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Abstract. At Crypto 1999, Coron, Naccache and Stern described an existential signa-
ture forgery against two popular RSA signature standards, ISO 9796-1 and ISO 9796-2.
Following this attack, ISO 9796-1 was withdrawn, and ISO 9796-2 was amended by
increasing the message digest to at least 160 bits. In this paper, we describe an attack
against the amended version of ISO 9796-2, for all modulus sizes. Our new attack is
based on Bernstein’s algorithm for detecting smooth numbers, instead of trial division.
In practice, we were able to compute a forgery in only 2days on a network of 19 servers.
Our attack can also be extended to EMV signatures, an ISO 9796-2-compliant format
with extra redundancy. In response to this new attack, the ISO 9796-2 standard was
amended again in late 2010.
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1. Introduction

1.1. RSA Signatures

RSA [50] is certainly the most popular public-key cryptosystem. A chosen-ciphertext
attack against RSA textbook encryption was described by Desmedt and Odlyzko in [21].
As noted in [43], Desmedt and Odlyzko’s attack also applies to RSA signatures:
© International Association for Cryptologic Research 2015
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σ = μ(m)d mod N

whereμ(m) is an encoding function and d the private exponent. Desmedt and Odlyzko’s
attack only applies if the encoding functionμ(m) is much smaller than N . In which case,
one obtains an existential forgery under a chosen-message attack: The opponent can ask
for signatures of any messages of his choosing before computing, by his own means, the
signature of a (possibly meaningless) message which was never signed by the legitimate
owner of d.

One can distinguish two classes of encoding functions μ(m):

1. Ad hoc encodings are “handcrafted” to thwart certain classes of attacks.While still
in use, ad hoc encodings are currently being phased-out. PKCS #1 v1.5 [33], ISO
9796-1 [28] and ISO 9796-2 [29,30] are typical ad hoc encoding examples.

2. Provably secure encodings are designed tomake cryptanalysis equivalent to invert-
ing RSA (generally in the random oracle model [2]). OAEP [3] (for encryption)
and PSS [4] (for signature) are typical provably secure encoding examples.

For ad hoc encodings, there is no guarantee that forging signatures are as hard as
invertingRSA, andmany such encodingswere found to beweaker than theRSAproblem.
We refer the reader to [11,14,15,18,25,32] for a few characteristic examples. It is thus
a practitioner’s rule of thumb to use provably secure encodings whenever possible.
Nonetheless, ad hoc encodings continue to populate hundreds of millions of commercial
products (e.g., EMV cards) for a variety of practical reasons. A periodic re-evaluation
of such encodings is hence necessary.

1.2. The ISO 9796-2 Standard

ISO 9796-2 is a specific encoding functionμ(m) standardized by ISO in [29]. At Crypto
1999, Coron, Naccache and Stern described an attack against ISO 9796-2 [19]. Their
attack is an adaptation of Desmedt and Odlyzko’s cryptanalysis which could not be
applied directly since in ISO9796-2, the encodingμ(m) is almost as large as themodulus
N .
ISO 9796-2 can be used with hash functions of diverse digest sizes kh . Coron et al.

estimated that attacking kh = 128 and kh = 160would require (respectively) 254 and 261

operations. After Coron et al.’s publication, ISO 9796-2 was amended and the official
requirement (see [30]) became kh ≥ 160. It was shown in [16] that ISO 9796-2 can be
proven secure in the random oracle model for e = 2 and if the digest size kh is a least
2/3 the size of the modulus.

1.3. Our New Attack

In this paper, we describe an improved attack against the amended version of ISO 9796-
2 that is for kh = 160. The new attack applies to EMV signatures as well. EMV is
an ISO 9796-2-compliant format with extra redundancy. Our new attack is similar to
Coron et al. forgery but using Bernstein’s smoothness detection algorithm instead of
trial division; we also use some algorithmic refinements: better message choice, large
prime variant and optimized exhaustive search.
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In practice, we were able to compute forgery for ISO 9796-2 in only 2days, using a
few dozens of servers on the Amazon EC2 grid, for a total cost of US$800. The forgery
was implemented for e = 2, but attacking odd exponents would not take significantly
longer.1 We estimate that under similar conditions, an EMV signature forgery would
cost US$45,000. Note that all costs are per modulus; after computing a first forgery for
a given N , additional forgeries come at a negligible cost.

2. The ISO 9796-2 Standard

ISO 9796-2 is an encoding standard allowing partial or total message recovery [29,30].
Here we consider only partial message recovery. As already mentioned, ISO 9796-2 can
be used with hash functions H(m) of diverse digest sizes kh . For the sake of simplicity,
we assume that the hash size kh , the size of m and the size of N (denoted k) are all
multiples of 8; this is also the case in the EMV specifications. The ISO 9796-2 encoding
function is then:

μ(m) = 6A16‖m[1]‖H(m)‖BC16
where the message m = m[1]‖m[2] is split in two: m[1] consists of the k − kh − 16
leftmost bits of m and m[2] represents all the remaining bits of m. The size of μ(m) is
therefore always k − 1 bits.
The original version of the standard recommended 128 ≤ kh ≤ 160 for partial

message recovery (see [29], §5, note 4). The new version of ISO 9796-2 [30] requires
kh ≥ 160. The EMV specifications also use kh = 160.

2.1. Rabin–Williams Signatures

Since our attack will be implemented for e = 2, we briefly recall Rabin–Williams
signatures. Such signatures use an encoding functionμ(m) such thatμ(m) = 12mod 16
for all m. In contrast with RSA, it is required that p = 3mod 8 and q = 7mod 8. For
e = 2, the private key is d = (N − p − q + 5)/8. To sign a message m, first compute
the Jacobi symbol J = (

μ(m)
N

)
. The signature of m is then s = min(σ, N − σ), where:

σ =
{

μ(m)d mod N if J = 1
(μ(m)/2)d mod N otherwise

1 The size of the public exponent affects the linear algebra step of the attack slightly: For e = 3 or
e = 65537, say, that step would take a bit longer, both because some matrices involve would be a bit less
sparse, and because available sparse linear algebra packages are particularly optimized for the binary case,
which is used in the quadratic sieve (on modern CPUs, they use bit packing, bit fiddling and other tricks).
Nevertheless, the impact would be minor, particularly because the linear algebra step takes negligible time
compared to the search for smooth numbers, for which the value of e is irrelevant.
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To verify the signature σ , compute ω = s2 mod N and check that:

μ(m)
?=

⎧
⎪⎪⎨

⎪⎪⎩

ω if ω = 4 mod 8
2 · ω if ω = 6 mod 8
N − ω if ω = 1 mod 8
2 · (N − ω) if ω = 7 mod 8

The following fact shows that the Rabin–Williams signature verification works [41].
In particular, the fact that

( 2
N

) = −1 ensures that either μ(m) or μ(m)/2 has a Jacobi
symbol equal to 1.

