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Abstract. Understanding the minimal assumptions required for carrying out crypto-
graphic tasks is one of the fundamental goals of theoretic cryptography. A rich body of
work has been dedicated to understanding the complexity of cryptographic tasks in the
context of (semi-honest) secure two-party computation. Much of this work has focused
on the characterization of trivial and complete functionalities (resp., functionalities that
can be securely implemented unconditionally, and functionalities that can be used to se-
curely compute all functionalities). Most previous works define reductions via an ideal
implementation of the functionality; i.e., f reduces to g if one can implement f using a
black-box (or oracle) that computes the function g and returns the output to both parties.
Such a reduction models the computation of f as an atomic operation. However, in the
real world, protocols proceed in rounds, and the output is not learned by the parties
simultaneously. In this paper, we show that this distinction is significant. Specifically,
we show that there exist symmetric functionalities (where both parties receive the same
outcome) that are neither trivial nor complete under “black-box reductions,” and yet
the existence of a constant-round protocol for securely computing such a functional-
ity implies infinitely often oblivious transfer (meaning that it is secure for infinitely
many values of the security parameter). In light of the above, we propose an alternative
definitional infrastructure for studying the triviality and completeness of functionalities.

Keywords. Secure computation, Hardness assumptions, Completeness, Non-black-
box reductions.

∗This work was supported by the israel science foundation (Grant No. 189/11). Hila Zarosim is
grateful to the Azrieli Foundation for the award of an Azrieli Fellowship. Most of this work was done while
Eran Omri was at Bar-Ilan University. A preliminary version appeared in Asiacrypt 2012 [19].

† E. Omri: Partially supported by ISF Grant 544/13.

© International Association for Cryptologic Research 2017

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-017-9267-7&domain=pdf


672 Y. Lindell et al.

1. Introduction

1.1. Secure Computation and Completeness

In the setting of secure two-party computation, two parties with respective private inputs
x and y wish to compute a function f of their inputs. The computation should preserve
a number of security properties, such as privacy (meaning that nothing but the specified
output is learned), correctness.
In the late 1980s, it was shown that every function can be securely computed in the

presence of semi-honest and malicious adversaries, assuming the existence of enhanced
trapdoor permutations [7,24]. Soon after, it was shown that any function can be securely
computed, given a black-box for computing the oblivious transfer function [11]. This
work demonstrated that there exist “complete” functions for secure computation, that
is, functions that can be used to securely compute all other functions. Such functions
are of great interest. On the one hand, when attempting to base secure computation on
weaker hardness assumptions, it suffices to construct a secure protocol for a complete
function based on some weaker assumption, since it will imply that this assumption
suffices for securely computing all functions. On the other hand, it is immediate that
a complete function is the “hardest” to compute, at least with respect to the minimum
hardness assumption. Due to the above, much research has been carried out in an attempt
to classify functions as complete or not, and as trivial or not (where triviality means that
it can be securely computed without any assumption).

The Complexity of Secure Computation. Currently, we have a good picture regarding the
complexity of secure computation, through the aforementioned research of complete-
ness. For example, we know that in the setting of asymmetric functionalities (where
only one of the two parties receives output), every two-party (deterministic) asymmetric
function is either complete or trivial [2,13]. Thus, no non-trivial asymmetric function
can be securely computed under an assumption weaker than that needed for securely
computing oblivious transfer.
However, in the setting of symmetric functionalities, where both parties receive the

sameoutput, the picture ismore complex [12,17,21]. For example, unlike the asymmetric
setting, there exist (deterministic) symmetric functions that are neither complete nor
trivial. This raises the following fundamental question:

What hardness assumptions are sufficient and necessary for securely com-
puting functions that are neither complete nor trivial?

The starting point of this work is the above question. We stress that although Kilian [12]
separated these functions from all complete functions, hinting that it may be possible
to devise secure protocols for such functions relying on assumptions that are strictly
weaker than those needed for oblivious transfer, the only known protocols for securely
computing non-trivial functions are general protocols that rely on hardness assumptions
that can be used to compute any function including oblivious transfer.

Black-Box Reductions and Black-Box Separations. As we have mentioned, a large body
of work has been dedicated to understanding the complexity of cryptographic tasks in the
context of (semi-honest) secure two-party computation (see, e.g., [2,3,8,11–13,21]).
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The idea underlying much of this work is that if the possibility to securely compute a
functionality f1 implies the possibility to securely compute a functionality f2, then f1
is at least as hard as f2. It is then said that f2 reduces to f1. A functionality f is called
complete if all other functionalities reduce to f . The question of how to define the notion
of reduction is of great importance to the implication of these results.

Most previous works define a reduction via an ideal implementation of a function
(with [2] being an exception); i.e., f2 reduces to f1 if a secure protocol for computing f2
can be constructed given a black-box (trusted party or oracle) that computes f1 and gives
the outputs to both parties simultaneously.1 The advantage of (black-box) reductions in
the above type is that they always provide a constructive way of securely computing one
functionality given an implementation of another. However, the disadvantage of black-
box reductions is that a separation (i.e., a proof that one function does not reduce to
another) does not necessarily imply that one cannot construct a secure protocol for one
function given a secure protocol from the other. This is due to the fact that a construction
may be non-black-box.

1.2. Our Contributions

In this work, we give substantial evidence that the picture of the computational hardness
of securely computing two-party functionalities in the presence of semi-honest adver-
saries is different from that drawn by the characterizations of completeness of [12,17].
Specifically, we show that there exist symmetric functionalities f (i.e., where both par-
ties get the same output) that are not black-box-complete (i.e., OT cannot be implemented
using an black-box computing f ) but may be in some sense as hard to obtain as OT.
Specifically, we prove the following:

Theorem 1.1. (informal) If there exists a constant-round protocolπ that securely com-
putes a symmetric non-trivial functionality f over a constant-size domain, in thepresence
of semi-honest adversaries, then there exists an infinitely often-OT that is secure in the
presence of semi-honest uniform adversaries.2

Needless to say, Theorem 1.1 is of interest for non-trivial functionalities f that are
not complete; as we have mentioned, such functionalities exist. Our main observation in
proving this result is that in real-world protocols, a black-box that simultaneously pro-
vides outputs to both parties does not exist. Rather, parties learn their outputs gradually,
and hence, in any constant-round protocol, there must be a round in which one party
learns substantial information before the other party does. Thus, essentially there is no
difference between the symmetric setting (where both parties receive output and there

1We stress that the issue of simultaneity has nothing to do with fairness since we consider semi-honest
adversaries. Rather, the important point is that both parties receive the same information and it is not possible
for one party to learn the output of the function while the other does not. If this were not the case, and only one
party receives output, then the symmetric setting reduces to the asymmetric setting where all functionalities
are either trivial or complete.

2Infinitely often-OT is a protocol for computing OT for which correctness and security hold for infinitely
many n’s (rather than for all sufficiently large n).
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are functions that are neither complete nor trivial) and the asymmetric setting (where
only one party receives an output and all functions are either trivial or complete).
Theorem 1.1 can be generalized to deal with all functionalities over a constant-size

domain that are not trivial in the presence of semi-honest adversaries, even those that
are not symmetric. Namely, a semi-honest secure constant-round protocol for any non-
trivial, deterministic, two-party functionality f , over a finite domain, even with fA �=
fB, implies the existence of an infinitely often-OT that is secure in the presence of
semi-honest uniform adversaries. We further explain this generalization in Remark 3.6,
appearing in Sect. 3.2.

Alternative Formulation of Completeness—Existential Completeness. In light of the
above, we propose a definition of completeness that is not black-box. This definition
is in the spirit of the notion of reduction used by Beimel et al. [2] in the setting of
asymmetric functionalities. We define the notion of an “achievable class” of a given
functionality f . Informally speaking, the achievable class of a functionality f contains all
functionalities that can be securely computed, assuming that f can be securely computed.
We use this notion in the natural way in order to redefine reductions, and trivial and
complete functionalities. Our formulation has the disadvantage of being completely
non-constructive. However, it has the advantage of providing a more accurate picture
regarding the hardness assumptions required for secure computation.

1.3. Techniques

Obtaining OT from an Insecure Minor in the Asymmetric Setting.We first recall that an
asymmetric functionality that contains an insecureminor implies oblivious transferwhen
we consider black-box reductions (see [2] for a full characterization of the asymmetric
functionalities). Loosely, an insecure minor for a function f consists of four inputs
x, x ′, y, y′ such that either f (x, y) = f (x, y′) and f (x ′, y) �= f (x ′, y′) (this is called
an X -minor) or f (x, y) = f (x ′, y) and f (x, y′) �= f (x ′, y′) (this is called a Y -minor).
This notion is formally defined in Definition 3.1 in Sect. 3.1.

