
https://doi.org/10.1007/s00145-018-9300-5
J Cryptol (2019) 32:973–1025

Efficient Fully Structure-Preserving Signatures
and Shrinking Commitments

Masayuki Abe
Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

abe.masayuki@lab.ntt.co.jp

Jens Groth
Department of Computer Science, University College London, London, UK

j.groth@ucl.ac.uk

Markulf Kohlweiss
School of Informatics, University of Edinburgh, Edinburgh, UK

mkohlwei@ed.ac.uk

Miyako Ohkubo
Security Fundamentals Laboratory, CSRI, NICT, Tokyo, Japan

m.ohkubo@nict.go.jp

Mehdi Tibouchi
Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

tibouchi.mehdi@lab.ntt.co.jp

Communicated by Ran Canetti.

Received 31 August 2016 / Revised 5 April 2018
Online publication 8 August 2018

Abstract. In structure-preserving signatures, public keys, messages, and signatures
are all collections of source group elements of some bilinear groups. In this paper, we
introduce fully structure-preserving signature schemes, with the additional requirement
that even secret keys are group elements. This strong property allows efficient non-
interactive proofs of knowledge of the secret key, which is useful in designing crypto-
graphic protocols under simulation-based security where online extraction of the secret
key is needed. We present efficient constructions under simple standard assumptions
and pursue even more efficient constructions with the extra property of randomizability
based on the generic bilinear group model. An essential building block for our efficient
standard model construction is a shrinking structure-preserving trapdoor commitment
scheme, which is by itself an important primitive and of independent interest as it ap-
pears to contradict a known impossibility result that structure-preserving commitments
cannot be shrinking.We argue that a relaxed binding property lets us circumvent the im-
possibility while still retaining the usefulness of the primitive in important applications
as mentioned above.

Keywords. Structure-preserving signatures, Structure-preserving commitments,
Secret key extraction, Randomizability.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9300-5&domain=pdf

974 M. Abe et al.

1. Introduction

In pairing-based cryptography, cryptographic primitives are often designed to have al-
gorithms in which messages and public materials consist only of source group elements
and correctness can be proved using pairing product equations to allow smooth coupling
with other primitives. This interest in the so-called structure-preserving primitives [3]
led to the study of algebraic algorithms with many positive but also negative results,
e.g., [1,2,4–7,12,22,27,41].
In structure-preserving signature schemes, all components but secret keys are group

elements. This raises a natural question: “Can secret keys consist entirely of source group
elements as well?” A major obstacle in designing structure-preserving signatures is that
messages are group elements so standard signature schemes relying on exponentiation
with the message or some function thereof do not work. In existing structure-preserving
signature schemes, this is overcome by having secret keys that are used in exponents.
Thus, it is quite unclear how to construct structure-preserving signatures if even secret
keys are group elements.
Besides the above question being a fascinating fundamental question in its own right,

it is connected to practical protocol design since group element secret keys combined
with the Groth–Sahai proof system [38] allow straight line (i.e., no rewinding) ex-
traction of the secret keys. Verifiably encrypted secret keys are for instance useful in
delegatable anonymous credential systems [13,26,32] extendedwith all-or-nothing non-
transferability [24]. More applications of secret key extraction are introduced in Sect. 7.
While there are solutions in the random oracle model, e.g., [23,31], secret key ex-

traction without random oracles is currently prohibitively expensive. Meiklejohn [43]
demonstrates how to extract a secret key in the exponent using the Groth–Sahai proofs.
It requires bit-by-bit decomposition of secret x , and the proof consists of 20 log2 x +18
group elements. For instance, applying it to a structure-preserving signature scheme [2]
whose secret key consists of 4 + 2L scalar values for signing messages of L group el-
ements, proving secret keys for signing 10 group elements at the 128-bit security level,
requires more than 61,000 group elements.

Our Contribution We summarize our contribution in the following.

1. We introduce the notion of fully structure-preserving signature (FSPS) schemes.
FSPS is signature schemeswhosemessage, signature, and key spaces, including se-
cret keys, consist entirely of source group elements of bilinear groups. This extends
the paradigm of structure-preserving cryptography to cover private materials.

2. We present a concrete construction of FSPS based on static (i.e., not q-type) stan-
dard assumptions. Its secret key consists only of four group elements, and awitness
indistinguishable proof of knowledge of the secret key consists of 18 group ele-
ments (see Table 3 in Sect. 4.3). These are huge savings compared to the current
bit-by-bit proof of knowledge of a secret exponent mentioned earlier.

3. We present a shrinking structure-preserving trapdoor commitment scheme (SPTC)
that produces constant-size commitments consisting of a single group element re-
gardless of the message size. It is used as an essential building block in our first
construction of FSPS. Besides being an important primitive in itself, it is a remark-
able result in light of the well-known impossibility [8] that SPTC schemes yielding

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 975

shorter commitments than messages cannot be binding. We get around the impos-
sibility by relaxing the binding property only to honestly created commitments as
in [28]. The relaxed notion that we call chosen-message target collision resistance
(CMTCR) is in between collision resistance and target collision resistance if we
use the terminology for hash functions. We show that CMTCR is sufficient to
construct secure signature schemes in combination with a weak signature scheme
that is secure only against extended random message attacks [2] where private
coins used to chose random messages are exposed to the adversary.

4. To push efficiency further, we give a direct FSPS construction, where security
is proved in the generic bilinear group model [18,19,40,42,45,48]. The latter
construction has an optimally short verification key consisting of only a single
group element. Furthermore,we show that its signatures can be either randomizable
or strongly unforgeable. Recall that some structure-preserving signature schemes
in the literature are randomizable meaning that some elements in a signature can be
changed without losing correctness or security. This property is useful in particular
when combining structure-preserving signatures with Groth–Sahai proofs since
some of the signature elements can be revealed in the clear after being randomized.
In other circumstances, however, quite the opposite may be the case and it may be
desirable to have strongly unforgeable signatures where it is not only infeasible to
forge signatures on messages that have not been seen before but it is also infeasible
to create a new different signatures on messages that have already been signed. We
define the notion of a combined signature scheme where the signer can choose for
eachmessagewhether tomake the signature strongly unforgeable or randomizable,
and our latter construction is a combined signature scheme.

5. All our signatures have size �(
√
L) for messages consisting of L group elements.

This is no coincidence; we show that, for a (one-time) SPS scheme over the so-
called Type-III asymmetric bilinear groups, there is a non-trivial trade-off κ +σ ≥√
L among verification key size κ , signature size σ , and message size L in the

number of group elements. This means our constructions have optimal signature
size for constant-size verification keys. We leave it as an open question to show
(in)feasibility of constant-size signatures for verification keys of size growing in
L . Such an alternative is more advantageous in communications with constrained
bandwidth.

Related Works At least one FSPS scheme already exists [2] but with constraints on both
security and usability. Namely, it only meets the weak security guarantee (unforgeability
against extended random message attacks), and the signing function takes messages of
the form (Gm, Fm,Um) that essentially requires knowledge ofm [14,39]. Nevertheless,
it is a reasonable starting point for constructions in the standardmodel.Wang et al. in [50]
improve our framework and present a concrete construction of FSPS that yields shorter
signatures in exchange of longer secret keys.
Regarding the constructions in the generic groupmodel, there are several SPS schemes

in the literature. Abe et al. [5] have shown that 3 element signatures cannot be proven
secure under a non-interactive assumption using black box reductions, so strong as-
sumptions are needed to get optimal efficiency. One of our schemes designed for more
efficiency thus relies on the generic group model for its security proof. The signature

976 M. Abe et al.

XDLIN
§2.2

DBP
§2.2

xSIG
§2.6

OTS
§2.5

FSP1
§4.1

XDLIN
§2.2

xSIG
§2.6

MTC
§3.2

POS
§2.5

DBP
§2.2

TC
§3.3

FSP2
§4.2

GM
§5

SP1
§5.1

EFSP1
§5.2

Fig. 1. Structure of our constructions.

scheme in [7] can be seen to be fully structure preserving with signatures consisting
of 3 group elements. It is selectively randomizable where signatures are strong, but
the signer can later choose to release a randomization token to make a signature ran-
domizable. The notion of selective randomizability is different from the notion of com-
bined signature schemes where the signer can choose to create randomizable or strong
signatures at the time of signature generation. The advantage of selective randomiz-
able signatures is that all signatures are verified with the same verification equation;
the disadvantage is the need to issue randomization tokens when making a signature
randomizable.
Regarding SPTC, the study by Abe et al.[8] is an important piece of context. It shows

that no shrinking SPTC scheme can be binding, and indeed all existing SPTCs, e.g., [3],
are expanding. The relaxed notion of binding, CMTCR, is a multi-session extension
of honest-sender binding introduced in [28]. The use of trapdoor commitments and
chameleon hashing has also been explored in the construction of online/off-line signa-
tures [25,30].

Paper Organization In Sect. 2, we introduce notations and definitions used throughout
the paper and review POS and xRMA-secure FSPS that will be used as building blocks.
We then construct a shrinking SPTC scheme in Sect. 3 where we first present a new
commitment scheme we call a message-transposing commitment scheme in Sect. 3.2,
and use it to construct an CMTCR-secure SPTC in Sect. 3.3. We present FSPS schemes
in Sect. 4. Starting from a simple construction in Sect. 4.1 that identifies problems, we
present our main construction in Sect. 4.2.We then discuss their performance in Sect. 4.3
and a lower bound for signature and public key sizes in Sect. 6. In Sect. 5, we investigate
more efficiency and functionality for FSPS in the generic group model. Starting from
an efficient combined SPS in Sect. 5.1, we construct a combined FSPS in Sect. 5.2. In
Fig. 1, we illustrate the structure of our construction. The upmost nodes are assumptions,
and the bottom nodes are the FSPS schemes that we construct. Schemes in Sect. 5 are
given security proofs in the generic bilinear group model (GM). We refer to [10] for
variations of our FSPS constructions obtained by replacing some building blocks in our
construction.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 977

2. Preliminaries

2.1. Notations

We write λ for a security parameter given as input to all parties running a scheme. The
intention is that we can strengthen the security of a scheme by increasing the security
parameter. We say a function f : N → [0, 1] is negligible when f (λ) = λ−ω(1), and
we say f is overwhelming when 1 − f (λ) is negligible.

We write y ← A(x), when algorithm A takes x as input and outputs y. When it
is clear from the context, we write y ← A(x) to denote sequential and independent
executions of yi ← A(xi) for xi ∈ x. When algorithm A is probabilistic, we let A(x)
denote the output distribution (or the set of outputs) of A with respect to input x . By
Pr [A : X] we denote a probability that event X happens after process A is executed.
When we count the number of source group elements, we use the notation (n1, n2) to
represent n1 and n2 elements in G and G̃, respectively.
We use asterisk ∗ as a wildcard that matches anything. For instance, (a, ∗) ∈ X

denotes that a set X includes a pair whose first item is a.
We will work extensively with cyclic groups, which we usually write with multiplica-

tive notation. For a cyclic group G, we define G
∗ = G\{1G}. Or in the case of integers

modulo p, which we write with additive notation, we defineZ
∗
p = Zp\{0}. We assume it

is possible to sample elements uniformly at random and will for instance write r ← Zp

or r ← Z
∗
p when sampling from these sets.

2.2. Bilinear Groups

Let G be a generator of bilinear groups that takes security parameter 1λ as input and
outputs � := (p, G, G̃, GT , e,G, G̃), where p is a λ-bit prime, G, G̃, GT are groups
of prime order p with efficiently computable group operations, membership tests, and
bilinear map e : G × G̃ → GT . The pairing operation e satisfies that ∀A ∈ G, ∀B̃ ∈
G̃, ∀x, y ∈ Z : e(Ax , B̃ y) = e(A, B̃)xy .
Elements G and G̃ are default random generators of G, G̃, and e(G, G̃) generates

GT . We use multiplicative notation for group operations in G, G̃, and GT . An element
in G is represented by a capital letter, e.g., A ∈ G, and one in G̃ is represented with
tilde, e.g., B̃ ∈ G̃. And we often assign corresponding small case letters to represent the
logarithm with respect to the default generator, e.g., a = logG A and b = logG̃ B̃. A
vector of elements is possibly denoted by a bold letter. For a vector of scalar values x :=
(x1, . . . , xn) ∈ Z

n
p and a group element A, we write Ax for the vector (Ax1, . . . , Axn).

Similarly, for a vector of group elements X := (X1, . . . , Xn) and a scalar value a, we
write Xa for (Xa

1 , . . . , X
a
n). Similar conventions apply to matrices of scalars and group

elements.
An equation of the form

∏
i
∏

j e(Ai , Bj)
ai j = 1 for constantsai j ∈ Zp, and constants

or variables Ai ∈ G, Bj ∈ G̃ is called a pairing product equation (PPE). By G
∗, we

denote G\1G, and similar for G̃
∗ and Z

∗
p.

978 M. Abe et al.

2.2.1. Generic Bilinear Group Model

Let (p, G, G̃, GT , e,G, G̃) be a description of groups with a bilinear map. We refer to
deciding group membership, computing group operations in G, G̃ or GT , comparing
group elements, and evaluating the bilinear mapping e : G× G̃ → GT as generic group
operations. We will sometimes restrict algorithms to only use generic operations. To
enforce the use of generic group operations, Shoup [48] introduced the generic group
model, where group elements are represented as random strings and group operations
handled through an oracle that knows the corresponding real group elements. The generic
group model has been adapted to the bilinear groups setting [18,19].
We will now describe the generic group model for the asymmetric setting where there

is no isomorphism between the two source groupsG and G̃ that is efficiently computable
in either direction. Each element in a group is represented by a unique string obtained by
applying a random injective encoding to the group element. Algorithms may get some
encoded elements as input and are given access to a group operation oracle that performs
generic group operations. For random encodings π1, π2, and πT assigned to G, G̃, and
GT , respectively, the oracle is given encoded elements together with a generic group
operation to apply to the inputs. For instance, it may be given π1(A) and π1(B) with
an instruction to perform a group operation, and return π1(A · B). Or it may be given
π1(A) and π2(B̃) with an instruction to perform a pairing operation, in which case it
returns πT (e(A, B̃)). With such an oracle, a (potentially adversarial) algorithm A can
only compute a new encoding of an element in a source groupπx (X) by using the generic
group operations on already seen elements, if it has seen elements πx (Xi) it can pick
scalars ai and use the generic group operation oracle to getπx (X

ai
i). The algorithm could

also pick a random element in the range of the encoding function; however, this would
just give it a random group element, so it might as well pick a random scalar r ← Zp

and compute πx (Xr) for a previously seen πx (X). A common use of the generic group
model is to build trust in an intractability assumption by proving that it cannot be broken
by generic operations. In such proofs, we use that the encoding is random and therefore
seeing for instance πx (X) reveal no information about the group element X itself except
what can be deduced by using generic group operations and testing equality of group
elements.
We call algorithms that follow the above model generic. Note that, when a generic

algorithm outputs a group element in G (or G̃), it only depends on elements in G (or G̃,
respectively) given to the algorithm as input.

2.2.2. Assumptions

Throughout the paper, we work over asymmetric bilinear groups (so-called Type-III
setting [34]) where no efficient isomorphisms exist between G and G̃. Some building
blocks in our construction rely on the double pairing assumption [3].

Assumption 1. (Double Pairing Assumption in G̃:DBP) The double pairing assump-
tion holds in G̃ relative to G if, for all probabilistic polynomial time algorithms A

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 979

Pr

⎡

⎣
� ← G(1λ);
G̃z ← G

∗
2;

(Z , R) ← A(�, G̃z)

: (Z , R) ∈ G
∗
1 × G

∗
1,∧

1 = e(Z , G̃z) e(R, G̃)

⎤

⎦ (1)

is negligible in the security parameter λ.

The DBP assumption in G is defined by swapping G and G̃ in the above definition.
Note that the DBP assumption (in G and G̃) is implied by the Decision Diffie–Hellman
assumption [3] (in G and G̃, respectively) which is often assumed in Type-III setting.

We also use a building block that requires more assumptions such asDDH2, XDLIN1,
and co-CDH2 defined as follows.

Assumption 2. (Decisional Diffie–Hellman Assumption in G̃:DDH2) Any probabilis-
tic polynomial time algorithm A decides whether b = 1 or 0 with negligible advantage
Advddh2G,A (λ) in λ given � ← G(1λ), G̃ ← G̃, and (G̃x , G̃ y, Zb) where Z1 = G̃xy and

Z0 = G̃z for random x, y, z ← Zp and random bit b,

Assumption 3. (External Decision Linear Assumption inG:XDLIN1) Any probabilis-
tic polynomial time algorithm A decides whether b = 1 or 0 with negligible advantage
Advxdlin1G,A (λ)given� ← G(1λ), and (Ga,Gb,Gc,Gax ,Gby, G̃a, G̃b, G̃c, G̃ax , G̃by, Zb)

where Z1 = Gc(x+y), and Z0 = Gz for random a, b, c ← Z
∗
p, x, y, z ← Zp and ran-

dom bit b.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilin-
ear group model where one can simulate the extra elements, G̃a, G̃b, G̃c, G̃ax , G̃by , in
XDLIN1 from Ga,Gb,Gc,Gax ,Gby in DLIN1.

Assumption 4. (Computational co-Diffie–Hellman Assumption in G̃: co-CDH2) Any
probabilistic polynomial time algorithm A outputs G̃xy with negligible probability
Advco-cdhG,A (λ) given � ← G(1λ), G ← G

∗, G̃ ← G̃
∗, Gx , Gy, G̃x , and G̃ y for

x, y ← Zp.

Similar to Assumption 3, co-CDH2 is equivalent to computational Diffie–Hellman
assumption inG or G̃ in the generic bilinear groupmodel, but generally they are unrelated
in Type-III setting. We refer [49] for more discussion on variations of computational
Diffie–Hellman assumptions over bilinear groups.

2.3. Joint Setup

Building blocks in this paper are defined with individual setup functions. As we work
over bilinear groups, an output from a setup function should include a description of
bilinear groups �. Some random generators specific to each building block may be
included as well.
The idea behind structure-preserving cryptography is that all schemes will work over

the same bilinear group and hence be easy to compose. We will therefore for composed
schemes assume they use a joint setup consisting of a bilinear group and a number of

980 M. Abe et al.

random group elements corresponding to the maximum number needed by any of the
building blocks. More precisely, suppose that two building blocks, say A and B, are
used together and have setups gkA ← A.Setup(1λ) and gkB ← B.Setup(1λ). We say
they have a common setup function if there exists a polynomial time algorithm Setup
such that, given gk ← Setup(1λ) it is possible in polynomial time from gk to recover
individual setups gkA and gkB, each one having correct probability distribution. It is also
required that gk can be simulated given either gkA or gkB. In the rest of the paper, we
assume a common setup gk for all the individual schemes. In general each individual
setup samples a bilinear group and a number of uniformly random group elements in
G and G̃. We can then pick as a common setup a bilinear group sampled with the same
distribution and a number of uniformly random elements in G and G̃ matching the
maximum number any individual schemes uses in G and G̃, respectively.