Fact 1. Let N be an RSA modulus with p = 3mod 8 and q = 7mod 8. Then
( 2

N

) = −1
and

(−1
N

) = 1. Let d = (N − p−q +5)/8. Then for any integer x such that
( x

N

) = 1, we
have that x2d = x mod N if x is a square modulo N, and x2d = −x mod N otherwise.

3. Desmedt–Odlyzko’s Attack

Desmedt and Odlyzko’s attack is an existential forgery under a chosen-message attack,
in which the forger asks for the signature of messages of his choice before computing the
signature of a (possibly meaningless) message that was never signed by the legitimate
owner of d. In the case of Rabin–Williams signatures, it may even happen that the
attacker factors N , i.e., a total break. The attack only applies if μ(m) is much smaller
than N and works as follows:

1. Select a bound B and let P = {p1, . . . , p�} be the list of all primes less or equal
to B.

2. Find at least τ ≥ � + 1 messages mi such that each μ(mi ) is a product of primes
in P.

3. Express one μ(m j ) as a multiplicative combination of the other μ(mi ), by solving
a linear system given by the exponent vectors of the μ(mi ) with respect to the
primes in P.

4. Ask for the signatures of the mi for i �= j and forge the signature of m j .

In the following, we assume that e is prime; this includes e = 2. We let τ be the
number of messages mi obtained at step 2. We say that an integer is B-smooth if all its
prime factors are less or equal to B. The integers μ(mi ) obtained at step 2 are therefore
B-smooth, and we can write for all messages mi , 1 ≤ i ≤ τ :

μ(mi ) =
�∏

j=1

p
vi, j
j (1)

To eachμ(mi ), we associate the �-dimensional vector of the exponents modulo e, that is,
Vi = (vi,1 mod e, . . . , vi,� mod e). Since e is prime, the set of all �-dimensional vectors
modulo e forms a linear space of dimension �. Therefore, if τ ≥ � + 1, one can express
one vector, say Vτ , as a linear combination of the others modulo e, using Gaussian
elimination:
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Vτ = Γ · e +
τ−1∑

i=1

βiVi

for some Γ = (γ1, . . . , γ�) ∈ Z
� and some βi ∈ {0, . . . , e − 1}. This gives for all

1 ≤ j ≤ �:

vτ, j = γ j · e +
τ−1∑

i=1

βi · vi, j

Then using (1), one obtains:

μ(mτ ) =
�∏

j=1

p
vτ, j
j =

�∏

j=1

p
γ j ·e+

τ−1∑

i=1
βi ·vi, j

j =
⎛

⎝
�∏

j=1

p
γ j
j

⎞

⎠

e

·
�∏

j=1

τ−1∏

i=1

p
vi, j ·βi
j

μ(mτ ) =
⎛

⎝
�∏

j=1

p
γ j
j

⎞

⎠

e

·
τ−1∏

i=1

⎛

⎝
�∏

j=1

p
vi, j
j

⎞

⎠

βi

=
⎛

⎝
�∏

j=1

p
γ j
j

⎞

⎠

e

·
τ−1∏

i=1

μ(mi )
βi

That is:

μ(mτ ) = δe ·
τ−1∏

i=1

μ(mi )
βi , where δ :=

�∏

j=1

p
γ j
j (2)

Therefore, we see thatμ(mτ ) can be written as a multiplicative combination of the other
μ(mi ). For RSA signatures, the attacker will ask for the signatures σi of m1, . . . , mτ−1
and forge the signature στ of mτ using the relation:

στ = μ(mτ )
d = δ ·

τ−1∏

i=1

(
μ(mi )

d
)βi = δ ·

τ−1∏

i=1

σ
βi
i (mod N )

3.1. Rabin–Williams Signatures

For Rabin–Williams signatures (e = 2), the attacker may even factor N . Let J(x) denote
the Jacobi symbol of x with respect to N . We distinguish two cases. If J(δ) = 1, we
have δ2d = ±δmod N , which gives from (2) the forgery equation:

μ(mτ )
d = ±δ ·

τ−1∏

i=1

(
μ(mi )

d
)βi

(mod N )

If J(δ) = −1, then letting u = δ2d mod N we obtain u2 = (δ2)2d = δ2 mod N , which
implies (u − δ)(u + δ) = 0mod N . Moreover since J(δ) = − J(u), we must have
δ �= ±u mod N , and therefore, gcd(u ± δ, N ) will factor N . The attacker can therefore
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Table 1. The value of Dickman’s function for 1 ≤ t ≤ 10.

t 1 2 3 4 5 6 7 8 9 10

− log2 ρ(t) 0.0 1.7 4.4 7.7 11.5 15.6 20.1 24.9 29.9 35.1

submit the τ messages for signature, recover u = δ2d mod N , factor N and subsequently
sign any message.2

3.2. Attack Complexity

The complexity of the attack depends on the number of primes � and on the prob-
ability that the integers μ(mi ) are p�-smooth, where p� is the �th prime. We define
ψ(x, y) = #{v ≤ x , such thatv is y− smooth}. It is known [22] that, for large x , the
ratio ψ(x, t

√
x)/x is equivalent to Dickman’s function defined by:

ρ(t) =
⎧
⎨

⎩

1 if 0 ≤ t ≤ 1

ρ(n) −
∫ t

n

ρ(v − 1)

v
dv if n ≤ t ≤ n + 1

ρ(t) is thus an approximation of the probability that a u-bit number is 2u/t -smooth;
Table 1 gives the numerical value of ρ(t) (on a logarithmic scale) for 1 ≤ t ≤ 10. The
following theorem [12] gives an asymptotic estimate of the probability that an integer is
smooth:

Theorem 1. Let x be an integer and let Lx [β] = exp
(
β · √

log x log log x
)
. Let t

be an integer randomly distributed between zero and xγ for some γ > 0. Then for
large x, the probability that all the prime factors of t are less than Lx [β] is given by
Lx

[−γ /(2β) + o(1)
]
.

