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Abstract. The Schnorr signature scheme is the most efficient signature scheme based
on the discrete logarithm problem and a long line of research investigates the existence
of a tight security reduction for this scheme in the random oracle model. Almost all
recent works present lower tightness bounds and most recently Seurin (EUROCRYPT
2012) showed that under certain assumptions the non-tight security proof for Schnorr
signatures in the random oracle by Pointcheval and Stern (EUROCRYPT’96) is es-
sentially optimal. All previous works in this direction rule out tight reductions from
the (one-more) discrete logarithm problem. In this paper, we introduce a new meta-
reduction technique, which shows lower bounds for the large and very natural class of
generic reductions. A generic reduction is independent of a particular representation of
group elements. Most reductions in state-of-the-art security proofs have this property. It
is desirable, because then the reduction applies generically to any concrete instantiation
of the group. Our approach shows unconditionally that there is no tight generic reduc-
tion from any natural non-interactive computational problem � defined over algebraic
groups to breaking Schnorr signatures, unless solving � is easy. In an additional appli-
cation of the new meta-reduction technique, we also unconditionally rule out any (even
non-tight) generic reduction from natural non-interactive computational problems de-
fined over algebraic groups to breaking Schnorr signatures in the non-programmable
random oracle model.
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1. Motivation

The security of a cryptosystem is nowadays usually confirmed by giving a security
proof. Typically, such a proof describes a reduction from some (assumed-to-be-)hard
computational problem to breaking a defined security property of the cryptosystem. A
reduction is considered as tight, if the reduction solving the hard computational prob-
lem has essentially the same running time and success probability as the attacker on
the cryptosystem. Essentially, a tight reduction means that a successful attacker can be
turned into an efficient algorithm for the hard computational problemwithout any signif-
icant increase in the running time and/or significant loss in the success probability.1 The
tightness of a reduction thus determines the strength of the security guarantees provided
by the security proof: A non-tight reduction gives weaker security guarantees than a
tight one. Moreover, tightness of the reduction affects the efficiency of the cryptosystem
when instantiated in practice: A tighter reduction allows to securely use smaller param-
eters (shorter moduli, a smaller group size, etc.). Therefore, it is very desirable for a
cryptosystem to have a tight security reduction.
In the domain of digital signatures, tight reductions are known for many fundamental

schemes, such as Rabin/Williams signatures [5], many strong-RSA-based signatures
[28], and RSA Full-Domain Hash [20]. For Schnorr signatures [29,30], however, the
story is a bit different. Schnorr’s scheme is one of the most fundamental public-key
cryptosystems and Pointcheval and Stern have shown that it is provably secure, assuming
the hardness of the discrete logarithm (DL) problem [25] in the random oracle model
(ROM) [3]. However, the reduction in Pointcheval and Stern from the discrete logarithm
problem to breaking Schnorr signatures is not tight: It loses a factor of q in the time-
to-success ratio, where q is the number of random oracle queries performed by the
forger.
This has lead to a long line of research investigating the existence of tighter security

proofs for Schnorr signatures. At Asiacrypt 2005 Paillier and Vergnaud [24] gave a first
lower bound showing that any algebraic reduction (even in the ROM) converting a forger
for Schnorr signatures into an algorithm solving the discrete logarithm problem must
lose a factor of at least q1/2. Their result is quite strong, as they rule out reductions
even for adversaries that do not have access to a signing oracle and receive as input the
message for which they must forge (UUF-NMA, see Sect. 3.1 for a formal definition).
However, their result also has some limitations: It holds only under the interactive one-
more discrete logarithm assumption, they only consider algebraic reductions, and they
only rule out tight reductions from the (one-more) discrete logarithm problem. At Crypto
2008 Garg et al. [18] refined this result, by improving the bound from q1/2 to q2/3 with
a new analysis and show that this bound is optimal if the meta-reduction follows a
particular approach for simulating the forger. At Eurocrypt 2012, Seurin [31] finally
closed the gap between the security proof of Pointcheval and Stern [25] and known
impossibility results, by describing a novel elaborate simulation strategy for the forger

1 Usually even a polynomially bounded increase/loss is considered as significant, if the polynomial may
be large. An increase/loss by a small constant factor is not considered as significant.
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and providing a new analysis. All previous works [18,24,31] on the existence of tight
security proofs for Schnorr signatures have the following in common:

1. They only rule out the existence of tight reductions from specific strong compu-
tational problems, namely the (one-more) discrete logarithm problem [2]. Reduc-
tion from weaker problems such as, e.g., the computational or decisional Diffie–
Hellman problem (CDH/DDH) are not considered.

2. The impossibility results are not unconditional but instead are themselves only
valid under the very strong OMDL hardness assumption.

3. They hold only with respect to a limited (but natural) class of reductions, so-called
algebraic reductions.

It is not entirely unlikely that first the nonexistence of a tight reduction from strong
computational problems is proven, and later a tight reduction from some weaker prob-
lem is found. A concrete recent example in the domain of digital signatures where
this has happened is RSA Full-Domain Hash (RSA-FDH) [4]. First, at Crypto 2000
Coron [8] described a non-tight reduction from solving the RSA-problem to break-
ing the security of RSA-FDH, and at Eurocrypt 2002 [9] showed that under certain
conditions no tighter reduction from RSA can exist. Later, at Eurocrypt 2012, Kakvi
and Kiltz [20] gave a tight reduction from solving a weaker problem, the so-called
Phi-Hiding problem. The leverage, used by Kakvi and Kiltz to circumvent the afore-
mentioned impossibility results, was to assume hardness of a weaker computational
problem, i.e., making a stronger assumption. As all previous works rule out only tight
reductions from strong computational problems such as DL and OMDL, this might
happen again with Schnorr signatures and the following question was left open for 25
years:

Does a tight security proof for Schnorr signatures exist based on any weaker
computational problem?

