
https://doi.org/10.1007/s00145-018-9301-4
J Cryptol (2019) 32:941–972

Oblivious Network RAM and Leveraging Parallelism
to Achieve Obliviousness

Dana Dachman-Soled
Department of Electrical and Computer Engineering, University of Maryland, College Park, USA
University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA

danadach@ece.umd.edu

Chang Liu
University of California, Berkeley, USA

liuchang@cs.umd.edu

Charalampos Papamanthou
Department of Electrical and Computer Engineering, University of Maryland, College Park, USA
University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA

cpap@umd.edu

Elaine Shi
Cornell University, Ithaca, USA

runting@gmail.com

Uzi Vishkin
Department of Electrical and Computer Engineering, University of Maryland, College Park, USA
University of Maryland Institute for Advanced Computer Studies (UMIACS), College Park, USA

vishkin@umiacs.umd.edu

Communicated by Alon Rosen.

Received 13 December 2016 / Revised 7 May 2018
Online publication 9 August 2018

Abstract. Oblivious RAM (ORAM) is a cryptographic primitive that allows a trusted
CPU to securely access untrusted memory, such that the access patterns reveal nothing
about sensitive data. ORAM is known to have broad applications in secure processor
design and secure multiparty computation for big data. Unfortunately, due to a logarith-
mic lower bound by Goldreich and Ostrovsky (J ACM 43(3):431–473, 1996), ORAM
is bound to incur a moderate cost in practice. In particular, with the latest developments
in ORAM constructions, we are quickly approaching this limit, and the room for perfor-
mance improvement is small. In this paper, we consider new models of computation in
which the cost of obliviousness can be fundamentally reduced in comparison with the
standard ORAM model. We propose the oblivious network RAM model of computa-
tion, where a CPU communicates with multiple memory banks, such that the adversary
observes only which bank the CPU is communicating with, but not the address off-
set within each memory bank. In other words, obliviousness within each bank comes
for free—either because the architecture prevents a malicious party from observing
the address accessed within a bank, or because another solution is used to obfuscate

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9301-4&domain=pdf

942 D. Dachman-Soled et al.

memory accesses within each bank—and hence we only need to obfuscate communi-
cation patterns between the CPU and the memory banks. We present new constructions
for obliviously simulating general or parallel programs in the network RAM model.
We describe applications of our new model in distributed storage applications with a
network adversary.

Keywords. Oblivious RAM, Parallel-computing, PRAM model.

1. Introduction

Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [19,20], allows a
trusted CPU (or a trusted computational node) to obliviously access untrusted memory
(or storage) during computation, such that an adversary cannot gain any sensitive infor-
mation by observing the data access patterns. Although the community initially viewed
ORAM mainly from a theoretical perspective, there has recently been an upsurge in
research on both new efficient algorithms (c.f. [8,13,25,41,44,47,50]) and practical
systems [9,11,12,24,34,39,42,43,48,52] for ORAM. Still the most efficient ORAM
implementations [10,42,44] require a relatively large bandwidth blowup, and part of
this is inevitable in the standard ORAM model. Fundamentally, a well-known lower
bound by Goldreich and Ostrovsky states that in a balls-and-bins model, which encom-
passes all known ORAM constructions, any ORAM scheme with constant CPU cache
must incur at least�(log N) blowup, where N is the number of memory words, in terms
of bandwidth and runtime. TomakeORAM techniques practical in real-life applications,
we wish to further reduce its performance overhead. However, since the latest ORAM
schemes [44,47] have practical performance approaching the limit of the Goldreich–
Ostrovsky lower bound, the room for improvement is small in the standard ORAM
model. In this paper, we investigate the following question:

In what alternative, practically-motivated, models of computation can we signifi-
cantly lower the cost of oblivious data accesses?

We propose the network RAM (NRAM) model of computation and correspondingly,
oblivious network RAM (O-NRAM). In this newmodel, one or more CPUs interact with
M memory banks during execution. Therefore, each memory reference includes a bank
identifier, and an offsetwithin the specified memory bank. We assume that an adversary
cannot observe the address offset within a memory bank, but can observe which memory
bank the CPU is communicating with. In other words, obliviousness within each bank
“comes for free”. Under such a threat model, an oblivious NRAM (O-NRAM) can be
informally defined as an NRAM whose observable memory traces (consisting of the
bank identifiers for each memory request) do not leak information about a program’s
private inputs (beyond the length of the execution). In other words, in an O-NRAM, the
sequence of bank identifiers accessed during a program’s execution must be provably
obfuscated.

Oblivious Network RAM and Leveraging Parallelism 943

1.1. Distributed Storage with a Network Adversary

Our NRAM models are motivated by the following application domain (and hence the
name, network ORAM): Consider a scenario where a client (or a compute node) stores
private, encrypted data on multiple distributed storage servers. We consider a setting
where all endpoints (including the client and the storage servers) are trusted, but the
network is an untrusted intermediary. In practice, trust in a storage server can be boot-
strapped through means of trusted hardware such as the trusted platform module (TPM)
or as IBM 4758; and network communication between endpoints can be encrypted
using standard SSL. Trusted storage servers have also been built in the systems commu-
nity [3]. On the other hand, the untrusted network intermediary can take different forms
in practice, e.g., an untrusted network router or WiFi access point, untrusted peers in a
peer-to-peer network (e.g., Bitcoin, TOR), or packet sniffers in the same LAN. Achiev-
ing oblivious data access against such a network adversary is precisely captured by our
O-NRAM model.

1.2. Background: The PRAM Model

Two of our main results deal with the parallel RAM (PRAM) computational model,
which is a synchronous generalization of the RAM computational model to the parallel
processing setting. The PRAM computational model allows for an unbounded number
of parallel processors with a shared memory spawned statically. Each processor may
access any shared memory cell and read/write conflicts are handled in various ways
depending on the type of PRAM considered:

• Exclusive Read Exclusive Write (EREW) PRAM A memory cell can be accessed
by at most one processor in each time step.

• Concurrent Read Exclusive Write (CREW) PRAM A memory cell can be read by
multiple processors in a single time step, but can be written to by at most one
processor in each time step.

• Concurrent Read Concurrent Write (CRCW) PRAM A memory cell can be read
and written to by multiple processors in a single time step. Reads are assumed to
complete prior to the writes of the same time step. Concurrent writes are resolved
in one of the following ways: (1) Common—all concurrent writes must write the
same value; (2) Arbitrary—an arbitrary write request is successful; (3) Priority—
processor id determines which processor is successful.

To realize a PRAM algorithm in practice, the algorithm must first be translated into
standard code and then implemented on a particular architecture that supports the PRAM
model. This is analogous to the case of algorithms in the RAM computational model,
where various steps need to be taken under-the-hood in order to obtain an implementa-
tion for a specific architecture. The PRAM-On-chip project at UMD has demonstrated
construction feasibility of the (so-called) XMT architecture, which supports the PRAM
computational model [46]. Moreover, the work of Ghanim et al. [17] establishes that
casting parallel algorithms using PARDO (the lockstep pseudo-code command used
in PRAM textbooks to express parallelism) combined with a standard serial language
(e.g., C) is all that is needed to get the same performance on XMT as the best manually
optimized threaded code.

944 D. Dachman-Soled et al.

1.3. Results and Contributions

We introduce the oblivious networkRAMmodel and conduct the first systematic study to
understand the “cost of obliviousness” in this model. We consider running both sequen-
tial programs and parallel programs in this setting. We propose novel algorithms that
exploit the “free obliviousness” within each bank, such that the obliviousness cost is
significantly lower in comparison with the standard oblivious (parallel) RAMs. While
we view our results as mainly theoretical, in many cases the concrete constants of our
constructions are quite low. We therefore leave open the question of practically imple-
menting our results and believe this is an interesting direction for future research. We
give a summary of our results below.
First, in addition to the standard assumption that N := N (λ) for polynomial N (·),

where N is the total number of memory words and λ is security parameter, all our results
require that N ≥ λ. This holds in practical settings since λ is typically very small in
comparison with the size of memory. Alternatively, we can view our results as being
applicable to memory of any polynomial size N ′, but requiring a preliminary step of
padding the memory up to size N = N ′ + λ.

Given the above assumption, we now discuss our results for the oblivious network
RAM model. Observe that if there are only O(1) number of memory banks, there is a
trivial solution with O(1) cost: just make one memory access (real or dummy) to each
bank for each step of execution. On the other hand, if there are�(N)memory banks each
of constant size, then the problem approaches standard ORAM [19,20] or OPRAM [7].
The intermediate parameters are therefore the most interesting. For simplicity, in this
section, we mainly state our results for the most interesting case when the number of
banks M := M(λ) ∈ O(

√
N), and each bank can store up to O(

√
N)words. In Sects. 3,

4 and 5, our results will be stated for more general parameter choices. We now state our
results (see also Table 1 for an overview).

“Sequential-to-Sequential” Compiler First, we show that any RAM program can be
obliviously simulated on a network RAM, consuming only O(1) words of local CPU

Table 1. A systematic study of “cost of obliviousness” in the network ORAM model.

Setting RAM to O-NRAM blowup c.f. Best-known ORAM blowup

Sequential-to-sequential compiler
W = small ̂O(log N) O(log2 N/ log log N) [29]
W = �(log2 N) Bandwidth: ̂O(1) Bandwidth: ̂O(log N) [47]

Runtime: ̂O(log N) Runtime: O(log2 N/ log log N) [29]
W = �(N ε) ̂O(1) ̂O(log N) [47]
Parallel-to-sequential compiler
ω(M log N)-parallel O(1) Same as standard ORAM
Parallel-to-parallel compiler
M1+δ-parallel for any const δ > 0 O(log∗ N) Best known: poly log N [7]

Lower bound: �(log N)

W := W (λ) denotes the memory word size in # bits, N := N (λ) denotes the total number of memory words,
and M := M(λ) denotes the number of memory banks. For simplicity, this table assumes that M ∈ O(

√
N),

and each bank has O(
√
N) words. Like implicit in existing ORAM works [20,29], small word size assumes

at least log N bits per word—enough to store a virtual address of the word

Oblivious Network RAM and Leveraging Parallelism 945

cache, with ̂O(log N) blowup in both runtime and bandwidth, where—throughout the
paper—when we say the complexity of our scheme is ̂O(f (N)), we mean that for
any choice of h(N) = ω(f (N)), our scheme attains complexity g(N) = O(h(N)).
Further, when the RAMprogram has�(log2 N)memoryword size, it can be obliviously
simulated on network RAM with only ̂O(1) bandwidth blowup (assuming non-uniform
memory word sizes as used by Stefanov et al. in [43]). In comparison, the best-known
(constant CPU cache) ORAM scheme has roughly ̂O(log N) bandwidth blowup for
�(log2 N) memory word size [47]. For smaller memory words, the best-known ORAM
scheme has O(log2 / log log N) blowup in both runtime and bandwidth [29].

“Parallel-to-Sequential” Compiler We demonstrate that parallelism can facilitate
obliviousness, by showing that programs with a “sufficient degree of parallelism”—
specifically, programs which have P := P(λ) ∈ ω(M log N) number of operations
(where λ is security parameter) that can be executed in parallel at each time step—can
be obliviously simulated in the network RAMmodel with only O(1) blowup in runtime
and bandwidth. Here, we consider parallelism as a property of the program, but are not
in fact executing the program on a parallel machine. The overhead stated above is for the
sequential setting, i.e., considering that both NRAMandO-NRAMhave a single proces-
sor. Our compiler works when the underlying PRAMprogram is in the EREW,CREWor
common/arbitrary/priority CRCWmodel. Note that a PRAM-supporting architecture is
not required for realization of this result, since the final compiled program is executed in
a sequential setting. We use only the fact that the underlying algorithm can be modeled,
in a theoretical sense, as a PRAM algorithm.
Beyond the low overhead discussed above, our compiled sequential O-NRAM has the

additional benefit that it allows for an extremely simple prefetching algorithm. In recent
work, Yu et al. [53] proposed a dynamic prefetching algorithm for ORAM,which greatly
improved the practical performance of ORAM. We note that our parallel-to-sequential
compiler achieves prefetching essentially for free: Since the underlying PRAM program
will make many parallel memory accesses to each bank, and since the compiler knows
these memory addresses ahead of time, these memory accesses can automatically be
prefetched. We note that a similar observation was made by Vishkin [45], who sug-
gested leveraging parallelism for performance improvement by using (compile-time)
prefetching in serial or parallel systems.

