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Abstract. The r -round (iterated)Even–Mansour cipher (also knownas key-alternating
cipher) defines a block cipher from r fixed public n-bit permutations P1, . . . , Pr as fol-
lows: Given a sequence of n-bit round keys k0, . . . , kr , an n-bit plaintext x is encrypted
by xoring round key k0, applying permutation P1, xoring round key k1, etc. The (strong)
pseudorandomness of this construction in the random permutation model (i.e., when the
permutations P1, . . . , Pr are public random permutation oracles that the adversary can
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query in a black-boxway)was studied in a number of recent papers, culminatingwith the
work ofChen and Steinberger (EUROCRYPT2014),who proved that the r -roundEven–

Mansour cipher is indistinguishable from a truly random permutation up to O(2
rn

r+1 )

queries of any adaptive adversary (which is an optimal security bound since it matches
a simple distinguishing attack). All results in this entire line of work share the common
restriction that they only hold under the assumption that the round keys k0, . . . , kr and
the permutations P1, . . . , Pr are independent. In particular, for two rounds, the current
state of knowledge is that the block cipher E(x) = k2⊕P2(k1⊕P1(k0⊕x)) is provably
secure up toO(22n/3) queries of the adversary, when k0, k1, and k2 are three indepen-
dent n-bit keys, and P1 and P2 are two independent random n-bit permutations. In this
paper, we ask whether one can obtain a similar bound for the two-round Even–Mansour
cipher from just one n-bit key and one n-bit permutation. Our answer is positive: When
the three n-bit round keys k0, k1, and k2 are adequately derived from an n-bit master key
k, and the same permutation P is used in place of P1 and P2, we prove a qualitatively
similar ˜O(22n/3) security bound (in the random permutation model). To the best of our
knowledge, this is the first “beyond the birthday bound” security result for AES-like
ciphers that does not assume independent round keys.

Keywords. GeneralizedEven–Mansour cipher,Key-alternating cipher, Indistinguisha-
bility, Pseudorandom permutation, Random permutation model, Sum-capture problem.

1. Introduction

Background An elementary way to construct a block cipher with message space {0, 1}n
from r fixed and public n-bit permutations P1, . . . Pr is to encrypt a plaintext x by
computing

y = kr ⊕ Pr (kr−1 ⊕ Pr−1(· · · P2(k1 ⊕ P1(k0 ⊕ x)) · · · )),

where (k0, . . . , kr ) is a sequence of n-bit round keyswhich are usually derived from some
master key K . This construction, which captures the high-level structure of (most) block
cipher designs known as substitution-permutation networks (SPNs), such as AES [13],
PRESENT [4], or LED [18] to name a few, was coined a key-alternating cipher by
Daemen and Rijmen [14].
For concrete designs, where permutations P1, . . . , Pr are fixed, the current state of

art of provable security only allows to upper bound the success probability of very
specific attacks such as differential or linear attacks. On the other hand, it is possible to
obtain broader provable security results by working in the random permutation model
for P1, . . . , Pr , i.e., by viewing permutations P1, . . . , Pr as public random permutation
oracles, to which the adversary can only make black-box queries (both in the forward
and backward direction). This is a very strong model, but this allows to upper bound
the advantage of any (even computationally unbounded) adversary as a function of the
number of queries it makes. It also heuristically indicates that any adversary willing to
beat the proven security bound cannot be “generic” and must somehow take advantage
of some particular property of the permutations used in any concrete block cipher.
Such results in the random permutation model were first obtained for r = 1 round by

Even andMansour [15], who showed that the block cipher encrypting x into k1⊕P1(k0⊕
x), where k0 and k1 are independent n-bit keys, and P1 is a random permutation oracle, is
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secure up toO(2n/2) queries1 of the adversary.2 For this reason, this construction is often
referred to as the Even–Mansour cipher, though this is somehow a misnomer since this
is rather a framework in which one can conveniently analyze the security of the family of
one-round key-alternating ciphers. In the following, we will perpetuate this unfortunate
terminology and use the naming r-round iterated Even–Mansour cipher to designate
the “ideal” r -round key-alternating cipher where P1, . . . , Pr are public and perfectly
random permutation oracles. Curiously, the general construction with r > 1 remained
unstudied for a longwhile until a paper byBogdanov et al. [5],who showed that for r ≥ 2,
security is guaranteed up to O(22n/3) queries of the adversary. They also conjectured
that the security should beO(2

rn
r+1 ) for general r , which matches a simple distinguishing

attack. Progress toward solving this conjecture was rather quick: Steinberger [31] proved
security up toO(23n/4) queries for r ≥ 3, Lampe et al. [26] proved security up toO(2

rn
r+2 )

queries for any even r , and finally Chen and Steinberger [8] resolved the conjecture and
proved the O(2

rn
r+1 )-security bound for any r . We stress that all these results only hold

assuming that the r+1 round keys and the r permutations are independent. Actually, this
is not perfectly accurate: One only needs the r + 1 round keys (k0, . . . , kr ) to be r -wise
independent [8], which can be obtained from only an rn-bit long master key; the most
simple example being round keys of the form (k′1, k′1 ⊕ k′2, k′2 ⊕ k′3, . . . , k′r−1 ⊕ k′r , k′r ),
in which case the resulting iterated Even–Mansour cipher is exactly the cascade of r
single-key one-round Even–Mansour ciphers x �→ k′i ⊕ Pi (k′i ⊕ x).
Our Problem Let us quickly recapitulate existing provable security results on the Even–
Mansour cipher for a low number of rounds. For r = 1, we know that the single-key
Even–Mansour cipher x �→ k⊕ P(k⊕ x) ensures security up toO(2n/2) queries of the
adversary. As pointed out by Dunkelman et al. [12], this construction is “minimal” in the
sense that if one removes any component (either the addition of one of the keys, or the
permutation P), the construction becomes trivially breakable. For the two-round Even–
Mansour cipher, the best provable security result we have so far requires two independent
n-bit permutations P1 and P2, and two independent n-bit keys (k, k′) to construct three
pairwise independent round keys, for example (k, k′ ⊕ k, k′). Concretely, the block
cipher x �→ k′ ⊕ P2((k′ ⊕ k)⊕ P1(k ⊕ x)) ensures security up to O(22n/3) queries of
the adversary. In this paper, we tackle the following question:

Can we obtain a O(22n/3)-security bound similar to the one proven for the
two-roundEven–Mansour cipherwith (pairwise) independent roundkeys and
independent permutations, from just one n-bit key k and one n-bit random
permutation P ?

This question is natural since inmost (if not all) SPNblock ciphers, roundkeys are derived
from an n-bit master key (or more generally an �-bit master key, where � ∈ [n, 2n] is
small compared with the total length of the round keys), and the same permutation,
or very similar ones, are used at each round. It is therefore fundamental to determine
whether security can actually benefit from the iterative structure and increase beyond the

1When we talk about queries without being more specific, this includes both queries to the cipher and
queries to the inner permutation(s).

2Actually it is not very hard to prove that a similar result holds when using k0 = k1, see [12].
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Fig. 1. Two constructions of “minimal” two-round Even–Mansour ciphers provably secure up to ˜O(2
2n
3 )

queries of any (adaptive) adversary. Top: π is a (fixed) linear orthomorphism of F
n
2, and P is a public random

permutation oracle. Bottom: P1 and P2 are two independent public random permutation oracles.

birthday bound, even though one does not use more key material nor more permutations
than in the single-key one-round Even–Mansour cipher.

Our Results We answer positively to the question above. Our main theorem states suf-
ficient conditions on the way to derive three n-bit round keys (k0, k1, k2) from one
n-bit master key k so that the two-round Even–Mansour cipher defined from a single
permutation

x �→ k2 ⊕ P(k1 ⊕ P(k0 ⊕ x))

is secure up to ˜O(22n/3) queries of the adversary, where the ˜O(·) notation hides loga-
rithmic (in N = 2n) factors. In particular, such a good key-schedule k �→ (k0, k1, k2)
can be constructed from any (fixed) linear orthomorphism of F

n
2. A permutation π of

{0, 1}n is called an orthomorphism if x �→ x ⊕ π(x) is also a permutation. The good
cryptographic properties of orthomorphisms have already been noticed in a number of
papers [17,28] and are in particular used in Lai-Massey schemes [25,33] such as the
block ciphers IDEA [25] and FOX [21]. Our main theorem is as follows.

Theorem. (Informal) Let π be any (fixed) linear orthomorphism of F
n
2 , and let P be

a public random n-bit permutation oracle. Then, the block cipher with message space
and key space {0, 1}n defined as (see Fig. 1, top)

EMP
k (x) = k ⊕ P(π(k)⊕ P(k ⊕ x)) (�)

is secure against any adversary making up to ˜O(2
2n
3 ) queries to EMP

k and P. (Queries
can be adaptive and are allowed in both directions for EMP

k and P).
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We remark that if one omits π in construction (�), i.e., if one adds the same round key k
each time, security drops back toO(2n/2) queries. More generally, if round keys are all
equal and the same permutation P is used at each round of the iterated Even–Mansour
cipher, security caps atO(2n/2) queries of the adversary, independently of the number r
of rounds. This seems to be known as a folklore result about slide attacks [6,7], but since
we could not find a detailed exposition in the literature, we precisely describe and analyze
this attack (as well as a simple extension for two rounds when the key-schedule simply
consists in xoring constants to themaster key) in this paper.Hence, construction (�) canbe
regarded as a “minimal” two-roundEven–Mansour cipher delivering security beyond the
birthday bound, since removing any component causes security to drop back toO(2n/2)

queries at best (for π this follows from the slide attack just mentioned, while removing
any instance of permutation P brings us back to a one-round Even–Mansour cipher).
Additionally, we show that when using two independent public random permutations
P1 and P2, the trivial key-schedule is sufficient: adding the same round key k at each
round (see Fig. 1, bottom) also yields a ˜O(22n/3)-security bound.

To the best of our knowledge, these are the first results proving “beyond the birthday
bound” security for key-alternating ciphers such as AES that do not rely on the assump-
tion that round keys are independent. This sheds some light onwhich exact properties are
required from the key-schedule in order to lift the round keys independence assumption
in provable security results. In particular, this seems to point out that a pseudorandom
key-schedule is not needed (we remind the reader that our results come with the usual
caveat that they are only proved in the very strong random permutation model, and
hence can only be taken as a heuristic security insurance once the inner permutation(s)
are instantiated).

More Details on Our Security Bounds In order to ease the previous discussion, we have
been mixing two distinct types of queries of the adversary, the queries to the Even–
Mansour cipher and the queries to the internal permutation(s), only discussing a global
upper bound on the total number q of queries. Actually, we make a distinction between
these two types of queries in our security bounds, so that they lend themselves to a
more fine-grained analysis: for each possible value of the number qe of queries to the
Even–Mansour cipher, we can derive an upper bound on the number qp of queries to
the inner permutation(s) that the construction can tolerate while still ensuring security
(in our previous discussion, we were only considering the very specific case where
qe = qp). The results of this analysis are captured on Fig. 2, both for the case of a
single inner permutation and for independent inner permutations. One point to notice

is that when qe ≥ 2
2n
3 , we still prove security up to qp = O( n

2 ) queries to the inner
permutations when they are independent, whereas our security bound becomes vacuous
in the single-permutation case.
Regarding the tightness of our security bounds, we remark that a generic attack with

complexity qp ∼ 2n− 1
2 log2 qe for any qe has been described3 by Gaži [16] (this is

3In the wording of [16], the Even–Mansour construction can be regarded as a sequential construction
using an ideal cipher of small, constant key-length (the index of each inner permutation playing the role of a
“public” key), so that Theorem 3 of [16] applies in our setting with κ = 0.



Minimizing the Two-Round Even–Mansour Cipher 1069

Fig. 2. Our security bounds for the two-round Even–Mansour construction as a function of (qe, qp). When
the two inner permutations are independent and the round keys are identical (construction EMIP[n, 2]), all
parameters below the solid line are secure by Theorem 4. In the case of a single inner permutation (construction

EMSP[n, 2]), all parameters below the dashed line (which merges with the solid line for qe ≤ 2
n
4 ) are secure

by Theorem 5. In both cases, all parameters above the dotted line are insecure by the generic attack of [16].
The status of the parameters in the light and dark gray region (resp. dark gray region) remains open in the
single-permutation case (resp. in the independent permutation case).

represented by the dotted line in Fig. 2). We note that this matches our security bound

(outside uninteresting extremal points) only in the specific case (qe, qp) = (2
2n
3 , 2

2n
3 ).

Overview of Our Techniques In order to prove our results, we use the indistinguishability
framework, namely we consider a distinguisher which must tell apart two worlds: the
“real” world where it interacts with (EMP

k , P), whereEMP
k is the Even–Mansour cipher

instantiated with permutation P and a random key k, and the “ideal” world where
it interacts with (E, P) where E is a random permutation independent from P . The
distinguisher can make at most qe queries to EMP

k /E and at most qp queries to P (all
queries are adaptive and can be forward or backward, and we work in the information-
theoretic setting, i.e., the adversary is computationally unbounded). In order to upper
bound the distinguishing advantage of this attacker, we use, as already done in [8], the
H-coefficient method of Patarin [30]. In a nutshell, this technique consists in partitioning
the set of all possible transcripts of the interaction between the distinguisher and the tuple
of permutations into a set T1 of “good” transcripts and a set T2 of “bad” transcripts. Good
transcripts τ ∈ T1 have the property that the ratio of the probabilities to obtain τ in the
real and in the ideal world is greater that 1 − ε1 for some small ε1 > 0, while the
probability to obtain any bad transcript τ ∈ T2 (in the ideal world) is less than some
small ε2 > 0. Then, the advantage of the distinguisher can be upper bounded by ε1+ε2.
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In order to get intuition about what hides behind good and bad transcripts, it helps
to first look at an example of how an adversary might “get lucky” during an attack.
Specifically, we focus on the following attack scenario (we assume that qe = qp = q
for simplicity). The distinguisher (adversary) D starts by making q arbitrary queries to
EMP

k /E , resulting in a set of q pairsQE = {(x1, y1), . . . , (xq , yq)}; thenD determines
the pair of sets (U, V ) with |U | = |V | = q and U, V ⊆ {0, 1}n , that maximizes the size
of the set

K(QE , U, V )
def={k′ ∈ {0, 1}n : ∃(xi , yi ) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V } ⊆ {0, 1}n,

(1)
andD queries P(u), P−1(v) for all u ∈ U , v ∈ V . (This makes 2q queries to P instead
of q, but this small constant factor is unimportant for the sake of intuition.) Note that if
D is in the real world and if the real key k is in the setK(QE , U, V ) defined in (1), then
D can see that one of its EMP

k /E-queries is compatible with two of its P-queries with
respect to k (inmore detail, there exists a value i and queries (u, v), (u′, v′) to P such that
xi⊕k = u,v⊕π(k) = u′, andv′⊕k = yi ). Elementary probabilistic considerations show
that such a “complete cycle” will occur for at most a handful of keys in K(QE , U, V ),
so that “false alerts” can be quickly weeded out and the correct key k validated in a
few extra queries, all assuming k ∈ K(QE , U, V ). Moreover, heuristic considerations
indicate that k will be inK(QE , U, V )with probability |K(QE , U, V )|/2n . In particular,
thus, it becomes necessary to show that |K(QE , U, V )| is significantly smaller than 2n

with high probability over QE , i.e., that

max
U,V⊆{0,1}n
|U |=|V |=q

|{k′ ∈ {0, 1}n : ∃(xi , yi ) ∈ QE s.t. xi ⊕ k′ ∈ U, yi ⊕ k′ ∈ V }| (2)

is significantly smaller than 2n with high probability over QE , in order to show that D
has small advantage at q queries. One of the criteria that can make a transcript “bad” in
our proof happens to be, precisely, if the set of queriesQE to EMP

k /E contained within
the transcript is such that (2) is larger than desirable. (Jumping ahead,K(QE , U, V )will
be re-baptized BadK1 in Definitions 1 and 3 of a bad transcript.)
To elaborate a little more on this, note that

|K(QE , U, V )| ≤ |{(k′, u, v) ∈ {0, 1}n ×U × V : k′ ⊕ u = xi , k′ ⊕ v

= yi for some 1 ≤ i ≤ q}|
= |{(i, u, v) ∈ {1, . . . , q} ×U × V : xi ⊕ yi = u ⊕ v}|.

