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Abstract. Amodular approach to constructing cryptographic protocols leads to simple
designs but often inefficient instantiations. On the other hand, ad hoc constructions may
yield efficient protocols at the cost of losing conceptual simplicity. We suggest a new
design paradigm, structure-preserving cryptography, that provides a way to construct
modular protocols with reasonable efficiency while retaining conceptual simplicity. A
cryptographic scheme over a bilinear group is called structure-preserving if its public
inputs and outputs consist of elements from the bilinear groups and their consistency can
be verified by evaluating pairing-product equations. As structure-preserving schemes
smoothly interoperate with each other, they are useful as building blocks in modular
design of cryptographic applications. This paper introduces structure-preserving com-
mitment and signature schemes over bilinear groups with several desirable properties.
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The commitment schemes include homomorphic, trapdoor and length-reducing com-
mitments to group elements, and the structure-preserving signature schemes are the
first ones that yield constant-size signatures on multiple group elements. A structure-
preserving signature scheme is called automorphic if the public keys lie in the message
space, which cannot be achieved by compressing inputs via a cryptographic hash func-
tion, as this would destroy the mathematical structure we are trying to preserve. Auto-
morphic signatures can be used for building certification chains underlying privacy-
preserving protocols. Among a vast number of applications of structure-preserving
protocols, we present an efficient round-optimal blind-signature scheme and a group
signature scheme with an efficient and concurrently secure protocol for enrolling new
members.

Keywords. Structure-preserving cryptography, Structure-preserving signatures,
Automorphic signatures, Homomorphic commitments, Groth–Sahai proofs,
Group signatures, Blind signatures.

1. Introduction

1.1. Structure-Preserving Cryptography

Cryptographic protocols often use modular constructions that combine general building
blocks such as commitments, encryption, signatures, and zero-knowledge proofs. Mod-
ular design is useful to show the feasibility of realizing a particular security goal andmay
lead to simpler security proofs that are less error-prone than seen in ad hoc constructions.
On the other hand, modular design can incur a significant overhead, and in feasibility
proofs efficient instantiations are often left as the next challenge. This challenge is often
solved by finding a “cleverly crafted” efficient solution for the specific security goal.
However, modular constructions make it easier to design and understand protocols. It is
therefore desirable to have a framework of interoperable building blocks with efficient
instantiations such that we can design protocols that are both modular and efficient at
the same time.
Since the seminal works in [24,63,86], bilinear groups have been widely used for

constructing efficient cryptographic protocols. However, protocols defined over bilinear
group are not necessarily compatible with each other as they may involve both group
and field elements in different places as well as additional cryptographic primitives such
as collision-resistant hash functions for instance.
We propose structure-preserving cryptography as an approach for efficiently instan-

tiating modular constructions over bilinear groups � := (p,G, G̃,GT , e,G, G̃) where
G, G̃ andGT are groups of prime order p generated by G, G̃ and e(G, G̃), respectively,
with a bilinear map e : G × G̃ → GT . In structure-preserving cryptography, building
blocks are designed over common bilinear groups � such that

– all public objects such as public keys, messages, signatures, commitments and
ciphertexts are elements of the groups G and G̃, and

– verifying relations of interest, such as signature verification or opening of a commit-
ment, can be done by performing group operations and evaluating pairing-product
equations of the form
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ci, j = 1,

where ci, j ∈ Z are constants specified by the scheme.

We call cryptographic schemes satisfying these conditions structure-preserving. It will
sometimes be useful to consider also relaxed structure preservation where public ele-
ments in the target groupGT are permitted as well and where pairing-product equations
may be of the form

∏
i
∏

j e(Xi , Ỹ j )
ci, j = T with T ∈ GT .

The properties defining structure preservation are preserved bymodular constructions.
Namely, a scheme built by modularly combining (relaxed) structure-preserving building
blocks is (relaxed) structure-preserving aswell. They therefore offer strong compatibility
and modularity. On the other hand, the restrictive properties make it more challenging
to design structure-preserving schemes. In particular, structure-preserving cryptography
inherently prohibits the use of collision-resistant hash functions that break the underlying
mathematical structure of the bilinear groups.
Combining non-interactive proofs with other primitives is a typical approach in mod-

ular construction of secure cryptographic protocols. A classical way of realizing efficient
instantiations is to rely on the random-oracle heuristic [18] for non-interactive proofs—
or to directly use interactive assumptions like (variations of) the LRSW assumption
[78] and “one-more” assumptions [17]. Due to a series of criticisms starting with [37],
more and more practical schemes are being proposed and proved secure in the standard
model (i.e., without random oracles) and under falsifiable (and thus non-interactive)
intractability assumptions [80]. In [59], Groth and Sahai presented the first (and cur-
rently the only) efficient non-interactive proof system based on standard assumptions
in bilinear groups. Their proof system, called GS for short, exerts its full power as a
non-interactive proof-of-knowledge system when the proof statement is a set of rela-
tions described by pairing-product equations, for which thewitnesses are group elements
in the source groups, that is G and G̃. Due to these limitations, however, many exist-
ing cryptographic schemes cannot be modularly combined with GS proofs. In contrast,
structure-preserving schemes are defined so that they are compatible with the GS proof
system. Accordingly, by using GS proofs, one can efficiently prove one’s knowledge
about the witness for relations of interest in structure-preserving schemes.
We address two major building blocks in cryptographic protocol design, commitment

schemes and signature schemes, and present their structure-preserving instantiations
with several useful properties as explained in the following.

1.2. Homomorphic Trapdoor Commitments

A non-interactive commitment scheme allows a sender to create a commitment to a
message. The commitment hides the message but the sender may later choose to open
the commitment to the message. A commitment is bound to a message in the sense that
a commitment cannot be opened to two different messages. On top of the fundamental
properties of hiding and binding, a commitment may have other desirable features. In
a trapdoor commitment scheme [60,83], a certain piece of trapdoor information makes
it possible to circumvent the binding property and open a commitment to an arbitrary
message. In a homomorphic commitment scheme, messages and commitments belong
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to abelian groups, and by multiplying two commitments, we obtain a commitment to the
product of the committed messages. Finally, a commitment scheme is often required to
be length-reducing such that the commitment is shorter than the message.
An example that provides all those properties is a generalization of Pedersen commit-

ments [83] where a message is a vector of values in Zp and a commitment consists of
only one group element. Such commitments have been found useful in contexts such as
mix-nets, voting, digital credentials, blind signatures, leakage-resilient one-way func-
tions and zero-knowledge proofs [11,30,50,66,77,81].
We present structure-preserving commitment schemes whose public keys, messages,

commitments and openings are elements of bilinear groups, and whose opening is veri-
fied by evaluating pairing-product equations. Our commitments are trapdoor and homo-
morphic, and some of them are length-reducing as well. The attributes that discriminate
our constructions are the types of bilinear groups used and the groups that messages and
commitments belong to. (See Table 1 on page 21 for a summary.)

• The first and the second homomorphic trapdoor commitment schemes are length-
reducing by mapping vectors of source-group elements to a constant number of
target-group elements and thus relaxed structure-preserving.

• The third homomorphic trapdoor commitment scheme is strictly structure-
preserving, whichmeans bothmessages and commitments consists of source-group
elements. They are, however, not length-reducing.

• The last commitment scheme takes messages from Zp and maps them to a single
source-group element. This scheme is by definition not structure-preserving though
all other properties are provided. We include it here for its usefulness as a building
block for applications.

Our commitment schemes can be used to build structure-preserving one-time signa-
tures, as we demonstrate in Sect. 4. The first two length-reducing schemes are useful in
reducing the size of zero-knowledge arguments. Groth [58] showed that the square-root-
size zero-knowledge arguments in [57] canbe reduced to cubic-root-size zero-knowledge
arguments by using our homomorphic trapdoor commitments. We explore this topic in
Sect. 3.1.

There are follow-upworks about structure-preserving commitments. In [9], it is proved
that strictly structure-preserving commitment schemes cannot yield commitments that
are shorter than messages; a commitment to a k-element message must have more than
k elements itself. This should be contrasted with the relaxed structure-preserving com-
mitment schemes we give, where a commitment to a k-element message consists of a
small constant number of target-group elements.

1.3. Signatures

A signature scheme is called structure-preserving if the public verification keys, mes-
sages, and signatures are source-group elements of bilinear groups, and the verification
of a signature consists of evaluating pairing-product equations. It is called automorphic
if in addition its verification keys lie in its message space. There are many applications
using combinations of digital signatures and non-interactive zero-knowledge proofs of
knowledge such as blind signatures [10,43], group signatures [16,19,68], anonymous
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credential systems [15], verifiably encrypted signatures [26,85], non-interactive group
encryption [38] and so on, and structure-preserving signatures are ideally suited for these
applications.
Research on structure-preserving signature schemes was initiated by Groth [54], who

gave the first feasibility result based on the decision linear assumption (DLIN) [23]. His
structure-preserving signature scheme yields a signature of sizeO(k)when the message
consists of k group elements. While it is remarkable that the security can be based on
a simple standard assumption, the scheme is not practical due to its large constant fac-
tor. Based on the q-Hidden LRSW assumption for asymmetric bilinear groups, Green
and Hohenberger [53] presented a structure-preserving signature scheme that only pro-
vides security against random-message attacks. Unfortunately, an extension to chosen-
message attack security is not known. In [38], Cathalo et al. gave a scheme with relaxed
structure preservation based on a combination of the Hidden Strong Diffie–Hellman
Assumption (HSDH), the Flexible Diffie–Hellman Assumption, and the DLIN assump-
tion. Their signature consists of 9k + 4 group elements for a k-element message, and it
was left as an open problem to construct constant-size signatures. There are also several
signature schemes, such as [15,22,31,35], where validity is defined via pairing-product
equations, but whose signatures do not only contain group elements.
We present several constructions of structure-preserving signatures with high effi-

ciency and useful properties.

• Structure-PreservingOne-Time Signatures. We construct two signature schemes
that are existentially unforgeable when the adversary is only allowed one signing
query. The schemes are currently the most efficient in the literature, and their secu-
rity follows from the decision Diffie–Hellman and the decision linear assumptions,
respectively.

• Constant-Size Structure-Preserving Signatures.We construct the first constant-size
structure-preserving signature scheme. A signature consists of 7 group elements
independently of the message length and the verifier needs to check two pairing-
product equations. Existential unforgeability against adaptive chosen-message at-
tacks is proven under a new non-interactive assumption called the Simultaneous
Flexible Pairing Assumption (SFP).

• Automorphic Signatures. We construct the first automorphic signature scheme,
whose signatures consist of 5 group elements. We prove the scheme existentially
unforgeable against adaptive chosen-message attacks under a variant of the Strong
Diffie–Hellman assumption [22].

After the publication of [5], structure-preserving signatures have been intensively
studied. Several constructions over asymmetric bilinear groups, i.e., where G �= G̃, are
presented in [6]. The latter shows that there is a schemewhose signature consists of only 3
group elements when the security is directly proven in the generic bilinear-group model.
It also presents a scheme with 4-element signatures, which is 3 group elements fewer
compared to our scheme in Sect. 5.1. Its security is based on a non-interactive assumption
that is, however, not known to be as tight as the discrete-logarithm assumption when
assessed in the generic bilinear-group model. This is the case for the assumption (q-SFP
in Sect. 2.5) that implies security of our scheme.
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Significant theoretical advances are made in [2,3], which present structure-preserving
signature schemes based on compact and static, i.e., not q-type, assumptions such as the
decision linear assumption. The schemes are over symmetric and asymmetric bilinear
groups and yield signatures consisting of 11 to 14 group elements.

1.4. Applications

The usefulness of structure-preserving cryptography as a design paradigm is demon-
strated by a growing list of applications including round-optimal blind signatures [5,49],
group signatures with concurrent join [5,49,72,73], homomorphic signatures [14,71],
anonymous proxy signatures [47], delegatable anonymous credentials [46], direct anony-
mous attestation [20], transferable e-cash [21,48], conditional e-cash [89], compact veri-
fiable shuffles [39], network coding [13], oblivious transfer [1,33,53], chosen-ciphertext-
secure encryption [3,34,62] and many more. Among this vast number of applications,
we present group signatures and blind signatures in this paper.

1.4.1. Group Signatures with Concurrent Join

Wegive amodular structure-preserving construction of group signatures [41] supporting
a concurrent join procedure [68] for enrolling new members.
A group signature scheme is a classical primitive ensuring user anonymity. It allows

members that were enrolled by a group manager to sign on behalf of a group without
revealing their identity. To prevent misuse, anonymity can be revoked by an authority.
There are numerous constructions of group signature schemes in the literature provid-
ing different properties. However, previous constructions are not in the standard model,
do not provide a concurrent join procedure, lack some important property like non-
frameability or are inefficient. The scheme in [68] is the first one that allows efficient
concurrent join, but its security relies on the random-oracle model [18]. The scheme in
[12] is non-frameable but only allows new members to join sequentially and is based on
strong interactive assumptions. Both [28,29] provide efficiencywith reasonable assump-
tions but the group manager enrolling members knows their secret keys and can thus
frame them by creating signatures using their keys. The scheme in [55] is non-frameable
but does not allow concurrent join. More recent papers, such as [42,75,76], focus on
advanced properties leaving one or more of the above issues unaddressed.

1.4.2. Round-Optimal Blind Signatures

Blind signatures, introduced by Chaum [40], allow a user to obtain a signature on a
message such that the signer cannot relate the resulting signature to the execution of
the signing protocol. They were formalized by [64,84] and practical schemes without
randomoracles have been constructed in e.g., [36,66,67,82]. However, all these schemes
require more than one round (i.e., two moves) of communication between the user and
the signer to issue a blind signature. This is even the case for most instantiations in the
random-oracle model, an exception being Chaum’s scheme proved secure in [17] under
an interactive assumption.
In [43], Fischlin gives a generic construction of round-optimal blind signatures in the

common reference string (CRS) model; the signing protocol consists of one message
from the user to the signer and one response by the signer. This immediately implies
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concurrent security, an explicit goal in other works such as [61]. Before our work, a
practical instantiation of round-optimal blind signatures in the standard model was an
open problem. Using our automorphic signature scheme, we provide the first efficient
instantiation, which is the basis for commuting signatures and verifiable encryption
in [46].

1.5. Correspondence to Preliminary Papers and Organization

This paper is based on three papers [7,45,56] submitted separately to crypto 2010 and
presented as a merged paper [5], in which the term “structure-preserving signatures” is
introduced. In [56], Groth presented the first homomorphic trapdoor commitments to
group elements which are, moreover, length-reducing. Fuchsbauer [45] gave the first
efficient structure-preserving signatures and used them to efficiently implement round-
optimal blind signatures in the standard model. Abe et al. [7] then gave the first constant-
size signature scheme on vectors of general group elements and constructed a group
signature scheme with concurrently secure enrollment of new members.
Section 2 introduces notations, security notions and building blocks used in this paper.

It includes, in Sect. 2.7, a useful technique that appeared in [7]. Section 3 features several
homomorphic trapdoor commitment schemes, which originate from [7,56]. Section 4
presents one-time signature schemes from [7], which can be a warm-up to the fully
fledged structure-preserving signature scheme in Sect. 5. In Sect. 6, we present the
automorphic signature scheme from [45]with a technique from [8] to extend themessage
space. Finally, Sect. 7 contains applications discussed above: the group signature scheme
and the blind-signature scheme which originally appeared in [7] and [45], respectively.

2. Preliminaries

2.1. Notation

For a set S, x ← S denotes assigning to x a uniformly random value in S. Similarly,
x1, . . . , xk ← S means independent uniformly random selection of k elements from
S. For a probabilistic algorithm A, we write y := A(x; r) for assigning y the value of
the output of the algorithm when running it on input x using randomness r . We write
y ← A(x) for the process of picking uniformly random r and setting y := A(x; r).
By Pr[y ← Exp(x) : Cond(y)], we denote the probability that the condition Cond

holds for the output y of running the experiment Exp on some input x . The probability
is taken over all coin flips used in the experiment Exp. Typically, the input x will be of
the form 1λ, where λ ∈ N is a security parameter. We say f : N → [0, 1] is negligible if
f (λ) = λ−ω(1) and g : N → [0, 1] is overwhelming if g(λ) = 1− f (λ) for some negli-
gible function f . When defining security, we require the attacker’s success probability
to be negligible as a function of the security parameter.
We will work over groups G, G̃,GT of prime order p, which we denote multiplica-

tively. We will in general denote group elements by capital letters, i.e., R ∈ G, S̃ ∈
G̃, T ∈ GT . Integers modulo p will be denoted by lower case or Greek letters. We
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define G
∗ = G\{1}, G̃∗ = G̃\{1} and G

∗
T = GT \{1}. When �X is a tuple of group

elements, | �X | denotes the number of elements in �X .
When a group element is given as input to a function, its group membership must be

tested. If the test fails, the function should output a special symbol that means rejection
of the input. For conciseness of the description, we treat this procedure as implicit
throughout the paper.

2.2. Commitment Schemes

A commitment scheme allows a sender to commit to a secret message msg. Later the
sender may open the commitment and reveal the value msg to the receiver. We focus
on non-interactive commitment schemes where the sender and receiver do not need to
interact to commit or to open commitments; both the commitment and the opening are
bitstrings generated by the sender without interacting with the receiver.
We rely on a trusted setup phase where joint system parameters are generated and

a commitment key is produced. We deliberately separate the setup phase in two parts
Setup and Key to distinguish joint system parameters (which in our schemes will con-
tain a description of bilinear groups that may be shared with other protocols such as
signature schemes, encryption schemes) and the commitment key, which is specific to
the commitment scheme.

Definition 1. (Trapdoor Commitment Scheme) We define a non-interactive trapdoor
commitment scheme C as a tuple of polynomial-time algorithms C = (Setup,Key,
Com,Vrf,Sim,Equiv) in which:

• gk ← Setup(1λ) is a common-parameter generator that takes security parameter λ

and outputs a set of common parameters, gk.
• (ck, tk) ← Key(gk) is a key generator that takes gk as input and outputs a commit-
ment key ck and a trapdoor key tk. The commitment key ck determines the message
space Mck , the commitment space Cck and the opening space Ock .

• (com, open) ← Com(ck,msg) is a commitment algorithm that takes ck and mes-
sagemsg ∈ Mck and outputs a commitment com ∈ Cck and an opening open ∈ Ock .

• 1/0 ← Vrf(ck, com,msg, open) is a verification algorithm that takes ck, com ∈ Cck ,
msg ∈ Mck and open ∈ Ock as input and outputs 1 or 0 representing acceptance
or rejection, respectively.

• (com, ek) ← Sim(ck) takes commitment key ck and outputs commitment com ∈
Cck and equivocation key ek.

• open ← Equiv(ck,msg, ek, tk) takes ck, ek, tk andmsg ∈ Mck as input and returns
an opening open.

For correctness, it must hold that for all λ ∈ N:

Pr

[
gk ← Setup(1λ); (ck, tk) ← Key(gk)
msg ← Mck; (com, open) ← Com(ck,msg)

: 1 ← Vrf(ck, com,msg, open)

]

= 1.

For perfect trapdoor commitment schemes, the experiment {gk ← Setup(1λ); (ck, tk)
← Key(gk); msg ← Mck ; (com, open) ← Com(ck,msg); (com′, ek) ← Sim(ck);
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open′ ← Equiv(ck,msg, ek, tk)} must yield identical probability distributions for (ck,
msg, com, open) and (ck,msg, com′, open′).

In this paper, we consider Vrf as deterministic and say that (msg, com, open) is valid
with respect to ck if 1 ← Vrf(ck, com,msg, open). It follows from the correctness of the
commitment scheme that in a perfect trapdoor commitment scheme, the equivocation of
a trapdoor commitment will be accepted by the verifier.
Commitment schemes must be hiding and binding. Since commitments generated

by Sim do not contain any information about the message, a perfect trapdoor commit-
ment scheme is perfectly hiding in the sense that legitimate commitments do not reveal
anything about the message. For the binding property, we use the following standard
definition.