“Parallel-to-Parallel” Compiler Finally, we consider oblivious simulation in the par-
allel setting. We show that for any parallel program executing in t parallel steps with
P = M1+δ processors, we can obliviously simulate the program on a Network PRAM
with P ′ := P ′(λ) ∈ O(P/ log∗ P) processors (where λ is security parameter), running
in O(t log∗ P) time, thereby achieving O(log∗ P) blowup in parallel time and band-
width, and optimalwork. In comparison, the best-knownOPRAMschemehas poly log N
blowup in parallel time and bandwidth. The compiler works when the underlying pro-
gram is in the EREW, CREW, common CRCW or arbitrary CRCW PRAM model. The
resulting compiled program is in the arbitrary CRCW PRAM model. Therefore, this is
the only result presented in this paper whose realization requires a PRAM-supporting
architecture.

946 D. Dachman-Soled et al.

1.4. Technical Highlights

Our most interesting technique is for the parallel-to-parallel compiler. We achieve this
through an intermediate stepping stone where we first construct a parallel-to-sequential
compiler (which may be of independent interest).
At a high level, the idea is to assign each virtual address to a pseudorandom memory

bank (and this assignment stays the same during the entire execution). Suppose that a
program is sufficiently parallel such that it always makes memory requests in P :=
P(λ) ∈ ω(M log N)-sized batches. For now, assume that all memory requests within
a batch operate on distinct virtual addresses—if not we can leverage a hash table to
suppress duplicates, using an additional “scratch” bank as the CPU’s working memory.
Then, clearly each memory bank will in expectation serve P/M requests for each batch.
With a simple Chernoff bound, we can conclude that each memory bank will serve
O(P/M) requests for each batch, except with negligible probability. In a sequential
setting, we can easily achieve O(1) bandwidth and runtime blowup: for each batch
of memory requests, the CPU will sequentially access each bank O(P/M) number of
times, padding with dummy accesses if necessary (see Sect. 4).

However, additional difficulties arise when we try to execute the above algorithm in
parallel. In each step, there is a batch of P memory requests, one coming from each
processor. However, each processor cannot perform its own memory request, since the
adversary can observe which processor is talking to which memory bank and can detect
duplicates (note this problem did not exist in the sequential case since there was only
one processor). Instead, we wish to

1. hash the memory requests into buckets according to their corresponding banks
while suppressing duplicates; and

2. pad the number of accesses to each bank to a worst-case maximum—as mentioned
earlier, if we suppressed duplicate addresses, each bank has O(P/M) requests
with probability 1 − negl(λ).

At this point, we can assign processors to the memory requests in a round-robin
manner, such that which processor accesses which bank is “fixed”. Now, to achieve
the above two tasks in O(log∗ P) parallel time, we need to employ non-trivial parallel
algorithms for “colored compaction” [4] and “static hashing” [5,18], for the arbitrary
CRCW PRAM model, while using a scratch bank as working memory (see Sect. 5).

1.5. Related Work

Oblivious RAM (ORAM) was first proposed in a seminal work by Goldreich and Ostro-
vsky [19,20] where they laid a vision of employing an ORAM-capable secure processor
to protect software against piracy. In their work, Goldreich and Ostrovsky showed both a
poly-logarithmic upper-bound (commonly referred to as the hierarchical ORAM frame-
work) and a logarithmic lower-bound for ORAM—both under constant CPU cache.
Goldreich and Ostrovsky’s hierarchical construction was improved in several subse-
quent works [6,23,25,29,37,49–51]. Recently, Shi et al. proposed a new, tree-based
paradigm for constructing ORAMs [41], thus leading to several new constructions that
are simple and practically efficient [8,13,44,47]. Notably, circuit ORAM [47] partially

Oblivious Network RAM and Leveraging Parallelism 947

resolved the tightness of the Goldreich–Ostrovsky lower bound, by showing that certain
stronger interpretations of their lower bound are indeed tight.
Theoretically, the best-known ORAM scheme (with constant CPU cache) for small

O(log N)-sized memory words1 is a construction by Kushilevitz et al. [29], achieving
O(log2 N/ log log N) bandwidth and runtime blowup. Path ORAM (variant with O(1)
CPU cache [48]) and circuit ORAMcan achieve better bounds for biggermemorywords.
For example, circuit ORAM achieves ̂O(log N) bandwidth blowup for a word size of
�(log2 N) bits; and ̂O(log N) runtime blowup for a memory word size of N ε bits where
0 < ε < 1 is any constant within the specified range.
ORAMs with larger CPU cache sizes (caching up to Nα words for any constant

0 < α < 1) have been suggested for cloud storage outsourcing applications [23,43,51].
In this setting, Goodrich and Mitzenmacher [23] first showed how to achieve O(log N)

bandwidth and runtime blowup.
Other than secure processors and cloud outsourcing, ORAM is also noted as a key

primitive for scaling secure multiparty computation to big data [26,30,47,48]. In this
context, Wang et al. [47,48] pointed out that the most relevant ORAMmetric should be
the circuit size rather than the traditionally considered bandwidth metrics. In the secure
computation context, Lu and Ostrovsky [31] proposed a two-server ORAM scheme that
achieves O(log N) runtime blowup. Similarly, ORAMcan also be applied in other RAM
model cryptographic primitives such as (reusable) Garbled RAM [14–16,32,33].
Goodrich and Mitzenmacher [23] and Williams et al. [52] observed that computa-

tional tasks with inherent parallelism can be transformed into efficient, oblivious coun-
terparts in the traditional ORAM setting—but our techniques apply to the NRAMmodel
of computation. Finally, oblivious RAM has been implemented in outsourced storage
settings [42,43,49,51,52], on secure processors [9,11,12,34,35,39], and atop secure
multiparty computation [26,47,48].

Comparison of Our Parallel-to-Parallel Compiler with the Work of [7] Recently, Boyle
et al. [7] proposed oblivious parallel RAM, and presented a construction for oblivious
simulation of PRAMs in the PRAM model. Our result is incomparable to their result:
Our security model is weaker than theirs since we assume obliviousness within each
memory bank comes for free; on the other hand, we obtain far better asymptotical and
concrete performance. We next elaborate further on the differences in the results and
techniques of the two works. Boyle et al. [7] provide a compiler from the EREW, CREW
and CRCWPRAMmodels to the EREWPRAMmodel. The security notion achieved by
their compiler provides security against adversaries who see the entire access pattern, as
in standard oblivious RAM.However, their compiled program incurs a poly log overhead
in both the parallel time and total work. Our compiler is a compiler from the EREW,
CREW, common CRCW and arbitrary CRCW PRAM models to the arbitrary CRCW
PRAM model and the security notion we achieve is the weaker notion of oblivious
network RAM, which protects against adversaries who see the bank being accessed,
but not the offset within the bank. On the other hand, our compiled program incurs
only a log∗ time overhead and its work is asymptotically the same as the underlying
PRAM. Both our work and the work of [7] leverage previous results and techniques

1Every memory word must be large enough to store the logical memory address.

948 D. Dachman-Soled et al.

from the parallel computing literature. However, our techniques are primarily from the
CRCW PRAM literature, while [7] use primarily techniques from the low-depth circuit
literature, such as highly efficient sorting networks.

2. Definitions

2.1. Background: Random Access Machines (RAM)

We consider RAM programs to be interactive stateful systems 〈�, state, D〉, consisting
of a memory array D of N := N (λ) memory words, for polynomial N (λ) ∈ �(λ)

and security parameter λ, a CPU state denoted state, and a next-instruction function �

which given the current CPU state and a value rdata read from memory, outputs the
next instruction I and an updated CPU state denoted state′:

(state′, I) ← �(state, rdata)

Each instruction I is of the form I = (op, . . .), where op is called the op-code whose
value is read,write, or stop. The initial CPU state is set to (start, ∗, stateinit). Upon
input x , the RAM machine executes, computes output z and terminates. CPU state is
reset to (start, ∗, stateinit) when the computation on the current input terminates.
On input x , the execution of the RAM proceeds as follows. If state = (start, ∗,

stateinit), set state := (start, x, stateinit), and rdata := 0. Now, repeat the doNext()
till termination, where doNext() is defined as below:

doNext()
1. Compute (I, state′) = �(state, rdata). Set state := state′.
2. If I = (stop, z) then terminate with output z.
3. If I = (write, vaddr,wdata) then set D[vaddr] := wdata.
4. If I = (read, vaddr,⊥) then set rdata := D[vaddr].

2.2. Parallel RAM

To formally characterize what it means for a program to exhibit a sufficient degree of
parallelism, we will formally define a P-parallel RAM. In this section, the reader should
think of parallelism as a property of the program to be simulated—we actually charac-
terize costs assuming both the non-oblivious and the oblivious programs are executed
on a sequential machine (different from Sect. 5).

An P-parallel RAM machine is the same as a RAM machine, except the next-
instruction function outputs P instructions which can be executed in parallel.

Definition 1. (P-parallel RAM) An P-Parallel RAM is a RAM which has a next-
instruction function� = �1, . . . ,�P such that on input (state = state1|| · · · ||stateP ,

rdata = rdata1|| · · · ||rdataP),� outputs P instructions (I1, . . . , IP) and P updated

Oblivious Network RAM and Leveraging Parallelism 949

states state′
1, . . . , state

′
P such that for p ∈ [P], (Ip, state′

p) = �p(statep, rdatap).
The instructions I1, . . . , IP satisfy one of the following:

• All of I1, . . . , IP are set to (stop, z) (with the same z).
• All of I1, . . . , IP are either of the form. (read, vaddr,⊥) or (write, vaddr,wdata).

Finally, the state state has size at most O(P).

In an intermediate result in Sect. 4.1, we will consider a special case where in each
parallel step of the PRAMexecution, thememory requests made by each processor in the
P-parallel RAM have distinct addresses—we refer to this model as a restricted PRAM.
A formal definition follows.

Definition 2. (Restricted P-parallel RAM) For a P-parallel RAM denoted PRAM :=
〈D, state1, . . . , stateP ,�1, . . . �P 〉, if every batch of instructions I1, . . . , IP have
unique vaddr’s, we say that PRAM is a restricted P-parallel RAM.

2.3. Network RAM (NRAM)

Network RAM A network RAM (NRAM) is the same as a regular RAM, except that
memory is distributed across multiple banks, Bank1, . . . ,BankM . In an NRAM, every
virtual address vaddr can be written in the format vaddr := (m, offset), wherem ∈ [M],
for M := M(k), is the bank identifier, and offset is the offset within the Bankm.
Otherwise, the definition of NRAM is identical to the definition of RAM.

Probabilistic NRAM Similar to the probabilistic RAM notion formalized by Goldreich
and Ostrovsky [19,20], we additionally define a probabilistic NRAM. A probabilistic
NRAM is an NRAM whose CPU state is initialized with randomness ρ (that is unob-
servable to the adversary). If an NRAM is deterministic, we can simply assume that the
CPU’s initial randomness is fixed to ρ := 0. Therefore, a deterministic NRAM can be
considered as a special case of a probabilistic NRAM.