2. Contribution

In this work, we answer this question in the negative for an overwhelming class of
weaker problems, ruling out the existence of tight reductions for virtually all natural non-
interactive computational problems defined over abstract algebraic groups. Like previous
works, we consider universal unforgeability under no-message attacks (UUF-NMA-
security). Moreover, our results hold unconditionally. In contrast to previous works,
we consider generic reductions instead of algebraic reductions, but we believe that this
restriction is marginal: The motivation of considering only algebraic reductions from
[24] applies equally to generic reductions. In particular, to the best of our knowledge all
known examples of algebraic reductions are also generic.
Our main technical contribution is a new approach for the simulation of a forger in a

meta-reduction, i.e., “a reduction against the reduction”, which differs from
previous works [18,24,31] and which allows us to show the following main
result:
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Theorem 1. (Informal) For almost any natural non-interactive computational prob-
lem �, there is no tight generic reduction from solving � to breaking the universal
unforgeability under no-message attacks of Schnorr signatures.

Technical approach We begin with the hypothesis that there exists a tight generic re-
duction R from some hard non-interactive problem � to the UUF-NMA-security of
Schnorr signatures. Then we show that under this hypothesis there exists an efficient
algorithm M, a meta-reduction, which efficiently solves �. This implies that the hy-
pothesis is false. The meta-reduction M = MR runs R as a subroutine, by efficiently
simulating the forger A for the reduction R.
All previous works in this direction [18,24,31] followed essentially the same ap-

proach. The difficulty with meta-reductions is thatM = MR must efficiently simulate
the forger A for R. Previous works resolved this by using a discrete logarithm oracle
provided by theOMDL assumption, which allows to efficiently compute valid signatures
in the simulation of forger A. This is also the reason why all previous results are only
valid under the OMDL assumption and were only able to rule out reductions from the
discrete log or the OMDL problem. To overcome these limitations, a new simulation
technique is necessary.
We revisit the simulation strategy of A applied in known meta-reductions and put

forward a new technique for proving impossibility results. It turns out that consider-
ing generic reductions provides additional leverage for simulating a successful forger
efficiently, essentially by suitably re-programming the group representation while com-
puting valid signatures. The technical challenge is to prove that the reduction remains
oblivious to these changes to the group representation during the simulation, except for
some negligible probability. We show how to prove this by adopting the “low polyno-
mial degree” proof technique of Shoup [32], which was originally introduced to analyze
the complexity of certain algorithms for the discrete logarithm problem, to the setting
considered in this paper.
This new approach turns out to be extremely powerful, as it allows to rule out reduc-

tions from any non-interactive representation-invariant computational problem. Since
almost all common hardness assumptions in algebraic groups (e.g., DL, CDH, DDH,
DLIN, etc.) are based on representation-invariant computational problems, we are able
to rule out tight generic reductions from virtually any natural computational problem,
without making any additional assumptions. Even though we apply it specifically to
Schnorr signatures, the overall approach is general. We expect that it is applicable to
other cryptosystems as well.

Generic reductions vs. algebraic reductions Similar to algebraic reductions, a generic
reduction performs only group operations. The main difference is that the sequence
of group operations performed by an algebraic reduction may (but, to our best knowl-
edge, in all known examples does not) depend on the particular representation of group
elements. A generic reduction is required to work essentially identical for any rep-
resentation of group elements. Generic reductions are by definition more restrictive
than algebraic ones, we explain below why we do not consider this restriction as very
significant.
An obvious question arising with our work is the relation between algebraic and

generic reductions. Is a lower bound for generic reductions much less meaningful than
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a bound for algebraic reductions? We argue that the difference is not very significant.
The restriction to algebraic reductions was motivated by the fact most reductions in
known security proofs treat the group as a black-box, and thus are algebraic [18,24,31].
However, the samemotivation applies to generic reductions aswell,with exactly the same
arguments. In particular, virtually all examples of algebraic reductions in the literature
are also generic.
The vast majority of reductions in common security proofs for group-based cryp-

tosystems treats the underlying group as a black-box (i.e., works for any representation
of the group), and thus is generic. This is a very desirable feature, because then the
cryptosystem can securely be instantiated with any group in which the underlying com-
putational problem is hard. In contrast, representation-specific security proofs would
require to re-prove security for any particular group representation the scheme is used
with. Therefore, considering generic reductions seems very reasonable.

Generic reductions versus security proofs in the generic group modelWe stress that
we model only the reductionR as a generic algorithm.We do not restrict the forgerA in
this way, as commonly done in security proofs in the generic group model. It may not be
obvious that this is possible, becauseA expects as input group elements in some specific
encoding, while R can only specify them in the form of random encodings. However,
the reduction only gets access to the adversary as a black-box, which means that the
adversary is external to the reduction, and the environment in which the reduction runs
can easily translate between the encodings used by reduction and adversary. Further,
note that while some reduction from a problem � may be generic, the actual algorithm
solving said problem is notR itself, but the composition ofR andAwhichmay verywell
be non-generic. In particular, this means that any results about equivalence of interesting
problems in the generic group model do not apply to the reduction. See Sect. 3.4 for
further explanation.