2.4. Digital Signatures

In this section, we recall definitions of digital signatures and their security notions. On
top of the standard notions, we define structure-preserving and fully structure-preserving
signatures.

Definition 1. (Digital Signature Scheme) A digital signature scheme SIG is a tuple
of polynomial time algorithms (Setup,Key,Sign,Vrf) where gk ← Setup(1λ) is
a probabilistic setup algorithm that, given a security parameter λ, generates common
parameter gk, which defines a message space M for which membership is efficiently
decidable, (vk, sk) ← Key(gk) is a probabilistic key generation algorithm that takes
common parameter gk and generates a verification key vk and a signing key sk, σ ←
Sign(sk,m) is a probabilistic signature generation algorithm that computes a signature
σ for input message m ∈ M by using signing key sk, and 1/0 ← Vrf(vk,m, σ) is a
verification algorithm that outputs 1 for acceptance or 0 for rejection according to the
input.
For any legitimately generated gk, vk, sk and any m ∈ M, it must hold that 1 =

Vrf(vk,m,Sign(sk,m)). A key pair (vk, sk) is valid with respect to gk if it is in the
range of Key(gk).

Definition 2. (Unforgeability against Adaptive Chosen-Message Attacks) A signa-
ture scheme, SIG = {Setup,Key,Sign,Vrf}, is unforgeable against adaptive chosen-
message attacks (UF-CMA) if for any polynomial time adversary A the following ad-
vantage function is negligible.

Advuf-cma
SIG,A (λ) := Pr

⎡

⎣
gk ← Setup(1λ),

(vk, sk) ← Key(gk),
(σ †,m†) ← AOsk (vk)

: m†
∈ Q ∧
1 = Vrf(vk,m†, σ †)

⎤

⎦ , (2)

where Osk is an oracle that, given m, executes σ ← Sign(sk,m), records m in Q, and
returns σ.
It is strongly unforgeable ifOsk records (m, σ) inQ and thewinning conditionm†
∈ Q

is replaced with (m†, σ †)
∈ Q.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 981

By UF-NACMA we denote a relaxed notion of security where adversary A has to
commit to the messages to query before seeing vk. (A is given gk that defines the
message space.) Such an attack model is called a weak chosen-message attack in [18],
and a generic chosen-message attack in [35]. Formally:

Definition 3. (Unforgeability against Non-Adaptive Chosen-Message Attacks) A sig-
nature scheme, SIG = {Setup,Key,Sign,Vrf}, is unforgeable against non-adaptive
chosen-message attacks (UF-NACMA) if for any polynomial time adversary A the fol-
lowing advantage function is negligible.

Advuf-nacma
SIG,A (λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

gk ← Setup(1λ),

(mi , ω) ← A(gk)
(vk, sk) ← Key(gk),
σ i ← Sign(sk,mi)

(σ †,m†) ← A(ω, vk, σ i)

: m†
∈ mi ∧
1 = Vrf(vk,m†, σ †)

⎤

⎥
⎥
⎥
⎥
⎦

, (3)

where ω is an internal state, mi is a polynomial number of messages, and σ i ←
Sign(sk,mi) is a process of signing each mi with sk and outputting the resulting sig-
nature as σi .

A one-time signature scheme is a digital signature scheme with the limitation that a
signing key is intended to be used only once. Unforgeability against one-time chosen-
message attacks is defined as in Definition 2 by restricting the signing oracle to answer
only a single query.

Definition 4. (Structure-Preserving Signature Scheme) A digital signature scheme is
structure preserving relative to bilinear group generator G if the common parameters gk
consist of group description � generated by G, some constants, and some source group
elements in G and G̃ in �, and verification keys vk, messagesm and signatures σ solely
consist of group elements in G and G̃, and the verification algorithm Vrf consists only of
evaluating membership in G and G̃ and relations described by paring product equations.

Whenmessages consist of elements from both source groups,G and G̃, they are called
bilateral. We say a message is unilateral if it consists exclusively of elements from one
of the source groups.

The notion of structure-preserving cryptography requires public components to be group
elements. We extend it so that private components consist of group elements as well.

Definition 5. (Fully Structure-Preserving Signature Scheme) A structure-preserving
signature scheme is fully structure preserving if signing keys sk consist of group elements
in G and G̃, and the validity of sk with respect to vk can be verified by evaluating
membership in G and G̃ and relations described by pairing product equations.

Note that, in reality, vk will include gk and sk will include vk to be consistent with the
standard interface of the functions in a signature scheme. We will ignore those nested

982 M. Abe et al.

objects when we argue that a scheme is structure preserving and measure the size of
keys and signature without counting the elements in gk.
Once the additional conditions in Definition 5 are satisfied, one can construct proofs

of knowledge of secret keys by using the Groth–Sahai proof system, which allows the
extraction of a correct secret key corresponding to the verification key. It is, however,
important to note that there could exist more than one valid secret key for a verification
key and different secret keysmay yield signatures with different distributions. Onemight
need stronger extractability that enables the extraction of the secret key for a particular
distribution of signatures. This is for instance the case for the group signature application
mentioned in Sect. 1. Our concrete scheme allows one to efficiently prove the relation
between a secret key and a signature. See Sect. 2.6.
The notion of standard unforgeability does not prevent the adversary from changing

signatures as long as the associated message is intact. Constructive use of this property
is known as randomizable signature schemes defined as follows.

Definition 6. (Randomizable Signature Scheme) A signature scheme is randomizable
if there exists an efficient algorithmRand that takes gk, vk,m, and σ as input and outputs
a new signature σ ′. We require for all λ ∈ N, gk ← Setup(1λ), (vk, sk) ← Key(gk),
m ∈ M, σ ← Sign(sk,m), and all randomized signatures σ ′ ← Rand(vk,m, σ), it
must hold that 1 ← Vrf(vk,m, σ ′).

Signatures are perfectly randomizable if a randomized signature looks exactly like a
fresh signature on the same message.

Definition 7. (Perfect Randomizability) A signature scheme is perfectly randomizable
if for all adversaries A outputting messages m ∈ M we have

Pr

[
gk ← Setup(1λ); (vk, sk) ← Key(gk); b ← {0, 1};

m ← A(vk, sk); σ0 ← Sign(sk,m); σ1 ← Rand(vk,m, σ0)
: A(σb) = b

]

= 1

2
.

Unless a signature scheme is deterministic, it cannot be both perfectly randomizable
and also strongly unforgeable. However, we can combine both properties in a single
signature scheme that allows a signer to issue two types of signatures: randomizable
signatures and strongly unforgeable signatures. We call such a scheme a combined
signature scheme.

Definition 8. (Combined Signature Scheme) A combined signature scheme is a set
of polynomial time algorithms (Setup,Key,Sign0,Vrf0,Rand,Sign1,Vrf1) where
(Setup,Key,Sign0,Vrf0,Rand) is a randomizable signature schemeand (Setup,Key,
Sign1,Vrf1) is a strongly unforgeable signature scheme.

A naïve combined signature schemewould have a verification key containing two ver-
ification keys, one for randomizable signatures and one for strong signatures. However,
this solution has the disadvantage of increasing key size. Instead, we will in this paper
construct a combined signature scheme where the verification key is just a single group
element that can be used to verify either type of signature. This dual use of the verifica-

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 983

tion key means that we must carefully consider the security implications of combining
two signature schemes though, so we will now define a combined signature scheme.
To capture the attacks that can occur against a combined signature scheme, we assume

the adversary may arbitrarily query a signer for randomizable or strong signatures.
We want the signature scheme to be combined existentially unforgeable in the sense
that even seeing randomizable signatures does not help in breaking strong existential
unforgeability and on the other hand seeing strong signatures does not help in producing
randomizable signatures.

Definition 9. (Combined Existential Unforgeability Under Chosen-Message Attack)
The combined signature scheme is combined existentially unforgeable under adaptive
chosen-message attack (C-EUF-CMA) if for all probabilistic polynomial time adver-
saries A

Pr

[
gk ← Setup(1λ); (vk, sk) ← Key(gk)
(m, σ) ← ASign0(sk,·),Sign1(sk,·)(vk) : Vrf0(vk,m, σ) = 1 ∧ m /∈ Q0 or

Vrf1(vk,m, σ) = 1 ∧ (m, σ) /∈ Q1

]

is negligible, where A can make signing queries on arbitrary m ∈ M and the output
messagem must belong toM, Q0 is the set of messages that have been queried toSign0,
and Q1 is the set of message and signature pairs from queries to Sign1.

2.5. Partially One-Time Signatures

When only a part of a signing key of one-time signatures must be updated for every
signing, i.e., the remaining part of the key can be used an unbounded number of times, the
scheme is called a two-tier signature scheme or a partially one-time signature scheme[2,
16].

Definition 10. (Partially One-time Signature Scheme) A partially one-time signature
scheme is a set of algorithms POS = {Setup,Key,Ovk,Sign,Vrf} such that

Setup(1λ) → gk: A setup function that, given a security parameter λ, generates
common parameter gk, which defines message space M.

Key(gk)→(vk, sk): A long-term key generation function that takes gk and outputs
a long-term key pair (vk, sk).

Ovk(gk)→(ovk,osk): A one-time key generation function that takes gk and outputs
a one-time key pair (ovk, osk).

Sign(sk, osk,m) → σ: A signing function that takes sk, osk and a message m as
inputs and issues a signature σ.

Vrf(vk, ovk,m, σ) →1/0: A verification function that outputs 1 or 0 for acceptance
and rejection, respectively.

For any gk ← Setup(1λ), (vk, sk) ← Key(gk), m ∈ M, and (ovk, osk) ← Ovk(gk),
σ ← Sign(sk, osk,m), it must hold that 1 ← Vrf(vk, ovk,m, σ).

The security notion considered in [2,16] is defined with respect to a single long-term
key pair. Here we extend the notion to multiple key pairs.

984 M. Abe et al.

Definition 11. (Multi-Key Partial One-time Chosen-Message Attack for POS) A par-
tially one-time signature scheme,POS = {Setup,Key,Ovk,Sign,Vrf}, is unforgeable
against multi-key non-adaptive partial one-time chosen-message attacks
(MK-OT-NACMA), if for any polynomial time adversary A the advantage function
Advmk-ot-nacma

POS,A (λ) defined by

Pr

⎡

⎣ gk ← Setup(1λ),

(ovk†, σ †,m†) ← AOk ,Os (gk)
:

(vk†, ovk†, ∗) ∈ Qmv ∧
(vk†, ovk†,m†)
∈ Qmv ∧
1 = Vrf(vk†, ovk†,m†, σ †)

⎤

⎦ (4)

is negligible. Oracle Ok is the key generation oracle that, on receiving the i-th request
fromA, generates (vk[i], sk[i]) ← Key(gk), and returns vk[i]. OracleOs is the signing
oracle that, given m ∈ M and vk[i] generated by Ok , executes (ovk(j), osk(j)) ←
Ovk(gk), σ ← Sign(sk[i], osk(j),m), records (vk[i], ovk(j),m) in Qmv , and returns
(σ, ovk(j)).

The following concrete scheme is taken from [2] with a trivial modification in the
signing algorithm so that the signature elements are computed more efficiently.

[Partially One-time Signature Scheme: POS]

Setup(1λ): Run gk := (p, G, G̃, GT , e,G, G̃) ← G(1λ). Set message space M to
G̃

	pos for a fixed positive integer 	pos.

Key(gk): Take generators G and G̃ from gk. Choose wz randomly from Z
∗
p, and

compute Gz := Gwz . For i = 1, . . . , 	pos, uniformly choose χi from Zp and

compute Gi := Gχi . Output vk := (Gz,G1, . . . ,G	pos) ∈ G
	pos+1
1 and sk :=

(χ1, . . . , χ	pos , wz).

Ovk(gk): Choose a ← Zp and output ovk = A := Ga , and osk := a.

Sign(sk, osk,m): Parse m into (M̃1, · · · , M̃	pos) ∈ G̃
	pos . Take a and wz from osk

and sk, respectively. Choose ζ randomly from Z
∗
p and compute the signature as

(Z̃ , R̃) where Z̃ = G̃ζ , R̃ = G̃a−ζ wz
∏	pos

i=1 M̃−χi
i .

Vrf(vk, ovk,m, σ): Parse σ as (Z̃ , R̃) ∈ G̃
2, m as (M̃1, . . . , M̃	pos) ∈ G̃

	pos , and ovk

as A. Return 1, if e(A, G̃) = e(Gz, Z̃) e(G, R̃)
∏	pos

i=1 e(Gi , M̃i) holds. Return 0,
otherwise.

In [2], the security of the above scheme is proven based on the DBP assumption in
G with respect to a single long-term key, i.e., under the constraint that Ok is accessible
only once. However, it is easy to show that the scheme is indeed MK-OT-NACMA as
stated below thanks to the random self-reducibility of the DBP problem. (The scheme
satisfies even stronger security whereA is allowed to access Ovk and Sign separately.)

Theorem 1. POS is strongly unforgeable against MK-OT-NACMA if DBP in G

holds. In particular, for all p.p.t. algorithms A there exists a p.p.t. algorithm B such
that Advmk-ot-nacma

POS,A (λ) ≤ AdvDBP,B(λ) + 1/p(λ), where p(λ) is the size of the groups

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 985

produced by G. Moreover, the run-time overhead of the reduction B is a small number
of multi-exponentiations per signing or key query.

2.6. xRMA-Secure Fully Structure-Preserving Signature Scheme

We follow the notion of extended random message attacks and take one of the schemes
in [2]. The definition is relative to a message sampling algorithm, SampleM, that takes
gk and outputs messages m with some auxiliary information ω.

Definition 12. (Unforgeability against Extended Random Message Attacks) A signa-
ture scheme, xSIG = {Setup,Key,Sign,Vrf}, is unforgeable against extended random
message attacks (UF-XRMA) with respect to message sampling algorithm SampleM if
for any polynomial time adversary A

Advuf-xrma
xSIG,A(λ) := Pr

⎡

⎢
⎢
⎢
⎢
⎣

gk ← Setup(1λ),

(vk, sk) ← Key(gk),
(m, ω) ← SampleM(gk),
σ ← Sign(sk,m),

(σ †,m†) ← A(vk, σ,m, ω)

: m†
∈ m∧
1 = Vrf(vk,m†, σ †)

⎤

⎥
⎥
⎥
⎥
⎦

(5)

is negligible.

The next scheme is taken from [2] with two modifications to fit to our construction.
First, the message space is extended to sign messages consisting of 	x ≥ 1 message
blocks. Second, it takes randomness from Zp rather than Z

∗
p in the key generation.

Those differences make no changes in their security properties.

[Signature Scheme: xSIG]

Setup(1λ): Run (p, G, G̃, GT , e,G, G̃) ← G(1λ). For some fixed 	x ≥ 1, choose
u1, · · · , u	x , �, δ randomly fromZ

∗
p and compute F1 := G�, F2 := Gδ , F̃1 := G̃�,

F̃2 := G̃δ , Ui := Gui , and Ũi := G̃ui . Output gk := (p, G, G̃, GT , e,G, G̃,

F1, F2, F̃1, F̃2, {Ui , Ũi }	xi=1). This defines the message space M = {(M̃11,

M̃12, M̃13), . . . , (M̃	x1, M̃	x2, M̃	x3) | ∀i,∃ mi ∈ Zp s.t. (M̃i1, M̃i2, M̃i3) = (F̃mi
1 ,

F̃mi
2 , Ũmi

i)}.
Key(gk): On input gk, choose τ1, τ2, τ3, ρ, a, b, α from Zp, and compute

Ṽ1 := G̃b, Ṽ2 := G̃a, Ṽ3 := G̃ba, Ṽ4 := G̃τ1+aτ2 , (6)

Ṽ5 := Ṽ b
4 , Ṽ6 := G̃τ3 , V7 := Gρ, Ṽ8 := G̃αb/ρ,

K1 := Gα, K2 := Gb, K3 := Gτ1 , K4 := Gτ2 .

(For completeness of description, pick Ṽ8 uniformly from G̃ if ρ = 0.) Output
vk := (gk, Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8) and sk := (vk, K1, K2, K3, K4).

986 M. Abe et al.

Sign(sk, M): Parse message M into {(M̃11, M̃12, M̃13), · · · , (M̃	x1, M̃	x2, M̃	x3)} ∈
M. Select r1, r2, z ← Zp, set r := r1 + r2, compute

S̃0 := (Ṽ6
∏	x

i=1 M̃i3)
r1 , S1 := K1K3

r , S2 := K4
rG−z,

S3 := K2
z, S4 := K2

r2 , S5 := Gr1 .
(7)

Output σ := (S̃0, . . . , S5) ∈ G̃ × G
5.

Vrf(vk, M, σ): Output 1 if the following relations hold:

e

(

S5, Ṽ6

	x∏

i=1

M̃i3

)

= e(G, S̃0), (8)

e(S1, Ṽ1)e(S2, Ṽ3)e(S3, Ṽ2) = e(S4, Ṽ4)e(S5, Ṽ5)e(V7, Ṽ8),

e(F1, M̃i3) = e(Ui , M̃i1), e(F2, M̃i3) = e(Ui , M̃i2) for i = 1, · · · , 	x.

Output 0, otherwise.

The above scheme comes with trivial modifications from the original in [2]. First it
is extended to sign random messages consisting of 	x ≥ 1 message blocks, and second
it takes randomness from Zp rather than Z

∗
p in the key generation. Those changes have

no effect on the security that we recall below.

Theorem 2. ([2]) If the DDH2, XDLIN1, and co-CDH2 assumptions hold, then the
above xSIG is UF-XRMA with respect to any message sampling algorithm that takes
gk as input and returns message block (F̃mi

1 , F̃mi
2 , Ũmi

i) with auxiliary information mi

for i = 1, . . . , 	x.

Theorem 3. The above xSIG is fully structure preserving.

Proof. By inspection, it is clear that vk (modulo group description in gk), sk, M , and
σ consist of source group elements, and xSIG.Vrf consists of evaluating PPEs.
Next we show that the following PPEs are satisfied if and only if the verification key

and the secret key are in the range of xSIG.Key.

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2), e(K1, Ṽ1) = e(V7, Ṽ8),
e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃) e(K4, Ṽ2) = e(G, Ṽ4).

