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Abstract. In this work, we retake an old idea that Koblitz presented in his landmark
paper (Koblitz, in: Proceedings of CRYPTO 1991. LNCS, vol 576, Springer, Berlin,
pp 279–287, 1991), where he suggested the possibility of defining anomalous elliptic
curves over the base field F4. We present a careful implementation of the base and
quadratic field arithmetic required for computing the scalar multiplication operation in
such curves. We also introduce two ordinary Koblitz-like elliptic curves defined over
F4 that are equipped with efficient endomorphisms. To the best of our knowledge, these
endomorphisms have not been reported before. In order to achieve a fast reduction
procedure, we adopted a redundant trinomial strategy that embeds elements of the field
F4m ,withm a prime number, into a ring of higher order defined by an almost irreducible
trinomial. We also suggest a number of techniques that allow us to take full advantage
of the native vector instructions of high-end microprocessors. Our software library
achieves the fastest timings reported for the computation of the timing-protected scalar
multiplication on Koblitz curves, and competitive timings with respect to the speed
records established recently in the computation of the scalar multiplication over binary
and prime fields.
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1. Introduction

LetG denote a cyclic group of order �. Given an element g ∈ G of order r |� and h ∈ 〈g〉,
the Discrete Logarithm Problem (DLP) for G is the computational problem of finding
an integer x such that gx = h. The smallest integer x satisfying gx = h is called the
discrete logarithm of h to the base g and is denoted by logg h. In this paper, we are
mainly interested in the case whereG is the additive group of points on an elliptic curve
E defined over a binary field, and g is a point P ∈ E(F2m ).
In 1985, Koblitz [51] and Miller [62] independently showed that the group of points

on an elliptic curve defined over a finite field could be used for designing a public key
cryptosystem, having the DLP in that group as the underlying hard computational prob-
lem. This was the birth of Elliptic Curve Cryptography (ECC), which across the years
has become one of the most intensively analyzed public key schemes in our discipline.1

In the abstract of his seminal paper, Koblitz [51] remarked that

These elliptic curve cryptosystems may be more secure, because the analog
of the discrete logarithm problem on elliptic curves is likely to be harder than
the classical discrete logarithm problem, especially over GF(2n).

Indeed, it was soon realized that for sensible choices of the elliptic curve parameters,
there did not appear to exist a subexponential-time algorithm that could solve the DLP
over the group of points of an elliptic curve, or at least, one that was analogous to the
index-calculus family of algorithms, which were proved to be highly successful when
the DLP was defined in the multiplicative group of a finite field.
Furthermore, in the abstract of his paper [62], Miller commented about the disparity

between the security offered by the original Diffie–Hellman protocol, whose security
guarantees lie on the DLP defined over finite fields, as compared with its analogue over
elliptic curves,

As computational power grows, this disparity should get rapidly bigger.

As an interesting historical remark, let us recall that just 1 year before Koblitz and
Miller presented their ECC proposal, Coppersmith had reported in [23]2 an index-
calculus algorithm able to solve the DLP over characteristic two fields of the form Fq

withq = 2m,with a running time of Lq(1/3, (32/9)
1
3 ),where Lq(α, c),with parameters

0 < α < 1 and c > 0, denotes the expression, exp
(
(c + o(1))(log q)α(log log q)1−α

)
.

Almost 30 years after, in February 2013, Joux [47] presented a new DLP algorithm with
a running time of Lq(1/4, c) (for some undetermined c), which was rapidly followed
by several other developments that culminated with the discovery of algorithms that
asymptotically enjoy a quasi-polynomial time complexity [6,38]. Hence, a bit less than
three decades of cryptanalysis rendered the DLP in binary fields completely useless for
constructive cryptographic purposes.
In stark contrast with its binary field instantiation, and after all these years of far

and wide analysis, the DLP over elliptic curves defined in the binary field Fq=2m , still
stands as a formidable computational task. As of today, the best known general-purpose

1See [54] for a historical recount of the first three decades of elliptic curve cryptography.
2Building on the work by Blake et al. [16].
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algorithm to solve it is still the Pollard rho algorithm [30]. In the last decade, however,
inspired by the new lines of research presented by Semaev [79], several researchers [29,
31,35,49,80] (see also [30] for a comprehensive survey) have attempted to attack the
DLP of all binary elliptic curves using summation-polynomial methods.3 However,
the current status of these attempts is crucially based on ill-understood Gröbner basis
assumptions, which in some cases have led to contradictory behaviors [42], even for tiny
experiments [30].4

On the other side, it is now standard knowledge that the Pollard rho algorithm is able
to solve the DLP over generic curves with an exponential computational complexity

of (1 + o(1))O(
√

π ·q
2 ). Moreover, it is always possible to apply the negation map,

which yields an extra
√
2 − o(1) < 1.5 improvement to the above estimate [10,90].

Further, in the case of Koblitz curves, which are the main subject of this paper, one can
apply the Frobenius endomorphism to speed up the Pollard rho algorithm by an extra√
m factor [34,91]. Notice that in practice this

√
m factor implies a relatively modest

computational saving of no more than 4–5 bits. Taking into account the above, several
international bodies have suggested that the size of the binary field where cryptographic
elliptic curves are defined should be designed by “adding about 10 bits in the binary
field case” [27].5

1.1. Known Attacks Against Certain Classes of Binary Curves

At the time that ECC was proposed, it appeared clear that binary supersingular curves
were the most efficient curves in practice [52,61]. However, when Menezes, Okamoto,
and Vanstone published their famous MOV attack [58,59], it was realized that the diffi-
culty of computing discrete logarithms in E(F2m ) is actually comparable to the security
provided by the DLP in the multiplicative group of the field F22m . Because of this, it was
recommended not to use any kind of supersingular curves for cryptographic applications.
Surprisingly, this situation changed around the year 2000,when several papers propos-

ing the usage of pairing-based protocols were published [19,45,46,76]. All of a sudden,
and after having been banned for almost a decade, it was again a good idea to imple-
ment cryptographic applications using binary (and also ternary) supersingular curves.
As a consequence, several works reported efficient implementations using those curves
both in hardware and in software platforms [4,13–15].Nevertheless, disaster struck again
about one decade later, when Joux [47] discovered his aforementionedDLP algorithm for
binary field multiplicative groups, with a running time of Lq(1/4, c), for q = 2m, c > 0.
This marked the end of the usage of binary supersingular curves in cryptography.
Given a target ordinary binary curve defined over the field F2m , the Gaudry–Hess–

Smart (GHS) attack [33,36,41,60] exploits the idea of finding an algebraic curve C
of a relatively small genus g such that the Jacobian of C contains the target elliptic

3Sometimes also called Semaev’s polynomials.
4It is interesting to note that Semaev’s original work in [79] described an attack that in principle can be

applied not only to binary but to all elliptic curves [75].
5Nevertheless, the influential FrenchAgenceNationale de la Sécurité des Systèmes d’Information (ANSSI)

considers in [2] that in terms of their security, “Les courbes elliptiques définies sur GF(p) ne sont pas
différenciées de celles définies sur GF(2n)” (elliptic curves defined over GF(p) should not be differentiated
from those defined over GF(2n)).
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curve group. In this case, the original elliptic curve discrete logarithm problem can be
transferred into the Jacobian of C defined over F2l , with l|m. The hope is that if the
genus of C is not too large, the DLP could be easier to solve in that Jacobian, due to the
availability of an index-calculus strategy for that group [28].
In general, however, the GHS strategy is difficult to implement due to the large genus

that a suitable curve C usually ends up having.6 In fact, in [36,60], it was proved that
the GHS attack fails (i.e., the Pollard rho attack is more effective), for all binary elliptic
curves defined over F2m , where m ∈ [160, 600] is prime. Furthermore, in [57], it was
proved that the GHS attack fails for most of the composite extensions in the range
m ∈ [160, 600]. To our knowledge, the largest instance where the GHS has been proved
effective is for the DLP computation over E(F25·31). In [87], it was estimated that when
using the Enge–Gaudry algorithm [28], the cost of such computation is of around 1736
core days.