Generic reductions in the non-programmable random oracle model An orthogo-
nal question to the one answered in our main result is whether security proofs—even
non-tight ones—for Schnorr signatures exist in weaker models. Paillier and Vergnaud
analyzed the security of Schnorr Signatures in the standard model [24]. In particular,
they presented an impossibility result for security proofs based on algebraic reductions
and the discrete logarithm problem. In a similar vein, Fischlin and Fleischhacker [14]
presented a result about the security of Schnorr signatures in the non-programmable
random oracle model. Essentially they prove that in the non-programmable ROM [15]
no reduction from the discrete logarithm problem can exist that potentially invokes the
adversary several times but always on the same input. This class is limited, but encom-
passes all forking lemma style reductions used to prove Schnorr signatures secure in the
programmable ROM.
Both these results suffer from the same shortcomings already discussed earlier. They

only show impossibility for the discrete logarithm problem and they are themselves
not unconditional, in that they rely on the hardness of the one-more discrete logarithm
problem.
By applying our new simulation technique to reductions in the non-programmable ran-

dom oracle model, we continue this line of research and show the following
result
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Theorem 2. (Informal)For almost any natural non-interactive computational problem
�, there is no (even non-tight) generic reduction from solving� to breaking the universal
unforgeability under no-message attacks of Schnorr signatures in the non-programmable
random oracle model.

Comparison to [16] The conference version of this work [16] (published at Asiacrypt
2014) claimed that Theorem 1 holds even for interactive computational problems. This
was incorrect, as pointed out by Kiltz et al. [21], who in fact were able to give a tight
security proof based on the hardness of an—arguably somewhat artificial—interactive
computational problem. The question of the existence of a tight security reduction based
on a non-interactive computational problem (which is of course much more desirable)
remains open. The present version of this paper corrects the flaw from the conference
version, and thus shows the inexistence of such reductions. Moreover, we have extended
this version with Theorem 2 that unconditionally rules out any (even non-tight) generic
reduction in certain settings.

Further related work Dodis et al. [10] showed that it is impossible to reduce any
computational problem to breaking the security of RSA-FDH in a model where the
RSA-group Z

∗
N is modeled as a generic group. This result extends [11]. Coron [9]

considered the existence of tight security reductions for RSA-FDH signatures [4]. This
result was generalized by Dodis and Reyzin [12] and later refined by Kiltz and Kakvi
[20].
In the context of Schnorr signatures, Neven et al. [23] described necessary conditions

the hash function must meet in order to provide existential unforgeability under chosen-
message attacks (EUF-CMA) and showed that these conditions are sufficient if the
forger (not the reduction!) is modeled as a generic group algorithm.
Several works studied the security of the Schnorr signature scheme in the multi-user

setting, showing essentially that single-user security tightly implies multi-user security
[6,17,21].

3. Preliminaries

Notation If S is a set, we write s ←$ S to denote the action of sampling a uniformly
random element s from S. If A is a probabilistic algorithm, we denote with a ←$ A the
action of computing a by running A. We denote with ∅ the empty string, the empty set,
as well as the empty list, the meaning will always be clear from the context. We write
[n] to denote the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.

3.1. Schnorr Signatures

Let G be a group of order p with generator g, and let H : G × {0, 1}k → Zp be a
hash function. The Schnorr signature scheme [29,30] consists of the following efficient
algorithms (KGen,Sig,Vf).
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KGen(g): The key generation algorithm takes as input a generator g of G. It
chooses sk ←$Zp, computes pk := gsk, and outputs (pk, sk).

Sig(sk,m): The input of the signing algorithm is a private key sk and amessage
m ∈ {0, 1}k . It chooses a random integer r ←$Zp, sets R := gr

as well as c := H(R,m), and computes y := sk · c + r mod p. It
outputs σ = (R, y).

Vf(pk,m, (R, y)): The verification algorithm outputs the truth value of gy
?=pkc · R,

where c = H(R,m).

Remark 3. The above variant of Schnorr signatures is obtained by a straightforward
application of the Fiat–Shamir heuristic [13] to Schnorr’s ID scheme. There exists an
equivalent, in practice often more efficient variant of Schnorr signatures, where a signa-
ture consists of σ = (c, y) (computed exactly as above), and the verification algorithm
outputs the truth value of c

?=H(pkc/gy,m). Both variants are equivalent, as one can
efficiently (and tightly) convert a valid signature from one variant into a valid signature
of the other. In particular, our tightness bounds cover both variants, but the former is
slightly more convenient to use in our proofs.

Universal Unforgeability under No-Message Attacks Consider the following secu-
rity experiment involving a signature scheme (KGen,Sig,Vf), an attacker A, and a
challenger C.

1. The challenger C computes a key-pair (pk, sk) ←$KGen(g) and chooses a mes-
sage m ←$ {0, 1}k uniformly at random. It invokes A on input (pk,m).

2. Eventually, A stops, outputting a signature σ .

Definition 4. Wesay thatA (ε, t)-breaks theUUF-NMA-security of (KGen,Sig,Vf),
if A runs in time at most t and

Pr
[
A(pk,m) = σ : Vf(pk,m, σ ) = 1

] ≥ ε,

where randomness is taken over the random choice of pk, m, and A’s random coins.

Note thatUUF-NMA-security is a veryweak security goal for digital signatures. Since
we are going to prove a negative result, this is not a limitation, but instead, makes our
result even stronger. In fact, if we rule out reductions from some problem � to forging
signatures in the sense of UUF-NMA, then the impossibility clearly holds for stronger
security notions, such as existential unforgeability under adaptive chosen-message at-
tacks [19], too.

3.2. Computational Problems

Let G be a cyclic group of order p and g ∈ G a generator of G. We write desc(G, g)
to denote the list of group elements desc(G, g) = (g, g2, . . . , gp) ∈ G

p. We say that
desc(G, g) is the enumerating description of G with respect to g.
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Definition 5. A non-interactive computational problem � in G is specified by two
(computationally unbounded) procedures � = (G�,V�), with the following syntax.