Outcome of Execution Throughout the paper, we use the notationRAM(x) orNRAM(x)
to denote the outcome of executing a RAM or NRAM on input x . Similarly, for a
probabilisticNRAM, we use the notationNRAMρ(x) to denote the outcome of executing
on input x , when the CPU’s initial randomness is ρ.

2.4. Oblivious Network RAM (O-NRAM)

Observable TracesTo define oblivious networkRAM,we need to first specifywhich part
of the memory trace an adversary is allowed to observe during a program’s execution. As
mentioned earlier in the introduction, eachmemory bank has trusted logic for encrypting
and decrypting the memory offset. The offset within a bank is transferred in encrypted
format on the memory bus. Hence, for each memory access op := “read” or op :=
“write” to virtual address vaddr := (m, offset), the adversary observes only the op-code
op and the bank identifier m, but not the offset within the bank.

Definition 3. (Observable traces) For a probabilistic NRAM, we use the notation
Trρ(NRAM, x) to denote its observable traces upon input x , and initial CPU random-
ness ρ:

950 D. Dachman-Soled et al.

Trρ(NRAM, x) := {

(op1,m1), (op2,m2), . . . , (opT ,mT)
}

where T is the total execution time of the NRAM, and (opi ,mi) is the op-code and
memory bank identifier during step i ∈ [T] of the execution.

We remark that one can consider a slight variant model where the op-codes {opi }i∈[T]
are also hidden from the adversary. Since to hide whether the operation is a read or write,
one can simply perform one read and one write for each operation—the differences
between these two models are insignificant for technical purposes. Therefore, in this
paper, we consider the model whose observable traces are defined in Definition 3).

Oblivious Network RAM Intuitively, an NRAM is said to be oblivious, if for any two
inputs x0 and x1 resulting in the same execution time, their observable memory traces
are computationally indistinguishable to an adversary.
For simplicity, we define obliviousness for NRAMs that run in deterministic T time

regardless of the inputs and the CPU’s initial randomness. One can also think of T as the
worst-case runtime, and that the program is always padded to the worst-case execution
time. Oblivious NRAM can also be similarly defined when its runtime is randomized—
however we omit the definition in this paper.

Definition 4. (Oblivious network RAM) Consider an NRAM that runs in deterministic
time T := T (λ) ∈ poly(λ). The NRAM is said to be computationally oblivious if
no polynomial-time adversary A can win the following security game with more than
1
2 + negl(λ) probability. Similarly, the NRAM is said to be statistically oblivious if no
adversary, even computationally unbounded ones, canwin the following gamewithmore
than 1

2 + negl(λ) probability.

• A chooses two inputs x0 and x1 and submits them to a challenger.
• The challenger selects ρ ∈ {0, 1}λ, and a random bit b ∈ {0, 1}. The challenger
executes NRAM with initial randomness ρ and input xb for exactly T steps, and
gives the adversary Trρ(NRAM, xb).

• A outputs a guess b′ of b, and wins the game if b′ = b.

2.5. Notion of Simulation

Definition 5. (Simulation) We say that a deterministic RAM := 〈�, state, D〉 can be
correctly simulated by another probabilistic NRAM := 〈�′, state′, D′〉 if for any input
x for any initial CPU randomness ρ,RAM(x) = NRAMρ(x). Moreover, if NRAM is
oblivious, we say that NRAM is an oblivious simulation of RAM.

Below, we explain some subtleties regarding the model, and define the metrics for
oblivious simulation.

Uniform Versus Non-uniform Memory Word Size The O-NRAM simulation can either
employ uniform memory word size or non-uniform memory word size. For example,
the non-uniformword size model has been employed for recursion-based ORAMs in the
literature [44,47]. In particular, Stefanov et al. describe a parametrization trick where
they use a smaller word size for position map levels of the recursion [44].

Oblivious Network RAM and Leveraging Parallelism 951

Metrics for Simulation Overhead In the ORAM literature, several performance metrics
have been considered. To avoid confusion, we now explicitly define two metrics that we
will adopt later. If an NRAM correctly simulates a RAM, we can quantify the overhead
of the NRAM using the following metrics.

• Runtime Blowup If a RAM runs in time T , and its oblivious simulation runs in
time T ′, then the runtime blowup is defined to be T ′/T . This notion is adopted by
Goldreich and Ostrovsky in their original ORAM paper [19,20].

• Bandwidth Blowup If a RAM transfers Y bits between the CPU and memory, and
its oblivious simulation transfers Y ′ bits, then the bandwidth blowup is defined to
be Y ′/Y . Clearly, if the oblivious simulation is in a uniform word size model, then
bandwidth blowup is equivalent to runtime blowup. However, bandwidth blowup
may not be equal to runtime blowup in a non-uniform word size model.

In this paper, we consider oblivious simulation of RAMs in the NRAM model, and
we focus on the case when the oblivious NRAM has only O(1) words of CPU cache.

2.6. Network PRAM (NPRAM) Definitions

Similar to our NRAM definition, an NPRAM is much the same as a standard PRAM,
except that (1) memory is distributed across multiple banks, Bank1, . . . ,BankM ; and
(2) every virtual address vaddr can be written in the format vaddr := (m, offset), where
m is the bank identifier, and offset is the offset within theBankm . We use the notation P-
parallel NPRAM to denote an NPRAM with P := P(λ) parallel processors, each with
O(1) words of cache. If processors are initialized with secret randomness unobservable
to the adversary, we call this a probabilistic NPRAM.

Observable Traces In the NPRAM model, we assume that an adversary can observe
the following parts of the memory trace: (1) which processor is making the request; (2)
whether this is a read or write request; and (3) which bank the request is going to. The
adversary is unable to observe the offset within a memory bank.

Definition 6. (Observable traces for NPRAM) For a probabilistic P-parallelNPRAM,
we use Trρ(NPRAM, x) to denote its observable traces upon input x , and initial CPU
randomness ρ (collective randomness over all processors):

Trρ(NPRAM, x)

:=
[((

op11,m
1
1

)

, . . . ,
(

opP
1 ,mP

1

))

, . . . ,
((

op1T ,m1
T

)

, . . . ,
(

opP
T ,mP

T

))]

where T is the total parallel execution time of the NPRAM, and {(op1i ,m1
i), . . . , (op

P
i ,

mP
i)} is of the op-codes and memory bank identifiers for each processor during parallel

step i ∈ [T] of the execution.

Based on the above notion of observable memory trace, an oblivious NPRAM can be
defined in a similar manner as the notion of O-NRAM (Definition 4).

952 D. Dachman-Soled et al.

MetricsWeconsider classicalmetrics adopted in the vast literature onparallel algorithms,
namely, the parallel runtime and the total work. In particular, to characterize the oblivious
simulation overhead, we will consider

• Parallel Runtime Blowup The blowup of the parallel runtime comparing the O-
NPRAM and the NPRAM.

• Total Work Blowup The blowup of the total work comparing the O-NPRAM and
the NPRAM. If the total work blowup is O(1), we say that the O-NPRAM achieves
optimal total work.

3. Sequential Oblivious Simulation

3.1. First Attempt: Oblivious NRAM with O(M) CPU Cache

Let M := M(λ) denote the number of memory banks in our NRAM, where each bank
has O(N/M) capacity. We first describe a simple oblivious NRAM with O(M) CPU
private cache. Under a non-uniform memory word size model, Our O-NRAM construc-
tion achieves O(1) bandwidth blowup under �(log2 N) memory word size. Later, in
Sect. 3.2, we will describe how to reduce the CPU cache to O(1) by introducing an addi-
tional scratchmemory bank of O(M) in size. In particular, an interesting parametrization
point is when M ∈ O(

√
N).

Our idea is inspired by the partition-based ORAM idea described by Stefanov, Shi,
and Song [43]. For simplicity, like in many earlier ORAM works [20,41], we focus on
presenting the algorithm for making memory accesses, namely the Access algorithm.
A description of the full O-NRAM construction is apparent from the Access algorithm:
basically, the CPU interleaves computation (namely, computing the next-instruction
function �) with the memory accesses.
CPU Private Cache The CPU needs to maintain the following metadata:

• A position map that stores which bank each memory word currently resides in. We
use the notation position[vaddr] to denote the bank identifier for the memory word
at virtual address vaddr. Although storing the position map takes O(N logM) bits
of CPU cache, we will later describe a recursion technique [41,43] that can reduce
this storage to O(1); and

• An eviction cache consisting of M queues. The queues are used for temporarily
buffering memory words before they are obliviously written back to the memory
banks. Each queue m ∈ [M] can be considered as an extension of the mth memory
bank. The eviction cache is O(M) + f (N), for any f (N) = ω(log N) in size. For
now, consider that the eviction cache is stored in the CPU cache, such that accesses
to the eviction cache do not introduce memory accesses. Later in Sect. 3.2, we will
move the eviction cache to a separate scratch bank—it turns out there is a small
technicality with that requiring us to use a deamortized Cuckoo hash table [2].

Memory Access Operations Figure 1 describes the algorithm for making a memory
access. To access a memory word identified by virtual address vaddr, the CPU first
looks up the position map m := position[vaddr] to find the bank identifier m where the
memory word vaddr currently resides. Then, the CPU fetches the memory word vaddr

Oblivious Network RAM and Leveraging Parallelism 953

Access(op, vaddr,wdata):
1: m ← UniformRandom(1 . . . M)
2: m := position[vaddr], position[vaddr] := m
3: if word at vaddr is in queue[m] then
4: rdata := queue[m].ReadAndRm(vaddr)
5: ReadBank(m, ⊥)
6: else
7: queue[m].ReadAndRm(⊥)
/* Dummy operation, needed when the eviction queues are stored in a scratch bank, see Section 3.2 */

8: rdata := ReadBank(m, vaddr)
/* Each bank implements a hash table with good worst-case cost (Theorem 1). */

9: end if
10: if op = read then wdata := rdata
11: queue[m] := queue[m].push(vaddr,wdata)
12: Call SeqEvict(ν)
13: return rdata

Fig. 1. Algorithm for data access. Read or write a memory word identified by vaddr. If op = read, the input
parameter wdata = None, and the Access operation returns the newly fetched word. If op = write, the
Access operation writes the specified wdata to the memory word identified by vaddr, and returns the old
value of the word at vaddr.

from either the queue queue[m] or the bank m. In the former case, the ReadAndRm
primitive sequentially scans through each element in queue[m] to retrieve data stored
at vaddr. For the latter case, since the set of vaddr’s stored in any bank may be discon-
tinuous, we first assume that each bank implements a hash table such that one can look
up each memory location by its vaddr using ReadBank. Later, we will describe how
to instantiate this hash table (Theorem 1).

After fetching the memory word vaddr, the CPU assigns it to a fresh random bank
m̃. However, to avoid leaking information, the memory word is not immediately written
back to the bank m̃. Instead, recall that the CPU maintains M queues for buffering
memory words before write-back. At this point, the memory word at address vaddr is
added to queue[m̃]—signifying that the memory word vaddr is scheduled to be written
back to Bankm̃.

Background Eviction To prevent the CPU’s eviction queues from overflowing, a back-
ground eviction process obliviously evicts words from the queues back to the memory
banks. One possible eviction strategy is that, on each data access, the CPU chooses
ν = 2 queues for eviction—by sequentially cycling through the queues. When a queue
is chosen for eviction, an arbitrary word is popped from the queue and written back to
the corresponding memory bank. If the chosen queue is empty, a dummyword is evicted
to prevent leaking information. Stefanov et al. proved that such an eviction process is
fast enough so that the CPU’s eviction cache load is bounded by O(M) except with
negligible probability [43]—assuming that M ∈ ω(log N).

Lemma 1. The CPU’s eviction cache, i.e., the total capacity of all eviction queues,
is bounded by O(M) + f (N), for any f (N) = ω(log N) words except with negl(λ)

probability.