Also note that the set of values {xi ⊕ yi : (xi , yi ) ∈ QE } is essentially a random set
since if the i-th query to EMP

k /E is forward then yi comes at random from a large set,
whereas otherwise xi comes at random from a large set. Moreover, as a matter of fact,
the problem of upper bounding

μ(A)
def= max

U,V⊆{0,1}n
|U |=|V |=q

|{(a, u, v) ∈ A ×U × V : a = u ⊕ v}
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for a truly random set A ⊆ {0, 1}n of size q has already been studied before [2,3,
20,22,32], being dubbed4 the sum-capture problem in [32]. One of the main known
results [3,32] on the sum-capture problem is thatμ(A) is upper bounded by roughly q3/2

for q ≤ 22n/3. Surprisingly enough, this bound is exactly sufficient for our application,
since q3/2 
 2n for q 
 22n/3. (Implying, thus, that (2) is far from 2n as long as q
remains beneath 22n/3, as desired.) Our own setting is, of course, slightly different, since
the set {xi ⊕ yi : (xi , yi ) ∈ QE } isn’t, unlike A, a purely random set of size q. Other
complications also arise: in the general case where the three round keys (k0, k1, k2) are
derived from the n-bit master key k using non-trivial (bijective) key derivation functions
γi : k �→ ki , K(QE , U, V ) takes the more complicated form

{k′ ∈ {0, 1}n : ∃(xi , yi ) ∈ QE s.t. xi ⊕ γ0(k
′) ∈ U, yi ⊕ γ2(k

′) ∈ V },

so that we have to upper bound

|{(i, u, v) ∈ {1, . . . , q} ×U × V : xi ⊕ u = γ0 ◦ γ−12 (yi ⊕ v)}|.

All this means that we have to carefully adapt (and to some degree significantly extend)
the Fourier-analytic techniques used in [3,32].
Once the probability to obtain a bad transcript has been upper bounded, the second

part of the proof is to show that the ratio between the probabilities to obtain any good
transcript in the real and the ideal world is close to 1. This part is in essence a permutation
counting argument. When the two permutations are independent (Fig. 1, bottom), the
counting argument is not overly complicated. While we could, in principle, re-use the
general results of [8], we expose it in Sect. 5 (see Lemma 8) since it constitutes a good
warm-up for the reader before the more complicated counting in the subsequent section.
For the single-permutation case, things become much more involved: first, we need to
consider more conditions defining bad transcripts; and second, the permutation counting
itself becomes much more intricate. Interestingly, this part is related to the following
simple to state (yet to the best of our knowledge unexplored) problem: howmany queries
are needed to distinguish a random squared permutation P ◦ P (where P is uniformly
random) from a uniformly random permutation E?

Related Work Two recent papers analyzed a stronger security property of the iterated
Even–Mansour cipher than mere pseudorandomness, namely indifferentiability from an
ideal cipher [1,27]. Aside with provable security results already mentioned, a number of
papers explored attacks on the (iterated) Even–Mansour cipher for one round [7,9,12],
two rounds [29], three rounds [10], and four rounds [11].
A distinct yet related line of work considers the security of the so-called “Xor-

Cascade” construction [16,24], a key-length extension method which generalizes the
DESX construction [23] in the same way the generalized Even–Mansour construction
generalizes the original (one-round) Even–Mansour cipher. Given a block cipher E with
message space {0, 1}n and key space {0, 1}κ , the r -roundXor-Cascade constructionXCE

defines a new block cipher with message space {0, 1}n and key space {0, 1}κ+(r+1)n as

4The terminology is attributed to Mario Szegedy.
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follows: given a plaintext x ∈ {0, 1}n and a key (z, k0, . . . , kr ) ∈ {0, 1}κ+(r+1)n , the
ciphertext y is computed as

y = kr ⊕ Ezr (kr−1 ⊕ Ezr−1(· · · Ez2(k1 ⊕ Ez1(k0 ⊕ x)) · · · )),

where (z1, . . . , zr ) is a sequence of sub-keys deterministically derived from z in a way
such that for any z, the zi ’s are pairwise distinct (note that this imposes r ≤ 2κ ). Some
authors considered minor variants of this construction where the last whitening key kr

is omitted [16] or where the sub-keys (z1, . . . , zr ) are drawn uniformly at random [24].
Directly relevant to our work, Gazi and Tessaro [19] considered a construction they
named 2XOR, which is the two-round variant of Xor-Cascade where the whitening
keys are identical (and the last whitening key is omitted), namely

2XORE
z,k(x) = Ez2(k ⊕ Ez1(k ⊕ x)),

where (z1, z2) are pairwise distinct sub-keys derived from z. They showed that, when the
underlying block cipher E is modeled as an ideal cipher, this construction is secure up
toO(2κ+n/2) queries to E , even when the adversary can make all possible 2n queries to
the permutation oracle (which, in the indistinguishability experiment, is either 2XORE

z,k
or an independent random permutation). Considering a block cipher E with key-length
κ = 1, one obtains a construction which is similar to the two-round Even–Mansour
cipher of Fig. 1, bottom, where the last key addition would be omitted.5 Hence, the
Gazi-Tessaro result says that this construction is secure for qe = 2n and qp = O(2n/2).6

Our own results are incomparable with the one of [19]. First, the third key addition is
omitted in the 2XOR construction. Second, our bounds are more general: they hold for
any value of qe and qp as long as qe < 22n/3 and qp < 22n/3. Though our bounds
become meaningless for qe = 2n , they show that when qe < 22n/3 (an interesting case
in practice since an attacker will not always have access to the entire codebook), security
is ensured up to ˜O(22n/3) queries to the internal permutations (something that cannot
be derived from the result of [19]).

Open Questions Currently, our results only apply when the key derivation functions
mapping the master key to the round keys are linear bijective functions of F

n
2. This

is due to the fact that the proof of our sum-capture theorem in Sect. 3 requires linear
mappings. It is an open question whether this theorem can be extended to nonlinear
(bijective) mappings as well. A second tantalizing yet challenging open problem is of
course to generalize our results to larger numbers of rounds. Namely, for r > 2, can we

5There is a slight subtlety here: in the 2XOR construction used with a block cipher with key-length κ = 1,
i.e., a pair of permutations (P1, P2), there is an additional key bit z (hidden to the distinguisher) which tells
in which order the two permutations are called.

6This is in fact very closely related to the security result for the single-key one-round Even–Mansour
cipher up to O(2n/2) queries to the inner and outer permutations [12]. In the Gazi-Tessaro case with κ = 1,
the adversary is given an arbitrary permutation E , and must distinguish, given access to (P1, P2), whether P1
and P2 are independent, or whether P2(k ⊕ P1(k ⊕ x)) = E(x) for some random key k. In the single-key
one-round Even–Mansour case, the adversary must distinguish, given access to (P1, P2), whether P1 and P2
are independent, or whether k ⊕ P1(k ⊕ x) = P2(x), i.e., P−12 (k ⊕ P1(k ⊕ x)) = x . These are very similar

problems, the latter being (up to changing P2 into P−12 ) a special case of the former with E the identity.
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find sufficient conditions on the key-schedule such that the r -round single-permutation
Even–Mansour cipher ensures security up to ˜O(2

rn
r+1 ) queries of the adversary? We

stress that even the simpler case where permutations are independent and round keys
are identical seems hard to tackle for r > 2: we currently have no idea of how to extend
our sum-capture result in order to upper bound the probability of bad transcripts even in
the case r = 3.

It would also be interesting to reduce the time complexity of attacks against the two-
round Even–Mansour cipher (potentially down to O(22n/3)). Currently, the best known
attack (for the case of independent permutations and identical round keys) has time
complexity O(2n−log2 n) [12]. Since our focus in this paper is on query complexity, we
have not investigated whether this attack applies to the single-permutation variant (�) as
well.

OrganizationWe start in Sect. 2 by setting the notation, giving the necessary background
on the H-coefficient technique, and proving some helpful lemmas. In Sect. 3, which is
self-contained, we prove our new sum-capture result, which might be of independent
interest. In Sect. 4, we detail slide attacks against the iterated Even–Mansour cipher.
Sections 5 and 6 contain our two provable security results for the two “minimized”
variants of the two-round Even–Mansour cipher of Fig. 1. In Sect. 5, we first deal
with the case where the two permutations are independent and the three round keys are
identical. The permutation counting argument in this section (Lemma 8) serves as a good
exercise before the corresponding one of the subsequent section (Lemma 10). Section 6,
which contains our main theorem, deals with the case of a single permutation.

2. Preliminaries

2.1. Notation

Permutations In all the following, we fix an integer n ≥ 1, and we write N = 2n .
The set of all permutations on {0, 1}n will be denoted Pn . For integers 1 ≤ s ≤ t ,
we will write (t)s = t (t − 1) · · · (t − s + 1) and (t)0 = 1 by convention. Given
Q = ((x1, y1), . . . , (xq , yq)), where the xi ’s are pairwise distinct n-bit strings and the
yi ’s are pairwise distinct n-bit strings, and a permutation P ∈ Pn , we say that P extends
Q, denoted P � Q, if P(xi ) = yi for i = 1, . . . , q. Let X = {x ∈ {0, 1}n : (x, y) ∈ Q}
and Y = {y ∈ {0, 1}n : (x, y) ∈ Q}. We call X and Y , respectively, the domain and
the range of Q. By an abuse of notation, we will sometimes denote Q the bijection
from X to Y such that Q(xi ) = yi for i = 1, . . . , q. Thus, for any X ′ ⊆ X we
have Q(X ′) = {y ∈ {0, 1}n : (x, y) ∈ Q ∧ x ∈ X ′}, and for any Y ′ ⊆ Y we have
Q−1(Y ′) = {x ∈ {0, 1}n : (x, y) ∈ Q ∧ y ∈ Y ′}. We will often use the following
simple fact: givenQ of size q andQ′ of size q ′ whose respective domains X and X ′ and
respective ranges Y and Y ′ satisfy X ∩ X ′ = ∅ and Y ∩ Y ′ = ∅, one has

Pr
[

P ←$ Pn : P � Q′
∣

∣ P � Q
] = 1

(N − q)q ′
.

When two sets A and B are disjoint, we denote A � B their (disjoint) union.
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Fig. 3. The r -round generalized Even–Mansour cipher.

Vector Space F
n
2. We denote F2 � {0, 1} the field with two elements, and F

n
2 the vector

space of dimension n overF2. Given two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

in F
n
2, we denote x · y = ∑n

i=1 xi yi mod 2 the inner product of x and y. The general
linear group of degree n over F2, i.e., the set of all automorphisms (linear bijective
mappings) of F

n
2, will be denoted GL(n). Given Γ ∈ GL(n), we denote Γ ∗ the adjoint

of Γ , i.e., the unique automorphism satisfying x · Γ (y) = Γ ∗(x) · y for all x, y ∈ F
n
2.

2.2. The Generalized Even–Mansour Cipher

Fix integers n, r, m, � ≥ 1. Let φ : {1, . . . , r} → {1, . . . , m} be an arbitrary function,
and γ = (γ0, . . . , γr ) be a (r + 1)-tuple of functions from {0, 1}� to {0, 1}n . The r -
round generalized Even–Mansour construction EM[n, r, m, �, φ, γ ] specifies, from any
m-tuple P = (P1, . . . , Pm) of permutations on {0, 1}n , a block cipher with message
space {0, 1}n and key space {0, 1}�, simply denoted EMP in the following (parameters
[n, r, m, �, φ, γ ] are implicit and will always be clear from the context), which maps a
plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}� to the ciphertext defined by (see Fig. 3):

EMP(K , x) = γr (K )⊕ Pφ(r)(γr−1(K )⊕ Pφ(r−1)(· · · Pφ(2)(γ1(K )

⊕Pφ(1)(γ0(K )⊕ x)) · · · )).

We denote EMP
K : x �→ EMP(K , x) the Even–Mansour cipher instantiated with key K

(hence, syntactically, EMP
K is a permutation on {0, 1}n).

For example,AES-128 is a generalizedEven–Mansour cipherwheren = 128, r = 10,
m = 2, � = 128, the function φ is defined by φ(i) = 1 for i = 1, . . . , 9 and φ(10) = 2,
each key derivation function γi is a 128-bit (nonlinear for i ≥ 1) permutation, and the
two permutations P1 and P2 are defined as:

P1 = MixColumns ◦ ShiftRows ◦ SubBytes
P2 = ShiftRows ◦ SubBytes.

All previous work about the indistinguishability of the Even–Mansour cipher [5,8,
26,31] considered the case where all permutations and all round keys are independent,
namely m = r , φ is the identity function, � = (r + 1)n, and γi simply selects the i-th
n-bit string of K = (k0, . . . , kr ).
In the following, we will focus in particular on two special cases:
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– the case where permutations are independent and the same n-bit key k is used at
each round, namely m = r , φ is the identity function, � = n, and all γi ’s are the
identity function, in which case we will simply denote EMIP[n, r ] the resulting
construction. Hence, for an r -tuple of permutations P = (P1, . . . , Pr ), the block
cipher EMIPP maps a plaintext x ∈ {0, 1}n and a key k ∈ {0, 1}n to the ciphertext
defined by:

EMIPP(k, x) = k ⊕ Pr (k ⊕ Pr−1(· · · P2(k ⊕ P1(k ⊕ x)) · · · )).

– the case where a single permutation P is used at each round, namely m = 1 and
φ(i) = 1 for i = 1, . . . , r , in which case we will simply denote EMSP[n, r, �, γ ]
the resulting construction. Hence, for a permutation P , the block cipher EMSPP

maps a plaintext x ∈ {0, 1}n and a key K ∈ {0, 1}� to the ciphertext defined by:

EMSPP (K , x)=γr (K )⊕ P(γr−1(K )⊕P(· · · P(γ1(K )⊕ P(γ0(K )⊕ x)) · · · )).

When additionally � = n (namely the master key-length is equal to the block
length), we overload the notation and simply denote EMSP[n, r, γ ] the resulting
construction.

2.3. Security Definition

To study the indistinguishability of the generalized Even–Mansour cipher (in the random
permutation model), we consider a distinguisher D which interacts with a set of m + 1
permutation oracles on n bits that we denote generically (P0, P1 . . . , Pm) = (P0, P).
The goal of D is to distinguish whether it is interacting with (EMP

K , P), where P =
(P1, . . . , Pm) are random and independent permutations and K is randomly chosen
from {0, 1}� (we will informally refer to this case as the “real” world), or with (E, P),
where E is a random n-bit permutation independent fromP (the “ideal” world). Note that
in the latter case the distinguisher is simply interacting with m + 1 independent random
permutations. We sometimes refer to the first permutation P0 as the outer permutation,
and to permutations P1, . . . , Pm as the inner permutations. The distinguisher is adaptive,
and can make both forward and backward queries to each permutation oracle, which
corresponds to the notion of adaptive chosen-plaintext and ciphertext security (CCA).
We consider computationally unbounded distinguishers, and we assume wlog that the
distinguisher is deterministic and never makes useless queries (whichmeans that it never
repeats a query, nor makes a query P−1i (y) if it received y as the answer to a previous
query Pi (x), or vice-versa).
The distinguishing advantage of D is defined as

Adv(D) =
∣

∣

∣Pr
[

DEMP
K ,P = 1

]

− Pr
[

DE,P = 1
]∣

∣

∣ ,

where the first probability is taken over the random choice of K and P, and the second
probability is taken over the random choice of E and P. We recall that, even though this
is not apparent from the notation, the distinguisher can make both forward and backward
queries to each permutation oracle.
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For qe, qp nonnegative integers, we define the insecurity of the ideal7 Generalized
Even–Mansour cipher with parameters (n, r, m, �, φ, γ ) as:

AdvccaEM[n,r,m,�,φ,γ ](qe, qp) = max
D

Adv(D),

where the maximum is taken over all distinguishers D making exactly qe queries to
the outer permutation and exactly qp queries to each inner permutation. The notation is
adapted naturally for the two special cases EMIP and EMSP defined in Sect. 2.2.

