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Abstract. In their seminal work, Impagliazzo and Rudich (STOC’89) showed that
no key-agreement protocol exists in the random-oracle model, yielding that key agree-
ment cannot be black-box reduced to one-way functions. In this work, we generalize
their result, showing that, to a large extent, no-private-input, semi-honest, two-party
functionalities that can be securely implemented in the random oracle model can be
securely implemented information theoretically (where parties are assumed to be all
powerful, and no oracle is given). Using a recent information-theoretic impossibility
result by McGregor et al. (FOCS’10), our result yields that certain functionalities (e.g.
inner product) cannot be computed both in an accurately and in a differentially pri-
vate manner in the random oracle model, implying that protocols for computing these
functionalities cannot be black-box reduced to the existence of one-way functions.
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1. Introduction

In the random-oracle model, the parties are given oracle access to a random function
(i.e. a uniformly chosen function from the set of all functions of a given input and
output length—the all-function family) and are assumed to have unbounded computa-
tional power (though they can only make a bounded number of oracle queries). Many
cryptographic primitives are known to exist in this model, such as (exponentially hard)
collision-resistant hash functions. More importantly, in this model, it is possible to im-
plement secure protocols for tasks that are hard to implement in the standard model, and
sometimes even completely unachievable; a well-known example is the work of [10],
showing how to convert three-message identification schemes to a highly efficient (non
interactive) signature scheme. In the random-oracle model, their methodology preserves
the security of the original scheme [25], but (for some schemes) does not do so in the
standard model [4,14].
Random oracles, however, are not all powerful. In their seminal work, [18] showed

that key-agreement protocols cannot be realized in the random-oracle model. Still, char-
acterizing the functionalities that can be (securely) realized in this model remained an
open question.
It is well known that for malicious adversaries, there exist functionalities that cannot

be achieved in the information-theoretic model, i.e. where all entities are assumed to be
unbounded (with no-oracle access), yet can be securely computed in the random-oracle
model (e.g. commitment schemes, coin-tossing protocols and zero-knowledge proofs).
All of these functionalities, however, are blatantly trivial when considering semi-honest
adversaries, which are the focus of this work.

1.1. Our Result

Wemake progress towards answering the above question, showing that, to a large extent,
any no-private input,1 two-party computation that can be securely implemented in the
random-oracle model in the presence of semi-honest adversaries can be securely imple-
mented in the information-theoretic model in the presence of semi-honest adversaries.

Theorem 1.1. (Main theorem, informal). Let π be a no-private-input, m-round, �-
query, oracle-aided two-party protocol and let 〈X, Y 〉 stand for a random execution of
the protocol (X, Y ), resulting in the parties’ private outputs and the common transcript.
Then, for any ε > 0, there exists an O(�2/ε2)-query oracle-aided function Map, and a
stateless, no-oracle, m-round protocol π̃ = (˜A,˜B) such that:

SD

(

(

outA, outB,Map f (t)
)

f ←FAF,(outA,outB,t)←〈A f ,B f 〉 ,
〈

˜A,˜B
〉

)

∈ O(ε),

where FAF is the all-functions family.2

1 The parties’ only input, if any, is a common value drawn from some arbitrary distribution.
2 We emphasize that the protocol π̃ and the mapping functionMap are typically inefficient.
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Furthermore, the projections of the above distributions to their first and third coor-
dinates, or to their second and third coordinates (i.e. the transcripts concatenated with
the outputs of one of the parties) are identically distributed.

Intuitively, Theorem 1.1 states that for any oracle-aided protocol π that is executed
with access to a random function, there exists a no-oracle protocol π̃ in the information-
theoretic setting that is almost as correct and almost as secure as π . This is formalized by
the requirement that the distributions induced by the private outputs of the parties and the
common transcript in a random execution of π f (for f ← FAF), being almost the same
as that induced by a random execution of the (no-oracle) protocol π̃ , where the only
difference is that one needs to apply a query-efficient procedure Map to the transcript
in the execution of π . Correctness follows directly from the statistical closeness of the
outputs, where security is implied by the fact that anything that can be learnt from the
transcript of π̃ can also be learnt from the transcript of π by applying the query-efficient
function Map on it. Theorem 1.1 generalizes to all-function families that are finite and
have the property that answers for distinct queries, induced by drawing a randommember
from the family, are independent.
The main power of Theorem 1.1 is that it facilitates proving the inexistence of certain

random-oracle model primitives, by proving the inexistence of their no-oracle ana-
logues; given a random-oracle model protocol π implementing a certain functionality,
say key agreement (where the parties wish to secretly agree on a common key), consider
its no-oracle variant π̃ guaranteed by Theorem 1.1. Since no information-theoretically
secure key-agreement protocol exists, there exists a passive (i.e. semi-honest) adversary
˜Eve that “extracts” the common key agreed by the parties of π̃ from the protocol’s

transcript. Theorem 1.1 yields that by invoking˜Eve on the output ofMap applied to the
transcript of the random-oracle protocol π , one finds the key agreed by the parties of π

with high probability. Since we considered an arbitrary protocol π , the above yields the
inexistence of key-agreement protocols in the random-oracle model, reproving [1,18].3

A major ingredient of the proof of Theorem 1.1 is the dependency finder algorithm
presented by [1], refining a similar algorithm by [18] (see Sect. 1.2). While we could
have based the proof of Theorem 1.1 on a combination of several results from [1] (or
alternatively, to get a theorem with worse parameters, by basing the proof on a followup
result of [7, Lemma 5] or of [21, Lemma A.1]), we chose to give a new proof also for
this part (modulo clearly marked parts taken from [1]). The new proof (given as part of
the proof of Lemma 3.10) holds with respect to a larger set of function families. More
significantly, it is more modular and introduces several simplifications compared with
the previous proofs.

1.1.1. Applications

We demonstrate the usefulness of Theorem 1.1 via the following two examples. The
first example shows that in the random-oracle model, it is impossible for two parties

3 The actual parameters achieved by applying Theorem 1.1 (see Sect. 4.1) match the optimal bound given
in [1]. As in the case of [1,18], the above yields that key-agreement protocols cannot be black-box reduced to
one-way functions.
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to accurately approximate the inner-product function in a differentially private manner,
namely in a way that very little information is leaked about any single bit of the input
of one party to the other party. A recent result of [22] shows that in the information-
theoretic model, it is impossible to approximately compute the inner-product function
in a differentially private manner. Combining their result with Theorem 1.1, we obtain
the following fact.4

Theorem 1.2. (informal). In the random-oracle model, any�-query (�2, α, γ )-differen-
tially private oracle-aided protocol for computing the inner product of two n-bits strings,

errs by
√

n
log(n)·eα with a constant probability.

Very informally, an oracle-aided protocol is (k, α, γ )-differentially private, if no party
making at most k queries to the oracle learns more than α information about any one of
the input bits of the other party, except with some small probability γ .
The above result yields the impossibility of fully black-box reducing differentially

private protocols for (well) approximating the inner product, to the existence of one-way
functions. Roughly speaking, such a fully black-box reduction is a pair of efficient oracle-
aided algorithms (Q,R) such that the following hold: (1) Q f is a good approximation
protocol of the inner product for any function f , and (2)R f,A inverts f , for any adversary
A that learns too much about the input of one of the parties in Q f . Since a random
sample from the all-function family is hard to invert (cf., [12,18]), the existence of such
a reduction yields thatQ f is differentially private with respect to poly-query adversaries,
when f is chosen at random from the set of all functions.5 Hence, Theorem 1.2 yields
the following result.

Corollary 1.3. (informal). There existsno fully black-box reduction from (α, γ )-differ-

entially private protocol computing with error o(
√

n
log(n)·eα ) the inner product of two n-bit

strings, to one-way functions.

We mention that, following an observation made by [22], Theorem 1.2 and Corollary
1.3 imply similar results for two-party differentially private protocols for the Hamming
distance functionality.6

The second example we give is for secure sampling. Let G = (GA, GB) be a distri-
bution over A × B, where GA and GB denote its marginal distributions over A and B,
respectively. A protocol π = (A,B) is an information-theoretically δ-secure implemen-
tation of G, if it is a δ-correct (no-oracle) implementation of G (i.e. the local outputs
of the parties induced by a random execution of π are δ-close to G) and is δ-private

4 Wemention that the result of [22] is stated for protocol with inputs, where Theorem 1.1 is only applicable
to no-input protocols. Indeed, a fair amount of work was needed to derive an impossibility result for no-input
protocols, from the work of [22].

5 Assume towards a contradiction the existence of a poly-query adversaryA for Q f , then the poly-query
R f,A would successfully invert a random f .

6 The inner product between two bit strings x, y can be expressed as IP(x, y) = w(x)+w(y)− Hd (x, y),
where the weight w(z) is number of 1-bits in z. Thus, a differentially private protocol for estimating the Ham-
ming distance Hd (x, y) can be turned into one for the inner product by having the parties send differentially
private approximations of the weights of their inputs.
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according to the simulation paradigm (against all-powerful distinguishers). Specifically,
there exists an algorithm SimA (a simulator for A) such that (x, y,SimA(x))(x,y)←G is
δ-close to the distribution of the parties outputs and A’s view in a random execution of
π . (Similarly, there exists such a simulator SimB for B). A protocol π is a (T, δ)-secure
random-oracle implementation of G, if it is a δ-correct random-model implementa-
tion of G, and it is δ-private according to the simulation paradigm, against T -query,
all-powerful distinguishers. Theorem 1.1 yields the following result.

Theorem 1.4. (informal). Let π be an �-query oracle-aided protocol that is an (O(�2/

δ2), δ)-secure implementation of a distribution G in the random-oracle model, then G
has an information-theoretically O(δ)-secure implementation.

We note that Theorem 1.4 does not seem to imply the aforementioned differential
privacy result, since the notion of differential privacy cannot be realized via the real/ideal
paradigm.
Limitations of Theorem 1.1. By definition, applications of Theorem 1.1 are restricted
to no-private input, semi-honest protocols (for obvious reasons though, inexistence of
semi-honest security yields inexistence of the full security). In addition, since the distri-
butions described in Theorem 1.1 are only O(ε) close to each other, the theorem seems
to only be useful for showing the impossibility of robust primitives: ones that remain
information-theoretically unachievable, even if one slightly changes the primitive cor-
rectness or security requirement (e.g. the parties agree on the same key with slightly
smaller probability). We are unaware, however, of any natural primitive for which the
above robustness condition does not hold.

1.2. Our Technique

When using a no-oracle protocol to emulate an oracle-aided protocol π , having oracle
access to a random member of the all-function family, the crucial issue is to find all
common information the parties share at a given point. The clear obstacle is the oracle
calls: the parties might share information without explicitly communicating it, say by
making the same oracle call.
Here comes into play the Dependency Finder of [18], and [1] (algorithm Eve, in their

terminology, and Independence Learner in the terminology of [7,21]). This oracle-aided
algorithm (Finder, hereafter) gets as input a communication transcript t of a random
execution of π , and an oracle access to f , the oracle used by the parties in this execution.
Algorithm Finder outputs a list of query/answer pairs to f that with high probability
contains all oracle queries that are common to both parties (and possibly also additional
ones). Moreover, with high probability, Finder is guaranteed not to make “too many”
oracle queries.
Equipped with Finder, we give the following definition for the mapping procedure

Map and the stateless (no-oracle) protocol π̃ = (˜A,˜B): on a communication transcript t ,

the oracle-aided algorithmMap f outputs
(

(

t1, I1 = Finder f (t1)
)

,
(

t1,2, I2 = Finder f

(t1,2)
)

. . . ,
(

t, Im = Finder f (t)
)

)

. Namely,Map invokes Finder on each prefix of the

transcript and outputs the result. The no-oracle protocol π̃ = (˜A,˜B) is defined as follows:



288 I. Haitner et al.

assume that˜A speaks in round (i + 1) and that the i’th message is ((t1, I1), . . . , (t1,...,i ,
Ii )). The stateless, no-oracle ˜A samples random values for f ∈ FAF and the random
coins of A conditioned on t1,...,i being the protocol’s transcript, and f being consistent
with Ii . It then lets ti+1 be the next message of A induced by the above choice of f and

random coins, and sends
(

t ′ = (t1,...,i , ti+1),Finder f (t ′)
)

back to˜B. In case this is the

last round of interaction,˜A locally outputs the (local) output of A induced by this choice
of f and random coins. In other words, ˜A selects a random view (including the oracle
itself) for A that is consistent with the information contained in the no-oracle protocol
augmented transcript (i.e. the transcript of the oracle protocol and the oracle calls) and
then acts as A would.
The fact that˜A perfectly emulates A (and that˜B perfectly emulates B) trivially holds

for information-theoretic reasons. For the same reason, it also holds that the transcript
generated by applying Map f to a random transcript of π f , where f ← FAF, gener-
ates exactly the same transcript as a random execution of π̃ does (actually, the above
facts hold for any reasonable definition of Finder,7 and for any function family). The
interesting part is arguing that the joint output of the no-oracle protocol has similar
distribution to that of the oracle-aided protocol. To see that this is not trivial, assume
that in the last round, both oracle parties make the same oracle query q and output the
query/answer pair (q, f (q)). If it happens that (q, ·) /∈ I, where I = Finder(t) is the
query/answer pairs made by the final call to Finder on transcript t , then the answer
that each of the no-oracle parties compute for the query q might be different. In this
case, the joint output of the no-oracle protocol does not look like the joint output of the
oracle protocol. Luckily, the above scenario is unlikely to happen due to the guarantee of
Finder; with high probability, I contains all common queries that the two parties made,
yielding that the joint output of the no-oracle protocol has similar distribution to that
of the oracle protocol. It turns out that the above example generalizes to any possible
protocol, yielding that the above mapping and no-oracle protocol are indeed the desired
ones.

1.3. Related Work

In their seminal work, [18] showed that there are no key-agreement protocols in the
random-oracle model and deduced that key-agreement protocols cannot be black-box
reduced to one-way functions. This result was later improved by [1], showing there are no
�-query key-agreement protocols in the random-oraclemodel, secure against adversaries
making O(�2) queries, thus matching the upper bound of [23]. [21] show that the all-
function family (and thus one-way functions) are useless for secure function evaluation
of deterministic, polynomial input-domain, two-party functionalities. In other words,
deterministic, bounded input-domain functionalities that can be securely computed in
the random-oracle model are the trivial ones—functionalities that can be securely com-
puted unconditionally. The comparison to the result stated here is that [21] handle with
polynomial input-domain functionalities, but only deterministic ones, where here we
handle input-less functionalities, but including randomized ones. Putting the above re-

7 It is only required Finder’s output contains all queries it made to the oracle.
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sults together gives a partial characterization of the power of the random-oracle model
for two-party computation secure in the presence of semi-honest adversaries. It is still
open, however, whether the random-oracle model is useful for securely computing ran-
domized functionalitieswith inputs or functionalities of super-polynomial input domain.
[7] give a random-oracle to no-oracle equivalence in a similar flavour to that of The-
orem 1.1. The result of [7] holds for general with-input protocols, but is restricted to
o(n/ log n)-round protocols, where n being the random function input length. In addi-
tion, the (implicit) mapping procedure given in [7] might make sub-exponential number
of oracle calls (even for a constant ε). Finally, a long line of research, starting with the
work of [6], gives a partial characterization of those functionalities that can be securely
computed information theoretically.

1.3.1. Additional Black-Box Separations

Following [18], the method of black-box separation was subsequently used in many
other works: [27] shows that there exists no black-box reduction from a k-round secret
key agreements to (k − 1)-round secret key agreements; [29] shows that there exists
no black-box reductions from collision-free hash functions to one-way permutations;
[19] shows that there exists no construction of one-way permutations based on one-way
functions. Other works using this paradigm contain [5,11–13,16,20,30], to name a few.

1.3.2. Differential Privacy

Distributed differential privacy was considered by [3], who studied the setting of mul-
tiparty differentially private computation (where an n-bit database is shared between
n parties). They gave a separation between information-theoretic and computational
differential privacy in the distributed setting. The notion of computational differential
privacy was considered in [24]. They presented several definitions of computational
differential privacy, studied the relationships between these definitions, and constructed
efficient two-party computational differentially private protocols for approximating the
Hamming distance between two vectors. Two-party differential privacy (where a 2n-bit
database is shared between two parties, each holding half of the bits) was considered
by [22]. They prove a lower bound on the accuracy of two-party differentially private
protocols, in the information-theoretic model, for computing the inner product between
two n-bit strings (and, consequently, for protocols for computing the Hamming dis-
tance), hence proving a separation between information-theoretic and computational
two-party differentially private computation. In this paper, we extend the lower bound
of [22] to the random-oracle model. For the client–server setting (where the server holds
the entire database and the client may issue queries to it), [15] considered the limitations
of computational differentially private computation in the centralized setting (where a
single entity holds the entire database). For this setting, they gave a black-box separation
of computational differentially private computation from a large range of cryptographic
primitives such as trapdoor permutations, collision-resistant hash functions and random
oracles.
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1.4. Open Problems

Asmentioned above, the main open problem is a full characterization of the power of the
random-oracle model with respect to semi-honest adversaries. Specifically, is it possible
to come up with a random-oracle to no-oracle mapping that works for any (also with
inputs) oracle-aided protocol?8 Note that it is still open whether the mapping described
in Theorem 1.1 can be used to rule out any non-trivial, input-less semi-honest random-
oracle protocol, or only those that are “far” enough from being trivial (see discussion at
the end of Sect. 1.1.1).