954 D. Dachman-Soled et al.

Evict(m):
1: if len(queue[m]) = 0 then
2: WriteBank(m, ⊥,None)
3: else
4: (vaddr,wdata) := queue[m].pop()
5: WriteBank(m, vaddr,wdata)
6: end if

SeqEvict(ν):
// Let cnt denote a stateful counter.
1: Repeat ν times:
2: cnt := (cnt + 1) mod M
3: Evict(cnt)

Fig. 2. Background eviction algorithms with eviction rate ν. SeqEvict linearly cycles through the eviction
queues to evict from. If a queue selected for eviction is empty, evict a dummy word for obliviousness. Counter
cnt is a global variable.

Proof. The proof follows from Stefanov et al. [43], and is a straightforward application
of Chernoff bound. �

Instantiating the Per-Bank Hash Table In Figs. 1 and 2, we assume that each bank
implements a hash table with good worst-case performance. We now describe how to
instantiate this hash table to achieve ̂O(1) cost per operation except with negligible
failure probability.
Afirst idea is to implement a standardCuckoohash table [38] for eachmemorybank. In

this way, lookup is worst-case constant time, whereas insertion is average-case constant
time, and worst-case ̂O(log N) time to achieve a failure probability negligible in N . To
ensure obliviousness, we can not reveal the insertion time—for example, insertion time
can reveal the current usage of each bank, which in turns leaks additional information
about the access pattern. However, we do not wish to incur this worst-case insertion time
upon every write-back.
To deal with this issue, we will rely on a deamortized Cuckoo hash table such as

the one described by Arbitman et al. [2]. Their idea is to rely on a small queue that
temporarily buffers the pending work associated with insertions. Upon every operation,
perform a fixed amount of work at a rate faster than the amortized insertion cost of a
standard Cuckoo hash table. For our application, we require that the failure probability
be negligible in security parameter, λ. Therefore, we introduce a modified version of
Arbitman et al.’s theorem [2] as stated below.

Theorem 1. (Deamortized Cuckoo hash table: negligible failure probability version)
There exists a deamortized Cuckoo hash table of capacity s := s(λ) ∈ poly(N) such that
with probability 1−negl(λ), each insertion, deletion, and lookup operation is performed
in worst-case ̂O(1) time (not counting the cost of operating on the queue)—as long as
at any point in time at most s elements are stored in the data structure. The above
deamortized Cuckoo hash table consumes O(s) + O(N δ) space where 0 < δ < 1 is a
constant.

In the above, the O(s) part of the space corresponds to the two tables T0 and T1 for
storing the elements of the hash table, and the additional O(N δ) space is for imple-
menting the pending work queue (see Arbitman et al. [2] for more details). Specifically,
Arbitman et al. suggested that the work queue be implemented with constant number k

Oblivious Network RAM and Leveraging Parallelism 955

of standard hash tables which are N δ , for δ < 1, in size. To achieve negligible failure
probability, we instead set k = k(N) to be any k(N) ∈ ω(1). We will discuss the details
of our modified construction and analysis in Sect. 6.

Recursion In the above scheme, the CPU stores both a position map of �(N log N) bits,
and an eviction cache containing �(M) memory words. On each data access, the CPU
reads �(w) bits assuming each memory word is of w bits. Therefore, the bandwidth
blowup is O(1).

We now show how to rely on a recursion idea to avoid storing this position map inside
the CPU—for now, assume that the CPU still stores the eviction cache, which wewill get
rid of in Sect. 3.2. The idea is to recursively store the position map in smaller oblivious
NRAMs.
In particular, consider ONRAM0 to be the actual data ONRAM, whose position map

contains N words. Then, the position map can be organized into N/c blocks by com-
bining each c words into one data block. In this case, the position map can be stored
in a ONRAM, called ONRAM1, of capacity N/c with a block size to be cw. Since
ONRAM1 also needs to store a position map, we can recursively apply the same idea
to construct ONRAM2,ONRAM3, . . . ,. Note that the capacity for ONRAMk is N/ck ,
while its word size is always cw. Given c is a constant, e.g., c ≥ 2, we know that there
are at most k = log N/ log c ∈ O(log N) level of recursions to reach ONRAMk with a
constant capacity. In this structure, ONRAM0 is the actual data ONRAM, while others
are metadata ONRAMs.

To access a memory word in ONRAM0, the client first makes a position map lookup
in ONRAM1 which triggers a recursive call to look up the position of the position in
ONRAM2, and so on. The original binary-tree ORAM [41] described a simple way to
parametrize the recursion, using a uniformmemory word size across all recursion levels.
Later schemes [44,47], however, described new tricks to parametrize the recursion,
where a different memory word size is chosen for all the metadata levels than the data
level (i.e., ONRAM0)—the latter trick allows one to reduce the bandwidth blowup for
reasonably big memory words size. Below, we describe these parametrizations, state
the bandwidth blowup and runtime blowup we achieve in each setting. Recall that as
mentioned earlier, the bandwidth blowup and runtime blowup equate for a uniform
memory word size setting; however, under non-uniform memory word sizes, the two
metrics may not equate.

• Uniform Memory Word Size The depth of recursion is smaller when the memory
word is larger.

– Assume that each memory word is at least c log N bits in size for some constant
c > 1. In this case, the recursion depth is O(log N). Hence, the resulting O-
NRAM has ̂O(log N) runtime blowup and bandwidth blowup.

– Assume that each memory word is at least N ε bits in size for some constant
0 < ε < 1. In this case, the recursion depth is O(1). Hence, the resulting
O-NRAM has ̂O(1) runtime blowup and bandwidth blowup.

• Non-uniform Memory Word Size Using a parametrization trick by Stefanov
et al. [44], we can parametrize the position map recursion levels to have a dif-

956 D. Dachman-Soled et al.

ferent word size than the data level. Of particular interest is the following point of
parametrization:

– Assume that each memory word of the original RAM is W := W (λ) ∈
�(log2 N) bits—this will be the word size for the data level of the recursion.
For the position map levels, we will use a word size of �(log N) bits. In this
way, the recursion depth is O(log N). For each access, the total number of bits
transferred include one data word of W bits, and O(log N) words of O(log N)

bits. Thus, we achieve ̂O(1) bandwidth blowup, but ̂O(log N) runtime blowup.

Finally, observe that we need not create separate memory banks for each level of the
recursion. In fact, the recursion levels can simply reuse the memory banks of the top
data level, introducing only a constant factor blowup in the size of the memory bank.

3.2. Achieving O(1) Words of CPU Cache

We now explain how to reduce the CPU cache size to O(1), while storing the eviction
queues in a separate scratch bank. It turns out that there is a small technicality when
we try to do so, requiring the use of a special data structure as described below. When
we move the eviction queues to the scratch bank, we would like each queue to sup-
port the operations: pop(),push() and ReadAndRm(), as required by algorithms in
Figs. 1 and 2 with worst-case ̂O(1) cost except with negl(λ) failure probability. While
a simple queue supports pop() and push() with these time bounds, it does not support
ReadAndRm(). To achieve this, the scratch bankwill maintain the following structures:

• Store M eviction queues supporting only pop() and push() operations. The total
number of elements in all queues does not exceed O(M) + f (N) for any f (N) ∈
ω(log N) except with negligible failure probability. It is not hard to see that theseM
eviction queues can be implemented with O(M)+ f (N) for any f (N) ∈ ω(log N)

space in total and O(1) cost per operation.
• Separately, store the entries of allM eviction queues in a single deamortizedCuckoo
hash table [2] inside the scratch bank. Such a deamortized Cuckoo hash table can
achieve ̂O(1) cost per operation (insertion, removal, lookup) except with negligible
failure probability.When an element is popped from or pushed to any of the eviction
queues, it is also inserted or removed in this big deamortized Cuckoo hash table.
However, when an element must be read and removed from any of the eviction
queues, then the element is looked up from the big hash table and it is just marked
as deleted. When time comes for this element to be popped from some queue during
the eviction process, a dummy eviction is performed.

Theorem 2. (O-NRAM simulation of arbitrary RAM programs: uniform word size
model) Any N-word RAM with a word size of W = f (N) log N bits can be simulated
by an oblivious NRAM that consumes O(1) words of CPU cache, and with O(M)

memory banks each of O(M + N/M + N δ) words in size, for any constant 0 < δ < 1.
The oblivious NRAM simulation incurs ̂O(log f (N) N) runtime blowup and bandwidth
blowup. As special cases of interest:

• When the word size is W = N ε bits, the runtime blowup and bandwidth blowup
are both ̂O(1).

Oblivious Network RAM and Leveraging Parallelism 957

• When the word size is W = c log N bits for some constant c > 1, the runtime
blowup and bandwidth blowup are both ̂O(log N).

Theorem 3. (O-NRAM simulation of arbitrary RAM programs: non-uniform word
size model) Any N-word RAMwith a word size of W = �(log2 N) bits can be simulated
by an oblivious NRAM (with non-uniform word sizes) that consumes O(W) bits of CPU
cache, and with O(M) memory banks each of O(W · (M + N/M + N δ)) bits in size.
Further, the oblivious NRAM simulation incurs ̂O(1) bandwidth blowup and ̂O(log N)

runtime blowup.

Note that for the non-uniform version of the theorem, we state the memory bank and
cache sizes in terms of bits instead of words to avoid confusion. In both the uniform
and non-uniform versions of the theorem, an interesting point of parametrization is
when M = O(

√
N), and each bank is O(W

√
N) bits in size. The proofs for these two

theorems follow directly the analysis for the recursive construction of oblivious NRAM
from Sect. 3.1, given each access to the scratch bank costs only a constant overhead.

4. Sequential Oblivious Simulation of Parallel Programs

We are eventually interested in parallel oblivious simulation of parallel programs
(Sect. 5). As a stepping stone,we first consider sequential oblivious simulation of parallel
programs. However, we emphasize that the results in this section can be of independent
interest. In particular, one way to interpret these results is that “parallelism facilitates
obliviousness”. Specifically, if a program exhibits a sufficient degree of parallelism, then
this program can be made oblivious at only const overhead in the network RAMmodel.
The intuition for why this is so, is that instructions in each parallel time step can be exe-
cuted in any order. Since subsequences of instructions can be executed in an arbitrary
order during the simulation, many sequences of memory requests can be mapped to the
same access pattern, and thus the request sequence is partially obfuscated.

4.1. Warmup: Restricted Parallel RAM to Oblivious NRAM

Our goal is to compile any P-parallel RAM (not necessarily restricted), into an efficient
O-NRAM. As an intermediate step that facilitates presentation, we begin with a basic
construction ofO-NRAMfromany restricted, parallelRAM. In the following section,we
extend to a construction ofO-NRAMfrom any parallel RAM (not necessarily restricted).
Since we present our construction for the most general case—when the underlying
PRAM is in the CRCW PRAM model—it follows that our final compiler works when
the underlying P-parallel RAM is in the EREW, CREW, or common/arbitrary/priority
CRCW PRAM model.
Let PRAM := 〈D, state1, . . . , stateP ,�1, . . . �P 〉 be a restricted P-Parallel RAM,

for P := P(λ) ∈ ω(M log N). We now present an O-NRAM simulation of PRAM that
requires M + 1 memory banks, each with O(N/M + P) physical memory, where N is
the database size.

958 D. Dachman-Soled et al.

doNext(): //We only consider read and write instructions here but not stop.

1: For p := 1 to P : (opp , vaddrp ,wdatap) := Πp(statep , rdatap)
2: (rdata1, rdata2, . . . , rdatap) := Access opp , vaddrp ,wdatap p∈[P]

Fig. 3. Oblivious simulation of each step of the restricted parallel RAM.