2.4. The H-Coefficient Technique

We give here all the necessary background on the H-coefficient technique [8,30] that
we will use throughout this paper.

Transcript All the information gathered by the distinguisher when interacting with the
system of m + 1 permutations can be summarized in what we call the transcript of
the interaction, which is the ordered list of queries and answers received from the sys-
tem (i, b, z, z′), where i ∈ {0, . . . , m} names the permutation being queried, b is a bit
indicating whether this is a forward or backward query, z ∈ {0, 1}n is the actual value
queried and z′ the answer. We say that a transcript is attainable (with respect to some
fixed distinguisher D) if there exists a tuple of permutations (P0, . . . , Pm) ∈ (Pn)m+1
such that the interaction of D with (P0, . . . , Pm) yields this transcript (said otherwise,
the probability to obtain this transcript in the “ideal” world is nonzero). In fact, an attain-
able transcript can be represented in a more convenient way that we will use in all the
following. Namely, from the transcript we can build m + 1 lists of directionless queries

QE = ((x1, y1), . . . , (xqe , yqe )),

QP1 = ((u1,1, v1,1), . . . , (u1,qp , v1,qp )),

...

QPm = ((um,1, vm,1), . . . , (um,qp , vm,qp ))

as follows. For j = 1, . . . , qe, let (0, b, z, z′) be the j-th query to P0 in the transcript:
if this was a forward query then we set x j = z and y j = z′, otherwise we set x j = z′
and y j = z. Similarly, for each i = 1, . . . , m, and j = 1, . . . , qp , let (i, b, z, z′) be the
j-th query to Pi in the transcript: if this was a forward query then we set ui, j = z and
vi, j = z′, otherwise we set ui, j = z′ and vi, j = z. A moment of thinking should make
it clear that for attainable transcripts there is a one-to-one mapping between these two
representations. (Essentially this follows from the fact that the distinguisher is deter-
ministic). Moreover, though we defined QE ,QP1 , . . . ,QPm as ordered lists, the order
is unimportant (our formalization keeps the natural order induced by the distinguisher).
For convenience, and following [8], we will be generous with the distinguisher by

providing it, at the end of its interaction, with the actual key K when it is interacting with
(EMP

K , P), or with a dummy key K selected uniformly at random when it is interacting

7By ideal,wemean that this insecuritymeasure is defined in the randompermutationmodel for P1, . . . , Pm .
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with (E, P). This is without loss of generality since the distinguisher is free to ignore this
additional information. Hence, all in all a transcript τ is a tuple (QE ,QP1 , . . . ,QPm , K ).
We refer to (QE ,QP1 , . . . ,QPm ) (without the key) as the permutation transcript, and
we say that a transcript τ is attainable if the corresponding permutation transcript is
attainable. We denote T the set of attainable transcripts. (Thus T depends on D, as
the notion of attainability depends on D.) In all the following, we denote Tre, resp. Tid,
the probability distribution of the transcript τ induced by the real world, resp. the ideal
world (note that these two probability distributions depend on the distinguisher). By
extension, we use the same notation to denote a random variable distributed according
to each distribution.

Main Lemma In order to upper bound the advantage of the distinguisher, we will repeat-
edly use the following strategy: we will partition the set of attainable transcripts T into
a set of “good” transcripts T1 such that the probabilities to obtain some transcript τ ∈ T1
are close in the real and in the ideal world, and a set T2 of “bad” transcripts such that
the probability to obtain any τ ∈ T2 is small in the ideal world. More precisely, we will
use the following result.

Lemma 1. Fix a distinguisherD. Let T = T1�T2 be a partition of the set of attainable
transcripts. Assume that there exists ε1 such that for any τ ∈ T1, one has8

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that

Pr[Tid ∈ T2] ≤ ε2.

Then, Adv(D) ≤ ε1 + ε2.

Proof. The proof is standard, but we sketch it here for completeness. Since the distin-
guisher’s output is a (deterministic) function of the transcript, its distinguishing advan-
tage is upper bounded by the statistical distance between Tid and Tre, namely

Adv(D) ≤ ‖Tre − Tid‖def= 1

2

∑

τ∈T
|Pr[Tre = τ ] − Pr[Tid = τ ]| .

Moreover, we have:

‖Tre − Tid‖ =
∑

τ∈T
Pr[Tid=τ ]>Pr[Tre=τ ]

(Pr[Tid = τ ] − Pr[Tre = τ ])

=
∑

τ∈T
Pr[Tid=τ ]>Pr[Tre=τ ]

Pr[Tid = τ ]
(

1− Pr[Tre = τ ]
Pr[Tid = τ ]

)

8Recall that for an attainable transcript, one has Pr[Tid = τ ] > 0.
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≤
∑

τ∈T1
Pr[Tid = τ ]ε1 +

∑

τ∈T2
Pr[Tid = τ ]

≤ ε1 + ε2.

�

The ratio Pr[Tre = τ ]/Pr[Tid = τ ] takes a particularly simple form for the Even–
Mansour cipher. (This is one of the reasons why we append the key K at the end of the
transcript; otherwise, the ratio would take a more cumbersome form.)

Lemma 2. Let τ = (QE ,QP1 , . . . ,QPm , K ) ∈ T be an attainable transcript. Let

p(τ )
def= Pr

[

P1, . . . , Pm ←$ Pn : EMP1,...,Pm
K � QE

∣

∣

∣ (P1 � QP1) ∧ · · · ∧ (Pm � QPm )
]

.

Then

Pr[Tre = τ ]
Pr[Tid = τ ] = (N )qe · p(τ ).

Proof. One can easily check that the interaction of the distinguisher with any set of
permutations (P0, P1, . . . , Pm) produces permutation transcript (QE ,QP1 , . . . ,QPm )

iff

(P0 � QE ) ∧ (P1 � QP1) ∧ · · · ∧ (Pm � QPm ).

In the ideal world, the distinguisher interacts with (E, P1, . . . , Pm) where E is indepen-
dent from P1, . . . Pm , and the (dummy) key K is uniformly random and independent
from the permutations. It follows easily that

Pr[Tid = τ ] = 1

2�
× 1

(N )qe

×
(

1

(N )qp

)m

.

In the real world, the distinguisher interacts with (EMP1,...,Pm
K , P1, . . . , Pm), where the

key K is uniformly random and independent from (P1, . . . , Pm). It easily follows that

Pr[Tre = τ ] = 1

2�
×
(

1

(N )qp

)m

×Pr
[

P1, . . . , Pm ←$ Pn : EMP1,...,Pm
K � QE

∣

∣

∣ (P1 � QP1) ∧ · · · ∧ (Pm � QPm )
]

,

hence the result. �
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2.5. A Useful Lemma

We prove a lemma that will be useful throughout the paper.

Lemma 3. Let N , a, b, c, d be positive integers such that c+d = 2b and 2a+2b ≤ N.
Then

(N )a(N − 2b)a

(N − c)a(N − d)a
≥ 1− 4ab2

N 2 .

Proof. Assume wlog that c ≥ d. Note that this implies c ≥ b. Then:

(N )a(N − 2b)a

(N − c)a(N − d)a
= (N )a(N − 2b)a

((N − b)a)2
× ((N − b)a)2

(N − c)a(N − d)a

=
N−b
∏

i=N−a−b+1

(i + b)(i − b)

i2
×

N−b
∏

i=N−a−b+1

i2

(i − c + b)(i − d + b)

=
N−b
∏

i=N−a−b+1

(

1− b2

i2

)

×
N−b
∏

i=N−a−b+1

i2

(i − (c − b))(i + (c − b))
︸ ︷︷ ︸

≥1

≥
(

1− b2

(N − a − b + 1)2

)a

≥ 1− 4ab2

N 2 ,

where for the last inequality we used a + b ≤ N/2. �

3. A Sum-Capture Theorem

In this section, we prove a variant of previous “sum-capture” results [3,22,32]. Infor-
mally, such results typically state that when choosing a random subset A of Z

n
2 (or more

generally any abelian group) of size q, the value

μ(A) = max
U,V⊆Zn

2|U |=|V |=q

|{(a, u, v) ∈ A ×U × V : a = u ⊕ v}|

is close to its expected value q3/N (if A, U, V were chosen at random), except with
negligible probability. Here, we prove a result of this type for the setting where A arises
from the interaction of an adversary with a random permutation P , namely A = {x⊕ y :
(x, y) ∈ Q}, where Q is the transcript of the interaction between the adversary and P .
In fact our result is even more general, the special case just mentioned corresponding to
Γ being the identity in the theorem below.
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Theorem 1. Fix an automorphism Γ ∈ GL(n). Let P be a uniformly random permuta-
tion of {0, 1}n, and let A be some probabilistic algorithm making exactly q (two-sided)
adaptive queries to P. Let Q = ((x1, y1), . . . , (xq , yq)) denote the transcript of the
interaction of A with P. For any two subsets U and V of {0, 1}n, let

μ(Q, U, V ) = |{((x, y), u, v) ∈ Q×U × V : x ⊕ u = Γ (y ⊕ v)}|.

Then, assuming 25n ≤ q ≤ N/2, one has

Pr
P,ω

[

∃U, V ⊆ {0, 1}n : μ(Q, U, V )≥q|U ||V |
N

+2q2√|U ||V |
N

+5√nq|U ||V |
]

≤ 2

N
,

where the probability is taken over the random choice of P and the random coins ω of
A.

Proof. The theorem follows directly from Lemmas 4 and 6 that are proven below. �

A Reminder on Fourier Analysis We start by introducing some notation and recalling
some classical results on Fourier analysis over the abelian group Z

n
2. In the following,

given a subset S ⊂ {0, 1}n , we denote 1S : {0, 1}n → {0, 1} the characteristic functions
of S, namely 1S(x) = 1 if x ∈ S and 1S(x) = 0 if x /∈ S. Given two functions
f, g : {0, 1}n → R, we denote

〈 f, g〉 = E[ f g] = 1

N

∑

x∈{0,1}n
f (x)g(x)

the inner product of f and g, and, for all x ∈ {0, 1}n , we denote

( f ∗ g)(x) =
∑

y∈{0,1}n
f (y)g(x ⊕ y)

the convolution of f and g. Given α ∈ {0, 1}n , we denote χα : {0, 1}n → {±1} the
character associated with α defined as

χα(x) = (−1)α·x .

The all-one character χ0 is called the principal character. All other characters χ �= 1
corresponding to α �= 0 are called non-principal characters. The set of all characters
forms a group for the pointwise product operation (χαχβ)(x) = χα(x)χβ(x) and one
has χαχβ = χα⊕β .
Given a function f : {0, 1}n → R and α ∈ {0, 1}n , the Fourier coefficient of f

corresponding to α is

̂f (α)
def=〈 f, χα〉 = 1

N

∑

x∈{0,1}n
f (x)(−1)α·x .
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The coefficient corresponding to α = 0 is called the principal Fourier coefficient, all the
other ones are called non-principal Fourier coefficients. Note that for a set S ⊆ {0, 1}n
one has

̂1S(0) = |S|
N

,

namely the principal Fourier coefficient of 1S is equal to the relative size of the set.
We will also use the following three classical results, holding for any functions f, g, :
{0, 1}n → R, any α ∈ {0, 1}n , and any S ⊆ {0, 1}n :

∑

x∈{0,1}n
f (x)g(x) = N

∑

α∈{0,1}n
̂f (α)ĝ(α) (3)

̂( f ∗ g)(α) = N ̂f (α)ĝ(α) (4)
∑

α∈{0,1}n
|̂1S(α)|2 = |S|

N
. (5)

First Step: the Cauchy–Schwarz Trick As a preliminary step toward proving Theorem 1,
we start by relating the quantity μ(Q, U, V ) with the maximal amplitude of (a subset
of) non-principal Fourier coefficients of the characteristic function ̂1Q of the set Q =
((x1, y1), . . . , (xq , yq)) seen as a subset of {0, 1}2n . This part is adapted from Babai [3,
Section 4] and Steinberger [32], but in our setting we have to work over the product
group Z

n
2 × Z

n
2 (in particular, Lemma 4 is the analogue of Theorem 4.1 in [3], which

was independently rediscovered by Steinberger [32]). In the following, we let, for any
α, β ∈ {0, 1}n , α �= 0, β �= 0,

Φα,β(Q)
def=N 2

∣

∣̂1Q(α, β)
∣

∣ =
∣

∣

∣

∣

∣

∣

∑

(x,y)∈Q
(−1)α·x⊕β·y

∣

∣

∣

∣

∣

∣

Φ(Q)
def= max

α �=0,β �=0Φα,β(Q).

Lemma 4. For any subsets U and V of {0, 1}n, one has

μ(Q, U, V ) ≤ q|U ||V |
N

+Φ(Q)
√|U ||V |.

Proof. In the following, we denote

W = U × V = {(u, v) : u ∈ U, v ∈ V }
K = {(Γ (k), k) : k ∈ {0, 1}n}.

Since ((x, y), u, v) ∈ Q×U ×V satisfies x⊕u = Γ (y⊕v) iff there exists k ∈ {0, 1}n
such that

(x, y)⊕ (u, v) = (Γ (k), k),
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it follows that we have

μ(Q, U, V ) =
∑

(x,y)∈({0,1}n)2

(u,v)∈({0,1}n)2

1Q(x, y)1W (u, v)1K (x ⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

1Q(x, y)
∑

(u,v)∈({0,1}n)2

1W (u, v)1K (x ⊕ u, y ⊕ v)

=
∑

(x,y)∈({0,1}n)2

1Q(x, y)(1W ∗ 1K )(x, y)

= N 2
∑

(α,β)∈({0,1}n)2

̂1Q(α, β) ̂(1W ∗ 1K )(α, β) (by (3))

= N 4
∑

(α,β)∈({0,1}n)2

̂1Q(α, β)̂1W (α, β)̂1K (α, β) (by (4)).

Separating the principal Fourier coefficient from non-principal ones in the last equality
above, we get

μ(Q, U, V ) = N 4 |Q|
N 2

|W |
N 2

|K |
N 2 + N 4

∑

(α,β) �=(0,0)

̂1Q(α, β)̂1W (α, β)̂1K (α, β)

= q|U ||V |
N

+ N 4
∑

(α,β) �=(0,0)

̂1Q(α, β)̂1W (α, β)̂1K (α, β). (6)

[We note that equality (6) holds in fact for any abelian group G and any fixed, non-
necessarily linear, permutation Γ : G → G, replacing the summation over (α, β) �=
(0, 0) by the summation over all non-principal characters of the product group G ×G.]
Moreover, we have

̂1W (α, β) = 1

N 2

∑

(u,v)∈({0,1}n)2

1W (u, v)(−1)α·u⊕β·v

= 1

N 2

∑

(u,v)∈({0,1}n)2

1U (u)1V (v)(−1)α·u⊕β·v

= 1

N 2

⎛

⎝

∑

u∈{0,1}n
1U (u)(−1)α·u

⎞

⎠

⎛

⎝

∑

v∈{0,1}n
1V (v)(−1)β·v

⎞

⎠

= ̂1U (α)̂1V (β),

and

̂1K (α, β) = 1

N 2

∑

(x,y)∈({0,1}n)2

1K (x, y)(−1)α·x⊕β·y

= 1

N 2

∑

y∈{0,1}n
(−1)α·Γ (y)⊕β·y
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= 1

N 2

∑

y∈{0,1}n
(−1)Γ ∗(α)·y⊕β·y

= 0 if β �= Γ ∗(α)

1

N
if β = Γ ∗(α).