Finally, an interesting question is to come up with a random-oracle to no-oracle
mapping that is applicable to protocols secure against fail-stop adversaries. We failed
to use the mapping described in Theorem 1.1 for these settings. Loosely speaking, the
reason that our approach fails is that the party that is active at the i’th round might first
compute the i’th message and only then decide whether to abort or not based on this
message. Now, if this is the case, then the probability that a party aborts in the oracle-
aided protocol might be correlated with the view of the other party because of the queries
that Finder makes while computing the i’th message; hence, the joint distribution of
the oracle-aided protocol is no longer close to product distribution, unlike the plain
model protocol. A potential implication of such a result for fail-stop adversaries is that
optimally fair coin tossing is impossible to achieve in the random function model.9

Paper Organization

Formal definitions and notation used throughout the paper are given in Sect. 2. Our main
result is stated and proved in Sect. 3, and several applications of this result are given in
Sect. 4. Our new proof for the main technical lemma of [1] is given in “Appendix”.

2. Preliminaries

2.1. Notations

We use calligraphic letters to denote sets, uppercase for random variables and lowercase
for values. Let poly be the set of all polynomials, let ppt stand for probabilistic polyno-
mial time, and pptm stands for ppt algorithm (machine). A function μ : N → [0, 1] is
negligible, denotedμ(n) = neg(n), ifμ(n) = n−ω(1). Form ∈ N, let [m] = {1, . . . , m}.

8 For with input protocols, the approach described in Sect. 1.2 miserably fails. The reason is that a no-
oracle party might choose a function (oracle) f that is inconsistent with the other party (already chosen) input,
yielding a wrong emulation of the oracle-aided protocol. This issue does not arise in the case of no-input
protocols, since the distribution induced by the random choice of f done by the no-oracle party can be shown
to yield the right distribution for the parties (yet to be chosen) outputs.

9 Thework of [7]mentioned in Sect. 1.3 shows such an impossibility result for o(n/ log n)-round protocols,
where n being the random function input length. A recent result of [8] shows the impossibility of optimally
fair coin tossing in the random function model for protocols that are “function-oblivious” which means that
the output of the protocol does not depend on the specific instantiation of the random oracle, but only on the
random coins of the parties.
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For a finite set S, let χS stand for its characteristic function, and let x ← S to denote
that x is selected according to the uniform distribution over S. Similarly, for a random
variable X , let x ← X to denote that x is chosen according to X . The support of the distri-
bution D, denoted Supp(D), is defined as {u ∈ U : PrD[u] > 0}. The statistical distance
between two distributions P and Q over a finite set U , denoted SD(P, Q), is defined as
1
2

∑

u∈U
∣

∣PrP [u] − PrQ[u]∣∣, and is known to be equal to maxS⊆U
(

PrP [S] − PrQ[S]).
Two distributions P and Q are δ-close, if SD(P, Q) ≤ δ.

2.2. Interactive Protocols

A two-party protocol π = (A,B) (with no-oracle access) is a pair of probabilistic
interactive Turing machines. The communication between the Turing machines A and
B is carried out in rounds, where in each round one of the parties is active and the other
party is idle. In the j’th round of the protocol, the currently active partyP acts according
to its partial view, writing some value on its output tape, and then sending a message to
the other party (i.e. writing the message on the common tape).
The communication transcript (henceforth, the transcript) of a given execution of

the protocol π = (A,B) is the list of messages t exchanged between the parties in an
execution of the protocol, where t1,..., j denotes the first j messages in t . A view of
a party contains its input, its random tape and the messages exchanged by the parties
during the execution. Specifically, A’s view is a tuple vA = (iA, rA, t), where iA is A’s
input, rA are A’s random coins, and t is the transcript of the execution. Let (vA) j denote
the partial view of A in the first j rounds of the execution described by vA, namely
(vA) j = (iA, rA, t1,..., j ); the view vB of B is defined analogously. Let v = (vA, vB)

the joint view of A and B, and let v j = ((vA) j , (vB) j ). Given a distribution (or a
set) D on the joint views of A and B, let DA be the projection of D on A’s view (i.e.
PrDA [vA] = Pr(vA,·)←D[vA]), and defineDB analogously. Finally, we sometimes refer to
a well-structured tuple v as a “view” of π , even though v happens with zero probability.
When we wish to stress that we consider a view that has non-zero probability, we call it
a valid view.
A protocol π has m rounds, if for every possible random tapes for the parties, the

number of rounds is exactly m. Given a joint view v (containing the views of both
parties) of an execution of (A,B) and P ∈ {A,B}, let vP denote P’s part in v and let
trans(v) denote the communication transcript in v. For j ∈ [m], let outPj (v) = outPj (vP)

denote the output of party P at the end of the j’th round of v (i.e. the string written on
P’s output tape), where outPj (v) = outPj−1(v), in caseP is inactive in the j’th round of v.
In a stateless protocol, the parties hold no state and, in each round, act on the message

received in the previous roundwith freshly sampled randomcoins. Throughout this paper,
we almost solely considerno-private input protocols—theonly input of the parties is their
common input (the only exception to that is in Sect. 4.2, additional required notations
introduced therein). Given a no-input two-party protocol π , let 〈π〉 be the distribution
over the joint views of the parties in a random execution of π .

2.2.1. Oracle-Aided Protocols

An oracle-aided two-party protocol π = (A,B) is a pair of interactive Turing machines,
where each party has an additional tape called the oracle tape; the Turing machine can
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make a query to the oracle by writing a string q on its tape. It then receives a string ans
(denoting the answer for this query) on the oracle tape. Without loss of generality, all
oracle function families considered map binary strings to binary strings.
For an oracle-aided, no-input two-party protocol π = (A,B) and a function familyF ,

let 
F ,π be the set of all triplets (rA, rB, f ), where rA and rB are possible random coins
for A and B, and f ∈ F (henceforth, if its value is clear from the context, we sometimes
omit the superscript pair (F , π)). For f ∈ F , the distribution

〈

π f = (A f ,B f )
〉

is
defined analogously to 〈π〉 = 〈A,B〉, i.e. it is the distribution over the joint views
of parties in a random execution of π with access to f . Given some information inf
about some element of 
 (e.g. a set of query/answer pairs, or a view), let Pr
[inf] =
Prω←
[ω is consistent with inf], and let Pr
|inf ′ [inf] be this probability conditioned
that ω is consistent with inf ′ (set to zero in case Pr
[inf ′] = 0).
Given a (possibly partial) execution of π f , the views of the parties contain additional

lists of query/answer pairs made to the oracle throughout the execution of the protocol.
Specifically, A’s view is a tuple vA = (rA, t, fA), where rA are A’s coins, t is the tran-
script of the execution, and fA are the oracle answers to A’s queries. By convention, the
active party in round j first makes all its queries to the oracle for this round and then
writes a value to its output tape and send a message to the other party. We denote by
( fP) j the oracle answers to the queries that party P makes during the first j rounds.
As above, let (vA) j denote the partial view of A in the first j rounds of the execu-
tion described by vA, namely (vA) j = (rA, t1,..., j , ( fA) j ). The view vB is analogously
defined.
For ω ∈ 
, let view(ω) be the full view of the parties determined by ω. We say that

a “view” v is consistent with (F , π), if Pr
F ,π [v] > 0.
We assume without loss of generality that the party acting in the last round outputs a

final message. Therefore, a partial transcript t of the protocol uniquely determines the
length of the partial execution that generated it (i.e. the number of rounds of π played),
which is denoted by |t |. Consider the following distributions.

Definition 2.1. (
(t, I) and VIEW(t, I)). Let F be a function family and let π be
an oracle-aided protocol. Given a partial transcript t and a set of query/answer pairs I,
let
(t, I) = 
F ,π (t, I) be the set of all tuples (rA, rB, f ) ∈ 
 = 
F ,π , in which f is
consistent with I, and t is a prefix of the transcript induced by

〈

A f (rA),B f (rB)
〉

. Given
a set P ⊆ 
, let 
P (t, I) = 
(t, I) ∩ P .
Define the random variable VIEWF ,π (t, I) as the value of view(ω)|t | for ω ←


(t, I), and define VIEWF ,π
P (t, I) analogously.

Since the above definition considers the uniform distribution over 
, for any partial
transcript t , set of query/answer pairs I, set P ⊆ 
, and information inf about some
element of 
, it holds that Pr
P (t,I)[inf] = Pr
|t,I,P [inf].

3. Mapping Oracle-Aided Protocols to No-Oracle Protocols

In this section, we state and prove our main result, a mapping from protocols in the
random-oracle model to (inefficient) no-oracle protocols.
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3.1. Dependent Views

Fix an m-round oracle-aided protocol π and a function family F . We would like to
restrict VIEW(t, I) to those views for which I contains all joint information of the
parties about f . We start by formally defining what it means for I to contain all joint
information.

Definition 3.1. Let vA be a jA-round view for A and vB be a jB-round view for B. For
i ∈ [ jA], let IAi be the set of query/answer pairs that A makes in the i’th round of vA
(where IAi = ∅, if A is idle in round i) and define IBi analogously. Given a set I of
query/answer pairs, let

1. αI
vA

= ∏

i∈[ jA] Pr
 | I,IA1...,IA i−1

[IAi ] and

2. αI
vA|vB = ∏

i∈[ jA] Pr
 | I,IA1,IB1,...,IA i−1,IBi−1

[IAi ],

and define αI
vB|vA and αI

vB
analogously.

Intuitively,αI
vA

is the probability ofA’s viewof f givenI, andαI
vA|vB is this probability

when conditioning also on B’s view. We will focus on those views with αI
vA

= αI
vA|vB

and αI
vB

= αI
vB|vA .

Definition 3.2. (Dependent views) Let v = (vA, vB) be a pair of (possibly partial) valid
views. The views vA and vB are dependent with respect to a set of query/answer pairs
I and a function family F , if αI

vA
�= αI

vA|vB or αI
vB

�= αI
vB|vA . Otherwise, vA and vB are

independent with respect to I and F .

The following observation (generalizing a similar observation made in [1]) plays a
crucial role in the proof of our main result (stated in Sect. 3.3). It shows how to express
the probability of a given view v, using αI

vA|vB and αI
vB|vA . In particular, it implies that

for an independent pair of views v = (vB, vA) and any set P ⊆ 
, the probability that
VIEWP (t, I) = v can be written as a product of a term determined solely by vA and
(t, I,P), and a term determined solely by vB and (t, I,P).

Proposition 3.3. Let t be a transcript, let I be a list of query/answer pairs, and letP ⊆

. Then, for every view v = (rA, rB, ·) ∈ Supp

(VIEW (

t, I)) with Pr
[v, I,P] =
Pr
[v, I], it holds that

Pr[VIEWP (t, I) = v] : = Pr

P (t,I)

[v] = Pr
[rA, rB] · αI
vA|vB · αI

vB|vA
Pr
|I [t,P] .

Proof. Note that

Pr

P (t,I)

[v] = Pr
[v, I,P]
Pr
[t, I,P] = Pr
[v, I]

Pr
[t, I,P] = Pr
[rA, rB, I] · Pr
|rA,rB,I [v]
Pr
[t, I,P] ,
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where the second equality holds by the assumption that Pr
[v,P, I] = Pr
[v, I]. Since
the choice of random coins is independent of the choice of f , we can write

Pr

P (t,I)

[v] = Pr
[rA, rB] · Pr
[I] · Pr
 | rA,rB,I [v]
Pr
[I] · Pr
 | I [t,P] = Pr
[rA, rB] · Pr
 | rA,rB,I [v]

Pr
 | I [t,P]
(1)

Note that Pr
|rA,rB,I [v] = Pr
|rA,rB,I [IA, IB, t], where IA is the set of query/answer
pairs that A sees according to vA (IB is defined analogously). The reason for this is that
given (rA, rB, I), the values of (IA, IB, t) and v are implied by each other. It follows
that

Pr

P(t,I)

[v] = Pr
[rA, rB] · Pr
|rA,rB,I [IA, IB, t]
Pr
 | I [t,P] (2)

We next analyse the term Pr
|rA,rB,I [IA, IB, t]. Let j be the number of rounds in v,
and for i ∈ [ j] recall that IAi is the set of query/answer pairs that A sees in the i’th
round of the execution according to vA (IBi is defined analogously). Since at any point
through the execution of π f the next query of the acting party is determined by its partial
view, it follows that

Pr

|rA,rB,I

[IA, IB, t] =
∏

i∈[ j]
Pr


|rA,rB,I,IA1,IB1,...,IA i−1,IBi−1,t1,...,ti−1

[

IAi , IBi , ti
]

=
∏

i∈[ j]
Pr


|rA,rB,I,IA1,IB1,...,IA i−1,IBi−1,t1,...,ti−1

[

IAi , IBi
]

=
∏

i∈[ j]
Pr


|I,IA1,IB1,...,IA i−1,IBi−1

[

IAi , IBi
]

=
⎛

⎝

∏

i∈[ j]
Pr


|I,IA1,IB1,...,IA i−1,IBi−1
[IAi ]

⎞

⎠

·
⎛

⎝

∏

i∈[ j]
Pr


|I,IA1,IB1,...,IA i−1,IBi−1
[IBi ]

⎞

⎠

= αI
vA|vB · αI

vB|vA .

The second equation holds since the i’th message is (deterministically) determined
by the randomness of the parties, the oracle answers and the transcript till now. The
third one holds since the distribution on the oracle answers at each point during the
execution is a function of I and the previous queries made by the parties (recall that
Pr
|inf ′

[IAi , IBi ] = Prω←
|inf ′ [ω is consistent with IAi , IBi ] and that the first i − 1
messages are determined by the randomness of the parties and the oracle answers to the
queries made till round i −1). Finally, the fourth one holds since only one party is active
in each round (hence, for every i , either IAi or IBi is empty). �



Limits on the Usefulness of Random Oracles 295

3.2. Intersecting Views

A special case of dependent views is when the two paries share a common oracle query
not in I.

Definition 3.4. (Intersecting views) A (possibly partial) pair of views v = (vA, vB) is
intersecting with respect to a set of query/answer pairs I, denoted IntersectI(v) = 1,
if vA and vB share a common query q not in I (i.e. (q, ·) /∈ I).

For a typical function family, a view with an intersection is dependent (with respect
to the same list of query/answer pairs). In this paper, we limit our attention to “simple”
function families for which also the other direction holds, namely dependency implies
intersection.

Definition 3.5. (Simple function families) A function familyF is simple, if it is finite,
and DependentFI (v) �⇒ IntersectI(v) for any oracle-aided protocol π , list I of
query/answer pairs that is consistent with some f ∈ F and a (possibly partial) pair of
views v consistent with I.

It is immediate that the all-function family i.e. the set of “random functions” (see
formal definition in Sect. 4.4) is simple.

3.3. Oracle-Aided to No-Oracle Protocol Mapping

The following theorem shows that an execution of an oracle-aided protocol with oracle
access to a random f ∈ F , where F is a simple function family, can be mapped to an
execution of a related protocolwith no-oracle access. In Sect. 4,we use this result to prove
limitations on the power of oracle-aided protocols in achieving specific cryptographic
tasks.

Definition 3.6. (Oracle-aided to no-oracle mapping) A pair of a function familyF and
a no-input, m-round oracle-aided protocol π = (A,B), has a (T, ε)-mapping, if there
exists a deterministic, oracle-aided T -query algorithm Map and a stateless, m-round,
no-input (and no-oracle) protocol (˜A,˜B), such that the following holds.10

1. SD (DF ,DP ) ≤ ε for every j ∈ [m], where

DF =
(

outAj (v), outBj (v),Map f (trans(v)1,..., j )
)

f ←F ,v←〈A f ,B f 〉 and,

DP =
(

out
˜A
j (ṽ), out

˜B
j (ṽ), trans(ṽ)1,..., j

)

ṽ←〈

˜A,˜B
〉
.

Furthermore, DP [1, 3] ≡ DF [1, 3] and DP [2, 3] ≡ DF [2, 3].11
10 Recall that 〈X, Y 〉 stands for a random execution of the protocol (X, Y ) that trans(v) denotes the

transcript part in v and that outXj (v) denotes the output of party X in the j’th round of v.
11 Ie the projections ofDP andDF to their transcript part and the output of one of the parties are identically

distributed.
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2. For every f ∈ F , anm-round transcript t and j ∈ [m], it holds thatMap f (t1,..., j ) =
Map f (t)1,..., j . Furthermore, the set of oracle calls made inMap f (t1,..., j ) is a sub-
set of those made inMap f (t).