1.2. Performance Advantage of Ordinary Binary Elliptic Curves

The computation of the scalar multiplication operation on binary elliptic curves can be
performed significantly faster than prime field curves for both software and hardware
platforms.
In software, the libraries reported in [3,70,71,84] rank among the fastest Diffie–

Hellman software benchmarked in the eBACSsite [11] in various platforms. In particular,
the software library announced in [70] holds the current speed record for constant-time
variable-base-point Diffie–Hellman software at the 128 bit security level.
In hardware, due to the carry-less arithmetic, the computation of the scalar multipli-

cation operation on binary elliptic curves implies a substantial hardware circuitry saving
when compared to the full adders and integer multipliers required for prime field elliptic
curves. Consequently, ECC accelerators using binary curves tend to be more compact
and faster than their prime field curve counterparts (see [5, Table IV] for a comparison
of recent designs). It should be remarked that for the Internet of Things and several other
applications, hardware performance is muchmore important than software performance.

1.3. Choosing Side Channel-Resistant Binary Elliptic Curves

Since the publication of Kocher’s paper on differential power analysis [55], the cryp-
tographic community has been increasingly concerned about the importance of pro-
ducing side channel-resistant cryptographic software and hardware. In a post-Snowden
world, this fear has just exacerbated. In the case of ECC, one first line of defense is the
sound selection of elliptic curves that show solid cryptographic properties against several
known side-channel attacks, which apply both in hardware and in software platforms.
In [12] (see also [20]), the authors present several criteria that a so-called safe curve

should exhibit. Among others, the following properties are listed: rigidity, safety against
transfers, Montgomery-ladder-friendliness, twist security, etc. The reader is referred
to [12] for a definition of each one of the desirable security properties that a safe curve
should enjoy. Unfortunately, the authors in [12,20] explicitly exclude binary elliptic
curves from their analysis, without elaborating in the technical arguments to avoid them.

6Another problem may occur if the genus of C is too small. For example, the Jacobian of a curve C in F2
would be too small to give any useful information about the DLP over E(F2m ) [57].
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However, and as it will be discussed in the remaining of this paper, Koblitz curves (see
their definition in the next subsection) meet most of the requirements specified for safe
curves in [12]. Particularly,Koblitz curves arguably stand among the purestmathematical
elliptic curve problems, whichmakes them as fully rigid as it gets. Similarly, these curves
support the most efficient Montgomery ladder formulas that we know of (consisting of
only five field multiplications per bit, which have the extra bonus of being amenable
for parallelization). Moreover, Koblitz curves are suitable for right-to-left Montgomery
ladders as discussed in [69]. This feature is especially valuable for the vast majority of
protocols (such as the Diffie–Hellman protocol, digital signatures, key generation, etc.),
which usually require the computation of one or more fixed-point scalar multiplications.
Similarly, Koblitz curves enjoy twist security and they are transfer safe. On the other
hand, they do not meet the completeness criterion as defined in [12].

1.4. Koblitz Curves

Anomalous binary curves, generally referred to as Koblitz curves, are binary elliptic
curves satisfying theWeierstrass equation, Ea : y2+xy = x3+ax2+1, with a ∈ {0, 1}.
Since their introduction in 1991 by Koblitz [53], these curves have been extensively
studied for their additional structure that allows, in principle, a performance speedup in
the computation of the elliptic curve point multiplication operation. Also, Koblitz curves
were historically the first family of ordinary elliptic curves proposed for cryptographic
usage [52].
Koblitz curves defined over F4 were also proposed in [53]. Nevertheless, until now

the research works dealing with standardized Koblitz curves in commercial use, such as
the binary curves standardized by NIST [65–67] or the suite of elliptic curves supported
by the TLS protocol [17,25], have exclusively analyzed the security and performance
of curves defined over binary extension fields F2m , with m a prime number (for recent
examples, see [3,18,84,89]).
We found interesting to explore the cryptographic usage of Koblitz curves defined

over F4 due to their inherent usage of quadratic field arithmetic. Indeed, it has been
recently shown [56,69,71] that quadratic field arithmetic is extraordinarily efficient
when implemented in software. This is because one can take full advantage of the
Single Instruction Multiple Data (SIMD) paradigm, where a vector instruction performs
simultaneously the same operation on a set of input data items.
Quadratic extensions of a binary finite field Fq2 can be defined by means of a monic

polynomial of degree two h(u) ∈ F2[u] irreducible over Fq . The field Fq2 is isomorphic
to Fq [u]/(h(u)), and its elements can be represented as a0 + a1u, with a0, a1 ∈ Fq . The
addition of two elements a, b ∈ Fq2 , can be performed as c = (a0 + b0) + (a1 + b1)u.

Using h(u) = u2 + u + 1, the multiplication of a, b can be computed as d = a0b0 +
a1b1 + ((a0 +a1) · (b0 +b1)+a0b0)u. By carefully organizing the code associated with
these arithmetic operations, one can greatly exploit the instruction-level parallelism of
the pipelines that are available in contemporary high-end processors.

1.4.1. Our Contributions

In this work, we designed for the first time a 128-bit secure and timing attack-resistant
scalar multiplication on a Koblitz curve defined over F4, as it was proposed in [53].
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Furthermore, we present a taxonomy ofKoblitz-like elliptic curves. Some of these curves
are equipped with more efficient endomorphisms, which to the best of our knowledge
have not been discussed before.
We developed all the required algorithms for performing the scalar multiplication at

the 128-bit security level for standard Koblitz curves and also for one of the Koblitz-like
elliptic curves introduced in this paper for the first time. This took us to reconsider the
strategy of using redundant trinomials (also known as almost irreducible trinomials),
which were proposed more than 10 years ago in [21,26]. We also report what is perhaps
themost comprehensive analysis yet reported on how to efficiently implement arithmetic
operations in binary finite fields and their quadratic extensions using the vectorized
instructions available in high-end microprocessors.
The remaining of this paper is organized as follows. In Sect. 2, we formally introduce

the family of Koblitz elliptic curves defined over F4. In Sect. 3, we analyze all the 12
ordinary elliptic curves that can be defined over F4 and their classification in isogeny
classes. For one isogeny class, curves equipped with efficient endomorphisms are intro-
duced. In Sects. 4 and 5, a detailed description of the efficient implementation of the
base and quadratic field arithmetic using vectorized instructions is given. We introduce
in Sect. 6 the scalar multiplication algorithms used in this work, and we present in Sect.
7 the analysis and discussion of the results obtained by our software library. Finally, we
draw our concluding remarks in Sect. 8.

2. Koblitz Curves over F4

Koblitz curves over F4 are defined by the following equation

Ea : y2 + xy = x3 + aγ x2 + γ, (1)

where γ ∈ F4 satisfies γ 2 = γ + 1 and a ∈ {0, 1}. The number of points in the curves
E0/F4 and E1/F4 is 4 and 6, respectively. For cryptographic purposes, one uses (1)
operating over binary extension fields of the form F4m , and m is a prime number. The
set of affine points P = (x, y) ∈ F4m × F4m that satisfy (1) together with a point at
infinity represented as O forms an abelian group denoted by Ea(F4m ), where its group
law is defined by the point addition operation.
For each proper divisor r of s, E(F4r ) is a subgroup of E(F4s ), then #E(F4r ) divides

#E(F4s ) and consequently, the order of every group of points on a quadratic Koblitz
curve is divisible by 4 or 6 (depending on the curve a-parameter). On the other hand,
by choosing specific prime extensions m, it is possible to find groups Ea(F4m ) with
almost-prime order, for instance, E0(F4163) and E1(F4167). In Table 1, we present the
almost-prime group orders #Ea(F4m ) for prime degrees m ∈ {127, . . . , 191}.
The Frobenius map τ : Ea(F4m ) → Ea(F4m ) defined by τ(O) = O, τ (x, y) =

(x4, y4), is a curve automorphism satisfying (τ 2 + 4)P = μτ(P) for μ = (−1)a and
all P ∈ Ea(F4m ). By solving the equation τ 2 + 4 = μτ , the Frobenius map can be seen
as the complex number τ = (μ ± √−15)/2.
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Table 1. Almost-prime group orders #Ea(F4m ) with prime m ∈ {127, . . . , 191}.
m a Factorization of #Ea(F4m )

127 0 0x4 · 0x1268F1298760419 · 0xDE7D169BED4130151CD618CF571307
7271FF51A4B1CFB75BF (196)

127 1 0x6 · 0x41603E AF071 · 0x29C4C778B6D2CD0FA36B3CA951A32
DAC100C9C63576EEF7BF1F21 (209)

131 1 0x6 · 0x4267F1026F4F · 0x2806BB97FB5F7C2F9E1EDE20BF59AC39
0DABBA7621D9A0F26AA1 (205)