Then, injecting the two observations in (6), we obtain

μ(Q, U, V ) = q|U ||V |
N

+ N 3
∑

α �=0
̂1Q(α, Γ ∗(α))̂1U (α)̂1V (Γ ∗(α))

≤ q|U ||V |
N

+ N 3
∑

α �=0

∣

∣̂1Q(α, Γ ∗(α))
∣

∣ · ∣∣̂1U (α)
∣

∣ · ∣∣̂1V (Γ ∗(α))
∣

∣

≤ q|U ||V |
N

+ NΦ(Q)
∑

α �=0

∣

∣̂1U (α)
∣

∣ · ∣∣̂1V (Γ ∗(α))
∣

∣ ,

where the last inequality follows by noting that |̂1Q(α, Γ ∗(α))| ≤ Φ(Q)/N 2 for any
α �= 0 (by definition of Φ(Q)). By Cauchy–Schwarz,

∑

α �=0

∣

∣̂1U (α)
∣

∣ · ∣∣̂1V (Γ ∗(α))
∣

∣ ≤
√

∑

α∈{0,1}n
|̂1U (α)|2

√

∑

α∈{0,1}n
|̂1V (Γ ∗(α))|2 = 1

N

√|U ||V |,

where the last equality follows from (5), so that we finally obtain

μ(Q, U, V ) ≤ q|U ||V |
N

+Φ(Q)
√|U ||V |.

�

Upper Bounding Non-Principal Fourier Coefficients Having established Lemma 4, it
remains to find an upper bound on Φ(Q) holding with high probability over the random
choice of P and the random coins of the adversary. For this, we will need the following
extension of the Chernoff bound to “moderately dependent” random variables.

Lemma 5. Let 0 ≤ ε ≤ 1/2, and let A = (Ai )1≤i≤q be a sequence of random
variables taking values in {±1}. Assume that for any 1 ≤ i ≤ q and any sequence
(a1, . . . , ai−1) ∈ {±1}i−1, one has

Pr
[

Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . ai−1)
] ≤ 1

2
+ ε.

Then, for any δ ∈ [0, 1], one has

Pr

[ q
∑

i=1
Ai ≥ q(2ε + δ)

]

≤ e−
qδ2

12 .
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Proof. Let B = (Bi )1≤i≤q be independent and identically distributed random variables
such that

Pr[Bi = 1] = 1

2
+ ε and Pr[Bi = −1] = 1

2
− ε.

We first show that for any r , we have

Pr

[ q
∑

i=1
Ai ≥ r

]

≤ Pr

[ q
∑

i=1
Bi ≥ r

]

. (7)

We prove this with a coupling-like argument. Let Ber p denote the ±1 Bernoulli distri-
bution of parameter p (which takes value 1 with probability p and −1 with probability
1 − p). Consider the following sampling process (we assume ε < 1/2 here, but this is
wlog since the lemma trivially holds for ε = 1/2):

for i = 1 to q do
p ← Pr

[

Ai = 1 | (A1, . . . , Ai−1) = (u1, . . . ui−1)
]

ui ← Ber p

if ui = 1 then
vi ← 1

else
p′ ← 1/2+ε−p

1−p
vi ← Ber p′

return ((u1, . . . , uq), (v1, . . . , vq))

Then clearly (u1, . . . , uq) ∼ A. Moreover, (v1, . . . , vq) ∼ B. Indeed, for any i =
1, . . . , q, and any sequence (v1, . . . , vi−1) ∈ {±1}i−1, one has

Pr[vi = 1|(v1, . . . , vi−1)] = p + p′(1− p) = 1

2
+ ε.

Note that during the sampling process, ui = 1 implies vi = 1, so that for any r ,

q
∑

i=1
ui ≥ r �⇒

q
∑

i=1
vi ≥ r,

which implies (7).
Fix now δ ∈ [0, 1], and let (B ′i )1≤i≤q be defined as

B ′i =
1+ Bi

2
,

so that

Pr[B ′i = 1] = 1

2
+ ε and Pr[B ′i = 0] = 1

2
− ε.
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Let m = E(
∑q

i=1 B ′i ) = q(1/2 + ε). Then, the Chernoff bound asserts that for any
0 ≤ δ′ ≤ 1, one has

Pr

[ q
∑

i=1
B ′i ≥ (1+ δ′)m

]

≤ e
−mδ′2

3 .

Substituting δ′ = qδ
2m = δ

1+2ε in the inequality above yields (note that δ ∈ [0, 1] ⇒ δ′ ∈
[0, 1])

Pr

[ q
∑

i=1
Bi ≥ q(2ε + δ)

]

= Pr

[ q
∑

i=1
B ′i ≥

(

1+ qδ

2m

)

m

]

≤ e−
q2δ2

12m ≤ e−
qδ2

12 .

which combined with (7) concludes the proof. �

We are now ready to prove an adequate upper bound on Φ(Q).

Lemma 6. Assume that 25n ≤ q ≤ N/2. Fix an adversary A making q queries to
a random permutation P. Let Q denote the transcript of the interaction of A with P.
Then

Pr
P,ω

[

Φ(Q) ≥ 2q2

N
+ 5
√

nq

]

≤ 2

N
,

where the probability is taken over the random choice of P and the random coins ω of
A.

Proof. In all this proof, Pr[·] denotes PrP,ω[·]. Fix α, β ∈ {0, 1}n , α �= 0 and β �= 0.
LettingQ = ((x1, y1), . . . , (xq , yq)) following the natural ordering of the queries ofA,
we define the sequence of random variables (Ai )1≤i≤q where Ai = (−1)α·xi⊕β·yi . Then
Φα,β(Q) = |∑q

i=1 Ai |. In order to apply Lemma 5, we will show that for 1 ≤ i ≤ q,
and any sequence (a1, . . . , ai−1) ∈ {±1}i−1, we have

pi
def= Pr

[

Ai = 1 | (A1, . . . , Ai−1) = (a1, . . . , ai−1)
] ≤ 1

2
+ q

N
. (8)

Assume that the i th query of the adversary to P is a forward query xi . Note that the
answer yi is distributed uniformly at random on a set of size N − i + 1. Also notice
that, once xi is fixed, there are exactly N/2 yi ’s such that Ai = (−1)α·xi⊕β·yi = 1 since
β �= 0. Similarly, if the i th query is a backward query yi , then the answer xi is distributed
uniformly at random on a set of size N − i + 1, and once yi is fixed, there are exactly
N/2 xi ’s such that Ai = (−1)α·xi⊕β·yi = 1 since α �= 0. Hence, we have that

pi ≤ N/2

N − i + 1
≤ N

2(N − q)
= 1

2
+ q

2(N − q)
≤ 1

2
+ q

N
.
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We can now apply Lemma 5 with ε = q/N and we obtain, for any δ ∈ [0, 1],

Pr

[ q
∑

i=1
Ai ≥ 2q2

N
+ qδ

]

≤ e−
qδ2

12 .

Defining A′i = −Ai , and applying exactly the same reasoning, we obtain

Pr

[ q
∑

i=1
Ai ≤ −

(

2q2

N
+ qδ

)

]

≤ e−
qδ2

12 .

Since Φα,β(Q) = |∑q
i=1 Ai |, by a union bound we obtain

Pr

[

Φα,β(Q) ≥ 2q2

N
+ qδ

]

≤ 2e−
qδ2

12 .

Note that this holds for any α �= 0 and β �= 0. Hence, by a union bound over all pairs
(α, β) and choosing δ = √(36 ln N )/q (which, assuming q ≥ 25n, implies δ ≤ 1), we
finally obtain, using

√
36 ln 2 ≤ 5,

Pr
P,ω

[

Φ(Q) ≥ 2q2

N
+ 5
√

nq

]

≤ 2N 2e−
qδ2

12 ≤ 2

N
.

�

4. Slide Attacks Against the Even–Mansour Cipher

4.1. Slide Attack for Identical Round Keys and Identical Permutations

Consider the r -round Even–Mansour cipher with a single permutation P and identical
round keys, which we simply denote EMP

k here. We show that there is a slide attack
against this cipherwith query and time complexityO(2n/2), independently of the number
r of rounds. This attack works as follows (we describe a distinguishing attack where the
adversary D interacts with a pair of permutations (E, P), and must distinguish whether
E is truly random, or whether this is EMP

k for a random key k):

1. Fix a nonzero c ∈ {0, 1}n and two subsets X , U ⊂ {0, 1}n such that |X | = |U | =
2

n
2 and

X ⊕U = {x ⊕ u : x ∈ X, u ∈ U } = {0, 1}n .

(For example, X consists of all strings whose last n/2 bits are zero, and U consists
of all strings whose first n/2 bits are zero.)
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2. D makes queries

– E(x) and E(x ⊕ c) for x ∈ X
– P(u) and P(u ⊕ c) for u ∈ U

3. Using the responses to the above queries, D further makes queries

– E(P(u)) and E(P(u ⊕ c)) for u ∈ U
– P(E(x)) and P(E(x ⊕ c)) for x ∈ X

4. If there are x∗ ∈ X and u∗ ∈ U such that

P(E(x∗))⊕ E(P(u∗)) = P(E(x∗ ⊕ c))⊕ E(P(u∗ ⊕ c)) = x∗ ⊕ u∗ (9)

then D outputs 1. Otherwise, D outputs 0.

The numbers of E-queries and P-queries required for this attack are both at most
22+ n

2 (there might be redundant queries). Moreover, this attack can easily be turned into
a key-recovery attack, the key guess of the adversary being k = x∗ ⊕ u∗ for (x∗, u∗)
satisfying Eq. (9).
Let us analyze the success probability of this attack.WhenD is interactingwith the real

world (EMP
k , P), then it always outputs 1 since the pair (x∗, u∗) such that x∗ ⊕ u∗ = k,

where k is the secret key, necessarily satisfies Eq. (9). This can easily be seen for example
from the following “commutativity” property, holding for all x ∈ {0, 1}n :

k ⊕ P(EMP
k (x)) = EMP

k (P(k ⊕ x)).

On the other hand, suppose that E is a random permutation that is independent of P .
We will show that the probability of finding (x∗, u∗) satisfying (9) is small. Fix any pair
(x, u) ∈ X ×U . For any tuple (y, y′, v, v′) of n-bit values such that y �= y′ and v �= v′,
we define

p(y, y′, v, v′)def= Pr

[

(x, u) satisfies (9)

∣

∣

∣

∣

E(x) = y ∧ E(x ⊕ c) = y′
P(u) = v ∧ P(u ⊕ c) = v′

]

= Pr

[

P(y)⊕ E(v) = P(y′)⊕ E(v′) = x ⊕ u

∣

∣

∣

∣

E(x) = y ∧ E(x ⊕ c) = y′
P(u) = v ∧ P(u ⊕ c) = v′

]

.

In order to upper bound p(y, y′, v, v′), we distinguish the following four cases:

1. If (y /∈ {u, u⊕ c} or v /∈ {x, x ⊕ c}) and (y′ /∈ {u, u⊕ c} or v′ /∈ {x, x ⊕ c}), then

p(y, y′, v, v′) ≤ 1

(N − 2)(N − 3)
.

2. If (y ∈ {u, u ⊕ c} and v ∈ {x, x ⊕ c}) and (y′ /∈ {u, u ⊕ c} or v′ /∈ {x, x ⊕ c}),
then

p(y, y′, v, v′) ≤ 1

(N − 2)
.
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3. If (y /∈ {u, u ⊕ c} or v /∈ {x, x ⊕ c}) and (y′ ∈ {u, u ⊕ c} and v′ ∈ {x, x ⊕ c}),
then

p(y, y′, v, v′) ≤ 1

(N − 2)
.

4. If y ∈ {u, u ⊕ c}, v ∈ {x, x ⊕ c}, y′ ∈ {u, u ⊕ c}, and v′ ∈ {x, x ⊕ c}, then

p(y, y′, v, v′) ≤ 1.

It remains to upper bound the number of tuples (y, y′, v, v′) for each case, andwe obtain:

Pr [(x, u) satisfies (9)] ≤ 1

N 2(N − 1)2
∑

(y,y′,v,v′)
p(y, y′, v, v′)

≤ 1

N 2(N − 1)2

⎛

⎜

⎜

⎝

N 2(N − 1)2

(N − 2)(N − 3)
︸ ︷︷ ︸

case 1

+2 · 4(N − 1)2

N − 2
︸ ︷︷ ︸

cases 2&3

+ 4
︸︷︷︸

case 4

⎞

⎟

⎟

⎠

≤ 1

(N − 2)(N − 3)
+ 8

N 2(N − 2)
+ 4

N 2(N − 1)2
.

Summing over (x, u) ∈ X ×U , we finally obtain

Pr[∃(x, u) satisfying (9)]≤ N

(N − 2)(N − 3)
+ 8

N (N − 2)
+ 4

N (N − 1)2
=O

(

1

N

)

.

Hence, when interacting with the ideal world,D outputs 1 with probability close to zero
for large N . Thus, we just proved the following theorem.

Theorem 2. Consider the r-round iterated Even–Mansour construction with a single
permutation and identical round keys EMSP[n, r, � = n, γ = Id]. Then, there exists a
distinguishing attack against this cipher which makes at most 22+ n

2 queries both to the
outer and to the inner permutation, and which has a distinguishing advantage 1−O( 1

N ).

4.2. Extension to Key-Schedules Based on Xoring Constants for Two Rounds

We show that the slide attack of the previous section can be extended to the single-
permutation two-round Even–Mansour cipher with a very basic key-schedule, namely
when the three round keys are derived as ki = k⊕ ti , where k is the n-bit master key and
(t0, t1, t2) are three (public) n-bit constants. The distinguisher, interacting with a pair of
permutations (E, P), proceeds as follows:

1. Fix a nonzero c ∈ {0, 1}n and two subsets X , U ⊂ {0, 1}n such that |X | = |U | =
2

n
2 and

X ⊕U = {x ⊕ u : x ∈ X, u ∈ U } = {0, 1}n .
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(For example, X consists of all strings whose last n/2 bits are zero, and U consists
of all strings whose first n/2 bits are zero.)

2. D makes queries

– E(x) and E(x ⊕ c) for x ∈ X
– P(u) and P(u ⊕ c) for u ∈ U

3. Using the responses to the above queries, D further makes queries

– E(t0 ⊕ t1 ⊕ P(u)) and E(t0 ⊕ t1 ⊕ P(u ⊕ c)) for u ∈ U
– P(t1 ⊕ t2 ⊕ E(x)) and P(t1 ⊕ t2 ⊕ E(x ⊕ c)) for x ∈ X

4. If there are x∗ ∈ X and u∗ ∈ U such that

{

P(t1 ⊕ t2 ⊕ E(x∗))⊕ E(t0 ⊕ t1 ⊕ P(u∗)) = t0 ⊕ t2 ⊕ x∗ ⊕ u∗
P(t1 ⊕ t2 ⊕ E(x∗ ⊕ c))⊕ E(t0 ⊕ t1 ⊕ P(u∗ ⊕ c)) = t0 ⊕ t2 ⊕ x∗ ⊕ u∗

(10)
then D outputs 1. Otherwise, D outputs 0.

The numbers of E-queries and P-queries required for this attack are both at most
22+ n

2 (there might be redundant queries). Moreover, this attack can easily be turned into
a key-recovery attack, the key guess of the adversary being k = t0⊕ x∗⊕u∗ for (x∗, u∗)
satisfying conditions (10).
Let us analyze the success probability of this attack. When D is interacting with the

real world (EMP
k , P), then it always outputs 1 since the pair (x∗, u∗) such that x∗⊕u∗ =

k ⊕ t0, where k is the secret master key, necessarily satisfies conditions (10). This can
easily be seen for example from the following “commutativity” property, holding for all
x ∈ {0, 1}n :

k ⊕ t2 ⊕ P(t1 ⊕ t2 ⊕ EMP
k (x)) = EMP

k (t0 ⊕ t1 ⊕ P(k ⊕ t0 ⊕ x)).

When the distinguisher is interacting with the ideal world (E, P), where E is a random
permutation that is independent from P , then if we set P ′ = t0 ⊕ t1 ⊕ P and E ′ =
t1 ⊕ t2 ⊕ E , Eq. (10) simplifies into Eq. (9) with E and P replaced by E ′ and P ′, so
that we can use exactly the same analysis as for the original attack of Sect. 4.1. Hence
D outputs 1 with probability O( 1

N ). Thus, we have the following theorem.