Setup: Pseudorandomly Assign Memory Words to Banks2 The setup phase takes the
initial states of the PRAM, including the memory array D and the initial CPU state,
and compiles them into the initial states of the oblivious NRAM denoted ONRAM.
To do this, the setup algorithm chooses a secret key K , and sets ONRAM.state =

PRAM.state||K . Each memory bank of ONRAM will be initialized as a Cuckoo hash
table. Each memory word in the PRAM’s initial memory array D will be inserted into
the bank numbered (PRFK (vaddr) mod M) + 1, where vaddr is the virtual address
of the word in PRAM. Note that the ONRAM’s (M + 1)th memory bank is reserved as
a scratch bank whose usage will become clear later.

Simulating Each Step of the PRAM’s Execution Each doNext() operation of the PRAM
will be compiled into a sequence of instructions of the ONRAM. We now describe how
this compilation works. Our presentation focuses on the case when the next instruction’s
op-codes are reads or writes. Wait or stop instructions are left unmodified during the
compilation.
As shown in Fig. 3, for each doNext instruction, we first compute the batch of instruc-

tions I1, . . . , IP , by evaluating the P parallel next-instruction circuits�1, . . . ,�P . This
results in P parallel read or write memory operations. This batch of P memory oper-
ations (whose memory addresses are guaranteed to be distinct in the restricted parallel
RAM model) will then be served using the subroutine Access.

We now elaborate on the Access subroutine. Each batch will have P := P(λ) ∈
ω(M log N) memory operations whose virtual addresses are distinct. Since each virtual
address is randomly assigned to one of the M banks, in expectation, each bank will get
P/M = ω(log N) hits. Using a balls-and-bins analysis, we show that the number of hits
for each bank is highly concentrated around the expectation. In fact, the probability of
any constant factor, multiplicative deviation from the expectation is negligible in N (and
therefore also negligible in λ, since N ≥ λ). Therefore, we choose max := 2(P/M)

for each bank, and make precisely max number of accesses to each memory bank.
Specifically, the Access algorithm first scans through the batch of P ∈ ω(M log N)

memory operations, and assigns them to M queues, where themth queue stores requests
assigned to the mth memory bank. Then, the Access algorithm sequentially serves the

2In fact, it is possible to use here a k-wise independent hash function, instead of a PRF, as long as k
is sufficiently large. In particular, we must choose k so that the k-wise independent hash function “fools”
Chernoff bounds. As shown in the seminal work of [40], this can be achieved by setting k := k(N) for any
function such that k(N) ∈ ω(log N). In fact, “almost” k-wise independent hash functions [1] can also be
used for load-balancing. Leveraging the analysis from [36], it can be shown that such hash function can be
constructed such that every invocation is poly(log log N) cost per evaluation. In this paper, our model assumes
that the cost to evaluate the hash is a unit cost.

Oblivious Network RAM and Leveraging Parallelism 959

Access {opp, vaddrp,wdatap}p∈P :

1: for p = 1 to P do
2: m ← (PRFK(vaddrp) mod M) + 1;
3: queue[m] := queue[m].push(p, opp , vaddrp ,wdatap);

// queue is stored in a separate scratch bank.
4: end for
5: for m = 1 to M do
6: if |queue[m]| > max then abort
7: Pad queue[m] with dummy entries (⊥, ⊥, ⊥, ⊥) so that its size is max;
8: for i = 1 to max do
9: (p, op, vaddr,wdata) := queue[m].pop()

10: rdatap := ReadBank(m, vaddr)
// Each bank is a deamortized Cuckoo hash table.

11: if op = read then wdata := rdatap
12: WriteBank(m, vaddr,wdata)
13: end for
14: end for
15: return (rdata1, rdata2, . . . , rdataP)

Fig. 4. Obliviously serving a batch of P memory requests with distinct virtual addresses.

requests to memory banks 1, 2, . . . , M , padding the number of accesses to each bank to
max. This way, the access patterns to the banks are guaranteed to be oblivious.
The description of Fig. 4 makes use of M queues with a total size of P ∈ ω(M log N)

words. It is not hard to see that these queues can be stored in an additional scratch bank
of size O(P), incurring only constant number of accesses to the scratch bank per queue
operation. Further, in Fig. 4, the time at which the queues are accessed, and the number
of times they are accessed are not dependent on input data (notice that Line 7 can be
done by linearly scanning through each queue, incurring amax cost each queue).

Cost Analysis Since max = 2(P/M), in Fig. 4 (see Theorem 4), it is not hard to see
each batch of P ∈ ω(M log N) memory operations will incur �(P) accesses to data
banks in total, and �(P) accesses to the scratch bank. Therefore, the ONRAM incurs
only a constant factor more total work and bandwidth than the underlying PRAM.

Theorem 4. Let PRF be a family of pseudorandom functions, PRAM be a restricted
P-Parallel RAM for P := P(λ) ∈ ω(M log N), and let max := 2(P/M). Then, the
construction described above is an oblivious simulation ofPRAM using M banks each of
size O(N/M + P) words. The oblivious simulation performs total work that is constant
factor larger than that of the underlying PRAM.

Proof. Assuming the execution never aborts (Line 6 in Fig. 4), then Theorem 4 follows
immediately, since the access pattern is deterministic and independent of the inputs.
Therefore, it suffices to show that the abort happens with negligible probability on Line
6. This is shown in the following lemma. �

Lemma 2. Letmax := 2(P/M). For any PRAM and any input x, abort on Line 6 of
Fig. 4 occurs only with negligible probability (over choice of the PRF).

960 D. Dachman-Soled et al.

Remark 1. We note that with our choice of parameters, P := P(λ) ∈ ω(M log N), the
abort probability is at most M · exp(− P

3M). Since we assume N ≥ λ and N ∈ poly(λ),
we can choose a particular f (λ) ∈ ω(log(λ)) and set P := M · f (λ), thus achieving
abort probability at most M · exp(− f (λ)/3). As a concrete instantiation, we can set
λ = 212 = 4096 and f (λ) := log2(λ), achieving abort probability exp(−48) < 2−70,
corresponding to more than 70 bits of security. Since in practice, the size of memory,
N , will be far larger than 4096 words, we believe the above settings are reasonable.

Proof. We first replace PRF with a truly random function f . Note that if we can
prove the lemma for a truly random function, then the same should hold for PRF, since
otherwise we obtain an adversary breaking pseudorandomness.
We argue that the probability that abort occurs on Line 6 of Fig. 4 in a particular step

i of the execution is negligible. By taking a union bound over the (polynomial number
of) steps of the execution, the lemma follows.
To upper bound the probability of abort in some step i , consider a thought experiment

where we change the order of sampling the random variables: We run PRAM(x) to
precompute all the PRAM’s instructions up to and including the i th step of the execution
(independently of f), obtaining P distinct virtual addresses, and only then choose the
outputs of the random function f on the fly. That is, when each virtual memory address
vaddrp in step i is serviced, we choose m := f (vaddrp) uniformly and independently
at random. Thus, in step i of the execution, there are P distinct virtual addresses (i.e.,
balls) to be thrown into M memory banks (i.e., bins). For P ∈ ω(M log N), we have
expected load P/M ∈ ω(log N) and so the probability that there exists a bin i ∈ M
whose load, loadi , exceeds 2(P/M) is

Pr[loadi > 2(P/M) for some i ∈ [M]] ≤
∑

i∈M
Pr[loadi > 2(P/M)]

=
∑

i∈M
Pr[loadi > (1 + 1)(1/M · P)]

≤ M · exp
(

− P

3M

)

(4.1)

≤ M · N−ω(1) (4.2)

= negl(N)

= negl(λ), (4.3)

where (4.1) follows due to standard multiplicative Chernoff bounds and (4.2) follows
since P/M = ω(log N). �

We note that in order for the above argument to hold, the input x cannot be chosen
adaptively, and must be fixed before the PRAM emulation begins.

Oblivious Network RAM and Leveraging Parallelism 961

Access {opp, vaddrp,wdatap, p}p∈P :

/* The HTable and queue data structures are stored in a scratch bank. Each entry of the hash table
HTable[opp, vaddrp] consists of a 3-element array with indeces {0, 1, 2}. For obliviousness, operations on
these data structures must be padded to the worst-case cost as we elaborate in the text.*/

1: for p = 1 to P : HTable[opp, vaddrp] := (wdatap, ⊥, p) // hash table insertions;
2: for {(op, vaddr),wdata, p} ∈ HTable do // iterate through hash table
3: m := (PRFK(vaddr) mod M) + 1
4: queue[m] := queue[m].push(op, vaddr,wdata);
5: end for
6: for m = 1 to M do
7: if |queue[m]| > max then abort
8: Pad queue[m] with dummy entries (⊥, ⊥, ⊥) so that its size is max;
9: for i = 1 to max do

10: (op, vaddr,wdata, p) := queue[m].pop()
11: rdata := ReadBank(m, vaddr)
12: if op = read then wdata := rdata
13: WriteBank(m, vaddr,wdata)
14: HTable[op, vaddr] := (wdata, rdata, p) // hash table updates
15: end for
16: end for
17: return (HTable[op1, vaddr1][1], . . . ,HTable[opP , vaddrP][1]) // hash table lookups

Fig. 5. Obliviously serving a batch of P memory request, not necessarily with distinct virtual addresses. The
current description allows for the underlying PRAM to be EREW, CREW, common/arbitrary/priority CRCW,
where we assume priority CRCW gives priority to maximum processor id p (priority for minimum processor
id can be supported by iterating from p = P to 1 in line 1).

4.2. Parallel RAM to Oblivious NRAM

Use a Hash Table to Suppress Duplicates In Sect. 4.1, we describe how to obliviously
simulate a restricted parallel RAM in the NRAM model. We now generalize this result
to support any P-parallel RAM, not necessarily restricted ones. The difference is that for
a generic P-parallel RAM, each batch of P memory operations generated by the next-
instruction circuit neednot havedistinct virtual addresses. For simplicity, imagine that the
entire batch of memory operations are reads. In the extreme case, if all P ∈ ω(M log N)

operations correspond to the same virtual address residing in bank m, then the CPU
should not read bank m as many as P number of times. To address this issue, we rely on
an additional Cuckoo hash table [38] denotedHTable to suppress the duplicate requests
(see Fig. 5, and the doNext function is defined the same way as Sect. 4.1).
The HTable will be stored in the scratch bank. For simplicity of presentation, we

employ a fully deamortized Cuckoo hash table [21,22].3 As shown in Fig. 5, we need to
support hash table insertions, lookups, andmoreover,we need to be able to iterate through
the hash table. We now make a few remarks important for ensuring obliviousness. Line
1 of Fig. 5 performs P ∈ ω(M log N) number of insertions into the Cuckoo hash table.
Due to the analysis of [21,22], we know that these insertions will take O(P) number

3Our setting does not require all properties of a fully deamortized Cuckoo hash table. First, we require
only static hashing and second, since we execute all insertions/lookups in batches of size P , we require only
that any batch of P insertions/lookups (for an arbitrary set of keys that may include duplicates), takes time
O(P) with all but negligible probability.

962 D. Dachman-Soled et al.

of accesses with all but negligible probability. Therefore, to execute Line 1 obliviously,
we simply need to pad with dummy memory accesses to the scratch bank up to some
max′ = c · P , for an appropriate constant c.

Next, we describe how to execute the loop at Line 2 obliviously. The total size of
the Cuckoo hash table is O(P). To iterate over the hash table, we simply make a linear
scan through the hash table. Some entries will correspond to dummy elements. When
iterating over these dummy elements, we simply perform dummy operations for the for
loop. Finally, observe that Line 17 performs a batch of P lookups to the Cuckoo hash
table. Again, due to the analysis of [21,22], we know that these lookups will take O(P)

number of accesses to the scratch bank with all but negligible probability.