Theorem 3.7. Let F be a simple function family and let π = (A,B) be an �-query,
oracle-aided no-input protocol, then (F , π) has a (210 · �2/ε2, ε)-mapping for any
0 < ε ≤ 1.

Remark 3.8. (Round complexity of the no-oracle protocol) The proof of Theorem 3.7
can be easily modified to yield a one-message no-oracle protocol (in this case, DF and
DP should be modified to reflect the transcript and outputs at the end of the executions).
The roles of ˜A and ˜B in the resulting protocol, however, cannot reflect as closely the
roles of A and B, as done in the many-round, no-oracle protocol stated above.

The proof of Theorem 3.7 immediately follows by the next two lemmata.

Definition 3.9. (DependencyFinder) Let F be a function family and let π = (A,B)

be an m-round oracle-aided protocol. A deterministic oracle-aided algorithm Finder is
a (T, ε)-DependencyFinder for (F , π), if the following holds for any j ∈ [m].

Let CF = CF(F , π,Finder) be the following random process:

1. Choose (rA, rB, f ) ← 
F ,π and let t be the j-round transcript of π induced by
(rA, rB, f ).

2. For i = 1 to j : set Ii = Ii−1 ∪ Finder f (t1,...,i , Ii−1) (letting I0 = ∅), where
Finder f (x) is the set of queries/answers made by Finder f (x) to f .

3. Output
(

t, I j
)

.

Then,

1. Ed←CF

[

SD
(

VIEWF ,π (d), (VIEWF ,π (d)A,VIEWF ,π (d)B)
)]

≤ ε, and

2. Pr[# of f − calls made inCF > T ] ≤ ε.

That is, conditioned on a random transcript of πF and the oracle queries made by
a (T, δ)-DependencyFinder, the views of the parties are close to being in a product
distribution.

Lemma 3.10. Let F be a simple function family and let π = (A,B) be an �-query
oracle-aided protocol, then (F , π) has a (64/δ2, �δ)-DependencyFinder for any 0 <

δ ≤ 1
4� .

Lemma 3.11. Any pair of function family and protocol that has a (T, ε)-
DependencyFinder has a (T, 2ε)-mapping.

The proof of Lemma 3.11 is given in Sect. 3.3.2, where the proof of Lemma 3.10 is
given in “Appendix”.12

12 As mentioned in the introduction, the proof of Lemma 3.10 could have been derived by combining
several statements appearing in [1]. A somewhat weaker variant of the lemma can be directly proved using
the followup result of [7, Lemma 5] or of [21, Lemma A.1].
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3.3.1. Proving Theorem 3.7

Proof of Theorem 3.7. Immediately follows from Lemmas 3.10 and 3.11, taking δ =
ε/4�. �

3.3.2. Proving Lemma 3.11

Proof. Let (F , π) be a pair of a function family and an m-round oracle-aided proto-
col that have a (T, ε)-DependencyFinder algorithm Finder. We start by defining the
mapping algorithm and then define the no-oracle protocol. �

Algorithm 3.12. (Map).

Oracle: f ∈ F .
Input: A j-round transcript t of π .

Operation:

1. For i = 1 to j: set Ii = Ii−1 ∪ Finder f (t1,...,i , Ii−1) (letting I0 = ∅).
If in some round i the overall number of f calls (made by Finder) is T , halt the above
loop, and for all i ≤ i ′ ≤ j set Ii ′ to be the set of T query/answer pairs obtained so
far.

2. Output
(

t1, I1
)

,
(

t1,2, I2
)

, . . . ,
(

t, I j
)

.

The no-oracle protocol. Our stateless, no-oracle protocol π̃ = (˜A,˜B) emulates the
oracle-aided protocolπ by keeping the “important” oracle queries as part of the transcript
and selecting the rest of the oracle at random (independently in each round). In particular,
˜A is active in π̃ in the same rounds that A is in π (same for˜B and B). The definition of
˜A is given below (˜B is analogously defined).

Algorithm 3.13. (˜A).

Input: A pair (t, I), where t is a transcript of length j and I is a set of query/answer
pairs.

Operation:

1. Sample (rA, rB, f ) ← 
(t, I), and let out j+1 and t j+1 denote A’s output and
message, respectively, in the ( j + 1) round of

〈

A f (rA),B f (rB)
〉

.
2. Output out j+1.
3. Compute the value of I j+1 output by Map f (t j+1) for t j+1 = (t, t j+1).
4. Send (t j+1, I j+1) to˜B.

We prove that algorithmMap (Algorithm 3.12) and protocol π̃ = (˜A,˜B) (Algorithm
3.13) form a (T, 2ε)-mapping for (F , π). By construction, algorithmMap is determin-
istic (since Finder is deterministic), makes at most T queries and fulfils the second
item of Definition 3.6. Towards showing that (Map, π̃) fulfils also the first property of
Definition 3.6 with respect to the stated parameter, we prove the following claim:
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Claim 3.14. for every j ∈ [m]:
(

Map f (trans(v)1,..., j )
)

f ←F ,v←〈A f ,B f 〉 ≡ (trans

(ṽ)1,..., j
)

ṽ←〈

˜A,˜B
〉.

Proof. The claim trivially holds for j = 0,where the proof for a larger value of j is done
by induction. By the induction hypothesis and the fact thatMap f (trans(v)1,..., j )1,..., j−1

= Map f (trans(v)1,..., j−1) (since Map fulfils the second item of Definition 3.6), it
suffices to prove that the distributions in the claim are the same, conditioned that their
( j − 1)-“round” prefix is fixed to some value

(

. . . ,
(

t1,..., j−1, I j−1
))

. Since I j−1 is the
set of queries/answersmade byMap f (trans(v)1,..., j−1) to f , the value of the right-hand-
side distribution under this conditioning isMap f (t ′), where f and t ′ are the function and
the j-round transcript of π , respectively, induced by ω ← 


(

t1,..., j−1, I j−1
)

. It is easy
to verify that, under this conditioning, the latter process also describes the left-hand-side
distribution. �

We next note that Claim 3.14 yields that DP [1, 3] ≡ DF [1, 3] (and similarly that
DP [2, 3] ≡ DF [2, 3]); indeed, conditioned on DP [3] = DF [3] = (

. . . ,
(

t1,..., j , I j
))

,
the values of both DP [1] and DF [1] (i.e. A’s output) are obtained by the following
random process: sample ω ← 


(

t1,..., j , I j
)

and output A’s output in the j’th round
induced by ω.
Finally, the definition of π̃ = (˜A,˜B) yields that

DP : =
(

out
˜A
j (ṽ), out

˜B
j (ṽ), trans(ṽ)1,..., j

)

ṽ←〈

˜A,˜B
〉

≡
(

outAj (vA), outBj (vB), t̃1,..., j

)

t̃←trans(
〈

˜A,˜B
〉

),vA←VIEW(t̃ j )A,vB←VIEW(t̃ j )A
(3)

where we recall that t̃ j consists of a pair (t j , I j ). It is easy to verify that

DF : =
(

outAj (v), outBj (v),Map f (trans(v)1,..., j )
)

f ←F ,v←〈A f ,B f 〉
≡
(

outAj (vA), outBj (vB), t̃1,..., j

)

f ←F ,t←trans(〈A f ,B f 〉),t̃←Map f (t),v←VIEW(t̃ j )

and therefore, Claim 3.14 yields that

DF ≡
(

outAj (vA), outBj (vB), t̃1,..., j

)

t̃←trans(
〈

˜A,˜B
〉

),v←VIEW(t̃ j )
(4)

We conclude the proof using the fact that Finder is a (T, ε)-DependencyFinder for
(F , π). The issue to note here is that ProcessCF (described in Definition 3.9) may make
arbitrary number of oracle queries, while Map is restricted to at most T queries. Let S
be the set of pairs d = (

t1,..., j , I j
)

in the support of the ProcessCFwith
∣

∣I j
∣

∣ ≤ T . Note
that the probability thatCF outputs d ∈ S is exactly the probability of the transcript part
being of the form (. . . , d) according to distribution DF , where by Claim 3.14 this is
also the probability of the this event according to DP . We bound the statistical distance
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betweenDF andDP , by separately bounding the part contributed by transcripts (. . . , d)

with d ∈ S and by transcripts (. . . , d) with d /∈ S.
The fact that Finder is a (T, ε)-DependencyFinder for (F , π) yields a bound of ε

on the contribution of elements whose transcripts are inside S to the statistical distance
betweenDF andDP . It also bounds by ε the probability thatCF outputs elements whose
transcripts are outsideS, yielding the same bound on the contribution of such elements to
the statistical distance betweenDF andDP . We conclude that SD (DF ,DP ) ≤ ε+ε =
2ε.

4. Applications

In this section, we use the oracle-aided to no-oracle protocol mapping from Sect. 3, to
derive the impossibility of realizing three cryptographic tasks relative to simple function
families. In Sect. 4.1, we re-establish the result of [18], showing that key-agreement
protocols cannot be realized relative to simple function families. In Sect. 4.2, we extend
the lower bound of [22] on the accuracy of two-party differentially private no-oracle pro-
tocols, to show it also holds for relative to simple function families. In Sect. 4.3, we show
that a distribution that cannot be securely sampled in the information-theoretic model,
cannot be securely sampled relative to simple function families. Finally, in Sect. 4.4,
we use that the all-function family is simple, to prove the impossibility of reducing the
above first two primitives to the hardness of one-way functions in a black-box manner.
We emphasize that all adversaries considered in Sects. 4.1 to 4.3 (and most of those

considered in Sect. 4.4) are computationally unbounded, but typically can only make
bounded number of oracle queries.
Throughout this section, we sometimes only define the security and correctness of

the primitives in consideration for oracle-aided implementations. Their no-oracle coun-
terparts are derived by considering these definitions with respect to the trivial function
family (i.e. the singleton family, whose only member returns ⊥ on every query).

4.1. Key-Agreement Protocols

In a key-agreement protocol, two parties wish to agree on a common secret in a secure
manner—an adversary (observer) seeing the communication transcript cannot find the
secret. Below, we prove that non-trivial key-agreement cannot be achieved relative to
simple function families. We start by formally defining the notion of key agreement
and then recall the known fact that in the information-theoretic model, an adversary
can reveal any secret agreement between two parties in the strongest possible sense (i.e.
with the same probability that the parties themselves agree). Combining this fact with the
mapping from oracle-aided to no-oracle protocols, described in Sect. 3, yields a similar
result for oracle-aided protocols relative to simple function families.
We remark that the results presented in this section yield very little conceptual added

value to what was already shown by [1,18]. We do, however, present them here to
demonstrate how they are easily derived from our main result (Theorem 3.7) and as a
warm-up before moving on to the other applications of our main result, described in
Sects. 4.2 and 4.3.
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4.1.1. Standard Definitions and Known Facts

Let π be a two-party protocol and let v be the parties’ joint view in an interaction of π

(i.e. v ∈ Supp
(〈

π f
〉)

). Recall (see Sect. 2.2) that trans(v) denotes the communication
transcript in v, and outPi (v) denotes the output of the party P at the i’th round. In the
following, let outP(v) = outPm(v), where m is the last round in v.

Definition 4.1. (Key-agreement protocol) Let 0 ≤ γ , α ≤ 1 and k ∈ N. A two-party,
oracle-aided protocol π = (A,B) is a (k, α, γ )-key-agreement protocol relative to a
function family F , if the following hold:

Consistency: π is (1 − α)-consistent relative to F . Namely, for every f ∈ F ,

Pr
v←〈π f 〉

[

outA (v) = outB (v)
]

≥ 1 − α (5)

Security: For every P ∈ {A,B} and any k-query adversary Eve,

Pr
f ←F ,v←〈π f 〉

[

Eve f (trans (v)) = outP (v)
]

≤ γ (6)

A protocol π is an (α, γ )-key-agreement protocol, if it is a (·, α, γ )-key-agreement
protocol relative to the trivial function family.13

In the information-theoretic model, all correlation between the parties is implied by
the transcript. Hence, an adversary that on a given transcript t samples a random view
for A that is consistent with t and outputs whatever A would upon this view agrees with
B with the same probability as does A. This simple argument yields the following fact.

Fact 4.2. Let 0 ≤ α ≤ 1 and let π = (A,B) be a no-oracle, two-party, no-input
protocol. Assume that the probability that in a random execution of π both parties
output the same value is 1 − α. Then, there exists a adversary that given the transcript
of a random execution of π , outputs the same value as B does with probability 1 − α.

An immediate implication of Fact 4.2 is that there does not exist a no-oracle, two-
party, (α, γ )-key-agreement protocol for any 0 ≤ γ < 1 − α. We next use our main
result from Sect. 3 to prove a similar result for oracle-aided protocols.

4.1.2. Limits on Oracle-Aided Key-Agreement Protocols

In the language of the above definition, our main result is stated as follows.

Theorem 4.3. LetF be a function family and let π be an oracle-aided protocol. Assume
that the pair (F , π) has a (T, ε)-mapping, and then, π is not a (T, α, γ )-key-agreement
relative to F for any 0 ≤ γ < 1 − (α + ε).

13 We remark that our impossibility result (as well the results of [1,18]) would also hold with respect to a
weaker definition, requiring consistency to hold for a random f , rather than for every f ∈ F .
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Proof. Assume to the contrary that π is a (T, α, γ )-key-agreement relative to F for
some 0 ≤ γ < 1 − (α + ε). Let π̃ = (˜A,˜B) and Map be π̃ = (˜A,˜B) and Map be a
(T, δ)-mapping for (F , π). It follows (see Definition 3.6:1) that

SD
(

(out
˜A (v) , out

˜B (v))v←〈π̃〉, (outA (v) , outB (v)) f ←F ,v←〈π f 〉
)

≤ ε (7)

Hence, the (1 − α)-consistency of π yields that

τ : = Pr
v←〈π̃〉

[

out
˜A (v) = out

˜B (v)
]

≥ 1 − (α + ε) (8)

Fact 4.2 yields an adversary˜Eve that given the transcript of a random execution of π̃ ,
outputs the same value as does B with probability τ . Let Eve be an adversary for π that

upon a transcript t (of an execution of π with access to f ) applies˜Eve toMap f (t
)

and

outputs whatever˜Eve does. Note that Eve makes at most T oracle calls. It follows that

Pr
f ←F ,v←〈π f 〉

[

Eve f (trans (v))=outB (v)
]

= Pr
f ←F ,v←〈π f 〉

[

˜Eve
(

Map f (trans (v))
)

= outB (v)
]

= Pr
ṽ←〈π̃〉

[

˜Eve (trans (ṽ)) = out
˜B (ṽ)

]

= τ ≥ 1 − (α + ε) , (9)

where the second equality follows since (Map f (trans (v)) , outB (v)) is identically dis-
tributed as (trans (ṽ) , out˜B (ṽ)), where f , v and ṽ are sampled as in Eq. (9) (follows
from the second property of the protocol/mapping pair, see Definition 3.6). �

Combining Theorems 3.7 and 4.3 yields the following result.

Theorem 4.4. LetF be a simple function family. For parameters k, � ∈ N andα, γ ∈ R

with k ≥ 210 ·
(

�
1−α−γ

)2
and 1 − α > γ ≥ 0, there exists no �-query oracle-aided

protocol that is (k, α, γ )-key-agreement relative to F .

Proof. LetF be a simple function family and let π be an �-query oracle-aided protocol.
For ε = 1−α−γ

2 , Theorem 3.7 yields that (F , π) has a (T, ε)-mapping for T = 210 ·
(

�
ε

)2 = 210 ·
(

�
1−α−γ

)2
. Since 0 ≤ γ < 1 − (α + ε) and k ≥ T , Theorem 4.3 yields

that π is not a (k, α, γ )-key-agreement protocol relative to F . �

4.2. Differentially Private Two-Party Computation

In this section, we apply our main result to extend the lower bound of [22] to oracle-
aided protocols equipped with simple function families. Specifically, we show that when
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given access to a random member of a simple function family (e.g. the all-function
family), any two-party, differentially private, oracle-aided protocol computing the inner
product of two s-bit strings, exhibits error magnitude of roughly 


(√
s/ log s

)

(see
Sect. 4.2.2 for the formal statement). This fact is later used in Sect. 4.4.3 to show that
differentially private accurate computation of the inner product cannot be reduced to
one-way functions in a black-box way.
Unlike the case of key-agreement protocols discussed in Sect. 4.1, here we consider

a setting where the parties do hold private inputs. Since our main result (Theorem 3.7)
only handles no-input protocols, in order to apply it to differentially private protocols,
we need first to reduce the question in hand to such no-input protocols. Indeed, much of
the following text deals with this transformation.
In proving the results of this section, we begin (Sect. 4.2.3) by using Theorem 3.7

together with an (“information theoretic”) result by [22], to show that a “sampled-input”
protocol cannot be both differentially private and a good approximation for the inner
product of two strings. In a sampled-input protocol, the no-input parties choose the
inputs to the functionality (in our case, the inner-product function) by themselves. We
then (Sect. 4.2.4) derive the same limitation on protocols with inputs, but where the
correctness and privacy are measured with respect to uniformly chosen inputs. Finally,
Sect. 4.2.5, we use the latter result to show the same limitation for fixed inputs, hence
proving our main result. Before starting with the aforementioned plan, we first recall the
formal definition of differential privacy, cite the result of [22] (Sect. 4.2.1) and formally
state our main results (Sect. 4.2.2).