Theorem 3. Consider the two-round Even–Mansour construction EMSP[n, 2, � =
n, γ ] with a single permutation and round keys ki derived from the n-bit master key
k as γi (k) = k ⊕ ti , for publicly specified constants (t0, t1, t2). Then, there exists a
distinguishing attack against this cipher which makes at most 22+ n

2 queries both to the
outer and to the inner permutation, and which has a distinguishing advantage 1−O( 1

N ).
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5. Security Proof for Independent Permutations and Identical Round Keys

5.1. Statement of the Result and Discussion

In this section, we study the security of the two-round Even–Mansour construction with
two independent permutations and identical round keys EMIP[n, 2] (depicted in Fig. 4).
More precisely, we prove the following theorem.

Theorem 4. (Independent permutations and identical round keys) Consider the two-
round Even–Mansour cipher with independent permutations and identical round keys
EMIP[n, 2]. Assume that n ≥ 11, qe ≥ 25n, qp ≥ 25n, and 2qe + 2qp ≤ N. Then, the
following upper bounds hold:

(i) When qe ≤ 2
n
4 , one has

AdvccaEMIP[n,2](qe, qp) ≤ 6qeqp

N
. (11)

(ii) When 2
n
4 ≤ qe ≤ 2

2n
3 , one has

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ (13+ 15

√
n)

(

qeq5
p

N 4

) 1
5

. (12)

(iii) When 2
2n
3 ≤ qe ≤ 2

3n
4 , one has

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ (13+ 15

√
n)

q2
e qp

N 2 . (13)

(iv) When qe ≥ 2
3n
4 , one has,

AdvccaEMIP[n,2](qe, qp) ≤ 1

eN
+ nq2

p

N
. (14)

Discussion Before proceeding to the proof, we discuss Theorem 4. As is clear from the
form of the theorem, we can identify four “regimes” for the security bound depending
on qe. The “low qe” regime corresponds to qe ≤ 2

n
4 , where the security bound is

given by (11), which is, up to constant terms, exactly the same bound as for the one-
round Even–Mansour cipher [12,15]. There are two “medium qe” regimes, derived with
the same analysis but where two different terms dominate the security bound, which

Fig. 4. The two-round Even–Mansour cipher with independent permutations and identical round keys.
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correspond, respectively, to 2
n
4 ≤ qe ≤ 2

2n
3 , where the security bound is given by (12),

and 2
2n
3 ≤ qe ≤ 2

3n
4 where the security bound is given by (13). Finally, the “large qe”

regime corresponds to qe ≥ 2
3n
4 , where the security bound is given by (14) and caps at

qp = 2
n
2 . See Fig. 2 in Sect. 1 where the security bound is plotted in the (qe, qp) plane.

If we put a global upper bound on the total number of queries of the adversary by

letting q = max(qe, qp), then, assuming q ≤ 2
2n
3 , the second upper bound of Theorem 4

simplifies into

AdvccaEMIP[n,2](q, q) ≤ 6

N
+ (13+ 15

√
n)

(

q6

N 4

)
1
5

≤ 6

2n
+ 13q

2
2n
3

+ 15q

2
2n
3 − 1

2 log2 n
.

Hence, security is ensured up toO(2
2n
3 − 1

2 log2 n) = ˜O(2
2n
3 ) total queries of the adversary.

The remaining of this section is devoted to the proof of Theorem 4.

5.2. Definition and Probability of Bad Transcripts

Following the general methodology outlined in Sect. 2.4, our first task will be to define
the set T2 of bad transcripts τ = (QE ,QP1 ,QP2 , k), with |QE | = qe and |QP1 | =
|QP2 | = qp. Informally, a transcript is bad if the key creates “chains” in the permutation
transcript. The formal definition follows.

Definition 1. (Bad transcript, independent permutations case) We say that a transcript
τ = (QE ,QP1 ,QP2 , k) ∈ T is bad if

k ∈ BadK =
⋃

1≤i≤3
BadKi

where:

k ∈ BadK1 ⇔ k = x ⊕ u1 = v2 ⊕ y for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2

k ∈ BadK2 ⇔ k = x ⊕ u1 = v1 ⊕ u2 for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2

k ∈ BadK3 ⇔ k = v1 ⊕ u2 = v2 ⊕ y for some (x, y) ∈ QE , (u1, v1) ∈ QP1 , (u2, v2) ∈ QP2 .

Otherwise, τ is said good. We denote T2 the set of bad transcripts, and T1 = T \ T2 the
set of good transcripts.

We first upper bound the probability of obtaining a bad transcript in the ideal world.

Lemma 7. Depending on (qe, qp), the following upper bounds hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ 2qeqp

N
.
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(ii) When 25n ≤ qe ≤ N/2 and 25n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 6

N
+ 2q2

e qp + 3qeq2
p + 4q2

p
√

qeqp

N 2 + 15qp
√

nqe

N
.

(iii) For qe = N and any integer qp, one has, assuming n ≥ 11,

Pr[Tid ∈ T2] ≤ 1

eN
+ nq2

p

N
.

Proof. Note that in the ideal world, sets BadK1, BadK2 and BadK3 only depend on
the random permutations E , P1, and P2, and not on the key k, which is drawn uniformly
at random at the end of the interaction of the distinguisher with (E, P1, P2). Hence, for
any C > 0, we can write

Pr[Tid ∈ T2] ≤ Pr
[

E, P1, P2 ←$ Pn : |BadK| ≥ C
]+ C

N
. (15)

With this observation at hand, we first prove (i). Note that one always has, independently
of E , P1, and P2,

|BadK| ≤ |{x ⊕ u1 : (x, y) ∈ QE , (u1, v1) ∈ QP1}|
+ |{v2 ⊕ y : (x, y) ∈ QE , (u2, v2) ∈ QP2}|
≤ 2qeqp.

The first upper bound follows by (15) with C = 2qeqp.
We then prove the more complex upper bound of (i i), using the sum-capture theorem

of Sect. 3. Given a permutation transcript (QE ,QP1 ,QP2), let:

X = {x ∈ {0, 1}n : (x, y) ∈ QE }, Y = {y ∈ {0, 1}n : (x, y) ∈ QE },
U1 = {u1 ∈ {0, 1}n : (u1, v1) ∈ QP1}, V1 = {v1 ∈ {0, 1}n : (u1, v1) ∈ QP1},
U2 = {u2 ∈ {0, 1}n : (u2, v2) ∈ QP2}, V2 = {v2 ∈ {0, 1}n : (u2, v2) ∈ QP2}

denote the domains and ranges of QE , QP1 , and QP2 , respectively. Then, one has

|BadK1| ≤ μ(QE , U1, V2)
def=|{((x, y), u1, v2) ∈ QE ×U1 × V2 : x ⊕ u1 = v2 ⊕ y}|

|BadK2| ≤ μ(QP1, X, U2)
def=|{((u1, v1), x, u2) ∈ QP1 × X ×U2 : x ⊕ u1 = v1 ⊕ u2}|

|BadK3| ≤ μ(QP2 , V1, Y )
def=|{((u2, v2), v1, y) ∈ QP2 × V1 × Y : v1 ⊕ u2 = v2 ⊕ y}|.

We can now use Theorem 1 (with Γ the identity mapping) to upper bound |BadKi | for
i = 1, 2, 3, with high probability (note that in order to apply this theorem to upper bound,
say, |BadK1|, we consider the combination of the distinguisher D and permutations
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P1 and P2 as a probabilistic adversary A interacting with permutation E , resulting in
transcript QE ). We obtain that for

C1 =
qeq2

p

N
+ 2q2

e qp

N
+ 5qp

√
nqe

C2 = C3 =
qeq2

p

N
+ 2q2

p
√

qeqp

N
+ 5qp

√
nqe,

one has Pr[E, P1, P2 ←$ Pn : |BadKi | ≥ Ci ] ≤ 2/N for each i = 1, 2, 3. Apply-
ing (15) with C = C1 + C2 + C3 completes the proof of (i i).
It remains to prove (i i i). Hence, we assume now that qe = N , so that QE simply

consists of all pairs (x, E(x)) for x ∈ {0, 1}n . It is easy to see that one always has,
independently of E , P1, and P2,

|BadK2 ∪ BadK3| ≤ |{v1 ⊕ u2 : (u1, v1) ∈ QP1, (u2, v2) ∈ QP2}| ≤ q2
p.

In order to upper bound |BadK1|, we consider the maximummultiplicity of the multiset

W = {x ⊕ E(x) : x ∈ {0, 1}n}.

For any integer d ≥ 1, the probability that one finds an element of multiplicity at least
d in W over the random choice of E ∈ Pn is upper bounded by

N

(

N

d

)

(N − d)!
N ! = N

d! ≤
N

e

( e

d

)d
.

If there is no element of multiplicity d or more in W , then the size of BadK1 is upper
bounded by (d − 1)q2

p. Hence, if we set d = n and C = q2
p + (n − 1)q2

p = nq2
p, we

obtain that

Pr
[

E, P1, P2 ←$ Pn : |BadK| ≥ C
] ≤ N

e

( e

n

)n ≤ 1

eN
,

where for the last inequality we used that n ≥ 11 ≥ 4e. By (15), this completes the
proof of (i i i). �

5.3. Good Transcripts and Their Properties

In the second stage of the proof, we show that for any good transcript τ , the ratio between
the probabilities to obtain τ in the ideal world and the real world is close to 1.

Lemma 8. Fix any good transcript τ ∈ T1. Then, depending on qe and qp, the following
lower bounds hold:
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(i) For any integers qe and qp such that 2qe + 2qp ≤ N, one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− 4qeq2

p

N 2 .

(ii) For qe = N and any integer qp, one has

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1.

Proof. Fix a good transcript τ = (QE ,QP1 ,QP2 , k) ∈ T1. In the following, we let:

p(τ )
def= Pr

[

P1, P2 ←$ Pn : EMIPP1,P2
k � QE

∣

∣

∣ (P1 � QP1) ∧ (P2 � QP2)
]

,

so that, by Lemma 2,
Pr[Tre = τ ]
Pr[Tid = τ ] = (N )qe · p(τ ). (16)

Hence, we nowhave to lower boundp(τ ). First, wemodify the inner permutations P1, P2
and the transcript in order to “get rid” of the key k. For this, we define:

P ′1 = P1 ⊕ k

P ′2 = P2 ⊕ k

Q′E = {(x ⊕ k, y) : (x, y) ∈ QE }
Q′P1 = {(u1, v1 ⊕ k) : (u1, v1) ∈ QP1}
Q′P2 = {(u2, v2 ⊕ k) : (u2, v2) ∈ QP2}.

Then, one clearly has:

p(τ ) = Pr
[

P ′1, P ′2 ←$ Pn : P ′2 ◦ P ′1 � Q′E
∣

∣ (P ′1 � Q′P1) ∧ (P ′2 � Q′P2)
]

.

Let:

X = {x ′ ∈ {0, 1}n : (x ′, y′) ∈ Q′E }, Y = {y′ ∈ {0, 1}n : (x ′, y′) ∈ Q′E },
U1 = {u′1 ∈ {0, 1}n : (u′1, v′1) ∈ Q′P1}, V1 = {v′1 ∈ {0, 1}n : (u′1, v′1) ∈ Q′P1},
U2 = {u′2 ∈ {0, 1}n : (u′2, v′2) ∈ Q′P2}, V2 = {v′2 ∈ {0, 1}n : (u′2, v′2) ∈ Q′P2}

denote the domains and ranges of Q′E , Q′P1 , and Q′P2 , respectively. We also define
α1 = |V2 ∩Y | and α2 = |X ∩U1|. We can now rewrite the fact that τ is good as follows
(see Fig. 5):

k /∈ BadK1 ⇔ Q′E (X ∩U1) is disjoint from V2⇔(Q′E )−1(V2 ∩ Y ) is disjoint from U1

k /∈ BadK2 ⇔ Q′P1(X ∩U1) is disjoint from U2

k /∈ BadK3 ⇔ (Q′P2)
−1(V2 ∩ Y ) is disjoint from V1.
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Fig. 5. Graphical help for the proof of Lemma 8. X and Y are of size qe , while U1, V1, U2, and V2 are of size
qp . The red zones are of size α1 and the green zones of size α2.

To see why the first equivalence holds, note that:

Q′E (X ∩U1) ∩ V2 �= ∅
⇔ x ′=u′1 and y′=v′2 for some (x ′, y′) ∈ Q′E , (u′1, v′1) ∈ Q′P1, and (u′2, v′2) ∈ Q′P2
⇔ k=x ⊕ u1 and k=v2 ⊕ y for some (x, y)∈QE , (u1, v1)∈QP1, and (u2, v2)∈QP2

⇔ k ∈ BadK1.

The other cases are proved similarly.
This allowsus to lower boundp(τ ) as follows.LetE1 denote the event that P ′1(x ′) = u′2

for each of the α1 pairs of queries
(

(x ′, y′), (u′2, v′2)
) ∈ Q′E×Q′P2 such that y′ = v′2 (red

arrow in Fig. 5). Similarly, let E2 be the event that P ′2(v′1) = y′ for each of the α2 pairs
of queries

(

(x ′, y′), (u′1, v′1)
) ∈ Q′E × Q′P1 such that x ′ = u′1 (green arrow in Fig. 5).

Since P ′2 ◦ P ′1 � Q′E implies E1 and E2, we have

p(τ ) = Pr
[

P ′1, P ′2 ←$ Pn : (P ′2 ◦ P ′1 � Q′E ) ∧ E1 ∧ E2
∣

∣(P ′1 � Q′P1) ∧ (P ′2 � Q′P2)
]

= Pr
[

P ′1, P ′2 ←$ Pn : P ′2 ◦ P ′1 � Q′E
∣

∣(P ′1 � Q′P1) ∧ (P ′2 � Q′P2) ∧ E1 ∧ E2
]

× Pr
[

P ′1, P ′2 ←$ Pn : E1 ∧ E2
∣

∣(P ′1 � Q′P1) ∧ (P ′2 � Q′P2)
]

. (17)

Moreover, since (Q′E )−1(V2 ∩ Y ) is disjoint from U1 and (Q′P2)
−1(V2 ∩ Y ) is disjoint

from V1, we have

Pr
[

P ′1 ←$ Pn : E1
∣

∣P ′1 � Q′P1
] = 1

(N − qp)α1
.
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Similarly, since Q′P1(X ∩U1) is disjoint from U2 and Q′E (X ∩U1) is disjoint from V2,
we have

Pr
[

P ′2 ←$ Pn : E2
∣

∣P ′2 � Q′P2
] = 1

(N − qp)α2
.

Hence,

Pr
[

P ′1, P ′2 ←$ Pn : E1 ∧ E2
∣

∣(P ′1 � Q′P1) ∧ (P ′2 � Q′P2)
] = 1

(N − qp)α1 · (N − qp)α2
.

(18)
Let α = α1 + α2. Conditioned on event (P ′1 � Q′P1) ∧ (P ′2 � Q′P2) ∧ E1 ∧ E2, P ′1 is

fixed on qp + α1 points, P ′2 is fixed on qp + α2 points, and P ′2 ◦ P ′1 agrees with Q′E on
α pairs (x ′, y′). It remains to lower bound the probability p∗ that P ′2 ◦ P ′1 completes the
remaining qe − α evaluations needed to extend Q′E , namely

p∗ = Pr
[

P ′1, P ′2 ←$ Pn : P ′2 ◦ P ′1 � Q′E
∣

∣(P ′1 � Q′P1) ∧ (P ′2 � Q′P2) ∧ E1 ∧ E2
]

.

Let S1, resp. T1, be the set of points for which P ′1, resp. (P ′1)−1, has not been determined.
More formally:

S1 = {0, 1}n \ (U1 � (Q′E )−1(V2 ∩ Y ))

T1 = {0, 1}n \ (V1 � (Q′P2)
−1(V2 ∩ Y )).