Definition 2. (Binding) A commitment scheme is computationally binding if for any
probabilistic polynomial-time adversary A

Pr

⎡

⎣gk ← Setup(1λ); ck ← Key(gk)
(com,msg, open,msg′, open′) ← A(ck)

:
msg �= msg′
1 ← Vrf(ck, com,msg, open)
1 ← Vrf(ck, com,msg′, open′)

⎤

⎦

is negligible.

Definition 1 follows a typical definition of a trapdoor commitment scheme with a
simulation algorithm Sim that generates fake commitments. A slightly stronger defi-
nition referred to as a chameleon hash [69] demands Equiv to equivocate legitimate
commitments generated by Com.

Definition 3. (Homomorphic) A commitment scheme is homomorphic if for any cor-
rectly generated ck, the message, commitment and opening spaces are abelian groups
with binary operations “·,” “	” and “⊗,” respectively, and for all (msg, com, open) and
(msg′, com′, open′) valid with respect to ck, it holds that 1 ← Vrf(ck, com · com′,msg	
msg′, open ⊗ open′).

2.3. Digital Signatures

Definition 4. (Digital Signature Scheme)Adigital signature schemeSIG is a quadruple
of efficient algorithms (Setup,Key,Sign,Vrf) such that

• gk ← Setup(1λ) is a common-parameter generator that takes security parameter λ

and outputs a set of common parameters gk.
• (vk, sk) ← Key(gk) is a key generation algorithm that takes common parameters
gk and generates a verification key vk and a signing key sk. The verification key vk
defines the message space M.

• σ ← Sign(sk,msg) is a signature-generation algorithm that computes a signature
σ for input message msg ∈ M by using signing key sk.

• 0/1 ← Vrf(vk,msg, σ ) is a signature-verification algorithm that outputs 1 for ac-
ceptance or 0 for rejection.
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We require the signature scheme to be correct, i.e., for any (vk, sk) generated by Key,
any message msg ∈ M and any signature σ output by Sign(sk,msg) the verification
Vrf(vk,msg, σ ) outputs 1.

We use the standard notion of existential unforgeability against adaptive chosen-message
attacks [52] (EUF-CMA for short), which says it is not possible to forge a signature on
a previously unsigned message.

Definition 5. (Existential Unforgeability against Adaptive Chosen-Message Attacks)
A signature scheme is existentially unforgeable against adaptive chosen-message attacks
if for any probabilistic polynomial-time adversary A

Pr

[
gk ← Setup(1λ); (vk, sk) ← Key(gk)
(m�, σ �) ← ASign(sk,·)(vk) : m

� �∈ Qm

1 ← Vrf(vk,m�, σ �)

]

is negligible, where Qm is the set of messages that were queried to the signing oracle
Sign(sk, ·).
By requiring (m�, σ �) �∈ Qm,σ , where Qm,σ are the pairs of messages and signa-

tures observed by Sign(sk, ·), we obtain the notion of Strong EUF-CMA (denoted by
sEUF-CMA for short). This ensures that even if a message has been signed before, it is
not possible to forge a new different signature on the message.

2.4. Bilinear Groups

We say G is a bilinear-group generator if on input security parameter λ returns the
description of a bilinear group� = (p,G, G̃,GT , e,G, G̃) ← G(1λ)with the following
properties:

• G, G̃ and GT are groups of prime order p, whose bit-length is λ.
• e : G × G̃ → GT is a bilinear map, that is e(Ua, Ṽ b) = e(U, Ṽ )ab for all U ∈
G, Ṽ ∈ G̃, a, b ∈ Zp.

• G and G̃ are uniformly chosen generators of G and G̃, and e(G, G̃) generates GT .
• There are efficient algorithms for computing group operations, evaluating the bilin-
ear map, comparing group elements and deciding membership of the groups. We
refer to these as generic operations.

Galbraith et al. [51] distinguish between 3 types of bilinear-group generators. Type I
groups haveG = G̃ and are called symmetric bilinear groups. ByGsym, we denote a group
generator that takes security parameterλ andoutputs a descriptionof a symmetric bilinear
group � = (p,G,GT , e,G). Type II and Type III groups, which are referred to as
asymmetric bilinear groups, haveG �= G̃, and wemay sometimes write� ← Gasym(1λ)

to emphasizewhenwe are generating asymmetric bilinear groups. Type II groups have an
efficiently computable homomorphism ψ : G̃ → G, while Type III groups do not have
efficiently computable homomorphisms in either direction. When we need to explicitly
discriminate � in Type I, II and III, we write �sym, �xdh and �sxdh, respectively.
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The commitment and signature schemes in this work will have a common setup phase
which generates common parameters gk. These will always consist of a description of
a bilinear group � ← G(1λ) and in some cases contain additional generators. This
definitional approach means that many different structure-preserving protocols may use
the same setup gk and thus work over the same bilinear group, which is what makes
them interoperable and easy to combine.
Note that in the symmetric case� includes a generatorG, and in the asymmetric case,

it includes two generators G and G̃. Some constructions and assumptions described for
asymmetric bilinear groups can accommodate the symmetric case by consideringG = G̃

and G = G̃. Some applications require G̃ �= G in symmetric bilinear groups. In these
cases, we pick a random generator, say H , and set G̃ = H . A note will be given when
such a treatment is necessary.

2.5. Assumptions

Our commitment and signature schemes rely on different assumptions regarding the
bilinear groups we use. Most of the assumptions have reductions from the well-known
decisional assumptions DDH and DLIN, but we will also rely on two new computational
assumptions q-SFP and q-ADH-SDH, which we will describe later in the section. All
assumptions are defined relative to a group generator. Therefore, every construction in
the succeeding sections assumes that there exists a group generator for which relevant
assumptions hold.

Assumption 1. (Decision Diffie–Hellman Assumption (DDH)) The decision Diffie–
Hellman assumption holds inG relative to Gasym if for all probabilistic polynomial-time
A

∣
∣
∣
∣Pr

[
� ← Gasym(1λ); a, b ← Zp :

1 ← A(�,Ga,Gb,Gab)

]

− Pr

[
� ← Gasym(1λ); a, b, c ← Zp :

1 ← A(�,Ga,Gb,Gc)

]∣
∣
∣
∣

is negligible.

The decision Diffie–Hellman assumption in G̃ is defined analogously. In the bilinear-
group setting the decision Diffie–Hellman assumption in G (which we denote DDHG)
or in DDH

G̃
is sometimes referred to as the external Diffie–Hellman (XDH) assump-

tion. The assumption that DDH holds in both G and G̃ is sometimes referred to as the
symmetric external Diffie–Hellman (SXDH) assumption. The DDH assumption cannot
hold in symmetric bilinear groups, in which the decision linear assumption may be made
instead.

Assumption 2. (Decision Linear Assumption (DLIN)) The decision linear assump-
tion [23] holds in G relative to G if for all probabilistic polynomial-time A
∣
∣
∣
∣Pr

[
� ← G(1λ); a, b, r, s ← Zp :
1 ← A(�,Ga,Gb,Gr ,Gs,Gar+bs)

]

− Pr

[
� ← G(1λ); a, b, r, s, t ← Zp :
1 ← A(�,Ga,Gb,Gr ,Gs,Gt )

]∣
∣
∣
∣

is negligible.



374 M. Abe et al.

The 2-out-of-3 CDH assumption [70] states that given a tuple of group elements
(G,Ga, H), it is hard to output (Gr , Har ) for an arbitrary r �= 0. To break the Flexible
CDH assumption [74], an adversary must additionally compute Gar . We further weaken
the assumption by defining a solution as (Gr ,Gar , Hr , Har ) and generalize it to asym-
metric groups by letting G ∈ G and H = G̃ ∈ G̃ (whereas in symmetric groups, we let
H be an additional generator ofG playing the role of G̃). The asymmetric weak flexible
CDH is formalized as follows:

Assumption 3. (Asymmetric Weak Flexible CDH Assumption (AWF-CDH)) We say
that the asymmetric weak flexible computational Diffie–Hellman assumption holds rel-
ative to G if for all probabilistic polynomial-time adversaries A

Pr

⎡

⎢
⎢
⎣

� ← G(1λ);
A ← G

∗;
(R, M, S, N ) ← A(�, A)

:
(R, M, S, N ) ∈ (G∗)2 × (G̃∗)2
e(A, S) = e(M, G̃)

e(M, G̃) = e(G, N )

e(R, G̃) = e(G, S)

⎤

⎥
⎥
⎦ (1)

is negligible.

Lemma 1. If DDHG holds relative to G, then AWF-CDH holds relative to G.

Proof. Let (�,Ga,Gb,Gc) be an instance of DDHG. We have to decide whether c =
ab. On input (�,Ga), a successful AWF-CDH adversary outputs (Gr ,Gra, G̃r , G̃ra).
We can thus check whether e(Gc, G̃r ) = e(Gab, G̃r ) = e(Gb, G̃ra). �

Assumption 4. (Double Pairing Assumption (DBP)) We say the double pairing as-
sumption holds relative to Gasym if for any probabilistic polynomial-time algorithm
A

Pr
[
� ← Gasym(1λ);Gz ← G

∗; (Z̃ , R̃) ← A(�,Gz) :
Z̃ , R̃∈G̃

∗ and 1=e(Gz, Z̃) e(G, R̃)
]

is negligible.

Lemma 2. If DDHG holds relative to Gasym, then so does DBPG relative to Gasym.

Proof. Suppose that there is an adversaryA that breaks theDBP assumption.Namely,A
finds a pair (Z̃ , R̃) �= (1, 1) satisfying the equation e(Gz, Z̃) e(G, R̃) = 1 for randomly
chosenGz withmore than negligible probability.Wewill construct an adversaryBwhich
breaks DDHG by using A as a black-box.

Given a DDHG challenge tuple (�, A, B,C) = (�,Ga,Gb,Gc), algorithm B gives
A an input (�, A). If A outputs (Z̃ , R̃) �= (1, 1) satisfying e(G, Z̃) e(A, R̃) = 1, it is
true that Z̃ = R̃−a . B outputs 1 if e(B, Z̃) e(C, R̃) = 1 and outputs 0, otherwise. This
strategy is correct since e(B, Z̃) e(C, R̃) = e(B, R̃−a) e(C, R̃) = e(G, R̃)c−ab equals
to 1 if and only if c = ab mod p. Thus, B breaks DDHG if A breaks DBPG. �
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We could consider a dual assumption of DBP by swapping G and G̃. When we need
to discriminate these assumptions, we call this assumption DBP inG (as it is implied by
DDH in G) and the dual assumption DBP in G̃, and denote them as DBPG and DBP

G̃
,

respectively. Analogously to Lemma 2, DBP
G̃
holds if DDH

G̃
holds. Therefore, if DDH

holds in both G and G̃, then DBP holds in both G and G̃.

Corollary 1. If SXDH holds relative to G, then DBP holds in bothG and G̃ relative to
G.

DBP does not hold in symmetric bilinear groups and we will therefore also rely on the
Simultaneous Double Pairing Assumption (SDP), which is plausible in both symmetric
and asymmetric bilinear groups.

Assumption 5. (Simultaneous Double Pairing Assumption (SDP)) The simultane-
ous double pairing assumption SDP holds in G relative to G if for all probabilistic
polynomial-time adversaries A

Pr

⎡

⎣
� ← G(1λ);
Gz, Hz, Hu ← G

∗;
(Z̃ , R̃, Ũ ) ← A(�,Gz, Hz, Hu)

:
(Z̃ , R̃, Ũ ) ∈ (G̃∗)3
1 = e(Gz, Z̃) e(G, R̃)

1 = e(Hz, Z̃) e(Hu, Ũ )

⎤

⎦

is negligible.

The following lemma is proved in [38].

Lemma 3. If the DLIN assumption holds relative to a symmetric bilinear groups gen-
erator Gsym, then the SDP assumption holds relative to Gsym.

Assumption 6. (External Diffie–Hellman Inversion Assumption (XDHI)) The XDHI
assumption holds relative to G if for all probabilistic polynomial-time adversaries A

Pr
[
� ← G(1λ); a ← Z

∗
p; H̃ ← G̃

∗; A ← A(�, H̃ , H̃a) : A = G1/a
]

is negligible.

Assumption 7. (Co-Computational Diffie–Hellman Assumption (co-CDH)) The co-
CDH assumption [25] holds relative to G if for all probabilistic polynomial-time adver-
saries A

Pr
[
� ← G(1λ); a, b ← Z

∗
p; A ← A(�,Ga, G̃b) : A = Gab

]

is negligible.

Depending on the type of the bilinear group �, the XDHI assumption is implied by
standard assumptions, such as the computationalDiffie–Hellman assumption (CDH), the
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co-Diffie–Hellman assumption (co-CDH) and the decisionalDiffie–Hellman assumption
in G̃ (DDH

G̃
), as follows. Note that, CDH is implied by DLIN in �sym and DDH

G̃
is

implied by SXDH in �sxdh.

Lemma 4. CDH ⇒ XDHI for Gsym. co-CDH ⇒ XDHI for Gasym. DDHG̃
⇒ XDHI

for Gasym.

Proof. Let A be an XDHI adversary with respect to Gsym and let �sym = (p,G,GT ,

G, e) ← Gsym(1λ). Note that G is a uniformly chosen generator. Given a CDH
instance (�sym,Gα,Gβ), set �′

sym = (p,G,GT ,Gα, e) and run A on the XDHI in-
stance (�′

sym,Gβ,G). It outputs Gαβ , which is the solution to the CDH instance.

For the second implication, given an co-CDH instance (�xdh,Gα, G̃β) ∈ G
∗ ×

G̃
∗, choose G̃ ′ ← G̃, set �′

xdh = (p,G, G̃,GT ,Gα, G̃ ′, e) and run A on input
(�′

xdh, G̃
β, G̃). It outputs Gαβ , which is the solution to the co-CDH instance.

For the third implication, given an instance (�sxdh, G̃α, G̃β, G̃γ ) of DDH
G̃
, choose

G̃ ′ ← G̃, set �′
sxdh = (p,G, G̃,GT ,G, G̃ ′, e) and run A on input (�sxdh, G̃α, G̃). If

successful, A outputs Gα . Then, γ = αβ can be tested by checking if e(Gα, G̃β) =
e(G, G̃γ ) holds or not. �
We wish to extend SDP in such a way that even if we are given some solutions, it

should be hard to find another solution. Observe that given an answer to an instance of
SDP, one can easily get more answers by exploiting the linearity of the relation to be
satisfied. We eliminate this linearity by multiplying random pairings to both sides of
the SDP equations. We call the added random pairing a flexible pairing since; on the
one hand, it provides non-malleability in that solutions cannot be merged, and on the
other hand, it can be easily randomized or combined with other solutions if their secret
exponents are known.

Assumption 8. (Simultaneous Flexible Pairing Assumption (q-SFP)) Let GSFP denote
an algorithm that takes a group description� as input and generates parameters PSFP :=
(Gz, Hz, Hu, A, Ã, B, B̃) where Gz , Hz , Hu are random generators of G, and (A, Ã),
(B, B̃) are random elements inG× G̃. For � and PSFP, let ISFP denote the set of tuples
I j = (Z̃ j , R̃ j , Ũ j , Si j , T̃i j , Vi j , W̃i j ) ∈ G̃

∗ × G̃ × G̃ × G × G̃ × G × G̃ that satisfy

e(A, Ã) = e(Gz, Z̃ j ) e(G, R̃ j ) e(Si j , T̃i j ) and (2)

e(B, B̃) = e(Hz, Z̃ j ) e(Hu, Ũ j ) e(Vi j , W̃i j ). (3)

For I1, . . . , Iq , let Z(I1, . . . , Iq)denote collection of Z̃ j in I j .We say theq-simultaneous
flexible pairing assumption holds relative to G if for any probabilistic polynomial-time
adversary A

Pr

⎡

⎣
� ← G(1λ); PSFP ← GSFP(�);
I1, . . . , Iq ← ISFP;
I � ← A(�, PSFP, I1, . . . , Iq)

: I � ∈ ISFP
Z(I �) �∈ Z(I1, . . . , Iq)

⎤

⎦

is negligible.



Structure-Preserving Signatures and Commitments to Group Elements 377

Note that the definition deliberately makes the restriction Z̃ ∈ G
∗, since Z̃ = 1 would

make the problem easily solvable.
To show that the q-SFP assumption is plausible, we will now prove that it holds the

generic groupmodelwhere the adversary only uses the generic bilinear-groupoperations.

Theorem 1. For any generic algorithm A, the probability that A breaks the q-SFP
assumption with � group operations and pairings is bounded by O(q2 + �2)/p.

Before proving the theorem, we discuss implications of the above bound. In the real
computation, the group operation over two elements corresponds to addition of their
indices and the pairing operation corresponds to their multiplication. In the generic
group model, these indices are simulated by addition and multiplication over variables
and formulas. Among the elements initially given to algorithmA there are independent
random group elements whose indices are unknown. In the simulation, these unknown
indices are treated as independent variables. A group element related to those elements
is indexed by a formula that describes the relation. Executions of group operations and
pairings are simulatedby addingormultiplying the formulas associatedwith the elements
given as inputs to the operations. Since different formulas are supposed to represent
different group elements, simulation becomes inconsistent to the real computation if
any two indices represented by different formulas evaluate to the same value when
concrete random values are assigned to the variables. The probability of inconsistent
simulation is therefore an upper bound to any generic algorithm.
If all the formulas are polynomials, the index of a new group element yielded by a

generic operation is a polynomial in the variables. For polynomials of total degree less
than d, the bound after � group operations with k initial group elements is given as
O(d · (�2 + k2))/p by Schwartz’s lemma [87,88]. Consider the case of DL where the
initially given group elements are G and Gx . The above argument tells that the index
formula is a polynomial of degree 1 and the bound isO(�2)/p. In the case of SDH, the
initial elements are G,Gx ,Gx2 , . . . ,Gxq . Thus, the index formula will be a polynomial
of degree q, and the bound is O(q · (�2 + q2))/p. The loss factor of q can be as huge
as the number of signature issuing, and hence, the security of SDH is far from DL. On
the other hand, as we show in the proof, the indices of the initial input to SFP can be
represented by Laurent polynomials of form y

x with a common variable x of a small
constant degree in the denominator. The formula in the numerator varies for elements,
but they remain of degree 1. Accordingly, the index of a new group element is a Laurent
polynomial of the same form. By offsetting the common denominator x and applying
Schwartz’s lemma to the resulting regular polynomial of degree 2, we have the bound
of O(�2 + q2)/p, which is close to the optimal bound in DL.

Proof. Let us without loss of generality assume we are in the symmetric setting where
G = G̃ and G = G̃. The symmetric setting gives the adversary more freedom, since
it is not restricted to treat elements in G and elements in G̃ separately, so proving the
lemma for the symmetric case automatically yields a proof in the asymmetric case too.
Using the generic group operations, the adversary can compute Z̃ , R̃, S, T̃ , Ũ , V, W̃

as linear combinations of the 8 + 7q elements G, Gz , Hz , Hu ,A, Ã, B, B̃, {Z̃ j , R̃ j ,

Si j , T̃i j , Ũ j , Vi j , W̃i j }qj=1. Taking discrete logarithms of all the group elements with
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respect to base G, this means the adversary can compute z, r, s, t, u, v, w as linear
combination of 1, gz, hz, hu, a, ã, b, b̃, {z j , r j , si j , ti j , u j , vi j , wi j }qj=1, where

r j = a · ã − gz · z j − s j · t j , and u j = b·b̃−hz ·z j−v j ·w j
hu

.