4.2.1. Standard Definitions and Known Facts

We start by recalling the standard definition of differential privacy for mechanisms
(in a centralized model, where the mechanism has access to all the data). Let � be
some alphabet. For strings x, x ′ ∈ �s , let Hd

(

x, x ′) = ∣

∣

{

i ∈ [s] : xi �= x ′
i

}∣

∣ denote the
Hamming distance between x and x ′. A randomized mechanism operating on s-long
strings (databases) is a randomized algorithm that given input in �s , outputs a value in
the range R.

Definition 4.5. ((α, γ )-differential privacy [9] (in the centralized model)). A random-
ized mechanismM over �s is (α, γ )-differentially private, if for every distinguisher D
and every x, x ′ ∈ �s with Hd

(

x, x ′) = 1, it holds that

Pr[D (M (x)) = 1] ≤ eα · Pr[D (M (

x ′)) = 1] + γ.

If M satisfies (α, γ )-differential privacy with γ = 0, then M is just α-differentially
private.14

Differential privacy extends naturally to the setting of two-party (semi-honest) pro-
tocols by requiring that the view of each party satisfies differential privacy with respect
to the other party’s private input. In this work, we use a relaxed definition (and hence

14 Throughout this section, we assume α, γ ≥ 0.
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potentially easier to achieve) that only requires that the communication transcript (rather
than the whole view of a party) is differentially private with respect to each party’s in-
put. Such a requirement is easily implied by the above requirement on views, since any
distinguisher that breaks the privacy seeing only the transcript can break the privacy
seeing the whole view of a party (by simply disregarding everything in the view but the
transcript part).We next define differential privacy for protocols using similar definitions
to those given in [3,22,24]. Indeed, our definitions are close in spirit to the definition of
IND-CDP from [24] (which they showed to be implied by all other definitions that they
considered for computational differential privacy).
In the following, when we say protocol, we mean a two-party protocol. We focus

on protocols where each party holds an s-bit string as its private input and call such
protocols s-bit input protocols. We adapt the notations from Sect. 2.2 (defined for no-
input protocols) to protocols with inputs, with the understanding that the view of a party
also includes its s-bit private input. Specifically, given an oracle-aided protocol π =
(A,B), a function f , and x, y ∈ {0, 1}∗, we define 〈π f (x, y)

〉

to be
〈

(A f (x) ,B f (y))
〉

(i.e. the distribution over the joint views of parties in a random execution of π with
access to f , where the private input of A is x and the private input of B is y). Recall that
for v ∈ Supp

(〈

π f (x, y)
〉)

, we let trans(v) denote the communication transcript in v,
and we let outPi (v) denote the output of the party P at the i’th round. In the following,
we let outP(v) denote the output of the party P at the last round of v.

Definition 4.6. (Differential privacy for oracle-aided protocols) Let F be a function
family and let π = (A,B) be an s-bit input, oracle-aided protocol. The protocol π is
(k, α, γ )-differentially private with respect to F and A, if for every k-query, oracle-
aided distinguisher D and every x, x ′, y ∈ {0, 1}s with Hd

(

x, x ′) = 1, it holds that

Pr
f ←F ,v←〈π f (x,y)〉

[

D f (trans (v)) = 1
]

≤ eα · Pr
f ←F ,v←〈π f (x ′,y)〉

[

D f (trans (v)) = 1
]

+ γ.

Being (k, α, γ )-differentially private relative to F and B is analogously defined. If π

is (k, α, γ )-differentially private relative to F and both parties, then it is (k, α, γ )-
differentially private relative to F .

Finally, π is (α, γ )-differentially private, if it is (·, α, γ )-differentially private relative
to the trivial function family.

Note that for no-oracle protocols, the above definition of (α, γ )-differentially private
matches the standard (no-oracle) definition (slightly relaxed, as we only require the
transcript to preserve the privacy of the parties). Our impossibility results, given below,
apply to the privacy parameter α being smaller than some constant.
Since differentially private mechanisms cannot be deterministic, for any deterministic

(non-constant) function g of the input, one can only hope for the output of themechanism
being a good approximation for g. We next define a notion of accuracy for differentially
private protocols.



304 I. Haitner et al.

Definition 4.7. (Good approximations)Let g : {0, 1}s×{0, 1}s �→ Rbe adeterministic
function and let π = (A,B) be an s-bit input, oracle-aided protocol. The protocol π is
a (β, d)-approximation for g relative to a function family F , if for every f ∈ F , for
every x, y ∈ {0, 1}s and P ∈ {A,B}, it holds that

Pr
v←〈π f (x,y)〉

[∣

∣

∣outP (v) − g (x, y)

∣

∣

∣ > d
]

< β. (10)

Namely, we require that the output of both parties is within distance d from g (x, y)

with probability at least β.
For two s-bit strings x and y, let IP(x, y) denote the inner product of x and y: that

is IP(x, y) = ∑

i∈[s] xi · yi . [22] Showed that for a small enough γ , no two-party, no-
oracle, (α, γ )-differentially private protocol for computing the inner product of two s-bit
databases can be a (0.01, d)-approximation for d ∈ o(

√
s/ log s). This follows from the

following general theorem.

Theorem 4.8. ([22, Theorem A.5]). Let π = (A,B) be an s-bit (no-oracle) protocol,
let XIn and YIn be the inputs of A and B, respectively, and let Xout and Yout be the
outputs of A and B, respectively, induced by a random execution of π . Assume that
both XIn and YIn are independently and uniformly chosen from {0, 1}s and that π is
(α, γ )-differentially private, then

Pr

[

|Yout − IP(XIn, YIn)| < � : =


( √
s

log s
· τ

eα

)]

≤ τ

for every 1 ≥ τ ≥ 48sγ . The same holds for Xout.

In the next section,we use similar arguments to the ones used by [22], to prove a variant
of Theorem 4.8 for (no-oracle) no-input protocols (which we call here sampled-input
protocols). For that we recall a few definitions and results from [22].

Lemma 4.9. ([22, Lemma A.3]). Let M be an (α, γ )-differentially private mechanism
over {0, 1}s . Then, for every ν > 0 and every x, x ′ ∈ {0, 1}s with Hd

(

x, x ′) = 1, it
holds that

Pr
m←M(x)

[

Pr[M (x) = m]
Pr[M (x ′) = m] /∈

[

e−(ν+α), e(ν+α)
]

]

< γ · 1 + e−(ν+α)

1 − e−ν
. (11)

Unpredictability of Bit Sources. The model of random sources introduced by [28] is
one where each bit is somewhat unpredictable given the previous ones. An unpredictable
s-bit source is a random variable over {0, 1}s with the property that given any prefix of
it, it is hard to guess the value of the next bit.

Definition 4.10. ((η, γ )-unpredictable bit source). For η ∈ [0, 1], a random variable
X = (X1, . . . , Xs) taking values in {0, 1}s is an (η, γ )-unpredictable bit source, if with



Limits on the Usefulness of Random Oracles 305

probability at least 1 − γ over i ← [s] and over (x1, . . . , xi−1) ← (X1, . . . , Xi−1), it
holds that

η ≤ Pr
[

Xi = 0 | X1 = x1, . . . Xi−1 = xi−1
]

Pr
[

Xi = 1 | X1 = x1, . . . Xi−1 = xi−1
] ≤ 1/η.

A variable X is η-unpredictable, if it is (η, 0)-unpredictable.
A random variable X = (X1, . . . , Xs) taking values in {0, 1}s is an (η, γ )-strongly

unpredictable bit source, if with probability at least 1 − γ over i ← [s] and over
(x1, . . . , xi−1, xi+1, . . . , xs) ← (X1, . . . , Xi−1, Xi+1, . . . , Xs), it holds that

η ≤ Pr
[

Xi = 0 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs
]

Pr
[

Xi = 1 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs
] ≤ 1/η.

Note that if X is η-unpredictable for η = 1, then it is uniform. More generally, the
larger the η is, the more the “randomness” is the source guaranteed to have. Specifically,
an unpredictable source has high min-entropy.

Fact 4.11. Let X = (X1, . . . , Xs) be an η-unpredictable source, then themin-entropy
of X, defined as H∞(X) = minx∈Supp(X) log

1
Pr[X=x] is at least βs for β = log (1 + η).

Proof. Fix (x1, . . . , xs) ∈ Supp(X), i ∈ [s] and b ∈ {0, 1}. Definition 4.10 yields
that15

Pr
[

Xi =b | X1= x1, . . . Xi−1= xi−1
] ≥ η · Pr [Xi =1−b | X1= x1, . . . Xi−1= xi−1

]

.

SincePr
[

Xi = b | X1 = x1, . . . Xi−1 = xi−1
]+Pr

[

Xi = 1 − b | X1 = x1, . . . Xi−1 =
xi−1

] = 1, it follows that (1 + η) · Pr [Xi = b | X1 = x1, . . . Xi−1 = xi−1
] ≤ 1, and

therefore Pr[X = (x1, . . . , xs)] ≤
(

1
1+η

)s
. �

We will make use of the following results from [22].

Lemma 4.12. ([22, Lemma A.2]). Let X = (X1, . . . , Xs) be an (η, γ )-strongly un-
predictable bit source, then, for every ν > 0, it is sγ

ν
-close to some η̂-unpredictable bit

source, where η̂ = η · 1−ν
1+ν

.

Corollary 4.13. Let X = (X1, . . . , Xs) be an (η, γ )-strongly unpredictable bit source,
then it is 2sγ -close to some η/3-unpredictable bit source.

Proof. Apply Lemma 4.12 with ν = 1/2. �

Theorem 4.14. ([22, Theorem3.4]). Let X and Y be s-bit independent bit sources,
where X isη-unpredictable and Y has min-entropy at leastβs, and let Z = IP(X, Y )mod

15 For b = 1, this is implied by the right-hand-side inequality in the condition of Definition 4.10.
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r for some r ∈ N. Assume that s ≥ c · r2
ηβ

· log
(

r
β

)

· log
(

r
γ

)

for some γ ∈ [0, 1], where

c is a universal constant, then SD ((Y, Z), (Y, Ur )) ≤ γ , where Ur is uniform on Zr and
independent of Y .

4.2.2. Limits on Differentially Private Oracle-Aided Protocols for Computing Inner
Product

In this section, we state our main impossibility results for differentially private, oracle-
aided protocols for accurately approximating the inner product of two s-bit strings. We
first give (Theorem4.16) a lower bound on the accuracy of differentially private protocols
for approximating the inner product of two s-bit strings relative to general function
families (for protocols that have a certain type of mapping to no-oracle protocols).
We then give lower bound on the accuracy of any differentially private, oracle-aided
protocol for approximating the inner product of two s-bit strings relative to simple
function families (Theorem 4.17).
Since these results deal with with-input protocols and since our discussion in Sect. 3

only handles no-input protocols, our proof proceeds by reducing the problem of with-
input protocols that accurately approximate the inner-product function to a similar prob-
lem on no-input protocols. Specifically, for a given with-input protocol, we consider its
no-input variant (called the sampled-input variant), in which the parties use the first s
bits in their random input string as inputs (see the formal definition below).

Definition 4.15. (The sampled-input variant μ (π)). Given an s-bit input, (possibly,
oracle-aided) protocol π = (A,B), let μ (π) = (μ (A) , μ (B)) denote the following
s-bit sampled-input protocol:

The partiesμ (A) andμ (B) interact in an execution of (A(xA; rA),B(xB; rB)), taking
the roles of A and B, respectively, where xA [resp., xB] is the first s bits ofμ (A)’s [resp.,
μ (B)’s] coins, and rA [resp., rB] is the rest of μ (A)’s [resp., μ (B)’s] coins. Let a and b
be the outputs of A and B, respectively, in this execution, then the outputs of μ (A) and
μ (B) will be (xA, a) and (xB, b), respectively.

Roughly speaking, in Theorem 4.16, stated below, we show that if an oracle-aided pro-
tocolπ is (T, α, γ )-differentially private relative to a function familyF and if (μ(π),F)

has a (T, ε)-mapping, then π is not a good approximation for the inner-product func-
tionality relative to F .

Theorem 4.16. For ν > 0 and α ≥ 0, there exist λ > 0 and z ∈ N such that the
following holds. Let F be a function family, let s ≥ z, let π = (A,B) be an oracle-
aided, s-bit input protocol, and let μ (π) be its sampled-input variant. Assume that π is
(T, α, γ )-differentially private relative to F and that (F , μ (π)) has a (T, ε)-mapping,
then for some f ∈ F and every P ∈ {A,B}, there exist x, y ∈ {0, 1}s such that

Pr
v←〈π f (x,y)〉

[

∣

∣

∣outP(v) − IP(x, y)

∣

∣

∣ ≤ � : =λ ·
√

s

log s
· (τ − ε)

]

≤ τ, (12)

for every τ ≤ 1 with τ − ε ≥ max {48sγ, ν}. The same holds for Xout.
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The proof of Theorem 4.16 is given in Sect. 4.2.5. At the end of this subsection, we
provide a high-level overview of the steps towards proving Theorem 4.16.
Combining Theorems 3.7 and 4.16 yields an impossibility result for differentially

private oracle-aided protocols for approximating the inner-product functionality relative
to simple function families.

Theorem 4.17. For a simple function family F and constants 0 < ν < 1 and α ≥ 0,
there exist λ > 0 and z ∈ N such that the following holds. Let s ≥ z and let π be an
s-bit input, �-query oracle-aided protocol that is (k, α, γ )-differentially private relative

to F , for some k > 210 ·
(

2�
1−ν

)2
and γ ≤ ν

48·s . Then, for β < 1−ν
2 and d ≤ λ · ν ·

√
s

log s ,

protocol π is not a (β, d)-approximation for the inner-product functionality relative to
F .

Proof. For numbers 0 < ν < 1 and α ≥ 0, let λ and z be as in Theorem 4.16. Let F
be a simple function family and let π be an s-bit input, �-query oracle-aided protocol.
Let μ (π) be the (oracle-aided) sampled-input variant of π (see Definition 4.15). By
construction, μ (π) is an �-query, oracle-aided, no-input protocol. Finally, let ε = 1−ν

2 .

Theorem 3.7 yields that (F , μ (π)) has a (T, ε)-mapping for T = 210 · ( �
ε

)2 =
210 ·

(

2�
1−ν

)2
. Let γ be such that γ ≤ ν

48·s . Taking τ = ν + ε, it follows that τ − ε ≥
max {48sγ, ν}, as required byTheorem4.16.Hence, for k ≥ T , Theorem4.16 yields that
if π is (k, α, γ )-differentially private relative to F , then it is not a (β, d)-approximation

for the inner-product functionality relative to F , whenever d ≤ λ ·
√

s
log s · (τ − ε) =

λ · ν ·
√

s
log s and β ≤ 1 − τ = 1 − ν − ε. Plugging in the value of ε, the latter holds

whenever β ≤ 1−ν
2 . �

A High-Level Overview of the Proof of Theorem 4.16. First, in Sect. 4.2.3, we define
sampled-input protocols. In such a protocol, the parties have no initial inputs and the
output of each party in any execution of the protocol consists of a sampled input and
an actual output. Namely, the parties may sample an input during the execution of the
protocol. See Definition 4.18 for a formal definition. Note that this notion is different
from the notion of the sampled-input variant of a protocol (Definition 4.15): InDefinition
4.15, the inputs of the parties are chosen independently at random at the beginning of
the protocol, whereas in a sampled-input protocol, the inputs may be chosen during the
execution of the protocol and are not necessarily independent or uniform. However, note
that for any protocol π , it holds that μ(π) is a sampled-input protocol.