Similarly, let S2, resp. T2, be the set of points for which P ′2, resp. (P ′2)−1, has not been
determined. More formally:

S2 = {0, 1}n \ (U2 �Q′P1(X ∩U1))

T2 = {0, 1}n \ (V2 �Q′E (X ∩U1).

Let also

X ′ = X ∩ S1 = X \ (U1 � (Q′E )−1(V2 ∩ Y ))

Y ′ = Y ∩ T2 = Y \ (V2 �Q′E (X ∩U1)).

Then, p∗ is exactly the probability, over the choice of two random bijections P ′1 : S1 →
T1 and P ′2 : S2 → T2, that P ′2 ◦ P ′1(x ′) = y′ for each (x ′, y′) ∈ Q′E such that x ′ ∈ X ′
and y′ ∈ Y ′. We now lower bound p∗.

Note that |X ′| = |Y ′| = qe − α. Choose a set W ⊆ {0, 1}n \ (V1 ∪U2) of size qe − α

(note that N − 2qp ≥ qe − α by the assumption that 2qe + 2qp ≤ N ) and a bijection
F : X ′ → W . The number of possibilities for the pair (W, F) is at least

(

N − 2qp

qe − α

)

(qe − α)! = (N − 2qp)qe−α.
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For each choice of (W, F), the probability that random bijections P ′1 : S1 → T1 and

P ′2 : S2 → T2, satisfy:

(1) P ′1(x ′) = F(x ′) for each x ′ ∈ X ′,
(2) P ′2 ◦ P ′1(x ′) = y′ for each (x ′, y′) ∈ Q′E such that x ′ ∈ X ′ and y′ ∈ Y ′

is exactly

1

(N − qp − α1)qe−α(N − qp − α2)qe−α

,

since condition (1) fixes qe − α distinct equations on P ′1 and condition (2) fixes qe − α

distinct equations on P ′2. Hence, summing over all the possibilities for the pair (W, F),
we obtain

p∗ ≥ (N − 2qp)qe−α

(N − qp − α1)qe−α(N − qp − α2)qe−α

. (19)

Gathering (16), (17), (18), and (19) finally yields:

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(N )qe (N − 2qp)qe−α

(N − qp)α1(N − qp − α1)qe−α(N − qp)α2(N − qp − α2)qe−α

= (N )qe(N − 2qp)qe−α

(N − qp)qe−α2(N − qp)qe−α1

. (20)

Note that we did not use any assumptions on qe and qp until now, so that (20) holds for
any parameters (assuming good transcripts exist at all). We now complete the proof by
considering two cases. We first prove (i), under the assumption that 2qe + 2qp ≤ N .
From (20), we have

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

(N )qe (N − 2qp)qe

(N − qp)qe(N − qp)qe

× (N − qp − qe + α2)α2(N − qp − qe + α1)α1

(N − 2qp − qe + α)α
︸ ︷︷ ︸

≥1

≥ (N )qe(N − 2qp)qe

((N − qp)qe)
2

≥ 1− 4qeq2
p

N 2 ,

where for the last inequality we used Lemma 3 with a = qe and b = c = d = qp, and
the assumption that 2qe + 2qp ≤ N .
We then consider the case where qe = N . Clearly, U1 ⊆ X and V2 ⊆ Y since

X = Y = {0, 1}n in that case, so that α1 = α2 = qp and α = 2qp. Hence, (20) now
becomes

Pr[Tre = τ ]
Pr[Tid = τ ] ≥

N !(N − 2qp)!
((N − qp)!)2 ≥ 1.
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This shows (i i) and concludes the proof. �

5.4. Concluding the Proof of Theorem 4

We are now ready to complete the proof of Theorem 4.

Proof (of Theorem 4). The theorem directly follows by combining the H-coefficient
Lemma (Lemma 1) with the adequate parts of Lemmas 7 and 8. First, if we combine
Lemma 7 (i) and Lemma 8 (i), we obtain

AdvccaEMIP[n,2](qe, qp) ≤ 2qeqp

N
+ 4qeq2

p

N 2 ≤ 6qeqp

N
,

which proves (i).
If we now combine Lemma 7 (i i) (noting that the assumption 2qe+2qp ≤ N implies

that qe ≤ N/2 and qp ≤ N/2, as needed) and Lemma 8 (i), we obtain

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ 2q2

e qp + 7qeq2
p + 4q2

p
√

qeqp

N 2 + 15qp
√

nqe

N
.

Letting α = log2 qe, this upper bound can be rewritten

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ 2qp

22n−2α + 7

(

qp

2n− α
2

)2

+ 4

(

qp

2
4n−α
5

) 5
2 + 15

√
n

qp

2n− α
2
.

From this inequality, we prove (i i) and (i i i). We start with (i i). Since (12) trivially
holds when qeq5

p > N 4, we can assume qeq5
p ≤ N 4. One can easily check that when

n
4 ≤ α ≤ 2n

3 ,
4n−α
5 ≤ n − α

2 ≤ 2n − 2α. Hence, when 2
n
4 ≤ qe ≤ 2

2n
3 and qeq5

p ≤ N 4,
one has

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ 2qp

2
4n−α
5

+ 7

(

qp

2
4n−α
5

)2

+ 4

(

qp

2
4n−α
5

) 5
2 + 15

√
n

qp

2
4n−α
5

≤ 6

N
+ (13+ 15

√
n)

(

qeq5
p

N 4

) 1
5

,

completing the proof of (i i).We then prove (i i i). Since (13) trivially holds when q2
e qp >

N 2, we can assume q2
e qp ≤ N 2. One can check that when 2n

3 ≤ α ≤ 3n
4 , 2n − 2α ≤

n − α
2 ≤ 4n−α

5 . Hence, when 2
2n
3 ≤ qe ≤ 2

3n
4 and q2

e qp ≤ N 2, one has

AdvccaEMIP[n,2](qe, qp) ≤ 6

N
+ 2qp

22n−2α + 7
( qp

22n−2α
)2 + 4

( qp

22n−2α
) 5

2 + 15
√

n
qp

22n−2α

≤ 6

N
+ (13+ 15

√
n)

q2
e qp

N 2 ,
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Fig. 6. The two-round Even–Mansour cipher with a single permutation and an arbitrary key-schedule.

proving (i i i).
Finally, (iv) directly follows from combining Lemma 7 (i i i) and Lemma 8 (i i).

Lemma 7 (i i i) was proved for qe = N , but the resulting upper bound holds in fact for
any qe since the advantage can obviously only increase with qe. �

6. Security Proof for the Single-Permutation Case

6.1. Statement of the Result and Discussion

In this section, we study the security of the two-round Even–Mansour construction
where a single permutation P is used instead of two independent permutations, namely
EMSP[n, r, �, γ ] (depicted in Fig. 6). By the results of Sect. 4, we know that we cannot
simply use the same n-bit key k at each round if we aim at proving security beyond
the birthday bound, so that some non-trivial key-schedule γ = (γ0, γ1, γ2), with γi :
{0, 1}� → {0, 1}n , is needed (we remain as general as possible whenwe can, andwe only
specify the key-length and the key-schedule when needed). Given a key K ∈ {0, 1}�,
we denote k0 = γ0(K ), k1 = γ1(K ), and k2 = γ2(K ), so that:

EMSPP
K (x) = P(P(x ⊕ k0)⊕ k1)⊕ k2.

Our main result deals with the case where � = n, namely the master key-length is
equal to the block length (and hence to the round keys length). We treat the (simpler)
cases where the three round keys are independent, or derived from two independent
n-bit keys, respectively, in “Appendices A and B”. First, we specify conditions on the
key-schedule that will allow us to upper bound the probability to obtain a bad transcript
in the ideal world (the definition of bad transcripts will be given later).

Definition 2. (Good key-schedule) For� = n,we say that a key-scheduleγ = (γ0, γ1, γ2),
where γi : {0, 1}n → {0, 1}n , is good if it satisfies the following conditions:

(i) γ0, γ1, γ2 ∈ GL(n) (i.e., each γi is a linear bijective map of F
n
2);

(ii) γ0 ⊕ γ1 ∈ GL(n) and γ1 ⊕ γ2 ∈ GL(n);
(iii) γ0 ⊕ γ1 ⊕ γ2 is a permutation over {0, 1}n (non-necessarily linear over F

n
2).
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A simple way to build a good key-schedule is to take for γ0 and γ2 the identity, and
γ1 = π , where π is a linear orthomorphism of F

n
2 (recall that a permutation π of {0, 1}n

is an orthomorphism if x �→ x ⊕ π(x) is also a permutation), so that the sequence
of round keys is (k, π(k), k). We give two simple examples of linear orthomorphisms
which are attractive from an implementation point of view:

– When n is even, and k = (kL , kR) where kL and kR are, respectively, the left and
right halves of k, then

π : (kL , kR) �→ (kR, kL ⊕ kR)

is a linear orthomorphism.
– Fix an irreducible polynomial p of degree n over F2 and identify F

n
2 and the exten-

sion field F2n defined by p in the canonical way. Then, for any c ∈ F2n \ {0, 1},
k �→ c  k (where  denotes the extension field multiplication) is a linear ortho-
morphism.

The main result of this paper if the following security bound for the two-round Even–
Mansour construction with a single permutation and an n-bit master key.

Theorem 5. (Single permutation andnon-independent roundkeys)Consider the single-
permutation two-round Even–Mansour cipher EMSP[n, 2, γ ] with n-bit master key-
length and a good key-schedule γ (see Definition 2). Assume that n ≥ 9, qe ≥ 25n,
qp ≥ 25n, and 4qe + 2qp ≤ N. Then, the following upper bounds hold:

(i) When qe ≤ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 23

N
1
3

+ 16qeqp

N
. (21)

(ii) When qe ≥ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 10

N
+ (23+ 10

√
n)

qe

N
2
3

+ (39+ 15
√

n)
qp

N
2
3

. (22)

Discussion Before giving the proof, we discuss Theorem 5. There are two “regimes”.
The “low qe” regime corresponds to qe ≤ 2

n
3 , where the security bound is given by (21),

which is, up to constant terms, exactly the same bound as for the one-round Even–
Mansour cipher [12,15] and the two-round Even–Mansour cipher with independent
permutations [see Theorem 4, Eq. (11)]. The “medium qe” regime corresponds to 2

n
3 ≤

qe ≤ 2
2n
3 , where the security bound is given by (22), which caps at qp = 2

2n
3 . Note that

contrarily to Theorem 4 for the case of independent permutations, the bound becomes

vacuous for qe > 2
2n
3 . Inspection of the proof shows that the annoying terms appear

when analyzing good transcripts (Lemma 10), and we currently do not know how to

extend the bound when qe > 2
2n
3 . See Fig. 2 in Sect. 1 where the security bound is

plotted in the (qe, qp) plane.
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Letting q = max(qe, qp), and assuming q ≤ N
2
3 , the second upper bound of Theo-

rem 5 simplifies into

AdvccaEMSP[n,2,γ ](q, q) ≤ 10

N
+ 62q

N
2
3

+ 25
√

n
q

N
2
3

= 10

2n
+ 62q

2
2n
3

+ 25q

2
2n
3 − 1

2 log2 n
.

Hence, security is ensured up toO(2
2n
3 − 1

2 log2 n) = ˜O(2
2n
3 ) total queries of the adversary.

The remaining subsections are devoted to the proof of Theorem 5.

6.2. Definition and Probability of Bad Transcripts

Let τ = (QE ,QP , K ), with |QE | = qe, |QP | = qp, and K ∈ {0, 1}� be an attainable
transcript. As previously, we start by defining the set of bad transcripts. (The definition
holds independently of the master key-length �.) In all the following, we let

M = qe

N
1
3

.

Definition 3. (Bad transcript, single-permutation case) We say that a transcript τ =
(QE ,QP , K ) ∈ T is bad if

K ∈ BadK =
⋃

1≤i≤10
BadKi

where

K ∈ BadK1 ⇔ k0 = x ⊕ u and k2 = v′ ⊕ y for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP

K ∈ BadK2 ⇔ k0 = x ⊕ u and k1 = v ⊕ u′ for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP

K ∈ BadK3 ⇔ k1 = v ⊕ u′ and k2 = v′ ⊕ y for some (x, y) ∈ QE and (u, v), (u′, v′) ∈ QP

K ∈ BadK4 ⇔ k0 = x ⊕ u and k0 ⊕ k1 = v ⊕ x ′ for some (x, y), (x ′, y′) ∈ QE , (u, v) ∈ QP

K ∈ BadK5 ⇔ k1 ⊕ k2 = y′ ⊕ u and k2 = v ⊕ y for some (x, y), (x ′, y′) ∈ QE , (u, v) ∈ QP

K ∈ BadK6 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x ⊕ u = k0}| > M

3

K ∈ BadK7 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : v ⊕ y = k2}| > M

3

K ∈ BadK8 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : x ⊕ v = k0 ⊕ k1}| > M

3

K ∈ BadK9 ⇔ |{((x, y), (u, v)) ∈ QE ×QP : u ⊕ y = k1 ⊕ k2}| > M

3
K ∈ BadK10 ⇔

∣

∣

{(

(x, y), (x ′, y′)
) ∈ QE ×QE : x ⊕ y′ = k0 ⊕ k1 ⊕ k2

}∣

∣ > M.

Otherwise τ is said good. We denote T2 the set of bad transcripts, and T1 = T \ T2 the
set of good transcripts.

We start by upper bounding the probability to obtain a bad transcript in the ideal world
when the master key-length is n and the key-schedule is good. We treat the (simpler)
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cases where the three round keys are independent, or derived from two independent n-bit
keys, respectively, in “Appendices A and B”.

Lemma 9. Let � = n and γ = (γ0, γ1, γ2) be a good key-schedule. The following
upper bounds hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ q2
e + 4qeqp

N
.

(ii) When 25n ≤ qe ≤ N/2 and 25n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 10

N
+ 4q2

e qp + 7qeq2
p + 4q2

p
√

qeqp

N 2

+15qp
√

nqe + 10qe
√

nqp

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations E and
P , and not on the key k, which is drawn uniformly at random at the end of the interaction
of the distinguisher with (E, P). Hence, for any C > 0, we can write

Pr[Tid ∈ T2] ≤ Pr
[

E, P ←$ Pn : |BadK| ≥ C
]+ C

N
. (23)

With this observation at hand, we first prove (i). Note that

K ∈
7
⋃

i=1
BadKi ⇒ k0 = x ⊕ u for some (x, y) ∈ QE and (u, v) ∈ QP

or k2 = v ⊕ y for some (x, y) ∈ QE and (u, v) ∈ QP .

Hence, since γ0, γ1, and γ2 are permutations of {0, 1}n , one always has, independently
of E and P ,

∣

∣

∣

∣

∣

7
⋃

i=1
BadKi

∣

∣

∣

∣

∣

≤ |{x ⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }| + |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|

≤ 2qeqp.

Similarly,

K ∈ BadK8 ⇒ k0 ⊕ k1 = x ⊕ v for some (x, y) ∈ QE and (u, v) ∈ QP ,

K ∈ BadK9 ⇒ k1 ⊕ k2 = u ⊕ y for some (x, y) ∈ QE and (u, v) ∈ QP ,

K ∈ BadK10 ⇒ k0 ⊕ k1 ⊕ k2 = x ⊕ y′ for some (x, y), (x ′, y′) ∈ QE .
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Hence, since γ0⊕ γ1, γ1⊕ γ2, and γ0⊕ γ1⊕ γ2 are permutations of {0, 1}n , one always
has

|BadK8| ≤ |{x ⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ qeqp,

|BadK9| ≤ |{u ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ qeqp,

|BadK10| ≤
∣

∣{x ⊕ y′ : (x, y), (x ′, y′) ∈ QE }
∣

∣ ≤ q2
e .

The first bound follows by (23) with C = 4qeqp + q2
e .

We then prove the more complex upper bound of (i i). Again, the size of BadKi for
i = 6 to 10 can be upper bounded independently of E, P . Indeed, since γ0, γ2, γ0⊕ γ1,
γ1 ⊕ γ2, and γ0 ⊕ γ1 ⊕ γ2 are all permutations of {0, 1}n , one always has

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤ 3qeqp

M
,

|BadK10| ≤ q2
e

M
.