Now, assume that a function f contains an X -minor, and let x, x ′, y, y′ be the cor-
responding inputs (see Fig. 1 for an example of such a function) and assume that only
party A learns the output of f (remember that f is asymmetric). We now explain why f
implies the variant of OT where the receiver holds a bit c, and the sender holds a bit b. If
c = 0, the receiver learns b and otherwise it learns nothing (the sender learns nothing)3.
To obtain an OT protocol from a black-box for computing the asymmetric function f ,
we let the receiver emulate party A and the sender emulate B. The sender uses y if b = 0
and y′ if b = 1. If c = 0, the receiver uses input x and by the structure of f it cannot
distinguish between the case that b = 0 and the case that b = 1 because the output of f
is the same for both cases ( f (x, y) = f (x, y′) = α). If c = 1, then the receiver uses x ′,
in which case its output is different when b = 0 and when b = 1 ( f (x ′, y) �= f (x ′, y′)).
Note that since f is asymmetric and party B does not learn the output of f , the sender
learns nothing about the input of the receiver.

3ThisOTvariant, called naïve-OT, is equivalent in the semi-honest setting to thewell-knownRabin-OT [23]
and 1-out-of-2 OT [4]. Specifically, these are all complete for general two-party computation.
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Fig. 1. An asymmetric function f with an X -minor (β �= γ ).

y1 y2 y3

x1 0 0 1
x2 3 4 1
x3 3 2 2

Fig. 2. Kushilevitz’s function fKUSH.

Moving to the Symmetric Setting. Note that the above idea does not work for the sym-
metric variant of f , where both parties learn the output. This is due to the fact that if
party B also learns the output of f , then the sender playing the role of B can learn the
input of the receiver, contradicting the privacy of the OT protocol.
However, we use the observation that real-life protocols do not behave as black-boxes,

in the sense that they are not atomic and the parties do not learn the output simultaneously.
Real-life protocols are actually iterative and at any round only one of the parties gets
some new information.We use this observation to show that for constant-round protocols
for non-trivial symmetric functionalities, there exists a round where one of the parties
has substantially more information than the other party. We show that if we stop the
execution of the protocol at this round, then we are able to obtain a weak variant of OT,
where correctness holds with probability noticeably larger than 1/2. We then show how
to amplify the correctness of this protocol to obtain a fully correct OT protocol.
We demonstrate this idea by considering a 3-round protocol for a symmetric func-

tionality fKUSH, described in Fig. 2. This is an example of a symmetric function that
is neither trivial nor complete (with respect to black-box reductions). Assume that there
exists a 3-round protocol π for securely computing fKUSH and assume that party A
is the one sending the first message m1 in π . Now, it is easy to see that after the first
message is sent, B has no information about the input of A. The reason for this is as
follows. First, note thatA’s first message is independent ofB’s input. Next, ifB’s input is
y1, then since fKUSH(x2, y1) = fKUSH(x3, y1), the first messagem1 sent by A should
be indistinguishable for when the input of A is x2 and when it is x3. If B’s input is y3,
then since fKUSH(x1, y3) = fKUSH(x2, y3), the first message m1 should be indistin-
guishable for when the input of A is x1 and when it is x2. Sincem1 is independent of B’s
input, this implies that m1 should be indistinguishable for all possible inputs of A and
hence it reveals no information about the input of A. On the other hand, after receiving
m2 from B, party A must know the output of the functionality because this is the last
message that A receives in π (recall that π is a 3-round protocol where A sends the
first message, B the second message and A the third message). Hence, if we stop the
execution of π after the second message, we are in the following situation:
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• B knows nothing about the input of A,
• A knows the output of the functionality.

These properties in some sense allow us to reduce our problem to the asymmetric case in
which we already know how to construct a secure OT protocol provided that the function
contains an X -minor. For this matter, we can take x1, x2, y1, y2 that form an X -minor.

Now, if π is such that party B is the one sending the first message in π , then a similar
argument yields that after the second round, A knows nothing about the input of B and
B knows the output of the functionality. Here we will need to use a Y -minor in order to
obtain a secure OT protocol and having the sender plays the role of A and the receiver
plays the role of B. For the Y -minor, we can take x2, x3, y1, y2.
The above idea works for the case the number of rounds is only 3 and for the specific

functionality fKUSH. For the more general case, where we consider any non-trivial
function and every constant-round protocol, we show that we can look at the first round
in which one of the parties has a noticeable advantage in distinguishing between two
possible inputs of the other party. Note that since this is the first round that this happens,
the other party has not learned any new information yet and hence we can use the ideas
of the asymmetric setting. We show that no matter who this party is, there exists a
corresponding minor that can be used in order to construct an OT protocol with weak
correctness (the weak correctness is due to the fact that the distinguishing probability
is only noticeable). We then use simple repetition to amplify the correctness. Finally,
the notion of distinguishing only guarantees a noticeable gap for infinitely many n ∈ N.
Hence, our OT will be an infinitely often-OT.

Limitations of the Techniques. Theorem 1.1 states that it is possible to construct an
infinitely often-OT protocol from any constant-round protocol π that securely computes
a symmetric non-trivial functionality f over a constant-size domain. This construction
has some obvious limitations. First, it requires that the original protocol π has a constant
number of rounds, and second, the resultingOT protocol only guarantees that correctness
and security hold for infinitely many n’s (rather than for all sufficiently large n) against
uniform adversaries (see Definition 2.3).

These limitations seem inherent to our techniques. This is further discussed at the end
of Sect. 3.3.1. Roughly speaking, these limitations are the result of trying to identify
the first round in which one of the parties has a noticeable advantage in distinguishing
between any two inputs of the other party. If the number of rounds in π is non-constant,
i.e., depends on the security parameter n, then this “first” round should become a function
of n. Indeed, it is not clear how to define such a function, and moreover, how to prove its
existence. Now, in order to argue that a round i is the first round for which a party has
a distinguishing advantage, we need to make sure that in any round j < i no party has
any distinguishing advantage for all but finitely many n’s. Since the converse of that is a
distinguishing advantage for infinitely many n’s, we define the notion of distinguishing
with respect to infinitelymany n’s. Finally, since the security of the resultingOT protocol
is implied by the distinguishing power of the parties of π (which are uniformmachines),
we only obtain a uniform infinitely often OT protocol.
We remark that, using the results of Kilian [11], one can show that any functionality

can be securely computed with uniform infinitely often security (Definition 2.3) given a
uniform infinitely oftenOTprotocol. It therefore seems unlikely that such anOTprotocol
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can be constructed under weaker assumption than fully secure OT (at least, infinitely
often secure protocols are not known to be constructible under weaker assumptions, and
the known black-box separations for OT [5,9] hold also for infinitely often-OT).

1.4. Related Work

As we have already mentioned, completeness in secure two-party computation was in-
vestigated in a large body of work [2,3,8,10,12–18,20–22]. We discuss a few that are
most relevant to our discussion. Kilian [12] and Kushilevitz [17] consider the symmet-
ric model and give criteria for the existence of unconditionally secure protocols [17]
(the same characterization was independently found by Beaver [1]) and for complete-
ness [12]. Maji et al. [21] extended the discussion of the symmetric model to the UC-
setting.
Thework of Beimel,Malkin, andMicali [2] ismost relevant to us. They considered the

computational asymmetric model, proving a zero-one law for completeness vs. triviality
in this model. Specifically, they define reductions in a non-black-boxmanner, where f is
reducible to g if there exists an efficient transformation that constructs a secure protocol
for f from any secure protocol for g. Under this notion of reduction, Beimel et al. [2]
show that a function is complete in the asymmetric model if and only if it contains an
insecure minor (and that if it is not complete, then it is trivial). Their characterization
holds when considering computationally bounded adversaries in either the semi-honest
ormalicious setting and alsowhen considering unbounded adversaries in the semi-honest
setting. Beimel et al. use non-black-box reductions in the asymmetric malicious setting,
applying the compiler of [7] that transforms a protocol π for a function f that is secure
against semi-honest adversaries, to a protocol π ′ for f that is secure against malicious
adversaries. In this work, we use the notion of non-black-box reductions in the setting of
symmetric secure two-party computation and consider computationally bounded semi-
honest adversaries. It is arguably less intuitive that non-black-box reductions should turn
out useful in this setting.
Kilian [13] extended the study of completeness for asymmetric deterministic func-

tionalities to the case of computationally unbounded malicious adversaries. The work
of [16] gives a general characterization of all finite deterministic 2-party functions that
imply a statistically secure implementation of OT, where the resulting OT is secure in the
UC framework. This characterization captures also the set of functions that are neither
symmetric nor asymmetric (that is, when each party may obtain a different output from
the functionality). Almost all of these works consider functions with a constant-size
domain and information-theoretic security. The only exception is [8], which deals with
security against computationally bounded adversaries for asymmetric functions where
the size of the domain may be exponential (in the security parameter).

