 1 interactions.
However, if we are only concerned with concurrent soundness against P∗’s capability
of convincing of a false statement “xi ∈ L" (while xi �∈ L), the above two concurrent
MIM strategies, actually Case 2 in the CKE analysis of Theorem 7.1, can be ruled out
without employing the complexity leveraging.
In the following analysis, we only consider concurrent soundness, and assume no com-

plexity leveraging on csk , i.e., verifier’s public keys are standard polynomially secure and
csk is computed on the same system parameter n. The analysis of concurrent soundness
follows the same outline of CKE analysis in the proof of Theorem 7.1. Below, we only
highlight the main differences between them. Supposing concurrent soundness does not

16 This is in sharp contrast to the proof of Theorem 6.1, where brute-force opening of the statistically

binding commitment c(i)
w is sufficient to violate statistical WI of Stage 1 if Case 2 occurs with non-negligible

probability.

Concurrent Knowledge Extraction in Public-Key Models 211

hold, then with non-negligible probability p there exists an i , 1 ≤ i ≤ s(n), such that an
s-concurrent malicious prover P∗ can convince of a false statement “xi ∈ L" in the i th
session, where, actually, xi �∈ L . By applying the stand-alone knowledge extractor on
Ei (that uses sb as the witness for Stage 1 interactions), we will get a witness, denoted
(wi , ri), for the language L ′ defined for Stage 3 in Fig. 6. Here, the key observation is:
as xi �∈ L , it must be the case that c(i)

sk = C(wi , ri) and wi is the preimage of y1−b

(corresponding to Case 1) or yb (corresponding to Case 2). In other words, supposing
xi �∈ L , the commitment c(i)

w is meaningless for a successful run of the i th session. In
this sense, the use of double commitments of Stage 2 is reduced to a situation similar
to that of using only a single Stage 2 commitment in the generic CZK–CKE protocol
depicted in Fig. 4, where we can rule out Case 2 without using the complexity leveraging
nevertheless. Specifically, by the one-wayness of f , Case 1 occurs with negligible prob-
ability. Thus, Case 2 occurs (i.e., the extracted witness wi is the preimage of yb) with
non-negligible probability. That is, with non-negligible probability the value committed
to c(i)

sk indicates which witness is used in Stage 1. Just similar to the CKE analysis (p.
36) in the proof of Theorem 6.1, a brute-force algorithm can be constructed to violate
the statistical WI of Stage 1. We have the following corollary:

Corollary 7.1. The protocol depicted in Fig. 6 is concurrently sound in the BPK model
without using the complexity leveraging, i.e., the one-way function f used in key gen-
eration is only standard polynomially secure and csk is computed on the same system
parameter n. �

7.4. On the Necessity of Double Commitments

For the efficient CZK–CKE protocol, as discussed, we have critically relied on the Stage
2 double commitments (namely cw and csk), which are composed with the Stage 3
regular WI, in the CZK analysis (to avoid the subtleties surrounding the composition
of a single statistically binding commitment and regular WI). On the other hand, the
Stage 2 double commitments are the source of trouble for CKE analysis under merely
standard polynomially secure assumptions, and we have relied on complexity leveraging
to overcome the CKE proof obstacles.
In this section, we further show that, within the efficient CZK–CKEprotocol structure,

the Stage 2 double commitments are also essential for ensuring the CKE property.
Specifically, by concrete attacks, we show that the protocol variant without cw is not
CKE secure (w.r.t. a language adaptively chosen based on verifiers’ public keys); the
variant without csk is even worse, which is not even concurrently sound (w.r.t. a language
set statically and independently of verifiers’ public keys). The attacks are similar to those
described in Sect. 4, where a malicious prover P∗ concurrently interacts with the honest
verifier in two sessions and manages to malleate the Stage 1 interactions of one session
into the Stage 2 and Stage 3 interactions in the other session. Details are presented in
“Appendix”.

212 A. C.-C. Yao et al.

8. Future Investigation

We conclude this work by proposing some questions for future investigation. In the
future study, we are interested in fulfilling the following desired protocols:

• Round-optimal CZK–CKE in the BPK model.
• Efficient black-box CZK–CKE in the BPK model under standard complexity
assumptions, without using complexity leveraging or strong WI. As discussed, this
may call for the construction of efficient black-box resettable (statistical) WIAOK.