Wewill first consider z, r, s, t, u, v, w as formalLaurent polynomials inZp[gz, hz, hu,
a, ã, b, b̃, z1, . . . , wiq ]. This means the adversary picks known coefficients ζ∗ ∈ Zp and
computes

z = ζgz gz + ζhz hz + ζgr + ζhu hu + ζaa + ζã ã + ζbb + ζb̃ b̃ +
q∑

j=1

ζz j z j +
q∑

j=1

ζsi j si j +
q∑

j=1

ζti j ti j

+
q∑

j=1

ζvi j vi j +
q∑

j=1

ζwi j wi j +
q∑

j=1

ζr j (a · ã − gz · z j − s j · t j ) +
q∑

j=1

ζu j

b · b̃ − hz · z j − v j · w j

hu
.

and constructs the Laurent polynomials r, s, t, u, v, w in a similar way with coefficients
labeled ρ∗, σ∗, τ∗, μ∗, etc., respectively.

Suppose the adversary’s Laurent polynomials satisfy the two verification equations

a · ã = gz · z + r + s · t (4)

b · b̃ = hz · z + hu · u + v · w. (5)

Let EQ3 be the equations obtained by substituting z, r, s, t in (4) with corresponding
Laurent polynomials. We will first show that EQ3 implies σr j = 0 for all j . Suppose for
contradiction that σri �= 0 for some i . The term s2i t

2
i only appears in the product s · t , so

its coefficient σri τri must be 0. This means τri = 0. Looking at other terms, we see that
most of the coefficients in t are 0, the term si ti a for instance has coefficient σri τa and
gives us τa = 0, and we get that t = τgz gz + τgr . The coefficients of the s j t j terms now
give us ρr j + σr j τgr = 0 for all j . Putting all this together, we see the right-hand side
of EQ3 has coefficient 0 for the aã term. But the left hand side of EQ3 is aã yielding a
contradiction. We conclude σr j = 0 for all j and by symmetry of s and t , we also get
that τr j = 0 for all j .
If ρri �= 0 for some i , we get without loss of generality from EQ3 that σsi �= 0 and

τti �= 0. The coefficients of s2i and t2i in s · t have to be 0 since these terms do not
appear in gz · z or r , so we get σti = 0 and τsi = 0. Looking at coefficients for terms
involving si in EQ3, we see that most of them must have 0 coefficients. We therefore
get t = τgz gz + τgr + τti ti . Symmetrically, we get s = σgz gz + σgr + σsi si . The terms
of s j t j for j �= i in EQ3 now give us ρr j = 0 for j �= i . Since the left-hand side of EQ3
has the term aã, we see ρri = 1. The gzzi terms now shows us that ζzi = 1. Additional
inspection of the different terms gives us z = ζgz gz + ζgr + zi + ζsi si + ζti ti .
We now consider the other possibility that ρr j is 0 for all j . The term aã gives us

without loss of generality that σa �= 0 and τã �= 0. The coefficients of a2 and ã2 show
us τa = 0 and σã = 0. Inspecting the other terms, we get t = τgz gz + τgr + τã ã
and s = σgz gz + σgr + σaa. It then follows by looking at different terms that z =
ζgz gz + ζgr + ζaa + ζã ã.
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Wehave nowdeduced from (4) that z = ζgz gz+ζgr +ζaa+ζã ã or z = ζgz gz+ζgr +zi+
ζsi si +ζti ti for some i . By symmetry, we get from (5) that z = ζhz hz +ζhu hu +ζbb+ζb̃ b̃
or z = ζhz hz + ζhu hu + zi + ζvi vi + ζwi wi for some i . The equations can be consistent
only if z ∈ {0, z1, . . . , zq}. Neither of those choices of z would constitute a successful
breach of the assumption, so we conclude that there are no formal Laurent polynomials
the adversary can use to violate the assumption.
When instantiating the bilinear groups, we pick gz, hz, hu, z j ← Z

∗
p and a, ã, b, b̃,

s j , t j , v j , w j ← Zp. In a typical run, the adversary would expect group elements corre-
sponding to different Laurent polynomials to be different but there is some probability
that this fails; when it fails, the adversary may be able to exploit it to break the assump-
tion. The generic adversary’s probability of success can therefore be bounded by the
chance that two different Laurent polynomials collide on random inputs in Zp.

Let F and F ′ be two different Laurent polynomials associated with elements in G

computed by the adversary. Bymultiplying F and F ′ by hu , we get two different degree 3
polynomials. The probability of having a collision is therefore boundedby 3

p−1 according
to Schwartz’s lemma [87]. Having initially 8 + 7q elements, we get after �1 group
operations in G an upper bound of

(8+7q+�1
2

) · 3
p−1 ≤ O((q+�1)

2)
p (6)

for Laurent polynomials for elements in G evaluating to the same value.
Using the pairing operation, the adversary gets Laurent polynomials for elements in

GT corresponding to products of Laurent polynomials for elements in G. Multiplying
by h2u , we get polynomials of degree at most 6. The risk of having a collision after �T

pairing operations and group operations in GT is bounded by
(
�T
2

) · 6
p−1 = O(�2T )

p . By

setting � = �1 + �T , we simplify the sum of the upper bounds to O(q2+�2)
p as stated in

Theorem 1. �

Given an answer (Z̃ , R̃, Ũ ) to the SDP problem (Assumption 5) then setting
(S, T̃ , V, W̃ ) := (A, Ã, B, B̃) results in a correct solution (Z̃ , R̃, Ũ , S, T̃ , V, W̃ ) to
the SFP problem. We thus obtain the following:

Lemma 5. If the q-SFP assumption (for arbitrary q) holds relative to G, then the SDP
assumption holds relative to G.

Proof. Suppose that there exists an algorithm A that successfully finds a valid answer
(Z̃ , R̃, Ũ ) to SDP. We construct an algorithm that breaks SFP as follows. Given an
SFP instance (�,Gz, Hz, Hu, A, Ã, B, B̃, I1, . . . , Iq), input (�,Gz, Hz, Hu) toA. IfA
outputs (Z̃�, R̃�, Ũ �) breaking the SDP instance, set (S�, T̃ �, V �, W̃ �) := (A, Ã, B, B̃)

and output I � = (Z̃�, R̃�, Ũ �, S�, T̃ �, V �, W̃ �).
Multiplying 1 = e(Gz, Z̃�), e(Gr , R̃�) to both sides of e(A, Ã) = e(S�, T̃ �) results

in Eq. (2). Similarly, multiplying 1 = e(Hz, Z̃�) e(Hu, Ũ �) to both sides of e(B, B̃) =
e(V �, W̃ �) results in Eq. (3). Thus, I � satisfies the SFP equations. Since (Z̃�, R̃�, Ũ �)

is a valid answer to SDP, Z̃� �= 1 holds. Since every Z̃ j in I j is uniformly chosen and
independent of (Gz, Hz, Hu, A, Ã, B, B̃), it is independent of the view of the adversary.
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Thus, Z̃� = Z̃ j happens only with negligible probability for every j ∈ {1, . . . , q}. Thus,
I � is a correct and valid answer to the q-SFP instance. �

Our last assumption is a variant of the q-strong Diffie–Hellman (SDH) assumption
[22]. In [48], it is shown that SDH implies hardness of the following two problems in
bilinear groups:

1. Given G,Gx and q − 1 random pairs (G
1

x+ci , ci ), output a new pair (G
1

x+c , c).

2. Given G, K ,Gx and, for random ci , vi :
(
(K · Gvi )

1
x+ci , ci , vi

)q−1
i=1 , output a new

((K · Gv)
1

x+c , c, v).

Boyen andWaters [29] define theHiddenSDHassumptionwhich states that thefirst prob-
lem is hard when the pairs are substituted with triples of the form (G1/(x+ci ),Gci , Hci ),
for a fixed generator H ; the scalar ci is thus “hidden.” Analogously, we define a
variant of the second problem by “hiding” the scalars ci and vi , stating that given

F,G, H, K ,Gx , Hx ,
(
(K ·Gvi )

1
x+ci , Fci , Hci ,Gvi , Hvi

)q−1
i=1 , it is hard to output a tuple

(A = (K · Gv)
1

x+c , B = Fc, D = Hc, V = Gv,W = Hv) with (c, v) �= (ci , vi ) for
all i . Due to the pairing, a tuple can still be effectively verified. The assumption holds
in the generic group model for both asymmetric and symmetric groups, and we state it
for the former.

Assumption 9. (Asymmetric Double Hidden Strong DH Assumption (q-ADH-SDH))
LetGADH-SDH denote an algorithm that takes a group description� as input and generates
parameters PADH-SDH := (F, K , X, Ỹ ) ∈ G

3 × G̃where F , K and X = Gx are random
generators of G, and Ỹ = G̃x .
For� and PADH-SDH, letIADH-SDH denote the set of tuples Ii = (Ai , Bi , D̃i , Vi , W̃i ) ∈

G
2 × G̃ × G × G̃ that satisfy Ỹ · D̃i �= 1 and

e(Ai , Ỹ · D̃i ) = e(K · Vi , G̃) e(Bi , G̃) = e(F, D̃i ) e(Vi , G̃) = e(G, W̃i ) (7)

We say the q-asymmetric double hidden strong Diffie–Hellman assumption holds
relative to G if for any probabilistic polynomial-time adversary A

Pr

⎡

⎣
� ← G(1λ); PADH-SDH ← GADH-SDH(�);
I1, . . . , Iq−1 ← IADH-SDH;
I � ← A(�, PADH-SDH, I1, . . . , Iq)

: I � ∈ IADH-SDH\{I1, . . . , Iq}
⎤

⎦

is negligible.

In symmetric bilinear groups (where G = G̃), we replace G̃ ∈ G̃ by a random
generator H ∈ G. We prove generic security of the assumption in symmetric groups,
which yields a stronger result, as it implies security in asymmetric groups.

Theorem 2. The q-ADH-SDH assumption holds in generic bilinear groups when q
is a polynomial.
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Proof. We prove the symmetric case, therefore every G̃ in the statement of As-
sumption 9 is replaced by a random generator H of G; that is, we prove that given

(p,G,GT , e,G) and (F, K , H, X)
$← G

4 and Y := H logG X , as well as q − 1 tuples
(A,Bi , Di , Vi ,Wi ) satisfying

e(Ai ,Y · Di ) = e(K · Vi , H) e(Bi , H) = e(F, Di ) e(Vi , H) = e(G,Wi ) (8)

it is hard to generate a new tuple (A, B, D, V,W ) satisfying the above.
We follow the approach of [22] in proving the generic security. Every element fromG

and GT is represented by a random string, and the adversary has access to an oracle for
group operations in G and GT and pairings: Given the representation of two elements
A, A′ ∈ G, the oracle responds with the representation of A · A′ ∈ G, or e(A, A′)
respectively, and analogously for T, T ′ ∈ GT . Internally, the simulator represents the
elements as their logarithms relative to the group generator G (and GT elements rela-
tive to e(G,G)). When answering queries, it stores the symbolic representation of the
returned element as an addition or multiplication of the polynomials for the queried ele-
ments. At the end, the simulator chooses random secret values and instantiates all stored
polynomials. The simulation was perfect if no nonidentical polynomials yield the same
value, which (due to Schwartz’s lemma [87], since the initial polynomials are of constant
degrees and the adversary can only make polynomially many queries) is negligible in λ.

It remains to show that from a challenge the adversary cannot symbolically compute
a new tuple satisfying (8). We represent every group element by its discrete logarithm
(index) with respect to G. An ADH-SDH tuple Ii that satisfies the equations in (8) can
be written as

(
Ai = (K · Gvi )

1
x+ci , Bi = Fci , Di = Hci , Vi = Gvi , Wi = Hvi

)
(9)

for some ci ∈ Zp\{−x} and vi ∈ Zp. Let a lower-case letter denote the index of the
group elements denoted by the corresponding upper-case letter. A q-ADH-SDH instance
is thus represented by the following rational fractions:

1, f, h, k, x, y = xh,
{
ai = k+vi

x+ci
, bi = ci f, di = ci h, vi , wi = vi h

}q−1
i=1 (10)

Let (A∗, B∗, D∗, V ∗,W ∗) be a solution to this instance, that is, a tuple satisfying the
equations in (8). Considering the logarithms of theGT -elements in these equations w.r.t.
basis e(G,G) yields

a∗(xh + d∗) = (k + v∗)h b∗h = d∗ f v∗h = w∗ (11)

In a generic group, all the adversary can do is apply the group operation to the elements
of its input. We will show that the only linear combinations (a∗, b∗, d∗, v∗, w∗) of
elements in (10) satisfying (11) are (a∗ = ai = k+vi

x+ci
, b∗ = bi = ci f, d∗ = di =

ci h, v∗ = vi , w
∗ = wi = vi h) for some i . A quintuple from the instance is, however,

not a valid solution, meaning a generic adversary cannot break the assumption.Wemake
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the following ansatz for a∗:

a∗ = α + α f f + αh h + αk k + αx x + αy xh

+ ∑
αa,i

k+vi
x+ci

+ ∑
αb,i ci f + ∑

αd,i ci h + ∑
αv,i vi + ∑

αw,i vi h.

Analogously, we write b∗, d∗, v∗ and w∗, whose coefficients we denote by β, δ, μ and
ω, respectively.
By the last equation of (11) we have that for any v∗ the adversary forms, it has to

provide w∗ = v∗h as well. We can therefore limit the elements used for v∗ to those of
which their product with h is also given: 1, x and vi (for all i). This yields

v∗ = μ + μx x + ∑
μv,ivi w∗ = μh + μx xh + ∑

μv,ivi h

Similarly, plugging in the ansätze for b∗ and d∗ in the second equation of (11) and
equating coefficients eliminates all of the coefficients except those for f h (which yields
β f = δh =: γ ) and those for ci f h (which yields βb,i = δd,i =: γi ), for all i . We have
thus

b∗ = γ f + ∑
γi ci f d∗ = γ h + ∑

γi ci h

We substitute a∗, d∗, v∗ by their ansätze in the first equation of (11); that is, a∗(xh +
d∗) − v∗h = kh. Since every term contains h, for convenience we omit one h per term
(i.e., we symbolically “divide” the equation by h). The first equation of (11) can thus be
written as

αx + α f f x + αh hx + αk kx + αx xx + αy xhx

+ ∑
αa,i

(k+vi )x
x+ci

+ ∑
αb,i ci f x + ∑

αd,i ci hx + ∑
αv,i vi x + ∑

αw,i vi hx

+αγ + α f γ f + αhγ h + αkγ k + αxγ x + αyγ xh

+ ∑
αa,iγ

k+vi
x+ci

+ ∑
αb,iγ ci f + ∑

αd,iγ ci h + ∑
αv,iγ vi + ∑

αw,iγ vi h

+∑
αγi ci + ∑

α f γi f ci + ∑
αhγi hci + ∑

αkγi kci + ∑
αxγi xci + ∑

αyγi xhci

+∑∑
αa,iγ j

(k+vi )c j
x+ci

+ ∑∑
αb,iγ j ci f c j

+∑∑
αd,iγ j ci hc j + ∑∑

αv,iγ j vi c j + ∑∑
αw,iγ j vi hc j

−μ + μx x + ∑
μv,ivi = k,

which after regrouping yields

(αγ − μ) 1 + (α f γ ) f + (αhγ ) h + (α + αxγ − μx ) x + (αh + αyγ ) xh (12a)

+ ∑
(αa,iγ )

k + vi

x + ci
+ ∑

(αb,iγ + α f γi ) ci f + ∑
(αd,iγ + αhγi ) ci h + ∑

(αw,iγ ) vi h

(12b)

+ (α f ) x f + (αk) xk + (αx ) x
2 + (αy) x

2h + ∑
(αd,i + αyγi ) ci xh + ∑

(αb,i ) ci x f (12c)
+ ∑

(αv,i ) vi x + ∑
(αw,i ) vi xh + ∑

(αγi ) ci + ∑
(αkγi ) ci k + ∑

(αxγi ) xci (12d)
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+ ∑∑
(αb,iγ j ) ci c j f + ∑∑

(αd,iγ j ) ci c j h + ∑∑
(αv,iγ j ) vi c j + ∑∑

(αw,iγ j ) vi c j h
(12e)

+ (αkγ )
︸ ︷︷ ︸
=:λk

k + ∑
(αv,iγ − μv,i )
︸ ︷︷ ︸

=:λv,i

vi + ∑
(αa,i )
︸ ︷︷ ︸
=:λxa,i

x(k + vi )

x + ci
+ ∑∑

(αa,iγ j )
︸ ︷︷ ︸
=:λca,i, j

c j (k + vi )

x + ci
= k.

(12f)

To do straightforward comparison of coefficients,wewould have tomultiply the equation
by

∏q−1
i=1 (x + ci ) first. For the sake of presentation, we keep the fractions and instead

introduce new equations for the cases where a linear combination leads to a fraction that
cancels down.
Now, comparison of coefficients of the two sides of the above equation shows that all

coefficients in lines (12a)–(12e) must be 0, whereas for the last line we have a different
situation: Adding x(k+vi )

x+ci
and ci (k+vi )

x+ci
reduces to k+vi (but this is the only combination

that reduces); we have thus

for all i : λxa,i = λca,i,i for all i �= j : λca,i, j = 0 (13)

coefficient ofk : ∑
λxa,i + λk = 1 coefficient of vi : λxa,i + λv,i = 0 (14)

We now solve the equations “all coefficients in Lines (12a) to (12e) equal 0,”
and Eqs. (13) and (14) for the values

(
α, α f , αh, αk, αx , αy, γ, μ,μx , {αa,i , αb,i , αd,i ,

αv,i , αw,i , γi , μv,i }
)
.

The first four terms and the last term in Line (12c) and the first two terms in Line (12d)
immediately yield: α f = αk = αx = αy = αb,i = αv,i = αw,i = 0 for all i . Now
αy = 0 implies αh = 0 by the last term in (12a), and moreover, αd,i = 0 for all i by the
fifth term in (12c). Plugging in these values, the only equations different from “0 = 0”
are the following:

α γ − μ = 0 α − μx = 0 (15)

αa,i γ = 0 (∀i) α γi = 0 (∀i) (16)

αa,i (1 − γi ) = 0 (∀i) αa,i γ j = 0 (∀i �= j) (17)
q−1∑

i=1
αa,i = 1 αa,i − μv,i = 0 (∀i) (18)

where the second equation in (15), denoted by “(15.2)”, follows from the fourth term
in (12a) and αx = 0. (16.1) and (16.2) follow from the first term in (12b) and the third
term in (12d), respectively. Equations (17) are the equations in (13); those in (18) are the
ones from (14) taking into account that αk = 0 and αv,i = 0 for all i . The variables not
yet proved to be 0 are α, γ, μ,μx , αa,i , γi and μv,i for 1 ≤ i ≤ q − 1.
We first show that there exists i∗ ∈ {1, . . . , q − 1} such that αa, j = 0 for all j �= i∗:

Assume there exist i �= j such that αa,i �= 0 and αa, j �= 0; then by (17.1), we have
γi = γ j = 1, which contradicts (17.2).
This result implies the following: by (18.1), we have αa,i∗ = 1, and by (17.1), we

have γi∗ = 1, whereas for all j �= i∗: γ j = 0 by (17.2). We have thus shown that
αa,i∗ = γi∗ = 1 and αa, j = γ j = 0 for all j �= i∗.
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This now implies α = 0 (by 16.2), and thus, μ = μx = 0 by [(15.1) and (15.2),
respectively]. Moreover, γ = 0 (by 16.1) and for all i : αa,i = μv,i (by 18.2). The only
nonzero variables are thus αa,i∗ = γi∗ = μv,i∗ = 1.
Plugging in our results in the ansätze for a∗, b∗, d∗, v∗ and w∗, we proved that there

exists i∗ ∈ {1, . . . , q − 1} such that a∗ = k+vi∗
x+ci∗ , b

∗ = ci∗ f , d∗ = ci∗h, v∗ = vi∗

and w∗ = vi∗h. This means that the only tuples (A∗, B∗, D∗, V ∗,W ∗) satisfying (8)
and being generically constructible from a ADH-SDH instance are the tuples from that
instance, which concludes our proof of generic security of ADH-SDH. �

2.6. The Groth–Sahai Proof System for Pairing-Product Equations

The Groth–Sahai (GS) proof system [59] gives efficient non-interactive witness-
indistinguishable (NIWI) proofs and non-interactive zero-knowledge (NIZK) proofs for
languages that can be described as sets of satisfiable equations, each of which falls in one
of the following categories: pairing-product equations, multi-exponentiation equations
and general arithmetic gates. The GS proof system can be instantiated under differ-
ent assumption: for instance in the asymmetric setting under the SXDH assumption,
which says DDH holds in both G and G̃ and in the symmetric setting under the DLIN
assumption.
In GS proofs, there are two types of common reference string (CRS), which are

computationally indistinguishable. One type is called “real” and gives perfect soundness
and allows extraction of the group elements of a witness given a secret extraction key
that is set up together with the CRS. The second type is called “simulated” and yields
perfectly witness-indistinguishable proofs, which are also zero knowledge for some
types of equations. When proving a statement, described as a set of equations, one first
commits to the witness components and then produces elements for each equation that
prove the corresponding committed values satisfy the equation.
Of the types of equations the GS proof system supports, we are mainly interested in

pairing-product equations over variables X1, . . . , Xm ∈ G and Ỹ1, . . . , Ỹn ∈ G̃:

n∏

i=1
e(Ai , Ỹi )

m∏

i=1
e(Xi , B̃i )

m∏

i=1

n∏

j=1
e(Xi , Ỹ j )

ci, j = T,

where {Ai }ni=1 ∈ G
n , {B̃i }mi=1 ∈ G̃

m , {ci, j } m, n
i=1, j=1 ∈ Zp, and T ∈ GT are public

constants.When the equations involve variables only in one of the groups,we get simpler,
one-sided equations

∏n
i=1 e(Ai , Ỹi ) = T or

∏m
i=1 e(Xi , B̃i ) = T , which also yieldmore

efficient proofs.
In the SXDH instantiation, a commitment to a group element consists of two group

elements and a proof for a pairing-product equation costs 8 group elements. In the
symmetric DLIN instantiation, a commitment consists of 3 group elements and a proof
consists of 9 group elements. For linear pairing-product equations, the size of a proof
drops to 2 and 3 group elements in the SXDH and the DLIN settings, respectively.
The GS proof system is witness indistinguishable when T ∈ GT is an element in the

target group without some particular structure. If for each equation T = 1, possibly after
some rewriting of equations, the GS proof system becomes zero knowledge.
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Note that in this context the word proof can denominate either “proof of satisfiability”
or language membership (which thus includes the commitments) or mean a proof that
the content of some given commitments satisfies a given equation. We adopt the latter
diction and say proof of knowledge when we include the commitments. Please refer to
[59] for further details.