Using this theorem, an asymptotic analysis of Desmedt and Odlyzko’s attack is given
in [17]. The analysis yields a time complexity of:

Lx [
√
2 + o(1)]

where x is a bound onμ(m). This complexity is sub-exponential in the size of the integers
μ(m). In practice, the attack is feasible only if the μ(mi ) is relatively small (e.g., <200
bits).

2 In both cases, we have assumed that the signature is always σ = μ(m)d mod N , whereas by definition, a
Rabin–Williams signature is σ = (μ(m)/2)d mod N when J(μ(m)) = −1. A possible work-around consists
in discarding such messages, but it is also easy to adapt the attack to handle both cases.
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4. Coron–Naccache–Stern’s Attack

The Desmedt–Odlyzko’s attack recalled in the previous section does not apply directly
against ISO 9796-2, because in ISO 9796-2 the encoding function μ(m) is as long
as the modulus N . Coron–Naccache–Stern’s work-around [19] consisted in generating
messages mi such that a linear combination ti of μ(mi ) and N is much smaller than N .
Then, the attack can be applied to the integers ti instead of μ(mi ).

More precisely, Coron et al. observed that it is sufficient to find a constant a and
messages mi such that:

ti = a · μ(mi )mod N

is small, instead of requiring that μ(mi ) is small. Namely, the factor a can be easily
dealt with by regarding a−1 mod N as an “additional factor” in μ(mi ); to that end, we
only need to add one more column in the matrix considered in Sect. 3. In their attack,
the authors used a = 28.
Obtaining a small a · μ(m)mod N is done in [19] as follows. From the definition of

ISO 9796-2:

μ(m) = 6A16 ‖ m[1] ‖ H(m) ‖ BC16
= 6A16 · 2k−8 + m[1] · 2kh+8 + H(m) · 28 + BC16

where k is the modulus N size in bits and kh is the hash size. Euclidean division by N
provides b and 0 ≤ r < N < 2k such that:

(6A16 + 1) · 2k = b · N + r

Denoting N ′ = b · N , one can write:

N ′ = 6A16 · 2k + (2k − r)

= 6A16 ‖ N ′[1] ‖ N ′[0]

where N ′ is k + 7 bits long and N ′[1] is k − kh − 16 bits long, the same bit length as
m[1]. Consider now the linear combination:

t = b · N − a · μ(m)

= N ′ − 28 · μ(m)

By setting m[1] = N ′[1], we get:

t = 6A16 ‖ N ′[1] ‖ N ′[0]
− 6A16 ‖ m[1] ‖ H(m)‖BC0016

= ���6A16 ‖ ���N ′[1] ‖ N ′[0]
− ���6A16 ‖ ���N ′[1] ‖ H(m)‖BC0016

= N ′[0] − (H(m)‖BC0016)
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which gives |t | ≤ 2kh+16. For kh = 160, the integer t is therefore at most 176 bits long.
The forger can thus modify m[2], and therefore H(m), until he gets a set of messages

whose t values are B-smooth and express one such μ(mτ ) as a multiplicative combi-
nation of the others. As per the analysis in [19], attacking the instances kh = 128 and
kh = 160 requires (respectively) 254 and 261 operations.

5. Our New Attack

We improve the above complexities by using four new ideas: We accelerate Desmedt–
Odlyzko’s process using Bernstein’s smoothness detection algorithm [7], instead of trial
division; we also use the large prime variant [1]; moreover, we modify Coron et al.’s
attack by selecting better messages and by optimizing exhaustive search to balance
complexities.

5.1. Bernstein’s Smoothness Detection Algorithm

The B-smooth part of an integer t is the product (with multiplicities) of all of its prime
factors less or equal to B. In particular, an integer t is B-smooth if and only if its
B-smooth part is equal to t .
Bernstein [7] describes the following algorithm for finding the B-smooth parts of

each integer in a large list {t1, . . . , tn} and hence deduces, in particular, which of those
integers are B-smooth.
Algorithm: Given the list of all prime numbers p1, . . . , p� up to B in increasing order,
and a collection of positive integers t1, . . . , tn , output the B-smooth part of each ti :

1. Compute the product z ← p1 ×· · ·× p�. This can be done in time and space Õ(�)

using a product tree.
2. Compute the modular reductions z1 ← z mod t1, . . . , zn ← z mod tn of z modulo

each of the ti ’s. This can again be done in quasilinear time in the size of the input
using a remainder tree.

3. For each i ∈ {1, . . . , n}: Compute yi ← (zi )
2e
mod ti by repeated squaring, where

e is the smallest nonnegative integer such that 22
e ≥ ti .

4. For each i ∈ {1, . . . , n}: output si ← gcd(ti , yi ) as the B-smooth part of ti .

The algorithm is correct since for each i ∈ {1, . . . , n}:

yi ≡
�∏

j=1

p2
e

j (mod ti )

and hence, if we denote by v j (ti ) the p j -adic valuation of ti , we have:

si = gcd(ti , yi ) =
�∏

j=1

p
min(v j (ti ),2e)

j =
�∏

j=1

p
v j (ti )
j

in view of the choice of e, and this is clearly the B-smooth part of ti .
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In order to achieve a satisfactory time complexity, it is important to use efficient integer
arithmetic and tree-based algorithms in steps 1 and 2.
Indeed, a naive algorithm for the computation of the product z = p1×· · ·× p� would

amount to � − 1 multiplications of integers of size close to the size of z (namely Õ(�)

bits) and would thus require quadratic time even with quasilinear arithmetic. Instead, the
tree-based approach consists in carrying out the �/2 products p1 p2, p3 p4, . . . between
contiguous pairs of pi ’s, which are numbers of size ≤ 2 log � and then the �/4 products
(p1 p2)(p3 p4), (p5 p6)(p7 p8), . . . between pairs of pairs, which are of size ≤ 4 log �,
and so on until the whole product is obtained. The product tree has depth log2 �, and level
k consists of �/2k+1 multiplications of numbers of 2k+1 log � bits, so that the overall
complexity is quasilinear in �.