2. Preliminaries

2.1. Notations

A function μ : N → N is negligible if for every positive polynomial p(·) and all
sufficiently large n it holds that μ(n) < 1

p(n)
. We use the abbreviation PPT to denote
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probabilistic polynomial time. For an integer �, define [�] = {1, . . . , �}. A probability
ensemble X = {X (a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed
by a and n (the value a will represent the parties’ inputs and n the security parameter).
All polynomials that we will consider will be with respect to the security parameter,
unless explicitly stated; otherwise, specifically, all polynomial time machines will be
polynomial in the security parameter. We let λ denote the empty string.

Definition 2.1. Let X = {X (a, n)}a∈{0,1}∗;n∈N and Y = {Y (a, n)}a∈{0,1}∗;n∈N be two
distribution ensembles. The ensembles X and Y are computationally indistinguish-
able, denoted X

c≡ Y , if for every family {Cn}n∈N of polynomial size circuits, there
exists a negligible function μ (·) such that for every a ∈ {0, 1}∗ and every n ∈ N:

|Pr [Cn(X (a, n)) = 1] − Pr [Cn(Y (a, n)) = 1]| < μ(n) .

The ensembles X andY arecomputationally indistinguishable by uniform machines,

denoted X
C≡UY , if for every PPT machine D, there exists a negligible function μ (·)

such that for every a ∈ {0, 1}∗ and every n ∈ N:

∣
∣Pr

[

D(X (a, n), 1n) = 1
] − Pr

[

D(Y (a, n), 1n) = 1
]∣
∣ < μ(n) .

The ensembles X and Y are statistically close, denoted X
s≡ Y , if there exists a

negligible function μ (·) such that for every a ∈ {0, 1}∗ and every n ∈ N:

SD (X(a, n),Y(a, n))
def= 1

2
·
∑

α

|Pr [X(a, n) = α] − Pr [Y(a, n) = α]| < μ(n) .

We sometimes consider the above measures for ensembles that are indexed by more
restricted subsets of strings (i.e., subsets of {0, 1}∗) and of natural numbers (i.e., subsets
of N). We will say that such ensembles satisfy one of the above closeness measures if
they satisfy the appropriate requirement on the restricted set of indices.

2.2. Secure Two-Party Computation and Oblivious Transfer

We follow the standard definition of secure two-party computation for semi-honest
adversaries, as it appears in [6]. In brief, a two-party protocol π is defined by two
interactive probabilistic polynomial time Turing machines A and B. The two Turing
machines, called parties, have the security parameter 1n as their joint input and have
private inputs, denoted x and y for A and B, respectively. The computation proceeds in
rounds. In each round of the protocol, one of the parties is active and the other party is
idle. If party P ∈ {A, B} is active in round i , then in this round P writes some value outiP
on its output tape and sends a message mi to the other party. Without loss of generality,
we assume that A is always active in the odd rounds in π and B in the even rounds.
The number of rounds in the protocol is expressed as some function r(n) in the security
parameter (where r(n) is bounded by a polynomial).



Completeness for Symmetric Two-Party Functionalities: Revisited 679

The view of a party in an execution of the protocol consists of its private input, its
random string, and the messages it received throughout this execution. The random vari-
able Viewπ

A(x, y, 1n) (respectively, Viewπ
B(x, y, 1n)) describes the view of A (resp. B)

when executing π on inputs (x, y) (with security parameter n). The output of an ex-
ecution of π on (x, y) with security parameter n is the pair of values written on the
output tapes of the parties when the protocol terminates. This pair is described by the
random variable Outputπ (x, y, 1n) = (

OutputπA (x, y, 1n) ,OutputπB (x, y, 1n)
)

, where
OutputπP (x, y, 1n) is the output of party P ∈ {A, B} in this execution and is implicit in
the view of P .
In this work, we consider deterministic functionalities over a finite domain. We there-

fore provide the definition of security only for deterministic functionalities; see [6] for
a motivating discussion regarding the definition.

Definition 2.2. (security for deterministic functionalities) A protocol π = (A, B) se-
curely computes a deterministic functionality f = ( fA, fB) in the presence of semi-
honest adversaries if the following hold:

Correctness: There exists a negligible function μ(·), such that for every n and every
pair of inputs x, y, it holds that

Pr
[

Outputπ (x, y, 1n) = f (x, y)
] ≥ 1 − μ (n) , (1)

where the probability is taken over the random coins of the parties.
Privacy: There exist two probabilistic polynomial time (in the security parameter)

algorithms SA,SB (called “simulators”), such that:

{SA
(

x, fA(x, y), 1n
)}

x,y∈{0,1}∗;n∈N

C≡ {

Viewπ
A

(

x, y, 1n
)}

x,y∈{0,1}∗;n∈N
, (2)

{SB
(

y, fB(x, y), 1n
)}

x,y∈{0,1}∗;n∈N

C≡ {

Viewπ
B

(

x, y, 1n
)}

x,y∈{0,1}∗;n∈N
. (3)

For most of this paper, we will consider functionalities where both parties receive
the same output, meaning that fA = fB. We call such functions symmetric, and we
denote by f (x, y) the output that both parties receive. We will also only consider the
semi-honest model here and therefore omit this qualification.

Oblivious Transfer—naïve-OT Variant. The oblivious transfer functionality (OT) is one
of the most important cryptographic primitives and is known to be complete for gen-
eral two-party computation [7,25]. There are several equivalent versions of OT; the
most common being Rabin-OT [23] and 1-out-of-2 OT [4]. In this paper, we use a
slightly different version presented in [8], called naïve-OT, defined by the functionality

OT(b, c) =
{

(λ, λ) if c = 0
(λ, b) if c = 1

, meaning that the sender never learns anything (recall

that λ is the empty string), and the receiver learns the sender’s bit b if its choice-bit c
equals 1, but does not learn anything if c = 0. This is the same as Rabin-OT except
that the receiver chooses whether or not to receive the sender’s bit b. In the semi-honest
model, it is equivalent to Rabin-OT and to 1-out-of-2-OT.
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2.3. Uniform Infinitely Often Security

Our main result is a proof that the existence of a constant-round protocol for functional-
ities that are neither complete nor trivial almost implies oblivious transfer. The “almost”
in this sentence is due to the fact that we can only prove that it implies oblivious transfer
that is secure for infinitely many n’s, in contrast to all sufficiently large n’s. In addition,
we can only prove that the oblivious transfer is secure in the presence of uniform distin-
guishers. This level of security holds if there exists an infinite subset N ⊆ N such that
Eqs. (1), (2) and (3) from Definition 2.2 hold for every n ∈ N , and Eqs. (2) and (3) hold
with respect to uniform distinguishers. We now formally define this weaker notion of
security.

Definition 2.3. (uniform infinitely often security) A protocol π securely computes a
deterministic functionality f in the presence of semi-honest adversaries with uniform
infinitely often security if there exists an infinite subset N ⊆ N such that

Correctness: There exists a negligible function μ(·), such that for every n ∈ N and
every pair of inputs x, y, it holds that

Pr
[

Outputπ (x, y, 1n) = f (x, y)
] ≥ 1 − μ (n) ,

where the probability is taken over the random coins of the parties.
Privacy: There exist two probabilistic polynomial time (in the security parameter)

algorithms SA,SB (called “simulators”), such that:

{SA
(

x, fA(x, y), 1n
)}

x,y∈{0,1}∗;n∈N
C≡U

{

Viewπ
A

(

x, y, 1n
)}

x,y∈{0,1}∗;n∈N ,

{SB
(

y, fB(x, y), 1n
)}

x,y∈{0,1}∗;n∈N
C≡U

{

Viewπ
B

(

x, y, 1n
)}

x,y∈{0,1}∗;n∈N .

We stress that there must exist a single N such that the correctness and privacy
conditions all hold for every n ∈ N (it does not suffice to require infinitely many n’s for
which each requirement holds since it is possible that they may hold for different n’s in
which case the function will be trivial).