G�(desc(G, g)) takes as input an enumerating description of G, and out-
puts a state st and a problem instance (the challenge) C =
(C1, . . . ,Cu,C ′) ∈ G

u × {0, 1}∗. We assume in the sequel
that at least C1 is a generator of G.

V�(desc(G, g), st, S,C) takes as input (desc(G, g), st,C) as defined above, and
S = (S1, . . . , Sw, S′) ∈ G

w × {0, 1}∗. It outputs 0 or 1.

The exact description and distribution of st,C, S and the concrete values of u and w

depend on the considered computational problem.

Definition 6. An algorithmA (ε, t)-solves the non-interactive computational problem
� if A has running time at most t and wins the following interactive game against a
(computationally unbounded) challenger Cwith probability at least ε, where the game is
defined as follows:

1. The challenger C generates an instance of the problem (st,C) ←$G�(desc(G, g))
and invokes A on input C .

2. Eventually, algorithmA outputs a candidate solution S. The algorithmA wins the
game (i.e., solves the computational problem correctly) if and only if V�(desc
(G, g), st,C, S) = 1.

Example 7. The discrete logarithm problem in G is specified by the following proce-
dures. G�(desc(G, g)) outputs (st,C) with st = ∅ and C = (g, h), where h ←$G is
a random group element. V�(desc(G, g), st,C, S) interprets S = S′ ∈ {0, 1}∗ canoni-
cally as an integer in Zp, and outputs 1 iff h = gS

′
.

Example 8. The UUF-NMA-forgery problem for Schnorr signatures in G with hash
function H is specified by the following procedures. G�(desc(G, g)) outputs (st,C)

with st = m and C = (g,pk,m) ∈ G
2 × {0, 1}k , where pk = gsk for sk ←$Zp

andm ←$ {0, 1}k . The verification algorithm V�(desc(G, g), st,C, S) parses S as S =
(R, y) ∈ G × Zp, sets c := H(R, st), and outputs 1 if and only if pkc · R = gy .

3.3. Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight
reduction from as large a class of computational problems as possible. Ideally, we want
to rule out the existence of a tight reduction from any computational problem that meets
Definition 5. However, it is easy to see that this is not achievable in this generality: as
Example 8 shows, the problemof forgingSchnorr signatures itself is a problem thatmeets
Definition 5. But necessarily there exists a trivial tight reduction from the problem of
forging Schnorr signatures to the problem of forging Schnorr signatures! Therefore, we
need to restrict the class of considered computational problems to exclude such trivial,
artificial problems.
We introduce the notion of representation-invariant computational problems. This

class of problems captures virtually any reasonable computational problem defined over
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an abstract algebraic group except for a few extremely artificial problems. In particular,
the problem of forging Schnorr signatures is not contained in this class (see Example 11
below).
Intuitively, a computational problem is representation-invariant, if a valid solution to

a given problem instance remains valid even if the representation of group elements in
challenges and solutions is converted to a different representation of the same group.
More formally we define it as follows:

Definition 9. Wesay that� is representation-invariant, if and only if for all isomorphic
groupsG, Ĝ and for all generators g ∈ G, allC = (C1, . . . ,Cu,C ′) ←$G�(desc(G, g)),
all st = (st1, . . . , stt , st ′) ∈ G

t × {0, 1}∗, and all S = (S1, . . . , Sw, S′) ∈ G
w × {0, 1}∗

holds that V�(desc(G, g), st,C, S) = 1 ⇐⇒ V�(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1, where
ĝ = φ(g) ∈ G

′, Ĉ = (φ(C1), . . . , φ(Cu),C ′), ŝt = (φ(st1), . . . , φ(stt ), st ′), and
Ŝ = (φ(S1), . . . , φ(Sw), S′).

Observe that this definition only demands the existence of an isomorphismφ : G → Ĝ

and not that it is efficiently computable.

Example 10. The discrete logarithm problem is representation-invariant. Let C =
(g, h) ∈ G

2 be a discrete log challenge, with corresponding solution S′ ∈ {0, 1}∗
such that S′ canonically interpreted as an integer S′ ∈ Zp satisfies gS

′ = h ∈ G. Let
φ : G → Ĝ be an isomorphism, and let (ĝ, ĥ) := (φ(g), φ(h)). Then it clearly holds

that ĝ Ŝ
′ = ĥ, where Ŝ′ = S′.

Virtually all common hardness assumptions in algebraic groups are based on repre-
sentation-invariant computational problems. Popular examples are, for instance, the
discrete log problem (DL), computational Diffie–Hellman (CDH), decisional Diffie–
Hellman (DDH), decision linear (DLIN), and so on.

Example 11. TheUUF-NMA-forgery problem for Schnorr signatures with hash func-
tion H is not representation-invariant for any hash function H . Let C = (g,pk,m) ←$

G�(desc(G, g)) be a challenge with solution S = (R, y) ∈ G×Zp satisfying pkc ·R =
gy , where c := H(R,m).
Let Ĝ be a group isomorphic to G, such that G ∩ Ĝ = ∅ (that is, there exists no

element of Ĝ having the same representation as some element of G).2 Let G → Ĝ

denote the isomorphism. If there exists any R such that H(R,m) �= H(φ(R),m) in Zp

(which holds in particular if H is collision resistant and φ efficiently computable), then
we have

gy = pkH(R,m) · R but φ(g)y �= φ(pk)H(φ(R),m) · φ(R).

Thus, a solution to this problem is valid only with respect to a particular given represen-
tation of group elements.

2Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the encoding by
prepending a suitable fixed string to each group element, and changing the group law accordingly.
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TheUUF-NMA-forgeryproblemofSchnorr signatures is not representation-invariant,
because a solution to this problem involves the hash value H(R,m) that depends on a
concrete representation of group element R. We consider such complexity assumptions
as rather unnatural, as they are usually very specific to certain constructions of cryp-
tosystems.

Example 12. The hashed Diffie–Hellman (HDH) [1] problem is an example of a non-
representation-invariant form of Diffie–Hellman. For a group G of order p and a hash
function H : G → {0, 1}�, the HDH problem is defined as follows. G�(desc(G, g))
chooses u, v ←$Zp and computes U := gu , V := gv . It then chooses a random
bit b ←$ {0, 1}. If b = 0 then it outputs the challenge C := (U, V, H(guv)) and
the state st := 0. If b = 1 then it chooses a random value r ←$ {0, 1}� and out-
puts the challenge C := (U, V, r) and the state st := 1. The verification algorithm
V�(desc(G, g), st,C, S) outputs 1 if S = st and 0 otherwise.

3.4. Generic Reductions

In this section, we recall the notion of generic groups, loosely following [32] (cf. also
[22,27], for instance), and define generic (i.e., representation-independent) reductions.

Generic groups Let (G, ·) be a group of order p and E ⊆ {0, 1}�log p� be a set of size
|E | = |G|. If g, h ∈ G are two group elements, then wewrite g÷h for g ·h−1. Following
[32] we define an encoding function as a random injective map φ : G → E . We say that
an element e ∈ E is the encoding assigned to group element h ∈ G, if φ(h) = e.

A generic group algorithm is an algorithmR which takes as input Ĉ = (φ(C1), . . . ,

φ(Cu),C ′), where φ(Ci ) ∈ E is an encoding of group element Ci for all i ∈ [u], and
C ′ ∈ {0, 1}∗ is a bit string. The algorithm outputs Ŝ = (φ(S1), . . . , φ(Sw), S′), where
φ(Si ) ∈ E is an encoding of group element Si for all i ∈ [w], and S′ ∈ {0, 1}∗ is a bit
string. In order to perform computations on encoded group elements, algorithmR= RO
may query a generic group oracle (or “group oracle” for short). This oracle O takes
as input two encodings e = φ(G), e′ = φ(G ′) and a symbol ◦ ∈ {·,÷}, and returns
φ(G ◦ G ′). Note that (E, ·O), where ·O denotes the group operation on E induced by
oracle O, forms a group which is isomorphic to (G, ·).
It will later be helpful to have a specific implementation ofO (Fig. 1).Wewill therefore

assume in the sequel that O internally maintains two lists LG ⊆ G and LE ⊆ E . These
lists define the encoding function φ as LE

i = φ(LG

i ), where LG

i and LE
i denote the i-th

element of LG and LE , respectively, for all i ∈ [∣∣LG
∣∣]. Note that from the perspective

of a generic group algorithm it makes no difference whether the encoding function is
fixed at the beginning or lazily evaluated whenever a new group element occurs. We
will assume that the oracle uses lazy evaluation to simplify our discussion and avoid
unnecessary steps for achieving polynomial runtime of our meta-reductions. This is
implemented by the following procedures.

Procedure ENCODE takes a list G = (G1, . . . ,Gu) of group elements as input. It
checks for eachG j ∈ L if an encoding has already been assigned
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Fig. 1. Procedures implementing the generic group oracle.

to G j , i.e., whether there exists an index i such that LG

i = G j .
If this holds, Encode sets e j := LE

i . Otherwise (if no encoding
has been assigned to G j so far), it chooses a fresh and random
encoding e j ←$ E \ LE . In either case G j and e j are appended
to LG and LE , respectively, which gradually defines the map φ

such that φ(G j ) = e j . Note also that the same group element
and encoding may occur multiple times in the list. Finally, the
procedure returns the list (e1, . . . , eu) of encodings.

Procedure GETIDX takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w]
it defines i j as the smallest3 index such that e j = LE

i j
, and returns

(i1, . . . , iw).4

The listsLG andLE are initially empty.ThenO calls (e1, . . . , eu) ←$Encode(C1, . . . ,

Cu) to determine encodings for all group elements C1, . . . ,Cu and starts the generic
group algorithm on input R(e1, . . . , eu,C ′).
The reduction RO may now submit queries of the form (e, e′, ◦) ∈ E × E × {·,÷}

to the generic group oracle O. In the sequel, we will restrict R to issue only queries
(e, e′, ◦) toO such that e, e′ ∈ LE . It determines the smallest indices i and j with e = ei
and e′ = e j by calling (i, j) = GetIdx(e, e′). Then it computesLG

i ◦LG

j and returns the

encoding Encode(LG

i ◦ LG

j ). Furthermore, we require that R only outputs encodings

φ(Si ) such that φ(Si ) ∈ LE .

Remark 13. Wenote that the above restrictions arewithout loss of generality. To explain
this, recall that the assignment between group elements and encodings is random. An
alternative implementation O′ of O could, given an encoding e �∈ LE , assign a random
group element G ←$G \ LG to e by appending G to LG and e to LE , in which case
R would obtain an encoding of an independent, new group element. Of course R can
simulate this behavior easily when interacting with O, too.