Similarly, to compute the modular reductions of z modulo each of the ti ’s, one does
not carry out each of the n Euclidean divisions sequentially, which would take time
Õ(n�), but instead computes a product tree of the ti ’s, and then carries out the Euclidean
division of z by the product of the first half all ti ’s on the one hand (that product is a
node in the product tree) and by the product of the second half of all ti ’s on the other
hand (also a node in the product tree). This first level takes time 2× Õ(�+nα/2), where
α is the bitsize of the ti ’s. Then, the remainder of the first division is divided by the
product of the first quarter of all ti ’s and by the product of the second quarter, whereas
the remainder of the second division is divided by the product of the third quarter of all
ti ’s and by the fourth quarter, for a total time of 4 × Õ(nα/4). And so on and so forth
until the leaves of the tree are reached, at which points one obtains all the remainders
of z modulo the ti ’s. Level k consists of 2k+1 Euclidean divisions by integers of nα/2k

bits, and there are log2(nα) levels, so that the overall complexity is quasilinear in nα

(and separately �, accounting for the first level).
As a result, Bernstein obtains the following theorem.

Theorem 2. (Bernstein) The algorithm computes the B-smooth part of each integer ti
in time O(β log2 β log logβ), where β is the number of input bits.

In other words, given a list of n integers ti < 2α and the list of the first � primes, the
algorithm will detect the B-smooth ti ’s, where B = p�, in complexity:

O(β · log2 β · log logβ)

where β = n · α + � · log2 � is the total number of input bits. For large n and fixed α, �,
the asymptotic complexity is O(n · α · log2 n · log log n).

5.1.1. Optimization for Large n

When n is very large, it becomes actually more efficient to run the algorithm k times,
on batches of n′ = n/k integers. In the following, we determine the optimal n′ and the
corresponding running time. We assume that for a single batch, the algorithm runs in
time:

BatchTime(n′, α, �) = C · β ′ · log2 β ′ · log logβ ′
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whereC is a constant and β ′ = n′ ·α+u is the bit length of the batch, where u = �·log2 �

is the pi list’s size in bits. The total running time is then:

TotalTime(n, α, �, n′) = C · n

n′ · β ′ · log2 β ′ · log logβ ′

The running time of a single batch only depends onβ ′. Hence, as a first approximation,
one could select an n′ equating the sizes of the ti list and the pi list. This gives n′ ·α = u,
and therefore,β ′ = 2n′ ·α, which gives a total running time ofC ·2n·α·log2 β ′ ·log logβ ′.
A more accurate analysis reveals that TotalTime is minimized for a slightly larger

value of n′. Let u = � · log2 � and n′ such that n′ · α = γ · u for some parameter γ ,
which gives β ′ = (γ + 1) · u, and:

TotalTime(n, α, �, γ ) = C · n · α

u
· β ′ · log2 β ′ · log logβ ′

γ

We look for the optimal γ . We neglect the log logβ ′ term and consider the function:

f (u, γ ) = β ′ · log2 β ′

γ
where β ′ = u · (γ + 1)

Setting ∂ f (u, γ )/∂γ = 0, we get u ·(log2 β ′+2 logβ ′) ·γ −β ′ log2 β ′ = 0, which gives
(log b+2) ·γ = (γ +1) log b and then 2γ = log b. This gives 2γ = log u + log(γ +1),
and neglecting the log(γ + 1) term, we finally get:

γ = (log u)/2

as the optimal γ . This translates into running time as:

TotalTime(n, α, �) � C · n · α · log2 β ′ · log logβ ′ (3)

where β ′ � (u log u)/2 and u = � · log2 �.

5.1.2. Other Optimizations

Bernstein recommends a number of speedup ideas of which we used a few. In our
experiments, we used the scaled remainder tree [9], which replacesmost division steps in
the remainder tree by multiplications. This algorithm is fastest when fftmultiplications
are done modulo numbers of the form 2α −1: We used this Mersenne fftmultiplication
as well, as implemented in Gaudry, Kruppa and Zimmermann’s gmp patch [24]. Other
optimizations included computing the product z only once and treating the prime 2
separately.
Bernstein’s algorithm was actually the main source of the attack’s improvement. It

proved about 1000 faster than the trial division used in [19].
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5.2. The Large Prime Variant

An integer is said to be semi-smooth with respect to y and z if its greatest prime factor is
≤ y and all other factors are≤ z. Bach and Peralta [1] define the function σ(u, v), which
plays for semi-smoothness the role played by Dickman’s ρ function for smoothness:
σ(u, v) is the asymptotic probability that an integer n is semi-smooth with respect to
n1/v and n1/u .
In our attack, we consider integers ti which are semi-smooth with respect to B2 and

B, for some second bound B2 such that B < B2 < B2. This is easy to detect using
Bernstein’s algorithm: For ti to be (B2, B)-semi-smooth, it suffices that its B-smooth
part si (as computed by the algorithm above) satisfies ti/si ≤ B2. Indeed, by definition,
ti/si has no prime factor smaller than B; therefore, if it is less or equal to B2 < B2, it
must be prime itself (or equal to 1), and thus, ti = si · (ti/si ) is (B2, B)-semi-smooth.
Namely, it is often convenient in sieving algorithms for integer factorization and other

problems (NFS, index calculus, etc.) to consider not only smooth numbers, which can
be decomposed over the factor base, but also semi-smooth numbers, which cannot be
decomposed directly, but do yield decomposable numbers when two or more are found
corresponding to the same large prime: In other words, if t1, t2 are both (B2, B)-semi-
smooth and the large primes t1/s1 and t2/s2 are equal, then the rational number t1/t2 is
B-smooth and can thus be considered in the relation-finding stage.
A detailed complexity analysis of this “large prime” variant in our context is provided

in “Appendix 1”.

5.3. Constructing Smaller a · μ(m) − b · N Candidates

In this paragraph, we show how to construct smaller ti = a · μ(mi ) − b · N values for
ISO 9796-2. Smaller ti values increase smoothness probability and hence accelerate the
forgery process.
We write:

μ(x, h) = 6A16 · 2k−8 + x · 2kh+8 + h · 28 + BC16

where x = m[1] and h = H(m), with 0 < x < 2k−kh−16.
We first determine a, b > 0 such that the following two conditions hold:

0 < b · N − a · μ(0, 0) < a · 2k−8 (4)

b · N − a · μ(0, 0) = 0 (mod 28) (5)

and a is of minimal size. Then by Euclidean division, we compute x and r such that:

b · N − a · μ(0, 0) = (a · 2kh+8) · x + r

where 0 ≤ r < a · 2kh+8 and using (4), we have 0 ≤ x < 2k−kh−16 as required. This
gives:

b · N − a · μ(x, 0) = b · N − a · μ(0, 0) − a · x · 2kh+8 = r
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Table 2. {a, b} values for several RSA challenge moduli.