• Constant-round adaptive input selection concurrent ZK, and furthermore concur-
rent non-malleable ZK, with concurrent knowledge extraction in the BPK model.

• Constant-round statistical CZK with concurrent knowledge extraction in the BPK
model. Notice that in this work, we achieve computational CZK with statistical
CKE in the BPK model.

• CZK–CKE in the BPK model merely from verifiers’ public keys. As discussed
in Sect. 5.1, for black-box solutions we may require non-constant rounds or non-
standard assumptions.

• CZK–CKE in the bounded player model.

Acknowledgments

First of all, we are grateful to the anonymous referees for their very helpful and insightful
review comments and suggestions, which in particular have significantly improved this
work. We are indebted to Oded Goldreich for many invaluable suggestions and discus-
sions (particularly on strong WI and POK). We are grateful to Alessandra Scafuro and
Ivan Visconti for many helpful discussions (particularly on round-optimal CZK in the
BPK model) and for sending us an electronic copy of the work [75]. We thank Gio-
vanni Di Crescenzo, Yehuda Lindell, Giuseppe Persiano and Alon Rosen for helpful
discussions.

9. Appendix: On the Necessity of Double Commitments for Efficient CZK–CKE

To show the necessity of the double commitments cw and csk used in Stage 2 of the effi-
cient CZK–CKE protocol depicted in Fig. 6, we demonstrate concrete attacks against
variants of the protocol without either cw or csk , where WIA/POK protocols are imple-
mented by �O R protocols.

9.1. The Attack Against Variant Protocol without cw

The variant protocol without cw, which amounts to the CZK protocols of [24,82], is
re-depicted in Fig. 8 (p. 54).
On the implementations of �O R . For the �O R-based protocol variant depicted in
Fig. 8, to get statistical WI of Stage 1 there are two ways: In particular, we can require
the underlying OWF f used in the key-generation stage admit perfect/statistical �

protocols, and thus, the �O R of Stage 1 is perfect/statistical WI. In general, the variant
of (the n-parallel repetition of) Blum’s protocol for DHC, where the statistically binding

Concurrent Knowledge Extraction in Public-Key Models 213

ΣOR-based protocol variant without cw P, V

Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public key, and keeps SK = sb as
its secret key.

Common input. An element x ∈ L∩{0, 1}poly(n). Denote by RL the corresponding NP-relation
for L.

P ’s private input. An NP-witness w ∈ {0, 1}poly(n) for x ∈ L.

Stage-1. V proves to P that it knows the preimage of either y0 or y1, by running a ΣOR-protocol
on the input (y0, y1) in which V plays the role of the knowledge prover. The witness used by
V in this stage is sb. Denote by aV , eV and zV , the first-, the second- and the third-round
message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P computes csk = C(0n, rsk), where C is a perfectly-
binding commitment scheme and rsk is the randomness used for commitments.

Stage-3. Define a new NP-language L = {(x, y0, y1, csk)|[∃w s.t. (x,w) ∈ RL] ∨
[∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f(w) ∧ b ∈ {0, 1}]}. Then, P proves to V that
it knows a witness for (x, y0, y1, csk) ∈ L , by running a ΣOR-protocol (i.e., the OR-proofs of
Σ-protocols). The witness used by P is w such that (x,w) ∈ RL. We denote by aP , eP and
zP , the first-, the second-, and the third-round message of the ΣOR-protocol of this stage,
respectively.

Fig. 8. �O R -based protocol variant without cw .

commitments used in the first round are replaced by the one-round statistically hiding
commitments based on collision-resistant hash functions, is a statistical � protocol (as
well as statistical WI argument) for NP , and thus can be applied to any NP language
under the assumption of collision-resistant hash functions.
Let L̂ be any NP-language admitting a � protocol that is denoted by �L̂ (in particular,

L̂ can be an empty set). For an honest verifier V with its public key P K = (y0, y1), we
define a new language L = {(x̂, y0, y1) | [∃w s.t. (x̂, w) ∈ RL̂] ∨ [∃(w, b) s.t. yb =
f (w) ∧ b ∈ {0, 1}]}. Note that for any string x̂ (whether x̂ ∈ L̂ or not), the statement
“(x̂, y0, y1) ∈ L” is always true as P K = (y0, y1) is honestly generated. Also note that
L is a language that admits � protocols (as �O R protocol itself is a � protocol). Now,
we describe the concurrent interleaving and malleating attack, in which P∗ success-
fully convinces the honest verifier of the statement “(x̂, y0, y1) ∈ L” for any arbitrary
poly(n)-bit string x̂ (even if x̂ �∈ L̂) by concurrently interacting with V in two sessions
as follows.