2.7. Pairing-Randomization Techniques

We introduce techniques that randomize elements in a pairing or a pairing product
without changing their value in GT . Not all of them are used in this paper, but they do
have applications, e.g., [7].

• Inner Randomization (X ′,Y ′) ← Rand(X,Y ): A pairing A = e(X,Y ) �= 1
is randomized as follows. Choose γ ← Z

∗
p and let (X ′,Y ′) = (Xγ ,Y 1/γ ). It

then holds that (X ′,Y ′) distributes uniformly over G × G̃ under the condition of
A = e(X ′,Y ′). If A = 1, then first flip a coin and pick e(1, 1) with probability
1/(2p − 1). Otherwise, select X ′ �= 1 uniformly, and output either e(1, X ′) or
e(X ′, 1) with probability 1/2.

• Sequential Randomization {X ′
i ,Y

′
i }ki=1 ← RandSeq({Xi ,Yi }ki=1): A pairing

product A = e(X1,Y1) · · · e(Xk,Yk) is randomized into A = e(X ′
1,Y

′
1) · · · e(X ′

k,Y
′
k)

as follows:
Pick (γ1, . . . , γk−1) ← Z

k−1
p .We begin with randomizing the first pairing using the

second pairing as follows. First, verify that Y1 �= 1 and X2 �= 1. If Y1 = 1, replace
the first pairing e(X1, 1) with e(1,Y1) with a new random Y1( �= 1). The case of
X2 = 1 is handled the same way. Then, multiply 1 = e(X−γ1

2 ,Y1) e(X2,Y
γ1
1 ) to

both sides of the formula. We thus obtain

A = e(X1X
−γ1
2 ,Y1) e(X2,Y

γ1
1 Y2) e(X3,Y3) · · · e(Xk,Yk). (19)

Next, we randomize the second pairing using the third one. As before, if Y γ1
1 Y2 = 1

or X3 = 1, replace them with random values. Then, multiply 1 = e(X−γ2
3 ,Y γ1

1 Y2)
e(X3, (Y

γ1
1 Y2)γ2). We thus have

A = e(X1X
−γ1
2 ,Y1) e(X2X

−γ2
3 ,Y γ1

1 Y2) e(X3, (Y
γ1
1 Y2)

γ2Y3) · · · e(Xk,Yk). (20)

This continues up to the (k−1)-th pairing. When done, the value of the i-th pairing
distributes uniformly inGT due to the uniform choice of γi . The k-th pairing follows
the distribution determined by A and the preceding k − 1 pairings. Finally, process
every pairing by the inner randomization.

• Extension {X ′
i ,Y

′
i }k

′
i=1 ← Extend({Xi ,Yi }ki=1): For k

′ ≥ k, a pairing product
A = e(X1,Y1) · · · e(Xk,Yk) is randomized to A = e(X ′

1,Y
′
1) · · · e(X ′

k′ ,Y ′
k′) as

follows: For i ∈ [k, k′], let Xi = 1 and Yi = 1. Then, execute {X ′
i ,Y

′
i }k

′
i=1 ←

RandSeq({Xi ,Yi }k′
i=1) and output {X ′

i ,Y
′
i }k

′
i=1.

• One-side Randomization {X ′
i }ki=1 ← RandOneSide({Gi , Xi }ki=1): This al-

gorithm works only in the symmetric setting �sym. Let Gi be an element in
G

∗. A pairing product A = e(G1, X1) · · · e(Gk, Xk) is randomized into A =
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e(G1, X ′
1) · · · e(Gk, X ′

k) as follows. Pick (γ1, . . . , γk−1) ← Z
k−1
p and multiply

1 = e(G1,G
γ1
2 ) e(G2,G

−γ1
1 ) to both sides of the formula. We thus obtain

A = e(G1, X1G
γ1
2 ) e(G2, X2G

−γ1
1 ) e(G3, X3) · · · e(Gk, Xk). (21)

Next, multiply 1 = e(G2,G
γ2
3 ) e(G3,G

−γ2
2 ), which yields

A = e(G1, X1G
γ1
2 ) e(G2, X2G

−γ1
1 Gγ2

3 ) e(G3, X3G
−γ2
2 ) · · · e(Gk, Xk). (22)

Continue until γk−1, so we eventually have A = e(G1, X ′
1) · · · e(Gk, X ′

k). Observe
that every X ′

i for i = 1, . . . , k − 1 is distributed uniformly inG due to the uniform
multiplicative factor Gγi

i+1. In the k-th pairing, X ′
k follows the distribution deter-

mined by A and the preceding k − 1 pairings. Thus, (X ′
1, . . . , X

′
k) is uniform over

G
k conditioned on being evaluated to A.

Note that the algorithms yield uniform elements and thus may include pairings that
evaluate to 1GT . If this is not preferable, it can be avoided by repeating that particular
step once again excluding the bad randomness.

3. Homomorphic Trapdoor Commitments

Homomorphic trapdoor commitments are used in a number of contexts, in particular as
a building block in zero-knowledge proofs. An example of a frequently used scheme is
that of Pedersen [83] that can be used to commit to elements from the field Zp.

Our goal in this section is to construct homomorphic trapdoor commitment schemes
for group elements. We will construct both strict structure-preserving commitments
where both messages, commitments and openings are elements of the source groups
G, G̃ and relaxed structure-preserving commitments where we allow the commitments
to contain elements from the target group GT .
In [9], it is shown that when committing with source-group elements, the size of the

commitment cannot be smaller than the size of the input message. The strict structure-
preserving commitments therefore grow linearly with the number of group elements in
themessages. To contrast this result, we also show that in the relaxed structure-preserving
setting it is possible to get constant-size commitments for messages containing many
group elements.
Table 1 summarizes the performance of structure-preserving homomorphic trapdoor

commitment schemes from this section and the existing ones from [9,38].

3.1. Commitments Using Target-Group Elements

This section includes two homomorphic trapdoor commitment schemes whose commit-
ments consist of elements in GT . The first scheme, HTC1, works in both symmetric
and asymmetric groups and can be seen as an optimization of the scheme we first pre-
sented in [56] with a simpler assumption. The second scheme, HTC2, only works in the
asymmetric setting in exchange of gaining efficiency.
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Table 1. Summary of homomorphic trapdoor commitments.

Category Scheme Group
type

|ck| |msg| |com| |open| #(pairings) #(PPE) Assm.

Commit
with GT
elements

HTC1 Any 2k + 1[1] k[2] 2[T ] 2[2] 2k + 2 2 SDP

HTC2 Asym. k[1] k[2] 1[T ] 1[2] k + 1 1 DBP

Commit with
source-group
elements

CLY09 [38] Symm. 5[1] 1[1] 3[1] 3[1] 9 3 DLIN

HTC3 Symm. 2k + 1[1] k[1] 2k + 2[1] 2[1] 2k+ 2 2 SDP
AHO12 [9] Symm. 2k + 3[1] k[1] k + 2[1] 2[1] 2k + 4 2 SDP
AHO12 [9] Asym. k + 1[1], 1[2] k[2] 1[1], k[2] 1[2] k + 2 1 DBP

Commit to
Zp

HTC4 Any 1[2] 1[p] 1[2] 1[1] 2 1 XDHI

By [1], [2], [T ], and [p], we denoteG, G̃,GT and Zp where the data belong to. #(pairings) and #(PPE) count
the number of pairings and pairing-product equations, respectively, in verifying a correct opening

Both schemes can be used to commit to k group elements in G̃ at once. It is inspired by
the Pedersen commitment scheme, but uses pairings instead of exponentiations. The use
of the pairingmeans that we commit to source-group elements, but the final commitment
is a group element in the target group.

[Commitment Scheme HTC1]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Output gk := �.
Key(gk): Choose random generator Hu from G

∗. For i = 1, . . . , k, choose γi and
δi from Z

∗
p and compute Gi := Gγi and Hi := H δi

u . Output commitment key
ck := (�, Hu,G1, H1, . . . ,Gk, Hk) and trapdoor tk := (γ1, δ1 . . . , γk, δk).

Com(ck,msg): Parse msg as (M̃1, . . . , M̃k) ∈ G̃
k . Choose R̃ and Ũ randomly from

G̃, and compute

C1 := e(G, R̃)
∏k

i=1 e(Gi , M̃i ) and C2 := e(Hu, Ũ )
∏k

i=1 e(Hi , M̃i ). (23)

Output com := (C1,C2) and open := (R̃, Ũ ).
Vrf(ck, com,msg, open): Parse com as (C1,C2) ∈ G

2
T , msg as (M̃1, . . . , M̃k) ∈ G̃

k ,
and open as (R̃, Ũ ) ∈ G̃

2. Output 1 if (23) holds. Output 0, otherwise.
Sim(ck): Choose R̃ and Ũ randomly from G̃ and compute C1 := e(G, R̃) and C2 :=

e(Hu, Ũ ). Output com := (C1,C2) and ek := (R̃, Ũ ).
Equiv(ck,msg, ek, tk): Parse msg as (M̃1, . . . , M̃k) ∈ G̃

k , ek as (R̃, Ũ ) ∈ G̃
2 and tk

as (γ1, δ1, . . . , γk, δk). Compute R̃′ := R̃
∏k

i=1 M̃
−γi
i , and Ũ ′ := Ũ

∏k
i=1 M̃

−δi
i .

Output open := (R̃′, Ũ ′).
¶

Theorem 3. HTC1 is a homomorphic trapdoor commitment scheme. It is perfectly
trapdoor and computationally binding if the SDP assumption holds in G relative to G.
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Proof. Correctness trivially holds by construction.
To see that the scheme is homomorphic, observe that

(

e(G, R̃)
k∏

i=1
e(Gi , M̃i )

)(

e(G, R̃′)
k∏

i=1
e(Gi , M̃ ′

i )

)

= e(G, R̃ · R̃′)
k∏

i=1
e(Gi , M̃i · M̃ ′

i )

(

e(Hu, Ũ )
k∏

i=1
e(Hi , M̃i )

) (

e(Hu, Ũ ′)
k∏

i=1
e(Hi , M̃ ′

i )

)

= e(Hu, Ũ · Ũ ′)
∏k

i=1 e(Hi , M̃i · M̃ ′
i )

This means (C1C ′
1,C2C ′

2) is a valid commitment to (M̃1M̃ ′
1, · · · , M̃k M̃ ′

k) that can be
opened with (R̃ R̃′, ŨŨ ′).
The commitment scheme is perfectly hiding because the components e(Gr , R̃) and

e(Hu, Ũ ) make C1 and C2 uniformly random regardless of the message. The scheme
is also perfectly trapdoor. To see this, observe that for any (M̃1, . . . , M̃k) and any
(C1,C2, R̃, Ũ ) and (R̃′, Ũ ′) legitimately generated by HTC1.Sim and HTC1.Equiv, re-
spectively, and it holds that

e(G, R̃′)
k∏

i=1
e(Gi , M̃i ) = e(G, R̃

k∏

i=1
M̃−γi

i )
k∏

i=1
e(Gi , M̃i ) = e(G, R̃) = C1, and

e(Hu, Ũ ′)
k∏

i=1
e(Hi , M̃i ) = e(Hu, Ũ

k∏

i=1
M̃−δi

i )
k∏

i=1
e(Hi , M̃i ) = e(Hu, Ũ ) = C2.

Thus, HTC1.Vrf accepts (M̃1, . . . , M̃k) and (R̃′, Ũ ′) as a correct opening for (C1,C2).
Moreover, since C1,C2 are uniformly random and the commitments and messages
uniquely determine the openings, real commitments and openings have the same prob-
ability distribution as do simulated commitments and trapdoor openings.
Finally, we will show that HTC1 is computationally binding. Suppose that there ex-

ists an adversary that successfully opens a commitment to two distinct messages. We
show that one can break SDP by using such an adversary. Given an SDP challenge
(�, Hu,Gz, Hz), do as follows.

• Set Gi := Gχi
z Gγi and Hi := Hχi

z H δi
u for i = 1, . . . , k. Abort if Gi = 1 or Hi = 1

for any i . Otherwise, run the adversary on ck = (�, Hu,G1, H1, . . . ,Gk, Hk).
• Given two openings (M̃1, . . . , M̃k, R̃, Ũ ) and (M̃ ′

1, . . . , M̃
′
k, R̃

′, Ũ ′) from the ad-
versary that yield the same commitment (C1,C2), compute

Z̃� :=
k∏

i=1

(
M̃i

M̃ ′
i

)χi
, R̃� := R̃

R̃′

k∏

i=1

(
M̃i

M̃ ′
i

)γi
, Ũ � := Ũ

Ũ ′

k∏

i=1

(
M̃i

M̃ ′
i

)δi
. (24)

• Output (Z̃�, R̃�, Ũ �).
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The key generation step aborts with probability at most 2k/p that is negligible. Then,
since the openings fulfills (23), we have

1 = e
(
G, R̃

R̃′

)∏
e
(
Gi ,

M̃i

M̃ ′
i

)
= e

(
Gz,

k∏

i=1

(
M̃i

M̃ ′
i

)χi
)
e
(
G, R̃

R̃′

k∏

i=1

(
M̃i

M̃ ′
i

)γi
)

= e(Gz, Z̃
�) e(G, R̃�), and

1 = e
(
Hu,

Ũ

Ũ ′

) ∏
e
(
Hi ,

M̃i

M̃ ′
i

)
= e

(
Hz,

k∏

i=1

(
M̃i

M̃ ′
i

)χi
)
e
(
Hu,

Ũ

Ũ ′

k∏

i=1

(
M̃i

M̃ ′
i

)δi
)

= e(Hz, Z̃
�) e(Hu, Ũ

�).

But �̃M �= �̃M ′
, so there exists i such that M̃i/M̃ ′

i �= 1. Also, χi is independent from the
view of the adversary. That is, for every choice of χi , there exist corresponding γi and δi
that give the same Gi and Hi . Therefore, Z̃� = ∏

i (M̃i/M̃ ′
i )

χi �= 1 with overwhelming
probability and R̃�, Ũ � �= 1 holds automatically. Thus, (Z̃�, R̃�, Ũ �) is a valid answer
to the instance of SDP. �

In asymmetric bilinear groups, we can deploy keys and messages in different groups
that cannot map each other. As a result, we can construct more efficient scheme HTC2
that works only in asymmetric bilinear groups.

[Commitment Scheme HTC2]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← Gasym(1λ). Output gk := �.
Key(gk): For i = 1, . . . , k choose γi ← Z

∗
p and compute Gi := Gγi . Output com-

mitment key ck := (�,G1, . . . ,Gk) and trapdoor tk := (γ1, . . . , γk).
Com(ck,msg): Parse msg as (M̃1, . . . , M̃k) ∈ G̃

k . Choose R̃ ← G̃, and compute

C := e(G, R̃)
∏k

i=1 e(Gi , M̃i ). (25)

Output commitment com := C and opening open := R̃.
Vrf(ck, com,msg, open): Parse the inputs as com = C ∈ GT ,msg = (M̃1, . . . , M̃k) ∈

G̃
k and open = R̃ ∈ GT . Output 1 if (25) holds and 0 otherwise.

Sim(ck): Choose R̃ ← G̃ and compute C := e(G, R̃). Output com := C and ek :=
R̃.

Equiv(ck,msg, ek, tk): Parse msg as (M̃1, . . . , M̃k) ∈ G̃
k . Get R̃ and (γ1, . . . , γk)

from ek and tk, respectively. Compute R̃′ := R̃ · ∏k
i=1 M̃

−γi
i . Output the opening

open := R̃′.
¶

To commit to messages inG, one can construct a “dual” scheme by interchanging the
role of G and G̃ in the above construction.
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Theorem 4. HTC2 is a homomorphic trapdoor commitment scheme. It is perfectly
trapdoor and computationally binding if the DBP assumption holds in G relative to
Gasym.

Proof. Correctness can be verified by inspection.
To see the commitment scheme is homomorphic, observe

(
e(G, R̃)

k∏

i=1
e(Gi , M̃i )

) (
e(G, R̃′)

k∏

i=1
e(Gi , M̃ ′

i )
)

= e(G, R̃ · R̃′)
k∏

i=1
e(Gi , M̃i · M̃ ′

i ).