Challenge RSA-704 RSA-768 RSA-896 RSA-1024 RSA-1536 RSA-2048

a 481 251 775 311 581 625
b 228 132 412 172 316 332

Moreover as per (5), we must have r = 0mod 28; denoting r ′ = r/28, we obtain:

b · N − a · μ(x, h) = r − a · h · 28 = 28 · (r ′ − a · h)

where 0 ≤ r ′ < a · 2kh . We then look for smooth values of r ′ − a · h, whose size is at
most kh plus the size of a.
If a and b are both 8-bit integers, this gives 16 bits of freedom to satisfy both conditions

(4) and (5); heuristically, each of the two conditions is satisfied with probability � 2−8;
therefore, we can expect to find such an {a, b} pair; we can enable slightly larger a and b
if necessary. For example, for the RSA-2048 challenge, we found {a, b} to be {625, 332};
therefore, for RSA-2048 and kh = 160, the integer to be smooth is 170 bits long (instead
of 176 bits in Coron et al.’s original attack). This decreases the attack complexity further.
We provide in Table 2 the optimal {a, b} pairs for several RSA challenge moduli.

6. Attacking ISO 9796-2

We combined all the building blocks listed in the previous section to compute an actual
forgery for ISO 9796-2, with the RSA-2048 challenge modulus. The implementation
replaced Coron et al.’s trial division by Bernstein’s algorithm, replaced Coron et al.’s
a ·μ(m)−b · N values by the shorter ti ’s introduced in paragraph 5.3 and took advantage
of the large prime variant. Additional speed-up was obtained by exhaustive search for
particular digest values.
As is usual for algorithms based on sievingmethods, our attack can be roughly divided

in two main stages: relation generation on the one hand, in which we try to generate
many smooth and semi-smooth values ti , yielding a large, sparse matrix of relations over
our factor base, and linear algebra on the other hand, where we look for a nonzero vector
in the kernel of that large matrix, deducing a forgery. We provide technical details on
both stages below.

6.1. Relation Generation

Relation generation in our attacks amounted to computing many integers of the form
ti = bN −aμ(x, hi ) discussed in Sect. 5.3 (at most 170 bits long) and using Bernstein’s
algorithm to find the smooth and semi-smooth ones among them (with respect to suitable
smoothness bounds). As shown in Sect. 5.1, Bernstein’s algorithm is best applied on
relatively small batches of such integers, and the whole relation generation process is
thus an embarrassingly parallel problem.
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As a result, we found it convenient to run this part of the attack onAmazon’s EC2 cloud
computing service, which also helps putting a simple dollar figure on the complexity of
cryptanalytic attacks.

6.1.1. The Amazon Grid

Amazon Web Services, Inc. offers virtualized computer instances for rent on a pay by
the hour basis, which we found convenient to run our computations. At the time of
our attack, the best suited for cpu-intensive tasks featured 8 Intel Xeon 64-bit cores
clocked at 2.4ghz supporting the Core2 instruction set, as well as 7gb ram and 1.5tb
disk space. Renting such a capacity costs US$0.80 per hour. One could launch up to 20
such instances in parallel, and possibly more subject to approval by Amazon (20 were
enough for our purpose so we did not apply for more).
When an instance is launched, it starts up from a disk image containing a customiz-

able unix operating system. In the experiment, we ran a first instance using the basic
Linux distribution provided by default, installed necessary tools and libraries, compiled
our own programs and made a disk image containing our code, to launch subsequent
instances with. When an instance terminates, its disk space is freed, making it necessary
to save results to some permanent storage means. We simply transferred results to a
machine of ours over the network. Amazon also charges for network bandwidth, but
data transmission costs were negligible in our case.
All in all, we used about 1100 instance running hours (including setup and tweaks)

over a little more than 2days. While we found the service to be rather reliable, one
instance failed halfway through the computation, and its intermediate results were lost.

6.1.2. Parameter Selection

The optimal choice of � for 170 bits is about 221. Since the Amazon instances are
memory-constrained (less than 1gb of ram per core), we preferred to use � = 220. This
choice had the additional advantage of making the final linear algebra step faster, which
is convenient since this step was run on a single off-line pc. Computing the product of
the first � primes itself, as used in Bernstein’s algorithm, was done once and for all in a
matter of seconds using mpir [26].

6.1.3. Hashing

Since smoothness detection part of the attack works on batches of ti ’s (in our cases, we
chose batches of 219 integers), we had to compute digests of messages mi in batches
as well. The messages themselves are 2048 bits long, i.e., as long as N , and with the
following structure, a constant 246-byte prefix followed by a 10-byte seed. The first two
bytes identify a family of messages examined on a single core of one Amazon instance,
and the remaining eight bytes are explored by increments of 1 starting from 0.
Messages were hashed using Openssl’s implementation of sha-1. For each message,

we only need to compute one sha-1 block, since the first three 64-byte blocks are fixed.
This computation is relatively fast compared to Bernstein’s algorithm, so we have a bit
of leeway for exhaustive search. We can compute a large number of digests, keeping the
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ones likely to give rise to a smooth ti . We did this by selecting digests for which the
resulting ti would have many zeroes as leading and trailing bits.
More precisely, we looked for a particular bit pattern at the beginning and at the end

of each digest hi , such that finding n matching bits results in n null bits at the beginning
and at the end of ti . The probability of finding n matching bits when we add the number
of matches at the beginning and at the end is (1 + n/2) · 2−n , so we expect to compute
2n/(1+ n/2) digests per selected message. We found n = 8 to be optimal: On average,
we need circa 50 digests to find a match, and the resulting ti is at most 170 − 8 = 162
bit long (once powers of 2 are factored out).