3Recall that the same encoding may occur multiple times in LE .
4Note thatGetIdxmay receive only encodings e1, . . . , ew which are already contained inLE , as otherwise

the behavior of GetIdx is undefined. We will make sure that this is always the case.
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Generic reductions Recall that a (fully black-box [26]) reduction from problem � to
problem � is an efficient algorithm R that solves �, having black-box access to an
algorithm A solving �.
In the sequel, we consider reductionsRA,O having black-box access to an algorithm

A as well as to a generic group oracle O. A generic reduction receives as input a
challenge C = (φ(C1), . . . , φ(Cu),C ′) ∈ G

u × {0, 1}∗ consisting of u encoded group
elements and a bit string C ′.Rmay perform computations on encoded group elements,
by invoking a generic group oracle O as described above, and interacts with algorithm
A to compute a solution S = (φ(S1), . . . , φ(Sw), S′) ∈ G

w ×{0, 1}∗, which again may
consist of encoded group elements φ(S1), . . . , φ(Sw) and a bit string S′ ∈ {0, 1}∗.
We stress that the adversary A does not necessarily have to be a generic algorithm.

It may not be immediately obvious that a generic reduction can make use of a non-
generic adversary, considering that A might expect a particular encoding of the group
elements. However, this is indeed possible. In particular, most reductions in security
proofs for cryptosystems that are based on algebraic groups (e.g., [7,25,33], to name
a few well-known examples) are independent of a particular group representation, and
thus generic.
Recall that R is fully black-box, i.e., A is external to R. Thus, the environment in

which the reduction runs can easily translate between the two encodings. Consider as
an example the reduction shown in Fig. 2 that interacts with a non-generic adversaryA.
We stress that the actual algorithm solving the problem �, which is a composition ofR
and A is therefore not generic.

Fig. 2. An example of the interaction between a generic reductionR and a non-generic adversaryA against
the unforgeability of Schnorr signatures. All group elements—such as the challenge input, random oracle
queries, and the signature output by A—are encoded by the environment before being passed to R. In the
other direction, encodings of group elements output by R—such as the public key that is the input of A,
random oracle responses, and the solution output by R—are decoded before being passed to the outside
world. When a reduction is executed by a meta-reductionM, the meta-reduction simulates the environment,
the group operation oracle and the adversaryA. This is indicated by dashed lines.
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4. Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reduction R
that reduces a representation-invariant computational problem � to breaking the UUF-
NMA-security of the Schnorr signature scheme. Our results in this direction are nega-
tive, showing that it is impossible to find a generic reduction from any non-interactive
representation-invariant computational problem.

4.1. Single-Instance Reductions

Webeginwith considering avery simple class of reduction thatwe call vanilla reductions.
A vanilla reduction is a reduction that runs theUUF-NMAforgerA exactly once (without
restarting or rewinding) in order to solve the problem �. This allows us to explain and
analyze the new simulation technique. 342

4.1.1. An Inefficient Adversary AA

In this section, we describe an inefficient adversary A that breaks the UUF-NMA-
security of the Schnorr signature scheme. Recall that a black-box reduction R must
work for any attacker A. Thus, algorithm RA will solve the challenge problem �,
given black-box access to A. The meta-reduction will be able to simulate this attacker
efficiently for any generic reductionR. We describe this attacker for comprehensibility,
in order to make our meta-reduction more accessible to the reader.

1. The input of A is a Schnorr public-key pk, a message m, and random coins ω ∈
{0, 1}κ .

2. The forgerA chooses q uniformly random group elements R1, . . . , Rq ←$G. (We
make the assumption that q ≤ |G|.) Subsequently, the forgerA queries the random
oracleH on (Ri ,m) for all i ∈ [q]. Let ci := H(Ri ,m) ∈ Zp be the corresponding
answers.

3. Finally, the forger A chooses an index uniformly at random α ←$ [q], computes
y ∈ Zp which satisfies the equation gy = pkcα · Rα, and outputs (Rα, y). For
concreteness, we assume this computation is performed by exhaustive search over
all y ∈ Zp (recall that we consider an unbounded attacker here, we show later how
to instantiate it efficiently).

Note that (Rα, y) is a valid signature for message m with respect to the public key
pk. Thus, the forger A breaks the UUF-NMA-security of the Schnorr signatures with
probability 1.

4.1.2. Main Result for Vanilla Reductions

Now we are ready to prove our main result for vanilla reductions.

Theorem 14. Let � = (G�,V�) be a non-interactive representation-invariant com-
putational problem with a challenge consisting of u group elements and let p be the
group order. Suppose there exists a generic vanilla reductionR that (εR, tR)-solves �,
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having one-time black-box access to the hypothetical attackerA described above. Then
there exists an algorithm M that (ε, t)-solves � with t ≈ tR and

ε ≥ εR − 2(u + q + tR)2

p
.

Remark 15. The values u, q, and tR are polynomially bounded while p is exponential.
Therefore, the theorem shows that the existence of a reduction R implies the existence
of a meta-reduction M, which solves � with essentially the same success probability
and running time. Thus, an efficient (and even non-tight) reduction R can only exist if
there exists an efficient algorithm for �, which means that � cannot be hard.

Proof. Assume that there exists a generic vanilla reductionR := RO,A that (εR, tR)-
solves �, when given access to a generic group oracle O, and a forger A(pk,m, ω),
where the inputs to the forger are chosen byR. Furthermore, the reductionR simulates
the random oracle R.H for A. We show how to build a meta-reduction M that has
black-box access to R and solves the representation-invariant problem � directly.
We describeM in a sequence of games, beginning with an inefficient implementation

M0 of M and modify it gradually until we obtain an efficient implementation M2
of M. We bound the probability with which any reduction R can distinguish each
implementation Mi from Mi−1 for all i ∈ {1, 2}, which yields that M2 is an efficient
algorithm that can useR to solve � ifR is tight. In what follows let Xi denote the event
that R outputs a valid solution to the given problem instance Ĉ of � in Game i .