(9)

Showing correctly generated keys satisfy the above relations is trivial. We argue the
other direction as follows. Variables that define a key pair are a, b, α, τ1, τ2, τ3 and
ρ. They are uniquely determined by Ṽ2, Ṽ1, K1, K3, K4, Ṽ6, and V7, respectively.
We verify that the remaining Ṽ3, Ṽ4, Ṽ5, Ṽ8, and K2 are in the support of the correct
distribution if the above relations are satisfied. Thefirst equation is e(K2, G̃) = e(G, G̃)b

that defines K2 = Gb. The second equation is e(G, Ṽ3) = e(G, G̃)ba that defines
Ṽ3 = G̃ba . The third equation is e(G, G̃)αb = e(G, Ṽ8)ρ that defines Ṽ8 = G̃αb/ρ for
ρ
= 0. If ρ = 0, Ṽ8 can be an arbitrary value as described in the key generation. The

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 987

fourth equation is e(G, Ṽ4)b = e(G, Ṽ5) that defines Ṽ5 = Ṽ b
4 . The last equation is

e(G, G̃)τ1+aτ2 = e(G, Ṽ4) that defines Ṽ4 = G̃τ1+aτ2 as prescribed. �

Proving a Correct Secret Key for a Signature In the above xSIG, there are several
secret keys for a verification key, and each secret key yields signatures with a different
distribution. It is possible to efficiently prove one’s possession of a secret key used to
create the signature in question by proving the following relation.

e(K2, G̃r) = e(S4, G̃)e(S5, Ṽ1), e(S1, G̃) = e(K1, G̃) e(K3, G̃r),

e(S3, G̃) = e(Gz, Ṽ1), e(S2, G̃) e(Gz, G̃) = e(K4, G̃r)
(10)

Here, z and r are the randomcoins used for the signature.AGroth–Sahai zero-knowledge
proof for the underlined group elements aswitnesses can be constructed using techniques
from [20,29].
Consider a verification key and a signature that satisfy the verification equations in (8)

and a secret key that satisfies (9) with respect to the verification key. Suppose that they
also satisfy the equations in (10). Define r1 and r2 by r1 = logG S5 and r2 = logK2

S4.

Parameter b is defined by b = logG K2 = logG̃ Ṽ1. In the exponent, the first relation in
(10) is read as br = br2 + br1 that ensures correctness of Gr with respect to S4 and S5.
The second relation in (10) then guarantees S1 = K1Kr

3 for this r , K1, and K3. The third

relation in (10) proves that S3 = Gz logG̃ Ṽ1 = Gzb = K2
z for some z determined by Gz .

Finally, the last relation in (10) is for S2 = K4
r G̃−z . Thus, the secret key fulfilling all

relations in (10) satisfies relations in (7) with respect to the signature and the verification
key. Namely, the secret key is the one used to create the signature.

3. Trapdoor Commitment Schemes

In this section, we construct a structure-preserving shrinking trapdoor commitment
scheme as defined in Sect. 3.1. We first construct a commitment scheme in Sect. 3.2
that is almost structure preserving in the sense that the messages for computing com-
mitments are not group elements but scalar values. This slight relaxation allows to
implement the shrinking property by using the one-way nature from the scalar values
to group elements. Then a complete scheme is constructed in Sect. 3.3 by combining
the building block from Sect. 3.2 with a one-time structure-preserving signature scheme
that actually binds messages to commitments.

3.1. Definitions

We adopt the following standard syntax for trapdoor commitment schemes.

Definition 13. (TrapdoorCommitment Scheme) A trapdoor commitment schemeTC is
a tuple of polynomial time algorithmsTC = {Setup,Key,Com,Vrf,SimCom,Equiv}
that:

988 M. Abe et al.

Setup(1λ) → gk: A common parameter generation algorithm that takes security
parameter λ and outputs a common parameter, gk. It determines the message
space M, the commitment space C, and opening space I.

Key(gk) → (ck, tk): A key generation algorithm that takes gk as input and outputs
a commitment key, ck, and a trapdoor key, tk.

Com(ck,m) → (com, open): A commitment algorithm that takes ck and message
m ∈ M and outputs a commitment, com ∈ C, and opening information,
open ∈ I.

Vrf(ck, com,m, open) → 1/0: A verification algorithm that takes ck, com,m, and
open as input and outputs 1 or 0 representing acceptance or rejection,
respectively.

SimCom(gk) → (com, ek): A sampling algorithm that takes common parameter
gk and outputs commitment com and equivocation key ek.

Equiv(m, ek, tk) → open: An algorithm that takes ck, ek, tk and m ∈ M as input
and returns open.

The trapdoor commitment scheme is correct if, for all λ ∈ N, gk ← Setup(1λ),
(ck, tk) ← Key(gk), m ← M, (com, open) ← Com(ck,m), it holds that 1 =
Vrf(ck, com,m, open). Furthermore, it is statistical trapdoor if for any unbounded state-
ful adversary A outputting m ∈ M

Pr

⎡

⎣
gk ← Setup(1λ); (ck, tk) ← Key(gk);m ← A(ck, tk)

(com0, open0) ← Com(ck,m); b ← {0, 1}
(com1, ek) ← SimCom(gk); open1 ← Equiv(m, ek, tk)

: A(comb, openb) = b

⎤

⎦ − 1

2

is negligible in λ.

A trapdoor commitment scheme is structure-preserving relative to group generator G
if its common parameter gk includes a description of bilinear groups generated by G and
its commitment keys, messages, commitments, and opening information consist only of
source group elements, and the verification function consists only of evaluating group
membership and relations described by pairing product equations.
From now, we focus on the binding property, which is important for our purpose. The

standard binding property requires that it is infeasible for any polynomial time adversary
to find two distinct messages and openings for a single commitment value com. As we
use a commitment scheme mostly as a hash function, we refer the binding property as
collision resistance using terminology for hash functions. A weaker notion known as
target collision resistance asks the adversary to find a collision on a given message. An
intermediate notion is introduced in [28] as honest-sender binding where the adversary
chooses the message for which an honest commitment is made. Thus, the adversary does
not choose the randomness used to create the target commitment, but gets to see it and
try to create a different opening to a different message. Following [9], we use a refined
notion of [28] called chosen-message target collision resistance (CMTCR) that handles
an arbitrary number of messages.

Definition 14. (Chosen-Message Target Collision Resistance) For a trapdoor commit-
ment scheme,TC, letOck denote an oracle that, givenm ∈ M, executes (com, open) ←
Com(ck,m), records (com,m) in Q, and returns (com, open). We say TC is chosen-

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 989

message target collision resistant if for any polynomial time adversaryA the advantage
defined by

Advcmtcr
TC,A(λ)

= Pr

⎡

⎣
gk ← Setup(1λ),

(ck, tk) ← Key(gk),
(com†,m†, open†) ← AOck (ck)

: (com†, ∗)∈Q∧(com†,m†) /∈Q∧
1=Vrf(ck, com†,m†, open†)

⎤

⎦

(11)

is negligible in security parameter λ.

A structure-preserving commitment scheme is shrinking if number of group elements
in com is strictly less than that in m. The impossibility argument of [8] shows that if a
structure-preserving commitment scheme is shrinking, then there exists an adversary that
can find two openings and messages that are consistent to a commitment. It is essential
for the impossibility argument that the adversary is allowed to choose the randomness
used for the target commitment. We stress that it is not the case for the adversary in the
game of CMTCR.

3.2. Message-Transposing Commitment Scheme

We introduce a commitment scheme with a property that the message space Mcom for
creating a commitment and the space Mver for verification differ, and there exists an
efficiently computable bijection γ : Mcom → Mver . As a message in Mcom is bound
to a commitment through function γ , we call such a scheme a message-transposing
commitment scheme.1 A formal definition is as follows.

Definition 15. (Message-Transposing Commitment Scheme) A message-transposing
commitment scheme is a set of algorithmsMTC = {Setup,Key,Com,Vrf,SimCom,

Equiv} such that
Setup(1λ) → gk: A setup function that, given a security parameter λ,

generates common parameter gk, which defines message spaces Mcom for
commitment generation and Mver for verification, and an efficiently
computable bijection γ : Mcom → Mver . It also determines the
commitment space C, and the opening space I.

Key(gk) → (ck, tk): A key generation algorithm that takes gk and outputs
a public commitment key, ck, and a trapdoor key, tk.

Com(ck,m) → (com, open): A commitment algorithm that takes ck and message
m ∈ Mcom and outputs a commitment, com ∈ C, and an opening information,
open ∈ I.

Vrf(ck, com, M, open) → 1/0: A verification algorithm that takes ck, com,
M ∈ Mver , and open as inputs, and outputs 1 or 0 representing acceptance or
rejection, respectively.

1Referred as a γ -binding commitment scheme in [9].

990 M. Abe et al.

SimCom(gk) → (com, ek): A sampling algorithm that takes common parameter
gk and outputs commitment com and equivocation key ek.

Equiv(M, ek, tk) → open: An algorithm that takes ck, ek, tk, and M ∈ Mver as
input and returns open.

Correctness and statistical trapdoor are the same as Definition 13 with trivial adaptation
to the message spaces.

We say that a message-transposing commitment scheme is structure preserving with
respect to verification if ck, com, open, and Mver consist of source group elements of
bilinear groups and the verification function consists only of evaluating group member-
ship and pairing product equations. It is shrinking if the number of group elements in a
commitment is strictly less than that in the corresponding message for verification.
Next we formally define the security notions, message-transposing target collision re-

sistance andmessage-transposing collision resistance.Aswell as ordinary notions of col-
lision resistance, message-transposing collision resistance implies message-transposing
target collision resistance.

Definition 16. (Message-Transposing Target Collision Resistance) For a message-
transposing commitment scheme,MTC, let com and open denote vectors of commitment
and openings produced by Com for uniformly sampled messages m. We say MTC is
message-transposing target collision resistant if for any polynomial time adversary A
the advantage function

AdvtcrMTC,A(λ)

= Pr

⎡

⎣
gk ← Setup(1λ), (ck, tk) ← Key(gk),
m ← Mcom , (com, open) ← Com(ck,m),

(com, M, open) ← A(ck,m, com, open)

: com ∈ com ∧ M
∈ γ (m) ∧
1 = Vrf(ck, com, M, open)

⎤

⎦

is negligible in security parameter λ.

Definition 17. (Message-Transposing Collision Resistance) A message-transposing
commitment scheme, MTC, is message-transposing collision resistant if for any poly-
nomial time adversary A the advantage

AdvcrMTC,A(λ)

= Pr

⎡

⎣ gk ← Setup(1λ), (ck, tk) ← Key(gk),
(com, M1, open1, M2, open2) ← A(ck)

:
M1
= M2∧
1 = Vrf(ck, com, M1, open1)∧
1 = Vrf(ck, com, M2, open2)

⎤

⎦

is negligible in the security parameter λ.

Now we present a concrete scheme for a structure-preserving message-transposing
trapdoor commitment scheme for γ : Zp → G. For our purpose, we only require target
collision resistance but the construction satisfies the stronger notion.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 991

[Message-Transposing Trapdoor Commitment Scheme: MTC]

Setup(1λ): Run G(1λ) and obtain gk := (p, G, G̃, GT , e,G, G̃). It defines message
spacesMcom := Z

	
p,Mver := G

	 for fixed 	 ≥ 1 and bijection γ : Z
	
p → G

	 by
γ (m1, . . . ,m) = (Gm1 , . . . ,Gm). Output gk.

Key(gk): For i = 1, . . . , 	, choose ρi ← Z
∗
p and compute X̃i := G̃ρi . Output

ck := (gk, X̃1, . . . , X̃) and tk := (gk, ρ1, . . . , ρ).

Com(ck,m): Parse m into (m1, · · · ,m) ∈ Z
	
p. Choose ζ ← Z

∗
p and compute

G̃u := G̃ζ
	∏

i=1

X̃mi
i , and R := Gζ .

Output com := G̃u and open := R.

Vrf(ck, com, M, open): Parse ck = (gk, X̃1, . . . , X̃), open = R, M = (M1, . . . ,

M) ∈ G
	, and com = G̃u , respectively. Take generators (G, G̃) from gk. Return

1 if

e(G, G̃u) = e(R, G̃)

	∏

i=1

e(Mi , X̃i) (12)

holds. Return 0, otherwise.

SimCom(gk): Choose ωu ∈ Z
∗
p. Compute G̃u := G̃ωu and output com := G̃u and

ek := ωu .

Equiv(M, ek, tk): Parse tk = (gk, ρ1, . . . , ρ), ek = ωu , and M = (M1, . . . , M).
Compute R := Gωu

∏	
i=1 M

−ρi
i . Then output open := R.

Theorem 4. MTC is correct, statistical trapdoor, and structure preservingwith respect
to verification. It is message-transposing collision resistant if theDBP assumption holds.

Proof. Correctness is verified as

e(R, G̃)

	∏

i=1

e(Mi , X̃i) = e(Gζ , G̃)

	∏

i=1

e(Gmi , X̃i)

= e(G, G̃ζ) e(G,

	∏

i=1

X̃mi
i) = e(G, G̃u).

To see if it is statistically trapdoor, observe that SimCom outputs G̃u distributed uni-
formly over G̃

∗ whereas that fromCom distributes statistically close to uniform over G̃.
Then R from Equiv is the one that is uniquely determined by the verification equation
since it satisfies

992 M. Abe et al.

e(R, G̃)

	∏

i=1

e(Mi , X̃i) = e

(

Gωu

	∏

i=1

M−xi
i , G̃

)
	∏

i=1

e(Mi , G̃
xi) = e(G, G̃u).

Finally, it is obviously structure preservingwith respect to verification due to verification
equation (12).
Next we prove the message-transposing collision resistance. Let A be an adversary

that breaks the CR security of MTC. We show algorithm B that attacks the DBP with
black box access toA. Given an instance (e, G, G̃,G, G̃, G̃z) of the DBP, algorithm B
sets up key ck as follows. Set gk := (p, G, G̃, GT , e,G, G̃). For i = 1, . . . , 	, choose
ξi , ϕi ← (Z∗

p)
2 and set X̃i := (G̃z)

ξi G̃ϕi . Then give ck := (gk, X̃1, . . . , X̃) to A.

Suppose thatA outputs (G̃u, R1, M1, R2, M2) that passes the verification as required.
B then outputs (Z†, R†) where

R† := R1

R2

	∏

i=1

(
M1i

M2i

)ϕi

, and Z† :=
	∏

i=1

(
M1i

M2i

)ξi

, (13)

as the answer to the DBP. This completes the description of B.
We first verify that the simulated ck is correctly distributed. In the key generation,

gk is set legitimately to the given output of G. Each simulated X̃i distributes uniformly
over G̃, whereas the real one distributes uniformly over G̃

∗. Thus, the simulated ck is
statistically close to the real one.
We then argue that the resulting (Z†, R†) is a valid answer to the given instance of

the DBP. Since the output from A satisfies the verification equation, we have

1 = e

(
R1

R2
, G̃

) 	∏

i=1

e

(
M1i

M2i
, (G̃z)

ξi G̃ϕi

)

(14)

= e

(
	∏

i=1

(
M1i

M2i

)ξi

, G̃z

)

e

(
R1

R2

	∏

i=1

(
M1i

M2i

)ϕi

, G̃

)

= e(Z†, G̃z) e(R
†, G̃). (15)

Observe that every ξi is independent of the view ofA as it is information-theoretically
hidden in X̃i . Since a valid output from A satisfies M1
= M2, there exists an index
i† ∈ {1, . . . , 	} that M1i†
= M2i† . Thus, Z

† distributes as well as (M1i/M2i)
ξi at

i = i†. Since M1i†/M2i†
= 1 and ξi† is uniform over Z
∗
p, we conclude that Z† = 1

occurs only with negligible probability.
Thus, B breaks the DBP assumption with almost the same probability and running

time of A breaking the message-transposing collision resistance of MTC. �

3.3. Structure-Preserving Shrinking Trapdoor Commitment Scheme

We construct trapdoor commitment scheme TC by combining partially one-time sig-
nature scheme POS and message-transposing trapdoor commitment scheme MTC. A
key idea is to commit to both long-term and one-time secret keys of POS by using
shrinking MTC and allow verification of the commitment using corresponding public

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 993

keys as opening information. For this to be possible, the bijection γ must correspond
to the mapping from the secret key space to the public key space of POS. More pre-
cisely, we require the following properties satisfied by POS and MTC. Let Mpos be
the message space of POS defined with respect to gk. We denote the key spaces as
Kvk

pos, Ksk
pos, Kovk

pos, and Kosk
pos in a self-explanatory manner. There must exist efficiently

computable bijections γsk : Ksk
pos → Kvk

pos and γosk : Kosk
pos → Kovk

pos, and theMTC is for

γ := γsk ×γ
(1)
osk ×· · ·×γ

(k)
osk . It is also required thatPOS andMTC have a common setup

function, Setup, that outputs gk based on POS.Setup andMTC.Setup, as mentioned
in Sect. 2.3. (When instantiated from POS in Sect. 2.5 and MTC from Sect. 3.2, Setup
is as simple as running gk ← G(1λ).) The construction is as follows.

[Trapdoor Commitment Scheme: TC]

Setup(1λ): It the same as the common setup function for POS andMTC. The com-
mitment message spaceMcom

mtc and verification message spaceMver
mtc forMTC are

set to Mcom
mtc := Ksk

pos × (Kosk
pos)

k and Mver
mtc := Kvk

pos × (Kovk
pos)

k . The message

space for TC isM := (Mpos)
k for some integer k > 0.

Key(gk): Run (ckmtc, tkmtc) ← MTC.Key(gk). Output ck := ckmtc and tk := tkmtc.
It is assumed that gk is included in ck.

Com(ck, M): Parse ck := ckmtc and M := (M (1), · · · , M (k)) ∈ (Mpos)
k . Take gk

from ck. Run

(vkpos, skpos) ← POS.Key(gk),

(ovk(j)
pos, osk

(j)
pos) ← POS.Ovk(gk) for j = 1, . . . , k,

σ
(j)
pos ← POS.Sign(skpos, osk

(j)
pos, M

(j)) for j = 1, . . . , k, and

(commtc, openmtc) ← MTC.Com(ckmtc, (skpos, osk
(1)
pos, · · · , osk(k)

pos)).

Output com := commtc and open := (openmtc, vkpos, ovk
(1)
pos, · · · , ovk(k)

pos, σ
(1)
pos,

· · · , σ
(k)
pos).

Vrf(ck, com, M, open): Parse com = commtc, M = (M (1), · · · , M (k)) ∈ (Mpos)
k

and open = (openmtc, vkpos, ovk
(1)
pos, · · · , ovk(k)

pos, σ
(1)
pos, · · · , σ

(k)
pos). Execute

b0 ← MTC.Vrf(ckmtc, commtc, (vkpos, ovk
(1)
pos, · · · , ovk(k)

pos), openmtc), and

b j ← POS.Vrf(vkpos, ovk
(j)
pos, M

(j), σ
(j)
pos) for j = 1, . . . , k.

Output 1 if b j = 1 for all j = 0, . . . , k. Output 0, otherwise.