The commitment scheme is perfectly hiding because the randomization, e(G, R),
makes the commitment a uniformly random target-group element irrespective of the
message. Furthermore, it is perfectly trapdoor because a simulated commitment is also a
uniformly random target-group element and conditioned on a message and commitment
(25) uniquely determines the opening.
To prove the commitment scheme is computationally binding, consider an adversary

A that has not negligible probability of opening a commitment to two differentmessages.
We will use it to construct an adversary B that breaks the DBP assumption.
B gets as input a DBP challenge (�,Gz) and wants to find Z̃∗, R̃∗ ∈ G̃

∗ such
that 1 = e(Gz, Z̃∗) e(G, R̃∗). B sets Gi := Gχi

z Gγi with random χi , γi ← Zp for
i = 1, . . . , k. B aborts if Gi = 1 happens for any i , but it happens only with negligible
probability. It then runsA on ck = (�,G1, . . . ,Gk). IfA returns two differentmessages
and openings (M̃1, . . . , M̃k, R̃) and (M̃ ′

1, . . . , M̃
′
k, R̃

′) of the same commitment C then
B computes

Z̃∗ :=
k∏

i=1

(
M̃i

M̃ ′
i

)χi
, R̃∗ := R̃

R̃′

k∏

i=1

(
M̃i

M̃ ′
i

)γi
. (26)

Since C = e(G, R̃)
∏k

i=1 e(Gi , M̃i ) = e(G, R̃′)
∏k

i=1 e(Gi , M̃ ′
i ), the output satisfies

1 = e(Gz, Z̃∗) e(G, R̃∗). Each χi value in Gi = Gχi
z Gγi is perfectly hidden by the

random Gγi component, so there is only a 1
p chance of Z̃∗ = 1. This gives B a solution

to its DBP challenge. �

As mentioned in the introduction, the length-reducing schemes in this section are
useful in reducing the size of zero-knowledge arguments. In [58], HTC2 is used to
make commitments to group elements that themselves are Pedersen commitments. Ped-
ersen commitments allow the commitment to multiple values m1, . . . ,mn ∈ Zp as
G̃t ∏n

i=1 G̃
mi
i . We can use our length-reducing commitment schemes to commit to k

Pedersen commitments at once. Since our commitment schemes are homomorphic and
the Pedersen commitment scheme is homomorphic, their combination is also homomor-
phic. We therefore get a homomorphic trapdoor commitment scheme to nk elements
from Zp. In contrast to the Pedersen commitment scheme, however, the public key of
our scheme is only O(n + k) group elements. This means that both commitments and
keys are much smaller than the number of messages nk.
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3.2. Commitments Using Source-Group Elements

Wewill now show that it is also possible to make strict structure-preserving commitment
to tuples of group elements. Thismeans the commitments themselves should also consist
of source-group elements. We will do this by modifying HTC1 in the symmetric setting
such that instead of publishing a commitment inGT , we publish themessage and opening
in randomized form.The randomization is done by applying the one-sided randomization
RandOneSide from Sect. 2.7.

[Commitment Scheme HTC3]

Setup(1λ): Run � := (p,G,GT , e,G) ← Gsym(1λ). Output gk := �.
Key(gk): Choose random generators Hu ← G

∗. For i = 1, . . . , k, choose γi , δi ←
Z

∗
p and compute Gi := Gγi and Hi := H δi

u . Output commitment key ck :=
(�, Hu,G1, H1, . . . ,Gk, Hk) and trapdoor tk := (γ1, δ1 . . . , γk, δk).

Com(ck,msg): Parsemsg as (M̃1, . . . , M̃k) ∈ G
k . Choose R̃, Ũ ← G, and compute

{Cai }ki=0 ← RandOneSide((G, R̃), (G1, M̃1), . . . , (Gk, M̃k)), and (27)

{Cbi }ki=0 ← RandOneSide((Hu, Ũ ), (H1, M̃1), . . . , (Hk, M̃k)). (28)

Output commitment com := ({Cai }ki=0, {Cbi }ki=0) and opening open := (R̃, Ũ ).
Vrf(ck, com,msg, open): Parse com as ({Cai }ki=0, {Cbi }ki=0), msg as (M̃1, . . . , M̃k),

and open as (R̃, Ũ ). Output 1 if the following equations hold.

1 = e(G, R̃/Ca0)

k∏

i=1

e(Gi , M̃i/Cai ) and

1 = e(Hu, Ũ/Cb0)

k∏

i=1

e(Hi , M̃i/Cbi ). (29)

Otherwise output 0.
Sim(ck): Run (com, open) ← HTC3.Com(ck, (1, . . . , 1)). Output com and ek :=

open.
Equiv(ck,msg, ek, tk): Parsemsg as (M̃1, . . . , M̃k) and ek as (R̃, Ũ ). Compute R̃′ :=

R̃ · ∏k
i=1 M̃

−γi
i , and Ũ ′ := Ũ · ∏k

i=1 M̃
−δi
i . Output the opening dk := (R̃′, Ũ ′).

¶

Theorem 5. HTC3 is a homomorphic trapdoor commitment scheme. It is perfectly
trapdoor and computationally binding if the SDP assumption holds relative to Gsym.

Proof. Since RandOneSide preserves the value of the pairing product, we have

e(G,Ca0)
k∏

i=1
e(Gi ,Cai ) = e(G, R̃)

k∏

i=1
e(Gi , M̃i ) (30)

e(Hu,Ca0)
k∏

i=1
e(Hi ,Cai ) = e(Hu, Ũ )

k∏

i=1
e(Hi , M̃i ), (31)
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which means the commitment scheme is correct.
We will now show the commitment scheme is homomorphic. Observe that

e(G,Ca0 · C ′
a0)

k∏

i=1
e(Gi ,Cai · C ′

ai )

=
(
e(G,Ca0)

k∏

i=1
e(Gi ,Cai )

)(
e(G,C ′

a0)
k∏

i=1
e(Gi ,C ′

ai )
)

=
(
e(G, R̃)

k∏

i=1
e(Gi , M̃i )

)(
e(G, R̃′)

k∏

i=1
e(Gi , M̃ ′

i )
)

= e(G, R̃ · R̃′)
k∏

i=1
e(Gi , M̃i · M̃ ′

i ),

and a similar statement holds for the Cbi values.
This means com := ({CaiC ′

ai }ki=0, {CbiC ′
bi }ki=0) is a commitment tomsg := (M̃1M̃ ′

1,

· · · , M̃k M̃ ′
k) with opening open := (R̃ R̃′, ŨŨ ′).

To see the commitment scheme is perfectly hiding, observe that regardless of the
message, the commitment is a set of 2k + 2 uniformly random elements in G.

The perfect trapdoor property and the computational binding under the SDP assump-
tion carry over directly from the proof of Theorem 3 since the messages and openings
are identical to those of HTC1. �

3.3. Committing to Messages in Zp

Though not structure-preserving, schemes to commit to elements in Zp are often useful
and needed in applications. The following scheme, HTC4, resembles the commitment
schemes in the literature studying NIZK over bilinear groups, e.g., [4,59]. We present
the scheme with a formal treatment.

[Commitment Scheme HTC4]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Output gk := �.
Key(gk): Select γ ← Z

∗
p and set F̃ := G̃γ . Output ck := (�, F̃) and trapdoor

tk := γ .
Com(ck,m): Choose random δ ∈ Zp and compute commitment C := G̃m F̃δ ∈ G̃

and decommit key D := Gδ ∈ G. Output com := C and open := D.
Vrf(ck, com,msg, open): Parse the inputs accordingly. Output 1 if

e(G,C/G̃m) = e(D, F̃).

Output 0 otherwise.
Sim(ck): Choose δ ← Zp and compute C := F̃δ . Output com := C and ek := δ.
Equiv(ck,msg, ek, tk): Take δ, γ , andm from the input, and compute D := Gδ−m/γ .

Output open := D
¶
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Theorem 6. Commitment scheme HTC4 is a homomorphic trapdoor commitment
scheme. It is perfectly hiding and computationally binding if the XDHI assumption
holds for G.

Proof. Correctness follows since e(G,C/G̃m) = e(G, F̃δ) = e(Gδ, F̃) = e(D, F̃).
It is additively homomorphic since the following holds

e(G,C · C ′/G̃m+m′
) = e

(
G, (G̃m F̃δ) · (G̃m′

F̃δ′
)/G̃m+m′)

= e(Gδ · Gδ′
, F̃) = e(D · D′, F̃).

The perfect hiding property holds from the fact that, for anyC ∈ G̃, for everym ∈ Zp

there exists a single consistent δ ∈ Zp.
The binding property is proven by showing a reduction to XDHI. Given an instance

of XDHI, (�, H̃ , H̃a), compose �′ from � by replacing G̃ in � with H̃ and set F̃ =
H̃a . Suppose that an adversary is given ck = (�′, F̃) and outputs a commitment c
correctly opened to (m, D) and (m′, D′) for m �= m′. Then, e(G,C/G̃m) = e(D, F̃)

and e(G,C/G̃m′
) = e(D′, F̃) hold. By dividing both sides of the equations, we have

e(G, G̃m−m′
) = e(D′/D, F̃) = e(D′/D, H̃a). Thus by computing (D′/D)1/m−m′

(=
G1/a), we have a correct answer to the XDHI instance.
The equivocation is correct because

e(D, F̃) = e(Gδ−m/γ , F̃) = e(G, G̃−m F̃δ) = e(G,C/G̃m).

And it is perfect because commitment C generated by Sim distributes uniformly over
G̃ as well as those by Com. Thus, the scheme has the trapdoor property. �

4. One-Time Signature Schemes

This section presents two structure-preserving one-time signature schemes. The con-
structions are based on the trapdoor commitment schemes in Sect. 3. Mohassel [79]
presented generic conversions from chameleon hash schemes to one-time signature
schemes. Their conversion can start from trapdoor commitment schemes. In this section,
we present one-time signature schemes achieving better security and efficiency than the
generic ones.

4.1. Construction in General Setting

The first scheme, OTS1, is based on the trapdoor commitment scheme HTC1 from
Sect. 3.1. Compared to HTC1, it uses one extra random element to handle the one-time
signing query and avoids target-group elements by representing them with pairings of
random source-group elements.
The scheme is mainly designed for symmetric groups (as we show more efficient

scheme in asymmetric groups), but it works also for asymmetric groups with unilateral
messages belonging to G̃.
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Let msg := (M1, . . . , Mk) ∈ G̃
k be a message to be signed. Parameter k determines

the length of a message.

[Scheme OTS1]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Output gk := �.
Key(gk): Select random generator Hu ← G

∗. For i = 0, . . . , k, choose γi ,
δi ← Z

∗
p and compute Gi := Gγi and Hi := H δi

u . Let Gz := G0 and
Hz := H0. Also choose ρ, ϕ ← Z

∗
p, and set A := Gρ and B := Hϕ

u . Set

vk := (�, Hu,Gz, Hz, {Gi , Hi }ki=1, A, B) and sk := (vk, ρ, ϕ, {γi , δi }ki=0). Out-
put (vk, sk).

Sign(sk,msg): Pick ζ ← Zp and compute

Z̃ := G̃ζ , R̃ := G̃ρ−γ0ζ
∏k

i=1 M
−γi
i , Ũ := G̃ϕ−δ0ζ

∏k
i=1 M

−δi
i .

Output σ := (Z̃ , R̃, Ũ ) as a signature.
Vrf(vk,msg, σ ): Parse σ into (Z̃ , R̃, Ũ ). Output 1 if the following equations hold;

output 0 otherwise.

e(A, G̃) = e(Gz, Z̃) e(G, R̃)

k∏

i=1

e(Gi , Mi ) (32)

e(B, G̃) = e(Hz, Z̃) e(Hu, Ũ )

k∏

i=1

e(Hi , Mi ) (33)

¶

Theorem 7. OTS1 is a one-time signature scheme that is strongly unforgeable against
one-time chosen-message attacks if SDP holds for G.

Proof. Syntactical consistency and correctness are verified by inspection. We focus on
showing strong unforgeability. Suppose that there is a successful adversary,A. We con-
struct a reduction algorithm to SDP. Let� := (p,G, G̃,GT , e,G, G̃) and (Gz, Hz, Hu)

be an instance of SDP.
AdversaryA is given public key vk and then a one-time signature σ for message msg

of its choice. It eventually outputs a valid forgery (σ †,msg†). To run A properly, the
reduction algorithm simulates the public key and a one-time signature as follows.

• Simulating vk: Use given � for gk and (Gz, Hz, Hu) for the generators of the
same name. For i = 1, . . . , k, choose χi , γi , δi ← Zp and compute Gi :=
Gχi

z Gγi and Hi := Hχi
z H δi

u . Also choose ζ, ρ, ϕ ← Zp, and set A := Gζ
z Gρ

and B := H ζ
z H

ϕ
u . Abort if any of Gi , Hi , A and B equals 1. Send vk :=

(�, Hu,Gz, Hz, {Gi , Hi }ki=1, A, B) to A.
• Simulating σ : On receiving msg = (M0, . . . , Mk), compute

Z̃ := G̃ζ
k∏

i=1
M−χi

i , R̃ := G̃ρ
k∏

i=1
M−γi

i , Ũ := G̃ϕ
k∏

i=1
M−δi

i .
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Return σ := (Z̃ , R̃, Ũ ) to A.

Simulation is perfect except for the case it aborts in the key generation, which happens
only with negligible probability. Given output (Z̃†, R̃†, Ũ †) and (M†

1 , . . . , M
†
k ) fromA,

the reduction algorithm computes

Z̃� :=
(
Z̃†

Z̃

) k∏

i=1

(
M†

i
Mi

)χi

, R̃� :=
(
R̃†

R̃

) k∏

i=1

(
M†

i
Mi

)γi

, Ũ � :=
(
Ũ†

Ũ

) k∏

i=1

(
M†

i
Mi

)δi

.

(34)
Then output (Z̃�, R̃�, Ũ �) as an answer to the instance of SDP. This completes the
description of the reduction algorithm.
The simulation yields the view that distributes statistically close to the one in the real

execution. The negligible error occurs when random coins are chosen so that one or
more elements in vk happen to be 1. Thus, we can expect that A remains successful in
the simulation.
Next, we show the correctness of the output of the reduction. By dividing both sides

of (32) with respect to (Z̃�, R̃�, Ũ �) and (Z̃ , R̃, Ũ ), we have

1 = e
(
Gz,

Z̃†

Z̃

)
e
(
G, R̃†

R̃

) k∏

i=1
e
(
Gi ,

M†
i

Mi

)

= e
(
Gz,

Z̃†

Z̃

k∏

i=1

(
M†

i
Mi

)χi)
e
(
G, R̃†

R̃

k∏

i=1

(
M†

i
Mi

)γi )
= e(Gz, Z̃�) e(G, R̃�).

Similarly, with respect to (33), we have

1 = e
(
Hz,

Z̃†

Z̃

)
e
(
Hu,

Ũ†

Ũ

) k∏

i=1
e
(
hi ,

M†
i

Mi

)

= e
(
Hz,

Z̃†

Z̃

k∏

i=1

(
M†

i
Mi

)χi )
e
(
Hu,

Ũ†

Ũ

k∏

i=1

(
M†

i
Mi

)δi )
= e(Hz, Z̃�) e(Hu, Ũ �).

Hence, (Z̃�, R̃�, Ũ �) is a correct answer to the SDP instance.
It remains to show that Z̃� �= 1.
We first consider the case of (M1, . . . , Mk) = (M†

1 , . . . , M
†
k ). In this case, (Z̃†, R̃†,

Ũ †) �= (Z̃ , R̃, Ũ ) must hold. Observe that Z̃† = Z̃ cannot be the case since it implies
R̃†= R̃ and Ũ †=Ũ to fulfill (32) and (33). Thus, we have Z̃† �= Z̃ and Z̃� = Z̃†/Z̃ �= 1.
Next, we consider the case of (M1, . . . , Mk) �= (M†

1 , . . . , M
†
k ). In this case, there

exists i� for which Mi� �= M†
i� holds. We claim that randomness χi� is information-

theoretically hidden from the view of the adversary. Namely, for any view of the
adversary and for any χi� , there exists a consistent coin toss which yields the
view.
From now, we consider a group element by its index with respect to base G and G̃ and

denote the index with the corresponding lower-case letter. For instance, we represent Gz

by gz := logG Gz . The independent group elements (Gz, Hz, Hu,G1, H1, . . . ,Gk, Hk,

A, B, Z) given to A are translated to (gz, hz, hu, g1, h1, . . . , gk, hk, a, b, z). Note that
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R andU are uniquely determined from other group elements. Message (m1, . . . ,mk) is
in the view ofA as well. Then, for the simulated public key and one-time signature, the
following relations hold among the variables in the view and the coins chosen by the
reduction algorithm:

gi = gzχi + γi , hi = hzχi + huδi (for i = 1, . . . , k) (35)

a = gzζ + ρ, b = hzζ + huϕ, (36)

z = ζ +
k∑

i=1
−miχi . (37)

Let χi for all i �= i� be fixed to any value. Then, for every assignment to χi� ,
there exist consistent γi� and δi� that fulfill (35). Also, there exist ρ, ϕ and ζ that
satisfy (37) and (36). Accordingly, any choice of χi� is consistent with the adver-
sary’s view. Due to the factor (M†

i�/Mi� )
χi� , with M†

i�/Mi� �= 1, variable Z̃� distrib-
utes uniformly over G̃ depending on χi� . Thus, Z̃� = 1 happens only with negligible
probability. �

4.2. Construction in Asymmetric Setting

In the case of � ∈ {�xdh,�sxdh}, we can construct a more efficient scheme, OTS2, that
halves OTS1 just like HTC2 does for HTC1.

[Scheme OTS2]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Output gk := �.
Key(gk): For i = 0, . . . , k, choose γi ← Z

∗
p and computeGi := Gγi . LetGz := G0.

Also choose ρ ← Z
∗
p, and set A := Gρ . Set vk := (�,Gz, {Gi }ki=1, A) and

sk := (vk, ρ, {γi }ki=0). Output (vk, sk).
Sign(sk,msg): Pick ζ ← Zp and compute

Z̃ := G̃ζ , R̃ := G̃ρ−γ0ζ
∏k

i=1 M
−γi
i .

Output σ := (Z̃ , R̃) as a signature.
Vrf(vk,msg, σ ): Output 1 if the following equations hold; output 0 otherwise.

e(A, G̃) = e(Gz, Z̃) e(G, R̃)
∏k

i=1 e(Gi , Mi ) ¶

Theorem 8. OTS2 is a one-time signature scheme that is strongly unforgeable against
one-time chosen-message attacks if DBP holds for G.

Theorem 8 can be proven in the samemanner as done for Theorem 7 only by dropping
non-existing variables.

Remark on Signing Messages from Both Groups. By swapping the roles of G and
G̃, we obtain a dual scheme OTS2’ whose messages are in G. By using these two
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schemes in a fixed order, we construct a scheme that signs a bilateral message msg :=
(M1, . . . , Mkm , N1, . . . , Nkn ) ∈ G̃

km × G
kn : Sign (M1, . . . , Mkm ) with OTS2 to obtain

σm and then sign (N1, . . . , Nkn ) with OTS2’ to obtain σn ; define σ := (σm, σn) as the
signature for msg. The signature is accepted if σm is a valid signature for OTS2 and
σn is a valid signature for OTS2’. With � = �sxdh, the resulting scheme is strongly
unforgeable against one-time adaptive chosen-message attacks. More precisely, the se-
curity is proven based on DBP and its dual assumption implied by DDH in G and G̃,
respectively.

Remark on Reusing Public Keys. In [2], it is shown that OTS2 can be used as partially
one-time signature scheme where only element A is updated for every signing and all
remaining elements in vk can be reused. We refer to [2] for the formal security notion
and a proof.
Though it is not covered by [2], the same is true for OTS1 where only A and B

must be refreshed before signing. The intuition is that, for the information-theoretical
argument in the security proof, elements A and B provide random one-time pads ρ and
ϕ, respectively, that perfectly hide the sensitive information χi� for signing. Hence by
refreshing A and B for every signing, new randomness hides χi� in the view of the
signature. Thus, the information-theoretical argument is preserved.

5. Constant-Size Signatures

This section presents a constant-size structure-preserving signature scheme that yields
signatures consisting of 7 group elements independently of the message length, which
is a priori fixed by the public key. We then argue how to extend the basic scheme to sign
messages with unbounded length allowing linear growth of the signature size with an
exact estimation of the growth factor.