Game 0. Ourmeta-reductionM0 is an algorithm for solving a representation-invariant
computational problem �, as defined in Sect. 3.3. That is, M0 takes as input an in-
stance C = (C1, . . . ,Cu,C ′) ∈ G

u × {0, 1}∗, of the representation-invariant compu-
tational problem � and outputs a candidate solution S. R is a generic reduction, i.e.,
a representation-independent algorithm for � having black-box access to an attacker
A. Algorithm M0 runs reduction R as a subroutine, by simulating the generic group
oracleO and attacker A forR. In order to provide the generic group oracle forR,M0
implements the following procedures (cf. Fig. 3).

Initialization of M0 At the beginning of the game, M0 initializes two lists LG := ∅
and LE := ∅, which are used to simulate the generic group oracle O. Furthermore,
M0 chooses �R = (R1, . . . , Rq) ←$G

q at random (these values will later be used by
the simulated attackerA), sets I := (C1, . . . ,Cu, R1, . . . , Rq), and runs Encode(I) to
assign encodings to these group elements. Then M0 invokes the reduction R on input
Ĉ := (LE

1 , . . . ,LE
u ,C ′). Note that Ĉ is an encoded version of the challenge instance of

� received by M0. That is, we have Ĉ = (φ(C1), . . . , φ(Cu),C ′). Oracle queries of
R are answered by M0 as follows.

Generic group oracle O(e, e′, ◦) To simulate the generic group oracle, M0 imple-
ments procedures Encode and GetIdx as described in Sect. 3.4. Whenever R submits
a query (e, e′, ◦) ∈ E × E × {·,÷} to the generic group oracle O, the meta-reduction
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Fig. 3. Implementation of M0.

determines the smallest indices i and j such that e = LG

i and e′ = LG

j by calling

(i, j) = GetIdx(e, e′). Then it computes LG

i ◦ LG

j and returns Encode(LG

i ◦ LG

j ).

The forgerA(φ(pk),m, ω)This procedure implements a simulation of the inefficient at-
tackerA described in Sect. 4.1.1. It proceeds as follows.WhenR outputs (φ(pk),m, ω)

to invoke an instance ofA,A queries the random oracleR.H provided byR to determine
ci = H(φ(Ri ),m) for all i ∈ [q]. Afterward,M0 chooses an index α ←$ [q] uniformly
at random, computes the discrete logarithm y := logg pk

cα Rα by exhaustive search, and
outputs (φ(Rα), y). (This step is not efficient. We show in subsequent games how to
implement this simulation efficiently.)

FinalizationofM0 Eventually, the algorithmRoutputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S′)
∈ Ew × {0, 1}∗. The algorithm M0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to
determine the indices of group elements (LG

i1
, . . . ,LG

iw
) corresponding to encodings

(Ŝ1, . . . , Ŝw), and outputs (LG

i1
, . . . ,LG

iw
, S′).

Analysis ofM0 Note thatM0 provides a perfect simulation of the oracleO and it also
mimics the attacker from Sect. 4.1.1 perfectly. In particular, (Rα, y) is a valid forgery for
message m and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S′) to Ĉ with probability
Pr

[
X0

] = εR.Since� is assumed to be representation-invariant, S := (S1, . . . , Sw, S′)
with Ŝi = φ(Si ) for i ∈ [w] is therefore a valid solution to C . Thus,M0 outputs a valid
solution S to C with probability εR.

Game 1. In this game, we introduce a meta-reductionM1, which essentially extends
M0 with additional bookkeeping to record the sequence of group operations performed
by R. The purpose of this intermediate game is to simplify our analysis of the final
implementation M2. Meta-reduction M1 proceeds identical to M0, except for a few
differences (cf. Fig. 4).
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Fig. 4. Meta-ReductionM1. Elements highlighted in gray show the differences toM0. All other procedures
are identical to M0 and thus omitted.

Initialization of M1 The initialization is exactly as before, except that M1 maintains
an additional list LV of elements of Zu+q

p . Let LV
i denote the i-th entry of LV .

List LV is initialized with the u + q canonical unit vectors in Z
u+q
p . That is, let ηi

denote the i-th canonical unit vector in Zu+q
p , i.e.,

η1 := (1, 0, . . . , 0), η2 := (0, 1, 0, . . . , 0), . . . , ηu+q := (0, . . . , 0, 1).

Then LV is initialized such that LV
i := ηi for all i ∈ [u + q] .

Generic group oracle O(e, e′, ◦) In parallel to computing the group operation, the
generic group oracle implemented by M1 also performs computations on vectors of
LV .
Given a query (e, e′, ◦) ∈ E×E×{·,÷}, the oracleO determines the smallest indices

i and j such that e = LG

i and e′ = LG

j by calling GetIdx. It computes a := LV
i �LV

j ∈
Z
u+q
p , where � := + if ◦ = · and � := − if ◦ = ÷, and appends a to LV . Finally it

returns Encode(LG

i ◦ LG

j ).