Cost Analysis Sincemax = 2(P/M) (see Theorem 4), it is not hard to see each batch of
P = ω(M log N) memory operations will incur O(P) accesses to data banks in total,
and O(P) accesses to the scratch bank. Note that this takes into account the fact that
Line 1 and the for-loop starting at Line 2 are padded with dummy accesses. Therefore,
the ONRAM incurs only a constant factor more total work and bandwidth than the
underlying PRAM.

Theorem 5. Let max = 2(P/M). Assume that PRF is a secure pseudorandom func-
tion, and PRAM is a P-Parallel RAM for P := P(λ) ∈ ω(M log N). Then, the above
construction obliviously simulatesPRAM in the NRAMmodel, incurring only a constant
factor blowup in total work and bandwidth consumption.

Proof. (Sketch) Similar to the proof of Theorem 4, except that now we have the addi-
tional hash table. Note that obliviousness still holds, since, as discussed above, each
batch of P memory requests requires O(P) accesses to the scratch bank, and this can
be padded with dummy accesses to ensure the number of scratch bank accesses remains
the same in each execution. �

5. Parallel Oblivious Simulation of Parallel Programs

In the previous section, we considered sequential oblivious simulation of programs that
exhibit parallelism—there, we considered parallelism as being a property of the program
which will actually be executed on a sequential machine. In this section, we consider
parallel and oblivious simulations of parallel programs. Here, the programs will actually
be executed on a parallel machine, and we consider classical metrics such as parallel
runtime and total work as in the parallel algorithms literature.
We introduce the Network PRAM model—informally, this is a network RAM with

parallel processing capability (see Sect. 2.6 for the formal definitions). Our goal in this
section will be to compile a PRAM into an oblivious network PRAM (O-NPRAM),
a.k.a., the “parallel-to-parallel compiler”.
Our O-NPRAM is the network RAM analog of the oblivious parallel RAM (OPRAM)

model by Boyle et al. [7] (see Sect. 2.6 for the formal definitions). Goldreich and Ostro-
vsky’s logarithmic ORAM lower bound (in the sequential execution model) directly
implies the following lower bound for standard OPRAM [7]: Let PRAM be an arbitrary
PRAMwith P processors running in parallel time t . Then, any P-parallel OPRAM sim-

Oblivious Network RAM and Leveraging Parallelism 963

ulating PRAM must incur �(t log N) parallel time. Clearly, OPRAM would also work
in our network RAMmodel albeit not the most efficient, since it is not exploiting the fact
that the addresses in each bank are inherently oblivious. In this section, we show how to
perform oblivious parallel simulation of “sufficiently parallel” programs in the network
RAM model, incurring only O(log∗ N) blowup in parallel runtime, and achieving opti-
mal total work. Our techniques make use of fascinating results in the parallel algorithms
literature [4,5,27].

5.1. Construction of Oblivious Network PRAM

Preliminary: Colored CompactionThe colored compaction problem [4] is the following:

Given n objects ofm different colors, initially placed in a single source array, move
the objects to m different destination arrays, one for each color. In this paper, we
assume that the space for the m destination arrays are preallocated. We use the
notation di to denote the number of objects colored i for i ∈ [m].

Lemma 3. (Log∗-time parallel algorithm for colored compaction [4]) There is a con-
stant ε > 0 such that for all given n,m, τ, d1, . . . , dm ∈ N, with m ∈ O(n1−δ) for
arbitrary fixed δ > 0, and τ ≥ log∗ n, there exists a parallel algorithm (in the arbitrary
CRCW PRAM model) for the colored compaction problem (assuming preallocated des-
tination arrays) with n objects, m colors, and d1, . . . , dm number of objects for each
color, executing in O(τ) time on �n/τ
 processors, consuming O(n+∑m

i=1 di) = O(n)

space, and succeeding with probability at least 1 − 2−nε
.

Preliminary: Parallel Static Hashing We will also rely on a parallel, static hashing
algorithm [5,27], by Bast and Hagerup. The static parallel hashing problem takes n
elements (possibly with duplicates), and in parallel creates a hash table of size O(n) of
these elements, such that later each element can be visited in O(1) time. In our setting,
we rely on the parallel hashing to suppress duplicatememory requests. Bast andHagerup
show the following lemma:

Lemma 4. (Log∗-time parallel static hashing [5,27]) There is a constant ε > 0 such
that for all τ ≥ log∗ n, there is a parallel, static hashing algorithm (in the arbitrary
CRCW PRAM model), such that hashing n elements (which need not be distinct) can be
done in O(τ) parallel time, with O(n/τ) processors and O(n) space, succeeding with

1 − 2−(log n)τ/ log∗ n − 2−nε
probability.

Construction We now present a construction that allows us to compile a P-parallel
PRAM,where P = M1+δ for any constant δ > 0, into aO(P/ log∗ P)-parallel oblivious
NPRAM. The resulting NPRAM has O(log∗ P) blowup in parallel runtime, and is
optimal in total amount of work.
In the original P-parallel PRAM, each of the P processors does constant amount of

work in each step. In the oblivious simulation, this can trivially be simulated inO(log∗ P)

timewithO(P/ log∗ P) processors. Therefore, clearly the key is how to obliviously fetch
a batch of P memory accesses in parallel with O(P/ log∗ P) processors, and O(log∗ P)

964 D. Dachman-Soled et al.

parAccess {opp, vaddrp,wdatap}p∈P :

/* All steps can be executed in O(log∗ P) time with P = O(P/ log∗ P) processors with all but negligible
probability.*/

1: Using the scratch bank as memory, run the parallel hashing algorithm in time O(τ) ∈
O(log∗ P), where τ := 2 log∗ P on the batch of P = M1+δ memory requests to suppress dupli-
cate addresses. Denote the resulting set as S, and pad S with dummy requests to the maximum
length P . This part fails with at most negligible probability (probability 2−(logP)2 + 2−P).

2: In parallel, assign colors to each memory request in the array S. For each real memory access
{op, vaddr,wdata}, its color is defined as (PRFK(vaddr) mod M) + 1. Each dummy memory
access is assigned a random color. It is not hard to see that each color has no more than
max := 2(P/M) requests except with negligible probability (probability M · exp(− P

3M) =
M · exp(−M δ/3)).

3: Using the scratch bank as memory, run the parallel colored compaction algorithm to assign
the array S to M preallocated queues each of size max (residing in the scratch bank). The
algorithm fails with negligible probability (probability 2−P).

4: Now, each queue i ∈ [M] contains max number of requests intended for bank i – some real,
some dummy. Serve all memory requests in the M queues in parallel. Each processor i ∈ [P]
is assigned the k-th memory request iff (k mod P) = i. Dummy requests incur accesses to
the corresponding banks as well.
For each request coming from processor p, the result of the fetch is stored in an array result[p]
in the scratch bank.

Fig. 6. Obliviously serving a batch of P memory requests using P ′ := O(P/ log∗ P) processors in O(log∗ P)

time. In Steps 1, 2, and 3, each processor will make exactly one access to the scratch bank in each parallel
execution step—even if the processor is idle in this step, it makes a dummy access to the scratch bank. Steps
1 through 3 are always padded to the worst-case parallel runtime.

time. We describe such an algorithm in Fig. 6. Using a scratch bank as working memory,
we first call the parallel hashing algorithm to suppress duplicate memory requests. Next,
we call the parallel colored compaction algorithm to assign memory request to their
respective queues—depending on the destination memory bank. Finally, we make these
memory accesses, including dummy ones, in parallel.

Theorem 6. Let PRF be a secure pseudorandom function, let M = N ε for any con-
stant ε > 0 and recall that N := N (λ) and N ≥ λ. Let PRAM be a P-parallel RAM
for P = M1+δ , for constant δ > 0. Then, there exists an oblivious NPRAM simulation
of PRAM with the following properties:

• The oblivious NPRAM consumes M banks each of which O(N/M + P) words in
size.

• If the underlying PRAM executes in t parallel steps, then the oblivious NPRAM
executes in O(t log∗ P) parallel steps utilizing O(P/ log∗ P) processors. We also
say that the NPRAM has O(log∗ P) blowup in parallel runtime.

• The total work of the oblivious NPRAM is asymptotically the same as the underlying
PRAM.

Proof. We note that our underlying PRAM can be in the EREW, CREW, common
CRCW or arbitrary CRCWmodels. Our compiled oblivious NPRAM is in the arbitrary
CRCW model.
We now prove security and costs separately.

Oblivious Network RAM and Leveraging Parallelism 965

Security Proof Observe that Steps 1, 2, and 3 in Fig. 6 make accesses only to the scratch
bank.Wemake sure that each processor will make exactly one access to the scratch bank
in every parallel step—even if the processor is idle in this step, it makes a dummy access.
Further, Steps 1 through 3 are also padded to the worst-case running time. Therefore,
the observable memory traces of Steps 1 through 3 are perfectly simulatable without
knowing secret inputs.
For Step 4 of the algorithm, since each of the M queues are of fixed lengthmax, and

each element is assigned to each processor in a round-robin manner, the bank number
eachprocessorwill access is clearly independent of any secret inputs, and canbe perfectly
simulated (recall that dummy request incur accesses to the corresponding banks as well).
Costs First, due to Lemma 2, each of the M queues will get at most 2(P/M) memory
requests with probability 1− negl(N). This part of the argument is the same as Sect. 4.
Now, observe that the parallel runtime for Steps 2 and 4 are clearly O(log∗ P) with
O(P/ log∗ P) processors. Based on Lemmas 4 and 3, Steps 1 and 3 can be executed
with a worst-case time of O(log∗ P) on O(P/ log∗ P) processors as well. We note that
the conditions M = N ε and P = M1+δ ensure negl(N) = negl(λ) failure probability.
Specifically, the failure probability will be O(2−(log P)2 + 2−Pε + M · exp(− P

3M)). �

6. Analysis of Deamortized Cuckoo Hash Table

In this section, we first describe the Cuckoo hash table of Arbitman et al. [2] and our
modification of its parameters. Throughout this section, we follow [2] nearly verbatim.
We describe the data structure of Arbitman et al. [2] in terms of a parameter g(N). In
the construction/proof of Arbitman et al. [2], the parameter g(N) was set to be some
function in O(log N). In contrast, in our construction/proof, we choose g(N) to be any
function g(N) ∈ ω(log N).
The data structure uses two tables T0 and T1, and two auxiliary data structures: a queue,

and a cycle-detection mechanism. Each table consists of r = (1 + ε)n entries for some
small constant ε > 0. Elements are inserted into the tables using two hash functions
h0, h1 : U → 0, . . . , r − 1, which are independently chosen at the initialization phase.
We assume that the auxiliary data structures satisfy the following properties:

1. The queue is constructed to store g(N), number of elements at any point in
time. The queue of Arbitman et al. [2] was required to support the operations
Lookup, Delete, PushBack, PushFront, and PopFront in worst-case O(1) time
(with 1 − 1/ poly(N) probability over the randomness of its initialization phase).
In our case, we require that the queue support the operations Lookup, Delete, Push-
Back, PushFront, and PopFront in worst-case ̂O(1) time (with all but negligible
probability over the randomness of its initialization phase).

2. The cycle-detection mechanism is constructed to store g(N), elements at any point
in time. The cycle-detection mechanism of Arbitman et al. [2] was required to
support the operations Lookup, Insert and Reset in worst-case O(1) time (with
1 − 1/N probability over the randomness of its initialization phase). In our case,
we require that the cycle-detection mechanism support the operations Lookup,

966 D. Dachman-Soled et al.

Insert and Reset in worst-case ̂O(1) time (with all but negligible probability over
the randomness of its initialization phase).