SimCom(gk): Take gkmtc from gk and run (commtc, ekmtc) ← MTC.SimCom(gkmtc)

and output com := commtc and ek := (commtc, ekmtc).

Equiv(M, ek, tk): The same as TC.Com except that, MTC.Com is replaced by
openmtc ← MTC.Equiv((vkpos, ovk

(1)
pos, · · · , ovk(k)

pos), ekmtc, tkmtc) and commtc
included in ek.

994 M. Abe et al.

Theorem 5. The commitment scheme TC described above is CMTCR if POS is
MK-OT-NACMA, and MTC is message-transposing target collision resistant.

Proof. We follow the game transition framework. Let Game 0 be the CMTCR game

launched by adversary A. By com† = com†
mtc, open

† = (open†mtc, vk
†
pos, ovk

†
pos

(1)
,

. . . , ovk†pos
(k)

, σ
†
pos

(1)
, . . . , σ

†
pos

(k)
) and M† = (M†(1)

, . . . , M†(k)
), we denote the col-

lision A outputs.

In Game 1, abort if (vk†pos, ovk
†
pos

(1)
, . . . , ovk†pos

(k)
) is different from any of (vk[i]

pos,

ovk(1)
pos, . . . , ovk

(k)
pos) observed by the signing oracle. We claim that if such an abort

happens, then MTC is broken. It is shown by constructing adversary B attacking the
message-transposing target collision resistance ofMTC. AdversaryB is given ckmtc and
qs reference commitments commtc and opening openmtc for random messages of the
form (sk[i]

pos, osk
(1)
pos, . . . , osk

(k)
pos). Each message is uniquely mapped to (vk[i]

pos, ovk
(1)
pos,

. . . , ovk(k)
pos) by bijection γ . Adversary B invokes A with ck := ckmtc as input. For ev-

ery commitment query M , adversaryB takes a fresh sample (sk[i]
pos, osk

(1)
pos, . . . , osk

(k)
pos)

with its commitment commtc and opening openmtc, and computes σ
(j)
pos ← POS.Sign

(skpos, osk
(j)
pos, M

(j)) for j = 1, . . . , k. It then returns com := commtc and open :=
(openmtc, vkpos, ovk

(1)
pos, · · · , ovk(k)

pos, σ
(1)
pos, . . . , σ

(k)
pos). If A eventually outputs a colli-

sion, B outputs com†
mtc := com†

mtc, open
†
mtc := open†mtc and M† := (vk†pos, ovk

†
pos

(1)
,

. . . , ovk†pos
(k)

). This completes the description of B.
The simulated commitments com and openings open have the same distributions

as the real ones since every osk(j)
pos is sampled legitimately by the challenger and the

commitment generation procedure is the genuine one. Furthermore, the output of B is a
valid collision againstMTC sinceAmust have chosen com†(= com†

mtc) frompreviously
used commitments and M† must be fresh for the attack being successful by definition.
Accordingly, we have |Pr[Game 0] − Pr[Game 1]| ≤ AdvtcrMTC,B(λ).

We then argue thatAwins in Game 1 only ifPOS is broken. Let C be an adversary at-
tacking theMK-OT-NACMA property of POS. Given gk, it executes (ckmtc, tkmtc) ←
MTC.Key(gk). Then it invokes A with input ck := ckmtc. For each i-th query M [i] =
(M [i],(1), . . . , M [i],(k)), C makes a key generation query toOk to obtain vk(j)

pos, and then

makes signing queries toOs for (M [i],(1), . . . , M [i],(k))with respect to vk[i]
pos. On receiv-

ing corresponding signatures from Os , C computes (commtc, ekmtc) ←
MTC.SimCom(gk) and openmtc ← MTC.Equiv((vk[i]

pos, ovkpos
(1), · · · , ovkpos(k)),

ekmtc, tkmtc) and outputs com := commtc and open := (openmtc, vk
[i]
pos, ovk

(1)
pos, . . . ,

ovk(k)
pos, σ

(1)
pos, . . . , σ

(k)
pos). On receiving a collision from A, C searches for vk[i]†

pos that

vkpos = vk[i]†
pos. Note that this search always succeeds if the game does not abort. It then

finds j† that M†(j)†
= M [i]†,(j)† (such an index must exist since M† differs from any

queried messages with respect to i†) and outputs vk[i]†
pos, ovk

(j)†
pos and M† := M†[i]†,(j)†

.
This completes the description of C. The simulated signatures are statistically close to
the real ones due to the statistical trapdoor property ofMTC.SimCom andMTC.Equiv.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 995

Thus, we have Pr[Game 1] − εsim ≤ Advmk-ot-nacma
POS,C (λ), where εsim is the statistical

loss by switching fromMTC.SimCom to MTC.Equiv.
All in all, we have

Advcmtcr
TC,A(λ) ≤ AdvtcrMTC,B(λ) + Advmk-ot-nacma

POS,C (λ) + εsim,

which proves the statement. �

The following is immediate from the construction. In particular, correctness holds due
to the correctness ofMTC and POS and the existence of a bijection from the secret keys
of POS to the verification keys.

Theorem 6. TC given above is a structure-preserving trapdoor commitment scheme
if MTC is structure preserving with respect to verification, and POS is structure pre-
serving.

4. Fully Structure-Preserving Signatures

We argue that constructing an FSPS requires a different approach than those for all
known constructions of SPS. The verification equations of existing structure-preserving
constant-size signatures on message vectors (Gm1 , . . . ,GmL) involve pairings such as∏

e(Gxi ,Gmi), where Gxi is a public key element and Gmi is a message element.
The message is squashed into a signature element, say S, in such a form that S :=
A · ∏L

i=1 G
mi xi where xi is a signing key component and A is computed from inputs

other than the message. Such a structure requires eithermi or xi to be known to a signing
algorithm that uses generic group operations. In FSPS, however, neither is given to the
signing function.
Our starting point is the FSPS scheme in Sect. 2.6. The following sections present

constructions that upgrade the security toUF-CMA by incorporating one-time signatures
or trapdoor commitments.

4.1. Warm-Up

Our first approach is to take random xi instead of the signing key. That is, xi works
as a random one-time key and Gxi is regarded as a one-time public key, which is then
authenticated by an FSPS with a long-term key that is secure against extended random
message attacks. This results in a combination of a weaker signature scheme with OTS,
which is well known as a method for upgrading the security of the underlying signature
scheme. This in fact can be seen as a special case of the construction of SPS by Abe et
al. [2]. We nevertheless work out the scheme in detail to discuss our motivation for our
main scheme and settle a basis for comparison. Let OTS and xSIG be a one-time and
an ordinary signature scheme that have common setup function Setup. We construct
FSP1 as follows.

996 M. Abe et al.

[Signature Scheme: FSP1]

Setup(1λ): It is the same as Setup for OTS and xSIG. It outputs gk ← Setup(1λ),
and setsMxsig := Kvk

ots and M := Mots.

Key(gk): Run (vkxsig, skxsig) ← xSIG.Key(gk). (It is assumed that gk is included
in vkxsig and skxsig.) Output (vk, sk) := (vkxsig, skxsig).

Sign(sk, M): Take skxsig and gk from sk. Compute

(ovkots, oskots) ← OTS.Key(gk),

σxsig ← xSIG.Sign(skxsig, ovkots), and

σots ← OTS.Sign(oskots, M).

Output σ := (σxsig, σots, ovkots)

Vrf(vk, M, σ): : Take vkxsig and (σxsig, σots, ovkots) from the input. Output 1 if

1 = OTS.Vrf(vkots, M, σots) and 1 = xSIG.Vrf(vkxsig, vkots, σxsig).

Output 0, otherwise.

Theorem 7. If OTS is a UF-NACMA secure SPS and xSIG is a UF-XRMA secure
FSPS, then FSP1 is a UF-CMA secure FSPS scheme.

Proof. Since the syntactical consistency and correctness are trivial from the construc-
tion, we only show that the scheme is fully structure preserving. The public component
of FSP1 is (vk, σ, M) = (vkxsig, (σxsig, σots, ovkots), M), which consists of public
components of xSIG.Key and the OTS. Also, the signing key of FSP1 consists of
skxsig. Thus, both public and private components of FSP1 consist of group elements
since xSIG is FSPS and the OTS is SPS. Furthermore, FSP1.Vrf evaluates OTS.Vrf
and xSIG.Vrf that evaluate PPEs. Thus, FSP1 is FSPS.

We next prove the UF-CMA security of FSP1 by following the standard game tran-
sition technique. LetA be an adversary against FSP1. By Pr[Game i] we denote prob-
ability that A eventually outputs a valid forgery as defined in Definition 2. Let Game 0
be the UF-CMA game that A is playing. By definition, Pr[Game 0] = Advuf-cma

FSP1,A(λ).

Let (σ †, M†) be a forgery A outputs. Let σ † := (σ
†
xsig, σ

†
ots, vk

†
ots).

In Game 1, abort the game if (σ †, M†) is a valid forgery and vk†ots is never used by
the signing oracle. We show that this event occurs only if the UF-XRMA security of
xSIG is broken. Let B be an adversary against xSIG launching an XRMA attack. B is
given a public key vkxsig, message m(j) := vk(j)

ots, signature σ
(j)
xsig) for j = 1, . . . , qs .

It is also given random coin ω(j) for each j used to generate vk(j)
ots using OTS.Key as

the message sampler. B first computes sk(j)
ots from ω(j) by executingOTS.Key by itself.

Then it invokes A with input vk := vkxsig. On receiving M (j) from A for signing,

B computes σ
(j)
ots ← OTS.Sign(sk(j)

ots, M
(j)) and returns σ (j) := (σ

(j)
xsig, σ

(j)
ots , vk(j)

ots).

When A outputs forgery σ † := (σ
†
xsig, σ

†
ots, vk

†
ots) for some message M†, B outputs

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 997

σ
†
xsig := σ

†
xsig and m† := vk†ots. This is a valid forgery since A’s forgery is supposed to

satisfy vk†ots
= vk(j)
ots. Thus, we have |Pr[Game 0] − Pr[Game 1]| ≤ Advuf-xrma

xSIG,B (λ).
Next we show that A wins Game 1 only if OTS is broken. Let C be an adversary

attacking OTS with NACMA. Given gk from outside, C first chooses a random index
i ← {1, . . . , qs}. It then executes (vk, sk) ← FSP1.Key(gk). Given j (
= i)-th query
M (j) from A, C runs σ (j) ← FSP1.Sign(sk, M (j)) and returns σ (j). Given j (= i)-th

query, C forwards M (j) to the signing oracle ofOTS and receive σ
(j)
ots and vk(j)

ots. Then C
executes σxsig ← xSIG.Sign(skxsig, vk

(j)
ots) and returns σ := (σ

(j)
xsig, σ

(j)
ots , vk(j)

ots) to A.

When A outputs forgery σ † := (σ
†
xsig, σ

†
ots, vk

†
ots) and M†, C aborts if vk†ots
= vk(i)

ots.

Otherwise, C outputs σ
†
xsig := σ

†
ots and m† := M†. This is a valid forgery since M†
=

M (j) for all j including the case j = i . Thus, we have Pr[Game 1] ≤ qs ·Advuf-nacma
OTS,C (λ).

In total, we have

Advuf-cma
FSP1,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + qs ·Advuf-nacma
OTS,C (λ),

which proves the statement. �

Though the above reduction involves a loss factor of qs , it will vanish ifOTS is based
on a random self-reducible problem like SDP.

The above construction requires Kvk
ots to match Mxsig. When they are instantiated

with the concrete schemes from previous sections (using the POS in Sect. 2.5 as OTS
by swapping G and G̃, and using xSIG in Sect. 2.6), the space adjustment is done as
follows.

[Procedure: Matching Kvk
ots toMxsig]

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for OTS.
It also provide extra generators (F2,U1, . . . ,UL+2) to OTS for the following
procedures to work.

OTS.Key: It runs POS.Key and POS.Ovk in sequence and set vkots := (vkpos,
ovkpos). The key spaces are adjusted as follows.

• POS.KeyOn topof the legitimate procedurewithG := F1 to obtain (Gwz ,Gχ1 ,

. . . ,GχL), it computes the extended part as
Gi2 := Fχi

2 Gi3 := Uχi
i for i = 1, . . . , L , and Gz2 := Fwz

2 , Gz3 := Uwz
L+1, and

include all of them to vkpos.
• POS.Ovk On top of legitimate procedure with G := F1 that computes A :=
Ga , it computes extra parts A2 := Fa

2 and A3 := Ua
L+2 and includes them to

ovkpos.

Then those extended vkpos and ovkpos constitute a message ((Gz,Gz2,Gz3), (G1,

G12,G13), . . . , (GL ,GL2,GL3), (A, A2, A3)) given to xSIG to sign.Wepresent a sum-
mary of the resulting instantiation of FSP1 below.

998 M. Abe et al.

Common Parameter (G, G̃, F1, F2, F̃1, F̃2, {Ui , Ũi }L+2
i=1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8)

Secret-key (K1, K2, K3, K4)

Message (M1, . . . , ML)

Signature (S̃0, S1, . . . , S5, Ã, Ã2, Ã3, G̃z, G̃z2, G̃z3, {G̃i , G̃i2, G̃i3}Li=1, Z , R)

Verification PPEs e(G, Ã) = e(Z , G̃z) e(R, G̃)
∏L

i=1 e(Mi , G̃i),

e(S5, Ṽ6 Ã3 G̃z3
∏L

i=1 G̃i3) = e(G, S̃0),
e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),
e(F1, Ã3) = e(UL+2, Ã), e(F2, Ã3) = e(UL+2, Ã2)
e(F1, G̃z3) = e(UL+1, G̃z), e(F2, G̃z3) = e(UL+1, G̃z2)

e(F1, G̃i3) = e(Ui , G̃i), e(F2, G̃i3) = e(Ui , G̃i2) (for i = 1, . . . , L).

Motivation for Improvement Since an SPS is an OTS, construction FSP1 can be seen
as a generic conversion from any SPS to an FSPS. In exchange for the generality, the
construction has several shortcomings when instantiated with current building blocks.

• (O(|m|)-size signatures) The resulting signature σ includes the one-time verifica-
tion key ovkots, which is linear in the size of messages in all current instantiations
of OTS.

• (Factor 3 expansion in xSIG) As shown above, the message space of xSIG must
cover ovkots, which is linear in the size of the message. Even worse, the currently
known instantiation of xSIG suffers from an expansion factor of μ = 3 for mes-
sages. That is, to sign amessage consisting of a group element, sayGx , it is required
to represent the message with two more extra elements Fx

2 and Ux
i for given bases

F2 andUi . Thus, the size of ovkots will actually beμ times larger than the one-time
verification key that OTS originally requires.

The above shortcomings amplify each other. Finding an instantiation of xSIG with a
smaller expansion factor is one direction of improvement. We leave it as an interesting
open problem and focus on a generic approach in the next section.

4.2. Main Construction

Our idea is to avoid signing any components whose size grows to the size of messages
directly with xSIG. We achieve this by committing to the message using a shrinking
commitment scheme and signing the commitment with xSIG. Combining a trapdoor
commitment scheme (or a chameleon hash) and a signature scheme to achieve such an
improvement is a known approach. What is important here is to clarify the required
security for each building block.We show that chosen-message target collision resistance
is sufficient for TC to reach UF-CMA in combination with an XRMA-secure signature
scheme.
Let xSIG be a UF-XRMA secure FSPS scheme and TC be a CMTCR secure trap-

door commitment scheme with common setup function Setup. We construct our FSPS
scheme FSP2 from xSIG and TC as follows.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 999

[Signature Scheme: FSP2]

Setup(1λ): Run common setup gk ← Setup(1λ) and output gk. Set the message
spaces Mxsig := Ctc and M := Mtc.

Key(gk): Run (vkxsig, skxsig) ← xSIG.Key(gk), and (cktc, tktc) ← TC.Key(gk).
Set vk := (vkxsig, cktc), sk := skxsig. Output (vk, sk)

Sign(sk, M): Parse sk into skxsig. Run (comtc, opentc) ← TC.Com(cktc, M) and
σxsig ← xSIG.Sign(skxsig, comtc). Output σ := (σxsig, opentc, comtc).

Vrf(vk, M, σ): Parse vk = (vkxsig, cktc) and σ = (σxsig, opentc, comtc). Output 1
if 1 = TC.Vrf(cktc, comtc, M, opentc) and 1 = xSIG.Vrf(vkxsig, comtc, σxsig).
Output 0, otherwise.

Note that trapdoor tktc is not included in sk but used only in the security proof. It is
the point that makes the scheme fully structure preserving.

Theorem 8. If TC is aCMTCR secure SPTC, and xSIG is aUF-XRMA secure FSPS
relative to TC.SimCom as a message sampler, then FSP2 is a UF-CMA FSPS.

Proof. Correctness holds trivially from those of the underlying TC and xSIG. Re-
garding the full structure-preserving property, observe that sk consists of skxsig, and it
consists only of source group elements since xSIG is fully structure preserving. The
same is true for public components, i.e., public keys, messages, and signatures consist
only of source group elements because both tktc and xSIG are structure preserving. The
verification only evaluates verification functions of these underlying building blocks,
which evaluate PPEs. Thus, FSP2 is FSPS.
We next prove the security property. LetA be an adversary against FSP2. Let Game

0 be theUF-CMA game thatA is playing. By definition, Pr[Game 0] = Advuf-cma
FSP2,A(λ).

Let (σ †,m†) be a forgery A outputs. Let σ † := (σ
†
xsig, open

†
tc, com

†
tc).