In Theorem 4.21, we provide limitations on the accuracy of a no-oracle sampled-
input differentially private protocol. The proof of Theorem 4.21 is similar to the proof
of Theorem 4.8 with some adaptations that are needed since the sampled inputs of the
parties are not necessarily independent.
Then, in Proposition 4.25, we give limitations on the accuracy of an oracle-aided

sampled-input differentially private protocol π relative to a function familyF , such that
the pair (π,F) has an appropriate mapping to a no-oracle protocol. Proposition 4.25 is
proved by combining Definition 3.6 and Proposition 4.21.
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In Sect. 4.2.4, we define uniform-input executions of protocols, where the correctness
and privacy are measured with respect to uniformly chosen inputs. In Proposition 4.28,
we provide limitations on the accuracy of an oracle-aided uniform-input differentially
private protocol π relative to a function family F where (μ(π),F) has an appropriate
mapping to a no-oracle protocol. This is proved by the observation that if π is differen-
tially private and a good approximation relative toF , then so is μ(π), since μ(π)works
identically to π by Definition 4.15. We then use Proposition 4.25 to obtain that μ(π)

cannot be a good approximation for the inner-product functionality relative to F , and
hence, we conclude that π cannot be a good approximation as well. One subtle point that
we should mention here is that while the inputs of μ(π) are chosen uniformly at random
and are independent, the inputs of the no-oracle protocol obtained from μ(π) in the
transformation applied in the proof of Proposition 4.25 are not necessarily independent
(we show in Lemma 4.24 that each of the sampled inputs of the no-oracle protocol is
identically distributed as the corresponding sampled input of the oracle-aided protocol,
but the joint distribution of the sampled inputs of both parties in the no-oracle proto-
col is not necessarily distributed as the joint distribution in the oracle-aided protocol),
and hence, we needed to prove Theorem 4.21 for the stronger case of sampled-input
protocols.
Finally, in Sect. 4.2.5, we finish the proof of Theorem 4.16 by showing that a lower

bound on the accuracy of a differentially private protocol with respect to uniform inputs
implies a similar lower bound for a certain choice of inputs, and hence, we obtain a
lower bound on arbitrary protocols.

4.2.3. Limits on Sampled-Input Protocols

In this section, we give a lower bound on the accuracy of no-input, two-party, differen-
tially private protocols, where the inputs for the functionally are derived from the parties’
private coins (while preserving differential privacy with respect to these inputs). We do
so by combining a result from [22] (stated here as Theorem 4.8) and our main result
from Sect. 3 (Theorem 3.7).

Definition 4.18. (Sampled-input protocols) A no-input protocol π = (A,B) is an s-bit
sampled-input protocol, if the output of party A in any execution of π is of the form
(x, a) and the output of party B is of the form (y, b), where x, y ∈ {0, 1}s . We call x
[resp., y] the sampled input of A [resp., B], and a [resp., b] the actual output of A
[resp., B].
For v ∈ Supp

(〈

π f
〉)

, let SInpP(v) denote the sampled input of party P in v, and
AOutP(v) denote the actual output of the party P.16

We next extend the notion of good approximations to sampled-input protocols. Intu-
itively, we require the actual outputs of both parties to be within distance d from the
value of g applied to the sampled inputs of the parties, except with probability β.

16 Namely, SInpP(v) = outP(v)1,...,s and AOutP(v) = outP(v)s+1,....
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Definition 4.19. (Sampled-input good approximations) Let g : {0, 1}s × {0, 1}s �→ R

be a deterministic function, and let π = (A,B) be an oracle-aided, s-bit sampled-input
protocol. The protocolπ is a (β, d)-SI-approximationfor g relative to a function family
F and P ∈ {A,B}, if for every f ∈ F , it holds that

Pr
v←〈π f 〉

[∣

∣

∣AOutP (v) − g
(

SInpA (v) ,SInpB (v)
)∣

∣

∣ > d
]

< β. (13)

Protocol π is a (β, d)-SI-approximationfor g relative to F , if it is a (β, d)-
SI-approximation for g relative to F and both parties.

We also extend the notion of differential privacy to sampled-input protocols.

Definition 4.20. (Differential privacy sampled-input protocols) Let F be a function
family and letπ = (A,B) be an oracle-aided, s-bit sampled-input protocol. The protocol
π is (k, α, γ )-differentially private relative to F and A, if for every k-query, oracle-
aided distinguisher D and every x, x ′ ∈ {0, 1}s with Hd

(

x, x ′) = 1, it holds that

Pr
f ←F ,v←〈π f 〉

[

D f (trans (v)) = 1 | SInpA (v) = x
]

≤ eα · Pr
f ←F ,v←〈π f 〉

[

D f (trans (v)) = 1 | SInpA (v) = x ′]+ γ.

The differential privacy of π relative to F and B is defined analogously.
The protocol π is (k, α, γ )-differentially private relative to F , if it is (k, α, γ )-

differentially private relative to F and both parties.

Lower Bound for No-Oracle Sampled-Input Protocols. The following theorem is a
variant of Theorem 4.8, suited for no-oracle, sampled-input protocols.

Theorem 4.21. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and
z ∈ N such that the following holds. Let π = (A,B) be a no-oracle, s-bit sampled-input
protocol, let XIn and YIn be the sampled inputs of A and B, respectively, and let Xout
and Yout be the actual outputs of A and B, respectively, induced by a random execution
of π .

Assume that both XIn and YIn are uniformly distributed over {0, 1}s , that π is (α, γ )-
differentially private and that s ≥ z, then

Pr

[

|Yout − IP(XIn, YIn)| ≤ � : =λ ·
√

s

log s
· τ

]

≤ τ

for every 1 ≥ τ ≥ max {48sγ, ν}. The same holds for Xout.

The main difference between Theorem 4.21 and Theorem 4.8 is that Theorem 4.21
allows XIn and YIn to be chosen during the protocol (and hence not necessarily be inde-
pendent), where Theorem 4.8 assumes that the inputs are selected by an external entity
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(hence, needing to require independence of inputs). Note that Theorem 4.21 requires
that each of XIn and YIn is uniformly distributed over {0, 1}s , but they are not assumed
to be independent. We observe that the proof of Theorem 4.8 given in [22] does not
require a priori independence between XIn and YIn, but only that they are independent
given any transcript of the protocol. The latter holds, however, for any joint distribution
for (XIn, YIn), since the views of the parties (in the information-theoretic model with
no inputs) are always independent of each other, given the transcript. Indeed, Theorem
4.21 easily follows by slight adaptation to the proof of Theorem 4.8, given in [22]. For
completeness, however, we include a proof (much of which, taken verbatim from [22]).
Let us first describe the outline of the proof given in [22] for Theorem 4.8 (Theorem A.5
in [22]), which is in turn the scheme of our proof. Their proof is twofold:

1. The first part of it is a result about unpredictable bit sources, showing that it
is possible to extract a uniform element in Zr from the inner product between
two independent unpredictable s-bit variables (even given one of these variables),
provided that r is somewhat less than

√
s (for the formal statement see Theorem

4.14).
2. The second part of the proof deals with executions of (α, γ )-differentially private

protocols, where the inputs of the parties are selected uniformly at random. It is
shown that the input of each party in such executions, given the transcript of the
execution, is close to an unpredictable bit source.

Finally, combining the above two results yields that every two-party differentially
private protocol for approximating the inner-product functionality must incur an error
of roughly r ≈ √

s. Indeed, if a significantly better approximation could be computed
given the transcript (and one party’s input), then the inner product would be concentrated
in an interval of size significantly smaller than r , contradicting the fact that it reduces to
an almost-uniform element of Zr .
When proving Theorem 4.21 for the case of sampled-input protocols, we can use the

first part of the proof given in [22] for Theorem 4.8, without reproving it, whereas we
reprove the second part, with respect to sampled-input protocols, in Claim 4.22.

Proof of Theorem 4.21. Let π = (A,B) be a no-oracle, s-bit sampled-input protocol,
let XIn and YIn be the sampled inputs of A and B, respectively, and let Xout and Yout be
the actual outputs ofA andB, respectively, induced by a random execution ofπ . Let T be
the communication transcript in a random execution ofπ , and for t ∈ Supp

(

T
)

let XIn | t
[resp., YIn | t ] be the value of XIn [resp., YIn] in such a random execution, conditioned
on T = t . Assume that both XIn and YIn are uniformly distributed over {0, 1}s and that
π is (α, γ )-differentially private. Let η = e−(1.1+α)/3 and β = log (1 + η)). Finally, fix
ν > 0 and τ ≥ max {48sγ, ν}.

The proof is carried via the following claims (proofs given below). In Claim 4.22, we
show that by the differential privacy of π , it holds that XIn | t and YIn | t are, on average,
close to being unpredictable. In Claim 4.23, we define the constants λ and z so that we
can apply Theorem 4.14 with respect to such sources. �
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Claim 4.22. There exist numbers
{

γt
}

t∈Supp(T ) with E
[

γT

] ≤ 4γ , such that the follow-

ing holds for every t ∈ Supp
(

T
)

: the random variable XIn | t [resp., YIn | t ] is 2sγt -close
to some η-unpredictable bit source ̂Xt [resp., ̂Yt ].

Claim 4.23. There exist numbers λ > 0 and z ∈ N, functions of α and ν, such that the

following holds. Let � = λ ·
√

s
log s · τ , let r = 6 · �/τ and let c be the universal constant

from Theorem 4.14. Assuming s ≥ z, then s ≥ c · r2
ηβ

· log
(

r
β

)

· log
(

r
τ/3

)

.

We use the above claims for proving Theorem 4.21 Yout, where the proof for Xout is
analogous. Fix for amoment t ∈ Supp

(

T
)

, andnote that XIn | t andYIn | t are independent
(since π is a no-input, no-oracle protocol). Let

{

γt
}

t∈Supp(T ), λ, z, � and r , be the

numbers from Claims 4.22 and 4.23. Claim 4.22 yields that

SD
((

YIn | t , IP(XIn | t , YIn | t )mod r
)

,
(

̂Yt , IP(̂Xt ,̂Yt )mod r
)) ≤ 4sγt (14)

for some two (independent) η-unpredictable bit sources ̂Xt and ̂Yt . Note that by Fact
4.11, both ̂Xt and ̂Yt have min-entropy βs.

Assume s ≥ z. Since by Claim 4.23 s ≥ c · r2
ηβ

· log
(

r
β

)

· log
(

r
τ/3

)

, Theorem 4.14

yields that

SD
((

̂Yt , IP(̂Xt ,̂Yt )mod r
)

,
(

̂Yt , Ur
)) ≤ τ/3, (15)

where Ur is independently and uniformly distributed over Zr . Finally, combining Eqs.
(14) and (15) yields that

SD
((

YIn | t , IP(XIn | t , YIn | t )mod r
)

,
(

̂Yt , Ur
)) ≤ 4sγt + τ/3 (16)

for every t ∈ Supp
(

T
)

.
In the following,we assumewithout loss of generality thatB’s output is a deterministic

function fB of
(

YIn, T
)

.17

17 For an arbitrary function fB, consider its variant f ′
B that applies fB on a random view that is consistent

with
(

YIn, T
)

. Clearly, f ′
B computes the inner product correctly with the same probability as fB does, and

its output is a randomized function of (only)
(

YIn, T
)

. Finally, the deterministic function f ′′
B that applies f ′

B
with the best choice of random coins computes the inner product correctly no worse than f ′

B does, and thus
no worse than fB.
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Let S = {(

y, t, z
) ∈ Supp

(

YIn, T
)× R : ( fB

(

y, t
)− z mod r

) ∈ {r − �, . . . , 0,
. . . ,�}} . It follows that

Pr
[|Yout − IP(XIn, YIn)| ≤ �

]

≤ Pr
[

(YIn, T , IP(XIn, YIn)) ∈ S]

= Pr
[

(YIn, T , IP(XIn, YIn)mod r) ∈ S]

≤ Pr
[

(̂YT , T , Ur ) ∈ S]+ SD
(

(YIn, T , IP(XIn, YIn)mod r), (̂YT , T , Ur )
)

≤ Pr
[

(̂YT , T , Ur ) ∈ S]+ E[4sγT + τ/3]
≤ 2�/r + 16sγ + τ/3

≤ τ.

The second inequality holds by Eq. (16), the third one since E[γT ] ≤ 4γ , and the last
one since �

r = γ /6 and since, by assumption, τ ≥ 48sγ .

Proof of Claim 4.22. Let X j denote the j’th bit in XIn. For i ∈ [s] and
(

x, t
) ∈

Supp
(

XIn, T
)

, define

ρX
(

i, x, t
) : =Pr

[

Xi = 0 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs , T = t
]

Pr
[

Xi = 1 | X1 = x1, . . . Xi−1 = xi−1, Xi+1 = xi+1, . . . , Xs = xs , T = t
] (17)

= Pr
[

T = t | X1 = x1, . . . Xi−1 = xi−1, Xi = 0, Xi+1 = xi+1, . . . , Xs = xs
]

Pr
[

T = t | X1 = x1, . . . Xi−1 = xi−1, Xi = 1, Xi+1 = xi+1, . . . , Xs = xs
] ,

where the equality holds by the uniformity of XIn (using Bayes’ Rule), and let

SX =
{

(

i, x, t
) : ρX

(

i, x, t
)

/∈
[

e−(1.1+α), e(1.1+α)
]}

.

Define SY analogously for YIn. For t ∈ Supp
(

T
)

, set

γt : =max

{

Pr
i←[s],x←XIn | t

[(

i, x, t
) ∈ SX

]

, Pr
i←[s],y←YIn | t

[(

i, y, t
) ∈ SY

]

}

.

It follows that XIn | t and YIn | t are (e−(1.1+α), γt )-strongly unpredictable bit sources,
and hence, Corollary 4.13 yields that both XIn | t and YIn | t are 2sγt -close to some
(e−(1.1+α)/3)-unpredictable bit sources, yielding the first requirement of the claim.

For the second requirement of the claim (E
[

γT

] ≤ 4γ ), applying Lemma 4.9 with
ν = 1.1 yields that

max

{

Pr
(x,t)←(

XIn,T
)

[(

i, x, t
) ∈ SX

]

, Pr
(y,t)←(

YIn,T
)

[(

i, y, t
) ∈ SY

]

}

≤ γ · 1+e−(1.1+α)

1 − e−1.1

< 2γ (18)
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for every i ∈ [s],18 and we conclude that

E
[

γT

] ≤ E
t←T

[

Pr
i←[s],x←XIn | t

[(

i, x, t
) ∈ SX

]+ Pr
i←[s],y←YIn | t

[(

i, y, t
) ∈ SY

]

]

≤ E

[

2 · max

{

Pr
(x,t)←(

XIn,T
)

[(

i, x, t
) ∈ SX

]

,

Pr
(y,t)←(

YIn,T
)

[(

i, y, t
) ∈ SY

] : i ∈ [s]
}]

< 4γ. (19)

�

Proof of Claim 4.23. Let λ1 = λ/η > 0, where λ ∈ (0, 1) will be determined later.

Since � = λ ·
√

s
log s · τ , we have that s =

(

�·log s
λ·τ

)2 =
(

�·log s
λ1·τ ·η

)2
. Let z1 = z1(λ, α)

be such that s ≥ z1 implies log s ≥ λ1. By the above, we have that for every s ≥ z1, it

holds that s =
(

�
τη

· log s
λ1

)2 ≥
(

�
τη

)2
. Hence, log s ≥ log

(

�
τη

)2 ≥ log
(

�
τη

)

. Recalling

that r = 6 · �/τ , it holds that �
τη

= r
6η and we obtain that

s ≥ 1

λ21
·
(

�

τη

)2

·
(

log

(

�

τη

))2

(20)

= 1

λ21
· r2

36 · η2
·
(

log

(

r

6η

))2

≥ 1

36 · λ21
· r2

ηβ
·
(

log

(

r

6η

))2

for every s ≥ z1, where the last inequality holds since, by inspection, β ≥ η (recall that
β = log (1 + η))).

Letλ = λ(α, ν) ∈ (0, 1)be such that 1
36·λ21

≥ 4c. Let z2 = z2(λ, α)be such that s ≥ z2

implies r ≥ 36 · η2 · max
{

1
β
, 3

τ

}

, and let z = max {z1, z2}. Fix s ≥ z. By the above,
(

r
6·η
)2 ≥ max

{

r
β
, r

τ/3

}

, and therefore, 2 · log
(

r
6η

)

≥ max
{

log
(

r
β

)

, log
(

r
τ/3

)}

.

Thus, Eq. (20) yields that

18 We note that Lemma 4.9 is stated for differentially private mechanisms. Nevertheless, its proof for
sampled-input protocols readily follows from the original proof.
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s ≥ 4 · c · r2

ηβ
·
(

log

(

r

6η

))2

≥ 4 · c · r2

ηβ
· 1
2

· log
(

r

β

)

· 1
2

· log
(

r

τ/3

)

≥ c · r2

ηβ
· log

(

r

β

)

· log
(

r

τ/3

)

,

concluding the claim’s proof. �

Lower Bound for Oracle-Aided, Sampled-Input Protocols. We now use Definition
3.6 to give a variant of Theorem 4.21 for (sampled-input) oracle-aided protocols with
an appropriate mapping to a no-oracle protocol. We start by showing that the existence
of differentially private, oracle-aided, sampled-input protocols implies the existence of
no-oracle, sampled-input protocols, incurring no loss in privacy and a minor loss in
accuracy.

Lemma 4.24. LetF be a function family, let π be an oracle-aided, s-bit sampled-input
protocol, and let g : {0, 1}s × {0, 1}s �→ R be a deterministic function. Assume that
the pair (F , π) has a (T, ε)-mapping, and assume that π is a (β, d)-SI-approximation
for g relative to F and party P, and satisfies (T, α, γ )-differential privacy relative to
F . Then, the no-oracle, s-bit sampled-input protocol π̃ = (˜A,˜B), guaranteed by the
(T, ε)-mapping, is a (β + ε, d)-SI-approximation for g with respect to party P, and is
(α, γ )-differentially private.