1. P∗ initiates the first session with V . After receiving the first-round message,
denoted a′

V , of the �O R protocol of Stage 1 of the first session on common input
(y0, y1) (i.e., V ’s public key), P∗ suspends the first session.

2. P∗ initiates the second session with V and works just as the honest prover does in
Stage 1 and Stage 2. We denote by csk the Stage 2 message of the second session

214 A. C.-C. Yao et al.

(i.e., csk commits to 0n). When P∗ moves into Stage 3 of the second session and
needs to send V the first-round message, denoted aP , of the�O R protocol of Stage
3 of the second session on common input (x̂, y0, y1, csk), P∗ does the following:

• P∗ first runs the SHVZK simulator of�L̂ (i.e., the� protocol for L̂) on x̂ to get
a simulated conversation, denoted (ax̂ , ex̂ , zx̂), for the (possibly false) statement
“x̂ ∈ L̂ ." Then, P∗ runs the SHVZK simulator of the underlying � protocol
forNP on (y0, y1, csk) to get a simulated conversation, denoted (ask, esk, zsk),
for the (false) statement “∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f (w) ∧ b ∈
{0, 1}."

• P∗ sets aP = (ax̂ , a′
V , ask) and sends aP to V as the first-round message of the

�O R protocol of Stage 3 of the second session, where a′
V is the one received

by P∗ in the first session.
• After receiving the second-round message of Stage 3 of the second session,
denoted eP (i.e., the random challenge from V), P∗ sets e′

V = eP ⊕ ex̂ ⊕ esk

and then suspends the second session.

3. P continues the first session and sends e′
V = eP ⊕ ex̂ ⊕ esk as the second-round

message of the �O R protocol of Stage 1 of the first session.
4. After receiving the third-round message of the�O R protocol of Stage 1 of the first

session, denoted z′
V , P∗ suspends the first session again.

5. P∗ continues the execution of the second session, and sends zP = ((ex̂ , zx̂), (e
′
V ,

z′
V), (esk, zsk)) to V as the last-round message of the second session.

Note that (ax̂ , ex̂ , zx̂) is an accepting conversation for the (possibly false) statement
“x̂ ∈ L̂ ," (a′

V , e′
V , z′

V) is an accepting conversation for showing the knowledge of the
preimage of either y0 or y1, (ask, esk, zsk) is an accepting conversation for the statement
“∃(w, rsk, b) s.t. csk = C(w, rsk) ∧ yb = f (w) ∧ b ∈ {0, 1}," and furthermore, ex̂ ⊕
e′

V ⊕ esk = eP . According to the description of �O R (presented in Sect. 2), this means
that, from the viewpoint of V , (aP , eP , zP) is an accepting conversation of Stage 3 of
the second session on common input (x̂, y0, y1). That is, P∗ successfully convinced V
of the statement “(x̂, y0, y1) ∈ L” (even for x̂ �∈ L̂) in the second session but without
knowing any corresponding NP-witness.

9.2. The Attack Against Variant Protocol without csk

The variant protocol without csk is re-depicted in Fig. 9 (p. 56).
Now, we describe the concurrent interleaving and malleating attack, in which P∗ suc-
cessfully convinces the honest verifier of the statement “x ∈ L ," for any n-bit string x and
for any NP-language L , without knowing anyNP-witness by concurrently interacting
with V in two sessions as follows.

1. P∗ initiates the first session with V . After receiving the first-round message,
denoted a′

V , of the �O R protocol of Stage 1 of the first session on common input
(y0, y1) (i.e., V ’s public key), P∗ suspends the first session.

2. P∗ initiates the second session with V and works just as the honest prover does in
Stage 1. In Stage 2 of the second session, P∗ sends cw = C(0n) (rather than C(w)

as honest prover does). When P∗ moves into Stage 3 of the second session and

Concurrent Knowledge Extraction in Public-Key Models 215

ΣOR-based protocol variant without csk P, V

Key Generation. Let f : {0, 1}n → {0, 1}n be any OWF, where n is the security parameter. Each verifier
V selects random strings s0, s1 from {0, 1}n, randomly selects a bit b ← {0, 1}, computes yb = f(sb) and
sets y1−b = f(s1−b). V registers PK = (y0, y1) in a public file F as its public key, and keeps SK = sb as
its secret key.