In Game 1, abort the game if (σ †,m†) is a valid forgery and com†
tc is never queried

by the signing oracle. We show that this event occurs only if the UF-XRMA security
of xSIG is broken. Let B be an adversary against xSIG launching an XRMA attack.
The message sampler for XRMA is TC.SimCom. That is, the challenger samples ran-
dom messages by (comtc, ektc) ← TC.SimCom(gk;ω) with random coin ω and gives
comtc and ω with signature σxsig on comtc as a message. Let sample[i] be the i-th sam-

ple, i.e., sample[i] := (com[i]
tc , ω[i], σ [i]

xsig). Given (vkxsig, sample
[1], . . . , sample[qs]) as

input,B runs as follows. It first takes gk from vkxsig and recovers every ek
[i]
tc fromω[i] by

(comtc, ektc) ← TC.SimCom(gk;ω). It then runs (cktc, tktc) ← TC.Key(gk) and in-
vokesAwith input vk := (vkxsig, cktc). Given the i-th signing querym[i] fromA, it exe-

cutes open[i]
tc ← TC.Equiv(m[i], tk[i]

tc , ek[i]
tc ,) and returns σ := (σ

[i]
xsig, open

[i]
tc , com[i]

tc)

to A. If A eventually outputs a forgery, σ † = (σ
†
xsig, open

†
tc, com

†
tc) and m†, it outputs

σ
†
xsig := σ

†
xsig and m† := com†

tc as a forgery with respect to xSIG.
Correctness of the above reduction holds because of the statistically close distribution

of simulated com[i]
tc , and open(j)

tc . The output (σ
†
xsig,m

†) is also a valid forgery since

1000 M. Abe et al.

com†
tc differs from any com[i]

tc . Letting εsim denote the statistical distance, we have
|Pr[Game 0] − Pr[Game 1]| ≤ Advuf-xrma

xSIG,B (λ) + εsim.
Now we claim that A winning in Game 1 occurs only if the CMTCR security of TC

is broken. The reduction from successful A in Game 1 to adversary C that breaks TC
is straightforward. Given cktc, C runs (vkxsig, skxsig) ← xSIG.Key(gk) and invokes
A with vk := (vkxsig, cktc). Then, given message m(j), forward it to the oracle of TC
and obtain (com[i]

tc , open[i]
tc). Then sign com[i]

tc using skxsig to obtain σ
[i]
xsig and return

(σ
[i]
xsig, open

[i]
tc , com[i]

tc) to A. Given a forged signature (σ
†
xsig, open

†
tc, com

†
tc) and m†,

output open†tc := open†tc and m† := m†. It is a valid forgery since m†
= m[i] for all i .
We thus have Pr[Game 1] = Advcmtcr

TC,C (λ).
By summing up the differences, we have

Advuf-cma
FSP2,A(λ) ≤ Advuf-xrma

xSIG,B (λ) + Advcmtcr
TC,C (λ) + εsim, (16)

which proves the statement. �

To instantiate this construction with the building blocks from previous sections, we
again need to duplicate commtc = G̃u = G̃ζ

∏	
i=1 X̃

mi
i to a triple with respect to bases

G̃ = F̃2, F̃3 and Ũ1 as follows. To be able to do sowithout holding the discrete logarithms
of the X̃i ’s, we need to duplicate X̃ to the same set of bases as well. Details are shown
in the following.

[Procedure: Matching Cmtc toMxsig]

Setup: It runs xSIG.Setup and sets (F1, F̃1) as default generators (G, G̃) for MTC
with extra generators (F2,U1) as well.

MTC.Key: On top of the legitimate procedure with G := F̃1 to obtain X̃i := Gρi ,
additionally compute X̃i2 := F̃ρi

2 and X̃i3 := Ũρi
1 for i = 1, . . . , 	 and include

them to ckmtc.

MTC.Com: On top of the legitimate procedure that computes G̃u = G̃ζ
∏	

i=1 X̃
mi
i

for G̃ := F̃1, compute G̃u2 := F̃ζ
2

∏	
i=1 X̃

mi
i1 and G̃u3 := Ũ ζ

1

∏	
i=1 X̃

mi
i3 and

include them to commtc.

MTC.SimCom: Compute the above extra components as G̃u2 := F̃ωu
2 , and G̃u3 :=

Uωu
1 .

The result is an extended commitment commtc = (G̃u, G̃u2, G̃u3) that matches the
message space of xSIG with 	 = 1. Note that the duplicated keys have no effect on the
security of POS norMTC since they can be easily simulated when the discrete-logs of
the extra bases to the original base G̃ are known.
We summarize the instantiation of FSP2 in the following. Let k = � L

	pos
� and 	mtc =

1 + k + 	pos.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1001

Table 1. Size of a secret key, a verification key, a signature, and the number of PPEs in verification for a
unilateral message of size L = k	. (a, b) : a and b elements in G and G̃, respectively.

Scheme |sk| |gk| |vk| |M | |σ| #PPE

FSP1 (4, 0) (5 + L , 5 + L) (1, 7) (L , 0) (7, 7 + 3L) 7 + 2L
FSP2 (4, 0) (4, 4) (1, 10 + 3(k +)) (0, L) (7 + k + 	, 4 + 2k) 5 + k

Table 2. Concrete signature size for small messages with optimal setting of k = 	 = √
L .

Scheme |σ|
L = k	 1 4 9 25 100

FSP1 (7, 7 + 3L) (7, 10) (7, 19) (7, 34) (7, 82) (7, 307)
FSP2 (7 + k + 	, 4 + 2k) (9, 6) (11, 8) (13, 10) (17, 14) (27, 24)

Common Parameter (G, G̃, F1, F2, F̃1, F̃2,U1, Ũ1)

Public-key (Ṽ1, Ṽ2, Ṽ3, Ṽ4, Ṽ5, Ṽ6, V7, Ṽ8, {X̃i , X̃i2, X̃i3}	mtc
i=1)

Secret-key (K1, K2, K3, K4)

Message (M̃1, . . . , M̃L)

Signature (S̃0, S1, . . . , S5, G̃u , G̃u2, G̃u3, R,Gz,G1, . . . ,G	pos , {Ai , Z̃i , R̃i }ki=1)

Verification PPEs Let (N1, . . . , N	mtc) := (Gz,G1, . . . ,G	pos , A1, . . . , Ak).
For j = 1, . . . , k :

e(A j , G̃) = e(Gz, Z̃ j) e(G, R̃ j)
∏	pos

i=1 e(Gi , M̃(j−1)	pos+i),

e(G, G̃u) = e(R, G̃)
∏	mtc

i=1 e(Ni , X̃i)

e(S5, Ṽ6 G̃u3) = e(G, S̃0),
e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(V7, Ṽ8),
e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2).

4.3. Efficiency

In this section, we assess the efficiency of FSP1 and FSP2 instantiated as described
in Sects. 4.1 and 4.2. Note that FSP1 uses a one-time signature scheme, OTS, and we
evaluate the efficiency where OTS is instantiated by POS in Sect. 2.5 since the POS is
the best known structure-preserving OTS under a standard assumption.

Signature Size and Number of PPEs In Table 1 we assess the sizes of a key and a
signature for unilateral messages consisting of 	 group elements. By |vk|, we denote the
number of group elements in vk except for those in gk. Similarly, by |sk|, we denote the
number of group elements in sk except for those in vk. By the term #PPEA we denote
the number of pairing product equations in the corresponding building block A. Table 2
summarizes the comparison with signature length for some concrete message lengths.
In the following, we denote the size of an element by (a, b) when the element consists
of a and b group elements in G and G̃, respectively.

1002 M. Abe et al.

• FSP1. According to the descriptions in Sects. 2.5 and 2.6, we have the following
parameters for the building blocks.

– OTS: |vkots| = |vkpos| + |ovkpos| = (0, L + 2), |σots| = (2, 0), and
#PPEots = 1.

– xSIG: |skxsig| = (4, 0), |vkxsig| = (1, 7), and #PPExsig = 2 + 2 |vkots|.
The common setup function for these building blocks generates bases (G, G̃, F1,
F2, F̃1, F̃2, {Ui , Ũi }	i=1) for 	xsig = |vkots| to allow xSIG to sign vkots. (Note that
vkots consists only of group elements from G, which xSIG can sign.) Taking the
message expansion factor μ = 3 into account, we obtain the following for FSP1:

|gk| = (3 + |vkots|, 3 + |vkots|) = (5 + L , 5 + L)

|sk| = |skxsig| = (4, 0)

|vk| = |vkxsig| = (1, 7)

|σ| = |σxsig| + |σots| + μ |vkots| = (5, 1) + (2, 0) + (0, 6 + 3 L)

= (7, 7 + 3 L)

#PPE = #PPExsig + #PPEots = 7 + 2 L

• FSP2. The underlying components are xSIG, MTC and POS. Since POS is re-
peatedly used in FSP2, its message size 	pos can be set independently from the
input message size 	. The parameters for these underlying components are:

– POS: |vkpos| = (pos + 1, 0), |ovkpos| = (1, 0), |σpos| = (0, 2), and
#PPEpos = 1.

–MTC: |ckmtc| = |vkpos|+|L/	pos|·|ovkpos| = (0, 1+k+	pos), |commtc| =
(0, 1), and |openmtc| = (1, 0).

– xSIG: |skxsig| = (4, 0), |vkxsig| = (1, 7), and #PPExsig = 2 + 2 |commtc|.
As in the previous case, the common setup function outputs gk including bases

(G, G̃, F1, F2, F̃1, F̃2, {Ui , Ũi }	xsigi=1) for 	xsig = |commtc| to allow xSIG to sign
commtc. Based on these parameters, the following evaluation is obtained for FSP2:

|sk| = |skxsig| = (4, 0)

|gk| = (4, 4)

|vk| = |gk| + |vkxsig| + |ckmtc| = (1, 7) + (0, 3 + 3(k +))

= (1, 10 + 3 k + 3)

|σ| = |σxsig| + |openmtc| + |σpos| + μ|commtc| + |vkpos| + |L/	pos| · |ovkpos|
= (5, 1) + (k, 0) + (0, 2 k) + (0, 3) + (+ 1, 0) + (1, 0)

= (7 + k + 	, 4 + 2 k)

#PPE = #PPExsig + #PPEmtc + |L/	pos| · #PPEpos

= 5 + |L/	pos| = 5 + k

The last equality in each evaluation is obtained at the optimal setting; 	pos =
|L/	pos| = k.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1003

Table 3. Size of aGroth–Sahai zero-knowledge proof of knowledge for a secret key or a signature for unilateral
messages of size L with the optimal parameter setting. (x, y, z) denotes x and y elements in G and G̃,
respectively, and z elements in Zp .

Scheme Proof of sk Proof of σ

FSP1 (10, 10, 2) (32 + 4 L , 24 + 6 L , 2)
FSP2 (10, 10, 2) (28 + 6 k + 2 	, 18 + 8 k, 2)

Proof Size Next we assess the cost for proving one’s knowledge of a secret key or a
signature for FSP1 and FSP2 with the Groth–Sahai proof as a non-interactive zero-
knowledge proof. Results are summarized in Table 3.

Proof ofKnowingaSecretKeyRecall that, in either scheme, a secret key (K1, K2, K3, K4)

is correct if it satisfies relations in (9). To allow zero-knowledge simulation, the relations
are transformed into the following form:

e(K2, G̃) = e(G, Ṽ1), e(G, Ṽ3) = e(K2, Ṽ2),
e(K1, Ṽ1) = e(W , Ṽ8), W = V7,
e(K2, Ṽ4) = e(G, Ṽ5), e(K3, G̃)e(K4, Ṽ2) = e(G, Ṽ4).

(17)

Underlined variables are the witnesses the prover commits to. Observe that (17) consists
of five linear PPEs and a linear multiscalar multiplication equation. According to [38],
committing to a group element in G requires 2 elements in G, and proving a linear PPE
and a multiscalar multiplication equation yield a proof consisting of 2 group elements
in G̃, and 2 × 1 = 2 scalar values in Zp, respectively. Committing to G can be done
for free by using a prescribed default commitment as suggested in [29]. Thus, with
five witnesses, five linear PPEs, and one linear multiscalar multiplication equation, the
resulting proof (i.e., commitments and proofs for all relations) consists of 10 elements
in G, 10 elements in G̃, and 2 elements in Zp.

Proof of Knowing a Valid SignatureWe first consider FSP1. According to the descrip-
tions in Sect. 4.1, a valid signature satisfies the following relations.

e(G, Ã) = e(Z , G̃z) e(R, G̃)

L∏

i=1

e(Mi , G̃i), e(S5, Ṽ6 Ã3 G̃z3

L∏

i=1

G̃i3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(W , Ṽ8), W = V7,

e(F1, Ã3) = e(U	+2, Ã), e(F2, Ã3) = e(U	+2, Ã2), e(F1, G̃z3) = e(U	+1, G̃z),

e(F2, G̃z3) = e(U	+1, G̃z2), e(F1, G̃i3) = e(Ui , G̃i), e(F2, G̃i3) = e(Ui , G̃i2)

for i = 1, . . . , L for the last two relations. There are 8 underlined witnesses in G and
7 + 3 L in G̃. Committing to these witnesses requires 16 elements in G and 14 + 6 L
elements in G̃. The first two relations involve witnesses in both groups whose proofs
require 2× 4 elements in G and G̃. The third relation has witnesses only in G. Its proof
consists of 2 elements in G̃. The fourth relation is a linear multiscalar multiplication

1004 M. Abe et al.

equation whose proof consists of 2 elements in Zp. The remaining 4+2L relations have
witnesses only in G̃, and each of their proof costs 2 elements in G. In total the proofs
and commitments consist of 16+ 4× 2+ 2× (4+ 2 L) = 32+ 4 L elements in G and
14 + 6 L + 4 × 2 + 2 = 24 + 6 L elements in G̃, and 2 elements in Zp.

Next considerFSP2. As described in Sect. 4.2, a valid signature satisfies the following
relations:

e(A j , G̃) = e(Gz, Z̃ j) e(G, R̃ j)

	pos∏

i=1

e(Gi , M̃(j−1)	pos+i) (for j = 1, . . . , k),

e(G, G̃u) = e(R, G̃)

	mtc∏

i=1

e(Ni , X̃i), e(S5, Ṽ6 G̃u3) = e(G, S̃0),

e(S1, Ṽ1) e(S2, Ṽ3) e(S3, Ṽ2) = e(S4, Ṽ4) e(S5, Ṽ5) e(W , Ṽ8), W = V7,

e(F1, G̃u3) = e(U1, G̃u), e(F2, G̃u3) = e(U1, G̃u2)

where (N1, . . . , N	mtc) is actually (Gz,G1, . . . ,G	pos , A1, . . . , Ak) that are also wit-
nesses. Thus we do not need to count the cost for committing to Ni . We consider
	mtc = k = 	. A signature consists of 7 + k + 	 elements in G and 4 + 2k elements
in G̃. Thus committing to the signature costs 2(7 + k +) and 2(4 + 2k) elements in
G and G̃, respectively. To achieve zero-knowledge, the prover also commits to V7 with
W , which costs 2 elements in G. The first three relations (indeed k + 2 relations) that
came fromPOS andMTC involve witnesses in both groups. Hence proofs for them cost
(k+2)(4, 4) elements in G and G̃, respectively. The multiscalar multiplication equation
for V7 costs two elements in Zp. The remaining three relations that came from xSIG
involves witnesses for either ofG or G̃. Proofs for those relations costs 2 group elements
in G̃ and 2 × 2 group elements in G. In total the proofs and commitments consist of
2(7+k+)+2+4(k+2)+4 = 28+6 k+2 	 and 2(4+2 k)+4(k+2)+2 = 18+8 k
in G and G̃, respectively, and 2 elements in Zp. Accordingly, for any setting of k and 	

satisfying L = k	, FSP2 retains better efficiency over FSP1.

5. Efficient Fully Structure-Preserving Combined Signatures

We will now construct a fully structure-preserving combined signature scheme SP1
that can be used to sign messages consisting of L = 	k group elements in G̃. We strive
for high efficiency and to optimize performance we settle for a proof of security in the
generic asymmetric bilinear group model. We proceed in two steps, first we construct
a (not fully) structure-preserving signature scheme and then later modify it to a fully
structure-preserving signature scheme.

5.1. Starting Point: A Structure-Preserving Combined Signature Scheme

In this section, we construct a structure-preserving combined signature schemeSP1 that
can be used to sign messages consisting of L = 	k group elements in G̃. The signature

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1005

and verification algorithms for randomizable and strongly unforgeable signatures, re-
spectively, are quite similar. We therefore describe them at the same time indicating the
choice by b = 0 for randomizable signatures and b = 1 for strongly unforgeable ones.

In order to explain some of the design principles underlying the construction, let
us first consider the special case where the message space is G̃, i.e., we are signing a
single group element and L = 	 = k = 1. The setup includes a random group element
Ỹ = G̃ y ∈ G̃, the verification key consists of a single group element V = Gv ∈ G, and
both randomizable and strongly unforgeable signatures are of the form σ = (R, S̃, T̃) ∈
G × G̃

2.
For a randomizable signature, there will be two verification equations:

e(R, S̃) = e(G, Ỹ)e(V, G̃) e(R, T̃) = e(G, M̃)e(V, Ỹ).

It is easy to see that we can randomize the factors in e(R, S̃) and e(R, T̃) into e(R
1
β , S̃β)

and e(R
1
β , T̃ β) without changing the products themselves, which gives us randomiz-

ability of the signatures.
The first verification equation is designed to prevent the adversary from creating

a forged signature from scratch after seeing the verification key only. An adversary
using only generic group operations can do no better than computing R = Gρ V ρv and
S̃ = G̃σ Ỹ σy using known scalars ρ, ρv, σ, σy ∈ Zp. Looking at the underlying discrete
logarithms, the first verification equation then corresponds to the polynomial equation

(ρ + ρvv)(σ + σy y) = y + v

in the unknown discrete logarithms v and y. Let us first argue that this equation is
not solvable when viewing it as a formal polynomial equation in v, y. Looking at the
coefficients of the term v, we get ρvσ = 1, which means σ
= 0. Looking at co-
efficients of the term y we get ρσy = 1 we get ρ
= 0. But this leaves us with a
constant term ρσ
= 0 and therefore we cannot solve the equation formally. On the
other hand, in the generic group model the random encoding of group elements mean
that the adversary has no further information about the actual values of v, y that are
chosen at random, so the Schwartz–Zippel lemma implies it has a negligible proba-
bility 2

p of guessing ρ, ρv, σ, σy such that the equation holds for the concrete discrete
logarithms v, y.

What if the adversary instead of creating a signature from scratch tries to modify an
existing signature or combine many existing signatures? Due to the randomness in the
choice of z ← Z

∗
p in the signing protocol each signature query will return a signature

with a random Ri . As it turns out the randomization used in each signature makes it
hard for the adversary to combine multiple signatures, or even modify one signature,
in a meaningful way with generic group operations. Intuitively this is because generic
group operations allow the adversary to compute linear combinations of elements it has
seen; however, the verification equations are quadratic.
Let us now turn to the other option, to make strongly existentially unforgeable sig-

nature. In order to prevent randomization when strong unforgeability is desired, the
combined signature scheme modifies the latter verification equation by including also

1006 M. Abe et al.

e(V, S̃). This gives us the following verification equations for strongly unforgeable sig-
natures

e(R, S̃) = e(G, Ỹ)e(V, G̃) e(R, T̃) = e(G, M̃)e(V, Ỹ)e(V, S̃)

Now the randomization technique fails because a randomization of S̃ means we must
change T̃ in a way that counteracts this change in the second verification equation.
However, T̃ is pairedwith R that also changeswhen S̃ changes. The adversary is therefore
faced with a nonlinear modification of the signatures and gets stuck because generic
group operations only enable it to do linear modifications of signature elements.
We can extend the one-element signature scheme to sign a vector M̃ [1] = (M̃(1,1), . . . ,

M̃(,1)) with 	 group elements in G̃ by extending the verification key by 	 − 1 random
group elements U = (U1, . . .U	−1). Now the verification equations become

e(R, S̃) = e(G, Ỹ)e(V, G̃) e(R, T̃) =
	−1∏

i=1

e(Ui , M̃(i,1)) · e(G, M(,1))

·e(V, Ỹ) · e(V, S̃)b

where b = 0 for a randomizable signature and b = 1 for a strong signature. The idea is
that the discrete logarithms of the elements inU are unknown to the adversary making it
hard to change any group elements in a previously signed message to get a new message
that will verify under the same signature.
Finally, to sign L = 	k group elements in G̃ instead of 	 group elements we keep

the first verification equation, which does not involve the message, but add k − 1 extra
verification equations similar to the second verification equation for a vector of group
elements described above. This allows us to sign k vectors in parallel. In order to avoid
linear combinations of message vectors and signature components being useful in other
verification equations, we give each verification equation a separate e(V, Ỹ j) factor,
where j = 1, . . . , k is the index of the verification equation. The resulting signature
scheme is given below.