Furthermore, the sampled input of party A (resp. B) and the sampled input of party
˜A (resp.˜B) are identically distributed.

Proof. Let π̃ = (˜A,˜B) and Map be the no-input, no-oracle protocol and oracle-aided
algorithm guaranteed by Definition 3.6 with respect to π and F . We first argue that
π̃ satisfies (α, γ )-differential privacy. Assume to the contrary that this is not the case.
Specifically, assume without loss of generality that there exists a (no-oracle) adversary
D̃, such that

Pr
ṽ←〈π̃〉

[

D̃ (trans (ṽ)) = 1 | SInp
˜A (ṽ) = x

]

> eα · Pr
ṽ←〈π̃〉

[

D̃ (trans (ṽ)) = 1 | SInp
˜A (ṽ) = x ′]+ γ (21)

for some x, x ′ ∈ {0, 1}s with Hd
(

x, x ′) = 1. Consider the adversary D for π that on

a given transcript t (of an execution of π with access to f ) applies D̃ to Map f (t
)

. We
claim that

Pr
f ←F ,v←〈π f 〉

[

D f (trans (v)) = 1 | SInpA (v) = x
]

> eα · Pr
f ←F ,v←〈π f 〉

[

D f (trans (v)) = 1 | SInpA (v) = x ′]+ γ (22)
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To see that Eq. (22) holds, note that by the furthermore statement of the first item in
Definition 3.6, the transcript together with the sampled input of˜A in a random execution

of π̃ (i.e.
(

trans (ṽ) ,SInp
˜A (ṽ)

)

, where ṽ ← 〈π̃〉) is (jointly) identically distributed

as the value of Map applied to the transcript and the sampled input of A in a random

execution of π (i.e.
(

Map f (trans (v)) ,SInpA (v)
)

, where v ← 〈

π f
〉

for f ← F).

In addition, by Definition 3.6, D makes at most T oracle calls. Hence, we obtain a
contradiction to the (T, α, γ )-differential privacy of π , yielding that the protocol π̃

must be (α, γ )-differentially private.
We conclude the proof by showing that π̃ is a good approximation for g with respect

to any party P ∈ {

˜A,˜B
}

. Specifically, we show that

Pr
ṽ←〈π̃〉

[∣

∣

∣AOutP (ṽ) − g
(

SInp
˜A (ṽ) ,SInp

˜B (ṽ)
)∣

∣

∣ ≥ d
]

< β + ε. (23)

By the first item in Definition 3.6, we have that the (actual) joint outputs of the par-
ties in a random execution of π are in statistical distance at most ε from the (actual)
joint outputs of the parties in a random execution of π̃ . Formally, if we let Dπ̃ =
(

SInp
˜A (ṽ) ,SInp

˜B (ṽ) ,AOutP (ṽ)
)

ṽ←〈π̃〉 and Dπ = (

SInpA (v) ,SInpB (v) ,AOutP

(v)
)

f ←F ,v←〈π f 〉, then we have that SD (Dπ̃ ,Dπ ) ≤ ε. Hence, Eq. (23) follows from
the accuracy of π , i.e. since we have that

Pr
f ←F ,v←〈π f 〉

[∣

∣

∣AOutP (v) − g
(

SInpA (v) ,SInpB (v)
)∣

∣

∣ ≥ d
]

< β (24)

To verify this, let S = {(x, y, w) ∈ SuppDπ̃ : |g(x, y) − w| ≥ d} and observe that the
probability of falling into S according toDπ̃ can be larger than the probability of falling
into S according to Dπ (which is bounded by β), by at most the statistical distance
between Dπ̃ and Dπ .
The furthermore statement follows from the furthermore statement of the first item in

Definition 3.6. �

We now combine Lemma 4.24 and Theorem 4.21 to prove a lower bound on the
accuracy of oracle-aided, sampled-input protocols that are differentially private.

Proposition 4.25. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and
z ∈ N such that the following holds. Let F be a function family, let s ≥ z and let
π = (A,B) be an oracle-aided, s-bit sample-input protocol. For f ∈ F , let X f

In and

Y f
In be the sampled inputs of A and B, respectively, and let X f

out and Y f
out be the actual

outputs of A and B, respectively, induced by a random execution of π f .
Assume that both X f

In and Y f
In are uniformly distributed over {0, 1}s for every f ∈ F ,

that π is (T, α, γ )-differentially private relative to F and that the pair (F , π) has a
(T, ε)-mapping, then for some f ∈ F , it holds that
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Pr

[

∣

∣

∣Y
f
out − IP(X f

In, Y f
In)

∣

∣

∣ ≤ � : =λ ·
√

s

log s
· (τ − ε)

]

≤ τ

for every 1 ≥ τ with τ − ε ≥ max {48sγ, ν}. The same holds for X f
out.

Proof. Given values for ν and α set λ and z to be as in Theorem 4.21. Let F and π be
as in the statement of the proposition. Since π is assumed to be (T, α, γ )-differentially
private relative to F , and since the pair (F , π) is assumed to have a (T, ε)-mapping, it
follows from Lemma 4.24 that the no-oracle, sampled-input protocol π̃ (guaranteed by
this mapping) is (α, γ )-differentially private.

Since XIn and YIn are uniformly distributed over {0, 1}s , it follows from the further-
more statement of Lemma 4.24 that the same holds for the sampled inputs of both
parties in π̃ . Hence, Theorem 4.21 yields that for s ≥ z and τ such that τ ′ : =
τ − ε ≥ max {48sγ, ν}, it holds that π̃ is not a

(

1 − τ ′,�
)

-SI-approximation for

� = λ ·
√

s
log s · τ ′. By Lemma 4.24, π is not a

(

1 − τ ′ − ε,�
)

-SI-approximation, namely

Pr
[|Yout − IP(XIn, YIn)| ≤ �

] ≤ τ ′ + ε = τ . �

4.2.4. Limits on Uniform-Input Executions

The focus of this section is on executions of differentially private protocols, where the
inputs of the parties are chosen uniformly at random. Towards proving a lower bound on
the accuracy of approximating the inner-product function in such executions, we map
a uniform-input execution of a with-input protocol to the sampled-input variant of this
protocol (as defined in Definition 4.15). Roughly speaking, in the sampled-input variant
of a protocol, the parties sample their inputs at random at the beginning of an execution.
We next define what it means for a protocol to approximate a function with good

probability when the inputs of the parties are uniformly selected.

Definition 4.26. (Good random approximations) Let g : {0, 1}s × {0, 1}s �→ R be
a deterministic function, and let π = (A,B) be an oracle-aided, s-bit input protocol.
Protocol π is a (β, d)-random approximation for g relative to function familyF and
P ∈ {A,B}, if for every f ∈ F , it holds that

Pr
x,y←{0,1}s ,v←〈π f (x,y)〉

[∣

∣

∣outP (v) − g (x, y)

∣

∣

∣ > d
]

< β. (25)

Protocol π is a (β, d)-random approximation for g relative to F , if it is a (β, d)-
random approximation for g relative to F and both parties.

The following observation allows us to use the lower bound stated in Lemma 4.24,
to derive a similar bound for with-input protocols, when the inputs of the parties are
chosen uniformly at random.

Lemma 4.27. Let g : {0, 1}s × {0, 1}s �→ R be a deterministic function and let F
be some oracle family. Assume that there exists an oracle-aided, s-bit input protocol
π = (A,B) that is a (β, d)-random approximation for g relative to F and party P, and
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is (k, α, γ )-differential privacy relative to F . Then, μ (π) is a (β, d)-SI-approximation
for g relative to F and P, and (k, α, γ )-differentially private relative to F .

Proof. Immediate by definition. �

Combining Proposition 4.25 and Lemma 4.27 yields the following result.

Proposition 4.28. For numbers ν > 0 and α ≥ 0, there exist numbers λ > 0 and z ∈ N

such that the following holds. Let F be a function family, let s ≥ z and let π = (A,B)

be an oracle-aided, s-bit input protocol. For f ∈ F , let X f
In and Y f

In be the inputs of

A and B, respectively, and let X f
out and Yout

f be the outputs of A and B, respectively,
induced by a random execution of π f .

Assume that both X f
In and Y f

In are independently and uniformly chosen from {0, 1}s

for every f ∈ F , that π is (T, α, γ )-differentially private relative to F and that the pair
(F , μ (π)) has a (T, ε)-mapping (where μ (π) is sampled-input variant of π ). Then, for
some f ∈ F , it holds that

Pr

[

∣

∣

∣Yout
f − IP(X f

In, Y f
In)

∣

∣

∣ ≤ � : =λ ·
√

s

log s
· (τ − ε)

]

≤ τ

for every 1 ≥ τ with τ − ε ≥ max {48sγ, ν}. The same holds for X f
out.

Proof. Given values for ν and α, set λ and z to be as in Proposition 4.25. LetF and π be
as in the statement of the proposition. Letμ (π) be the (oracle-aided) sampled-input vari-
ant ofπ (seeDefinition 4.15). By construction, the sampled inputs of both parties inμ (π)

are uniformly distributed. Since π is assumed to be (T, α, γ )-differentially private rela-
tive toF , it follows by Lemma 4.27 thatμ (π) is also (T, α, γ )-differentially private rel-
ative toF . Since the pair (F , μ (π)) is assumed to have a (T, ε)-mapping, it follows from
Proposition 4.25 that for s ≥ z and τ such that τ ′ : =τ −ε ≥ max {48sγ, ν}, the protocol
μ (π) is not a (1 − τ,�)-SI-approximation for� = λ ·

√
s

log s ·τ ′. Hence, by Lemma 4.27,

π is not a (1 − τ,�)-random approximation, namely Pr
[|Yout − IP(XIn, YIn)| ≤ �

] ≤
τ . �

4.2.5. Limits on Arbitrary Protocols: Proving Theorem 4.16

The results presented in the previous section yield the lower bounds of Sect. 4.2.2 in
a straightforward manner. That is, the lower bound on the accuracy of differentially
private protocols, with respect to executions where inputs are selected uniformly at
random, easily implies a similar lower bound for arbitrary executions of such protocols.
Intuitively, this is because if a protocol errs with probability β on uniform inputs, then
there must be a specific choice of inputs for the parties on which the protocol errs with
probability at least β.

Proof of Theorem 4.16. Immediate, by taking x and y that maximize the probability
in Eq. (12), and using Proposition 4.28 to bound this probability from below. �
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4.3. Secure Sampling

In this section, we apply our main result to show that when given access to a random
member of a simple function family (e.g. the all-function family), no-oracle-aided pro-
tocol can securely sample a distribution G that cannot be (almost) securely sampled by
a no-oracle protocol.
In semi-honest no-input secure sampling, two parties with no-private inputs wish to

compute some (possibly randomized) functionality privately and correctly. Let G =
(GA, GB) be a distribution over A × B, where GA and GB denote its marginal distrib-
utions over A and B, respectively. The parties A and B wish to perform a computation,
where party A learns gA and party B learns gB for g = (gA, gB) ← G, but nothing
else. Since the parties are semi-honest, they will always follow the prescribed protocol.
A corrupted party, however, may try to use its view in the computation to infer additional
information after the computation terminates.

4.3.1. Standard Definitions

Definition 4.29. (No-input secure sampling)LetA andB be sets, and letG = (GA, GB)

be a distribution over A × B, where GA and GB denote its marginal distributions over
A and B, respectively. A two-party oracle-aided protocol π = (A,B) is a (k, δ)-secure
protocol for G relative to a function family F , if the following conditions hold.

Correctness: π is a δ-correct implementation of G relative to F . That is

SD

(

(

outA (v) , outB (v)
)

v←〈π f 〉 , G

)

≤ δ

for every f ∈ F .

Privacy: π is a (k, δ)-private implementation of G relative to F : for every P ∈ {A,B},
there exists an oracle-aided algorithm (simulator) SimP such that:

E
f ←F

[∣

∣

∣

∣

Pr

[

D f
(

(

Sim f
P (gP) , gA, gB

)

(gA,gB)←GA

)

= 1

]

−Pr

[

D f
(

(

vP, outA (v) , outB (v)
)

v←〈π f 〉
)

= 1

]∣

∣

∣

∣

]

≤ δ,

for any k-query distinguisher D.19

A protocol π is a δ-secure (no-oracle) implementation of G, if it is a (0, δ)-secure
implementation of G relative to the trivial function family—the function family whose
only member returns ⊥ on every query. A distribution G is δ-trivial, if G has a δ-secure
no-oracle implementation.

19 A stricter security definition would restrict also the query complexity of the simulator SimP (and not only
that of the distinguisher). We use the above more relaxed version since our goal is proving an impossibility
result for such secure sampling.
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Remark 4.30. (privacy for no-oracle protocols, alternative definition). The success
probability of the “best” distinguisher in the information-theoretic model is defined
by the statistical distance between the output of a real execution: P’s view and the par-
ties local outputs, and the output of the simulation: the simulator’s output and the sample
from the distribution.
Furthermore, in the information-theoretic model, it suffices to assume that a party’s

view contains only the communication transcript (i.e. without its random coins). This
is because conditioned on the transcript, the parties’ views are in a product distribution,
and thus, the party’s view is a function of the transcript and its local output.

The following is an alternative (and by the above, equivalent) definition for δ-privacy
of (no-oracle) protocols in the information-theoretic model: a protocol π̃ = (

˜A,˜B
)

is
a δ-private implementation of a distribution G if for every P ∈ {

˜A,˜B
}

there exists an

algorithm (simulator)˜Sim
˜P such that,

SD

(

(

˜Sim
˜P (gP) , gA, gB

)

(gA,gB)←G
,
(

trans (v) , outA (v) , outB (v)
)

v←〈π̃〉

)

≤ δ.

4.3.2. Limits on Oracle-Aided Secure Sampling

In the language of the above definitions, themain result of this section is stated as follows.

Theorem 4.31. Let F be a function family, and let π be an oracle-aided protocol that
is a (T, δ)-secure oracle-aided implementation of a distribution G with respect to F .
Assume that (F , π) has a (T, δ′)-mapping, then G is (δ + δ′)-trivial.

Proof. Let F and π be as above and let π̃ = (˜A,˜B) and Map be the (T, δ′)-mapping
for (F , π), we will prove that π̃ is a (no oracle) (δ + δ′)-secure implementation of G.
Since (π̃,Map) is a (T, δ′)-mapping, it follows (see Definition 3.6:1) that

SD
(

(out
˜A (v) , out

˜B (v) , trans(v))v←〈π̃〉, (outA (v) , outB (v) ,

Map f (trans(v))) f ←F ,v←〈π f 〉
)

≤ δ′ (26)

Hence, the δ-correctness of π yields that

SD
(

(out
˜A (v) , out

˜B (v))v←〈π̃〉, G
)

≤ δ + δ′,

and thus, π̃ is (δ + δ′)-correct implementation of G.
For the privacy property, we construct a no-oracle simulator ˜Sim

˜A for party ˜A (a
simulator ˜B can be constructed analogously). Let SimA be the oracle-aided simulator
guaranteed to exist for π and A. Fix a T -query distinguisher D. The assumption that
SimA is a good simulator yields that
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E
f ←F

[∣

∣

∣

∣

Pr

[

D f
(

(

Sim f
A (gA) , gA, gB

)

(gA,gB)←GA

)

= 1

]

−Pr

[

D f
(

(

vA, outA (v) , outB (v)
)

v←〈π f 〉
)

= 1

]∣

∣

∣

∣

]

≤ δ,

and therefore,

∑

f ∈F
Pr [ f ] ·

∣

∣

∣

∣

Pr

[

D f
(

(

Sim f
A (gA) , gA, gB

)

(gA,gB)←GA

)

= 1

]

−Pr

[

D f
(

(

vA, outA (v) , outB (v)
)

v←〈π f 〉
)

= 1

]∣

∣

∣

∣

≤ δ.

By the triangle inequality

∑

f ∈F
Pr [ f ] ·

∣

∣

∣

∣

Pr

[

D f
(

(

Sim f
A (gA) , gA, gB

)

(gA,gB)←GA

)

= 1

]

−Pr

[

D f
(

(

vA, outA (v) , outB (v)
)

v←〈π f 〉
)

= 1

]∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

∣

∑

f ∈F
Pr[ f ] ·

(

Pr

[

D f
(

(

Sim f
A (gA) , gA, gB

)

(gA,gB)←GA

)

= 1

]

−Pr

[

D f
(

(

vA, outA (v) , outB (v)
)

v←〈π f 〉
)

= 1

])

∣

∣

∣

∣

∣

∣

and we conclude that

∣

∣

∣

∣

Pr
f ←F ,(gA,gB)←GA

[

D f
((

Sim f
A (gA) , gA, gB

))

= 1
]

− Pr
f ←F ,v←〈π f 〉

[

D f
((

vA, outA (v) , outB (v)
))

= 1
]

∣

∣

∣

∣

∣

≤ δ (27)

Recalling that Map makes at most T -queries, Eq. (27) yields that

SD

(

(

Map f
(

trans
(

Sim f
A (gA)

))

, gA, gB
)

f ←F ,(gA,gB)←G
,

(

Map f (trans (v)) , outA (v) , outB (v)
)

f ←F ,v←〈π f 〉
)

≤ δ (28)

�

The no-oracle simulator˜Sim
˜A is defined as follows.
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Algorithm 4.32. (˜Sim
˜A).