An element x ∈ U can be stored in exactly one out of three possible places: entry h0(x)
of table T0, entry h1(x)of table T1, or the queue. The lookupprocedure is straightforward:
when given an element x ∈ U , query the two tables and if needed, perform lookups in the
queue. The deletion procedure is also straightforward by first searching for the element,
and then deleting it. Our insertion procedure is parametrized by a value L = L(N), for
any L(N) ∈ ω(1), and is defined as follows. Given a new element x ∈ U , we place the
pair (x, 0) at the back of the queue (the additional bit 0 indicates that the element should
be inserted to table T0). Then, we take the pair at the head of the queue, denoted (y, b),
and place y in entry Tb[hb(y)]. If this entry is not occupied, we again take the pair that
is currently stored at the head of the queue, and repeat the same process. If the entry
Tb[hb(y)] is occupied, however, we place its previous occupant z in entry T1−b[h1−b(z)]
and so on, as in the above description of cuckoo hashing. After L elements have been
moved, we place the current nestless element at the head of the queue, together with a
bit indicating the next table to which it should be inserted, and terminate the insertion
procedure.
We next restate Theorem 1:

Theorem 7. (Deamortized Cuckoo hash table: negligible failure probability version)
For any g(N) ∈ ω(log N), there is an implementation of the above deamortized Cuckoo
hash table of capacity s such that with probability 1 − negl(N) = 1 − negl(λ), each
insertion, deletion, and lookup operation is performed in worst-case ̂O(1) time (not
counting the cost of operating on the queue)—as long as at any point in time at most
s elements are stored in the data structure. The above deamortized Cuckoo hash table
consumes O(s) + O(N δ) space where 0 < δ < 1 is a constant.

In the following, we describe the instantiation of the auxiliary data structures of
Arbitman et al. [2] in terms of a parameter g(N). In the construction/proof of Arbitman
et al. [2], the parameter g(N) was set to be some function in O(log N). In contrast, in
our construction/proof we choose g(N) to be any function g(N) ∈ ω(log N).

The QueueWewill argue that with overwhelming probability the queue contains at most
g(N) elements at any point in time. Therefore, we design the queue to store at most g(N)

elements, and allow the whole data structure to fail if the queue overflows. Although
a classical queue can support the operations PushBack, PushHead, and PopFront in
constant time, we also need to support the operations Lookup and Delete in k(N) time,
for any k(N) ∈ ω(1) (In Arbitman et al. [2], they required k(N) ∈ O(1)). One possible
instantiation is to use k := k(N) arrays A1, . . . , Ak each of size N δ , for some δ < 1.
Each entry of these arrays consists of a data element, a pointer to the previous element
in the queue, and a pointer to the next element in the queue. In addition, we maintain
two global pointers: the first points to the head of the queue, and the second points
to the end of the queue. The elements are stored using a function h chosen from a
collection of pairwise independent hash functions. Specifically, each element x is stored
in the first available entry among {A1[h(1, x)], . . . , Ak[h(k, x)]}. For any element x ,
the probability that all of its k possible entries are occupied when the queue contains at

Oblivious Network RAM and Leveraging Parallelism 967

most g(N) elements is upper bounded by (g(N)/N δ)k , which can be made negligible
by choosing an appropriate k (in Arbitman et al. [2], this quantity could be made as small
as 1/ poly(N) through appropriate choice of k).

The Cycle-Detection Mechanism As in the case of the queue, we will argue that with
all but negligible probability the cycle-detection mechanism contains at most g(N),
elements at any point in time (in Arbitman et al. [2] this probability was 1−1/ poly(N)).
Therefore, we design the cycle-detectionmechanism to store at most g(N) elements, and
allow the whole data structure to fail if the cycle-detection mechanism overflows. One
possible instantiation is to use the above-mentioned instantiation of the queue together
with any standard augmentation that enables constant time resets.
Note that in our case of negligible failure probability, the size of the queue and the

cycle-detection mechanism are both bounded by g(N) = ̂O(log N), instead of being
bounded by log N as in [2]. It is not hard to see that as long as the auxiliary data
structures do not fail or overflow, all operations are performed in time ̂O(1). Thus, our
goal is to prove that with 1− negl(N) = 1− negl(λ) probability, the data structures do
not overflow.
We continue with the following definition, which will be useful for the efficiency

analysis.

Definition 7. Given a set S ⊆ U and two hash functions h0, h1 : U → {0, . . . , r − 1},
the cuckoo graph is the bipartite graph G = (L , R, E), where L = R = {0, . . . , r − 1}
and E = {(h0(x), h1(x)) : x ∈ S}.

For an element x ∈ U wedenote byCS,h0,h1(x) the connected component that contains
the edge (h0(x), h1(x)) in the cuckoo graph of the set S ⊆ U with functions h0 and h1.
Similarly to [2], in order to prove Theorem 7, we require the following lemma:

Lemma 5. For T = f (N), where f (N) = ω(log N), and f (N) = o(log N log log N),
and c2 = ω(1), we have that for any set S ⊆ U of size N and for any x1, . . . , xT ∈ S it
holds that

Pr

[

T
∑

i=1

∣

∣CS,h0,h1(xi)
∣

∣ ≥ c2T

]

≤ negl(N) = negl(λ),

where the probability is taken over the random choice of the functions h0, h1 : U →
{0, . . . , r − 1}, for r = (1 + ε)n.

The proof of Lemma 5 will be discussed in Sect. 6.1.
Denote by E1 the event in which for every 1 ≤ j ≤ N/ f (N), where f (N) =

ω(log N), and f (N) = o(log N log log N), it holds that

f (N)
∑

i=1

∣

∣CS,h0,h1(x(j−1) log(N)+i)
∣

∣ ≤ c2 f (N).

968 D. Dachman-Soled et al.

ByusingLemma5and applying aunionbound,wehave thatE1 occurswith probability
1 − negl(N).

We denote by stash(S j , h0, h1) the number of stashed elements in the cuckoo graph
of S j with hash functions h0 and h1. Denote by E2 the event in which for every 1 ≤ j ≤
N/ f (N), it holds that stash(S j , h0, h1) ≤ k. A lemma of Kirsch et al. [28] implies that
for k = ω(1), the probability of the event E2 is at least 1 − negl(N) = 1 − negl(λ).
The following lemmas prove Theorem 7:

Lemma 6. Let π be a sequence of p(N) operations. Assuming that the events E1 and
E2 occur, then during the execution ofπ the queue does not contain more than 2 f (N)+k
elements at any point in time.

Lemma 7. Let π be a sequence of p(N) operations. Assuming that the events E1 and
E2 occur, then during the execution of π the cycle-detection mechanism does not contain
more than (c2 + 1) f (N) elements at any point in time.

The proofs of Lemmas 6 and 7 follow exactly as in [2], except the log N parameter
from [2] is replaced with f (N) in our proof and L (the time required per cuckoo hash
operation) is finally set to L(N) := c2(N)(k(N) + 1) (so choosing L(N) = g(N)

for any g(N) = ω(1), we can find appropriate settings of c2(N), k(N) such that both
c2(N), k(N) ∈ ω(1) and L(N) = c2(N)(k(N) + 1)).

6.1. Proving Lemma 5

As in [2], Lemma 5 is proved via Lemmas 8 and 9 below. Given these, the proof of
Lemma 5 follows identically to the proof in [2].
LetG(N , N , p) denote the distribution on bipartite graphs G = ([N], [N], E) where

each edge is independently chosen with probability p. Given a graph G and a vertex v

we denote by CG(v) the connected component of v in G.

Lemma 8. Let Np = c for some constant 0 < c < 1. For T = f (N), where f (N) =
ω(log N), and f (N) = o(log N log log N), and c2 = ω(1), we have that for any vertices
v1, . . . , vT ∈ L ∪ R

Pr

[

T
∑

i=1

|CG(vi)| ≥ c2T

]

≤ negl(N),

where the graph G = (L , R, E) is sampled from G(N , N , p).

We first consider a slightly weaker claim that bounds the size of the union of several
connected components:

Lemma 9. Let Np = c for some constant 0 < c < 1. For T = f (N), where f (N) =
ω(log N), and f (N) = o(log N log log N), and c′

2 = O(1), we have that for any
vertices v1, . . . , vT ∈ L ∪ R

Oblivious Network RAM and Leveraging Parallelism 969

Pr

[∣

∣

∣

∣

∣

T
⋃

i=1

CG(vi)

∣

∣

∣

∣

∣

≥ c′
2T

]

≤ negl(N),

where the graph G = (L , R, E) is sampled from G(N , N , p).

The proof of our Lemma 9 follows from Lemma 6.2 of [2]. Specifically, we observe
that their Lemma6.2works for any choice of T (even though in their statement of Lemma
6.2, they require T ≤ log N . In particular, their Lemma 6.2 works for T = f (N).
Next, the proof of our Lemma 8 can be obtained via a slight modification of the proof

of Lemma 6.1 of [2]. Specifically, in their proof, they choose a constant c3 and show
that

Pr

[

T
∑

i=1

|CG(vi)| ≥ c′
2c3T

]

≤ Pr

[∣

∣

∣

∣

∣

T
⋃

i=1

CG(vi)

∣

∣

∣

∣

∣

≥ c′
2T

]

+ (c′
2e)

c3 · T 2c3+1

cc33 · nc3 .

By instead setting c3 = ω(1), and using Lemma 9 to upper-bound Pr
[∣

∣

∣

⋃T
i=1 CG(vi)

∣

∣

∣ ≥
c′
2T

]

, we have that

Pr

[

T
∑

i=1

|CG(vi)| ≥ c′
2c3T

]

≤ negl(N),

since we choose f (N) = o(log N log log N). Again, note that setting c2 := c2(N) ∈
ω(1), we can find appropriate c′

2 := c′
2(N), c3 := c3(N) such that c3 = ω(1), c′

2 =
O(1) and c2 = c′

2c3.
To get from Lemmas 8 to 5, we can go through the exact same arguments as [2]

to show that G(N , N , p) is a good approximation of the Cuckoo graph distribution
for an appropriate choice of p. Note that in our case of negligible failure probability,
the size of the queue is bounded by 2 f (N) + k(N) elements and the cycle-detection
mechanism is bounded by (c2 + 1) f (N). Thus, again, by setting g(N) ∈ ω(log n), we
can find appropriate f (N) ∈ ω(log n) and k(N) ∈ ω(1), that satisfy the restrictions on
f (N), k(N) required in the exposition above.

7. Conclusion

We define a new model for oblivious execution of programs, where an adversary can-
not observe the memory offset within each memory bank, but can observe the patterns
of communication between the CPU(s) and the memory banks. Under this model, we
demonstrate novel sequential and parallel algorithms that exploit the “free oblivious-
ness” within each bank, and asymptotically lower the cost of oblivious data accesses in
comparison with the traditional ORAM [20] and OPRAM [7]. In the process, we pro-
pose novel algorithmic techniques that “leverage parallelism for obliviousness”. These
techniques have not been used in the standard ORAM or OPRAM line of work, and
demonstrate interesting connections to the fundamental parallel algorithms literature.

970 D. Dachman-Soled et al.

Acknowledgements

We thank SriniDevadas, LingRen, Christopher Fletcher, andMarten vanDijk for helpful
discussions. The first author is supported in part by an NSF CAREER Award #CNS-
1453045, by a research partnership award from Cisco and by financial assistance award
70NANB15H328 from the U.S. Department of Commerce, National Institute of Stan-
dards and Technology. The third author is supported in part by NSFGrants #CNS-15142
61 and #CNS-1652259. The fourth author is supported in part by NSF Grants #CNS-
1314857, #CNS-1514261, #CNS-1544613, #CNS-1561209, #CNS-1601879, #CNS-
1617676, an Office of Naval Research Young Investigator Program Award, a Packard
Fellowship, a DARPA Safeware Grant (subcontractor under IBM), a Sloan Fellowship,
Google Faculty Research Awards, a Google Ph.D. Fellowship Award, a Baidu Research
Award, and a VMware Research Award. The fifth author is supported in party by NSF
Grant #CNS-1161857.