Common input. An element x ∈ L∩ {0, 1}n. Denote by RL the corresponding NP-relation for
L.

P ’s private input. An NP-witness w ∈ {0, 1}n for x ∈ L. Here, we assume without loss of

witness for any x ∈ L ∩ {0, 1}n is of the same length n.

Stage-1. V proves to P that it knows the preimage of either y0 or y1, by running a ΣOR-protocol
on the input (y0, y1) in which V plays the role of the knowledge prover. The witness used by
V in this stage is sb. Denote by aV , eV and zV , the first-, the second- and the third-round
message of the ΣOR-protocol, respectively.

Stage-2. If V successfully finishes Stage-1, P computes cw = C(w, rw), where C is a perfectly-
binding commitment scheme and rw is the randomness used for commitments.

Stage-3. Define a new NP-language L = {(x, y0, y1, cw)|(∃(w, rw) s.t. cw = C(w, rw) ∧ (x,w) ∈
RL)∨ (∃(w, b) s.t. yb = f(w)∧ b ∈ {0, 1})}. Then, P proves to V that it knows a witness for
(x, y0, y1, cw) ∈ L , by running a ΣOR-protocol. The witness used by P is (w, rw). We denote
by aP , eP and zP , the first-, the second-, and the third-round message of the ΣOR-protocol
of this stage, respectively.

generality that the

Fig. 9. �O R -based protocol variant without csk .

needs to send V the first-round message, denoted aP , of the�O R protocol of Stage
3 of the second session on common input (x, y0, y1, cw), P∗ does the following:

• P∗ first runs the SHVZK simulator of the underlying � protocol for NP on
common input (x, cw) to get a simulated conversation, denoted (ax , ex , zx), for
the (false) statement “∃(w, rw) s.t. cw = C(w, rw) ∧ (x, w) ∈ RL)."

• P∗ sets aP = (ax , a′
V) and sends aP to V as the first-round message of the

�O R protocol of Stage 3 of the second session, where a′
V is the one received

by P∗ in the first session.
• After receiving the second-round message of Stage 3 of the second session,
denoted eP (i.e., the random challenge from V), P∗ sets e′

V = eP ⊕ex and then
suspends the second session.

3. P continues the first session and sends e′
V = eP ⊕ex as the second-round message

of the �O R protocol of Stage 1 of the first session.
4. After receiving the third-round message of the�O R protocol of Stage 1 of the first

session, denoted z′
V , P∗ suspends the first session again.

5. P∗ continues the executionof the second session and sends zP =((ex , zx), (e′
V , z′

V))

to V as the last-round message of the second session.

Note that (ax , ex , zx) is an accepting conversation for the (false) statement “∃(w, rw) s.t.
cw = C(w, rw)∧ (x, w) ∈ RL)," (a′

V , e′
V , z′

V) is an accepting conversation for showing

216 A. C.-C. Yao et al.

the knowledge of the preimage of either y0 or y1, and furthermore, ex ⊕ e′
V = eP .

According to the description of �O R (cf. Sect. 2), this means that, from the viewpoint
of V , (aP , eP , zP) is an accepting conversation of Stage 3 of the second session on
common input x ; that is, P∗ successfully convinced V of the statement “x ∈ L” but
without knowing any corresponding NP-witness. The above attack also indicates that
the protocol variant without csk is not even concurrently sound.

References

[1] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In IEEE Symposium on Foundations
of Computer Science, pages 106–115, 2001.

[2] B. Barak, R. Canetti, J. B. Nielsen and R. Pass. UniversallyComposable Protocols with Relaxed Set-Up
Assumptions. In IEEESymposium on Foundations of Computer Science, pages 186–195, 2004.

[3] B. Barak and O. Goldreich. Universal Arguments and Their Applications. In IEEE Conference on
Computational Complexity, pages 194–203, 2002.

[4] B. Barak, O. Goldreich, S. Goldwasser and Y. Lindell. Resettably-Sound Zero-Knowledge and Its Appli-
cations. In IEEE Symposium on Foundations of Computer Science, pages 116–125, 2001.

[5] B. Barak and Y. Lindell. Strict Polynomial-Time in Simulation andExtraction. SIAM Journal on Com-
puting, 33(4): 783–818, 2004.