5.1. Construction

Our construction combines a trapdoor commitment scheme based on SDP and a strong
q-type assumption, SFP. A technical obstacle is the “exception,” that besides satisfying
Equations (2) and (3), a SFP solution must also satisfy Z̃� �= 1. The signature scheme
should not explicitly handle exceptions because the condition Z̃ �= 1 is not trivial to
prove and affects the efficiencywhen proving a knowledge of a signature.We address this
problem by involving another set of elements (A0, Ã0) and (B0, B̃0) in the verification
predicate. In the proof of unforgeability, these elements hold a secret random offset
g̃ζ that will be multiplied to Z̃ in a forged signature so that the answer to SFP, Z̃� =
Z̃ G̃ζ , happens to be 1 only by chance. (The real proof is slightly more involved.) The
randomization techniques from Sect. 2.7 also help the construction and the security
proof in such a way that the signature elements are uniform conditioned on satisfying
the verification equations.
The message space of our signature scheme is G̃k for an arbitrary constant k. Let in

the following msg := (M1, . . . , Mk) ∈ G̃
k be a message to be signed.
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[Scheme CSIG]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Output gk := �.
Key(1λ): Choose Hu ← G

∗. For i = 1, . . . , k, choose γi , δi ← Z
∗
p and compute

Gi := Gγi and Hi := H δi
u . Choose γz, δz ← Z

∗
p and compute Gz := Gγz and

Hz := H δz
u . Also choose α, β ← Z

∗
p and compute {Ai , Ãi }1i=0 ← Extend(G, G̃α)

and {Bi , B̃i }1i=0 ← Extend(Hu, G̃β). Set vk := (�∗,Gz, Hz, Hu, {Gi , Hi }ki=1,

{Ai , Ãi , Bi , B̃i }1i=0) and sk := (vk, α, β, γz, δz, {γi , δi }ki=1). Output (vk, sk).
Sign(sk,msg): Choose ζ, ρ, τ, ϕ, ω randomly from Zp and set:

Z̃ := G̃ζ , R̃ := G̃α−ρτ−γzζ
∏k

i=1 M
−γi
i , S := Gρ, T̃ := G̃τ ,

Ũ := G̃β−ϕω−δzζ
∏k

i=1 M
−δi
i , V := Hϕ

u , W̃ := G̃ω.

Output σ := (Z̃ , R̃, S, T̃ , Ũ , V, W̃ ) as a signature.
Vrf(vk,msg, σ ): Output 1 if

e(A0, Ã0) e(A1, Ã1) = e(Gz, Z̃) e(G, R̃) e(S, T̃ )

k∏

i=1

e(Gi , Mi ), and (38)

e(B0, B̃0) e(B1, B̃1) = e(Hz, Z̃) e(Hu, Ũ ) e(V, W̃ )

k∏

i=1

e(Hi , Mi ). (39)

hold; output 0 otherwise. ¶

Correctness is verified by inspecting that

(right-hand of (38)) = e(Gz, Z̃) e(G, R̃) e(S, T̃ )
k∏

i=1
e(Gi , Mi )

= e
(
Gγz , G̃ζ

)

e

(

G, G̃α−ρτ−γzζ
k∏

i=1
M−γi

i

)

e
(
Gρ, G̃τ

) k∏

i=1
e (Gγi , Mi )

= e
(
G, G̃α

)

= (left hand of (38)).

holds. Relation (39) is verified in the same manner.
Given a signature (Z̃ , R̃, S, T̃ , Ũ , V, W̃ ), one can randomize every element except for

Z̃ by applying the sequential randomization technique. Let (R̃′, S′, T̃ ′, Ũ ′, V ′, W̃ ′) ←
SigRand(R̃, S, T̃ , Ũ , V, W̃ ) be an algorithm defined as follows. If T̃ = 1, set S = 1 and
choose T̃ ← G̃

∗. Then, choose � ← Zp and compute R̃′ = R̃ T̃ � and (S′, T̃ ′) ←
Rand(SG−�, T̃ ); compute (Ũ ′, V ′, W̃ ′) from (Ũ , V, W̃ ) analogously. The resulting
(R̃′, S′, T̃ ′, Ũ ′, V ′, W̃ ′) distributes uniformly over (G̃×G×G̃)2 under the constraint that
e(G, R̃) e(S, T̃ ) = e(G, R̃′) e(S′, T̃ ′) and e(Hu, Ũ ) e(V, W̃ ) = e(Hu, Ũ ′) e(V ′, W̃ ′).
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Accordingly, (S′, T̃ ′, V ′, W̃ ′) is independent of Z̃ , the message and the verification key.
This is a useful property, since it can reduce the size of proofs of knowledge of signa-
tures: The randomized (S′, T̃ ′, V ′, W̃ ′) can be exposed, as they do not reveal anything
about the hidden signature.

Theorem 9. CSIG is EUF-CMA against adversaries making up to q signing queries
if q-SFPA holds for G.

Proof. LetA be an adversary that after adaptively querying the signing oracle on mes-
sages �Mj , for j = 1, . . . , q, and receiving signatures σ j has non-negligible advantage
of forging a signature on a message �M† �∈ { �Mj }qj=1. We construct a reduction algorithm

which takes an input �, Gz , Hz , Hu , (A, Ã), (B, B̃) and uniformly chosen tuples I j for
j = 1, . . . , q as defined in Assumption 8, and simulates the view of A in the attack
environment as follows:

Simulating CSIG.Key: Use (Gz, Hz, Hu) as given in the input. For i = 1, . . . , k set
Gi := Gχi

z Gγi and Hi := Hχi
z H δi

u , where χi , γi , δi ← Zp. As the proba-
bility that any Gi or Hi , i = 1, . . . , k, is equal to 1G is negligible, the re-
duction simply aborts in such cases. Otherwise, all group elements are uni-
formly random in G

∗, like in the key generation algorithm. Then, select ζ , ρ,
ϕ ← Zp, and compute ((A0, Ã0), (A1, Ã1)) ← RandSeq((Gζ

z Gρ, G̃), (A, Ã))

and ((B0, B̃0), (B1, B̃1)) ← RandSeq((H ζ
z H

ϕ
u , G̃), (B, B̃)).

For convenience, denote Gζ
z Gρ by A′ and H ζ

z H
ϕ
u by B ′.

The verification key is vk = (Gz, Hz, Hu, {Gi , Hi }ki=1, {Ai , Ãi , Bi , B̃i }1i=0).
Simulating CSIG.Sign: Given a message �M , take a fresh tuple I j = (Z̃ j , R̃ j , Ũ j , Si j ,

T̃i j , Vi j , W̃i j ) ∈ G̃
∗ × G̃ × G̃ × G × G̃ × G × G̃ from the input instance. Then,

compute

Z̃ := Z̃ j G̃ζ
k∏

i=1
M−χi

i , R̃ := R̃ j G̃ρ
k∏

i=1
M−γi

i , S := S j , T̃ := T̃ j ,

Ũ := Ũ j G̃ϕ
k∏

i=1
M−δi

i , V := Vj , W̃ := W̃ j .

The signature is σ := (Z̃ , R̃, S, T̃ , Ũ , V, W̃ ). It is easy to verify that the signature
satisfies the verification equations.

When A outputs ( �M†, (Z̃†, R̃†, S†, T̃ †, Ũ †, V †, W̃ †)), compute

Z̃� := Z̃† G̃−ζ
k∏

i=1
(M†

i )
χi

, R̃� := R̃† G̃−ρ
k∏

i=1
(M†

i )
γi

, Ũ � := Ũ † G̃−ϕ
k∏

i=1
(M†

i )
δi
,

and set S� := S†, T̃ � := T̃ †, V � := V †, and W̃ � := W̃ †. If any of the
parameters χ1, . . . , χk is 0, the reduction algorithm aborts; otherwise, it outputs
(Z̃�, R̃�, S�, T̃ �, Ũ �, V �, W̃ �). The probability of aborting is negligible because the pa-
rameters are chosen uniformly at random. We can therefore ignore those cases in our
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analysis without affecting the overall outcome. This completes the description of the
reduction algorithm.
The above signatures are correctly distributed, and thus,A outputs a successful forgery

with a non-negligible probability. Then, for the output of the reduction algorithm, it holds
that

e(Gz, Z̃
�) e(G, R̃�) e(S�, T̃ �)

= e

(

Gz, Z̃† G̃−ζ
k∏

i=1
(M†

i )
χi

)

e

(

G, R̃† G̃−ρ
k∏

i=1
(M†

i )
γi

)

e
(
S†, T̃ †

)

= e
(
G−ζ

z G−ρ, G̃
)
e
(
Gz, Z̃

†) e
(
G, R̃†)e

(
S†, T̃ †)

k∏

i=1
e
(
Gi , M

†
i

)

= e
(
Gζ

z G
ρ, G̃

)−1 1∏

i=0
e(Ai , Ãi ) = e(A, Ã).

One can also verify that e(Gz, Z̃�) e(Hu, Ũ �) e(V �, W̃ �) = e(B, B̃) holds in the same
way.
It remains to show that Z̃� is not in {1, Z̃1, . . . , Z̃q}. For that, first notice that the pa-

rameters ζ and {χi }ki=1 are independent from adversaryA’s view, as proved in Lemma 6
below. Namely, for any view of the adversary and for any choice of ζ and χi , for
i = 1, . . . , k, there exist unique and consistent parameters ρ, ϕ, γi , δi , i = 1, . . . , k and
Z̃ j , R̃ j , Ũ j , j = 1, . . . , q.
We show that the probability that Z̃� ∈ {Z̃1, . . . , Z̃q} is negligible. For every Z̃ j and

signature σ = (Z̃ , R̃, S, T̃ , Ũ , V, W̃ ) on a message �M simulated by using Z̃ j , it holds
that

Z̃�

Z̃ j
=

Z̃† G̃−ζ
k∏

i=1
(M†

i )
χi

Z̃ G̃−ζ
k∏

i=1
Mχi

i

= Z̃†

Z̃

k∏

i=1

(
M†

i
Mi

)χi
.

Since �M† �= �M , there exists i such that M†
i �= Mi . Since χi ∈ Z

∗
p is information-

theoretically hidden from the adversary’s view, the probability that Z̃� = Z̃ j is negligible
due to the term (M†

i /Mi )
χi in the above equation. To show that Z̃� = (Z̃†) G̃−ζ

∏k
i=1

(M†
i )

χi
is equal to 1

G̃
only with negligible probability, notice that ζ is also independent

from the adversary’s view and the claim holds due to the uniform choice of ζ . Therefore,
when the reduction algorithm does not abort, the probability that Z̃� �∈ {1, Z̃1, . . . , Z̃q}
is overwhelming. �

Lemma 6. The parameters ζ , χ1, χ2, . . ., χk chosen by the reduction algorithm in
Theorem 9 are independent fromA’s view, that is, independent from the verification key,
the signed messages and the signatures.

Proof. Let vk := (Gz, Hz, Hu, {Gi , Hi }ki=1, {Ai , Ãi , Bi , B̃i }1i=0) be the verification
key the adversary sees, �M1, . . ., �Mq be the messages on which A queries the signing
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oracle, and σ1, . . ., σq be the corresponding signatures. Furthermore, assume that (A, Ã)

and (B, B̃) given to the reduction algorithm are also fixed, thoughA does not see them.
That yields unique A′ and B ′ such that

AT = e(A0, Ã0) e(A1, Ã1) = e(A′, G̃) e(A, Ã)

BT = e(B0, B̃0) e(B1, B̃1) = e(B ′, G̃) e(B, B̃)

For any choice ζ �, χ�
i ∈ Zp of the parameters ζ, χi , for i = 1, . . . , k, there exists

a unique coin toss ρ�, ϕ�, γ �
i , δ�

i such that A′ = Gζ �

z Gρ�
, B ′ = H ζ �

z Hϕ�

u , Gi =
G

χ�
i

z Gγ �
i , and Hi = H

χ�
i

z H
δ�
i

u . This shows that the verification key and the parameters
are independent. Next, we show that the chosen parameters remain independent from
A’s view even after signing q adaptively chosen messages due to the uniform choice of
the tuples I j = (Z̃ j , R̃ j , S j , T̃ j , Ũ j , Vj , W̃ j ), j = 1, . . . , q, as defined inAssumption 8.

Let the j-th message be �M and the corresponding signature be σ =
(Z̃ , R̃, S, T̃ , Ũ , V, W̃ ). From the specification of the reduction algorithmwe have (S, T̃ )

= (S j , T̃ j ) and (V, W̃ ) = (Vj , W̃ j ), where I j = (Z̃ j , R̃ j , S j , T̃ j , Ũ j , Vj , W̃ j ) is the j-
th tuple given as input. And for the fixed view, ζ, {χi }ki=1 determine uniquely the values of

Z̃ j = Z̃ G̃−ζ
∏k

i=1 M
χi
i , R̃ j = R̃ G̃−ρ

∏k
i=1 M

γi
i , and Ũ j = Ũ G̃−ϕ

∏k
i=1 M

δi
i . Re-

gardless of the particular choice of parameters ζ �, {χ�
i }ki=1, sinceσ satisfies the signature-

verification equations:

AT = e(Gz, Z̃) e(G, R̃) e(S, T̃ )
k∏

i=1
e(Gi , Mi ) and

BT = e(Hz, Z̃) e(Hu, Ũ ) e(V, W̃ )
k∏

i=1
e(Hi , Mi ),

it is true that the corresponding tuple I �
j = (Z̃�

j , R̃
�
j , S j , T̃ j , Ũ �

j , Vj , W̃ j ) satisfies:

e(A, Ã) = e(Gz, Z̃
�
j ) e(G, R̃�

j ) e(S j , T̃ j ) and

e(B, B̃) = e(Hz, Z̃
�
j ) e(Hu, Ũ

�
j ) e(Vj , W̃ j ). (40)

It remains to show that the uniform choice of ζ �, {χ�
i }ki=1 together withA’s view yields

uniform distribution for the tuples I �
j , for j = 1, . . . , q, as specified by the assumption

description. If that is indeed the case, each set of tuples which could have been given
as input to the reduction algorithm is chosen with the same probability. And because
for any choice of ζ �, χ�

1 , . . . , χk , there exists unique set {I �
j }qj=1, those imply that each

parameter selection looks equally likely for A.
To see the uniformity of I �

j , note again that (S j , T̃ j ) and (Vj , W̃ j ) are determined
uniquely from the view regardless of the choice of parameters. We define the following
homomorphism φ:

φG̃, �M (ζ �, χ�
1 , . . . , χ

�
k ) = G̃−ζ �

k∏

i=1
M

χ�
i

i .
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It is easy to verify that for uniformly chosen parameters, the range of φ is uniformly
distributed over G̃. This in turn implies that for a fixed Z̃ and uniformly chosen para-
meters, Z̃�

j = Z̃ , φ(ζ �, χ1, . . . , χk) is uniformly distributed over G̃. And because I �
j

satisfies (40), the values of R̃�
j and Ũ �

j are determined uniquely by the other tuple val-

ues, which for a fixed view means determined by Z̃�
j . To sum it up, for a fixed view, the

uniform random choice of the parameters gives uniformly distributed Z̃�
j which implies

the uniformity of I �
j . �

5.2. Extension

Our scheme CSIG in Sect. 5.1 is not automorphic since the size of a message vector
is a priori bounded by the verification key and the verification key itself exceeds the
bound. There is a standard method to sign unbounded-size messages by using signature
schemes with limited message space. The following scheme, denoted by USIG, is a
minor variation of the one in [65]. Suppose that CSIG is set up to sign messages of size
at most k ≥ 3. To sign message �M = (M1, . . . , Mn) for n > k, first encode the size of
the message into a group element M0 := 〈| �M |〉. Then, select a random group element t
and compute

σ0 := CSIG.Sign(sk, t || 〈1〉 || M0, ..., Mk−3),

σ1 := CSIG.Sign(sk, t || 〈2〉 || Mk−2, ..., M2k−5), . . . (41)

The resulting signature is σ = (t, σ0, σ1, . . . ), which consists of � n+1
k−2 � · 7 + 1 group

elements.
The scheme USIG is automorphic in the symmetric setting but falls short in the asym-

metric setting � = �sxdh where a message vector may consist of elements from G and
G̃. We construct a scheme, XUSIG, that signs messages consisting of elements inG and
G̃ for� = �sxdh as follows. LetUSIG1 andUSIG2 be schemes for unbounded-size mes-
sages in G and G̃, respectively. To sign �M = (M1, . . . , Mn, M̃1, . . . , M̃ñ) ∈ G

n × G̃
ñ ,

first pick random tags T ∈ G and T̃ ∈ G̃ such that e(T, G̃) = e(G, T̃ ) holds. Then,
sign (T, M1, . . . , Mn) and (T̃ , M̃1, . . . , M̃ñ) by using USIG1 and USIG2. The resulting
signature is a concatenation of two signatures from USIG1 and USIG2. The verification
function first checks if e(T, G̃) = e(G, T̃ ) holds and then follows the verification for
USIG1 and USIG2.
It is not hard to see that, if the underlying schemes are existentially unforgeable against

chosen-message attacks, so are USIG and XUSIG. Thus, schemes USIG and XUSIG are
secure automorphic signature schemes in symmetric and asymmetric bilinear-group
setting, respectively.

6. Automorphic Signatures

In this section, we present an efficient construction of an automorphic signature scheme,
which was also the first efficient structure-preserving signature scheme in the literature.
In this scheme public keys are Diffie–Hellman pairs, that is, (Gx , G̃x ), for some x ∈ Zp.
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Messages are also of this form: (Gm, G̃m). We then present a generic method to extend
the message space so we can sign several messages of that form at once.

6.1. Construction

Boneh and Boyen [22] show that their SDH assumption implies a signature scheme
which is existentially unforgeable against adversaries that only get signatures on random
messages (the scheme corresponds to Problem 1 stated before Assumption 9; page 15).
Analogously, ADH-SDH immediately yields an (automorphic) scheme secure against
“random-message attacks” if we consider (X, Ỹ ) as the public key, (V, W̃ ) as a mes-
sage in DH = {(Gv, G̃v) | v ∈ Zp} and (A, B, D̃) as the signature. We show how to
transform this into a strongly EUF-CMA-secure signature scheme by assuming AWF-
CDH. We add some more randomness to the signature that in our reduction lets us map
a query for a message chosen by the adversary to a given tuple (Ai , Bi , D̃i , Vi , W̃i )

from an ADH-SDH instance. AWF-CDH then asserts that the adversary cannot produce
a new signature/message pair

(
(A∗, B∗, D̃∗, R∗, S̃∗), (M∗, Ñ∗)

)
that maps back to a

tuple from the instance (see the proof of Theorem 10). We get the following efficient
automorphic signature construction, whose signatures are in G3 × G̃

2. The scheme can
also be defined over symmetric bilinear groups, in which case we replace G̃ by a random
generator H of G.

[Scheme ASIG]

Setup(1λ): Run � := (p,G, G̃,GT , e,G, G̃) ← G(1λ). Choose F, K , T ← G
∗

and output gk := (�, F, K , T ). The message space is defined as
DH := {(Gm, G̃m) |m ∈ Zp}.

Key(gk): Choose a random x ← Zp and compute (X, Ỹ ) := (Gx , G̃x ). Output
vk := (X, Ỹ ) and sk := (gk, vk, x).

Sign(sk,msg): Given secret key sk = x and message msg = (M, Ñ ) ∈ DH, choose
c ← Zp\{−x} and r ← Zp, and compute

A := (K · T r · M)
1

x+c , B := Fc, D̃ := G̃c, R := Gr , S̃ := G̃r . (42)

Output σ := (A, B, D̃, R, S̃).
Vrf(gk, vk,msg, σ ): For msg ∈ DH, output 1 if the following hold and 0 otherwise:

e(A, Ỹ · D̃)=e(K · M, G̃) e(T, S̃) e(B, G̃) = e(F, D̃) e(R, G̃) = e(G, S̃) (43)

¶

Theorem 10. Signature scheme ASIG is sEUF-CMA against adversaries making at
most q −1 adaptive chosen-message queries if q-ADH-SDH and AWF-CDH hold for G.