3. Our Main Technical Result

In this section, we prove Theorem 1.1. In order to formally state the theorem and our
result, we first need to define the class of functions that we consider. We therefore begin
with some preliminaries.

3.1. Preliminaries

An important property of functionalities that is helpful in our proofs is the existence of
an insecure minor, defined below.
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Fig. 3. X -minor and Y -minor (for β �= γ ).

Definition 3.1. (insecure minor) Let f : X × Y → R be some function. An insecure
minor is a tuple of inputs x, x ′, y, y′ such that either

• f (x, y) = f (x, y′) and f (x ′, y) �= f (x ′, y′) (this is called an X -minor), or
• f (x, y) = f (x ′, y) and f (x, y′) �= f (x ′, y′) (this is called a Y -minor) (Fig. 3).

Our theorem applies to all non-trivial functionalities, as characterized by Kushile-
vitz [17]. This characterization uses the notion of “decomposition” of a function. We
now define this notion.

Definition 3.2. (equivalence relation ≡ over inputs) Let X,Y, Z ⊆ {0, 1}∗, and let
f : X × Y → Z . Two inputs x1, x2 ∈ X existentially coincide, denoted x1 ∼ x2, if
there exists an input y ∈ Y such that f (x1, y) = f (x2, y). We define an equivalence
relation ≡ over X to be the transitive closure of the relation ∼ over all x ∈ X . The
relations ∼ and ≡ are defined over Y similarly.

For example, a triple of inputs x1, x2, x3 is equivalent if there exists y1 such that
f (x1, y1) = f (x2, y2) and there exists y2 such that f (x2, y2) = f (x3, y2). Thus, in
the function fKUSH (see Fig. 2) all x ∈ X and all y ∈ Y are equivalent. To see
this, note that fKUSH(x1, y3) = fKUSH(x2, y3) and fKUSH(x2, y1) = f (x3, y1)
and hence x1, x2, x3 are equivalent. Moreover, fKUSH(x1, y1) = fKUSH(x1, y2) and
fKUSH(x3, y2) = fKUSH(x3, y3) and hence y1, y2, y3 are equivalent.

Definition 3.3. (strongly non-decomposable functions) A function g : X × Y → Z is
strongly non-decomposable if all x ∈ X are equivalent, all y ∈ Y are equivalent, and
g is non-constant (i.e., there exist x, x ′ ∈ X and y, y′ ∈ Y such that g(x, y) �= g(x ′, y′)).

The binary OR and AND functions are strongly non-decomposable, as is the function
fKUSH defined in Fig. 2 in Sect. 1.3. A strongly non-decomposable function has the
property that all inputs are equivalent. We now define a non-decomposable function
simply to be a function which has a subfunction that is strongly non-decomposable.

Definition 3.4. (non-decomposable functions) A symmetric function f : X ×Y → Z
is non-decomposable if there exist X ′ ⊆ X and Y ′ ⊆ Y such that f restricted to X ′
and Y ′ is strongly non-decomposable; else it is decomposable.

For a better understanding of the origin of the termdecomposable, the reader is referred
to [17], where it was shown that if a matrix is decomposable, then the function can be
computed by an unconditionally secure protocol. Indeed, Kushilevitz [17] proved that a
function is trivial if and only if it is decomposable. The function fKUSH is of particular
interest since it is neither trivial (as shown by [17]) nor complete (as shown by [12]).
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3.2. Main Theorem: A Constant-Round Protocol for a Non-Trivial Functionality
Implies Infinitely Often OT

Let f be a symmetric non-decomposable functionality with a finite domain. We show
that the existence of a constant-round protocol for computing f implies the existence
of a weak variant of oblivious transfer. The idea behind the proof is to run a protocol
π for f until the first round in which one of the parties learns meaningful information
about the input of the other party. Since this is the first round that something is learned
and only one party can learn information in any single round, we have that one party has
learned something and the other has not. This asymmetry of information suffices for us
to construct oblivious transfer.
Our proof proceeds in three stages. First, we prove that a round as described above

exists. Intuitively, this is the case since before the protocol execution neither party has
any information about the other party’s input, but at the end of the execution each party
learns significant information about the other party’s input. Next, we show that a weak
form of oblivious transfer can be constructed from any protocol with such a round (in
actuality, we need to prove that such a round exists on a subset of inputs that form an
insecure minor, and we demonstrate this in the first step). The OT that we construct is
weak in the sense that it is only correct with noticeable probability. Finally, we show
how to boost the weak correctness of the OT to fully correct oblivious transfer.
We stress that we do not actually obtain a full oblivious transfer protocol. Rather, our

protocol is only secure infinitely often; see Definition 2.3. We explain why this is the
case at the end of Sect. 3.3.1.

Theorem 3.5. (Theorem 1.1—restated formally) If there exists a constant-round pro-
tocol π that securely computes a symmetric, deterministic, non-decomposable function-
ality f (over a finite domain) in the presence of semi-honest adversaries, then there
exists a uniform infinitely often OT protocol.4

Remark 3.6. (Dealingwith general non-trivial functionalities) Theorem3.5 is stated for
symmetric functionalities; however, it can be generalized to all non-trivial functionalities.
Indeed, let f be a deterministic, two-party functionality, over a finite domain, that is
not necessarily symmetric (i.e., it may be that fA �= fB). If f is black-box (semi-
honest) complete, then it implies OT by definition.5 Otherwise, if f is not black-box-
complete, then, by the “symmetrization lemma” given in [16, Lemma 1], f is isomorphic
to a symmetric functionality f ′. This means that f and f ′ are equivalent up to an
invertible consistent renaming of inputs and of (input,output) pairs (see [16] for the
formal definition of a consistent renaming). In particular, this means that there exists a
constant-round protocol for f if and only if there exists a constant-round protocol for
f ′. In addition, f is non-trivial if and only if f ′ is non-trivial.

4Since we consider semi-honest security of functions over finite domains, it suffices that the protocol π is
secure against uniform adversaries for the resulting OT protocol to be infinitely often secure against uniform
adversaries.

5A characterization of complete deterministic two-party functionalities that are black-box-complete in the
semi-honest model was given in [16].
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Thus, by Theorem 3.5, it follows that if f is non-trivial in the presence of semi-honest
adversaries and there exists a constant-round protocol π that securely computes f in
the presence of semi-honest adversaries, then there exists a uniform infinitely often OT
protocol.

3.3. The Proof of Theorem 3.5

We next present the proof of Theorem 3.5. Recall that a non-decomposable functionality
is a function with a subset of inputs that defines a strongly non-decomposable function-
ality. Since we consider the semi-honest model and so parties use only their prescribed
inputs, it follows that the existence of a secure protocol for a non-decomposable function
implies the existence of a secure protocol for the strongly non-decomposable function
defined over the appropriate subset. It thus suffices to prove the theorem for a strongly
non-decomposable function.
As we have described above, there are three steps in the proof of this theorem. In

Sect. 3.3.1, we prove the first step. Specifically, in Lemma 3.9 we prove that there
exists an “exclusive-revelation round” which is a round in which one party has learned
something while the other has not, and then in Lemma 3.11 we prove that such a round
must exist for inputs that form an insecure minor; we call this an “exclusive-revelation
minor.” Next in Sect. 3.3.2 we prove that the existence of an exclusive-revelation minor
implies the existence of OT with weak correctness, and finally in Sect. 3.3.3 we explain
how to boost the correctness and thus obtain full OT (with uniform infinitely often
security).

3.3.1. Step 1: The Existence of an Exclusive-Revelation Minor

In order to prove our result, we exploit the fact that parties obtain information about
the output of a computation gradually and that one party learns substantial information
before the other party does. We begin with some notation regarding partial protocol
executions.
For an r -round protocol π and a function ν : N → N such that ν(n) ≤ r(n) for

all n ∈ N, we denote by πν the protocol obtained by halting π after round ν(n) is
completed. Specifically, the random variables Viewπν

A (x, y, 1n) and Viewπν

B (x, y, 1n)
describe the views ofA andB (respectively) in a random execution of πν on inputs (x, y)
with security parameter n.
We next formally define what it means for a party to obtain non-trivial information

about the other party’s input.