137 0 0x4 · 0x763DB379950B73D200B971F1D · 0x22A41FB03F2428B44188
DD9FFE A796DC6D197A91BA21 (173)

137 1 0x6 · 0x4337925B3141B99447C1273 · 0x289FE5979AC03A2E5
CFCE8E6024FEF0863C633AE96A0DF (182)

149 0 0x4 · 0x29B66B578C9FAEB · 0x62322066993B57A8857E552587C80A5
67018483F2E493DBB7750AB7DB623 (239)

149 1 0x6 · 0x1B73C442E8D · 0x637845F7F8BFAB325B85412FB
54061F148B7F6E79AE11CC843ADE1470F7E4E29 (255)

157 0 0x4·0x499D09449B55C7D71FC18A2B0265785F ·0x37A45BD5E114A84FCB8
900BAE A9E731E0C4B3EDEC15F327 (186)

157 1 0x6 · 0x EEC A8C4698A0916800B4E7 · 0x B6F74A858FF10701D113
E39259417F04CF038B297F3C6573F6E14F33 (224)

163 0 0x4 · 0x FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF\
E A48D724AAB2045E5CFE286F8372017024DFF7BB3(324)

167 1 0x6 · 0x AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\
D45C6A4A8565763007E9FEFA42E0E A9B9E8B7F3541 (331)

173 1 0x6 · 0x BA3DEF139 · 0xE A9746EEF14E1638A503F
A6FB739A623894A590811B6939A30D7A016E8A77815\ 0084D9C4D6E0D
(308)

179 0 0x4 · 0x10C01861F3F8F0AC2767CD · 0x F4882969C296A9493FE AA3C9F58
DA166B76D3236BF15C2F10E2B0421F3F7E50DCC6F (272)

181 0 0x4 · 0xCBB · 0x141BF6E35420FDE10CF60620853943A20D5
A91F2F5DDE75B04126F3100B191AF1\ E338F81FB8ED77C1C57BEF3
(348)

191 1 0x6 · 0x23D01 · 0x4C3F9B376D369D04F034
99007A43FE6460A012C86B2C575 858EE9FC7F67A566813\
B39DA28DC9D58285BC07F8811 (362)

Prime factors are underlined. The size (in bits) of the largest prime factor is presented in parenthesis

2.1. The τ -Adic Representation

Given a Koblitz curve Ea/F4m with group order #Ea(F4m ) = h · p · r , where h is the
order of Ea(F4), r is the order of our subgroup of interest, and p is the order of a group
of no cryptographic interest,7 we can express a scalar k ∈ Z/rZ as an element in Z[τ ]
using the classical partial reduction introduced by Solinas [82], with a fewmodifications.
The modified version is based on the fact that τ 2 = μτ − 4.

Given that the norm of τ is N (τ ) = 4, N (τ − 1) = h, N (τm − 1) = h · p · r ,
and N ((τm − 1)/(τ − 1)) = p · r , the subscalars k0 and k1 resulted from the partial
modulo function will be both of size approximately

√
p · r . As a consequence, the

corresponding scalar multiplication will need more iterations than expected, since the

7Usually the order p is composite. Also, every prime factor of p is smaller than r (see Table 1).
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order p of a subgroup which is not of cryptographic interest will also be taken into
account in the computation. For that reason, we took the design decision of considering
that the input scalar of our point multiplication algorithm is already given in the Z[τ ]
domain.
As a result, a partial reduction of the scalar k is no longer required, and the number

of iterations in the point multiplication will be consistent with the scalar k size. If one
needs to retrieve the equivalent value of the scalar k in the ring Z/rZ, this can be easily
computed with one multiplication and one addition inZ/rZ. This strategy is in line with
the degree-2 scalar decomposition method within the GLS curves context as suggested
in [32].

2.2. The Width-w τNAF Form

Assuming that the scalar k is specified in the Z[τ ] domain, one can represent the scalar
in the regular width-w τNAF form [69] by slightly adopting the method for the F4 case.
The length of the representation width-w τNAF of an element k ∈ Z[τ ] is discussed in
[81]. Given a width w, after running the regular τNAF algorithm, we have 22(w−1)−1

different digits.8

Therefore, it is necessary to be more conservative when choosing the width w, when
compared to the Koblitz curves defined over F2. For widths w = 2, 3, 4, 5, we have
to pre- or post-compute 2, 8, 32, and 128 points, respectively. In order to construct an
efficient 128-bit point multiplication, we estimated that the value of the widthw must be
at most four. Otherwise, the costs of the point pre- and post-processing will be greater
than the additional savings obtained in the main iteration.
In addition, we must find efficient ways for computing the values αv = v mod τw.

The method for searching the best expressions in Koblitz curves over F2 [85] cannot be
directly applied in the F4 case. As a result, we manually provided αv representations for
w ∈ {2, 3, 4} and a = 1, which are our implementation parameters.9 The rationale for
our chosen representations was to minimize the number of field arithmetic operations. In
practice, we must reduce the number of full point additions on behalf of point doublings
and mixed additions.10 In Table 2, we present the αv representatives along with the
operations required to generate the multiples of the base point.11

As a result, one point doubling and full addition are required to generate the points
αvP for w = 2, one point doubling, four full additions, three mixed additions, and four
applications of the Frobenius map for the w = 3 case and one point doubling, twenty
full additions, eleven mixed additions, and five applications of the Frobenius map for
the w = 4 case.

8We are considering only positive digits, since the cost of computing the negative points in binary elliptic
curves is negligible.

9While this is undoubtedly not the optimal approach for computing these values, the point pre-computation
represents only a tiny fraction of the whole scalar multiplication performance cost.

10Full addition is the operation of adding two points both represented in projective coordinates, whereas
a mixed addition is the operation of adding one point represented in projective coordinates with another
represented in affine coordinates. Note that a full addition is always more costly than a mixed addition.

11Notice that themultiplesαv P as shown in Table 2must be computed out of order. The order for computing
the multiples is shown in roman numbers.
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Table 2. Representations of αv = v mod τw , for w ∈ {2, 3, 4}, a = 1 and the required operations for
computing αv .

w v v mod τw αv Operations Order

2 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II

3 1 1 1 n/a I
3 3 3 t0 ← 2α1, α3 ← t0 + α1 (D + FA) II
5 5 −τ − α15 α5 ← −t1 − α15 (MA) VIII
7 3τ + 3 τ2α3 + α3 α7 ← τ2α3 + α3 (FA + 2T ) III
9 3τ + 5 α7 + 2 α9 ← α7 + t0 (FA) IV
11 3τ + 7 α9 + 2 α11 ← α9 + t0 (FA) V
13 −τ − 7 τ2 − α3 α13 ← t2 − α3 (MA) VII
15 −τ − 5 τ2 − 1 t1 ← τα1, t2 ← τ t1, α15 ← t2 − α1 (MA + 2T ) VI

4 1 1 1 n/a I
3 3 −τ3 − α61 α3 ← −t4 − α61 (MA) XXVI
5 5 −τ3 − α59 α5 ← −t4 − α59 (MA) XXVII
7 7 −τ3 − α57 α7 ← −t4 − α57 (MA) XXVIII
9 9 −τ3 − α55 α9 ← −t4 − α55 (MA) XXIX
11 11 −2τ2 + α43 α11 ← −t2 + α43 (FA) XXX
13 13 −2τ2 + α45 α13 ← −t2 + α45 (FA) XXXI
15 15 −2τ2 + α47 α15 ← −t2 + α47 (FA) XXXII
17 5τ − 11 −τ3 − α47 t4 ← τ2t3, α17 ← −t4 − α47 (MA + 2T ) XIX
19 5τ − 9 −τ3 − α45 α17 ← −t4 − α47 (MA) XX
21 5τ − 7 −τ3 − α43 α17 ← −t4 − α45 (MA) XXI
23 5τ − 5 −τ3 − α41 α17 ← −t4 − α43 (MA) XXII
25 5τ − 3 −τ3 − α39 α17 ← −t4 − α41 (MA) XXIII
27 5τ − 1 −τ3 − α37 α17 ← −t4 − α39 (MA) XXIV
29 5τ + 1 −τ3 − α35 α17 ← −t4 − α37 (MA) XXV
31 −2τ − 9 2τ2 − 1 t2 ← τ t1, α31 ← t2 − α1 (MA + T ) XII
33 −2τ − 7 2τ2 + 1 α33 ← t2 + α1 (MA) XIII
35 −2τ − 5 −2τ − 5 α35 ← α37 − t0 (FA) VI
37 −2τ − 3 −2τ − 3 α37 ← α39 − t0 (FA) IV
39 −2τ − 1 −2τ − 1 t0 ← 2α1, t1 ← τ t0, α39 ← −t1 − α1 (D + MA + T ) II
41 −2τ + 1 −2τ + 1 α41 ← −t1 + α1 (MA) III
43 −2τ + 3 −2τ + 3 α43 ← α41 + t0 (FA) V
45 −2τ + 5 −2τ + 5 α45 ← α43 + t0 (FA) VII
47 −2τ + 7 −2τ + 7 α47 ← α45 + t0 (FA) VIII
49 −2τ + 9 −2τ + 9 α49 ← α47 + t0 (FA) IX
51 −2τ + 11 −2τ + 11 α51 ← α49 + t0 (FA) X
53 −2τ + 13 −2τ + 13 α53 ← α51 + t0 (FA) XI
55 3τ − 13 3τ − 13 t3 ← τα1, α55 ← t3 − α53 (MA + T ) XIV
57 3τ − 11 3τ − 11 α57 ← t3 − α51 (MA) XV
59 3τ − 9 3τ − 9 α59 ← t3 − α49 (MA) XVI
61 3τ − 7 3τ − 7 α61 ← t3 − α47 (MA) XVII
63 3τ − 5 3τ − 5 α63 ← t3 − α45 (MA) XVIII