Proof. Consider an adversary that after receiving parameters (�, F, K , T ) and pub-
lic key (X, Ỹ ) is allowed to ask for q − 1 signatures (Ai , Bi , D̃i , Ri , S̃i ) on mes-
sages (Mi , Ñi ) ∈ DH of its choice and outputs (M, Ñ ) ∈ DH and a valid signature
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(A, B, D̃, R, S̃) on it, such that either (M, Ñ )was never queried, or (M, Ñ ) = (Mi , Ñi )

and (A, B, D̃, R, S̃) �= (Ai , Bi , D̃i , Ri , S̃i ).
We distinguish two kinds of forgers: An adversary is called of Type A if its output

satisfies
e(T, S̃ · S̃−1

i ) �= e(Mi · M−1, G̃) ∨ B �= Bi (44)

for all i ∈ {1, . . . , q − 1}. Otherwise, it is called of Type B. We will use the first type to
break q-ADH-SDH and the second type to break AWF-CDH.
Adversary Type A. Let

(
�, F, K , X, Ỹ , (Ai , Bi , D̃i , Vi , W̃i )

q−1
i=1

)
be a q-ADH-SDH

challenge. By (7), it satisfies

e(Ai , Ỹ · D̃i ) = e(K · Vi , G̃), e(Bi , G̃) = e(F, D̃i ), e(Vi , G̃) = e(G, W̃i ) (45)

for all i ∈ {1, . . . , q − 1}. Let A be a forger of Type A. Choose t ← Zp and give
parameters (�, F, K , T := Gt ) and the public key (X, Ỹ ) to A. The i-th query for
(Mi , Ñi ) ∈ DH is answered as

(
Ai , Bi , D̃i , Ri := (Vi · M−1

i )
1
t , S̃i = (W̃i · Ñ−1

i )
1
t
)
. (46)

This satisfies the verification equations (43): e(Bi , G̃)
(45)= (F, D̃i ),

e(Ri , G̃) = e((Vi · M−1
i )

1
t , G̃) = e(Vi , G̃)

1
t e(Mi , G̃)−

1
t

= e(G, W̃i )
1
t e(G, Ñi )

− 1
t = e(G, S̃i ), (47)

where the third equation follows from (Vi , W̃i ), (Mi , Ñi ) ∈ DH. Finally

e(Ai , Ỹ · D̃i )
(45)= e(K · Vi , G̃)

(46)= e(K · (Rt
i · Mi ), G̃) = e(K · Mi , G̃) e(Ri · G̃)t

(47)= e(K · Mi , G̃) e(G · S̃i )t = e(K · Mi , G̃) e(T · S̃i ).

Moreover, the oracle answer in (46) it is correctly distributed since vi is uniformly
random in the ADH-SDH instance. The signing oracle is thus perfectly simulated.
If the adversary produces a valid signature/message pair ((A, B, D̃, R, S̃), (M, Ñ ))

then by the last 2 equations of (43), there exist c, r such that B = Fc, D̃ = G̃c, R =
Gr , S̃ = G̃r , and

e(A, Ỹ · D̃) = e(K · M, G̃) e(T, S̃). (48)

The tuple (A, B, D̃, V := Rt · M, W̃ := S̃t · Ñ ) satisfies the equations of ADH-SDH
tuples in (7), since (B, D̃) and (V, W̃ ) are Diffie–Hellman pairs and

e(K · V, G̃) = e(K · (Gr )t · M, G̃) = e(K · M, G̃) e(T, S̃)
(48)= e(A, Ỹ · D̃).

Moreover, it is a solution for the ADH-SDH instance, since it is a new tuple: assume
that for some i we have B = Bi and W̃ = W̃i , that is S̃t · Ñ = S̃ti · Ñi . Since
(M, Ñ ), (Mi , Ñi ) ∈ DH, we have e(T, S̃) e(M, G̃) = e(Gt , S̃) e(G, Ñ ) = e(G, S̃t ·
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Ñ ) = e(G, S̃ti · Ñi ) = e(T, S̃i ) e(G, Ñi ) = e(T, S̃i ) e(Mi , G̃). We have thus e(T, S̃ ·
S̃−1
i ) = e(Mi · M−1, G̃) and B = Bi which contradicts (44) and thus the fact that A is

of Type A.
Adversary Type B. Let (�, T = Gt ) be an AWF-CDH instance (note that T cor-
responds to A in Assumption 3). Let A be a forger of Type B. Pick F, K ← G and
x ← Zp, set X := Gx , Ỹ := G̃x and give the adversary parameters (�, F, K , T ) and
public key (X, Ỹ ). Answer a signing query on (Mi , Ñi ) ∈ DH by returning a signature
(Ai , Bi , D̃i , Ri , S̃i ) produced by ASIG.Sign with x as a secret key. Suppose A returns
((A, B, D̃, R, S̃), (M, Ñ )) satisfying (43) such that for some i :

e(T, S̃ · S̃−1
i ) = e(Mi · M−1, G̃) B = Bi (49)

Then, (M∗ := Mi · M−1, Ñ∗ := Ñi · Ñ−1, R∗ := R · R−1
i , S̃∗ := S̃ · S̃−1

i ) is an
AWF-CDH solution:
It satisfies the equations in (1): e(T, S̃∗) = e(T, S̃ · S̃−1)

(49)= e(Mi · M−1
i , G̃) =

e(M∗, G̃), and the two remaining equations in (1) follow since (Mi , Ñi ), (Ri , S̃i ),
(M, Ñ ) and (R, S̃) are all Diffie–Hellman pairs and therefore (M∗, Ñ∗) and (R∗, S̃∗) are
inDHwell. Moreover, (M∗, Ñ∗, R∗, S̃∗) is non-trivial: If M∗ = 1 = R∗, then M = Mi

and R = Ri ; since, moreover, B = Bi and since the values M, B and R completely
determine a message/signature pair, this means thatA returned a message/signature pair
from one of its queries, meaning A did not break strong unforgeability. �

6.2. Extension

In this section, we show how to extend the message space of automorphic signature
schemes. The messages of the scheme from the previous section consist of one pair of
group elements. Known generic methods for extending the message space require extra
elements in the message allowing to glue message blocks together as shown in Sect. 5.2;
they thus do not work here. Our approach is to generate a fresh ephemeral key for each
message block and authenticate these keys by using the persistent key. As this does not
guarantee the order of the message blocks, we bind the message-block number to the
corresponding ephemeral key using the group operation.
Let ASIG be an automorphic signature scheme whose verification key consists of

an element of a group H of order p. For the scheme in Sect. 6.1, this group H is
DH := {(Gx , G̃x ) | x ∈ Zp}, a subgroup of the direct product of source groups G× G̃.
Let 〈n〉 denote an efficiently computable injective mapping from n ∈ {1, . . . , nmax } to
H

∗ where nmax is larger than any polynomial in λ. We require that, for any n and n′ in
{1, . . . , nmax }, it holds that 〈n〉 · 〈n′〉 �= 1 ∈ H. (A simple example for nmax � p would
be 〈n〉 := Hn , where H generates H.) To simplify notation when dealing with several
keys that also act as messages, we write them as subscript when they act as keys; for
instance, we write ASIG.Signsk(vk0) for signing message vk0 with key sk.

In the following, we constructASIG2 that signsmessagesmsg = {M1, . . . , Mn} ∈ H
n

for an arbitraryn that does not dependon the verification-key length. It outputs a signature
of size (3n + 2) · |σasig| + (n + 1) · |vkasig| where |σasig| and |vkasig| denote the size of
a signature and a verification key of the underlying scheme ASIG, respectively.
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[Scheme ASIG2]

Setup(1λ): Same as ASIG.Setup. It takes security parameter 1λ and outputs a para-
meters gk.

Key(gk): Same as ASIG.Key. It takes gk and outputs verification key vk ∈ H and
secret key sk.

Sign(sk,msg): On input message msg = {M1, . . . , Mn} ∈ H
n , do the following.

• (vk0, sk0) ← ASIG.Key(gk), δ0 ← ASIG.Signsk(vk0), ξ0 ← ASIG.Signsk0
(〈n〉);

• for i = 1, . . . , n: (vki , ski ) ← ASIG.Key(gk), δi ← ASIG.Signsk0(vki ), ξi ←
ASIG.Signsk0(vki · 〈i〉), γi ← ASIG.Signski (Mi ).

Output σ = (vki , δi , ξi , γi )ni=0 (γ0 is empty for notational convenience in the
whole section.)

Vrf(vk,msg, σ ): On input (msg, σ ), parse msg as {M1, . . . , Mn} ∈ H
n and σ as

(vki , δi , ξi , γi )ni=0. Check if 1 = ASIG.Vrfvk(vk0, δ0) = ASIG.Vrfvk0(〈n〉, ξ0)
holds. For i = 1, . . . , n, check if 1 = ASIG.Vrfvki (Mi , γi ) = ASIG.Vrfvk0(vki , δi )
= ASIG.Vrfvk0(vki · 〈i〉, ξi ). Output 1 if all verifications succeeded. Output 0 oth-
erwise.

¶

Theorem 11. If ASIG is EUF-CMA, then so is ASIG2.

Proof. We follow the game transformation style for proving the theorem. Starting from
the chosen-message attack against ASIG2, we change the game slightly and eventually
see that the adversary can never win the game.

Game 0. (Standard EUF-CMA game.) An adversary is given verification key vk and
whenever it makes signing query for msg, signing oracle Osign returns
σ ← ASIG2.Sign(sk,msg). The adversary eventually outputs a forgery,
σ † = (vk†i , δ

†
i , ξ

†
i , γ

†
i )n

†

i=0 and msg† = (M†
1 , . . . , M

†
n†

).

Let us define some notations. Let Pr[i] denote the probability that the adversary outputs
a valid forgery in Game i . In particular, Pr[0] = ε is the probability of breaking ASIG2.

Let Qm,σ = {(msg, σ )} be the transcript exchanged between the adversary andOsign.
Let qs and nmax denote the number of signing queries and themaximummessage length,
which are bounded by polynomials inλ. For a public key vkwith corresponding sk, letIvk
denote messages given as input to ASIG.Signsk( · ) whileOsign is computing signatures.
If vk is not used by Osign, then Ivk = ∅.
Let εvk be the highest probability that a key is generated by ASIG.Key. We assume that

εvk is negligible in the security parameter, which is the case for the scheme in Sect. 6.1,
where εvk = 1/p.

Game 1. Abort the game if there is a public key vki that appears more than once in
Qm,σ .

As each signature in Qm,σ includes at most nmax + 1 randomly chosen public keys, the

probability of aborting is boundedby
(
qs(nmax+1)

)2·εvk .We thus have |Pr[0]−Pr[1]| ≤
(
qs(nmax + 1)

)2 · εvk , which is negligible in the security parameter.
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Game 2. Abort the game if there is a signature (vki , δi , ξi , γi )ni=0 in Qm,σ such that
vki = vk j · 〈 j〉 holds for some 0 < i, j ≤ n.

Observe that vki = vki · 〈i〉 does not happen since 〈i〉 �= 1. For every fixed i , the
probability that there exists j for vki = vk j ·〈 j〉 is bounded by (nmax−1)·εvk . As there are
at most qs signatures, the probability of aborting is upper bounded by qs(nmax −1) · εvk .
We thus have |Pr[1] − Pr[2]| < qs(nmax − 1) · εvk , which is negligible.

Game 3. Abort the game if there is a signature (vki , δi , ξi , γi )ni=0 in Qm,σ such that
vki = 〈n〉 holds for some 0 < i ≤ n.

For each signature, this happens with probability n εvk due to the randomness of vk j .
Accumulating to qs signatures with maximal length of messages, the probability of
aborting for this case is upper bounded by qs · nmax · εvk . Thus, |Pr[2] − Pr[3]| <

qs · nmax · εvk , which is negligible.

Game 4. Abort the game if there is a signature (vki , δi , ξi , γi )ni=0 in Qm,σ such that
〈n′〉 ∈ Ivk0 holds for some n′ < n.

The case that 〈n′〉 ∈ {vk1, . . . , vkn, vk1 · 〈1〉, . . . , vkn · 〈n〉} happens with probability at
most 2nmax · εvk for each signature. Thus, |Pr[3] − Pr[4]| < 2qs · nmax · εvk , which is
negligible.

Game 5. Abort if the output of the adversary satisfies vk†0 �∈ Ivk .
This case breaks EUF-CMA of ASIG since vk†0 is a fresh message correctly signed with
respect to vk. We thus have |Pr[4] − Pr[5]| < εeu f , which is negligible as we assume
ASIG is unforgeable.

Now if Game 5 is completed, there exists msg� = (M�
1 , . . . , M

�
n� ) and unique σ� =

(vk�
i , δ

�
i , ξ

�
i , γ �

i )n
�

i=0 in Qm,σ such that vk�
0 = vk†0.

Game 6. Abort if {vk†1, . . . , vk†n†} �⊆ {vk�
1, . . . , vk

�
n�}.

Suppose that there exists vk†i with vk
†
i �∈ {vk�

1, . . . , vk
�
n�}. Observe that vk†i �∈ {〈n�〉, vk�

1 ·
〈1〉, . . . , vk�

n� · 〈n�〉} holds since the game did not meet the abort conditions in Game
2 and 3. Then, vk†i is a new message signed with vk�

0 (= vk†0) since vk�
0 is used only

for messages {vk�
1, . . . , vk

�
n�} ∪ {〈n�〉, vk�

1 · 〈1〉, . . . , vk�
n� · 〈n�〉}. Accordingly, the abort

condition in Game 5 is met only if ASIG2 is broken with respect to key vk�
0. Taking the

probability loss for guessing the target key, the probability of abort in this case is upper
bounded by qsεeu f . We thus have |Pr[5] − Pr[6]| < qsεeu f which is negligible.
At this point, we observe that for all 0 < i ≤ n† : vk†i = vk�

i . Suppose, on the

contrary, that vk†i = vk�
j happens for some 0 < i ≤ n†, i �= j , and 0 < j ≤ n�. We

then have vk�
j · 〈i〉 ∈ Ivk�

0
, which would have caused an abort in Game 2. Furthermore, it

holds that n† = n�; otherwise, the game would have aborted as in Game 4. Accordingly,
we have (vk†1, . . . , vk

†
n†

) = (vk�
1, . . . , vk

�
n� ).

Game 7. Abort if ∃i s.t. M†
i �= M�

i .

Since vk�
i is used only for signing M�

i , this case breaks EUF-CMA of ASIG w.r.t. key
vk�

i . Taking the probability loss of guessing the target key into account, we have |Pr[6]−
Pr[7]| < qsnmaxεeu f .
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InGame 7,msg† = msg� holds and the output cannot be a valid forgery. Accumulating
the above bounds, we have the probability of successful forgery is negligible if ASIG is
EUF-CMA. �

7. Applications

This section presents two applications that highlight the benefits of structure-preserving
signatures. The first one, group signatures with concurrent join, features generic use
of structure-preserving signature schemes combined with non-interactive proofs. The
second one, round-optimal blind signatures, uses the automorphic signature scheme
from Sect. 6 in a specific manner to gain efficiency.

7.1. Group Signatures with Concurrent Join

Agroup signature,GSIG, consists of 6 algorithmsSetup, Join,Sign,Vrf,Open and Judge
such that:

• Setup is an algorithm run in a trusted manner. It takes a security parameter and
generates a group verification key vkg, a certification key skc and an opening key
sko. The group verification key is published, the certification key is privately given
to an authority called the issuer, whereas the opening key is given privately to
another authority called the opener.

• Join is a pair of interactive algorithms run by the issuer and a user who requests
membership of the group. When the protocol is completed, the member obtains a
secret user key, usk, and the issuer obtains a public user key, upk, that consists of
some parts of the interaction. The public user key and the identity of the member
is stored to the registration record, reg.

• Sign is a signing algorithm run by a group member. On input a secret user key usk
and a message msg, it outputs a group signature π of the message.

• Vrf is a verification algorithm that on input the group verification key vkg, a message
msg, and a signatureπ , outputs 1 or 0meaning acceptance or rejection, respectively.

• Open is an opening algorithm run by the opener. It takes the opening key sko, a
signature π and reg as input and outputs opening information open and identity id
of a group member in reg.

• Judge is an algorithm that takes a group signature and an output of Open as input
and outputs 1 or 0 that indicate acceptance and rejection, respectively.

Correctness requires that Vrf outputs 1 for all legitimately generated keys and signa-
tures for any message, and Judge outputs 1 for all outputs of Openwith legitimate input
if id �= 0 and outputs 0 for id = 0.

There are several variations and extensions of group signature schemes and their
security notions. We focus on anonymity, traceability and non-frameability as essential
security notions and follow the definitions in [55].

• Anonymity is defined by a game where an adversary is given a group signature
created by one of two honest and correctly registeredmembers andmust distinguish
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which member created the signature. The issuing key and all secret user keys can
be exposed to the adversary.

Definition 6. (Anonymity) A group signature scheme is anonymous if for any proba-
bilistic polynomial-time adversary A

Pr

⎡

⎣
(vkg, skc, sko) ← Setup(1λ);
b ← {0, 1}
b̃ ← AO(b)(vkg, skc)

: b = b̃

⎤

⎦ − 1

2

is negligible where oracle O works as follows.

– On receiving a request, it executes the protocol Join as the issuer and an honest
user. The view of the honest user is returned to A.

– Given upk for a new corrupt user, it stores it to reg.
– Given a message and two distinct identities, id0 and id1, of honest registered mem-
bers, it returns a signature created by idb.

The above notion is referred to as CPA-anonymity. When the oracle provides the
additional functionality that, on receiving a valid signature and message, it returns the
result of Open on the input, we call the strengthened notion CCA-anonymity [23].

• Traceability is defined by a game where an adversary corrupting the opener and
arbitrary members attempts to create a signature that verifies correctly but yields
invalid opening information that does not identify any registered member.

Definition 7. (Traceability) A group signature scheme is traceable if for any proba-
bilistic polynomial-time adversary A

Pr

⎡

⎣
(vkg, skc, sko) ← Setup(1λ);
(msg, π) ← AO(vkg, sko)
(id, open) ← Open(sko,msg, π)

: 1 = Vrf(vkg,m, π) ∧
0 = Judge(vkg, π,msg, id, open, reg)

⎤

⎦

is negligible, where oracle O plays the role of the honest issuer in the protocol Join.

• Non-frameability is defined by a game where an adversary corrupting the opener
attempts to create a group signature on a message together with an opening of it that
identifies a group member who never signed the message. The issuer is supposed
to be honest in the sense that it honestly certifies association between uncorrupted
members’ identities and their own public key. This is formalized by not allowing
the adversary to write to reg.

Definition 8. (Non-Frameability) A group signature scheme is non-frameable if for
any probabilistic polynomial-time adversary A

Pr

⎡

⎣ (vkg, skc, sko) ← Setup(1λ);
(m, π, id, open) ← AO(skc, sko)

:
1 = Vrf(vkg,m, π) ∧
1 = Judge(vkg,m, π, id, open, reg)∧
id ∈ H ∧ m /∈ Lid

⎤

⎦
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is negligible where oracle O works as follows.

– On receiving a request, it invokes Join as a member with a new identity, id, and
interacts with A playing the corrupt issuer. When the member-side protocol is
successfully completed with usk obtained, the oracle records (id, upk) to reg and
(id, usk) to H, the list of honest users. (Note that reg is not available to A; also
note that we assume that upk is obtained by the successful interaction.)

– On receiving id ∈ H, it returns corresponding usk and removes the record fromH.
– On receiving (id,msg), if (id, usk) ∈ H for some usk, it returns a signature onmsg
by using usk and records m to Lid .

(The definition in [19] is slightly stronger in the sense that an adversary attempts to create
a signature that, on opening, identifies a group member who actually did not create the
signature, though the member may have signed the same message before. The stronger
notion can be captured by modifying the definition to (msg, π) /∈ Lid .)