Definition 3.7. (distinguishing between inputs) Let π be an r -round protocol for com-
puting a functionality f (where r is some constant), and fix i ∈ N. For a triple x, y, y′
of inputs, we say that A(x) distinguishes between y and y′ at round i if there exists
a polynomial p(·) and a (uniform) PPT machine D such that for infinitely many n’s,

∣
∣Pr

[

D
(

Viewπi
A

(

x, y, 1n
)

, 1n
) = 1

] − Pr
[

D
(

Viewπi
A

(

x, y′, 1n
)

, 1n
) = 1

]∣
∣ ≥ 1

p(n)
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For a triple x, x ′, y of inputs we define that B(y) distinguishes between x and x ′
at round i in an analogous way.

As we will see below, it is crucial that D is a uniform PPT machine, since the parties
need to run D in theOTprotocol thatwe construct. Clearly, for anynon-constant function,
either A or B can distinguish (with some fixed input) between two distinct inputs for the
other party at the last round of the protocol, for all but finitely many n’s. The reason that
we only require distinguishing for infinitelymany n’s is that wewish to useDefinition 3.7
in order to identify the first round i that allows one of the parties to do so. This definition
should, thus, be coupled with its converse, i.e., with the meaning of not being able to
distinguish in any of the previous rounds.More intuition on that is given in the discussion
at the end of Sect. 3.3.1.

We now define the notion of an exclusive-revelation round, which is just a round
in which one party can distinguish inputs of the other, while the other cannot. Our
formulation of this uses Definition 3.7.

Definition 3.8. (exclusive-revelation round) Let π be an r -round protocol for comput-
ing a symmetric functionality f . Then, π has an exclusive-revelation at round i if one
of the following holds:

1. There exists a triple x, y, y′ of inputs such thatA(x) distinguishes between y and y′
at round i , and there exists no triple x̂, x̂ ′, ŷ such that B(ŷ) distinguishes between
x̂ and x̂ ′ at round i (we say that x, y, y′ define the revelation round); or

2. There exists a triple x, x ′, y of inputs such thatB(y) distinguishes between x and x ′
at round i , and there exists no triple x̂, ŷ, ŷ′ such that A(x̂) distinguishes between
ŷ and ŷ′ at round i (we say that x, x ′, y define the revelation round).

Protocol π has an exclusive-revelation round if there exists 0 ≤ i ≤ r , such that π

has an exclusive-revelation at round i .

We are now ready to prove that any constant-round protocol for computing a non-
constant function (i.e., a function that has at least two different outputs) has an exclusive-
revelation round.

Lemma 3.9. Let f be a finite domain symmetric functionality that is non-constant. Let
π be an r-round protocol for securely computing f (for some constant r). Then, π has
an exclusive-revelation round.

Proof. The intuition behind the proof of the lemma is as follows. Let π be a constant-
round protocol for computing f . Then, on the one hand, before the first round of the
protocol, none of the parties knows anything about the input of the other party. On the
other hand, at the end of the protocol, both parties know the output of f . Hence for every
triple x, x ′, y such that f (x, y) �= f (x ′, y), B(y) can distinguish between inputs x and
x ′ for A; a similar argument holds for triples x, y, y′ such that f (x, y) �= f (x, y′). We
deduce that there must exist a first round in which one of the parties can distinguish
between two possible inputs of the other party and show that this round is an exclusive-
revelation round.
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Formally, for every (round number) i ≤ r , every uniform PPTmachine (distinguisher)
D, and every triple x, x ′, y (recall that there are a finite number of such triples), we define

ε
i,D
x,x ′,y(n) = ∣

∣Pr
[

D
(

Viewπi
B

(

x, y, 1n
)

, 1n
) = 1

]

−Pr
[

D
(

Viewπi
B

(

x ′, y, 1n
)

, 1n
) = 1

]∣
∣

and let r Dx,x ′,y be the minimal round number 0 ≤ i ≤ r for which there exists a poly-

nomial p(·) such that ε
i,D
x,x ′,y(n) > 1

p(n)
for infinitely many n’s. If no such i exists,

we let r Dx,x ′,y = r + 1. Note that this means that r Dx,x ′,y is the first round for which

the PPT machine D can distinguish the ensembles

{

View
π
r D
x,x ′,y

B (x, y, 1n)

}

n∈N

and
{

View
π
r D
x,x ′,y

B

(

x ′, y, 1n
)
}

n∈N

.

We further define rx,x ′,y = minD
{

r Dx,x ′,y

}

(this is well defined, as every r Dx,x ′,y ∈
[r + 1]). Observe that this means that rx,x ′,y is the minimal round for which there exists
any uniform PPT machine that can distinguish the two ensembles (equivalently, the
minimal round for which B(y) distinguishes between x and x ′). For every triple x, y, y′,
we define rx,y,y′ analogously.
By the correctness of the protocol, for every triple x, x ′, y such that f (x, y) �=

f (x ′, y), the view of both parties after the last round (that is, round r ) implies the
output and hence there exists a uniform PPT machine D and a negligible function μ(·)
such that for all sufficiently large n’s, εr,Dx,x ′,y(n) ≥ 1−μ(n). This in turn implies that for

such triples, there exists a PPT machine D for which r Dx,x ′,y ≤ r , and hence rx,x ′,y ≤ r .
Similarly, for every triple x, y, y′ such that f (x, y) �= f (x, y′), it holds that rx,y,y′ ≤ r .
Since f is not constant, there either exists a triple of the former type or of the latter type.
Now, define i∗A = minx,y,y′

{

rx,y,y′
}

and i∗B = minx,x ′,y
{

rx,x ′,y
}

. Note that i∗A is
the minimal round for which there exists a triple x, y, y′ such that A(x) distinguishes
between y and y′, and i∗B is the minimal round for which there exists a triple x, x ′, y such
that B(y) distinguishes between x and x ′. Since f is not constant, it holds that either
i∗A ≤ r or i∗B ≤ r (or both). We claim that π has exclusive-revelation either at round i∗A
or at round i∗B.

Clearly, the view of a party does not change in the round that it is active, and hence,
neither does its distinguishing capability. Hence, i∗A must be even and i∗B must be odd
(recall that we assume that A sends the first message). It follows that i∗A �= i∗B. Assume
that i∗A < i∗B. By the definition of i∗B, we know that there exists no triple x̂, x̂ ′, ŷ such
that B(ŷ) distinguishes between x̂ and x̂ ′ at round i∗A. Hence, there is a revelation round
in π at round i∗A ≤ r . The case of i∗A > i∗B is analogous. �

We complete this step of the proof of Theorem 3.5 by showing that when a strongly non-
decomposable function has a protocol with an exclusive-revelation round, this round is
defined by inputs that form an insecure minor (see Definition 3.1).



686 Y. Lindell et al.

Definition 3.10. (exclusive-revelationminor) Letπ be a protocol for computing a sym-
metric functionality f . If there exists an X -minor x, x ′, y, y′ with respect to f such that
x ′, y, y′ define an exclusive-revelation round for π , then we say that π has an exclusive-
revelation X -minor; an exclusive-revelation Y -minor is defined analogously. We say
that π has an exclusive-revelation minor if it has an exclusive-revelation X -minor or
an exclusive-revelation Y -minor.

The next lemma states that strongly non-decomposable functions have the property
that the existence of an exclusive-revelation round implies the existence of an exclusive-
revelation minor.

Lemma 3.11. Let π be a protocol that securely computes a strongly non-decompos-
able symmetric function f with a finite domain. If π has an exclusive-revelation round
then it has an exclusive-revelation minor.

Proof. The proof follows by analyzing the general structure of strongly non-
decomposable functions. Let f be any symmetric strongly non-decomposable func-
tion with a finite domain. Assume that there exist x j , yk, y� (with k < �) that define an
exclusive-revelation at round i ; that is, A(x j ) distinguishes between yk and y� at round
i . We show that this implies that π has an exclusive-revelation X -minor. Since f is
a strongly non-decomposable function, it holds that yk ≡ y�. Let yi1 , . . . , yit be such
that yk ∼ yi1 ∼ . . . ∼ yit ∼ y� and let yi0 = yk and yit+1 = y�. A(x j ) distinguishes
between yi0 and yit+1 at round i , and since t is a constant (recall that f has a finite
domain), there exists some h ∈ [t + 1] such that A(x j ) distinguishes between yih−1

and yih at round i . Now, by definition, since yih−1 ∼ yih , there exists some x such that
f (x, yih−1) = f (x, yih ). Hence, x, x j , yih−1 , yih forms an exclusive-revelation X -minor.
The proof for the case that B distinguishes is analogous. �

Infinitely Often. Observe that the existence of an exclusive-revelation minor means that
there exists an insecure minor and a round of the protocol such that one party can
distinguish the other party’s inputs at this round while the other cannot. We stress that
a party distinguishes inputs if it has polynomial advantage in guessing the input for
infinitely many n’s. It would be preferable to prove this for all sufficiently large n’s,
since this would enable us to later construct a fully secure oblivious transfer protocol,
and not just an infinitely often secure oblivious transfer protocol. However, we are unable
to do this since we need to utilize the existence of a round where one party has learned
something and the other has not learned anything. We prove this by taking the first such
round, and this guarantees that in any previous round the other party has not learned
anything, except possibly for a finite number of n’s. This means that it did not learn
for all but a finite number of the n’s in which the other party did learn, as required. In
contrast, if we were to take the first round in which one party learns for all sufficiently
large n’s, then it is possible that the other party has learned for infinitely many of these
n’s in a previous round, and so security will not be guaranteed.