6.1.4. Finding Smooth and Semi-smooth Integers

Once a batch of 219 appropriate ti ’s is generated, we factor out powers of 2 and feed
the resulting odd numbers into our C++ implementation of Bernstein’s algorithm. This
implementation uses the mpir multi-precision arithmetic library [26], which we chose
over vanilla gmp because of a number of speed improvements, including J.W. Martin’s
patch for the Core2 architecture.We further applied Gaudry, Kruppa and Zimmermann’s
fft patch, mainly for their implementation of Mersenne fft multiplication, which is
useful in the scaled remainder tree [9].
We looked for B-smooth as well as for (B, B2)-semi-smooth ti ’s, where B =

16,290,047 is the 220th prime, and B2 = 227. Each batch took �40s to generate and to
process and consumed about 500mb of memory. We ran eight such processes in parallel
on each instance to take advantage of the eight cores and 19 instances simultaneously.
After processing 647,901 such batches in roughly 1100 CPU hours and a little

over 2days on the wall clock, we finally obtained sufficiently many relations for our
purposes—namely 684,365 smooth ti ’s and366,302 collisions between2,786,327 semi-
smooth ti ’s, for a total of 1,050,667 columns (slightly in excess of the � = 220 =
1,048,576 required).

6.2. Linear Algebra

The output of the relation generation stage was a large, sparse matrix over GF(2), and
all that remained to do to find a forgery was to find a nonzero vector in its kernel. This
was done in a few hours on a single desktop PC using an free software implementation
of the block Wiedemann algorithm.

6.2.1. The Exponent Matrix

More precisely, as mentioned above, the exponent matrix was of size 1,048,576 ×
1,050,667, and it had 14,215,602 nonzero entries (13.5 per column on average, or 10−5

sparsity; the columns derived from the large prime variant tend to have twice as many
nonzero entries, of course).
A number of rows contained only one nonzero entry. As a preprocessing stage to the

actual linear algebra computation, such rows and the corresponding columns could be
safely removed and that process was repeated recursively until no single entry remained.
This resulted in a reduced matrix of dimension 750,031 × 839,908.
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6.2.2. Block Wiedemann

We found nonzero kernel elements of the final sparse matrix over GF(2) using Copper-
smith’s block Wiedemann algorithm [13] implemented in wlss2 [34,40], with parame-
ters m = n = 4 and κ = 2. The whole computation took 16h on one 2.7ghz personal
computer, with the first (and longest) part of the computation using two cores and the
final part using four cores.
The program obtained 124 kernel vectors with Hamming weights ranging from

337,458 to 339,641. Since columns obtained frompairs of semi-smooth numbers account
for two signatures each, the number of signature queries required to produce the 124
corresponding forgeries is slightly larger and ranges between 432,903 and 435,859.
Being written with the quadratic sieve in mind, the block Wiedemann algorithm in

wlss2works overGF(2). There exist, however, other implementations for different finite
fields.

6.3. Summary of the Experiment

The entire experiment can be summarized as follows:

16,230,259,553,940
digest computations

↓
339,686,719,488 ti ’s in

647,901 batches of 219 each
↙ ↘

684,365 366,302 collisions between
smooth ti ’s 2,786,327 semi-smooth ti ’s

↘ ↙
1,050,667-column matrix

↓
algebra on 839,908 columns
having > 1 nonzero entry

↓
124 kernel vectors

↓
forgery involving 432,903 signatures

7. Cost Estimates

The experiment described in the previous section can be used as a benchmark to estimate
the cost of the attack as a function of the size of the ti ’s, denoted α; this will be useful
for analyzing the security of the EMV specifications, where α is bigger (204 bits instead
of 170 bits).
Results are summarized in Table 3. We assume that the ti ’s are uniformly distributed

α-bit integers and express costs as a function of α. We only take into account the running
time of the smoothness detection algorithm from Sect. 5.1 and do not include the linear
algebra stepwhose computational requirements are very lowcompared to the smoothness
detection step. The running times are extrapolated from the experiments performed in
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Table 3. Bernstein + Large prime variant.

α = log2 ti log2 � Estimated TotalTime log2 n Amazon EC2 cost (US$)

64 11 15 s 20 negligible
128 19 4days 33 10
160 21 6months 38 470
170 22 1.8years 40 1,620
176 23 3.8years 41 3,300
204 25 95years 45 84,000
232 27 19 centuries 49 1,700,000
256 30 320 centuries 52 20,000,000

Estimated parameter trade-offs, running times and costs, for various ti sizes, as of Spring 2009

the previous section, using Eq. (3), where the total number of messages n to be examined
is estimated as

n � �

ρ(α/ log2 p�)

where ρ is Dickman function and p� � � log �; for simplicity, we do not consider
the large prime variant. For each value of α, we compute the optimal value of � that
minimizes the running time. The number of signatures required for the forgery is then
τ = �+ 1. Note that in Table 3, we do not assume any exhaustive search on the ti ’s; this
is why the cost estimate for α = 170 in Table 3 is about the double of the cost of our
experimental ISO 9796-2 forgery.
Running times are given for a single 2.4ghz pc. Costs correspond to the Amazon

EC2 grid as of Spring 2009, as in the previous section. Estimates show that the attack is
feasible up to� 200 bits, but becomes infeasible for larger values of α. We also estimate
log2 n, where n is the total number of messages to be examined.

7.1. Fewer Queries

The number of signatures actually used by the forger is not τ but the number of nonzero
βi values in the formula:

μ(mτ ) =
⎛

⎝
�∏

j=1

p
γ j
j

⎞

⎠

e

·
τ−1∏

i=1

μ(mi )
βi

Assuming that (β1, . . . , βτ−1) is a random vector of Zτ−1
e only τ(e − 1)/e of the

signatures will be actually used to compute the forgery. The gain is significant when
e is a very small exponent (e.g., 2 or 3). However, one can try to generate more than
τ candidates but select the subset of signatures minimizing the number of nonzero βi

values. Such a sparse β-vector may allow to reduce the number of queries and defeat
ratification counters meant to restrict the number of authorized signature queries.
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In essence, we are looking at a random [�, k] code: A kernel vector has � components
which, for e = 2, can be regarded as a set of independent unbiased Bernoulli variables.