[6] B. Barak, Y. Lindell and S, Vadhan. Lower Bounds for Non-Black-Box Zero-Knowledge. Journal of
Computer and System Sciences, 72(2): 321–391, 2006.

[7] B. Barak, M. Prabhakaran, and A. Sahai. Concurrent Non-Malleable Zero-Knowledge. FOCS 2006:
345–354.

[8] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge In E. F. Brickell (Ed.): Advances in
Cryptology-Proceedings of CRYPTO 1992, LNCS 740, pages 390–420, Springer-Verlag, 1992.

[9] M. Bellare and O. Goldreich. On Probabilistic versus Deterministic Provers in the Definition of Proofs
Of Knowledge. Electronic Colloquium on Computational Complexity, 13(136), 2006. A slightly refined
version also appears in [47], pages 114–123, 2011.

[10] M. Bellare, R. Impagliazzo and M. Naor. Does Parallel RepetitionLower the Error in Computationally
Sound Protocols? In IEEESymposium on Foundations of Computer Science, pages 374–383, 1997.

[11] M. Blum. Coin Flipping by Telephone. In proc. IEEE Spring COMPCOM, pages 133–137, 1982.
[12] M. Blum. How to Prove a Theorem so No One Else can Claim It. InProceedings of the International

Congress of Mathematicians,Berkeley, California, USA, 1986, pp. 1444–1451.
[13] D. Boneh and R. Venkatesan. Breaking RSAmay not be equivalent to factoring. Eurocrypt 1998: 59–71.
[14] G. Brassard, D. Chaum andC. Crepeau.MinimumDisclosure ProofsofKnowledge. Journal of Computer

Systems and Science, 37(2):156–189, 1988.
[15] R. Canetti, O. Goldreich, S. Goldwasser and S. Micali. Resettable Zero-Knowledge. In ACM Sympo-

sium on Theory of Computing, pp. 235–244, 2000. Available from:http://www.wisdom.weizmann.ac.
il/~oded/

[16] R.Canetti, J.Kilian, E. Petrank andA.Rosen.Black-BoxConcurrentZero-KnowledgeRequires (Almost)
Logarithmically ManyRounds. In SIAM Journal on Computing, 32(1): 1–47, 2002.

[17] C. Cho, R. Ostrovsky, A. Scafuro and I. Visconti. Simultaneously Resettable Arguments of Knowledge.
TCC 2012: 530–547.

[18] K.M.Chung, R.Ostrovsky, R. Pass,M.Venkitasubramaniam and I. Visconti. 4-RoundResettably-Sound
Zero Knowledge. TCC 2014: 192–216.

[19] R. Cramer. Modular Design of Secure, yet Practical Cryptographic Protocols, PhD Thesis, University
of Amsterdam, 1996.

[20] R. Cramer, I. Damgard and B. Schoenmakers. Proofs of Partial Knowledge and Simplified Design of
Witness Hiding Protocols. In Y. Desmedt (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1994,
LNCS 893, pages 174–187. Springer-Verlag, 1994.

http://www.wisdom.weizmann.ac.il/~oded/
http://www.wisdom.weizmann.ac.il/~oded/

Concurrent Knowledge Extraction in Public-Key Models 217

[21] I. Damgard. Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In B. Preneel (Ed.):
Advances in Cryptology-Proceedings of Eurocrypt 2000, LNCS 1807, pages 418–430. Springer-Verlag,
2000.

[22] I. Damgard. Lecture Notes on Cryptographic Protocol Theory. BRICS, Aarhus University, 2003. Avail-
able from: http://www.daimi.au.dk/~ivan/CPT.html

[23] I. Damgard, T. Pedersen and B. Pfitzmann. On the Existence of Statistically-Hiding Bit Commitment
and Fail-Stop Signatures. In CRYPTO 1993: 250–265.

[24] Y. Deng and D. Lin. Resettable Zero Knowledge in the Bare Public KeyModel under Standard Assump-
tion. Inscrypt 2007, pages 123–137.

[25] Y. Deng, D. Feng, V. Goyal, D. Lin, A. Sahai andM.Yung. Resettable Cryptography in Constant Rounds:
the Case of Zero Knowledge. Asiacrypt 2011, pages 390–406. Available also from Cryptology ePrint
Archive, Report No. 2011/408.