Input: gA ∈ Supp (GA)

Operation:

1. Let f ← F and let vA ← Sim f
A(gA).

2. Output Map f (trans (vA)).

Note that

(

Map f
(

trans
(

Sim f
A (gA)

))

, gA, gB
)

f ←F ,(gA,gB)←G

≡
(

˜Sim
˜A (gA) , gA, gB

)

(gA,gB)←G
,

and that by Eq. (26)

SD

(

(

Map f (trans (v)) , outA (v) , outB (v)
)

f ←F ,v←〈π f 〉 ,

(

trans(v), out
˜A (v) , out

˜B (v)
)

v←〈π̃〉

)

≤ δ′.

We conclude that

SD

(

(

˜Sim
˜A (gA) , gA, gB

)

(gA,gB)←G
,
(

trans(v), out
˜A (v) , out

˜B (v)
)

v←〈π̃〉

)

≤ SD

(

(

Map f
(

trans
(

Sim f
A (gA)

))

, gA, gB
)

f ←F ,(gA,gB)←G
,

(

Map f (trans (v)) , outA (v) , outB (v)
)

f ←F ,v←〈π f 〉
)

+ δ′

≤ δ + δ′.

The first inequality is by the above two equations and the triangle inequality, and last
one by Eq. (28). It follows, see Remark 4.30, that π̃ is (δ + δ′)-private.

Combining Theorems 4.31 and 3.7 yields the following result.

Theorem 4.33. Let F be a simple function family. Let k, � ∈ N, let δ ∈ [0, 1] be such

that k ≥ 210 · ( �
δ

)2
, and let G be a non 2δ-trivial distribution. Then, G has no �-query,

(k, δ)-secure oracle-aided implementation relative to F .

Proof. Let π be an �-query oracle-aided protocol. Theorem 3.7 yields that (F , π) has

a (T, δ)-mapping for T = 210 · ( �
δ

)2
. Assume that π is a (T, δ)-secure oracle-aided

implementation of G relative to F , then Theorem 4.31 would yield that G is 2δ-trivial.
Hence, G has no �-query (k, δ)-secure implementation relative to F . �
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4.4. Applications to the All-Function Family and Black-Box Reductions to One-way
Functions

In this section, we use Theorem 3.7 to derive limits on possible implementations relative
to the all-function family (i.e. the set of “random functions”). We then use the above and
the fact that a random element of the all-function family is hard to invert, to give limits
on fully black-box reductions to one-way functions.

4.4.1. Standard Definitions and Known Facts

One-way functions and the all-function family. An efficiently computable function is
one-way, if it is hard to invert on a random output.

Definition 4.34. (One-way functions) A polynomially time computable function f :
{0, 1}∗ �→ {0, 1}∗ is one-way, if

Pr
x←{0,1}n

[A(1n, f (x)) ∈ f −1( f (x))] = neg(n)

for any ppt A.

We define the all-function family over a given input length, as the set of all length-
preserving functions over this input length.

Definition 4.35. (The all-function family) For n ∈ N, let FAFn be the family of all
functions from n-bit strings to n-bit strings.

The following fact is immediate.

Fact 4.36. For every n ∈ N, the family FAFn is simple.

It is well known (cf., [12,18]) that random members of the all-function family are
“one way”. Specifically, we use the following fact.

Fact 4.37. For any (2n/3 − 1)-query oracle-aided algorithm A, it holds that

Pr
f ←FAFn

[

Pr
x←{0,1}n

[A f ( f (x)) ∈ f −1( f (x))] > 2−n/3
]

≤ 2−n/3.

Proof. It is easy to verify that

Pr
f ←FAFn ,;x←{0,1}n

[

A f ( f (x)) ∈ f −1( f (x))
]

≤ 2n/3/2−n = 2−2n/3,

and the proof follows by a straightforward averaging argument. �

Black-box reductions. Loosely speaking, a fully black-box reduction from a primitive
Q (e.g. key-agreement protocol) to a primitive P (e.g. one-way function ) is: (1) a
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construction of Q out of P that “ignores” the structure of the implementation of P (i.e.
uses it as a “black box”), and (2) a generic reduction from the security of P to that
of Q. In more details, such a reduction consists of a pair of pptm (Q,R) such that the
following holds. (1) for every correct implementationP of P , it holds thatQP is a correct
implementation of Q, and (2) for every adversary A that breaks (the security of) QP, it
holds that RP,A breaks P. See [26] for a more formal discussion.
Cryptographic primitives are typically parameterized by the so-called security pa-

rameter, which determines their security and functionality (e.g. the key length of the
key-agreement protocol). For such primitives, we consider a restricted form of black-
box reductions that requires the reduction, and in particular, the security proofR, to work
for every choice of the security parameter n, e.g. an algorithm that guesses the agreed
key of the key-agrement protocol “too well” on security parameter n, can be used by the
reduction to invert the one-way function on inputs of length n. See Definitions 4.38 and
4.40 for concrete examples.20

4.4.2. Key-Agreement Protocols

Following Definition 4.1 and the discussion in Sect. 4.4.1, we define fully black-box
reduction from key-agreement protocols to one-way functions as follows.

Definition 4.38. (Gully black-box reduction from key agreement to one-way functions)
A pptm triplet (A,B,R) is a fully black-box reduction from an (α, γ )-key-agreement
protocol to one-way functions, if the following holds for every n ∈ N.

1. (A,B) is (1 − α(n))-consistent with respect to FAFn according to Definition 4.1.
2. For every function f over {0, 1}n , algorithmD and δ > 0 such that Prv←〈(A f ,B f )(1n)〉
[

D(trans(v)) = outP (v)
] ≥ γ + δ for some P ∈ {A,B}, algorithm RD, f inverts

f with probability at least p(δ), for some universal p ∈ poly.

Combining Theorem 4.4 and Facts 4.36 and 4.37 yields the following result.

Corollary 4.39. There exists no fully black-box reduction from an (α, γ )-key-agreement
protocol to one-way functions, with 1 − α(n) − γ (n) > 1/ poly(n).21

Proof’s sketch. Assume that there exists a fully black-box reduction (A,B,R) from an
(α, γ )-key-agreement protocol to one-way functions,with 1−α(n)−γ (n) > 1/ poly(n).
Since FAFn is simple (Fact 4.36), by Theorem 4.4 and a simple averaging argument,22

there exists a poly(n)-query algorithm D such that

20 We choose to focus on this simpler form of black-box reductions as it simplifies the proofs given in
Sects. 4.4.2 and 4.4.3 and still seems to capture the same set of known reductions captured by the standard
notion of black-box reductions.

21 As previously mentioned, the same result, proven using different means, appears in [1].
22 A similar counting argument was used in [2].
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Pr
f ←FAFn

[

Pr
v←〈(A f ,B f )(1n)〉

[

D f (trans(v))=outP (v)
]

≥ γ (n)+1/ poly(n)

]

≥1/ poly(n)

(29)

It follows that Pr f ←FAFn

[

Prx←{0,1}n [RD f , f ( f (x)) ∈ f −1( f (x))] >

1/ poly(n)
]

> 1/ poly(n), in contradiction to Fact 4.37. �

4.4.3. Differentially Private Two-Party Computation

FollowingDefinitions 4.6 and 4.7 and the discussion in Sect. 4.4.1, we define fully black-
box reduction from differentially private protocols to one-way functions as follows.

Definition 4.40. (Fully black-box reduction from differentially private protocols to
one-way functions) A pptm triplet (A,B,R) is a fully black-box reduction from an
(s, β, d, α, γ )-differentially private protocol for a functionality g to one-way functions,
if the following holds for every n ∈ N.

1. (A,B) is a (β(n), d(n))-approximation for g with respect to FAFn according to
Definition 4.7.

2. For every function f over {0, 1}n , algorithm D and δ > 0 such that

Pr
v←〈(A f (x),B f (y))〉

[

D (trans (v)) = 1
] ≥ eα(n) · Pr

v←〈(A f (x ′),B f (y))〉
[

D (trans (v)) = 1
]+ γ (n) + δ

for some x, x ′, y ∈ {0, 1}s(n) with Hd
(

x, x ′) = 1, or the analogue condition holds
for some y, y′, x ∈ {0, 1}s(n) with Hd

(

y, y′) = 1, algorithm RD, f inverts f with
probability at least p(δ), for some universal p ∈ poly.

Combining Theorem 4.17 and Facts 4.37 and 4.36 yields the following result.

Corollary 4.41. For constants ν ∈ (0, 1) and η ≥ 0, there exist λ > 0 such that
the following holds: let q ∈ poly and let s, β, d, α and γ be such that α(n) ≤ η,

γ (n) ≤ ν
48·s(n)

− 1
q(n)

, β(n) ≤ 1−ν
2 and d(n) ≤ λ · ν ·

√
s(n)

log s(n)
for infinitely many

n’s. Then, there exists no fully black-box reduction from an (s, β, d, α, γ )-differentially
private protocol for computing the inner-product functionality, to one-way functions.

5. Appendix: Proving Lemma 3.10

Definition 5.1. (Restating Definition 3.9). Let F be a function family and let π =
(A,B) be an m-round oracle-aided protocol. A deterministic oracle-aided algorithm
Finder is a (T, ε)-DependencyFinder for (F , π), if the following holds for any j ∈
[m].

Let CF = CF(F , π,Finder) be the following random process:
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1. Choose (rA, rB, f ) ← 
F ,π and let t be the j-round transcript of π induced by
(rA, rB, f ).

2. For i = 1 to j : set Ii = Ii−1 ∪ Finder f (t1,...,i , Ii−1) (letting I0 = ∅), where
Finder f (x) is the set of queries/answers made by Finder f (x) to f .

3. Output
(

t, I j
)

.

Then

1. Ed←CF

[

SD
(

VIEWF ,π (d), (VIEWF ,π (d)A,VIEWF ,π (d)B)
)]

≤ ε, and

2. Pr[# of f − calls made in CF > T ] ≤ ε.

Lemma 5.2. (Restating Lemma 3.10). Let F be a simple function family and let
π = (A,B) be an �-query oracle-aided protocol, then (F , π) has a (64/δ2, �δ)-
DependencyFinder for any 0 < δ ≤ 1

4� .

We prove Lemma 3.10 by showing that a simple familyF has an “intersection finder”:
there exists an algorithm IntFinder such that

Pr
d←CF(F ,π,IntFinder),v←VIEWF ,π (d)

[IntersectI(v)] ≤ ε.

We then use the above and the fact that F is simple, to prove the lemma.
We start by proving the case of normal-form protocols whose parties make at most

one query per round.23 In Sect. 5.1, we extend the proof to arbitrary protocols. In the
following, for a view v describing an execution of an oracle-aided protocol π , we let
�i (v) be the number of queries made (by the non-idle party) in round i according to v.

Definition 5.3. (Normal-form protocols) An oracle-aided protocol π is in normal-
form if �i (v) ≤ 1 for every possible view v and every round i , that is, if a party makes
at most a single query to the oracle in each communication round.

For defining our dependency finder for such protocols, we use the following definition.

Definition 5.4. Let F be a function family and let π be an oracle-aided protocol. For
protocol transcript t and set of query/answer pairs I, let NoIntF ,π (t, I) = {ω ∈ 
F ,π

(t, I) : IntersectI(view(ω)|t |) = 0} and letVIEWF ,π
NoInt(y = (t, I))=VIEWNoIntF ,π (y)

(y).

Namely, VIEWF ,π
NoInt(y) is a random joint view v of π that is consistent with (t, I)

and has IntersectI(v) = 0. The following algorithm is defined with respect to a function
family F , protocol π and δ > 0.

Algorithm 5.5. (IntFinderF ,π,δ)

Input: a transcript t and a list I of query/answer pairs.
Oracle: f ∈ F .

23 Called “semi-normal form” in [1].



326 I. Haitner et al.

Operation: While there exists a query q with (q, ·) /∈ I and pq > δ/32, where pq is the
probability that q was asked either by A or by B in a random sample from
VIEWF ,π

NoInt(t, I):

Add (q, f (q)) to I (choose the lexicographically first q if there are more than one).

Namely, algorithm IntFinder considers executions of π in which the views of the
parties have no unexposed intersection query (i.e. a joint query that does not appear in
the query list) and are consistent with the given partial transcript and set of query/answer
pairs.
The goal of IntFinder is to find all “heavy queries”: those queries that have substantial

probability of being asked by one of the parties in a random such execution.
We prove Lemma 3.10 (for the case of normal-form protocols) by showing that

IntFinder is a (64/δ2, �δ)-DependencyFinder for (F , π). The heart of the proof is in
the following lemma, yielding that in a randomexecution ofCF = CF(F , π, IntFinder),
the probability that the views of the parties make an unexposed intersection query, in
any given round, is small.

Lemma 5.6. Let F be a finite function family and let π be an �-query, normal-form
protocol. Let t be a (possibly partial) transcript of π , let I be a set of query/answer
pairs, let NoInt = NoIntF ,π , and let D = VIEWF ,π

NoInt(t, I). Assume there exists δ > 0
such that Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ ≤ 1

4� for every query q, then the following
hold:

1. There exists a product distribution C overSupp(DA)×Supp(DB) withSD (D, C) ≤
2�δ.

2. Let D+ be the distribution of view(ω)|t |+1 for ω ← 
NoInt(t, I). Then Prv←D+
[IntersectI(v)] ≤ 4δ · Prv←D+

[

�|t |+1(v) = 1
]

.

We prove Lemma 5.6 in Sect. 5.2, but first use it for proving Lemma 3.10. We start
by showing that algorithm IntFinder defined above is a good DependencyFinder for
(F , π) (namely, we are proving Lemma 3.10 for normal-form protocols).

Claim 5.7. Let (F , π)be a pair of simple function family and �-query normal-from pro-
tocol, and let 0 < δ ≤ 1

4� . Then, algorithm IntFinder = IntFinderF ,π,δ is a (64/δ2, �δ)-
DependencyFinder for (F , π).

Proof. The following random variables are defined with respect to a random execu-
tion of CF = CF(F , π, IntFinder). Let W = (rA, rB, f ) ∈ 
 be the triplet cho-
sen in the first step of CF. Let V = view(W ) j (i.e. the j’th long prefix of the full
view implied by W ) and let T denote the ( j-round) transcript in V . For i ∈ [ j],
let Ii denote the value of Ii computed in CF, and for 2 ≤ i ≤ j let FirstInti =
Intersect Ii−1(Vi ) ∧ ¬ Intersect Ii−2(Vi−1) (where I0 = ∅). We start by showing that
IntFinder is a good dependencies remover. We do so by bounding the probability of
Intersect I j (V ). Since F is a simple family, this yields the first property required for be-
ing a (·, �δ)-DependencyFinder for (F , π). We later complete the proof by bounding
the number of queries made in CF.
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IntFinder is a Good Dependencies Remover. The following claim bounds the proba-
bility that a single “round” of CF causes an intersection.

Claim 5.8. Pr[FirstInti ] ≤ δ
8 · E[�i (V )] for every 2 ≤ i ≤ j .

Proof. In the following, we fix 2 ≤ i ≤ j and a value for (T 1,...,i−1, Ii−1), and prove
(the slightly stronger fact) that the claim holds even under any such fixing. We next
bound the probability that (under this fixing) the i’th round of π causes a collision.
Recall that by Process CF, we obtained Ii−1 = Ii−2 ∪ IntFinder f (T 1,...,i−1, Ii−2). The
definition of IntFinder yields that

Pr[q ∈ Vi−1 ∧ (q, ·) /∈ Ii−1 | ¬ Intersect Ii−1(Vi−1)] ≤ δ/32 (30)

for any query q. We can hence apply Lemma 5.6(2) with respect to the function family
F , protocol π , transcript T 1,...,i−1 and query/answer list Ii−1, yielding that

Pr
[

Intersect Ii−1(Vi ) | ¬ Intersect Ii−1(Vi−1)
]

≤ δ

8
· Pr [�i (V ) = 1 | ¬ Intersect Ii−1(Vi−1)

]

(31)

We conclude that

Pr [FirstInti ]

= Pr[Intersect Ii−1(Vi ) ∧ ¬ Intersect Ii−2(Vi−1)]
≤ Pr[Intersect Ii−1(Vi ) ∧ ¬ Intersect Ii−1(Vi−1)]
= Pr[¬ Intersect Ii−1(Vi−1)] · Pr[Intersect Ii−1(Vi ) | ¬ Intersect Ii−1(Vi−1)]
≤ Pr[¬ Intersect Ii−1(Vi−1)] · δ

8
· Pr [�i (V ) = 1 | ¬ Intersect Ii−1(Vi−1)

]

≤ δ

8
· E[�i (V )]. (32)

The first inequality holds since extending I never increases the probability of intersec-
tion. Since Eq. (32) holds conditioned on any fixing of (T 1,...,i−1, Ii−1), it also holds
without this conditioning and the claim follows.