The probability that such a vector has weight less than w =
τ−1∑

i=1
βi is thus:

w∑

j=1

(
�

j

)
2−� � 1

2

(
1 + erf

(
w − �/2√

�/2

))

We have 2k such vectors in the kernel, and hence, the probability that at least one of
them has a Hamming weight smaller than w is surely bounded from above by:

2k × 1

2

(
1 + erf

(
w − �/2√

�/2

))
= 2k−1

(
1 + erf

(
w − �/2√

ell/2

))

Let c denote the density bias of w, i.e., w = (1/2− c)�. The previous bound becomes:

p(c) = 2k−1
(
1 + erf

(
−c

√
2�

))
= 2k−1

(
1 − erf

(
c
√
2�

))

= 2k−1 erfc(c
√
2�) ∼

�→+∞
2k−1 exp(−2�c2)

c
√
2π�

For � = 220, even if we take k as large as 210 (the largest subspace dimension
considered tractable, even in much smaller ambient spaces), we get p(1/50) � 10−58,
so the probability that there exists a kernel vector of weight w < 500,000 is negligible.
In addition, even if such a vector existed, techniques for actually computing it, e.g., [10],
seem to lag far behind the dimensions we deal with.
It follows that a better strategy to diminish w is to simply decrease �. The expected

payoff might not be that bad: If the attacker is limited to, say, 216 signatures, then he can
pick � = 217, and for 196-bit numbers (204 bits minus eight bits given by exhaustive
search), the attack becomes about 15 times slower than the optimal choice, � = 224

(note as well that more exhaustive search becomes possible in that case). That is slow,
but perhaps not excruciatingly so.

8. Application to EMV Signatures

EMV is a collection of industry specifications for the inter-operation of payment cards,
pos terminals and atms. The EMV specifications [23] rely on ISO 9796-2 signatures
to certify public keys and to authenticate data. For instance, when an issuer provides
application data to a Card, this data must be signed using the issuer’s private key Si .
The corresponding public key Pi must be signed by a certification authority (ca) whose
public key is denoted Pca . The signature algorithm is RSA with e = 3 or e = 216 + 1.
The bit length of all moduli is always a multiple of 8.
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EMV uses special message formats; seven different formats are used, depending on
the message type. In the following, we describe one of these formats: the static data
authentication, issuer public-key data (SDA-IPKD) and adapt our attack to it.

8.1. EMV Static Data Authentication, Issuer Public-Key Data (SDA-IPKD)

We refer the reader to §5.1, Table 2, page 41 in EMV [23]. SDA-IPKD is used by the
ca to sign the issuer’s public-key Pi . The message to be signed is as follows:

m = 0216‖X‖Y‖Ni‖0316

where X represents six bytes that can be controlled by the adversary and Y represents
seven bytes that cannot be controlled. Ni is the issuer’s modulus to be certified. More
precisely, X = id‖date where id is the issuer identifier (four bytes) and date is the
certificate expiration date (two bytes); we assume that both can be controlled by the
adversary. Y = csn‖C where csn is the 3-byte certificate serial number assigned by the
ca and C is a constant. Finally, the modulus to be certified Ni can also be controlled by
the adversary.
With ISO 9796-2 encoding, this gives:

μ(m) = 6A0216‖X‖Y‖Ni,1‖H(m)‖BC16

where Ni = Ni,1‖Ni,2 and the size of Ni,1 is k − kh − 128 bits. k denotes the modulus
size and kh = 160 as in ISO 9796-2.

8.2. Attacking SDA-IPKD

To attack SDA-IPKD write:

μ(X, Ni,1, h) = 6A0216 · 2k1 + X · 2k2 + Y · 2k3 + Ni,1 · 2k4 + h

where Y is constant and h = H(m)‖BC16. We have:

⎧
⎪⎪⎨

⎪⎪⎩

k1 = k − 16
k2 = k1 − 48 = k − 64
k3 = k2 − 56 = k − 120
k4 = kh + 8 = 168

Generate a random ka-bit integer a, where 36 ≤ ka ≤ 72, and consider the equation:

b · N − a · μ(X, 0, 0) = b · N − a · X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

If we can find integers X and b such that 0 ≤ X < 248 and:

0 ≤ b · N − a · μ(X, 0, 0) < a · 2k3 (6)
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then as previously, we can compute Ni,1 by Euclidean division:

b · N − a · μ(X, 0, 0) = (a · 2k4) · Ni,1 + r (7)

where 0 ≤ Ni,1 < 2k3−k4 as required and 0 ≤ r < a · 2k4 , which gives:

b · N − a · μ(X, Ni,1, h) = r − a · h

and therefore |b · N − a · μ(X, Ni,1, h)| < a · 2k4 for all values of h.
In the above, we assumed Y to be a constant. Actually, the first three bytes of Y encode

the csn assigned by the ca and may be different for each new certificate (see “Appendix
2”). However if the attacker can predict the csn, then he can compute a different a for
every Y and adapt the attack by factoring a into a product of small primes.
Finding small X and b so as to minimize the value of

|b · N − a · X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)|

is a closest vector problem (cvp) in a bi-dimensional lattice; a problem that can be easily
solved using the LLL algorithm [36]. We first determine heuristically the minimal size
that can be expected; we describe the LLL attack in “Appendix 2”.
Since a ·6A0216 ·2k1 is an (k+ka)-bit integer, with X � 248 and b � 2ka , heuristically

we expect to find X and b such that:

0 ≤ b · N − a · μ(X, 0, 0) < 2(k+ka)−48−ka = 2k−48 � a · 2k−48−ka = a · 2k3+72−ka

which is (72 − ka) bit too long compared to condition (6). Therefore, by exhaustive
search, we will need to examine roughly 272−ka different integers a to find a pair (b, X)

that satisfies (6); since a is ka bits long, this can be done only if 72 − ka ≤ ka , which
gives ka ≥ 36. For ka = 36, we have to exhaust the 236 possible values of a.

Once this is done, we obtain from (7):

t = b · N − a · μ(X, Ni,1, h) = r − a · h

with 0 ≤ r < a · 2k4 . This implies that the final size of t values is 168 + ka bits. For
ka = 36, this gives 204 bits (instead of 170 bits for plain ISO 9796-2). The attack’s
complexity will hence be higher than for plain ISO 9796-2.
In “Appendix 2,” we exhibit concrete (a, b, X) values for ka = 52 and for the RSA-

2048 challenge; this required � 223 trials (109min on a single pc). We estimate that for
ka = 36, this computation will take roughly 13years on a single pc or equivalently US$
11,000 using the EC2 grid.