[Combined SPS : SP1]

Setup(1λ): Generate (p, G, G̃, GT , e,G, G̃) ← G(1λ) and Ỹ ← G̃
k . Return gk :=

(p, G, G̃, GT , e,G, G̃, Ỹ). Message spaceM is set to G̃
	×k for prescribed 	 and

k, and we represent a message in M as a matrix of size 	 × k over G̃ hereafter.

Key(gk): Pick u ← Z
	−1
p and v ← Zp. Output (vk, sk) where vk := (U, V) =

(Gu,Gv) and sk := (u, v).

Signb(sk, M̃): Pick z ← Z
∗
p and set r = 1

z . Compute S̃ := (Ỹ1G̃v)z , R := Gr .

For j = 1 · · · k, compute T̃ j :=
(∏	−1

i=1 M̃ui
(i, j) · M̃(, j) · Ỹ v

j · S̃vb
)z

and set T̃ :=
(T̃1, · · · , T̃k). Output σ := (R, S̃, T̃).

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1007

Vrfb(vk, M̃, σ): Parse σ = (R, S̃, T̃). Return 1 if and only if M̃ ∈ G̃
	×k , R ∈ G,

S̃ ∈ G̃, T̃ ∈ G̃
k , and

e(R, S̃) = e(G, Ỹ1) e(V, G̃), and (18)

e(R, T̃ j) =
	−1∏

i=1

e(Ui , M̃(i, j)) e(G, M̃(, j)) e(V, Ỹ j) e(V, S̃)b for all j = 1, . . . , k.

(19)

Rand(vk, M̃, σ): Parse σ into (R, S̃, T̃). Pick β ← Z
∗
p, calculate R′ := R

1
β , S̃′ :=

S̃β , and T̃ ′ := T̃
β
. Return σ ′ := (R′, S̃′, T̃ ′

).

Theorem 9. SP1 is structure-preserving combined signature scheme that is combined
existentially unforgeable under chosen-message attack (C-EUF-CMA secure) in the
generic group model.

Proof. Perfect correctness, perfect randomizability and structure preservation follow
by inspection.What remains is to prove that the signature scheme is C-EUF-CMA secure
in the generic bilinear group model. In the (Type-III) generic bilinear group model, the
adversary may compute new group elements in either source group by taking arbitrary
linear combinations of previously seen group elements in the same source group. We
shall see that no such linear combination of group elements, viewed as formal Laurent
polynomials in the variables picked by the key generator and the signing oracle, yields
an existential forgery. It follows along the lines of the Uber assumption of Boneh, Boyen
and Goh [19] from the inability to produce forgeries when working with formal Laurent
polynomials that the signature scheme is C-EUF-CMA secure in the generic bilinear
group model.
Let M̃ i = G̃Wi ∈ G̃

	×k for Wi ∈ Z
	×k
p be the i-th (0 ≤ i ≤ q) signing query made

by the adversary. The group elements in the message may be constructed by combining
previously seen group elements, so Wi may depend linearly on the discrete logarithms
of public key elements in G̃ and all previously seen signature elements in S̃ j , T̃ j for
j < i . The adversary obtains signatures (Ri , S̃i , T̃ i) that

Ri = G
1
zi S̃i = (Ỹ1G̃

v)zi T̃ i = G̃zi ((u,1)Wi+v y+bi ziv(y1+v) 1)

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is for a
strong signature.
Viewed as Laurent polynomials, we have that the discrete logarithm of a signature

(R, S̃, T̃) generated by the adversary on a message M̃
	×k

defined by W ∈ Z
	×k
p is of

the form

1008 M. Abe et al.

r = ρ + vρv + uρ�
u +

∑

i

1

zi
ρri

s = σ + σ y y� +
∑

j

σs j z j (y1 + v) +
∑

j

σ t j z j
(
(u, 1)W j + v y + b j z jv(y1 + v)1

)

t = τ + yTy +
∑

j

z j (y1 + v)τ s j +
∑

j

z j
(
(u, 1)W j + v y + b j z jv(y1 + v)1

)
Tt j

Similarly, all 	k entries in W can be written in a form similar to s, and all entries in
queriedmessages with discrete logarithmsWi can bewritten in a form similar to s where
the sums are bounded by j < i .
For the first verification equation to be satisfied, we must have rs = y1 + v, i.e.,

(
ρ + uρ�

u
+vρv + ∑

i
1
zi

ρri

)(
σ + σ y y� + ∑

j σs j z j (y1 + v)

+∑
j σ t j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)�

)

= y1 + v

Westart by noting that r
= 0 since otherwise the left hand sidemultivariate polynomial
rs cannot have the term y1 that appears on the right hand side. Please observe that it
is only in G that we have terms including indeterminates with negative power, i.e.,
1
zi
. In G̃ all indeterminates have positive power, i.e., so s j , t j ,W j only contain proper

multivariate polynomials. Now suppose for a moment that ρri = 0 for all i . Then
in order not to have a terms involving z j ’s in rs we must have

∑
j σs j z j (y1 + v) +

∑
j σ t j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)� = 0. The term y1 nowgives usρσy,1 =
1 and the term v gives us ρvσ = 1. This means ρ
= 0 and σ
= 0, and therefore, we
reach a contradiction since the constant term should be ρσ = 0. We conclude that there
must exist some J for which ρrJ
= 0.
Nowwe have the term ρrJ σ

1
z J

= 0, which shows us σ = 0. The terms ρrJ σy,h
yh
zJ

= 0
for h = 1, . . . , k give us σ y = 0.
The polynomials corresponding to s j and t j contain the indeterminate z j in all terms,

so no linear combination of them can give us a term where the indeterminate component
is vyh for some h ∈ {1, . . . , k}. Since Mj is constructed as a linear combination of
elements in the verification key and components in G̃ from previously seen signatures,
it too cannot contain a term where the indeterminate component is vyh . The coefficient
of

z j
z J

vyh is therefore ρrJ σt j ,h = 0 and therefore σt j ,h = 0 for every j
= J and
h ∈ {1, . . . , k}. This shows σ t j = 0 for all j
= J . Looking at the coefficients for vyh
for h = 1, . . . , k we see that σ tJ = 0 too.

The terms ρrJ σs j
z j
zl

v give us σs j = 0 for all j
= J . In order to get a coefficient of 1

for the term y1 we see that σsJ = 1
ρrJ

, which is nonzero. Our analysis has now shown

that

s = 1

ρrJ
z J (y1 + v).

Let us now analyze the structure of r . The term ρvσJv
2z J = 0 gives us ρv = 0. We

know from our previous analysis that if there was a second i
= J for which ρri
= 0

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1009

then also σρJ = 0, which it is not. Therefore for all i
= J we have ρri = 0. The term
ρσsJ z J y1 gives ρ = 0. The terms in σsJ uz Jvρ�

u give us ρu = 0. Our analysis therefore
shows

r = ρrJ
1

z J
.

Wenow turn to the second verification equation, which is r t1 = (u, 1)w�+vy1+bvs,
where w� is the first column vector of W. The message vector is of the form

w = μ + yWy +
∑

j

μs j z j (y1 + v)

+
∑

j

z j
(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
Wt j

where μ,Wyμs j andWt j are vectors and matrices of corresponding size with entries in

Zp chosen by the adversary. Similarly, we can write out t1 = τ +τ y y�+∑
j τs j z j (y1+

v) + ∑
j τ t j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
for elements and vectors of corre-

sponding size τ, τ y, τs j , τ t j with entries in Zp chosen by the adversary.
Writing out the second verification equation, we have

ρrJ
1

z J

(
τ + τ y y� + ∑

j τs j z j (y1 + v)

+∑
j τ t j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
)

= vy1 + bv

(
1

ρrJ
z J (y1 + v)

)

+ (u, 1)

(
μ + yWy + ∑

j μs j z j (y1 + v)

+∑
j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
Wt j

)�
.

Looking at the coefficients of terms involving 1
z J

and yh
z J
, we get τ = 0 and τ y = 0.

Looking at the terms in ρrJ τ t j
z j
z J

v y, we get τ t j = 0 for all j
= J . Similarly, the terms

ρrJ τs j
z j
z J

v give us τs j = 0 for all j
= J . We are now left with

ρrJ
(
τsJ (y1 + v) + τ tJ ((u, 1)WJ + v y + bJvz J (y1 + v)1)

)

= vy1 + bv
1

ρrJ
z J (y1 + v)

+ (u, 1)

(
μ + yWy + ∑

j μs j z j (y1 + v)

+∑
j z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
Wt j

)�
.

Terms involving z j and z2j must cancel out, so we can assume μs j = 0 and Wt j = 0
for j > J . Since WJ does not involve z J in any of its terms, we get from the terms in
(u, 1)z Jvμ�

sJ thatμsJ = 0. Since there can be no terms involving z2J weget bJ1W
�
tJ = 0.

Looking at the coefficients for v we get τsJ = 0. This leaves us with

1010 M. Abe et al.

ρrJ τ tJ ((u, 1)WJ + v y + bJvz J (y1 + v)1)�

= vy1 + bv
1

ρrJ
z J (y1 + v) + (u, 1)z J

(
(u, 1)WJ + v y)WtJ

)�

+ (u, 1)

(
μ + yWy + ∑

j<J μs j z j (y1 + v)

+ ∑
j<J z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
Wt j

)�
.

Looking at the terms involving z Jv2 we see ρrJ τ tJ bJ1
� = b 1

ρrJ
. This cancels out

the first two parts involving z J . The only remaining terms involving z J now give us
WtJ = 0. This gives us

ρrJ τ tJ ((u, 1)WJ + v y)� − y1

= (u, 1)

(
μ + yWy + ∑

j<J μ
(J)
s j z j (y1 + v)

+∑
j<J z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
Wt j

)�

Looking at the terms in v y we now get ρrJ τ tJ = (1, 0, . . . , 0). Let the first column
vector of WJ be w�

J then we now have

(u, 1)w�
J = (u, 1)w�.

Writing

w′ = wJ − w = μ′ + yW′
y +

∑

j<J

μ′
s j z j (y1 + v)

+
∑

j<J

z j
(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
W′

t j

we now have

(u, 1)

(
μ′ + yW′

y + ∑
j<J μ′

s j z j (y1 + v)

+∑
j<J z j

(
(u, 1)W j + v y + b jvz j (y1 + v)1

)
W′

t j

)�
= 0.

The terms in (u, 1)μ′� tell us μ′ = 0. Looking at terms involving ui yh or yh gives
us W′

y = 0. Terms with z2j tell us b j1W′
t j = 0 for all j . Terms in (u, 1)z jvμ′

s j tell us
μ′
s j = 0 for all j . Finally, terms in (u, 1)(v yW′

t j) give us W
′
t j = 0.

We have now deduced thatw′ = 0 and thereforewJ = w. This means the first column
inW for which the adversary has produced a signature is a copy of the first column in the
queried message WJ . Using the same analysis on the last k − 1 verification equations
gives us that the other k − 1 columns also match. This means a generic adversary can
only produce valid signatures for previously queried messages, so we have EUF-CMA
security.
Finally, let us consider the case where b = 1, i.e., we are doing a strong signature

verification. We saw earlier that ρrJ τ tJ bJ1
� = bJ = b 1

ρrJ
which can only be satisfied

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1011

if bJ = 1 and ρrJ = 1. This means s = sJ and r = rJ and W = WJ and therefore
t = t J . So the generic adversary can only satisfy the strong verification equation with
b = 1 by copying both the message and signature from a previous query with bJ = 1.

On the other hand, if b = 0, i.e., we are verifying a randomizable signature, we
see from ρrJ τ tJ bl1

� = bJ = b 1
ρrJ

that bJ = 0. So the adversary has randomized a

signature intended for randomization. �

5.2. Combined FSPS

The structure-preserving signature scheme we just gave uses knowledge of the discrete
logarithms of U in a fundamental way since T̃ contains linear combinations of group
elements in M̃ , which yield a vector of group elements G̃z(u,1)W that could not be
computed without knowing u. This situation is common for all structure-preserving
signature schemes for messages that are vectors of group elements. The need to specify
such discrete logarithms in the signing key therefore prevents them from being fully
structure preserving.
To get full structure preservation, we circumvent this problemby only pairingmessage

group elements with signature group elements where the signer does actually know
the discrete logarithms. In our case, we will modify the structure-preserving signature
scheme by letting the signer pick U herself and include it in the signature.
To make this idea work, we first make a minor modification to our signature scheme

from before. We include a vector of 	−1 group elements X̃ in the setup, and we modify

S̃ to have the form S̃ =
(
Ỹ1 X̃

u
G̃v

)z
. The first verification equation then becomes

e(R, S̃) = e(G, Ỹ1)
	−1∏

i=1

e(Ui , X̃i)e(V, G̃)

If this was the only modification, we made it is not hard to see that the same security
proof we gave earlier will work again, we are only modifying the verification equation
by a random constant

∏	−1
i=1 e(Ui , X̃i). The surprising thing though is that the signature

scheme remains secure if we let the signer pick the U part of the verification key herself
and include it in the signature.
Letting the signer pick U as part of the verification key means that she can know

their discrete logarithms. Since she also picks z ← Z
∗
p herself, she can now use linear

operations on the group elements in the message matrix to compute the group elements
in the vector G̃z(u,1)W part of T̃ . Furthermore, we have designed the scheme such that the
rest can be computed with linear operations as well. To make randomizable signatures,
the signer just needs to know G̃v and Ỹ

v
To make strong signatures she additionally

needs to know X̃
v
and G̃v2 .

The resulting fully structure-preserving signature scheme is described below and can
be used to sign messages consisting of L = 	k group elements in G̃. It has a verification
key size of 1 group element, a signature size of 	+k+1 group elements, and verification
involves evaluating k + 1 pairing product equations. Since they are quite similar, we
described the randomizable signature and the strongly unforgeable signature algorithms

1012 M. Abe et al.

at the same time. Setting b = 0 gives the algorithms for randomizable signatures and
setting b = 1 gives the algorithms for strongly unforgeable signatures.

[Efficient FSPS : EFSP1]

Setup(1λ, 	, k): Run (p, G, G̃, GT , e,G, G̃) ← G(1λ). Pick x ∈ Z
	−1
p , y ∈ Z

k
p,

and compute X̃ ← G̃
	−1, Ỹ ← G̃

k . Return gk := (p, G, G̃, GT , e,G, G̃, X̃, Ỹ).
Message space M is set to G̃

	×k for prescribed 	 and k.

Key(gk): Pick v ← Zp calculate V := Gv . Output (vk, sk) where vk = V and

sk = (G̃v, X̃
v
, Ỹ

v
, G̃v2).

Signb(sk, M̃): Pick u ← Z
	−1
p , z ← Z

∗
p, and compute r := 1

z , U := Gu, R := Gr ,

and S̃ :=
(
Ỹ1 X̃

u
G̃v

)z
. For j = 1, . . . , k,

T̃ j =
⎛

⎝
	−1∏

i=1

M̃ui
(i, j) · M̃(, j)Ỹ

v
j

(

Ỹ v
1

	−1∏

i=1

(X̃v
i)

ui G̃v2

)b z⎞

⎠

z

.

Set T̃ := (T̃1, . . . , T̃k). Output σ := (U, R, S̃, T̃).

Vrfb(vk, M̃, σ): Parse σ into (U, R, S̃, T̃). Return 1 if and only if M̃(i, j) ∈ G̃
	×k ,

R ∈ G, U ∈ G
	−1, S̃ ∈ G̃, T̃ ∈ G̃

k , and

e(R, S̃) = e(G, Ỹ1)
	−1∏

i=1

e(Ui , X̃i)e(V, G̃), and (20)

e(R, T̃ j) =
	−1∏

i=1

e(Ui , M̃(i, j))e(G, M̃(, j)) e(V, Ỹ j)e(V, S̃)b for all j = 1, . . . , k.

(21)

Rand(vk, M̃, σ): Parse σ into (U, R, S̃, T̃). Pick α ← Z
	−1
p and β ← Z

∗
p, calculate

U ′ := URα , R′ := R
1
β , S̃′ :=

(
S̃

∏	−1
i=1 X̃αi

i

)β

and T̃ ′
j :=

(
T̃ j

∏	−1
i=1 Mαi

(i, j)

)β

.

Return σ ′ := (U ′, R′, S̃′, T̃ ′
).

Theorem 10. EFSP1 gives a fully structure-preserving combined signature scheme
that is C-EUF-CMA secure in the generic group model.