[26] G.Di Crescenzo andR.Ostrovsky. OnConcurrent Zero-Knowledgewith Pre-Processing. InM. J. Wiener
(Ed.): Advances in Cryptology-Proceedings of CRYPTO 1999, LNCS 1666, pages 485–502. Springer-
Verlag, 1999.

[27] G. Di Crescenzo, G. Persiano and I. Visconti. Constant-Round Resettable Zero-Knowledgewith Concur-
rent Soundness in theBare PublicKeyModel. InM. Franklin (Ed.): Advances in Cryptology-Proceedings
of CRYPTO 2004, LNCS 3152, pages 237–253. Springer-Verlag, 2004.

[28] G. Di Crescenzo and I. Visconti. Concurrent Zero-Knowledge in the Public Key Model. In L. Caires et
al. (Ed.): ICALP 2005, LNCS 3580, pages 816–827. Springer-Verlag, 2005.

[29] G. Di Crescenzo and I. Visconti. Personal communications, 2004.
[30] G. Di Crescenzo and I. Visconti. On Defining Proofs of Knowledge in the Bare Public Key Model. In

Italian Conference on Theoretical Computer Science (ICTCS), 2007.
[31] D. Dolev, C. Dwork and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing, 30(2):

391–437, 2000. Preliminary version in ACM Symposium on Theory of Computing, pages 542–552, 1991.
[32] C. Dwork, M. Naor and A. Sahai. Concurrent Zero-Knowledge. In ACM Symposium on Theory of

Computing, pages 409–418, 1998.
[33] C. Dwork and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for Timing Constraints. In H.

Krawczyk (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1998, LNCS 1462, pages 442–457.
Springer-Verlag, 1998.

[34] T. El Gamal. A Public Key Cryptosystem and Signature Scheme Basedon Discrete Logarithms. IEEE
Transactions on InformationTheory, 31: 469–472, 1985.

[35] U. Feige. Alternative Models for Zero-Knowledge Interactive Proofs. Ph.D Thesis, Weizmann Institute
of Science, 1990.

[36] U. Feige and Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In G. Brassard (Ed.):
Advances in Cryptology-Proceedings of CRYPTO 1989, LNCS 435, pages 526–544. Springer-Verlag,
1989.

[37] U. Feige and A. Shamir. Witness Indistinguishability andWitnessHiding Protocols. In ACM Symposium
on the Theory ofComputing, pages 416–426, 1990.

[38] O. Goldreich. Foundation of Cryptography-Basic Tools. Cambridge University Press, 2001.
[39] O. Goldreich. Foundations of Cryptography-Basic Applications. Cambridge University Press, 2002.
[40] O. Goldreich. Studies in Complexity and Cryptography. LNCS 6650, Springer-Verlag, 2011.
[41] O. Goldreich. Strong Proofs of Knowledge. Pages 55–59 in [47].
[42] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof Systems for

NP . Journal of Cryptology, 9(2): 167–189, 1996.
[43] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems. SIMA Journal

on Computing, 25(1): 169–192, 1996.
[44] O. Goldreich, S. Micali and A.Wigderson. Proofs that Yield Nothing but Their Validity and aMethodol-

ogy of Cryptographic Protocol Design. In IEEE Symposium on Foundations of Computer Science, pages
174–187, 1986.

[45] O. Goldreich, S. Micali and A. Wigderson. How to Prove all NP-Statements in Zero-Knowledge, and
a Methodology of Cryptographic Protocol Design. In A. M. Odlyzko (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 1986, LNCS 263, pages 104–110, Springer-Verlag, 1986.

[46] O. Goldreich, S. Micali and A. Wigderson. How to Play any Mental Game-A Completeness Theorem
for Protocols with Honest Majority. In ACM Symposium on Theory of Computing, pages 218–229, 1987.

http://www.daimi.au.dk/~ivan/CPT.html

218 A. C.-C. Yao et al.

[47] O. Goldreich, S. Micali and A.Wigderson. Proofs that Yield Nothing But Their Validity or All languages
in NP Have Zero-Knowledge Proof Systems. Journal of the Association for Computing Machinery,
38(1): 691–729, 1991. Preliminary version appears in [51, 52].

[48] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof-Systems In
ACM Symposium on Theory of Computing, pages 291–304, 1985.