9. Conclusion

We have described an improved attack against the amended version of ISO 9796-2, that
is, for kh = 160. The new attack applies to EMV signatures as well. Our new attack
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is similar to Coron et al. forgery but using Bernstein’s smoothness detection algorithm
instead of trial division. In practice, we were able to compute a forgery for ISO 9796-2
in only 2days, using a few dozens of servers on the Amazon EC2 grid, for a total cost
of US$800.
In response to this attack, the ISO 9796-2 standard was amended [31] to discourage

the use of the ad hoc signature padding in contexts where chosen-message attacks are
an issue.

Appendix 1: Large Prime Variant: Complexity Analysis

In this appendix we provide an accurate analysis of the large prime variant in the context
of our attack.
Assume that we check our ti list for (B, B2)-semi-smoothness (instead of B-

smoothness) and detect η semi-smooth numbers. Among those, we expect to find ηλ

numbers that are actually B-smooth, for some λ ∈ [0, 1] that can be expressed in terms
of ρ and σ functions. If we further assume that the η(1− λ) remaining numbers, which
are semi-smooth but non-smooth, have their largest prime factors uniformly distributed
among the h primes between B and B2, we expect to find about η2(1 − λ)2/(2h) “col-
lisions” between them, that is, about η2(1 − λ)2/(2h) pairs of numbers with the same
largest prime factor.
Note that:

h � B2

log B2
− B

Let � be the number of primes less than B. The smooth numbers in the list yield a
total of ηλ exponent vectors over the first � primes, and each of the collisions between
the remaining semi-smooth numbers yields such an additional exponent vector. Since
we need (slightly more than) � vectors to forge a signature, we should examine enough
ti ’s to find η semi-smooth numbers, where η satisfies:

� = ηλ + η2(1 − λ)2

2h

Solving for η, we get:

η = 2�

λ + √
2� · (1 − λ)2/h + λ2

The probability β that a random α-bit integer is semi-smooth with respect to B2 and
B � � · log � is:

β = σ

(
α log 2

log(� log �)
,
α log 2

log B2

)
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Table 4. Improvement factor ϑ due to the large prime variant.

Integer size α 128 144 160 176 192
Optimal log2(�) 19 20 21 23 24
Best ϑ 1.43 1.46 1.49 1.43 1.45

and if γ denotes the probability that a random α-bit integer is B-smooth, we have:

λ = γ

β
= ρ

(
α log 2

log(� log �)

)
/σ

(
α log 2

log(� log �)
,
α log 2

log B2

)

In this large prime variant, we only need to generate n′ = η/β numbers to find enough
exponent vectors, as opposed to n = �/γ previously. Therefore, the large prime variant
improves upon simple smoothness by a factor of roughly:

ϑ = n

n′ = �/γ

η/β
= 1

λ
· �

η
= 1

2

⎡

⎣1 +
√

1 + 2�

h

(
1

λ
− 1

)2
⎤

⎦ ≥ 1 (8)

ϑ is always >1, and for the sizes we are interested in, say 100 ≤ α ≤ 200, we find
ϑ � 1.5 for the best choice of B, and B2 � 7B. The reader is referred to Table 4 for
precise figures.
According to formula (8), ϑ increases until B2 reaches � 7B, and decreases slowly

thereafter. This is actually not the case: Finding a larger ti population to be semi-smooth
can only produce more collisions. The decrease suggested by formula (8) stems from the
assumption that the largest prime factors of the ti ’s are uniformly distributed among the
h primes between B and B2, which is only approximately true. The imprecision grows
with h (a larger B2 doesn’t spread the largest prime factors more thinly). Choosing a
very large B2 is not advisable, however, because it produces considerable extra output
(searching for collisions becomes cumbersome)with negligible returns in terms of actual
collisions. In the practical attack, we selected � = 220 and B2 = 227 � 9B.

Appendix 2: LLL Attack on EMV SDA-IPKD Encoding

The LLL Attack

Given a, N we must minimize the value of:
∣∣∣b · N − a · X · 2k2 − a · (6A0216 · 2k1 + Y · 2k3)

∣∣∣

We show how this can be done using LLL. We write:

u = a · 2k2

v = a · (6A0216 · 2k1 + Y · 2k3)

where N � 2k , X � 248, a � 2ka , u � 2k−64+ka and v � 2k+ka .
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Hence we must minimize the absolute value of:

t = b · N − x · u − v

Consider the lattice of column vectors:

L =
⎡

⎣
2k−48

2k−96

N − u − v

⎤

⎦

As seen previously, heuristically, we can obtain t � 2k−48; therefore the coefficients in
L are chosen so as to obtain a short vector of norm � 2k−48. More precisely, we look
for a short column vector c ∈ L of the form:

c =
⎡

⎣
2k−48

x · 2k−96

b · N − u · x − v

⎤

⎦

Theorem 3. (LLL) Let L be a lattice spanned by (u1, . . . , uω). The LLL algorithm,
given the vectors (u1, . . . , uω), finds in polynomial time a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

Therefore, using LLL we can find a short vector of norm:

‖b1‖ ≤ 2 · (det L)1/3 ≤ 2 · (23k−144)1/3 ≤ 2k−47

Heuristically we hope that b1 = c, which allows solving for the values of b and X . The
attack is heuristic but it works very well in practice, as shown in the next section.

Practical Value for EMV SDA-IPKD

Consider again the SDA-IPKD EMV format; we write:

μ(X, Ni,1, h) = 6A0216 · 2k1 + X · 2k2 + Y · 2k3 + Ni,1 · 2k4 + h

where the constant Y is taken to be:

Y = 010203 0101 F8 0116

The first three bytes correspond to the csn assigned by the ca (we took 01020316),
010116 corresponds to the hash algorithm indicator and to the public-key algorithm
indicator. F816 = 248 is the issuer public-key length (in bytes) and 0116 is the length
of the public exponent (e = 3).
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Taking the RSA-2048 challenge for N , we have run the attack of the previous section
for ka = 52 and found the following values after 8,303,995 � 223 iterations:

a = 4127135343129068 b = 2192055331476458 X = 66766242156276

which are such that 0 < X < 248 and:

0 ≤ b · N − a · μ(X, 0, 0) < a · 2k3 (9)

as required.
The computation took �109min on a single 2ghz pc. Therefore, for ka = 36 we

expect that 236 trials to yield a triple {a, b, X} satisfying condition (9) such that |a| ≤ 236,
within a running time of � 109 · 236−20 = 4.3 · 108 min = 13 years on a single pc, or
equivalently for US$11,000 using the EC2 grid.
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