Proof. Perfect correctness, perfect randomizability and structure preservation follow
by inspection. The secret key sk = (A, X̃

v
, Ỹ

v
, G̃v2) consists of 	 + k + 1 group

elements, and we can verify that it matches the verification key vk = V by checking the
pairing product equations

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1013

e(V, G̃) = e(G, G̃v), e(V, X̃) = e(G, X̃
v
),

e(V, Ỹ) = e(G, Ỹ
v
), e(V, G̃v) = e(G, G̃v2)

so the signature scheme is fully structure preserving.
What remains now is to prove that the signature scheme is C-EUF-CMA secure in

the generic group model. In the (Type-III) generic bilinear group model, the adversary
may compute new group elements in either source group by taking arbitrary linear
combinations of previously seen group elements in the same source group. We shall see
that no such linear combinationof group elements, viewedas formalLaurent polynomials
in the variables picked by the key generator and the signing oracle, yields an existential
forgery. It follows along the lines of the Uber assumption in [19] this that the signature
scheme is C-EUF-CMA secure in the generic bilinear group model.
Let M̃ i = G̃Wi ∈ G̃

	×k for Wi ∈ Z
	×k
p be the i-th (0 ≤ i ≤ q) signing query made

by the adversary. Since the adversary can use generic group operations to construct the
message group elements, Wi may depend linearly on the discrete logarithms of public
key elements in G̃ and all previously seen signature elements in S̃ j , T̃ j for j < i . The
adversary obtains signatures (U i , Ri , S̃i , T̃ i) that

U i , Ri = G
1
zi , S̃i =

(

Ỹ zi
1

m−1∑

κ=1

X̃uκ
κ G̃v

)zi

,

T̃ i = G̃zi ((ui ,1)Wi+v y+bi ziv(y1+ui ·x+v))

where bi = 0 if query i is for a randomizable signature and bi = 1 if query i is for a
strong signature.
Viewed as Laurent polynomials we have that the discrete logarithms of a signature

(U, R, S̃, T̃) generated by the adversary on M̃ ∈ G̃
	×k are of the forms

u = α + vαv +
∑

i

ui Ai +
∑

i

1

zi
αri

r = ρ + vρv +
∑

i

uiρ�
ui +

∑

i

1

zi
ρri

s = σ + σ x x� + σ y y� +
∑

j

σs j z j (y1 + u j x� + v)

+
∑

j

σ t j z j
(
(u j , 1)W j + v y + b j z jv(y1 + ux� + v)1

)

t = τ + xTx + yTy +
∑

j

z j (y1 + u j x� + v)τ s j

+
∑

j

z j
(
(u j , 1)W j + v y + b j z jv(y1 + ux� + v)1

)
Tt j

1014 M. Abe et al.

Similarly, all 	k discrete logarithms W of M̃ can be written in a form similar to s, and
all discrete logarithms of queried message matricesWi can be written in a form similar
to s where the sums are bounded by j < i .
For the first verification equation to be satisfied, we must have rs = y1 + ux� + v,

i.e.,

(
ρ+∑

i uiρ
�
ui+vρv+∑

i
1
zi

ρri

)

·
(

σ + σ x x� + σ y y� + ∑
j σs j z j (y1 + u j x� + v)

+∑
j σ t j z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)�

)

= y1 +
(

α + vαv +
∑

i

ui Ai +
∑

i

1

zi
αri

)

x� + v

We start by noting that r
= 0 since otherwise rs cannot have the term y1. Please
observe that it is only in G that we have terms including indeterminates with negative
power, i.e., 1

zi
. In G̃, all indeterminates have positive power, i.e., so s j , t j ,W j only

contain proper multivariate polynomials. Now suppose for a moment that ρri = 0 for
all i . Then in order not to have a terms involving z j ’s in rs we must have

∑

j

σs j z j (y1 + u j x� + v)

+
∑

j

σ t j z j
(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)� = 0.

The term y1 now gives us ρσy,1 = 1 and the term v gives us ρvσ = 1. This means
ρ
= 0 and σ
= 0 and therefore we reach a contradiction since the constant term should
be ρσ = 0. We conclude that there must exist some J for which ρrJ
= 0.
Nowwe have the term ρrJ σ

1
z J

= 0, which shows us σ = 0. The terms ρrJ σy,h
yh
zJ

= 0
for h = 1, . . . , k give us σ y = 0.
The polynomials corresponding to s j and t j contain the indeterminate z j in all terms,

so no linear combination of them can give us a term where the indeterminate component
is vyh for some h ∈ {1, . . . , k}. Since W j is constructed as a linear combination of
elements in the verification key and components in G̃ from previously seen signatures,
it too cannot contain a term where the indeterminate component is vyh . The coefficient
of

z j
z J

vyh is therefore ρrJ σt j ,h = 0 and therefore σt j ,h = 0 for every j
= J and
h ∈ {1, . . . , k}. This shows σ t j = 0 for all j
= J . Looking at the coefficients for vyh
for h = 1, . . . , k we see that σ tJ = 0 too.

The terms ρrJ σs j
z j
zl

v give us σs j = 0 for all j
= J . In order to get a coefficient of 1

for the term y1 we see that σsJ = 1
ρrJ

, which is nonzero. Our analysis has now shown

that

s = σ x x� + 1

ρrJ
z J (y1 + uJ x� + v).

Let us now analyze the structure of r . The term ρvσJv
2z J = 0 gives us ρv = 0. We

know from our previous analysis that if there was a second i
= J for which ρri
= 0

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1015

then also σρJ = 0, which it is not. Therefore, for all i
= J we have ρri = 0. The term
ρσsJ z J y1 gives ρ = 0. The terms in ρui σsJ ui z Jv give us ρui = 0 for all i . Our analysis
therefore shows

r = ρrJ
1

z J
.

Finally, having simplified r and s analyzing the terms in u gives us

u = uJ + ρrJ σ x
1

z J
.

Wenow turn to the second verification equation, which is r t1 = (u, 1)w�+vy1+bvs,
where w� is the first column vector of W. The message vector is of the form

w = μ + xWx + yWy + ∑
j μs j z j (y1 + u j x� + v)

+∑
j z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)
Wt j

,

where μ,Wx ,Wyμs j and Wt j are vectors and matrices of corresponding size with
entries in Zp chosen by the adversary. Similarly, we can write out

t1 = τ + τ x x� + τ y y� +
∑

j

τs j z j (y1 + u j x� + v) +
∑

j

τ t j z j

(
(u, 1)W j + v y + b jvz j (y1 + u j x� + v)1

)

for elements and vectors of corresponding size τ, τ x , τ y, τs j , τ t j with entries in Zp

chosen by the adversary.
Writing out the second verification equation, we have

ρrJ
1

z J

(
τ + τ x x� + τ y y� + ∑

j τs j z j (y1 + u j x� + v)

+∑
j τ t j z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)�

)

= vy1 + bv

(

σ x x� + 1

ρrJ
z J (y1 + uJ x� + v)

)

+
(

uJ + ρrJ σ x
1

z J
, 1

)

×
(

μ + xWx + yWy + ∑
j μs j z j (y1 + u j x� + v)

+∑
j z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)
Wt j

)�
.

Looking at the coefficients of terms involving 1
z J
, we get the following equalities for

all j
= J : τ = σ xμ
� (1

z J
), τ x = σ xW�

x (
xh
z J

), τ y = σ xW�
y (

yh
z J

), τs j = σ xμ
�
s j (

vz j
z J

),

τ t j = σ x T�
t j (

vyk z j
z J

). Canceling out these terms, we are left with

1016 M. Abe et al.

ρrJ

(

τsJ (y1 + uJ x� + v) + τ tJ

(
(uJ , 1)WJ + v y + bJvz J (y1 + uJ x� + v)1

)�)

= vy1 + bv

(

σ x x� + 1

ρrJ
z J (y1 + uJ x� + v)

)

+ ρrJ σ x

(
μsJ (y1 + uJ x� + v)

+
(
(uJ , 1)WJ + v y + bJvz J (y1 + uJ x� + v)1

)
WtJ

)�

+ (uJ , 1)

(
μ + xWx + yWy + ∑

j μs j z j (y1 + u j x� + v)

+∑
j z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)
Wt j

)�
.

Terms involving z j and z2j must cancel out, so we can assume μs j = 0 and Wt j = 0
for j > J . Since WJ does not involve z J in any of its terms, we get from the terms in
(uJ , 1)z Jvμ�

sJ thatμsJ = 0. Since there can be no terms involving z2J we get bJ1W
�
tJ =

0. Looking at the coefficients for v we get τsJ = σ xμsJ . This leaves us with

ρrJ τ tJ

(
(uJ , 1)WJ + v y + bJvz J (y1 + uJ x� + v)1

)�

= vy1 + bv

(

σ x x� + 1

ρrJ
z J (y1 + uJ x� + v)

)

+ ρrJ σ x
(
((uJ , 1)WJ + v y)WtJ

)�

+ (uJ , 1)

(
μ + xWx + yWy + ∑

j<J μs j z j (y1 + u j x� + v)

+∑
j<J z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)
Wt j

)�

+ (uJ , 1)z J
(
(uJ , 1)WJ + v y)WtJ

)�
.

Looking at the terms involving z Jv2 we see ρrJ τ tJ bJ1
� = b 1

ρrJ
. The only remaining

terms involving z J now give usWtJ = 0. This gives us

ρrJ τ tJ ((uJ , 1)WJ + v y)�

= vy1 + bvσ x x�

+ (uJ , 1)

(
μ + xWx + yWy + ∑

j<J μs j z j (y1 + u j x� + v)

+∑
j<J z j

(
(u j , 1)W j + v y + b jvz j (y1 + u j x� + v)1

)
Wt j

)�

Looking at the terms in v y we now get ρrJ τ tJ = (1, 0, . . . , 0). This means
(uJ , 1)W�

J = bσ x x� + (uJ , 1)W�, where W�
J is the first column of WJ . Look-

ing at the coefficients of vxh , we see that if bσ x = 0. SinceWJ andW are independent
of uJ this means W = WJ .
A similar argument can applied to the remaining k−1 verification equations showing

us that in all columnsW and �J match. This means M̃ = M̃ J , so the signature scheme
is existentially unforgeable both for randomizable signatures and strong signatures.
Finally, let us consider the case where b = 1, i.e., we are doing a strong signature

verification. We have already seen that bσ x = 0 so when b = 1 this means σ x = 0.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1017

Table 4. Size of objects and number of verification equations in fully structure-preserving signature schemes
for messages consisting of L = 	k elements in G̃.

Scheme |sk| |gk| |vk| |σ | PPE

FSP2 (4, 0) (4, 4) (1, 10 + 3	 + 3k) (7 + 	 + k, 4 + 2k) 5 + k
EFSP1 (0, k + 	 + 1) (1, k +) (1, 0) (, 1 + k) 1 + k

Since ρrJ τ tJ bJ1
� = bJ = b 1

ρrJ
we see that bJ = 1 and ρrJ = 1. This means s = sJ

and r = rJ and u = uJ and W = WJ , it means M̃ = M̃ J , and therefore t = t J . So
the generic adversary can only satisfy the strong verification equation with b = 1 by
copying both the message and signature from a previous query with bJ = 1.
On the other hand, if we have b = 0, i.e., we are verifying a randomizable signature,

we see from ρrJ τ tJ bl1
� = bJ = b 1

ρrJ
that bJ = 0. So the adversary has randomized a

signature intended for randomization. �

5.3. Efficiency

We give a detailed performance comparison in Table 4 between FSP2 based on standard
assumptions and our most efficient scheme EFSP1. Unsurprisingly we get significantly
smaller signature size and a modest reduction in the number of verification equations.
We also observe the verification key in EFSP1 is just a single group element, which is
optimal and makes it cheap to certify the verification key in digital credential systems
or by a certification authority.

6. Lower Bound on Signature Size and Verification Key Size

The signatures of our concrete FSPSs consist of �(
√
L) group elements when signing

L-element messages. This may seem disappointing given previous constant-size con-
structions of SPS, but we argue that the

√
L factor is unavoidable. It is a consequence

of the following new trade-off between signature and verification key size for arbitrary
(even one-time) SPS schemes.

Theorem 11. Consider a (one-time) SPS scheme onmessages in G̃
L in the asymmetric

(Type-III) bilinear group setting. Let κ be the number of group elements in vk (and gk)
used in evaluating the PPEs in verification. Let σ the number of group elements in
signatures. If the scheme is existentially unforgeable in a model in which the adversary
has access to a valid signature on a knownmessage and the scheme has a generic signing
algorithm, we have κ + σ ≥ √

L.

Proof. Denote by (M1, . . . , ML) ∈ G̃
L the message vector, by (U1, . . . ,Uκ1 , V1, . . . ,

Vκ2) ∈ G
κ1 × G̃

κ2 (κ1 + κ2 = κ) the verification key elements, and by (R1, . . . , Rσ1 ,

S1, . . . , Sσ2) ∈ G
σ1 × G̃

σ2 (σ1 + σ2 = σ) the signature elements. The corresponding
discrete logarithms are written in lowercase letters.

1018 M. Abe et al.

Each verification equation of the scheme can be expressed as a bilinear relation be-
tween the discrete logarithms of the group elements in G (namely the Ui ’s and Ri ’s) on
the one hand, and those of the elements in G̃ (namely the Mi ’s, Vi ’s and Si ’s) on the
other. The i-th pairing product equation can thus be written in matrix form as:

XT EiY = 0, (22)

where X and Y are the column vectors given by

X = (r1, . . . , rσ1 , u1, . . . , uκ1 , 1)
T , and

Y = (m1, . . . ,mL , s1, . . . , sσ2 , v1, . . . , vκ2 , 1)
T ,

and Ei is a public (κ1 + σ1 + 1) × (L + κ2 + σ2 + 1) matrix over Zp.
Now fix a valid message-signature pair (M1, . . . , ML , R1, . . . , Rσ1 , S1, . . . , Sσ2). By

linear algebra, we can efficiently compute a nonzero tuple (m∗
1, . . . ,m

∗
L) ∈ Z

L
p that

satisfies

Ei (m
∗
1, . . . ,m

∗
L , 0, . . . , 0)T = 0

for all i , if it exists. Then, it is clear from Eq. (22) that (R1, . . . , Rσ1 , S1, . . . , Sσ2) is
still a valid signature on the distinct message vector (M1G̃m∗

1 , . . . , MLG̃m∗
L), which

contradicts existential unforgeability.
Therefore, with n being the number of verification equations, the linear map Z

L
p →

Z
n(κ1+σ1+1)
p mapping (m1, . . . ,mL) to the concatenationof all vectors Ei (m1, . . . ,mL , 0,

. . . , 0)T must be injective. In particular, we have:

L ≤ n · (κ1 + σ1 + 1) ≤ n · (κ + σ) ,

where the second inequality comes from the fact thatwemust haveσ2 ≥ 1; otherwise, the
generic signing algorithm would output signatures that cannot depend on the message.
Finally, we must have n ≤ σ (after removing possibly redundant verification equa-

tions). Indeed, if it were not the case, the quadratic system satisfied by the discrete
logarithms of the signature elements would be overdetermined, and a generic message
would not admit any valid signature at all. We thus obtain L ≤ σ · (κ + σ) ≤ (κ + σ)2,
which concludes the proof. �

The following theorem can be proven in a similar manner as above by replacing
public keys, secret keys, and signatures with commitment keys, opening information,
and commitments, respectively.

Theorem 12. Consider a structure-preserving commitment scheme on messages in
G̃

L in the asymmetric (Type-III) bilinear group setting. Assume that the commitment key
consists of elements in G̃, and let χ be the number of elements in commitments and o the
number of group elements in the opening information. If the scheme is target collision
resistant and has a generic commitment algorithm, we have χ + o ≥ √

L.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1019

From Theorem 11, we immediately see that an FSPS scheme obtained from con-
struction FSP1 must have signatures of more than

√
L elements. This is because all

signatures include as a subset including both the verification key and signature of a
structure-preserving OTS scheme signing L-element messages.

Regarding EFSP1 in Sect. 5.2, only a constant number of group elements from vk
and gk are involved in the verification. With such optimized verification keys, signatures
have to have more than

√
L elements according to Theorem 11.

Finally, Theorem 12 shows that an FSPS scheme obtained from construction FSP2
must also have signatures of more than

√
L elements, at least when the underlying

trapdoor commitment scheme has its key elements on the same side as the resulting
signature, which seems necessary with our approach based on MTC.

7. Applications

Wefirst discuss potential applications of FSPS in this section. Later,we showcomposable
and modular anonymous credentials from [21] as a concrete example.

Public key infrastructure. On the very applied side, the question is connected with the
timely problemof public key infrastructures. Fewprotocols have beendesignedwith
the goal of being secure against adversarial keys, and few real-world certificate
authorities validate that registries provide valid public keys or prove knowledge
of the corresponding secret keys. The availability of schemes with efficient non-
interactive proofs-of-knowledge of secret key possession can only improve this
situation. In the provable security literature, this knowledge of secret key solution
to rogue key attacks appeared early on in the study of multi-signatures by Micali et
al. [44, Problem 4 and Fix 4]. See Ristenpart and Yilek [46] for a comprehensive
study of this problem.

Protocol design in strong securitymodel.Moregenerally, these obstacles to secret key ex-
traction have hindered modular composable protocol design. Camenisch et al. [23]
developed a framework for practical universally composable (UC) zero-knowledge
proofs, in which they identify proofs-of-knowledge of exponents as a major bot-
tleneck. Camenisch et al. [21] constructed unlinkable redactable signatures and
anonymous credentials that are UC-secure. Their construction requires proofs-of-
knowledge of the signing key of a structure-preserving signature scheme, which
in turn, as studied by Chase et al. [26], is an instance of a general transformation
for making signature schemes simulatable [11]. Given these examples, we conjec-
ture that fully structure-preserving signature schemes help build UC-secure privacy
preserving protocols.

Strengthening privacy in group and ring signatures. In classical group and ring signa-
tures, e.g., [15,17,36,47], the goal of the adversary against privacy is to distinguish
signatures from two honest members whose keys are actually generated and regis-
tered by the challenger. The attack game aborts if either of the targets is a corrupted
member registered with an adversarially generated key. Instead of excluding such
corrupt members from the scope of security, stronger privacy in the presence of
adversarial keys can be guaranteed, if the challenger can extract the secret key to

1020 M. Abe et al.

create group or ring signatures on their behalf. Such a model is meaningful when
some keys are generated incorrectly, e.g., because of multiple potentially flawed
implementations, but their owners nevertheless use them with the correct signing
algorithm. Note that this requires a trusted common reference string that puts mild
assumptions on the trust model to retain other security properties such as unforge-
ability and non-frameability: the extraction trapdoor must be inaccessible for the
adversary.

As a concrete example, we overview a UC-secure anonymous credential system in
[21].

Anonymous Credentials Like a traditional digital certificate, an anonymous credential
can be seen as a signature by an issuer on the attributes of users. To preserve privacy,
the signature scheme used to certify information must be redactable. This allows users
to only reveal the information that they deem adequate for a given service provider and
context. To preserve anonymity, the signature scheme must be unlinkable. This prevents
service providers from collectingmeta-data about the behavior of users and also prevents
the collation of attribute information about the same user previously revealed in different
contexts or across multiple services.
Thus, in addition to the Key, Sign, and Vrf algorithms of traditional signatures, un-

linkable redactable signatures provide a Derive algorithm that given a signature on a
message produces an unlinkable signature on a redacted message. Anonymous creden-
tials guarantee unlinkability even when issuers and service providers collude. To model
this, we require that signatures produced by Derive are indistinguishable from fresh
signatures, as long as the verification key satisfies the predicate CheckVK. For such
keys, we will require that signing keys are online extractable and this is exactly where
FSPS are needed.

A UC Functionality for Anonymous Credentials The following functionality models the
unforgeability, unlinkability, and redactability requirements of anonymous credentials.2

Intuitively, for the scheme to be composably secure, the ideal functionality together
with the simulator must be indistinguishable from the real functionality that onmessages
keygen, check_vk, issue, show, and verify simply runs the cryptographic algorithms
Key, CheckVK, Sign, Derive, and Vrf of an unlinkable redactable signature scheme.
Instead of runningCheckVK, the simulator provides the functionality with signing keys
extracted from well-formed issuer keys.