Here, we denote by D, FA, MA, T the point doubling, full addition, mixed addition, and the Frobenius map,
respectively. Moreover, we consider that the point α1P is represented in affine coordinates. The order for
computing the points is given in roman numbers
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2.3. Security Analysis Against the GHS Attack

Given that the Koblitz curves defined over Ea(F4m ) operate over quadratic extensions
fields, it is conceivable that Weil descent attacks [36,41] could possibly be efficiently
applied on these curves. However, Menezes and Qu showed in [60] that the GHS attack
cannot be implemented efficiently for elliptic curves defined over binary extension fields
Fq , with q = 2m, and m a prime number in [160, 600]. Further, a specialized analysis
for binary curves defined over fields of the form F4m reported in [39] proved that the
only vulnerable prime extension in the range [80, 256] is m = 127.

3. Extended Koblitz Curves over F4

There exist several ordinary elliptic curves over F4 that strictly speaking cannot be
considered Koblitz curves in the way that they were defined in Sect. 2. Since some of
these additional curves come out equipped with additional endomorphisms, they are also
of cryptographic interest. This extended set of Koblitz curves can be better described
using isogeny classes as discussed in the following subsection.

3.1. Isogenies

Let E1 and E2 be two elliptic curves defined over a field K. An isogeny map is a
non-constant homomorphism φ : E0(K̄) → E1(K̄) such that φ(O) = O, which can
be described by means of rational functions. Moreover, φ(P + Q)= φ(P) + φ(Q)

and φ(x0, y0)= (x1, y1), where x1 = R(x0) and y1 = y0R(x0) are rational functions. If
R(x)= p(x)

q(x) andgcd(p(x), q(x))= 1, then thedegreeofφ ismax{deg(p(x)), deg(q(x))}.
If φ has the same domain and co-domain, then φ is an endomorphism. If φ has degree
one, then φ is an isomorphism. Two elliptic curves are isomorphic if an isomorphism
between them exists.
It is known that two curves E0 and E1 are isogenous overK if and only if they have the

same number of points [83, Theorem 1]. This fact helps the elliptic curves classification
by isogeny classes, that is, by their point cardinality.

3.2. The Twelve Ordinary Elliptic Curves over F4

The description of Koblitz curves given in Sect. 2 defines four ordinary elliptic curves.
Nevertheless, there is a total of 12 ordinary elliptic curves over the field F4. As shown
in Table 3, these 12 ordinary elliptic curves define four different isogeny classes.

Notice that the Koblitz curves described in Sect. 2 correspond to isogeny classes 1
and 2 of Table 3, with curve parameters (a, b) given as (γ, γ ), (γ 2, γ 2), (0, γ ), and
(0, γ 2). Since these two classes were already studied, in the following, we will focus
our attention on isogeny classes 0 and 3.
The curves E(1,1) and E(0,1) are the only two members of isogeny class 0. Notice

that the curve parameters a, b of these curves lie in F2. Furthermore, it can be shown
that E(1,1) and E(0,1) become isomorphic over F4 and that (#E(0,1)(F2) · #E(1,1)(F2)) |
#E0(F4), where E0 is the Koblitz curve defined in (1) with a = 0. This observation
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Table 3. Twelve ordinary elliptic curves E(a,b)/F4 : y2 + xy = x3 + ax2 + b define four isogeny classes.

The curve parameters a, b ∈ F4 can take the values [0, 1, γ, γ 2], with γ ∈ F4\F2.
E(a,b)/F4 : y2 + xy = x3 + ax2 + b

Isogeny class 0 1 2 3
#E(a,b) 8 6 4 2

Parameters (a, b)
(1, 1),
(0, 1).

(1, γ ),

(1, γ 2),

(0, γ ),

(0, γ 2).

(γ, γ ),

(γ 2, γ 2),

(γ, γ 2),

(γ 2, γ ).

(γ, 1),
(γ 2, 1).

can be generalized to prove that (#E(0,1)(F2m ) · #E(1,1)(F2m )) | #E0(F4m ). A direct
consequence of this relation is that the largest prime factor of #E0(F4m )must be smaller
than the order #E(0,1)(F2m ) ≈ #E(1,1)(F2m ) ≈ 2m . Thus, when the two curves in the
isogeny class 0 are defined over the field F4m , one can only hope to achieve at most an m

2 -
bit security level. Hence, we conclude that isogeny class 0 is of little or no cryptographic
value.

3.3. A Novel Endomorphism for Isogeny Class 3

The curves E(γ,1) and E(γ 2,1) are the only two members of isogeny class 3 shown
in Table 3. Both of these two curves are equipped with an efficient endomorphism as
discussed next.
It can be seen that the mapping τ2 : E(a,b)(Fq) → E(a′,b′)(Fq) defined by τ(O) = O,

τ (x, y) = (x2, y2) is a two-degree isogeny such that τ2(E(γ,1)(Fq)) = E(γ 2,1)(Fq), and
τ2(E(γ 2,1)(Fq)) = E(γ,1)(Fq). Moreover, the curves E(γ,1) and E(γ 2,1) are also isomor-
phic, sinceone candefine the isogenies,φ0 : E(γ,1) → E(γ 2,1) andφ1 : E(γ 2,1) → E(γ,1)

such that φ0(x, y) = (x, y+γ ·x) and φ1(x, y) = (x, y+γ 2 ·x).As illustrated in Fig. 1,
for each one of the curves in class 3, one can therefore build two novel endomorphisms
τ̄0, τ̄1 as follows:

τ̄0(x, y) = (φ0 ◦ τ2)(x, y) = (x2, y2 + γ · x2)
τ̄1(x, y) = (φ1 ◦ τ2)(x, y) = (x2, y2 + γ 2 · x2).

Using affineλ-coordinates as defined in [71], the endomorphisms τ̄0 and τ̄1 can bewritten
as τ̄0(x, λ) = (x2, λ2 + γ ) and τ̄1(x, λ) = (x2, λ2 + γ 2), respectively. Using projective
λ-coordinates, they become τ̄0(X, L , Z) = (X2, L2 + γ · Z2, Z2) and τ̄1(X, L , Z) =
(X2, L2 + γ 2 · Z2, Z2).

Since τ̄0 and τ̄1 satisfy the same properties, wewill use in the following the symbol τ̄ to
refer to both of them.We stress that τ̄ is computationally cheaper than the endomorphism
τ of the Koblitz curves discussed in the previous section. Indeed, the computational cost
of τ̄ is of two squaring operations instead of the four squaring operations associated
with τ. As it will be further discussed in Sect. 7, this computational saving induces an
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E(γ,1)

E(γ2,1)

τ2 φ0

E(γ2,1)

E(γ,1)

τ2 φ1

Fig. 1. Construction of the endomorphisms τ̄0 and τ̄1 for the isogeny class-3 elliptic curves E(γ,1) and E(γ 2,1).

important reduction in the number of pre-computed points for the point multiplication
Q = kP that uses a width-w τNAF scalar representation.
Another interestingproperty of the τ̄ endomorphism is that τ̄ 2(x, y) = (x4, y4+x4) =

−τ(x, y). Moreover, for the elliptic curves in isogeny class 3, τ satisfies the equation
τ 2 + 4 = 3τ , which implies that τ̄ 2 + τ̄ = −2. It also follows that τ̄ = (−1+√−7)/2.
Since the ring Z[(−1 + √−7)/2] has been extensively studied in the literature, we can
adopt the same existing methods reported in [3,18,84,85] for performing the width-w
τNAF scalar recoding.