Constant-Round.We use the assumption that π is constant-round in the proof that π has
an exclusive-revelation round (Lemma 3.9). Recall that an exclusive-revelation round
is the first round that a party can distinguish between the inputs of the other party for
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infinitely many n’s. If the number of rounds in π is non-constant, then for every n the
concrete number of rounds in the protocol is different and hence we would have to
define an “exclusive-revelation function”; that is, a function ν : N → round number,
that defines the first round (as a function of n) that a party can distinguish between the
inputs of the other party. It is not clear how to define such a function, and moreover, how
to prove its existence.

Finite Domain. We restrict ourselves to functions with finite domains (i.e., not depen-
dent on the security parameter) in order to be consistent with previous works studying
completeness and triviality of symmetric functions ([12,17]). Extending the study of
completeness to functions with non-finite domains is beyond the scope of this paper.

3.3.2. Step 2: From an Exclusive-Revelation Minor to io-Weak-OT

We now show that if a function has a protocol with an exclusive-revelation minor, then
it can be used to obtain a weak version of oblivious transfer. The “weakness” in the OT
is with respect to correctness, and not privacy. Below we provide a formal definition for
uniform infinitely often weak oblivious transfer. The definition is based on the definition
of uniform infinitely often security (see Definition 2.3).

Definition 3.12. A protocol π is a uniform infinitely often weak oblivious transfer
protocol (io-weak-OT) if there exists an infinite set N ⊆ N such that

Correctness: There exists a polynomial p(·) such that for every n ∈ N and every pair
of inputs b, c ∈ {0, 1}, it holds that

Pr
[

Outputπ (b, c, 1n) = OT(b, c)
] ≥ 1

2
+ 1

p(n)
.

where the probability is taken over the random coins of the parties.
Privacy: The same as in Definition 2.3.

We stress that the privacy requirement of the oblivious transfer is identical to uniform
infinitely often security in Definition 2.3, while the correctness requirement is weaker
since it is only required that correctness holds with probability noticeably greater than
1/2, and not close to 1.

Lemma 3.13. Letπ = (A, B) be aPPTprotocol for securely computing a functionality
f . If π has an exclusive-revelation minor, then there exists a PPT protocol π̃ that is a
uniform infinitely often weak oblivious transfer.

Proof. Intuitively, the existence of an exclusive-revelation round in the protocol allows
us (in some weak sense) to move to the realm of asymmetric functionalities where
one party learns the output, while the other party learns nothing. It is known that an
asymmetric functionality containing an insecure minor implies OT. We therefore use
the insecure minor guaranteed by the hypothesis of the lemma to construct (a weak form
of) OT in a way similar to that used in the world of asymmetric computation. The formal
arguments follow.
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Let π be a protocol computing a symmetric functionality f . Assume without loss of
generality that there exists an X -minor x, x ′, y, y′ with respect to f for π (the case of an
exclusive-revelation Y -minor is analogous). Assume that x ′, y, y′ define an exclusive-
revelation at round i . Specifically, for every triple x̂, x̂ ′, ŷ, we have that B(ŷ) does not
distinguish between x̂ and x̂ ′ at round i . Let D be the corresponding distinguisher, and
assume without loss of generality that it always outputs either 0 or 1. Since f (x, y) =
f (x, y′) (by definition of a minor), by the security of π we also have that A(x) does not
distinguish between y and y′ at round i (or any round, for that matter). It is without loss
of generality (e.g., by interchanging y and y′) to assume that for infinitely many n’s that

Pr
[
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Viewπi
A

(

x ′, y, 1n
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, 1n
) = 1

] − Pr
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(

Viewπi
A

(

x ′, y′, 1n
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, 1n
) = 1

] ≥ 1

p(n)

(4)

We next construct an io-weak-OT protocol π̃ . The idea is to run the protocol on the
inputs of the aboveminor until round i and then to halt the execution. AsB learns nothing

from the computation, we can let the sender S̃en play the role of B. The receiver R̃ec
plays the role of A using x as its input for π , if c = 0 (hence, learning nothing), and
using x ′ as its input for π if c = 1.

Regarding the sender’s input, it may seem natural to have S̃en use y′ in case b = 0
and y in case b = 1 (the receiver would then output whatever the distinguisher outputs).
However, it is possible that the distinguisher outputs 0 with probability 3/4 on input
(x ′, y), and with probability 3/4+ 1/p(n) on input (x ′, y′). In such a case, the receiver
will output 0 with probability 3/4 even when the output is supposed to be 1, and so weak
correctness will not hold (recall that we need correctness with probability greater than
1/2). To overcome this, we have the sender use a random input in

{

y, y′} and therefore
transfer a random bit r to the receiver (who in turn will try to learn r only if its input is
c = 1). The sender then sends the receiver the bit z = r ⊕ c, and the receiver outputs z
if the distinguisher output 0 and z ⊕ 1 otherwise. This has the effect of moving the error
to be around 1/2, and so we obtain correctness 1/2 + 1/p(n).

Protocol 3.14. (An io-weak-OT π̃ =
(

S̃en, R̃ec
)

)

Inputs: The private input of the sender S̃en is a bit b ∈ {0, 1}, and the private

input of the receiver R̃ec is a bit c ∈ {0, 1}. The common input is 1n,
where n is the security parameter.

The protocol:

1. The sender chooses a random bit r ∈ {0, 1}.
2. The parties start an execution of π , where the sender S̃en plays the role of B and

the receiver R̃ec plays the role of A. The inputs of the parties are set as follows:

• The input of B (played by S̃en) is y′ if r = 0 and y if r = 1.
• The input of A (played by R̃ec) is x if c = 0 and x ′ if c = 1.
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The parties halt after the i th round of π . Let viA be the partial view of A in this
partial execution of π .

3. The sender S̃en sends z = r ⊕ b to the receiver R̃ec.
4. If c = 0, the receiver outputs λ. Otherwise (if c = 1), the receiver runs D on viA

to get its output, denoted r ′, and outputs z ⊕ r ′. The sender always outputs λ.

Note that the receiver is able to run the distinguisher D since D is a uniform Turing
machine.
Proving the Weak Correctness of the Protocol. Proving the correctness when c = 0 is
trivial since both parties will always output λ as required. We consider the case that
c = 1. We need to show that there exists a polynomial q (·) such that for infinitely many

n’s, it holds that Pr
[

Outputπ̃
R̃ec

(b, c = 1, 1n) = b
]

≥ 1
2 + 1

q(n)
. We will show that this

holds for the polynomial q(n) = 2p(n) and for all n’s for which Eq. (4) is satisfied. We
fix such an n.
Recall that R̃ec outputs z ⊕ r ′, where z = b ⊕ r and hence the output of R̃ec equals

b if and only if r ′ = r , where r ′ denotes the output of D on the partial view viA. Thus,
it suffices to give a lower bound on the following term (recall that we consider the case

that R̃ec uses x ′ since c = 1):
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= 1
])

≥ 1

2
+ 1

2
· 1

p(n)
(5)

where the last inequality is from Eq. (4).

Proving the Privacy of the Protocol. We now proceed to proving that Eq. (2) and (3)
in Definition 2.3 hold for all sufficiently large n’s (and thus, in particular, for infinitely
many n’s for which weak correctness holds, as required in Definition 2.3).
Simulating the View of the Sender.We construct a PPT machine S̃

Sen
that simulates the

sender’s view. S̃
Sen

receives as input the sender’s input b and the security parameter 1n ,
and works as follows:

1. S̃
Sen

chooses a random bit r̃
Sen

∈ {0, 1}.
2. S̃

Sen
then starts an execution of π on the following inputs until the i th round:

• If r̃
Sen

= 0, the input of B is y′ and if r̃
Sen

= 1, the input of B is y.
• The input of A is x .