On the other hand, in order to upper bound |BadKi | for i = 1 to 5, we now appeal to
the sum-capture theorem of Sect. 3. For a permutation transcript (QE ,QP ), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE }, Y = {y ∈ {0, 1}n : (x, y) ∈ QE },
U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then, one has

|BadK1| ≤ μ(QE , U, V )
def=|{((x, y), u, v) ∈ QE ×U × V : x ⊕ u = γ0 ◦ γ−12 (y ⊕ v)}|

|BadK2| ≤ μ(QP , X, U )
def=|{((u, v), x, u′) ∈ QP × X ×U : x ⊕ u = γ0 ◦ γ−11 (v ⊕ u′)}|

|BadK3| ≤ μ(QP , V, Y )
def=|{((u′, v′), v, y) ∈ QP × V × Y : v ⊕ u′ = γ1 ◦ γ−12 (v′ ⊕ y)}|

|BadK4| ≤ μ(QP , X, X)
def=|{((u, v), x, x ′) ∈ QP × X × X : x ⊕ u

= γ0 ◦ (γ0 ⊕ γ1)
−1(v ⊕ x ′)}|

|BadK5| ≤ μ(QP , Y, Y )
def=|{((u, v), y, y′) ∈ QP × Y × Y : y′ ⊕ u

= (γ1 ⊕ γ2) ◦ γ−12 (v ⊕ y)}|.

By our assumption that the key-schedule is good, we have that γ0 ◦ γ−12 , γ0 ◦ γ−11 ,
γ1 ◦ γ−12 , γ0 ◦ (γ0 ⊕ γ1)

−1, and γ0 ◦ (γ0 ⊕ γ1)
−1 are all automorphisms of F

n
2. Hence,

we can apply Theorem 1 (note that in order to apply this theorem to upper bound, say,
|BadK1|, we consider the combination of the distinguisher D and permutation P as a
probabilistic adversary A interacting with permutation E , resulting in transcript QE ).
Thus, if we set

C1 =
qeq2

p

N
+ 2q2

e qp

N
+ 5qp

√
nqe
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C2 = C3 =
qeq2

p

N
+ 2q2

p
√

qeqp

N
+ 5qp

√
nqe

C4 = C5 = q2
e qp

N
+ 2qeq2

p

N
+ 5qe

√
nqp,

one has Pr[E, P ←$ Pn : |BadKi | ≥ Ci ] ≤ 2/N for each i = 1 to 5. Applying (23)
with

C =
5
∑

i=1
Ci + q2

e + 12qeqp

M

= 4q2
e qp + 7qeq2

p + 4q2
p
√

qeqp

N
+ 15qp

√
nqe + 10qe

√
nqp + N

1
3 (qe + 12qp)

completes the proof of (i i). �

6.3. Good Transcripts and Their Properties

It remains to show that for any good transcript τ , the ratio between the probabilities to
obtain τ in the ideal world and the real world is close to 1. The following lemma holds
independently of the master key-length �.

Lemma 10. Assume that n ≥ 9 and 4qe + 2qp ≤ N. Let τ = (QE ,QP , K ) ∈ T1 be
a good transcript. Then

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− ε1,

where

ε1 = 4qe(qe + qp)
2

N 2 + 2q2
e

N
4
3

+ 16qe

N
2
3

.

Proof. Fix a good transcript τ = (QE ,QP , K ) ∈ T1. In the following, we let:

p(τ )
def= Pr

[

P ←$ Pn : EMSPP
K � QE

∣

∣

∣P � QP

]

,

so that, by Lemma 2,
Pr[Tre = τ ]
Pr[Tid = τ ] = (N )qe · p(τ ). (24)

Our goal is now to lower bound p(τ ). First, we modify the inner permutation P and the
transcript in order to get rid of the round keys as follows:

P ′ = P ⊕ k1,

Q′E = {(x ⊕ k0, y ⊕ k1 ⊕ k2) : (x, y) ∈ QE } ,
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Q′P = {(u, v ⊕ k1) : (u, v) ∈ QP } .

Then, we have

p(τ ) = Pr
[

P ′ ←$ Pn : P ′ ◦ P ′ � Q′E
∣

∣P ′ � Q′P
]

.

Let

X = {x ′ ∈ {0, 1}n : (x ′, y′) ∈ Q′E }, Y = {y′ ∈ {0, 1}n : (x ′, y′) ∈ Q′E },
U = {u′ ∈ {0, 1}n : (u′, v′) ∈ Q′P }, V = {v′ ∈ {0, 1}n : (u′, v′) ∈ Q′P }

denote the domains and the ranges of Q′E and Q′P , respectively. We also denote α1 =
|Y ∩ V | and α2 = |X ∩ U |. We can now rewrite the fact that the transcript is good as
follows (see Fig. 7):

K /∈ BadK1 ⇔ Q′E (X ∩U ) is disjoint from V ⇔ (Q′E )−1(Y ∩ V ) is disjoint from U

(B.1)

K /∈ BadK2 ⇔ Q′P (X ∩U ) is disjoint from U (B.2)

K /∈ BadK3 ⇔ (Q′P )−1(Y ∩ V ) is disjoint from V (B.3)

K /∈ BadK4 ⇔ Q′P (X ∩U ) is disjoint from X (B.4)

K /∈ BadK5 ⇔ (Q′P )−1(Y ∩ V ) is disjoint from Y (B.5)

K /∈ BadK6 ⇔ α2 = |X ∩U | ≤ M

3
(B.6)

K /∈ BadK7 ⇔ α1 = |Y ∩ V | ≤ M

3
(B.7)

K /∈ BadK8 ⇔ |X ∩ V | ≤ M

3
(B.8)

K /∈ BadK9 ⇔ |Y ∩U | ≤ M

3
(B.9)

K /∈ BadK10 ⇔ |X ∩ Y | ≤ M. (B.10)

LetE1 denote the event that P ′(x ′) = u′ for eachofα1 pairs of queries
(

(x ′, y′), (u′, v′)
) ∈

Q′E × Q′P such that y′ = v′ (red arrows in Fig. 7). Similarly, let E2 be the event that
P ′(v′) = y′ for each of α2 pairs of queries

(

(x ′, y′), (u′, v′)
) ∈ Q′E × Q′P such that

x ′ = u′ (green arrows in Fig. 7). Since P ′ ◦ P ′ � Q′E implies E1 and E2, we have

p(τ ) = Pr
[

P ′ ←$ Pn : (P ′ ◦ P ′ � Q′E ) ∧ E1 ∧ E2
∣

∣P ′ � Q′P
]

= Pr
[

P ′ ←$ Pn : P ′ ◦ P ′ � Q′E
∣

∣(P ′ � Q′P ) ∧ E1 ∧ E2
]

× Pr
[

P ′ ←$ Pn : E1 ∧ E2
∣

∣P ′ � Q′P
]

. (25)

Note that:

1. U , Q′P (X ∩U ), and (Q′E )−1(Y ∩ V ) are pairwise disjoint since:
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Fig. 7. Graphical help for the proof of Lemma 10. X and Y are of size qe , while U and V are of size qp .
The red zones are of size α1, and the green zones of size α2. Conditioning on (P ′ � Q′P ) ∧ E1 ∧ E2, P ′ is
defined on the zones which are colored on the left, while (P ′)−1 is defined on the zones which are colored on
the right.

– U and (Q′E )−1(Y ∩ V ) are disjoint by (B.1),
– U and Q′P (X ∩U ) are disjoint by (B.2),
– (Q′E )−1(Y ∩V ) is contained in X , and X andQ′P (X ∩U ) are disjoint by (B.4);

2. V , Q′E (X ∩U ), and (Q′P )−1(Y ∩ V ) are pairwise disjoint since:

– V and Q′E (X ∩U ) are disjoint by (B.1),
– V and (Q′P )−1(Y ∩ V ) are disjoint by (B.3),
– Q′E (X ∩U ) is contained in Y , and Y and (Q′P )−1(Y ∩ V ) are disjoint by (B.5).

Therefore we have

Pr
[

P ′ ←$ Pn : E1 ∧ E2
∣

∣P ′ � Q′P
] = 1

(N − qp)α1+α2

. (26)

Let α = α1 + α2. Conditioned on event (P ′ � Q′P ) ∧ E1 ∧ E2, P ′ is fixed on qp + α

points, and P ′ ◦ P ′ agrees with Q′E on α pairs (x ′, y′). It remains to lower bound the
probability p∗ that P ′ ◦ P ′ completes the remaining qe−α evaluations needed to extend
Q′E , namely

p∗ = Pr
[

P ′ ←$ Pn : P ′ ◦ P ′ � Q′E
∣

∣(P ′ � Q′P ) ∧ E1 ∧ E2
]

.
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Let S ⊆ {0, 1}n denote the set of points for which P ′ has not been determined, more
formally

S = {0, 1}n \ (U �Q′P (X ∩U ) � (Q′E )−1(Y ∩ V )),

and let T ⊆ {0, 1}n be the set of points for which (P ′)−1 has not been determined, more
formally

T = {0, 1}n \ (V �Q′E (X ∩U ) � (Q′P )−1(Y ∩ V )).

Let also

X ′ = X ∩ S = X \ (U � (Q′E )−1(Y ∩ V ))

Y ′ = Y ∩ T = Y \ (V �Q′E (X ∩U )).

(Note that Q′E (X ′) = Y ′.) Then, p∗ is exactly the probability that P ′ ◦ P ′(x ′) = y′ for
each (x ′, y′) ∈ Q′E such that x ′ ∈ X ′ and y′ ∈ Y ′, over the random choice of bijection
P ′ : S → T . Note that

1. |S| = |T | = N − qp − α;
2. |X ′| = |Y ′| = qe − α;
3. |X ′ ∩ Y ′| ≤ |X ∩ Y | ≤ M by (B.10);
4. |X ′ \ T | ≤ M since

X ′ \ T ⊆ X \ T = X ∩ T

= (X ∩ V ) � (X ∩Q′E (X ∩U )) � (X ∩ (Q′P )−1(Y ∩ V ))

⊆ (X ∩ V ) �Q′E (X ∩U ) � (Q′P )−1(Y ∩ V ),

and |X ∩V |, |X ∩U |, and |Y ∩V | are at most M/3 by resp. (B.8), (B.6), and (B.7);
5. |Y ′ \ S| ≤ M since

Y ′ \ S ⊆ Y \ S = Y ∩ S

= (Y ∩U ) � (Y ∩Q′P (X ∩U )) � (Y ∩ (Q′E )−1(Y ∩ V ))

⊆ (Y ∩U ) �Q′P (X ∩U ) � (Q′E )−1(Y ∩ V ),

and |Y ∩U |, |X ∩U |, and |Y ∩V | are at most M/3 by resp. (B.9), (B.6), and (B.7).

At this point, let us recapitulate the problem of lower bounding p∗. We denote q =
qe − α and q ′ = qp + α.

Problem 1. Let N , q, q ′ be positive integers and M > 0. Let S, T ⊆ {0, 1}n , where
|S| = |T | = N − q ′. Let also X ′ = {x1, . . . , xq} ⊆ S and Y ′ = {y1, . . . , yq} ⊆ T be
sets of size q. Assume that

|X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤ M, (A.1)
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6M ≤ q, (A.2)

4q + 2q ′ ≤ N . (A.3)

Find a lower bound on the probability p∗ that a random bijection P from S to T satisfies
P(P(xi )) = yi for every i = 1, . . . , q. "
We will prove in Lemma 11 the lower bound

p∗ ≥ 1

(N )q

(

1− 12M2

q
− 2q2

M N
− 4q(q + q ′)2

N 2

)

. (27)

Before proving (27), let us finish the proof of Lemma 9. Note that assumptions (A.1),
(A.2), and (A.3) needed to apply (27) are satisfied:

– assumption (A.1) is satisfied since we assume that τ is good;
– α ≤ M by (B.6) and (B.7) since τ is good, andbyour original assumption thatn ≥ 9,
which implies N = 2n ≥ 73,wehave7M ≤ qe, so that 6M ≤ qe−M ≤ qe−α = q,
and hence assumption (A.2) is satisfied;

– by our original assumption that 4qe + 2qp ≤ N , assumption (A.3) is satisfied.

Therefore, combining (24), (25), (26), and (27), we have:

Pr[Tre = τ ]
Pr[Tid = τ ]≥

(N )qe

(N )qe−α(N − qp)α

(

1− 12M2

qe − α
−2(qe − α)2

M N
−4(qe − α)(qe + qp)

2

N 2

)

.

Since

(N )qe

(N )qe−α(N − qp)α
= (N − qe+α)α

(N − qp)α
≥ (N − qe)α

(N )α
≥ 1− qeα

N − α + 1
≥ 1− Mqe

N − M
,

we obtain

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− Mqe

N − M
− 12M2

qe − M
− 2q2

e

M N
− 4qe(qe + qp)

2

N 2 .

Substituting M = qe/N
1
3 , and noting that N − M ≥ N/2 and qe − M ≥ 6qe/7, we

finally obtain

Pr[Tre = τ ]
Pr[Tid = τ ] ≥ 1− 2q2

e

N
4
3

− 7× 12qe

6× N
2
3

− 2qe

N
2
3

− 4qe(qe + qp)
2

N 2 = 1− ε1

where

ε1 = 4qe(qe + qp)
2

N 2 + 2q2
e

N
4
3

+ 16qe

N
2
3

.

This concludes the proof. �
It remains to prove the answer to Problem 1, which we do in the following lemma.
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Fig. 8. Graphical help for the proof of Lemma 11. S and T are of size N − q ′, while X ′ and Y ′ are of size q.
The gray zones X ′ ∩ Y ′, X ′ \ T , and Y ′ \ S are of size at most M . Sets X1, X2, Y1, Y2 are each of size k. The
set W is of size q − 2k.

Lemma 11. Let N , q, q ′ be positive integers and M > 0. Let S, T ⊆ {0, 1}n, where
|S| = |T | = N − q ′. Let also X ′ = {x1, . . . , xq} ⊆ S and Y ′ = {y1, . . . , yq} ⊆ T be
sets of size q. Assume that

|X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤ M, (A.1)

6M ≤ q, (A.2)

4q + 2q ′ ≤ N . (A.3)

Let p∗ be the probability that a random bijection P from S to T satisfies P(P(xi )) = yi

for every i = 1, . . . , q.9 Then

p∗ ≥ 1

(N )q

(

1− 12M2

q
− 2q2

M N
− 4q(q + q ′)2

N 2

)

.

Proof. The reader might find helpful to refer to Fig. 8 along the proof. A simple way
to lower bound p∗ would be to only count bijections P such that P(X ′) ∩ X ′ = ∅.
However, this is not good enough for our purpose since this only yields a q2/N bound.
Hence, we also need to count bijections P such that |P(X ′) ∩ X ′| = k for k in some
sufficiently large range. (Jumping ahead, P(X ′) ∩ X ′ will be X2 in the proof below).

9If P(xi ) /∈ S, then P(P(xi )) is regarded as undefined.
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Let Z ⊆ X ′ be defined as

Z = {xi ∈ X ′ : xi ∈ T ∧ xi /∈ Y ′ ∧ yi ∈ S ∧ yi /∈ X ′}
= X ′ \ (T ∪ Y ′ ∪ {xi ∈ X ′ : yi ∈ Y ′ \ S} ∪ {xi ∈ X ′ : yi ∈ X ′ ∩ Y ′})
= X ′ \ ((X ′ \ T ) ∪ (X ′ ∩ Y ′) ∪ {xi ∈ X ′ : yi ∈ Y ′ \ S} ∪ {xi ∈ X ′ : yi ∈ X ′ ∩ Y ′}).