A technical difficulty arises when the group manager, Alice, issues a certificate to a
group member, Bob. Alice signs Bob’s public key but for the sake of provable security
she should be convinced of the independence of Bob’s key from anyone else’s. The
independence is assured by implementing the protocol in a way that Bob can retrieve
the certificate only when he knows some critical information. Thus, the protocol often
uses zero-knowledge proofs of knowledge, which lose efficiency when composed con-
currently. The issue of efficient concurrent join has been addressed in the literature. A
single-round certification protocol that allows concurrent execution is sketched in [32].
In their framework, the join protocol is as simple as letting user Bob obtaining a cer-
tificate from Alice on Bob’s public key. When Bob signs a document, he first signs the
document using his own key and then proves that the signature is correct with respect
to a key certified by Alice. The proof has to be zero knowledge (thus hiding the public
key and the certificate) and non-interactively so that it can be included in the signature.
Such a proof of knowledge, however, is not easy to instantiate efficiently due to high
complexity of the relation to prove. The first efficient instantiation in the random-oracle
model is presented in [68]. Using structure-preserving signatures as Alice’s certificates
and applying the Groth–Sahai proof system for proving Bob’s knowledge of a correct
certificate, this framework can be efficiently instantiated without random oracles. In the
following, we refine the framework by incorporating ideas from [55].
Let SIGauth and SIGmem be signature schemes, and let NIWI be a witness-indisting-

uishable proof-of-knowledge system that allows one to extract a witness by using a
trapdoor.

[Scheme GSIG]

Setup(1λ): Run (vkc, skc) ← SIGauth.Key(1λ), and set up aCRS�niwi and an extrac-
tion trapdoor sko for NIWI. Then output group verification key vkg := (vkc, �niwi),
certification key skc and opening key sko.

Join: (Member’s side) Generate a key pair (vku, sku) ← SIGmem.Key(1λ) and
send vku to the issuer. After receiving a certificate σc from the issuer, output
usk := (vku, sku, σc).
(Issuer’s side) On receiving vku, run σc ← SIGauth.Sign(skc, vku) and store
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upk := (vku, σc) and the identity of the member to reg. Then send σc to the
member.

Sign(usk,msg): Parse usk = (vku, sku, σc). Run σu ← SIGmem.Sign(sku,msg), and
generate a NIWI proof π of knowledge of (vku, σc, σu) such that

1 = SIGauth.Vrf(vkc, vku, σc) ∧ 1 = SIGmem.Vrf(vku,msg, σu) (50)

Then output π as a group signature.
Vrf(vkg,msg, π): Parse vkg = (vkc, �niwi). Verify π as a NIWI proof for relation

(50).
Open(sko, π, reg): Run the knowledge extractor of the NIWI proof system on π to

obtain witness open := (vku, σc, σu). If (id, (vku, σc)) for some id is in reg, output
(id, open). Output (0,∅), otherwise.

Judge(vkg, π,msg, id, open, reg): Parse open into (vku, σc, σu). Output 1 if 1 =
Vrf(vkg,msg, π), both equations in (50) hold, and (id, (vku, σc)) is in reg. Output
0, otherwise.

¶

Theorem 12. Group signature scheme GSIG is CPA-anonymous, traceable and non-
frameable ifSIGauth andSIGmem are EUF-CMA andNIWI is witness-indistinguishable
and knowledge sound. Furthermore, GSIG allows to run the GSIG.Join protocol con-
currently.

Proof. CPA-anonymity follows directly from the (computational) WI property [59]
of the proof system NIWI. For traceability, suppose that there is a valid signature π on
messagemsg. Due to knowledge soundness of NIWI, the opener can extract (vku, σc, σu)
from π , which satisfy 1 = SIGauth.Vrf(vkc, vku, σc). If vku does not point to any group
member registered through GSIG.Join, σc is a valid forgery for SIGauth, which contra-
dicts EUF-CMA of SIGauth. In more detail, this is shown by constructing a reduction to
EUF-CMA that simulates the joining protocol by using the signing oracle of SIGauth.
Clearly, this is possible even ifGSIG.Join is executed concurrently with several members
since the protocol consists of only one round of message flow between the issuer and the
member. Thus, vku allows tracing with concurrent execution of the join protocol. For
non-frameability, suppose that the opener extracts (vku, σc, σu) from a group signature
onmessagemsg. If 1 = SIGmem.Vrf(vku,msg, σu) holds, but the owner of vku has never
signed msg, it is a valid forgery for SIGmem, contradicting EUF-CMA of SIGmem. �

By instantiating SIGauthwith our structure-preserving signature scheme CSIG (given
on page 30) and NIWI with the GS proof system, we can instantiate the above generic
construction efficiently. Furthermore, using CSIG for SIGauth allows the inclusion of a
human-readable “warrant” in σc so that the signing policy given to a group member is
explicit. A warrant is a written policy that defines validity of signatures, e.g., specific
period of time in which the signature is valid. Since CSIG has constant-size signatures,
this extension can be done without impacting the size of the group signature (except for
the warrant itself) at all.
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Table 2. Summary of efficiency and properties of group signature schemes with CPA-anonymity.

Scheme Concurrent Non- Signature Assumptions
Join Frameability Size

BW07 [29] Yes No 6[N ] SD, HSDH
Gro07 [55] No Yes 30[1] SDH, q-U, DLIN
GSIG ([38]+BB [22]) Yes Yes 231[1] + 1[p] DLIN,SDH,HSDH
GSIG (CSIG+BB [22]) Yes Yes 40[1] + 1[p] SFP, SDH

The signature size counts the number of elements and indicating the groups they belong to ([1], [N ] and [p],
respectively, for G, ZN and Zp). SD: subgroup decision assumption [27]. q-U: See [55]

We assess the efficiency in the setting � = �sym as follows. Let SIGmem be
a signature scheme whose verification key vku and signature σu consist of α and
β group elements, respectively. Let γ be the number of group elements needed to
prove relation 1 = SIGmem.Vrf(vku,msg, σu) including GS commitments for vku and
σu. Regardless of the size of vku to be certified, our SIGauth outputs σc of size 7.
Since 4 out of the 7 elements in σc can be perfectly randomized and given in the
clear (as observed in Sect. 5.1), we need only 3 GS commitments to prove relation
1 = SIGauth.Vrf(vkc, vku, σc), which consists of two one-sided pairing-product equa-
tions and costs 6 elements in a proof. (Commitments of vku are already included in γ .)
In total we have (Group Sig Size) = 19+ γ . For comparison, we propose to instantiate
SIGauth by using a signature scheme in [38], which has 9α+4 elements in σc and 3α+3
one-sided and 3α double-sided pairing-product equations in SIGauth.Vrf. In that case,
the size of a group signature is (Group Sig Size) = 63α + 21 + γ .

If we instantiate SIGmem with the fully EUF-CMA Boneh-Boyen signature
scheme [22], vku consists of α = 3 group elements (including the bases). A signa-
ture consists of one group element and one scalar value, but the scalar value is totally
random and independent of the verification key. So we have 3 + 1 GS commitments in
proving 1 = SIGmem.Vrf(vku,msg, σu). The verification predicate consists of a double-
sided pairing-product equation, which yields 9 group elements in a proof. In total, we
have γ = 21 and a group signature consists of 40 group elements and 1 scalar value.

Table 2 summarizes some efficient group signature schemes that provide CPA-
anonymity in the standard model under non-interactive assumptions. Our construction
GSIG(CSIG+BB[22]) yields a signature that contains 10 more group elements than that
of [55]. This is the price for achieving the concurrent join property and allowing a simple
andmodular security argument without dedicated assumptions. For comparison, we also
consider the case where a signature scheme in [38] is used as SIGauth. With the same
setting (α = 3, γ = 21), the signature size results in 231 (= 63 × 3 + 21 + 21) group
elements and 1 scalar value.
Finally, we remark that CCA-anonymity is obtained by following the approach in

[55], which uses a strong one-time signature scheme and a selective-tag CCA-secure
tag-based public key encryption scheme. A decryption key of the tag-based encryption is
given to the opener, and the public key is published. When a member issues a signature,
vku is encrypted by the tag-based encryption under a one-time verification key as a tag.
Then, a NIZK is generated to prove that the ciphertext decrypts to the same value, i.e.,
vku, committed for NIWI proof π . The one-time key is used to sign π , the ciphertext and
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the NIZK proof. By using the same instantiation as in [55], this strengthening costs 15
extra group elements in a signature. (Committing to 3 random coins used in tag-based
encryption costs 3× 3 elements, and proving 3 relations in multi-exponentiations costs
3×2 elements.) Accordingly, we have a CCA-anonymous group signature scheme with
concurrent join whose signature consists of 55(= 40+15) group elements and one scalar
value.

7.2. Round-Optimal Blind Signatures

A blind-signature scheme BS allows a user to obtain signatures on messages
which remain hidden from the signer. It is defined by five algorithms BS = BS.

{Setup,Key,User,Signer,Vrf}, where Setup, on input 1λ, generates the common para-
metersgk;Key, on inputgk, generates a key pair (vk, sk);User is a signature-request algo-
rithm, taking input gk, vk and a message, which interacts with the signer-side algorithm
Signer, having input sk, as a signature-generation protocol; BS.Vrf that verifies a signa-
ture on a message w.r.t. gk and vk. The notion of completeness is defined as for ordinary
digital signature schemes; that is, when gk ← Setup(1λ) and (vk, sk) ← Key(gk) then
for everymessagemsg and everyσ obtained by runningUser(gk, vk,msg) ↔ Signer(sk)
we have: 1 ← Vrf(gk, vk,msg, σ ).
A blind-signature scheme BS is round-optimal if in the signature-generation protocol

there is only one round of communication: User sends a message to Signer and the latter
sends one message back; this means that Signer is a (stateless) algorithm that takes a
secret key sk and a message msgU from User and outputs a message msgS that is given
to User, which outputs a signature σ .
The two standard security notions are unforgeability and blindness as defined in,

e.g., [44,61,84]. Blindness means that no adversarial signer can associate a valid sig-
nature to an execution of the signature-generation protocol. Unforgeability states that
no adversarial user can obtain more valid signatures than the number of completed
signature-generation protocol executions.

Definition 9. (Blindness)A (round-optimal) blind-signature scheme satisfiesblindness
if for any probabilistic polynomial-time adversary A

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b ← {0, 1}; gk ← Setup(1λ); (vk,m0,m1, stA) ← A(gk)
For i = b, 1 − b do
(msgU, stU) ← User(gk, vk,mi )

(msgA, stA) ← A(stA,msgU); σi ← User(stU,msgA)

If σ0 = ⊥ or σ1 = ⊥ then (σ0, σ1) := (⊥,⊥)

b� ← A(stA, (σ0, σ1))

: b� = b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1

2

is negligible.



414 M. Abe et al.

Definition 10. (Blind-Signature Unforgeability) A (round-optimal) blind-signature
scheme is unforgeable if for any probabilistic polynomial-time adversary A

Pr

⎡

⎣
gk ← Setup(1λ); (vk, sk) ← Key(gk)
((m�

1, σ
�
1 ), . . . , (m�

q , σ
�
q ))

← ASigner(sk,·)(q−1)
(vk)

:
m� �= m�

j for all i �= j
1 ← Vrf(vk,m�

i , σ
�
i )

for 1 ≤ i ≤ q

⎤

⎦

is negligible, where the adversary is allowed q − 1 oracles calls to Signer.

Fischlin [43] gives a generic construction for concurrently executable blind-signature
schemes with optimal round complexity in the common reference string (CRS) model.
The construction relies on commitment, encryption and signature schemes and generic
NIZK proofs for NP-languages. In the signature-issuing protocol, the user first sends a
commitment to the message to the signer, who responds with a signature on the com-
mitment. The user then constructs the blind signature as follows: She encrypts the com-
mitment and the signature and adds an NIZK proof that the signature is valid on the
commitment and that the committed value is the message.
Following [61], Abe and Ohkubo [10] replace the NIZK proof in Fischlin’s con-

struction by a witness-indistinguishable proof and concretely suggest Groth–Sahai (GS)
proofs. (Note that GS commitments on group elements can be “decrypted” using the ex-
traction key.) To be compatible, the signature schememust havemessages and signatures
consisting of group elements and verification must amount to evaluating pairing-product
equations. However, they onlymention the highly inefficient scheme from [54] as a feasi-
bility result and leave open the problem of an efficient construction. Structure-preserving
signatures satisfy all the compatibility requirements and enable thus an efficient instan-
tiation of round-optimal blind signatures; it suffices to construct a commitment scheme
such that commitments lie in the message space of the signature and correct opening is
verifiable by pairing-product equations.
We directly construct a scheme based on ASIG (Sect. 6.1) which has smaller blind

signatures than an instantiation of the generic construction. This is because in the end
of our issuing protocol the user holds a signature on the actual message rather than
on a commitment to it. To make this possible, the user sends a randomization of the
message to the signer in addition to the commitment. From this, the signer makes a
“pre-signature” and sends it to the user, who, knowing the randomizer, can turn it into
an actual signature on the message. The blind signature is then a GS proof of knowledge
of a signature on the message (rather than a commitment), which avoids a proof that the
commitment opens to the message.
In more details, given parameters (�, F, K , T ) a user who wants to obtain a blind

signature on (M, Ñ ) chooses a random ρ ← Zp, and blinds M by the factor T ρ . In
addition toU := T ρ · M , she sends a GS proof of knowledge of (M, Ñ ) and (Gρ, G̃ρ).
The signer now formally produces a “signature” on U , for which we have A = (K ·
T r · U )1/(x+c) = (K · T r+ρ · M)1/(x+c); thus, A is the first component of a signature
on (M, Ñ ) with randomness r + ρ. The user can complete the signature by adapting
randomness r to r + ρ in the other components. The blind signature is a GS proof of
knowledge of this signature.
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Note that it is the particular form of signatures of ASIG that allow turning a signature
on a “half-message”U into a signature on any M = T−ρ , if one knows ρ. This does not
contradict unforgeability, since the user does not obtain a signature on U (unless U =
M), sinceU is not an element of the message spaceDH. And to produce (U, G̃ logG U ) ∈
DH, the user would have to break AWF-CDH.

[Scheme BS]

Setup(1λ): Run gkASIG := (�, F, K , T ) ← ASIG.Setup(1λ) and generate a com-
mon reference string �GS for the GS proof system based on �. Output gk :=
(gkASIG, �GS). The message space is defined as DH := {(Gm, G̃m) |m ∈ Zp}.

Key(gk): Parse gk as (gkASIG, �GS), run ASIG.Key(gkASIG) to obtain vk = (X, Ỹ )

and sk′ = (gkASIG, vk, x). Output (vk, sk := (gk, vk, x)).
Signer(sk) ↔ User(gk, vk, (M, Ñ )):

User: Choose ρ ← Zp. Compute P := Gρ , Q̃ := G̃ρ and U := T ρ · M and a
GS proof φ of knowledge of (M, Ñ , P, Q̃) such that

e(M, G̃)=e(G, Ñ ) ∧ e(P, G̃)=e(G, Q̃)

∧ e(T, Q̃) e(M, G̃)=e(U, G̃) (51)

Send (U, φ) to Signer.
Signer: Verify (U, φ)with respect to relation (51). If it is valid, run (A, B, D̃, R′, S̃′)

← ASIG.Sign(sk, (U,−)), whereU is taken as (part of) a message without
internally checking its validity. Send (A, B, D̃, R′, S̃′) to User.

User: On receiving (A, B, D̃, R′, S̃′), compute R := R′ ·P and S̃ := S̃′ · Q̃. Com-
pute a GS NIWI proof of knowledge π of (A, B, D̃, R, S̃) which satisfies
1 = ASIG.Vrf

(
vk, (M, Ñ ), (A, B, D̃, R, S̃)

)
, that is

e(A, Ỹ · D̃)=e(K · M, G̃) e(T, S̃) ∧ e(B, G̃)=e(F, D̃)

∧ e(R, G̃)=e(G, S̃) (52)

(If (A, B, D̃, R, S̃) does not satisfy (52) then output ⊥.) Output π as a
signature for message (M, Ñ ).

Vrf(�, vk, (M, Ñ ), π): Accept if (M, Ñ ) ∈ DH and π is a valid proof for (52).
¶

The protocol is correct: The signer sends A = (K · T r ·U )
1

x+c = (K · T r+ρ · M)
1

x+c ,
B = Fc, D̃ = G̃c, R′ = Gr , S̃′ = G̃r and the user sets R := R′ · P = Gr+ρ and
S̃ := S̃′ · Q̃ = G̃r+ρ , which makes it a valid signature on (M, Ñ ) with randomness
r + ρ.

The round complexity of the scheme is optimal [43]. The usermessage is inG17×G̃
16,

the signer message in G
3 × G̃

2 and a blind signature is in G
18 × G̃

16. Note that the
scheme remains automorphic, since commitments and proofs are composed of group
elements that are verified by checking pairing-product equations and the verification
keys and messages are those from ASIG. It is the automorphic property of the scheme
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that allowed its use to implement (blinded) certification chains in the construction of
non-interactively delegatable anonymous credentials in [46].

Theorem 13. Blind-signature scheme BS is unforgeable and blind if ADH-SDH and
SXDH hold for G.

Proof. Blindness. In the blindness game, we choose a random b ← {0, 1}, which the
adversary must guess. After setting up gk we are given vk,m0 and m1 by the adversary
and run User for mb and for m1−b. If both executions succeed, yielding πb and π1−b,
the adversary is given (π0, π1) and must guess b.
We modify the game in Definition 9 by replacing �GS by a simulated CRS, which

leads to perfectly WI commitments and proofs. This modification is indistinguishable
by SXDH. We claim that in this modified game the adversary’s probability of guessing
b is exactly 1

2 , because neither what is sent by User nor the final signatures contain any
information about b.
First consider (U, φ) given to the adversary during the signature-generation protocol.

To see that (M, Ñ ) is perfectly hidden, observe that for every possible M ∈ G, there
exists a (unique) value ρ ∈ Zp that satisfies U = T ρ · M . In other words, for every
(M, Ñ ) ∈ DH, there exist uniquely determined (P, Q̃) which satisfy the equations in
(51). Since by perfectWI, the proofφ is independent of its witness (M, Ñ , P, Q̃), (U, φ)

information-theoretically hides the bit b.
If the adversary did not produce two valid (pre-signatures), it receives (⊥,⊥) at the

end. Otherwise, the experiment computes two tuples (A, B, D̃, R, S̃), which satisfy (52)
and gives the adversary two GS proofs of knowledge of them. Again by perfect WI, the
proofs are distributed as if they were computed using a random witness (in this case a
fresh signature); the proofs are thus independent of the signature-generation protocol.

Unforgeability. We show that, after running the protocol q − 1 times with an honest
signer, no adversary can output q different messages and valid blind signatures on them.
To do so, we reduce unforgeability to the security of the signature scheme ASIG, which
follows from ADH-SDH and AWF-CDH (the latter being implied by SXDH). Given
parameters gkASIG := (�, F, K , T ) and a public key (X, Ỹ ) forASIG, we first generate a
key �GS for the GS proof system as specified by Setup, but together with extraction key
ek.We run the adversary on� = (gkASIG, �GS).WheneverA sends a request (U, φ), we
extract (M, Ñ , P, Q̃) from φ using ek. Soundness of the proof ensures that by (52) there
existm, ρ ∈ Zp such that M = Gm, Ñ = G̃m, P = Gρ, Q̃ = G̃ρ andU = T ρ ·M . We
then send (M, Ñ ) to the signing oracle of ASIG and receive a signature (A, B, D̃, R, S̃).
We return to the adversary (A, B, D̃, R′ := R · P−1, S̃′ := S̃ · Q̃−1). This perfectly
simulates Signer: Since the oracle produced a correct signature, there exist c and r̂ such

that B = Fc, D̃ = G̃c, R = Gr̂ , S̃ = G̃r̂ and A = (K ·T r̂ ·M)
1

x+c = (K ·T r̂−ρ ·U )
1

x+c .
Thus, R′ = Gr̂−ρ and S̃′ = G̃r̂−ρ , which corresponds to a real reply by the Signer oracle
using randomness c and r := r̂ − ρ (which is uniform).

After at most q − 1 requests, the adversary outputs q valid signatures on different
messages. Among those messages, there exist at least one message that was not sent to
the ASIG oracle. We extract the signature corresponding to that message using ek. By
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the soundness of the GS proof, it is a valid signature and can thus be returned as a valid
forgery for ASIG. �
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