3. S̃
Sen

outputs r̃
Sen

and the partial view viB of B.
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We next prove that for every pair of inputs b, c ∈ {0, 1},
{

S̃
Sen

(b, λ, 1n)
}

n∈N

C≡U

{

Viewπ̃

S̃en

(

b, c, 1n
)}

n∈N

.

Assume to the contrary that these two randomvariables can be distinguished by a uniform
machine, that is, there exist b, c ∈ {0, 1}, a polynomial p′(·), and a (uniform) PPT
machine D′ such that for infinitely many n,

∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1
]

− Pr
[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1
]∣
∣
∣ ≥ 1

p′(n)
.

(6)

Both of the above random variables describe a random view for the sender S̃en in an
execution of π̃ , with the same value of b. The only difference between an output of S̃

Sen
and the view of the sender in a real execution of π̃ is that S̃

Sen
always uses x as the

input of A (put differently, acts as if c = 0), whereas in a real execution of π̃ , the input
of A is set according to the value of c (equals x if c = 0 and equals x ′ if c = 1). Thus,
Eq. (6) can only ever hold when c = 1, since for c = 0 the above random variables are
identical. Hence, in the following, we fix c = 1.

We consider the success probability of the distinguisher D′ based on the values of the
random bit r (in a random execution of π ) and r̃

Sen
(in a simulation). Since both are

selected uniformly at random, we have that:

∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1
]

− Pr
[

D′ (Viewπ̃

S̃en
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)

, 1n
)

= 1
]∣
∣
∣

=
∣
∣
∣
∣

1

2
Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1 | r̃
Sen

= 0
]

+ 1

2
Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1 | r̃
Sen

= 1
]

− 1

2
Pr

[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 0
]

−1

2
Pr

[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 1
]
∣
∣
∣
∣

≤ 1

2

∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1 | r̃
Sen

= 0
]

−Pr
[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 0
]∣
∣
∣

+ 1
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∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)
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Sen

= 1
]

−Pr
[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 1
]∣
∣
∣ .

Hence, the distinguishing gap of D′ is at least 1
p′(n)

(for infinitely many n’s) either when
we condition on r = r̃

Sen
= 0 or when we condition on r = r̃

Sen
= 1. Assume without

loss of generality that the former holds. That is, for infinitely many n’s it holds that
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∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1 | r̃
Sen

= 0
]

−Pr
[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 0
]∣
∣
∣ ≥ 1

p′(n)
. (7)

We construct a distinguisher D′′ for
{

Viewπi
B

(

x, y′, 1n
)}

n∈N
and

{

Viewπi
B

(

x ′, y′, 1n
)}

n∈N
. On a view v, the distinguisher D′′ will apply D′ to (0, v)

and return the same output. By definition of Protocol 3.14, we have that for every

n the view of S̃en conditioned on r = 0 (and c = 1) is identically distributed
to

(

0,Viewπi
B

(

x ′, y′, 1n
))

. By the definition of the simulator S̃
Sen

, we have that for
every n the output of S̃

Sen
conditioned on r̃

Sen
= 0 is identically distributed to

(

0,Viewπi
B

(

x, y′, 1n
))

. It follows that
∣
∣Pr

[

D′′ (Viewπi
B

(

x, y′, 1n
)

, 1n
) = 1

] − Pr
[

D′′ (Viewπi
B

(

x ′, y′, 1n
)

, 1n
) = 1

]∣
∣

=
∣
∣
∣Pr

[

D′ (S̃
Sen

(b, λ, 1n), 1n
)

= 1 | r̃
Sen

= 0
]

−Pr
[

D′ (Viewπ̃

S̃en

(

b, c, 1n
)

, 1n
)

= 1 | r = 0
]∣
∣
∣ .

By Eq. (7) the latter term is at least 1
p′(n)

for infinitely many n’s. This means that B(y′)
distinguishes between x and x ′ at round i , which is a contradiction to the assumption
that x ′, y, y′ define an exclusive-revelation at round i for π .

Simulating the View of the Receiver. In the case that c = 1 the simulator receives both
the sender’s and receiver’s inputs c and b, and hence, can perfectly simulate the view
of the receiver by just running the protocol on these inputs. We, therefore, describe the
simulator only for the case that c = 0. The simulator S̃

Rec
receives as input the bit c = 0,

the output OTR = λ of the functionality OT to the receiver, and the security parameter
1n , and works as follows:

1. S̃
Rec

executes π for i rounds, running A with input x and B with input y.
2. S̃

Rec
chooses a random bit zS ∈ {0, 1}.

3. S̃
Rec

outputs zS appended to the partial view viA of A.

The difference between the simulated view and a real view is that in a real execution,
the sender playing B sometimes uses y and sometimes uses y′, whereas in the simulated
execution it always uses y. In addition, the simulator sends a random zS that is not
correlated to the value r implied by the input used by B in the computation of π .
However, since f (x, y) = f (x, y′) the receiver (using x as input) learns nothing about
whether the sender used y or y′, or about the correlation between z and r .

Formally, we show that for every b ∈ {0, 1},
{

S̃
Rec

(c = 0, λ, 1n)
}

n∈N

C≡U

{

Viewπ̃

R̃ec

(

b, c = 0, 1n
)}

n∈N

.

To prove this, we consider a hybrid simulator Sh that also works for the case that c = 0
but gets b as input nevertheless. Sh works as follows:

1. Sh chooses a random bit rSh ∈ {0, 1}.
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2. Sh starts an execution of π on the following inputs until the i th round:

• The input of A is x , and the input of B is (always) y.

3. Sh sets zSh = b ⊕ rSh .
4. Sh outputs zSh appended to the partial view viA of A.

It suffices to show that for every b it holds that,

{

S̃
Rec

(c = 0, λ, 1n)
}

n∈N

C≡U

{

Sh (

c = 0, b, 1n
)}

n∈N

(8)

and

{

Sh (

c = 0, b, 1n
)}

n∈N

C≡U

{

Viewπ̃

R̃ec

(

b, c = 0, 1n
)}

n∈N

. (9)

It is easy to observe that the only difference between Sh and S̃
Rec

is that Sh sets
zSh = b ⊕ rSh and S̃Rec

lets zS be a random bit. However, for every b both zSh and zS
are uniform bits and, furthermore, are independent of everything else in the simulation.
Hence,

{

S̃
Rec

(c = 0, λ, 1n)
}

n∈N

≡
{

Sh (

c = 0, b, 1n
)}

n∈N

,

and Eq. (8) follows.
We prove that Eq. (9) also holds by contradiction. Assume to the contrary that there

exists b ∈ {0, 1}, a uniform PPT machine D′, and a polynomial p′(·) such that for
infinitely many n’s,

∣
∣
∣Pr

[

D′ (Sh (

c = 0, b, 1n
)) = 1

]

− Pr
[

D′ (Viewπ̃

R̃ec

(

b, c = 0, 1n
)) = 1

]∣
∣
∣ ≥ 1

p′(n)

(10)

Since z (in an execution of π̃ ) and zSh are identically distributed given c and b (which
are now fixed), the only place where the two distribution differ is the partial view viA:
in Sh (c = 0, b, 1n), this partial view is generated by executing π on inputs x and y,
whereas inViewπ̃

R̃ec
(b, c = 0, 1n), this partial view is obtained by executingπ on inputs

x and yr where yr = y if r = 1 and yr = y′ if r = 0. Hence, when r = 1, the two
distributions are identically distributed. Since Pr [r = 0] = Pr

[

rSh = 0
] = 1

2 , it follows
that

1

p′(n)
≤

∣
∣
∣Pr

[

D′ (Sh (

c = 0, b, 1n
)) = 1

]

− Pr
[

D′ (Viewπ̃

R̃ec

(

b, c = 0, 1n
)) = 1

]∣
∣
∣

≤ 1

2

∣
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∣Pr
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D′ (Sh (

c = 0, b, 1n
)) = 1 | rSh = 0

]

−Pr
[

D′ (Viewπ̃

R̃ec

(

b, c = 0, 1n
)) = 1 | r = 0

]∣
∣
∣ , (11)
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and hence,

∣
∣
∣Pr

[

D′ (Sh (

c = 0, b, 1n
)) = 1 | rSh = 0

]

−Pr
[

D′ (Viewπ̃

R̃ec

(

b, c = 0, 1n
)) = 1 | r = 0

]∣
∣
∣ ≥ 2

p′(n)
. (12)

We use D′ construct a uniform PPT machine D′′ such that for infinitely many n’s

∣
∣Pr

[

D′′ (Viewπi
A

(

x, y, 1n
)) = 1

] − Pr
[

D′′ (Viewπi
A

(

x, y′, 1n
)) = 1

]∣
∣ ≥ 2

p′(n)
,

(13)

which is a contradiction to the security of π .
We conclude the proof by describing D′′ (that knows the bit b for which Eq. (10)

holds). On a view viA that is either generated in a partial execution of π(x, y) until the
i th round or in an execution of π(x, y′) until the i th round, D′′ sets z = b ⊕ 0 = b and
v′ := (

viA, z
)

and applies D′ to v′ (and outputs whatever D′ outputs). If viA was generated
byπ(x, y), thenv′ is distributed as

{Sh (c = 0, b, 1n) | rSh = 0
}

and ifviA wasgenerated

in an execution of π(x, y′), then v′ is distributed as
{

Viewπ̃

R̃ec
(b, c = 0, 1n) | r = 0

}

.