Let q ′′ = |Z |. Since by assumption (A.1) we have |X ′ ∩ Y ′|, |X ′ \ T |, and |Y ′ \ S| ≤
M , it follows that q ′′ ≥ q − 4#M$ ≥ 2#M$, where the last inequality follows from
assumption (A.2) which implies that 6#M$ ≤ q.
For each 0 ≤ k ≤ M , choose two disjoint subsets X1, X2 ⊂ Z of size k. We will

write

X1 = {xi1 , . . . , xik }
X2 = {xik+1, . . . , xi2k }

X ′ \ (X1 ∪ X2) = {xi2k+1 , . . . , xiq }

where i1 < · · · < ik and ik+1 < · · · < i2k and i2k+1 < · · · < iq . Given (X1, X2),
choose a bijection F : X1 → X2 such that F(X1) = X2. The number of possibilities
for (X1, X2, F) is

(

q ′′

k

)(

q ′′ − k

k

)

k! = (q ′′)2k

k! . (28)

For each pair of sets (X1, X2), let Y1 = {yi1 , . . . , yik } and Y2 = {yik+1 , . . . , yi2k }. For a
fixed pair of sets (X1, X2), we also choose

W ⊂ (S ∩ T ) \ (X ′ ∪ Y ′)

such that |W | = q − 2k. This is possible (i.e., (S ∩ T ) \ (X ′ ∪Y ′) is large enough) since
by assumption (A.3), N ≥ 3q + 2q ′, so that for 0 ≤ k ≤ M we have

|(S ∩ T ) \ (X ′ ∪ Y ′)| ≥ |S ∩ T | − |X ′ ∪ Y ′| ≥ (N − 2q ′)− 2q ≥ q − 2k.

For each choice of W , we also choose a bijection G : X ′ \ (X1 ∪ X2)→ W . Then, the
number of possibilities for the pair (W, G) is at least

(

N − 2q − 2q ′

q − 2k

)

× (q − 2k)! = (N − 2q − 2q ′)q−2k . (29)

For each choice of (X1, X2, F, W, G), the probability that a random bijection P : S →
T satisfies

(1) P(x) = F(x) for each x ∈ X1,
(2) P(x) = G(x) for each x ∈ X ′ \ (X1 ∪ X2),
(3) P(P(xi )) = yi for every i = 1, . . . , q
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is exactly
1

(N − q ′)2q−k
. (30)

To see why this last claim holds, denoteΠ : X ′ → Y ′ the bijection such thatΠ(xi ) = yi

for i = 1, . . . , q. Then, a bijection P : S → T satisfies (1), (2) and (3) above iff (see
also Fig. 8):

(i) P(x) = F(x) for each x ∈ X1, which yields k equations;
(ii) P(x) = G(x) for each x ∈ X ′ \ (X1 ∪ X2), which yields q − 2k additional

equations;
(iii) P(z) = Π(F−1(z)) for each z ∈ X2 (note that X2 ⊆ S), so that P(P(x)) = Π(x)

for each x ∈ X1; this yields k additional equations;
(iv) P(z) = Π(F(Π−1(z))) for each z ∈ Y1 (note that Y1 ⊆ S), so that P(P(x)) =

Π(x) for each x ∈ X2; this yields k additional equations since Y1 ∩ X ′ = ∅;
(v) P(z) = Π(G−1(z)) for each z ∈ W , so that P(P(x)) = Π(x) for each x ∈

X ′ \ (X1 ∪ X2); this yields q − 2k additional equations since W is disjoint from
X ′ ∪ Y1.

In total this amounts to (2q − k) equations, hence the claim. Gathering (28), (29),
and (30), we have

p∗ ≥
∑

0≤k≤M

(q ′′)2k(N − 2q − 2q ′)q−2k

k!(N − q ′)2q−k
.

To study the summation appearing on the right-hand side, we take advantage of the fact
that the summand “looks like” (but is not exactly) the hypergeometric distribution. The
hypergeometric distribution typically applies to sampling without replacement from a
finite populationwhose elements canbe classified into twomutually exclusive categories.
The random variable, parameterized by N , a, and b, counts the number of elements
selected from a certain subset of b “good” elements when a elements are selected from
the universe of N elements without replacement. The probability that exactly k elements
are selected from the subset of b “good” elements is

HypN ,a,b(k) =
(b

k

)(N−b
a−k

)

(N
a

) = (a)k(b)k(N − b)a−k

k!(N )a
,

and the mean of this variable is ab/N . Hence, we write

p∗ ≥ 1

(N )q

∑

0≤k≤M

(q ′′)2k(N )q(N − 2q − 2q ′)q−2k

k!(N − q ′)2q−k
× k!(N − q ′)q

(q)k(q)k(N − q ′ − q)q−k

× HypN−q ′,q,q(k)

= 1

(N )q

∑

0≤k≤M

(q ′′)2k

(q)k(q)k
︸ ︷︷ ︸

A

× (N )q(N − 2q − 2q ′)q−2k

(N − q − q ′)q−k(N − q − q ′)q−k
︸ ︷︷ ︸

B

×HypN−q ′,q,q(k).
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We now lower bound A and B independently of k. For any 0 ≤ k ≤ M , we have, since
q ′′ ≥ q − 4#M$,

A ≥ (q − 4#M$)2k

q2k
=

2k−1
∏

i=0

q − 4#M$ − i

q
≥
(

1− 6#M$
q

)2k

≥ 1− 12#M$2
q

≥ 1− 12M2

q
,

and

B = (N )q(N − 2q − 2q ′)q

(N − q − q ′)q(N − q − q ′)q
× ((N − 2q − q ′ + k)k)

2

(N − 3q − 2q ′ + 2k)2k
︸ ︷︷ ︸

≥1

≥ 1− 4q(q + q ′)2

N 2 ,

where we applied Lemma 3 with a = q, b = q + q ′, c = d = q + q ′ (note that
2a + 2b ≤ N by assumption (A.3)). Hence, we obtain

p∗ ≥ 1

(N )q

(

1− 12M2

q
− 4q(q + q ′)2

N 2

)

∑

0≤k≤M

HypN−q ′,q,q(k).

It remains to lower bound the sum on the right-hand side. Since the mean of the hyper-

geometric distribution HypN−q ′,q,q is q2

N−q ′ , we have

∑

k>M

HypN−q ′,q,q(k) ≤ q2

M(N − q ′)
≤ 2q2

M N

by Markov’s inequality and using the fact that q ′ ≤ N/2 by assumption (A.3). So it
follows that

∑

0≤k≤M

HypN−q ′,q,q(k) ≥ 1− 2q2

M N
,

which completes the proof. �

6.4. Concluding the Proof of Theorem 5

We are now ready to complete the proof of Theorem 5.

Proof (of Theorem 5). We first prove (i). Combining the H-coefficient Lemma
(Lemma 1) with Lemma 9 (i) and Lemma 10, we obtain, under the assumption that

qe ≤ N
1
3 ,

AdvccaEMSP[n,2,γ ](qe, qp) ≤
4q3

e + 8q2
e qp + 4qeq2

p

N 2 + 2q2
e

N
4
3

+ 16qe

N
2
3

+ q2
e + 4qeqp

N
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≤
(

4q3
e

N 2 +
2q2

e

N
4
3

+16qe

N
2
3

+q2
e

N

)

+
(

8q2
e qp + 4qeq2

p

N 2 + 4qeqp

N

)

≤ 23

N
1
3

+ 16qeqp

N
.

To prove (i i), note that it trivially holds when qe > 2
2n
3 or qp > 2

2n
3 . Hence, we

can assume that qe ≤ 2
2n
3 and qp ≤ 2

2n
3 . We now use Lemma 9 (i i) (note that the

assumption 4qe + 2qp ≤ N implies that qe ≤ N/2 and qp ≤ N/2) to get

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 10

N
+ 4q3

e + 12q2
e qp + 11qeq2

p + 4q2
p
√

qeqp

N 2 + 2q2
e

N
4
3

+ 15qp
√

nqe + 10qe
√

nqp

N
+ 17qe + 12qp

N
2
3

≤ 10

N
+
(

4q3
e

N 2 +
2q2

e

N
4
3

+ 17qe

N
2
3

+ 10qe
√

nqp

N

)

+
⎛

⎝

12qp

N
2
3

+ 12q2
e qp + 11qeq2

p + 4q
5
2
p
√

qe

N 2 + 15qp
√

nqe

N

⎞

⎠

≤ 10

N
+ (23+ 10

√
n)

qe

N
2
3

+ (39+ 15
√

n)
qp

N
2
3

.

�

Appendix

A Probability of Bad Transcripts for Three Independent Round Keys

In this section, we upper bound the probability to get a bad transcript for the single-
permutation two-roundEven–Mansour cipher in the casewhere the roundkeys (k0, k1, k2)
are independent, or in other words, � = 3n, K = (k0, k1, k2), and γi selects the i th n-bit
string of K . The analysis is greatly simplified since we do not need to appeal to the
sum-capture theorem of Sect. 3.

Lemma 12. Assume that the round keys (k0, k1, k2) in the single-permutation two-
round Even–Mansour cipher are uniformly random and independent. Then

Pr[Tid ∈ T2] ≤ min

{

q2
e + 4qeqp

N
,
2q2

e qp + 3qeq2
p

N 2 + qe + 12qp

N
2
3

}

.
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Proof. Let (QE ,QP ) be any attainable permutation transcript. Since in the ideal world,
K = (k0, k1, k2) is independent from QE and QP , we have:

Pr[K = (k0, k1, k2)←$ {0, 1}3n : K ∈ BadK] ≤ |BadK|
N 3 .

We prove that Pr[Tid ∈ T2] is always less than each of the two terms in the upper bound
in turn. First, note that

∣

∣

∣

∣

∣

7
⋃

i=1
BadKi

∣

∣

∣

∣

∣

≤ N 2 × |{x ⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }|

+ N 2 × |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|
≤ 2N 2qeqp.

Moreover, one has

|BadK8| ≤ N 2 × |{x ⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ N 2qeqp

|BadK9| ≤ N 2 × |{u ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ N 2qeqp

|BadK10| ≤ N 2 × ∣∣{x ⊕ y′ : (x, y), (x ′, y′) ∈ QE }
∣

∣ ≤ N 2q2
e .

The first upper bound follows.
On the other hand, one also has:

|BadK1|, |BadK2|, |BadK3| ≤ Nqeq2
p,

|BadK4|, |BadK5| ≤ Nq2
e qp,

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤ 3N 2qeqp

M
,

|BadK10| ≤ N 2q2
e

M
.

The results follows using M = qe/N 1/3. �

Combining Lemmas 1, 10, and 12, we obtain the following theorem. The proof is
similar to the one of Theorem5 and therefore omitted.Note that the bound is qualitatively
similar to the one of Theorem 5, only the constants differ.

Theorem 6. (Single permutation and independent round keys) Let γ = (γ0, γ1, γ2),
where γi : (k0, k1, k2) �→ ki . Consider the two-round Even–Mansour cipher with a
single permutation and independent round keys EMSP[n, 2, � = 3n, γ ]. Assume that
n ≥ 9 and 4qe + 2qp ≤ N. Then, the following upper bounds hold:
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(i) When qe ≤ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 23

N
1
3

+ 16qeqp

N
. (31)

(ii) When qe ≥ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 23qe

N
2
3

+ 29qp

N
2
3

. (32)

B Probability of Bad Transcripts for Two Alternated Independent Round Keys

We consider in this section the case where the master key K is 2n-bit long, namely
K = (k, k′), and the round key sequence is (k, k′, k). This case is interesting since it is
the two-round analogue of the “alternating” key-schedule of LED-128 [18] (which has
twelve rounds), where the master key K = (k, k′) is twice as long as the block length,
and round keys k and k′ are alternatively xored to the state. This setting is intermediate
between the case of perfectly independent round keys and the case of an n-bit master
key (in particular, the sum-capture theorem is only required to upper bound |BadK1|).
Lemma 13. Consider the single-permutation two-round Even–Mansour cipher with
master key K = (k, k′) and round keys (k, k′, k), k and k′ being random and independent.
Then, the following upper bounds hold:

(i) For any integers qe and qp, one has

Pr[Tid ∈ T2] ≤ q2
e + 4qeqp

N
.

(ii) When 25n ≤ qe ≤ N/2 and 25n ≤ qp ≤ N/2, one has

Pr[Tid ∈ T2] ≤ 2

N
+ 4q2

e qp + 3qeq2
p

N 2 + 5qp
√

nqe

N
+ qe + 12qp

N
2
3

.

Proof. In the ideal world, sets BadKi only depend on the random permutations E and
P , and not on the key K = (k, k′), which is drawn uniformly at random at the end of
the interaction of the distinguisher with (E, P). Hence, for any C > 0, we can write

Pr[Tid ∈ T2] ≤ Pr
[

E, P ←$ Pn : |BadK| ≥ C
]+ C

N 2 . (33)

With this observation at hand, we first prove (i). Note that one always has, independently
of E and P ,

∣

∣

∣

∣

∣

7
⋃

i=1
BadKi

∣

∣

∣

∣

∣

≤ N × |{x ⊕ u : (x, y) ∈ QE , (u, v) ∈ QP }|



1116 S. Chen et al.

+ N × |{v ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }|
≤ 2Nqeqp.

Moreover, one always has

|BadK8| ≤ N × |{x ⊕ v : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ Nqeqp

|BadK9| ≤ N × |{u ⊕ y : (x, y) ∈ QE , (u, v) ∈ QP }| ≤ Nqeqp

|BadK10| ≤ N × ∣∣{x ⊕ y′ : (x, y), (x ′, y′) ∈ QE }
∣

∣ ≤ Nq2
e .

The first bound follows by (33) with C = 4Nqeqp + Nq2
e .

We then prove (i i). First, the size of BadKi for i = 2 to 10 can be upper bounded
independently of E, P , namely for any permutation transcript (QE ,QP ), one has:

|BadK2|, |BadK3| ≤ qeq2
p,

|BadK4|, |BadK5| ≤ q2
e qp,

|BadK6|, |BadK7|, |BadK8|, |BadK9| ≤ 3Nqeqp

M
,

|BadK10| ≤ Nq2
e

M
,

It remains to upper bound |BadK1|. For this, we need to appeal to the sum-capture
theorem of Sect. 3. For a permutation transcript (QE ,QP ), let

X = {x ∈ {0, 1}n : (x, y) ∈ QE }, Y = {y ∈ {0, 1}n : (x, y) ∈ QE },
U = {u ∈ {0, 1}n : (u, v) ∈ QP }, V = {v ∈ {0, 1}n : (u, v) ∈ QP }

denote the domains and the ranges of QE and QP , respectively. Then, one has

|BadK1|≤N × μ(QE , U, V )
def=N × |{((x, y), u, v) ∈ QE ×U × V : x ⊕ u=y ⊕ v}|.

(The factor N accounts for the fact that the middle key k′ is independent from k.) Thus,
if we set

C1 =
qeq2

p

N
+ 2q2

e qp

N
+ 5qp

√
nqe,

one has, by Theorem 1, Pr[E, P ←$ Pn : |BadK1| ≥ NC1] ≤ 2/N . Applying (33)
with

C = NC1 + 2qeq2
p + 2q2

e qp + 12Nqeqp

M
+ Nq2

e

M

= 4q2
e qp + 3qeq2

p + 5Nqp
√

nqe + N
4
3 qe + 12N

4
3 qp

yields the result. �
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Combining Lemmas 1, 10, and 13, we obtain the following theorem. The proof is
similar to the one of Theorem5 and therefore omitted.Note that the bound is qualitatively
similar to the one of Theorem 5, only the constants differ.

Theorem 7. (Single permutation and two alternated independent round keys) Let γ =
(γ0, γ1, γ2), where γi : (k0, k1) �→ ki mod 2. Consider the two-round Even–Mansour
cipher with a single permutation and two alternated independent round keysEMSP[n, 2,
� = 2n, γ ]. Assume that n ≥ 9, qe ≥ 25n, qp ≥ 25n, and 4qe + 2qp ≤ N. Then, the
following upper bounds hold:

(i) When qe ≤ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 23

N
1
3

+ 16qeqp

N
. (34)

(ii) When qe ≥ 2
n
3 , one has

AdvccaEMSP[n,2,γ ](qe, qp) ≤ 2

N
+ 23qe

N
2
3

+ (31+ 5
√

n)
qp

N
2
3

. (35)
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