We computed the cardinality of the elliptic curves belonging to isogeny class 3 defined
over the fieldF4m withm a prime extension in the range [127, 191].From this experiment,
we found out that the only extension of cryptographic interest is m = 163. Indeed, for
this extension field F4163 , the cardinality of the elliptic curves in class 3 has the following
integer factorization:

0x2 · 0x28D · 0xC8B90A95C20EE5BBC91D671B0CEFED2EA\
7901F5CEAAA522F37A4E0D020A19EBBDC1D0437C458139.

The largest prime factor above has a size of approximately 316 bits. Hence, its asso-
ciated security level is of around 158 bits. This curve is comfortably above the 128-bit
security level (even considering the criterion that for a given field extension m, a binary
curve offers ten bits less of security than the number �m

2 �).

4. Base Field Arithmetic

In this section, we introduce practical aspects of the Koblitz curves previously presented.
More particularly, we describe techniques for an efficient software implementation of
128-bit secure scalar multiplication algorithms over selected Koblitz curves defined over
F4. Our library was specially designed for high-end 64-bit processors embedded with
a 64-bit carry-less multiplication instruction and 128-bit vector registers that store and
simultaneously process two 64-bit words [1,43].
We based our curve selection on two factors: security and performance. For conser-

vative scenarios, we propose the class-3 curve over F4163 . This curve offers about 156
bits of security, which is well above the 10-bit security margin for binary curves (see
Sect. 1 for further discussion). Moreover, it is equipped with a faster endomorphism
when compared with class-1 and class-2 curves. For other scenarios, we suggest the
class-1 curve over F4149 , which was chosen because of its 254-bit prime subgroup order,
yielding a security level of approximately 128 bits.
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4.1. Modular Reduction

One can construct a binary extension field F2m by taking a polynomial f (x) ∈ F2[x]
of degree m, which is irreducible over F2. It is very important that the form of the
polynomial f (x) admits an efficient modular reduction. The criteria for selecting f (x)
depend on the architecture to be implemented as it was extensively discussed in [78].
For our field extension degreesm ∈ {149, 163}, we do not have irreducible trinomials

in the ringF2[x]. The immediate solution is to construct the fieldsF2149 andF2163 through
irreducible pentanomials. However, the cost of a modular reduction with pentanomials
is excessively high when compared with the field multiplication computed with carry-
less instructions. This is because we need to perform four shift-and-add operations per
reduction step. Besides, most of those operations require costly shift instructions, since
the number of bits to be shifted is often not divisible by the word size (64 bits in our
target architecture).
As a consequence, we resorted to the redundant trinomials strategy introduced in [21,

26]. Given a non-irreducible trinomial g(x) of degree n that factorizes into an irreducible
polynomial f (x) of degree m < n, the idea is to perform the field reduction modulo
g(x) throughout the scalar multiplication and, at the end of the algorithm, reduce the
polynomials modulo f (x). Considering that our target platform counts with a native
64-bit carry-less multiplier, an efficient representation of the field elements must have
at most 192 bits, that is, three 64-bit words. Furthermore, given a redundant trinomial
g(x) = xn + xa + xb, we need that most of the following constraints be satisfied for an
efficient reduction:

(R1) The difference (n−a) ≥ 64, which allows us to perform the reduction in a optimal
number of steps in the interleaved representation (see Sect. 5 for more details).

(R2) The properties (n − a) ≡ 0 (mod 64), (n − b) ≡ 0 (mod 64) result in faster
shift-and-add steps after the field multiplication and squaring operations. This is
because they avoid additions between words, which require a series of left and
right shifts to align the data within the registers.

(R3) The properties (n − a) ≡ ±1 (mod 64), (n − b) ≡ ±1 (mod 64) result in faster
shift-and-add steps after the field squaring operation. The squaring operation con-
sists of interleaving zeroes between the bits of the binary representation of a field
element [40]. Therefore, parameters with this configuration help us avoiding shifts
by one bit and one field addition in each reduction step.

For constructing the extension field F4149 , we selected the trinomial g149(x) = x192 +
x19 + 1, since it complies with the criteria R1 and R2. This polynomial factorizes into
a 69-term irreducible polynomial f149(x) of degree 149. The field F4163 is built via
the trinomial g163(x) = x192 + x3 + x2, which only satisfies the constraint R1. This
result will affect the efficiency of the basic arithmetic operations; however, there were no
better options for constructing this field. The trinomial g163(x) factorizes into an 87-term
irreducible polynomial f163(x) of degree 163. The final reduction by fm(x) is performed
via the mul-and-add approach12 which, experimentally, performed more efficiently than
the shift-and-add reduction for irreducible polynomials with large number of terms.

12For a more detailed explanation of the shift-and-add and the mul-and-add reduction methods for binary
fields, see [18].
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5. Quadratic Field Arithmetic

The quadratic field is constructed by the degree-two irreducible polynomial h(u) =
u2 + u + 1. Elements in this field are represented as a0 + a1u, with a0, a1 ∈ F2m . As
discussed in Sect. 1, the F4m arithmetic can be implemented in terms of operations in the
base field, resulting in considerable speedups due to the internal processor parallelism.

5.1. Register Allocation

The first question to be addressed on implementing an efficient quadratic field arithmetic
is: How to allocate the binary representation of the field elements into the architecture
available registers? In our case, we have to store two 192-bit polynomials into vector
registers of 128 bits so that a fast modular reduction is possible, and the overhead in the
two main arithmetic operations (i.e., multiplication and squaring) is kept to a minimum.
Let us consider an element a = (a0 + a1u) ∈ F4m , where a0 = Cx128 + Bx64 + A

and a1 = Fx128 + Ex64 + D are 192-bit polynomials, each one of them stored into
three 64-bit words (A-C, D-F). Also, suppose we have three 128-bit registers Ri , with
i ∈ {0, 1, 2}, which can store two packed 64-bit words each.13 The first option is to
rearrange the extension field element a as

R0 = A|B, R1 = C |D, R2 = E |F.

The problem with this representation is that a significant overhead is generated in the
multiplication function, more specifically in the pre-computation phase of the Karatsuba
procedure (cf. Sect. 5.2 with the computation of V0,1, V0,2, and V1,2). Besides, in order
to efficiently perform the subsequent reduction phase, we must temporarily store the
polynomial terms into four 128-bit vectors, which could cause a register overflow. A
better method for storing the element a is to use the interleaved arrangement as follows:

R0 = D|A, R1 = E |B, R2 = F |C.

Using this setting, some overhead in the multiplication and squaring operations still
exists, even though the penalty on the latter operation is almost negligible. In the positive
side, the terms of the elements a0, a1 do not need to be rearranged and the modular
reduction of these two base field elements can be performed in parallel.

5.2. Multiplication

Given two F4m elements a = (a0 + a1u) and b = (b0 + b1u), with a0, a1, b0, b1 in F2m ,
we perform the multiplication c = a · b as

c = a · b = (a0 + a1u) · (b0 + b1u)

= (a0b0 ⊕ a1b1) + (a0b0 ⊕ (a0 ⊕ a1) · (b0 ⊕ b1))u,

13In this document, we represent a 128-bit register R with its most (M) and least (L) significant packed
64-bit words as R = M |L .
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where each element ai , bi ∈ F2m is composed of three 64-bit words. The analysis of
the Karatsuba algorithm cost for different word sizes was presented in [88]. There,
it was shown that the most efficient way to multiply three-word polynomials s(x) =
s2x2 + s1x + s0 and t (x) = t2x2 + t1x + t0 as v(x) = s(x) · t (x) is through the one-level
Karatsuba method:

V0 = s0 · t0, V1 = s1 · t1, V2 = s2 · t2,
V0,1 = (s0 ⊕ s1) · (t0 ⊕ t1), V0,2 = (s0 ⊕ s2) · (t0 ⊕ t2) V1,2 = (s1 ⊕ s2) · (t1 ⊕ t2),

v(x) = V2x
4 + (V1,2 ⊕ V1 ⊕ V2)x

3 + (V0,2 ⊕ V0 ⊕ V1 ⊕ V2)x
2 + (V0,1 ⊕ V0 ⊕ V1)x + V0,

which costs six multiplications and 12 additions.
The algorithm requires six carry-less instructions, six vectorized xors, and three bit-

wise shift instructions. In order to calculate the total multiplication cost, it is necessary
to include the Karatsuba pre-computation operations at the base field level (12 vector-
ized xors and six byte interleaving instructions) and at the quadratic field level (six
vectorized xors). Also, we must consider the reorganization of the registers in order to
proceed with the modular reduction (six vectorized xors).