2Note that [21] further extend this functionality with pseudonyms.We ignore additional features and focus
on the main obstacles to UC security.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1021

Functionality F
• On input (keygen, sid) from the issuer, ask the simulator for system parameters, and
polynomial time algorithms Key, Sign, Derive, and Vrf. Generate an issuing key pair
using Key. Store the parameters and keys and return the verification key to the issuer.

• On input (check_vk, sid, vk′) from some party, if vk′ has not been stored before, ask
the simulator for a signing key and store both keys. If vk′ was stored or the simulator
provides a signing key return true, otherwise return false.

• On input (leak_sk, sid) from the issuer, return the signing key recorded during
(keygen, sid) and set a leak flag.

• On input (issue, sid,m) from a credential user, generate a signature on m using Sign,
store the message in Q and return the signature.

• On input (show, sid, vk′, I,m, σ) from a credential user, check whether
Derive(vk′, I,m, σ) succeeds and whether a signing key sk′ corresponding to vk′ was
stored. In this case return Derive(pk′, I,Zero(m, I),Sign(sk′,Zero(m, I))), other-
wise return the output of Derive(vk′, I,m, σ).

• On input (verify, sid, vk′, σ,mI) from a credential verifier, compute result ←
Vrf(vk′,mI , σ). If vk′ is the public key recorded during (keygen, sid), the leak flag
was not set, and �m ∈ Q such thatmI = I (m), then output 0. Otherwise output result.

The functionality enforces security properties regardless of the algorithms provided
by the simulator:

Unforgeability is guaranteed by rejecting signatures for the honestly generated verifica-
tion key that cannot be derived from signed messages, unless the signing key has been
leaked.

Unlinkability and Redactability are guaranteed by generating a fresh redacted signature
that covers the part of the message that is not redacted, while the rest of the initial
message is set to zero. The presence of the (leak_sk, sid) message models that privacy
guarantees are ensured even when the adversary learns the issuers signing key. This
corresponds to the full anonymity property of group signatures [15]. The check_vk
message models that privacy guarantees are ensured even for adversarial verification
keys as long as verification keys are well formed.

RealizingCompactUnlinkable Redactable SignaturesTraditional certificates sign a hash
of their attributes and can thus be very compact. Using hashed data structures such as
Merkle trees, it is not too hard to extend the approach to support redactability. It is, how-
ever, challenging to simultaneously achieve compactness, unforgeability, unlinkability,
and redactability. To our knowledge, all existing approaches [21,33] employ structure-
preserving signatures in one way or another. [33] uses a SPS to sign a set commitment
while [21] employ a vector commitment to compresses sets, respectively, vectors, of
attributes into a single group element to allow compact openings. Both set and vector
commitments can be seen as commitments with an efficient partial opening algorithm.
An unlinkable redactable signature (URS) scheme consists of five algorithms. We

recall the construction of [21] of URS from SPS and generalize it for commitments with
partial opening.

1022 M. Abe et al.

[URS: URS]

Setup(1λ): Take a security parameter as input. Output system parameters gk.
The construction of [21] generates a bilinear group, and the parameters for a
set/vector commitment scheme, as well as a Groth-Sahai common reference string.

Key(gk): Take system parameters gk as input. Output public verification and private
signing keys (vk, sk). The verification key defines the message space M.
The construction generates an SPS key pair and extends the verification key with
a Groth-Sahai proof of knowledge of the signing key.

CheckVK(vk): Take a verification key vk as input and check that it is correctly
formed. Outputs 1 if vk is correct, and 0 otherwise.
The construction verifies the proof of knowledge of the signing key.

Sign(sk,m): Take a signing key sk and an initial message m ∈ M as input. Produce
an initial signature σ .
The construction signs a commitment to m.

Derive(vk, I,m, σ): Take the verification key vk, a reduction specification I , and
an initial message and signature m, σ as input. Produce a redacted message and
signature σI , mI .
The construction of [21] partially opens the commitment to m contained in σ to
mI and proves knowledge of the SPS signature and opening.

Vrf(vk,m, σ): Take a verification key vk and amessage and signature as input. Check
the signature. The message and signature can be either initial or redacted.
In the construction, verification for initial messages corresponds to verifying the
SPS signature, while verification of redacted signatures corresponds to verifying
the Groth-Sahai proof-of-knowledge of the SPS signature and opening.

The composable unlinkability of the ideal functionality can only be realized when the
unlinkable redactable signature scheme allows for the online extraction of signing keys.
Informally, key extractability requires additional predicates CheckVK, CheckKeys,
and trapdoor parameter generation and extraction algorithms SetupTd, ExtractKey.
When SetupTd is run andCheckVK outputs 1, then ExtractKey(vk, td) must output a
valid signing key sk, that is,CheckKeys(vk, sk) = 1. The efficient construction of such
an extraction algorithm is facilitated by FSPS as we can efficiently prove knowledge of
the signing key using the Groth–Sahai proof system. Note that the scheme only signs
a vector commitment that compresses a large number of messages into a single group
element. Consequently, the overhead of full structure preservation is small: When using
FSP2 fromSect. 4.2 as the FSPS, signatures for signing a single group element consist of
only 15 elements per signature and proofs of key possession consist of just 18 elements,
respectively. Consequently, the initial signatures of theURS consist of only 16 elements
and redacted signatures of 38 elements.

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1023

References

[1] M. Abe, J. Camenisch, R. Dowsley, M. Dubovitskaya, On the impossibility of structure-preserving
deterministic primitives, in Proceedings of Theory of Cryptography—11th Theory of Cryptography
Conference, TCC 2014, San Diego, CA, USA, February 24–26, 2014 (2014), pp. 713–738

[2] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, M. Ohkubo, Constant-size structure-
preserving signatures: Generic constructions and simple assumptions. J. Cryptology 29(4), 833–878
(2016)

[3] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo, Structure-preserving signatures and
commitments to group elements. J. Cryptology 29(2), 363–421 (2016)

[4] M. Abe, J. Groth, K. Haralambiev, M. Ohkubo. Optimal structure-preserving signatures in asymmetric
bilinear groups, in Advances in Cryptology—CRYPTO 2011, volume 6841 of LNCS (Springer, 2011),
pp. 649–666

[5] M. Abe, J. Groth, M. Ohkubo, Separating short structure-preserving signatures from non-interactive
assumptions, in Advances in Cryptology—ASIACRYPT 2011, volume 7073 of LNCS (Springer, 2011),
pp. 628–646

[6] M. Abe, J. Groth, M. Ohkubo, M. Tibouchi, Structure-preserving signatures from type II pairings, in
J. A. Garay, R. Gennaro, editors, Advances in Cryptology—CRYPTO 2014 - 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17–21, 2014, Proceedings, Part I, volume 8616 of Lecture
Notes in Computer Science (Springer, 2014), pp. 390–407

[7] M. Abe, J. Groth, M. Ohkubo, M. Tibouchi, Unified, minimal and selectively randomizable structure-
preserving signatures, in Theory of Cryptography—11th Theory of Cryptography Conference, volume
8349 of LNCS (Springer, 2014), pp. 688–712

[8] M. Abe, K. Haralambiev, M. Ohkubo, Group to group commitments do not shrink, in D. Pointcheval,
T. Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS (Springer, 2012), pp. 301–317

[9] M. Abe, M. Kohlweiss, M. Ohkubo, M. Tibouchi, Fully structure-preserving signatures and shrinking
commitments, in Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26—30, 2015,
Proceedings, Part II (2015), pp. 35–65

[10] M. Abe, M. Kohlweiss, M. Ohkubo, M. Tibouchi, Fully structure-preserving signatures and shrinking
commitments. IACR ePrint Archive, Report 2015/076 (2015). http://eprint.iacr.org/2015/076. Accessed
2 Feb 2015

[11] M. Abe, M. Ohkubo, A framework for universally composable non-committing blind signatures. IJACT
2(3), 229–249 (2012)

[12] G. Barthe, E. Fagerholm, D. Fiore, A. Scedrov, B. Schmidt, M. Tibouchi, Strongly-optimal structure
preserving signatures from type II pairings: synthesis and lower bounds, in J. Katz, editor, PKC 2015,
Lecture Notes in Computer Science (Springer, 2015) to appear

[13] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, H. Shacham, Randomizable
proofs and delegatable anonymous credentials, in S. Halevi, editor, Advances in Cryptology—CRYPTO,
volume 5677 of LNCS (Springer, 2009), pp. 108–125

[14] M.Bellare, A. Palacio, The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols,
in M. K. Franklin, editor, CRYPTO, volume 3152 of LNCS (Springer, 2004), pp. 273–289

[15] M. Bellare, H. Shi, C. Zhang, Foundations of group signatures: The case of dynamic groups, in Topics
in Cryptology—CT-RSA 2005, The Cryptographers’ Track at the RSA Conference 2005, San Francisco,
CA, USA, February 14–18, 2005, Proceedings (2005), pp. 136–153

[16] M. Bellare, S. Shoup, Two-tier signatures, strongly unforgeable signatures, and Fiat-Shamir without
random oracles, in Public-Key Cryptography, volume 4450 of LNCS (2007), pp. 201–216

[17] A. Bender, J. Katz, R. Morselli, Ring signatures: Stronger definitions, and constructions without random
oracles. J. Cryptology 22(1), 114–138 (2009)

[18] D. Boneh, X. Boyen, Short signatures without random oracles and the sdh assumption in bilinear groups.
J. Cryptology 21(2), 149–177 (2008)

[19] D. Boneh, X. Boyen, E. Goh, Hierarchical identity based encryption with constant size ciphertext. in
Advances in Cryptology—EUROCRYPT 2005, 24th Annual International Conference on the Theory and

http://eprint.iacr.org/2015/076

1024 M. Abe et al.

Applications of Cryptographic Techniques, Aarhus, Denmark, May 22–26, 2005, Proceedings (2005),
pp. 440–456

[20] J. Camenisch, N. Chandran, V. Shoup, A public key encryption scheme secure against key dependent
chosen plaintext and adaptive chosen ciphertext attacks, in A. Joux, editor, Advances in Cryptology—
EUROCRYPT 2009, 28th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26–30, 2009. Proceedings, volume 5479 of Lecture Notes
in Computer Science (Springer, 2009), pp. 351–368

[21] J. Camenisch, M. Dubovitskaya, K. Haralambiev, M. Kohlweiss, Composable and modular anonymous
credentials: Definitions and practical constructions. in T. Iwata and J. H. Cheon, editors, Advances in
Cryptology—ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryp-
tology and Information Security, Auckland,NewZealand,November 29–December 3, 2015, Proceedings,
Part II, volume 9453 of Lecture Notes in Computer Science (Springer, 2015), pp. 262–288

[22] J. Camenisch, K. Haralambiev, M. Kohlweiss, J. Lapon, V. Naessens, Structure preserving CCA secure
encryption and applications. in D. H. Lee and X. Wang, editors, Advances in Cryptology - ASIACRYPT
2011 - 17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings, volume 7073 of Lecture Notes in
Computer Science (Springer, 2011), pp. 89–106

[23] J. Camenisch, S. Krenn, V. Shoup, A framework for practical universally composable zero-knowledge
protocols, inAdvances in Cryptology—ASIACRYPT 2011—17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea, December 4–8, 2011.
Proceedings (2011), pp. 449–467

[24] J. Camenisch, A. Lysyanskaya, An efficient system for non-transferable anonymous credentials with
optional anonymity revocation, in Advances in Cryptology—EUROCRYPT 2001, International Confer-
ence on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May 6–10, 2001,
Proceeding (2001), pp. 93–118

[25] D. Catalano, M. D. Raimondo, D. Fiore, R. Gennaro, Off-line/on-line signatures: Theoretical aspects
and experimental results. in Public Key Cryptography—PKC 2008, 11th International Workshop on
Practice and Theory in Public-Key Cryptography, Barcelona, Spain, March 9–12, 2008. Proceedings,
volume 4939 of LNCS (Springer, 2008), pp. 101–120

[26] M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn, Malleable signatures: New definitions and
delegatable anonymous credentials, in 2013 IEEE 27th Computer Security Foundations Symposium
(2014)

[27] S.Chatterjee,A.Menezes, Type2 structure-preserving signature schemes revisited. IACRePrintArchive,
Report 2014/635 (2014). http://eprint.iacr.org/2014/635. Accessed 10 Sept 2015.

[28] I.Damgård, J.Groth,Non-interactive and reusable non-malleable commitment schemes, inL.L. Larmore
andM. X. Goemans, editors, Proceedings of the 35th Annual ACM Symposium on Theory of Computing,
June 9–11, 2003, San Diego, CA, USA (ACM, 2003), pp. 426–437

[29] A. Escala, J. Groth, Fine-tuning groth-sahai proofs, in Public-Key Cryptography—PKC 2014—17th
International Conference on Practice and Theory in Public-Key Cryptography, Buenos Aires, Argentina,
March 26–28, 2014. Proceedings (2014), pp. 630–649

[30] S. Even, O. Goldreich, S. Micali, On-line/off-line digital signatures. J. Cryptology 9(1), 35–67 (1996)
[31] M. Fischlin, Communication-efficient non-interactive proofs of knowledge with online extractors, in V.

Shoup, editor, Advances in Cryptology—CRYPTO 2005: 25th Annual International Cryptology Confer-
ence, Santa Barbara, California, USA, August 14–18, 2005, Proceedings, volume 3621 of Lecture Notes
in Computer Science (Springer, 2005), pp. 152–168

[32] G. Fuchsbauer, Commuting signatures and verifiable encryption, in Advances in Cryptology—
EUROCRYPT 2011—30th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Tallinn, Estonia, May 15–19, 2011. Proceedings (2011), pp. 224–245

[33] G. Fuchsbauer, C. Hanser, D. Slamanig, Structure-preserving signatures on equivalence classes and
constant-size anonymous credentials. Cryptology ePrint Archive, Report 2014/944 (2014). http://eprint.
iacr.org/2014/944. Accessed 20 Mar 2016

[34] S. D. Galbraith, K. G. Paterson, N. P. Smart, Pairings for cryptographers. Discrete Applied Mathematics
156(16), 3113–3121 (2008)

[35] S. Goldwasser, S. Micali, R. Rivest, A digital signature scheme secure against adaptive chosen-message
attacks. SIAM Journal on Computing. 17(2), 281–308 (April 1988)

http://eprint.iacr.org/2014/635
http://eprint.iacr.org/2014/944
http://eprint.iacr.org/2014/944

Efficient Fully Structure-Preserving Signatures and Shrinking Commitments 1025

[36] J. Groth, Fully anonymous group signatures without random oracles, in Advances in Cryptology—
ASIACRYPT 2007, 13th International Conference on the Theory and Application of Cryptology and
Information Security, Kuching, Malaysia, December 2–6, 2007, Proceedings (2007), pp. 164–180

[37] J. Groth, Efficient fully structure-preserving signatures for large messages, in Advances in Cryptology—
ASIACRYPT 2015—21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29–December 3, 2015, Proceedings, Part I
(2015), pp. 239–259

[38] J. Groth, A. Sahai, Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput. 41(5),
1193–1232 (2012)

[39] S. Hada, T. Tanaka, On the existence of 3-round zero-knowledge protocols, in H. Krawczyk, editor,
Advances in Cryptology—CRYPTO ’98, volume 1462 of LNCS (Springer, 1998), pp. 354–369. Full
version available from IACR e-print archive 1999/009

[40] T. Jager, F.Kohlar, S. Schäge, J. Schwenk,Generic compilers for authenticated key exchange, inAdvances
in Cryptology—ASIACRYPT 2010—16th International Conference on the Theory and Application of
Cryptology and Information Security, Singapore, December 5–9, 2010. Proceedings (2010), pp. 232–
249

[41] B. Libert, T. Peters, M. Joye, M. Yung, Linearly homomorphic structure-preserving signatures and their
applications, in R. Canetti and J. Garay, editors, Advances in Cryptology—CRYPTO, LNCS (Springer,
2013)

[42] U. M. Maurer, Abstract models of computation in cryptography, in N. P. Smart, editor, Cryptography
and Coding, 10th IMA International Conference, Cirencester, UK, December 19–21, 2005, Proceedings,
volume 3796 of Lecture Notes in Computer Science (Springer, 2005), pp. 1–12

[43] S.Meiklejohn, An extension of the Groth-Sahai proof system, inBrownUniversity Masters thesis (2009)
[44] S. Micali, K. Ohta, L. Reyzin, Accountable-subgroup multisignatures: extended abstract, in CCS 2001,

Proceedings of the 8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6–8, 2001 (2001), pp. 245–254

[45] V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm. Mat. Zametki 55(2),
91–101 (1994)

[46] T. Ristenpart, S. Yilek, The power of proofs-of-possession: Securingmultiparty signatures against rogue-
key attacks, in Advances in Cryptology—EUROCRYPT 2007, 26th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20–24, 2007,
Proceedings (2007), pp. 228–245

[47] R. L. Rivest, A. Shamir, Y. Tauman, How to leak a secret, inAdvances in Cryptology—ASIACRYPT 2001,
7th International Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9–13, 2001, Proceedings (2001), pp. 552–565

[48] V. Shoup, Lower bounds for discrete logarithms and related problems, in EUROCRYPT, volume 1233
of LNCS (1997), pp. 256–266

[49] N. Smart, F. Vercauteren, On computable isomorphisms in efficient asymmetric pairing-based systems.
Discrete Applied Mathematics 155(4), 538 – 547 (2007)

[50] Y. Wang, Z. Zhang, T. Matsuda, G. Hanaoka, K. Tanaka, How to obtain fully structure-preserving
(automorphic) signatures from structure-preserving ones. in J. H. Cheon and T. Takagi, editors,Advances
in Cryptology—ASIACRYPT 2016—22nd International Conference on the Theory and Application of
Cryptology and Information Security,Hanoi, Vietnam,December 4–8, 2016, Proceedings, Part II, volume
10032 of Lecture Notes in Computer Science (2016), pp. 465–495

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Efficient Fully Structure-Preserving Signatures and Shrinking Commitments
	1. Introduction
	2. Preliminaries
	2.1. Notations
	2.2. Bilinear Groups
	2.2.1. Generic Bilinear Group Model
	2.2.2. Assumptions

	2.3. Joint Setup
	2.4. Digital Signatures
	2.5. Partially One-Time Signatures
	2.6. xRMA-Secure Fully Structure-Preserving Signature Scheme

	3. Trapdoor Commitment Schemes
	3.1. Definitions
	3.2. Message-Transposing Commitment Scheme
	3.3. Structure-Preserving Shrinking Trapdoor Commitment Scheme

	4. Fully Structure-Preserving Signatures
	4.1. Warm-Up
	4.2. Main Construction
	4.3. Efficiency

	5. Efficient Fully Structure-Preserving Combined Signatures
	5.1. Starting Point: A Structure-Preserving Combined Signature Scheme
	5.2. Combined FSPS
	5.3. Efficiency

	6. Lower Bound on Signature Size and Verification Key Size
	7. Applications
	References