Continuing with the proof (of Claim 5.7), Claim 5.8 yields that

Pr
[

Intersect I j (V )
] ≤ Pr

⎡

⎣

∨

2≤i≤ j

FirstInti

⎤

⎦ ≤
∑

2≤i≤ j

δ

8
· E [�i (V )]

= δ

8
E

⎡

⎣

∑

2≤i≤ j

�i (V )

⎤

⎦ ≤ �δ

8
. (33)
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The first inequality holds since the first round cannot have an intersection query (and
since extending I never increases the probability of intersection). The third inequality
holds since � bounds the overall number of queries made in any execution of π .

Since for anyd =(t, I)∈Supp(T , I j ) it holds that SD (VIEW(d),VIEWNoInt(d)) =
Prω←
(d)[w /∈ NoInt(d)] = Prv←VIEW(d)[IntersectI(v)], it follows that

Ed←(T ,I j )
[SD (VIEW(d),VIEWNoInt(d))]

= Ed←(T ,I j )

[

Pr
v←VIEW(d)

[IntersectI(v)]
]

= Pr[Intersect I j (V )]
≤ �δ

8
, (34)

where the inequality hold by Eq. (33). We complete the proof of this part by showing
that VIEWNoInt(d) is close to some product distribution over the views of the parties.
The definition of IntFinder yields that

Pr[q ∈ V ∧ (q, ·) /∈ I j | ¬ Intersect I j (V ), (T , I j ) = d] ≤ δ

32
(35)

for any possible query q and d ∈ Supp(T , I j ). Therefore, Lemma 5.6(1) yields that

SD (VIEWNoInt(d), C(d)) ≤ �δ

16
, (36)

for any d ∈ Supp(T , I j ), where C(d) is a product distribution over the views of the par-
ties. It follows (using the triangle inequality) that SD

(VIEWNoInt(d),
(VIEWNoInt(d)A,

VIEWNoInt(d)B
)) ≤ 3

16 · �δ for any d ∈ Supp(T , I j ), and therefore

Ed←(T ,I j )

[

SD
(VIEWNoInt(d),

(VIEWNoInt(d)A,VIEWNoInt(d)B
))] ≤ 3

16
· �δ.

(37)

Combining Eqs. (34) and (37) and the triangle inequality yields that

Ed←(T ,I j )

[

SD
(VIEW(d),

(VIEW(d)A,VIEW(d)B
))] ≤ 9

16
· �δ ≤ �δ.

Bounding the query complexity of IntFinder. We complete the proof of Claim 5.7
by bounding the probability that CF makes too many oracle queries. For i ∈ [ j], let
Qi = {q : (q, ·) ∈ Ii \ Ii−1} and let Q = ⋃

i∈[ j] Qi (i.e. Q is the set of queries appearing
in a query/answer pair of I j ). The heart of the proof is in the following claim.
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Claim 5.9. For every query q, it holds that

∑

i∈[ j]
Pr[q ∈ Qi ∧ ¬ Intersect Ii−1(Vi )] ≤ 32

δ
· Pr[q ∈ V ].

Namely, Claim 5.9 relates the probability that a query is asked by IntFinder, to the
probability that this query is asked by one of the parties in V .

Proof. Fix i ∈ [ j] for a moment. Assume that during the i’th call to IntFinder on input
(t∗, ·) algorithm IntFinder is about to ask a query q̂ , and let I∗ be the value of I at this
time. The definition of IntFinder tells us that

Pr[q̂ ∈ Vi | W ∈ 
(I∗, t∗),¬ IntersectI∗(Vi )] ≥ δ/32 (38)

Applying a simple Bayes’ rule, it follows that

Pr[q̂ ∈ Vi | W ∈ (I∗, t∗)] ≥ Pr[q̂ ∈ Vi ∧ ¬ IntersectI∗(Vi ) | W ∈ 
(I∗, t∗)]
= Pr[¬ IntersectI∗(Vi ) | W ∈ (I∗, t∗)] · Pr[q̂

∈ Vi | W ∈ 
(I∗, t∗),¬ IntersectI∗(Vi )]
≥ Pr[¬ IntersectI∗(Vi ) | W ∈ 
(I∗, t∗)] · δ

32
. (39)

For i ∈ [ j], let Si (q) be the set of (I∗, t∗) pairs that cause IntFinder to ask the query
q in the i’th round of CF. That is: if W ∈ 
(I∗, t∗), then IntFinder asks the query q in
the i’th round of CF, and the value of I before it does so is I∗. It follows that

Pr[q ∈ V ] ≥
∑

i∈[ j]

∑

(I∗,t∗)∈Si (q)

Pr[W ∈ 
(I∗, t∗)] · Pr[q ∈ V | W ∈ 
(I∗, t∗)]

≥
∑

i∈[ j]

∑

(I∗,t∗)∈Si (q)

Pr[W ∈ 
(I∗, t∗)] · δ

32
· Pr[¬ IntersectI∗(Vi ) | W ∈ 
(I∗, t∗)]

= δ

32
·
∑

i∈[ j]

∑

(I∗,t∗)∈Si (q)

Pr[W ∈ 
(I∗, t∗) ∧ ¬ IntersectI∗ (Vi )]

= δ

32
·
∑

i∈[ j]
Pr[q ∈ Qi ∧ ¬ Intersect Ii−1 (Vi )].

The first inequality holds since a query is asked at most once in CF (and hence we are
summing over disjoint events) and the second one by Eq. (39).

Let ˜CF be the variant of CF that aborts in case Intersect Ii−1(Vi ) = 1 for some i ∈ [ j]
(i.e. ˜CF aborts right after computing Ii−1). Let ˜Qi be the respective analogues of Qi

defined with respect to a random execution of ˜CF, and let ˜Q = ⋃

i∈[ j] ˜Qi (i.e. ˜Q denote

all queries asked by IntFinder in ˜CF). The same calculation done in Eq. (33) yields that
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SD(Q, ˜Q) ≤ �δ/8 (40)

In the following, we bound the number of queries made by IntFinder in ˜CF and derive
a similar bound on CF.
A simple argument yields that Pr[q ∈ ˜Qi ] ≤ Pr[q ∈ Qi ∧ ¬ Intersect Ii−1(Vi )], for

every i ∈ [ j] and every query q. Thus, Claim 5.9 yields that

Pr[q ∈ ˜Q] =
∑

i∈[ j]
Pr[q ∈ ˜Qi ] ≤ 32

δ
· Pr[q ∈ V ] (41)

for every query q. It follows that

E
[∣

∣˜Q
∣

∣

] = E

[

∑

q

χ
˜Q(q)

]

≤ 32

δ
· E

[

∑

q

χV (q)

]

≤ 32�/δ (42)

(where χx (q) = 1 if q ∈ x and χx (q) = 0 otherwise). The first inequality holds by
Eq. (41) and linearity of expectation and the last one since at most � queries are asked
in V .

AMarkov argument yields that Pr
[∣

∣˜Q
∣

∣ > 64/δ2
] ≤ �δ/2. Hence, Eq. (40) yields that

Pr
[|Q| > 64/δ2

] ≤ �δ/2 + �δ/8 < �δ.

5.1. Handling Non Normal-Form Protocols

In this section, we show how to construct a DependencyFinder for every simple func-
tion family and every oracle-aided protocol (possibly not in normal form). We do this by
showing how to use a DependencyFinder for the normal-form variant of a protocol,
defined below, to construct a DependencyFinder (of the same quality) for the original
protocol.

Definition 5.10. (The normal-form variant of a protocol) Given an �-query oracle-
aided protocol π , we define its normal-form variant πN as follows: the parties of πN
act as in π while sending additional “dummy” messages; following each oracle query
made through the execution, the parties interact in a “dummy round”—the active party
sends ⊥ to the other party who answers with ⊥. In addition, before sending the next
message of π , the parties interact in (� − k) consecutive dummy rounds, where k is the
number of oracle queries made by the active party in the current round.24

Lemma 5.11. Let F be a function family, let πG be an oracle-aided protocol and let
πN be its normal-form variant. Assume (F , πN) has a (T, ε)-DependencyFinder, then
(F , πG) has a (T, ε)-DependencyFinder.

The straightforward proof of Lemma 5.11 is given below, but first let us use it for
concluding the proof of Lemma 3.10.

24 Note that each round in the original protocol is replaced by � rounds in its normal-form variant, hence
concealing the number of actual oracle queries made in each round.
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Proof of Lemma 3.10. Let F be a simple function family, let πG = (A,B) be an �-
query oracle-aided protocol and let πN be its normal-form variant. Since πN is in nor-
mal form according to Definition 5.3, Claim 5.7 yields that (F , πN) has a (64/δ2, �δ)-
DependencyFinder for any δ ≤ 1/4�. Hence, Lemma 5.11 yields that the same holds
for (F , πG). �

Proof of Lemma 5.11. Let F , πG and πN be as in the statement of the lemma, and let
FinderN be a (T, ε)-DependencyFinder for (F , πN). We define the
DependencyFinder for (F , πG) as follows: �

Algorithm 5.12. (FinderG)

Input: a transcript t of πG and a list I of query/answer pairs.
Oracle: f ∈ F .

Operation:

1. Create the transcript tN from t by inserting 2� strings ‘⊥,’, following each but the
last message in t.

2. For k = 1 to � do:

(a) Set I = I ∪ FinderN(I, tN).
(b) Set tN = tN,⊥,⊥

It is easy to verify that a random output of CFN can be sampled by applying a
(deterministic) injective function M to a random output of CF, where M preserves the
number of queries in the input (specifically,M is simply the padding function described
in the first line of Algorithm 5.12). This observation immediately yields the required
bound on the number of oracle queries made in CF, since these outputs determine
the number of queries made to the oracle. To prove that the first property required by
Definition 3.9 also holds (see the equation below), we also note that a random sample of
VIEWF ,πN(dN), for dN ∈ Supp(CFN), can be sampled by applying a (deterministic)
injective function to VIEWF ,πG(M−1(dN)). It follows that

Ed←CF

[

SD
(

VIEWF ,πG(d), (VIEWF ,πG(d)A,VIEWF ,πG(d)B)
)]

= Ed←CFN

[

SD
(

VIEWF ,πN(d), (VIEWF ,πN(d)A,VIEWF ,πN(d)B)
)]

≤ ε,

concluding the proof of the lemma. �

5.2. Proving Lemma 5.6

The following discussion is with respect to fixed values of t and I, where NoInt, D and
D+ are defined with respect to these values as in the statement of 5.6. Towards proving
5.6, we make the following observations: in Claim 5.13, we show that under the no
intersection condition, D is distributed as some product distribution. In Claim 5.15, we
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use the first observation to express D as a uniform sampled edge of a dense bipartite
graph.25

5.2.1. Product Characterization

Claim 5.13. There exist two distributions A and B with D = (A × B) | ¬ IntersectI .

Proof. We show that we can writeD(v) = γA(vA) ·γB(vB) ·c for every v = (vA, vB) ∈
Supp(D), where γA and γB are appropriate functions, and c is a global constant. This
would imply the claim, letting A be the distribution over Supp(DA) with A(vA) =
cA · γA(vA), and B be the distribution over Supp(DB) with B(vB) = cB · γB(vB), for
the appropriate constants cA and cB.
Proposition 3.3 yields that

D(v) = Pr
[rA, rB] · αI
vA|vB · αI

vB|vA
Pr
|I [t,NoInt] , (43)

for every v = (rA, rB, ·) ∈ Supp(D). Since the random coins of the parties are chosen
independently, it holds that Pr
[rA, rB] = Pr
[rA] · Pr
[rB]. Since F is a finite family,
it holds that αI

vA|vB = αI
vA

and that αI
vB|vA = αI

vB
, for every v ∈ Supp(D). Taking

γA(vA) : =Pr
[rA] · αI
vA

and γB(vB) : =Pr
[rB] · αI
vB
, we obtain the desired result.

5.2.2. Graph Characterization

LetA andB be the distributions guaranteed byClaim 5.13. This product characterization
allows us to think ofD as the uniform distribution over the edges the following bipartite
graph G = (VA, VB; E).

Definition 5.14. (The graph G) A node a ∈ VA corresponds to a view viewA(a) of A
in the support ofA, and the number of nodes corresponding to a view vA is proportional
to A(vA).26 A node b ∈ VB corresponds to a view viewB(b) of B in an analogues
manner. Let E = {(a, b) ∈ (VA × VB) : IntersectI(viewA(a), viewB(b)) = 0}.

Hence,A and B correspond to the uniform distribution over VA and VB, respectively,
andClaim5.13 yields thatD is the distribution of (viewA(a), viewB(b)) for (a, b) ← E .
We show that D is close to being a product distribution by showing that G is dense.
Specifically, we show that every vertex in G is connected to most of the vertices on the
other side. For x ∈ VA ∪ VB, let d(x) denote the degree of x in the graph G.

Claim 5.15. It holds that d(a) ≥ |VB| · (1 − 2�δ), and d(b) ≥ |VA| · (1 − 2�δ) for
every b ∈ VB

25 Observations of similar spirit were done in [1], and parts of the following text are taken verbatim from
there.

26 SinceF is finite, all probabilities in consideration are rational, and therefore, the described graph is well
defined.
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Proof. Since, by assumption, Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ for every query q and
since � bounds the query complexity of π , a union bound yields that

Pr
vA←DA

[IntersectI(vA, vB)] ≤ �δ (44)

for every fixed vB ∈ Supp(DB), and the analogous condition for every fixed vA ∈
Supp(DA). For a vertex a ∈ VA, let

�

E(a) = {b ∈ VB : (a, b) /∈ E}. We next show that
∑

b∈�

E(a)
d(b) ≤ �δ · |E | for every a ∈ VA. Note that the probability of a vertex x being

chosen when selecting a random edge in E is d(x)
|E | . Assuming that

∑

b∈�

E(a)

d(b)
|E | >

�δ, then PrvB←DB

[

IntersectI(viewA(a), vB)
]

> �δ, contradicting equation (44). An
analogous argument shows that

∑

a∈�

E(b)
d(a) ≤ �δ · |E | for every b ∈ VB. Clearly, the

degree of each vertex is at least 1 and �δ ≤ 1/4, and hence, the following fact concludes
the proof:

Fact 5.16. [1, claim4.6] Let G = (VA, VB; E) be a nonempty bipartite graph. Assume

there exists γ ≤ 1/2 such that | �

E (v)| ≤ γ |E | for every vertex v ∈ (VA ∪ VB)), then
d(a) ≥ |VB| · (1 − 2γ ) for every a ∈ VA, and d(b) ≥ |VA| · (1 − 2γ ) for every b ∈ VB.

We now use the above claims to prove Lemma 5.6.

Proof of Lemma 5.6. The first part of the lemma immediately follows fromClaim 5.15.
We prove the second part of the lemma by showing that

Pr
v←D+|vB=v+

B

[

IntersectI(vA, v+
B )
] ≤ 4δ · �|t |+1(v

+
B ) (45)

for every v+
B ∈ Supp(D+

B ), where we assume for concreteness that B is active in the
(|t |+1) round ofπ . Since Eq. (45) trivially holds in case �|t |+1(v

+
B ) = 0, in the following

we prove it for �|t |+1(v
+
B ) = 1 (recall that, by definition, �|t |+1(v

+
B ) ≤ 1).

Fix such view v+
B ∈ Supp(D+

B ), let vB′ ∈ Supp(DB) be its |t |-round prefix and let
q ′ be the query asked in its (|t | + 1) round. We assume without loss of generality that
(q ′, ·) /∈ I, as otherwise the proof is trivial. Fix further b ∈ VB with viewB(b) =
vB′ , let N (b) be b’s neighbours in G and let S = {

a ∈ N (b) : q ′ ∈ viewA(a)
}

. Since
Prv←D[q ∈ v ∧ (q, ·) /∈ I] ≤ δ, we have that

∑

a∈S d(a)

|E | ≤ δ (46)

and therefore

Pr
a←N (b)

[a ∈ S] = |S|
d(b)

≤ |S|
(1 − 2�δ)|VA| ≤ |S||VB|

(1 − 2�δ)|E |
≤

∑

a∈S d(a)

(1 − 2�δ)2|E | ≤ δ

(1 − 2�δ)2
≤ 4δ (47)
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The first and third inequalities hold by Claim 5.15, the second since |E | ≤ |VA||VB|,
and the fourth by Eq. (46). Since Eq. (47) holds for every b ∈ VB with viewB(b) = vB′ ,
it follows that

Pr
v←D+|vB=v+

B

[

q ′ ∈ vA
] ≤ 4δ. (48)

It follows that Prv←D+|vB=v+
B

[

IntersectI(vA, v+
B )
] ≤ 4δ, concluding the proof of

Eq. (45), and thus the proof of the lemma. �
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