5.3. Modular Reduction

The modular reduction of an element in F4m highly benefits from the interleaved repre-
sentation, since the two packed words in a 128-bit register do not change their positions.
In other words, the real (a0) and the imaginary (a1) parts are always placed in the least
and most significant 64-bit words, respectively. The trinomial g149(x) = x192 + x19 + 1
satisfies condition R2 (cf. Sect. 4.1) that is, (192−0) mod 64 = 0. For that reason, each
step of the shift-and-add algorithm consists of only two shifts and three xors, and three
such steps are required.
Nonetheless, for the F4163 case, we have to compute four shifts and four xors per

step. In the total cost, the modular reduction in this field requires three extra shifts and
xors when compared with the same operation over F4149 . Although this difference
does not appear to be significant, its impact can be seen in the total cost of the scalar
multiplication algorithm (see Sect. 7 for specific timings).

5.4. Squaring

Squaring is a very important function in the Koblitz curve point multiplication algo-
rithm, since it is the building block for computing the τ endomorphism in both curve
classes. In our implementation, we computed the squaring operation through carry-less
multiplication instructions which, experimentally, was an approach less expensive than
the bit interleaving method [40, §2.3.4]. The preprocessing phase is straightforward, and
we just need to rearrange the 32-bit packed words of the 128-bit registers in order to pre-
pare them for the subsequent modular reduction. The pre- and post-processing phases
require three 32-bit shuffle instructions,14 three vectorized xors, and three bitwise
shifts.

14On recent Intel architectures, this instruction is denominated pshufd [43].
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5.5. Inversion

The inversion operation is computed via the Itoh–Tsujii method [44]. Given an element
c ∈ F2m , we compute c−1 = c(2m−1−1)·2 through an addition chain, where each step
computes the term (c2

i−1)2
j · c2 j−1 with 0 < j < i ≤ m − 1. For the case m = 149,

the following chain is used:

1 → 2 → 4 → 8 → 16 → 32 → 33 → 66 → 74 → 148,

while for m = 163, we used

1 → 2 → 4 → 5 → 10 → 20 → 40 → 80 → 81 → 162.

Both addition chains are optimal and were found through the procedure described
in [22]. Note that although we computed the inversion operation over polynomi-
als in F2[x] (reduced modulo gm(x)), we still had to build the addition chain with
m ∈ {149, 163}, since we are in fact interested in the embedded F2m field element.

6. Scalar Multiplication Algorithms

In this part, we briefly discuss single-core algorithms for computing a timing-resistant
scalar multiplication function over Koblitz curves. The fastest approach is to compute
the function via the left-to-right or right-to-left τ -and-add algorithms [40]. A more
conservative and simplermethod is to perform the pointmultiplicationwithMontgomery
ladders [63]. This method disregards the efficient τ endomorphism but takes profit of
the special curve b-parameter within the x-coordinate doubling and addition formulas.

6.1. Left-to-Right τ -and-Add

This algorithm is similar to the traditional left-to-right double-and-add method. Here,
the point doubling operation is replaced by the computationally cheaper τ endomor-
phism.15 Before that, we need to compute the width-w τNAF representation of the
scalar k. In addition, linear passes must be applied in the accumulators in order to avoid
cache-based timing attacks (for more details, see Sect. 6.4). The process is shown in
Algorithm 1.

The main advantage of this method is that the sensitive data are indirectly related to
the points Pvi , which are only read and then added to the unique accumulator Q. As a
consequence, just one linear pass per iteration is required, immediately prior to reading
Pvi . On the other hand, the operation τw−1(Q) must be performed on three coordinates
of a projective point by successive squarings, since computing it through lookup tables
could leak information about the scalar k bits.16

15For the sake of simplicity, we will not differentiate the endomorphisms τ and τ̄ when describing the
τ -and-add algorithms.

16Except for aggressive choices for the parameter w (usually in the fixed-point scenario), computing the τ

endomorphism with lookup tables is not worthwhile in modern platforms. This is because performing the field
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Algorithm 1 Left-to-right width-w τ -and-add on Koblitz curves over F4
Input: Koblitz curve E/F4m , point P ∈ E(F4m ), k ∈ Z[τ ]
Output: Q = kP
1: Compute the regular width-w τNAF of k as

∑l
i=0 vi τ

i(w−1)

2: Pre-compute the 2w−1 (22(w−1)−1) points Pi ← αi P for class-3 (class-1,2) E
3: Q ← O
4: for i = l to 0 do
5: Q ← τw−1(Q)

6: Perform a linear pass to recover Pvi
7: Q ← Q ± Pvi
8: end for
9: return Q = kP

Note that, in the context of the Diffie–Hellman key exchange protocol, we can assume
that the scalar k is kept in the Z[τ ] form, since it is a private key and therefore (ideally) it
is not manipulated by other entities other than its owner. This procedure, besides simpli-
fying the implementation of the τ -and-add point multiplication, reduces the possibilities
of timing attacks, given that Solinas’ partial reduction algorithm contains branching
sections [82]. If desired, the scalar can be retrieved as an integer in Zr as discussed in
Sect. 2.1.

6.2. Right-to-Left τ -and-Add

An alternative is to process the scalar k from the least to the most significant digit. Again,
taking advantage of the τ endomorphism, the GLV method is brought to its full extent.
This approach is called right-to-left τ -and-add, and it is presented in Algorithm 2.

Algorithm 2 Right-to-left τ -and-add on Koblitz curves over F4
Input: Koblitz curve E/F4m , point P ∈ E(F4m ), k ∈ Z[τ ]
Output: Q = kP
1: Compute the regular width-w τNAF of k as

∑l
i=0 vi τ

i(w−1)

2: Initialize the 2w−1 (22(w−1)−1) accumulators Qi ← O for class-3 (class-1,2) E
3: for i = 0 to l do
4: Perform a linear pass to recover Qvi
5: Qvi ← Qvi ± P
6: Perform a linear pass to store Qvi

7: P ← τw−1(P)

8: end for
9: Q ← O
10: Compute the 2w−1 (22(w−1)−1) points Q ← ∑

αi Qi for class-3 (class-1,2) E
11: return Q = kP

Footnote 16 continued
squaring through carry-less instructions costs approximately five times the cost of computing a multi-squaring
operation via pre-computed values.
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Here, we have to perform a post-computation in the accumulators instead of pre-
computing the points Pi as in the previous approach. Also, the τ endomorphism is
applied to the point P , which is usually public. For that reason, we can compute τ

with table lookups instead of performing squarings multiple times. The downside of
this algorithm is that the accumulators carry sensitive information about the private key.
Moreover, they are read and written. As a result, it is necessary to apply the linear pass
algorithm over the whole set of accumulators Qi twice per loop iteration.

6.3. Montgomery Ladder

The scalar multiplication can also be computed via Montgomery ladders, which provide
simple and efficient timing-resistant formulas. The downside of this approach is that
the speedup from the Frobenius map is lost. On the other hand, the Montgomery for-
mulas are significantly improved when applied with the Koblitz curve b-parameter. For
instance, the doubling formula only requires three field squarings and onemultiplication.
Moreover, if we choose the group generator with the x-coordinate equal to x64u, the cost
of one loop multiplication is reduced to 16 logical vector instructions. For fixed-point
scenarios, the right-to-left Montgomery ladder with Koblitz curves efficiently computes
the point multiplication with log2(r) pre-computed x-coordinates. (see [72] for more
details on the Montgomery formulas for binary curves). The advantage of using this
method is that no linear passes are required, when compared with windowed versions
of the τ -and-add algorithm.