[49] S. Goldwasser, S. Micali and R. L. Rivest. A Digital Signature Scheme Secure Against Adaptive Chosen
Message Attacks. SIAM Journal on Computing, 17(2): 281–308, 1988.

[50] V.Goyal, A. Jain, R.Ostrovsky, S. Richelson and I. Visconti. Concurrent ZeroKnowledge in theBounded
Player Model. TCC 2013: 60–79.

[51] V. Goyal, A. Jain, R. Ostrovsky, S. Richelson and I. Visconti. Constant-Round Concurrent Zero Knowl-
edge in the Bounded Player Model. Asiacrypt 2013: 21–40.

[52] L. Guillou and J. J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor
Minimizing bothTransmission andMemory. InC. G. Gnther (Ed.): Advances in Cryptology-Proceedings
of Eurocrypt 1988, LNCS 330, pages 123–128, Springer-Verlag, 1988.

[53] J. Hastad, R. Impagliazzo, L. A. Levin and M. Luby. Construction of a Pseudorandom Generator from
Any One-Way Function SIAM Journal on Computing, 28(4): 1364–1396, 1999.

[54] H. Hastad, R. Pass, D. Wikstrom and K. Pietrzak. An Efficient Parallel Repetition Theorem. In TCC
2010, pages 1–18, 2010.

[55] I. Haitner andO. Reingold. Statistically-HidingCommitment fromAnyOne-Way Function. STOC2007:
1–10.

[56] I. Haitner, O. Horvitz, J. Katz, C. Koo, R. Morselli and R. Shaltiel. Reducing Complexity Assumptions
for Statistically-Hiding Commitments. In Eurocrypt 2005: 58–77.

[57] S. Halevi and S. Micali. Practical and Provably-Secure Commitment Schemes from Collision-Free
Hashing. In CRYPTO 1996: 201–215.

[58] J. Kilian and E. Petrank. Concurrent and resettable zero-knowledge in polyloalgorithm rounds. In STOC,
pages 560–569, 2001.

[59] D. Lapidot and A. Shamir. Publicly-Verifiable Non-Interactive Zero-Knowledge Proofs. In A.J. Menezes
and S. A. Vanstone (Ed.): Advances in Cryptology-Proceedings of CRYPTO 1990, LNCS 537, pages
353–365.

[60] H. Lin and R. Pass. Constant-Round Non-Malleable Commitments fromAny One-Way Function. STOC
2011: 705–714.

[61] Y. Lindell. Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. Journal of Cryp-
tology, 16(3): 143–184, 2003. Preliminary version appeared in CRYPTO 2001.

[62] Y. Lindell. Constant-Round Zero-Knowledge Proof of Knowledge. ECCC Report No. 2011/003.
[63] D. Micciancio and E. Petrank. Simulatable Commitments and Efficient Concurrent Zero-Knowledge. In

E. Biham (Ed.): Advances in Cryptology-Proceedings of Eurocrypt 2003, LNCS 2656, pages 140–159.
Springer-Verlag, 2003.

[64] S.Micali and L. Reyzin. Soundness in the Public KeyModel. In J. Kilian (Ed.): Advances in Cryptology-
Proceedings of CRYPTO 2001, LNCS 2139, pages 542–565. Springer-Verlag, 2001.

[65] M. Naor. Bit Commitment Using Pseudorandomness. Journal of Cryptology, 4(2): 151–158, 1991.
[66] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Perfect Zero-Knowledge Arguments for NP Using

Any One-Way Permutation. Journal of Cryptology, 11(2): 87–108, 1998.
[67] M. Naor and M. Yung. Public Key Cryptosystems Provably Secure Against Chosen Ciphertext Attacks.

In ACM Symposium on Theory of Computing, pages 427–437, 1990.
[68] R. Ostrovsky, G. Persiano and I. Visconti. Constant-Round Concurrent Non-malleable Zero Knowledge

in the Bare Public KeyModel. ICALP(2) 2008, LNCS 5126, pages 548–559, 2008. Full version available
from ECCC Report No. 2006/095.

[69] R. Pass, W.-L. Dustin Tseng, and M. Venkitasubramaniam: Concurrent Zero Knowledge, Revisited.
Journal of Cryptology, 27(1): 45–66, 2014.

[70] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. SIAM Journal on Computing, 37(6):
1891–1925 (2008). Preliminary version appears in In IEEE Symposium on Foundations of Computer
Science, pages 563–572, 2005.