Hence, Eq. (13) follows, which concludes the proof. �
Uniform Security. As explained above, the privacy of the receiver is preserved by the
exclusiveness of the revelation minor (in round i). That is, since the sender in the OT
protocol takes the role of the party that cannot distinguish the inputs of the other party
(the one active in round i). By Definition 3.7, no uniform distinguisher D succeeds with
non-negligible probability in distinguishing the two possible inputs of the receiver. It
does not, however, rule out the possibility that a non-uniform distinguisher has noticeable
success probability, yielding the privacy of the receiver vulnerable with respect to non-
uniform adversaries.

3.3.3. From Weak Uniform io-OT to Uniform io-OT

We conclude the proof by arguing that the existence of a uniform infinitely often weak-
OT implies the existence of a uniform infinitely often OT protocol. Let π be a uniform
infinitely often weak-OT protocol. We construct a uniform infinitely often OT protocol
π̃ by having the parties run polynomially many executions of π on their inputs. If c = 1,
the receiver outputs the majority of the outputs of the receiver in π , and otherwise it
outputs λ. It follows from the Chernoff bound that for the infinitely many n’s for which π

hasweak correctness, π̃ is correct with probability 1−μ(n), for some negligible function
μ (·). To prove the privacy of π̃ , we use multiple executions of the simulators of the io-
weak-OT.A standard hybrid argument shows that this yields a satisfactory simulation for
the io-OT protocol. We stress that a simple hybrid argument works because the parties
are semi-honest and hence follow the prescribed protocol (specifically, they select fresh
random coins for each execution).
This completes the proof of Theorem 3.5.
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4. Black-Box and Existential Completeness

4.1. Black-Box Reduction and Completeness

Loosely speaking, a functionality is called complete if it can be used to securely compute
any functionality. In the standard definitions of completeness used in previous works
(cf. [2,12,17]), this is defined via the notion of “reduction.” Specifically, g reduces to f
if it is possible to securely compute g given access to f , and a functionality is complete
if all functionalities reduce to it. In this section, we explore in greater depth how this
notion of reduction is defined and what the ramifications of this definition are.
The definition of reduction in most previous works uses the notion of an ideal black-

box for computing a functionality f = ( f A, fB). The parties A and B run a protocol
for computing g while given access to an incorruptible trusted party who computes f
for them throughout the execution (the parties send inputs x and y to the trusted party,
which computes f (x, y) = ( f A(x, y), fB(x, y)), and sends them back their respective
outputs). A functionality g reduces to a functionality f , if g is securely computable
given such a trusted party for computing f . This notion is equivalent to the notion of
oracle-aided protocols, defined in [6, Section 7.3.1]. Formally, using the terminology
of [6], black-box reductions can be defined as follows.

Definition 4.1. (black -box reductions) Let g and f be two functionalities. We say that
g black-box reduces to f if there exists an oracle-aided protocol π that information-
theoretically securely computes g when using the oracle functionality f .

Definition 4.1 is the definition used by most previous works, with two exceptions
being the works of Beimel et al. [2] and Harnik et al. [8]. Both these works consid-
ered computational security rather than information-theoretic, where [8] still considered
black-box reductions, while [2] considered non-black-box reductions. We now proceed
with the definitions of black-box-complete functions and trivial functions.

Definition 4.2. (black-box-complete) A functionality f is called black-box-complete
if all g black-box-reduce to it.

Definition 4.3. A functionality f is called trivial if it can be information-theoretically
securely computed with no oracle.

The picture of completeness and triviality according to the above definitions is well
known for both the case of asymmetric functionalities where only one of the parties
receives output and the case of symmetric functionalities where the parties receive the
same output (i.e., f A = fB). Specifically:

Theorem 4.4. ([2,12,17])An asymmetric functionality is black-box-complete if it con-
tains an insecure minor, and trivial if not. Furthermore, a symmetric functionality is
black-box-complete if and only if it contains an embedded OR, and is trivial if and only
if it is decomposable (see Definition 3.4).

Combining the above with Theorem 3.5, we have the following corollary:
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Corollary 4.5. There exist symmetric deterministic functionalities over a domain of
constant-size that are neither trivial nor black-box-complete, such that if there exists a
constant-round protocol π that securely computes such a function, then there exists a
uniform infinitely often OT protocol.

We remark that using the results of Kilian [11], one can show that any functionality
can be securely computed with uniform infinitely often security (Definition 2.3) given a
uniform infinitely oftenOTprotocol. It therefore seems unlikely that such anOTprotocol
can be constructed under weaker assumption than fully secure OT (at least, infinitely
often secure protocols are not known to be constructible under weaker assumptions, and
the known black-box separations for OT [5,9] hold also for infinitely often OT).

4.2. Existential Completeness: An Alternative Formulation

Corollary 4.5 suggests that theremay exist functionalities that are neither trivial nor com-
plete and yet are in some sense complete (albeit, under the caveat of uniform infinitely
often security). This is due to the fact that the definition of black-box-completeness
relates to the computation of f as atomic, whereas in real life, computation is carried
out step-by-step and, in particular, is not black-box in the functionality. We therefore
present an alternative notion of completeness which is purely existential. Informally,
our definition is based on saying that f “implies” g in some sense if the feasibility of
securely computing g is implied by the feasibility of securely computing f . Formally:

Definition 4.6. Let U denote the set of all polynomial time computable functionalities.
The achievable class of f ∈ U , denoted as C( f ), is the set of all g ∈ U such that if
there exists a computationally secure protocol π f for computing f , then there exists a
computationally secure protocol πg for computing g.
Let f, g ∈ U . We say that g existentially reduces to f if g ∈ C( f ). Functionality

f is existentially trivial if f ∈ C( fλ) (where fλ(·, ·) = (λ, λ)), and is existentially
complete if C( f ) = U .

The above definition follows the intuition that a functionality is trivial if it can be
securely computed “with no help,” and complete if all functionalities can be securely
computed if it can be securely computed. We stress that if enhanced trapdoor functions
exist, then all functionalities are trivial and complete by this definition. Nevertheless,
our definition is helpful since a proof that a functionality f is complete (without proving
the existence of enhanced trapdoor permutations) is essentially a proof that f requires
an assumption that implies OT. We remark that this is the same as in the definition
of (black-box) computational completeness that appears in [8]. We also note that any
functionality that is black-box-complete, or complete by the computational definition
in [8], is also existentially complete.

Evidently, a black-box notion of reduction is an elegant one. Indeed, this notion is
the one used in [8], where a function g is said to be reducible to f , if it is possible to
construct a computationally secure protocol for g given a black-box for computing f .
However, such a notion does not allow for a construction of a secure protocol for g that
depends on the actual messages of the secure protocol for computing f . Specifically,
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a black-box construction of a protocol for g cannot run an r -round protocol π for f
for i < r rounds (as done in this work) and cannot contain zero-knowledge proofs that
parties follow the protocol π , as done in the work of Beimel et al. [2], which employs
the compiler of [7].

We conclude by remarking that the definition of existential completeness (Defini-
tion 4.6) has the advantage that it can more accurately map the assumptions required for
securely computing a functionality. In particular, a function that is not complete cannot
imply OT, something which can happen under the black-box definition (as hinted to by
Corollary 4.5). However, it is also true that the definition of existential completeness is
less helpful due to its non-constructive nature. Specifically, it does not enable us to prove
or consider a hierarchy of functionalities, and a proof that g ∈ C( f ) does not necessarily
tell us how to securely compute g, even given a protocol for securely computing f .
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