For Montgomery ladders, we suggest constructing the scalar k as follows. First, 40
bytes Ki are chosen at random from [0, 255]. Then, we update the most and least sig-
nificant byte as

K39 ← 0x5, K0 ← K0 ∨ 0x1.

Next, the scalar is multiplied by 653, which is one of the factors of #E(F4163). Finally,
after processing the scalar multiplication, the accumulator was doubled in order to return
Q = 2kP . By doing this, we assured that the least and most significant bit of k is always
equal to one, avoiding any inconsistencies in the Montgomery addition left-to-right and
right-to-left binary formulas.

Remark on ECDSA applications The lattice-based attacks presented in [7,68] show that
fixing bits of the scalar k in the signing phase of the ECDSA potentially reveals the
secret key after the collection of a few hundred signatures. Nguyen and Shparlinski [68]
describe how to reduce the ECDSA problem to the Hidden Number Problem (HNP) if
the �most (or least) significant bits of the scalar are known. Here, � = �log log r�,where
r is the order of the subgroup of interest. For our first curve, r is a 316-bit prime. Hence,
� = 9 consecutive biased bits would be necessary in order to launch the ECDSA-HNP
attack. Since in our setting we are only fixing three bits (the most and the two least
significant bits), then it would appear that our configuration is safe against this kind of
attacks.
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Nevertheless, as demonstrated in [7], a concrete analysis of the attack could improve
the aforementioned bound. Moreover, since the effects that this type of attacks may
have on points of composite order are not clearly understood, we do not recommend the
usage of Montgomery ladders in the ECDSA signing phase. Instead, the designer may
use τ -and-add/double-and-add methods, which do not fix any bit of the scalar k. In cases
where the implementer is compelled to use Montgomery ladders, the scalar should be
selected at random from [1, r − 1]. As a consequence, the order of the input point has
to be verified. Finally, to avoid formula inconsistencies, the order r must be added to k
if the nonce is an even number.

6.4. Auxiliary Functions

In the next paragraphs, we comment on the implementation aspects of functions that
support the aforementioned scalar multiplication algorithms.

6.4.1. Regular τNAF Representation

The regular NAF representation was proposed by Joye [48] and adopted for theZ[τ ] ring
in [69]. This approach is crucial for implementing timing-resistant NAF-based scalar
multiplication algorithms on curves with non-complete addition formulas. The general
procedure is presented in Algorithm 3.

Algorithm 3 Regular width-w τNAF recoding
Input: tw [81, §7.3], αu = βu + γuτ (see Table 2), k = r0 + r1τ ∈ Z[τ ] with odd r0, r1
Output: ρ = ∑l

i=0 vi τ
i(w−1)

1: for i ← 0 to l − 1 do

2: if w = 2 then

3: vi ← ((r0 − 4 · r1) mod 8) − 4
4: r0 ← r0 − vi

5: else

6: u ← (r0 + r1tw mod 22w−1) − 22(w−1)

7: if u > 0 then s ← 1 else s ← −1
8: r0 ← r0 − sβu , r1 ← r1 − sγu , vi ← sαu

9: end if
10: for j ← 0 to (w − 2) do

11: t ← r0, r0 ← r1 + (μ · r0)/4, r1 ← −t/4

12: end for

13: end for

The operations throughout the algorithm are performed via basic arithmetic and logic
machine operations, with the subscalars r0, r1 represented in the two’s complement form.
As a result, the negation can be implemented through a masking function. Each of the βu

and γu values and their respective signs are stored into a single 64-bit register, which is
accessed via bitwise shift and logical operators. Finally, to avoid carry-related branches,
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the multiword addition is programmed in Assembly code with the addition-with-carry
instructions (addq, adcq) [43].

6.4.2. Linear Pass

The linear pass is amethod designed to protect sensitive information against side-channel
attacks associated with the CPU cache access patterns [73,86]. Let us consider an array
A of size l. Before reading a value A[i], with i ∈ {0, . . . , l−1}, the linear pass technique
reads the entire array A but only stores, usually into an output register, the requested
data A[i].

As a consequence, the attacker does not know which array index was accessed just
by analyzing the location of the cache miss in his own artificially injected data. Writing
in A[i] occurs in a similar vein. Assuming that the data to be written are stored into
a register, we proceed by deceitfully updating all values of A, except for A[i], which
receives the real data. Note that this method causes a considerable overhead directly
related to the size of the array.
In this work, we implemented the linear pass method using 128-bit SSE vectorized

instructions and registers. The selection of A[i] is performed via logical functions and
the SSE instruction pcmpeqq that compares the values of two 128-bit registers A and
B and sets the resulting register C with bits one, if A and B are equal, and bits zero
otherwise [43].

6.4.3. Conditional Swap

The conditional swap is a technique usually employed in Montgomery ladders to hide
the access order of the two accumulators R0andR1. The knowledge of this order by a
malicious entity could result in catastrophic consequences for the cryptosystem [37].
The countermeasure can be similarly applied to width-w versions of τ -and-add algo-
rithms that process only two accumulators. As a result, the double linear pass in the
right-to-left variant is not required anymore. For τ -and-add algorithms where more than
two accumulators are processed, it is possible to extend the conditional swap to n points
in log2(n) steps. However, the required number of xor instructions results in a greater
overhead than the double linear pass discussed above. Finally, we can perform the condi-
tional swap only in the lowest 2n−1 array A values. Nonetheless, this approach requires
the storage of the array state.

7. Results and Discussion

Our software library was designed for 64-bit high-end desktops, provided with SSE
4.1-equivalent vector instructions and a 64-bit carry-less multiplier. The timings were
measured in an Intel Core i7 4770k 3.50 GHz machine (Haswell architecture) with
the Turbo Boost and Hyper-Threading technologies disabled. The implementation was
coded in the GNU11 C and Assembly languages.
We compiled our code with the GCC (Gnu Compiler Collection) version 5.4 with the

optimization flags --march=haswell -fomit-frame-pointer -O3. In addi-
tion, the 3-τNAF left-to-right τ -and-add point multiplication over E1/F4149 code is
available in the eBACS platform [9].
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Table 4. Timings for the finite field arithmetic in F4149 and F4163 .

Field operation F4149 F4163

Cost (cc) Ratio op/m Cost (cc) Ratio op/m

General multiplication (m) 52 1.00 68 1.00
Multiplication by x64u – – 12 0.18
Squaring 20 0.38 28 0.41
Inversion 6600 126.92 6300 92.65
Reduction modulo fm (x) 452 8.69 432 6.35

Remark on errormargin The analysis in [74] shows that ourmachine has an errormargin
of four clock cycles. This value is not significant when considering the point arithmetic
or scalar multiplication timings. Still, for simpler functions such as the basic finite field
operations, it is recommended to consider this remark.

7.1. Parameters

Our base binary fields F2m ∼= F2[x]/( fm(x)) with m ∈ {149, 163} were constructed
by the 69- and 87-term irreducible polynomials f{149,163}(x) described in Sect. 5. The
quadratic extension Fq2

∼= Fq [u]/(h(u)) was built through the irreducible quadratic
h(u) = u2 + u + 1.
Our class-1 Koblitz curve is defined as E(0,u)/F4149 : y2 + xy = x3 + ux2 + u, and

the group E(0,u)(F4149) contains a subgroup of interest of order

r = 0x637845F7F8BFAB325B85412FB54061F148B7F6E79AE11CC843ADE1470F7E4E29,

which corresponds to approximately 254 bits. Our class-3 curve is defined as
E(u,1)/F4163 : y2 + xy = x3 + ux2 + 1, and the order of the prime subgroup of
E(u,1)(F4163) is

r = 0xC8B90A95C20EE5BBC91D671B0CEFED2EA701F5CE\
9AAA522F37A4E0D020A19EBBDC1D0437C458139,

of about 316 bits. In addition, throughout our τ -and-add scalar multiplication implemen-
tation, we represented the points in λ-affine [50,77] and λ-projective [71] coordinates.

7.2. Field and Elliptic Curve Arithmetic Timings

We present in Table 4 the timings for the quadratic field arithmetic. The field multiplica-
tion, squaring, and inversion timings already include the costs for the modular reduction
modulo gm(x). Because of our machine error margin, we abstained from presenting tim-
ings for the field addition (implemented by three xor instructions), which theoretically
costs from 1.66 to three clock cycles. The column Ratio op/m shows the ratio between
the timings of the presented operation and the field multiplication.
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Table 5. Timings for the point arithmetic in E(0,u)(F4149 ) and E(u,1)(F4163 ) .