[71] R. Pass andM.Venkitasubramaniam.AnEfficient ParallelRepetitionTheorem forArthur-MerlinGames.
In ACM Symposium on Theory of Computing, pages 420–429, 2007.

Concurrent Knowledge Extraction in Public-Key Models 219

[72] M. Prabhakaran, A. Rosen andA. Sahai. Concurrent zero knowledgewith logarithmic round-complexity.
In FOCS, pages 366–375, 2002.

[73] R. Richardson and J. Kilian. On the concurrent composition of zero-knowledge proofs. In Eurocrypt,
pages 415–432, 1999.

[74] P. Rogaway. Formalizing Human Ignorance: Collision-Resistant Hashing without the Keys. Vietcrypt
2006, LNCS 4341, pages 221–228.

[75] A. Scafuro and I. Visconti. OnRound-Optimal ZeroKnowledge in the Bare PublicKeyModel. Eurocrypt
2012, LNCS 7237, pages 153–171.

[76] C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology, 4(3): 24, 1991.
[77] I. Visconti. Efficient Zero Knowledge on the Internet. ICALP 2006, LNCS 4052, pages 22–33, Springer-

Verlag.
[78] A. C. Yao. How to Generate and Exchange Secrets. In IEEE Symposium on Foundations of Computer

Science, pages 162–167, 1986.
[79] A. Yao, M. Yung and Y. Zhao. Concurrent Knowledge Extraction in the Public Key Model. ICALP

2010, Part I, LNCS 6198, pages 702–714, 2010. Preliminary version appears in Electronic Colloquium
on Computational Complexity (ECCC), Report No. 2007/002.

[80] M. Yung and Y. Zhao. Generic and practical resettable zero-knowledge in the bare public key model. In
M. Naor (Ed.): Advances in Cryptology-Proceedings of Eurocrypt 2007, LNCS 4515, pages 116–134,
Springer-Verlag, 2007. Preliminary version appears in ECCC Report No. 2005/048.

[81] M. Yung and Y. Zhao. Interactive Zero-Knowledge with Restricted Random Oracles. In S. Halevi and
T. Rabin (Ed.): Theory of Cryptography (TCC) 2006, LNCS 3876, pages 21–40, Springer-Verlag, 2006.

[82] Y. Zhao. Concurrent/Resettable Zero-Knowledge With Concurrent Soundness in the Bare Public Key
Model and Its Applications. Cryptology ePrint Archive, Report 2003/265.

	Concurrent Knowledge Extraction in Public-Key Models
	1. Introduction
	1.1. Our Contributions
	1.1.1. Overview of CKE Formulation in the Public-Key Model
	1.1.2. Overview of Achieving CZK--CKE in the BPK Model

	1.2. Related Works
	1.3. Organization

	2. Preliminaries
	2.1. Σ and ΣOR Protocols

	3. The Bare Public-Key Model
	3.1. Honest Players in the BPK Model
	3.2. The Malicious Concurrent Prover and Concurrent Soundness in BPK Model
	3.3. The Malicious Concurrent Verifier and Concurrent ZK in the BPK Model

	4. Motivation for Concurrent Knowledge Extraction in the Public-Key Model
	4.1. AOK Does Not Ensure CKE in the Public-Key Model
	4.2. Concurrent Soundness Does Not Ensure CKE in the Public-Key Model
	4.2.1. The Protocol Structure of citeDDN00,Z03
	4.2.2. The Concurrent Interleaving and Malleating Attack

	5. Formulating Concurrent Knowledge Extraction in the Public-Key Model
	5.1. Discussion and Justification of the CKE Formulation

	6. Generic CZK--CKE in the BPK Model
	6.1. Security Analysis

	7. Efficient CZK--CKE in the BPK Model
	7.1. Practical Instantiations of CZK--CKE
	7.2. Security Analysis
	7.3. On the Subtleties without Complexity Leveraging
	7.3.1. On the Use of Complexity Leveraging Against Man-in-the-Middle
	7.3.2. Concurrent Soundness without Complexity Leveraging

	7.4. On the Necessity of Double Commitments

	8. Future Investigation
	Acknowledgments
	9. Appendix: On the Necessity of Double Commitments for Efficient CZK--CKE
	9.1. The Attack Against Variant Protocol without cw
	9.2. The Attack Against Variant Protocol without csk

	References