References

[1] N. Alon, O. Goldreich, Y. Mansour. Almost k-wise independence versus k-wise independence. Inf.
Process. Lett.88(3), 107–110 (2003)

[2] Y. Arbitman, M. Naor, G. Segev. De-amortized cuckoo hashing: provable worst-case performance and
experimental results, inAutomata, Languages and Programming, 36th International Colloquium, ICALP
2009, Rhodes, Greece, July 5–12, 2009, Proceedings, Part I (2009), pp. 107–118

[3] S. Bajaj, R. Sion. Trusteddb: a trusted hardware-based database with privacy and data confidentiality.
IEEE Trans. Knowl. Data Eng.26(3), 752–765 (2014)

[4] H. Bast, T. Hagerup. Fast parallel space allocation, estimation, and integer sorting. Inf. Comput.123(1),
72–110 (1995)

[5] H. Bast, T. Hagerup. Fast and reliable parallel hashing, in SPAA (1991), pp. 50–61
[6] D. Boneh, D. Mazieres, R.A. Popa. Remote oblivious storage: making oblivious RAM practical (2011).

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
[7] E. Boyle, K.-M. Chung, R. Pass. Oblivious parallel ram. https://eprint.iacr.org/2014/594.pdf
[8] K.-M. Chung, Z. Liu, R. Pass. Statistically-secure oram with Õ(log2 n) overhead. CoRR.

arXiv:1307.3699 (2013)
[9] C.W. Fletcher, M. van Dijk, S. Devadas. A secure processor architecture for encrypted computation on

untrusted programs, in STC (2012)
[10] C.W. Fletcher, L. Ren, A. Kwon, M. Van Dijk, E. Stefanov, D.N. Serpanos, S. Devadas. A low-latency,

low-area hardware oblivious RAM controller, in 23rd IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2015, Vancouver, BC, Canada, May 2–6 (2015),
pp. 215–222. https://doi.org/10.1109/FCCM.2015.58

[11] C.W. Fletcher, L. Ren, A. Kwon,M. vanDijk, E. Stefanov, S. Devadas. RAWpath ORAM: a low-latency,
low-area hardware ORAM controller with integrity verification, in IACR Cryptology ePrint Archive, vol.
431 (2014)

[12] C.W. Fletcher, L. Ren, X. Yu, M. van Dijk, O. Khan, S. Devadas. Suppressing the oblivious RAM
timing channel while making information leakage and program efficiency trade-offs, in HPCA (2014),
pp. 213–224

[13] C. Gentry, K.A. Goldman, S. Halevi, C.S. Jutla, M. Raykova, D. Wichs. Optimizing ORAM and using
it efficiently for secure computation, in Privacy Enhancing Technologies Symposium (PETS) (2013)

[14] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, D. Wichs. Garbled ram revisited, in Advances
in Cryptology—EUROCRYPT 2014, vol. 8441 (2014), pp. 405–422

[15] C. Gentry, S. Halevi, M. Raykova, D. Wichs. Garbled ram revisited, part i. Cryptology ePrint Archive,
Report 2014/082, 2014. http://eprint.iacr.org/

http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-TR-2011-018.pdf
https://eprint.iacr.org/2014/594.pdf
http://arxiv.org/abs/1307.3699
https://doi.org/10.1109/FCCM.2015.58
http://eprint.iacr.org/

Oblivious Network RAM and Leveraging Parallelism 971

[16] C. Gentry, S. Halevi, M. Raykova, D. Wichs. Outsourcing private ram computation. IACR Cryptology
ePrint Archive, vol. 148 (2014)

[17] F. Ghanim, U. Vishkin, R. Barua. Easy PRAM-based high-performance parallel programming with ICE.
IEEE Trans. Parallel Distrib. Syst. 29(2), 377–390 (2018). https://doi.org/10.1109/TPDS.2017.2754376

[18] J. Gil, Y. Matias, U. Vishkin. Towards a theory of nearly constant time parallel algorithms, in 32nd
Annual Symposium on Foundations of Computer Science (FOCS) (1991), pp. 698–710

[19] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs, in ACM
Symposium on Theory of Computing (STOC) (1987)

[20] O. Goldreich, R. Ostrovsky. Software protection and simulation on oblivious RAMs. J. ACM43(3),
431–473 (1996)

[21] M.T. Goodrich, D.S. Hirschberg, M. Mitzenmacher, J. Thaler. Fully de-amortized cuckoo hashing for
cache-oblivious dictionaries and multimaps. CoRR. arXiv:1107.4378 (2011)

[22] M.T. Goodrich, D.S. Hirschberg, M. Mitzenmacher, J. Thaler. Cache-oblivious dictionaries and mul-
timaps with negligible failure probability, in G. Even, D. Rawitz, editors, Design and Analysis of
Algorithms—First Mediterranean Conference on Algorithms, MedAlg 2012, Kibbutz Ein Gedi, Israel,
December 3–5, 2012. Proceedings. LNCS, vol. 7659 (Springer, 2012), pp. 203–218

[23] M.T. Goodrich, M. Mitzenmacher. Privacy-preserving access of outsourced data via oblivious RAM
simulation, in ICALP (2011)

[24] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, R. Tamassia. Practical oblivious storage, in ACM
Conference on Data and Application Security and Privacy (CODASPY) (2012)

[25] M.T. Goodrich, M. Mitzenmacher, O. Ohrimenko, R. Tamassia. Privacy-preserving group data access
via stateless oblivious RAM simulation, in SODA (2012)

[26] S.D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, Y. Vahlis. Secure two-party
computation in sublinear (amortized) time, in ACM CCS (2012)

[27] T. Hagerup. The log-star revolution, in STACS 92, 9th Annual Symposium on Theoretical Aspects of
Computer Science, Cachan, France, February 13–15, 1992, Proceedings (1992), pp. 259–278

[28] A. Kirsch, M. Mitzenmacher, U. Wieder. More robust hashing: cuckoo hashing with a stash, in
Algorithms—ESA 2008, 16th Annual European Symposium, Karlsruhe, Germany, September 15–17,
2008. Proceedings (2008), pp. 611–622.

[29] E.Kushilevitz, S. Lu,R.Ostrovsky.On the (in)security of hash-based obliviousRAMand anewbalancing
scheme, in SODA (2012)

[30] C. Liu, Y. Huang, E. Shi, J. Katz, M. Hicks. Automating efficient ram-model secure computation, in
IEEE S & P (IEEE Computer Society, 2014)

[31] S. Lu, R. Ostrovsky. Distributed oblivious RAM for secure two-party computation, in Theory of Cryp-
tography Conference (TCC) (2013)

[32] S. Lu, R. Ostrovsky. How to garble ram programs, in EUROCRYPT (2013), pp. 719–734
[33] S. Lu, R. Ostrovsky. Garbled ram revisited, part ii. Cryptology ePrint Archive, Report 2014/083, 2014.

http://eprint.iacr.org/
[34] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, D. Song. Phantom:

practical oblivious computation in a secure processor, in CCS (2013)
[35] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz, D. Song. A high-

performance oblivious RAM controller on the convey hc-2ex heterogeneous computing platform, in
Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL) (2013)

[36] R. Meka, O. Reingold, G.N. Rothblum, R.D. Rothblum. Fast pseudorandomness for independence and
load balancing—(extended abstract), in Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8–11, 2014, Proceedings, Part I (2014), pp.
859–870

[37] R. Ostrovsky, V. Shoup. Private information storage (extended abstract), in ACM Symposium on Theory
of Computing (STOC) (1997)

[38] R. Pagh, F.F. Rodler. Cuckoo hashing. J. Algorithms51(2), 122–144 (2004)
[39] L. Ren, X. Yu, C.W. Fletcher, M. van Dijk, S. Devadas. Design space exploration and optimization of

path oblivious RAM in secure processors, in ISCA (2013), pp. 571–582
[40] J.P. Schmidt, A. Siegel, A. Srinivasan. Chernoff-hoeffding bounds for applications with limited inde-

pendence. SIAM J. Discrete Math.8(2), 223–250 (1995)

https://doi.org/10.1109/TPDS.2017.2754376
http://arxiv.org/abs/1107.4378
http://eprint.iacr.org/

972 D. Dachman-Soled et al.

[41] E. Shi, T.-H. Hubert Chan, E. Stefanov, M. Li. Oblivious RAM with O((log N)3) worst-case cost, in
ASIACRYPT (2011)

[42] E. Stefanov, E. Shi. Oblivistore: high performance oblivious cloud storage, in IEEE Symposium on
Security and Privacy (S & P) (2013)

[43] E. Stefanov, E. Shi, D. Song. Towards practical oblivious RAM, in NDSS (2012)
[44] E. Stefanov, M. van Dijk, E. Shi, T.-H.H. Chan, C. Fletcher, L. Ren, X. Yu, S. Devadas. Path ORAM:

an extremely simple oblivious ram protocol, in ACM CCS (2013)
[45] U. Vishkin. Can parallel algorithms enhance seriel implementation?Commun. ACM39(9), 88–91 (1996)
[46] U. Vishkin. Using simple abstraction to reinvent computing for parallelism.Commun. ACM54(1), 75–85

(2011)
[47] X.S.Wang, T.-H.H. Chan, E. Shi. Circuit ORAM: on tightness of the Goldreich–Ostrovksy lower bound.

http://eprint.iacr.org/2014/672.pdf
[48] X.S. Wang, Y. Huang, T.-H.H. Chan, A. Shelat, E. Shi. Scoram: oblivious ram for secure computation.

http://eprint.iacr.org/2014/671.pdf
[49] P.Williams, R. Sion. Usable PIR, inNetwork andDistributed System Security Symposium (NDSS) (2008)
[50] P. Williams, R. Sion. SR-ORAM: single round-trip oblivious ram, in ACMConference on Computer and

Communications Security (CCS) (2012)
[51] P. Williams, R. Sion, B. Carbunar. Building castles out of mud: Practical access pattern privacy and

correctness on untrusted storage, in CCS (2008)
[52] P. Williams, R. Sion, A. Tomescu. PrivateFS: A parallel oblivious file system, in CCS (2012)
[53] X. Yu, S.K. Haider, L. Ren, C.W. Fletcher, A. Kwon, M. van Dijk, S. Devadas. Program: dynamic

prefetcher for oblivious RAM, inProceedings of the 42nd Annual International Symposium onComputer
Architecture, Portland, OR, USA, June 13–17, 2015 (2015), pp. 616–628

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://eprint.iacr.org/2014/672.pdf
http://eprint.iacr.org/2014/671.pdf

	Oblivious Network RAM and Leveraging Parallelism to Achieve Obliviousness
	1. Introduction
	1.1. Distributed Storage with a Network Adversary
	1.2. Background: The PRAM Model
	1.3. Results and Contributions
	1.4. Technical Highlights
	1.5. Related Work

	2. Definitions
	2.1. Background: Random Access Machines (RAM)
	2.2. Parallel RAM
	2.3. Network RAM (NRAM)
	2.4. Oblivious Network RAM (O-NRAM)
	2.5. Notion of Simulation
	2.6. Network PRAM (NPRAM) Definitions

	3. Sequential Oblivious Simulation
	3.1. First Attempt: Oblivious NRAM with O(M) CPU Cache
	3.2. Achieving O(1) Words of CPU Cache

	4. Sequential Oblivious Simulation of Parallel Programs
	4.1. Warmup: Restricted Parallel RAM to Oblivious NRAM
	4.2. Parallel RAM to Oblivious NRAM

	5. Parallel Oblivious Simulation of Parallel Programs
	5.1. Construction of Oblivious Network PRAM

	6. Analysis of Deamortized Cuckoo Hash Table
	6.1. Proving Lemma 5

	7. Conclusion
	Acknowledgements
	References