Point operation E(0,u)(F4149 ) E(u,1)(F4163 )

Cost (cc) Ratio op/m Cost (cc) Ratio op/m

λ-Doubling 368 7.08 420 6.18
λ-Full addition 792 15.23 828 12.18
λ-Mixed addition 592 11.38 624 9.18
Montgomery doubling – – 168 2.47
Montgomery left-to-right addition – – 272 4.00
Montgomery right-to-left addition – – 388 5.71
Affine Frobenius map 80 (τ ) 1.54 64 (τ̄ ) 0.94
Projective Frobenius map 120 (τ ) 2.31 108 (τ̄ ) 1.59

The ratio squaring/multiplication is relatively high when compared with other binary
curves such as GLS-254 [71]. This is because here the trinomials gm(x) do not admit a
reduction specially crafted for the squaring operation (see Sect. 4.1). Table 4 also shows
that the field inversion is significantly more expensive than a multiplication and there-
fore, should be avoided as much as possible in our scalar multiplication design. The high
cost of this operation is explained by the fact that, to avoid attacks on projective coordi-
nates [64], we did not work with lookup tables for computing the different Itoh–Tsujii
multi-squaring operations, but applied consecutive field squarings. Finally, the result of
having a redundant trinomial which does not comply with criteria R2 (see Sect. 4.1) is
indicated above: sixteen and eight extra cycles for the field multiplication and squaring,
respectively. Next, the timings for the point arithmetic used in our implementation are
shown in Table 5.

The effects of a slower field arithmetic is seen in Table 5. Over E(u,1)(F4163), the
λ-doubling, -full addition, and -mixed addition17 are 1.14, 1.05, and 1.05 slower when
compared with the same operations over E(0,u)(F4149). In the other hand, the faster class-
3 endomorphisms outperform the class-1 equivalents by 20 and 10% in the affine and
projective formulas, respectively.

7.3. Scalar Multiplication Timings

At last, we present in Table 6 the results obtained for the scalar multiplication implemen-
tation through the τ -and-add (with different values for the width w) and Montgomery
ladder algorithms.After calculating estimations,we saw that, over the E(0,u)/F4149 curve,
the pre- and post-computation costs along with the timing-attack countermeasures over-
head would surpass the savings in the total number of point operations. In the class-3
curve E(u,1)/F4163 , this scenario occurs when w > 5. Note that the same parameter w

represents a different number of pre-/post-computed points when comparing the two
curve classes, since the τ, τ̄ endomorphisms and the regular recoding algorithms are
different.
For the sake of comparison, Table 6 includes the ratio clock cycles per bit. This

is because it is inaccurate to compare the absolute timings of each curve, since the

17In the τ -and-add algorithms, the λ-doubling and the λ-full addition formulas are only used in the pre-
and post-computation phases.
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Table 6. Timings for the τ -and-add scalar multiplication on E(0,u)/F4149 and E(u,1)/F4163 .

E(0,u)/F4149 E(u,1)/F4163

Cost (cc) Ratio cycles (bit) Cost (cc) Ratio cycles (bit)

Left-to-right τ -and-add
w = 2 111,420 442.14 234,880 752.56
w = 3 82,872 328.85 144,988 464.70
w = 4 100,692 399.57 116,560 373.58
w = 5 – – 115,420 369.93

Right-to-left τ -and-add
w = 2 105,164 417.31 221,132 708.75
w = 3 85,404 338.90 128,980 413.39
w = 4 141,456 561.30 105,952 339.58
w = 5 – – 116,888 374.64

Table 7. Fraction (in percent) of the linear pass countermeasure on the cost of different τ -and-add algorithms
over E(0,u)/F4149 .

Left-to-right Right-to-left

w = 2 w = 3 w = 4 w = 2 w = 3 w = 4

2.10 2.76 10.90 8.82 18.76 36.57

security provided by the class-3 curve is higher than our proposed class-1 curve. The
ratio is calculated over the number of randomly chosen bits processed by the τ -and-add
algorithms. In the curve E(0,u)/F4149 implementation, 252 bits are considered, while in
the E(u,1)/F4163 design, we have a total of 312 bits.
The above results show that for the class-1 case, the costs of the pre- and post-

computation increase rapidly with the parameter w. The difference in the point pre-
computation timings between widths w = 2 and 3 is about 86.93%, while between
widthsw = 3 and 4, the variation is approximately 168.97%. This is because the number
of points to be computed quadruples at each value w. This aspect is also reflected in the
cost of the linear pass functions, which also depends on the number of computed points.
Table 7 describes the fraction of the scalar multiplication cost dedicated to applying the
linear pass function in different τ -and-add approaches.

The same issue does not occur in the class-3 curve, since the number of points at
each increasing w-value only doubles. The bottleneck here lies in the base field arith-
metic, as discussed in the previous paragraphs. Nevertheless, the class-3 curve obtained
competitive timings when compared with its counterpart. In terms of cost per bit, its
best algorithm, namely the right-to-left variant with w = 4, is only 1.03 times more
expensive than the left-to-right version with w = 3 over our class-1 curve. This result is
clearly due to the faster τ endomorphisms and the smaller amount of points to protect
in the main loop. At last, we present in Table 8 the timings for the Montgomery ladder
algorithms.
The savings in the left-to-rightMontgomery addition formulas resulted in competitive

timingswhen comparedwith the τ -and-add algorithmswithw ≤ 3. The advantage of the
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Table 8. Timings for the Montgomery ladder scalar multiplication E(u,1)/F4163 .

Algorithm E(u,1)/F4163

Cost (cc) Ratio cycles (bit)

Left-to-right 145,188 465.34
Right-to-left (with pre-computation) 128,284 411.16

Table 9. A comparison between state-of-the-art software implementations of 128-bit secure timing-resistant
scalar multiplication.

Curve/method Cost (cc)

Koblitz over F2283 (τ -and-add, 5-τNAF) [69] 99,000
GLS over F4127 (2-GLV double-and-add, 5-NAF) [70] 48,300
Twisted Edwards over F(2127−1)2 (double-and-add) [24] 56,000

Kummer genus-2 over F2127−1 (Kummer ladder) [8] 60,556
Koblitz over F4149 (τ -and-add, 3-τNAF) (this work) 82,872
Koblitz over F4163 (τ -and-add, 4-τNAF) (this work) 105,952

The timings were measured in the Haswell platform and are given in clock cycles

Montgomery ladder is that it is simpler to implement and does not require complicated
countermeasures for protecting themultiple pre-computed points and accumulators. The
right-to-left Montgomery ladder algorithm results do not compare well with the costs
presented in Table 6, since this approach is applied in a different setup, namely the
fixed-point scenario.

7.4. Comparison

At last, we compare our best point multiplication versions against the state-of-the-art
128-bit secure timing-resistant software scalar multiplication implementations on binary
and prime curves. The results are presented in Table 9.

The 3-τNAF scalar multiplication on E(0,u)/F4149 is the fastest published software
implementation on 128-bit secure Koblitz curves, surpassing the work on the standard-
ized curve K-283 [69] by 20.29%. On binary fields, the GLS implementation in [70]
outperforms our faster implementation by 38.80%. The works in [24] and [8] are about
29.04 and 23.27% faster, respectively. Finally, our E(u,1)/F4163 curve is only 6000 cycles
more expensive than theK-283 implementation in [69], but offers 15 extra bits of security.
Given that both implementations work with the same endomorphism τ , we can see that
the quadratic extension plays an important role in the efficiency of the field arithmetic.

8. Conclusion

In this work, we gave a comprehensive taxonomy of Koblitz-like curves defined over the
extension fields F4m with good cryptographic properties. We also introduced a family of
curves, whose rich structure admits novel and more efficient endomorphisms than the
traditional Frobenius endomorphism associated with classical Koblitz curves.
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We presented fast software implementations of 128-bit secure scalar multiplication
algorithms on the Koblitz curves E(0,u)/F4149 and the Koblitz-like curve E(1,u)/F4163 .
The design of these implementations included original techniques to construct the basic
finite field arithmetic and the methods to protect the code against timing attacks. An
important feature that distinguishes our code fromprevious binary field arithmetic imple-
mentations is the intensive usage of the carry-less multiplication instruction. The drastic
reduction of its latency and throughput in the recent architectures enabled its applica-
tion to operations that go beyond the field multiplication, such as the field squaring and
modular reduction.
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