Analysis ofM1 Recall that the initial contentI ofLG isI = (C1, . . . ,Cu, R1, . . . , Rq),

and that R performs only group operations on I. Thus, any group element h ∈ LG can
be written as h = ∏u

i=1 C
ai
i · ∏q

i=1 R
au+i
i where the vector a = (a1, . . . , au+q) ∈

Z
u+q
p is (essentially) determined by the sequence of queries issued by R to O. For a

vector a ∈ Z
u+q
p and a vector of group elements V = (v1, . . . , vu+q) ∈ G

u+q let
us write Eval(V, a) as a shorthand for Eval(V, a) := ∏u+q

i=1 v
ai
i in the following. In
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Fig. 5. Efficient simulation of attacker A byM2.

particular, it holds that Eval(I, a) = ∏u
i=1 C

ai
i · ∏q

i=1 R
au+i
i . The key motivation for

the changes introduced in Game 1 is that now (by construction of M1) it holds that
LG

i = Eval(I,LV
i ) for all i ∈ [∣∣LG

∣∣] . Thus, at any point in time during the execution
ofR, the entire list LG of group elements can be recomputed from LV and I by setting
LG

i := Eval(I,LV
i ) for i ∈ [∣∣LV

∣∣]. The reduction R is completely oblivious to this
additional bookkeeping performed by M1, thus we have Pr

[
X1

] = Pr
[
X0

]
.

Game 2. Note that themeta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedure A needed to compute a discrete
logarithm by exhaustive search. In this final game, we construct a meta-reduction M2
that simulates A efficiently. M2 proceeds exactly like M1, except for the following
(cf. Fig. 5).

The forgerA(φ(pk),m, ω) WhenR outputs (φ(pk),m, ω) to invoke an instance ofA,
A queries the random oracleR.H provided byR to determine ci = H(φ(Ri ),m) for all
i ∈ [q]. Afterward, it proceeds as follows:

• A chooses an indexα ←$ [q] uniformly at random, samples an element y uniformly
at random from Zp.

• Then it computes R∗
α := gypk−cα , and re-computes the entire list LG using R∗

α

instead of Rα .
More precisely, let I∗ := (C1, . . . ,Cu, R1, . . . , Rα−1, R∗

α, Rα+1, . . . , Rq). Ob-
serve that the vector I∗ is identical to the initial contents I of LG, with the differ-
ence that Rα is replaced by R∗

α . The list LG is now recomputed from LV and I∗ by
setting LG

i := Eval(I∗,LV
i ) for all i ∈ [∣∣LV

∣∣].
• Finally, M2 returns (φ(R∗

α), y) toR as the forgery.

Analysis of M2 First note that (φ(R∗
α), y) is a valid signature, since φ(R∗

α) is the
encoding of group element R∗

α satisfying the verification equation gy = pkcα · R∗
α,

where cα = H(φ(R∗
α),m). Next we claim that R is not able to distinguish M2 from

M1, except for a negligibly small probability. To show this, observe that Game 2 and
Game 1 are perfectly indistinguishable, if for all pairs of vectors LV

i ,LV
j ∈ LV it holds
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that Eval(I,LV
i ) = Eval(I,LV

j ) ⇐⇒ Eval(I∗,LV
i ) = Eval(I∗,LV

j ), because in

this case M2 chooses identical encodings for two group elements LG

i ,LG

j ∈ LG if
and only if M1 chooses identical encodings. It remains to show that this happens with
overwhelming probability. We state this in the following Lemma.

Lemma 16. Let F denote the event thatR computes vectors LV
i ,LV

j ∈ LV such that

Eval(I,LV
i ) = Eval(I,LV

j ) ∧ Eval(I∗,LV
i ) �= Eval(I∗,LV

j ) (1)

or (2)

Eval(I,LV
i ) �= Eval(I,LV

j ) ∧ Eval(I∗,LV
i ) = Eval(I∗,LV

j ).

Then

Pr[F ] ≤ 2(u + q + tR)2/p.

The proof of Lemma 16 is deferred to Sect. 4.2. We apply it to finish the proof of The-
orem 14. By Lemma 16, algorithm M2 fails to simulate M1 with probability at most
2(u + q + tR)2/p. Thus, we have Pr

[
X2

] ≥ Pr
[
X1

] − 2(u + q + tR)2/p.
Note also thatM2 provides an efficient simulation of adversaryA. The total running

time of M2 is essentially of the running time of R plus some minor additional com-
putations and bookkeeping. Furthermore, ifR is able to (εR, tR)-solve �, thenM2 is
able to (ε, t)-solve � with probability at least

ε ≥ Pr
[
X2

] ≥ εR − 2(u + q + tR)2

p
.

�

4.2. Proof of Lemma 16

The proof of this lemma is based on the observation that an algorithm that performs only
a (polynomially) limited number of group operations in an (exponential size) generic
group is very unlikely to find any “non-trivial relation” among random group elements.
This technique was introduced in [32] in a different setting, to analyze the complexity
of algorithms for the discrete logarithm problem.

Proof. We first introduce an alternative formulation of event F . Recall that the vectors
I and I∗ differ only in their α-th component. In the sequel, let us write Iα to denote the
vector I, but with its α-th component Rα set equal to 1 ∈ G. That is,

Iα := (R1, . . . , Rα−1, 1, Rα+1, . . . , Rq , g1, . . . , gu).

Then we have

Eval(I,LV
i ) = Eval(Iα,LV

i ) · RLV
i,α

α and Eval(I∗,LV
i ) = Eval(Iα,LV

i ) · (R∗
α)

LV
i,α
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where LV
i,α denotes the α-th component of vector LV

i . In particular, for any two vectors

LV
i ,LV

j we have

Eval(I,LV
i ) = Eval(I,LV

j ) ⇐⇒ Eval(Iα,LV
i ) · RLV

i,α
α = Eval(Iα,LV

j ) · RLV
j,α

α

⇐⇒ Eval(Iα,LV
i − LV

j ) · RLV
i,α−LV

j,α
α = 1

Thus, Eq. 1 is equivalent to

Eval(Iα,LV
i −LV

j ) ·RLV
i,α−LV

j,α
α = 1 ∧ Eval(Iα,LV

i −LV
j ) ·(R∗

α)
LV
i,α−LV

j,α �= 1 (3)

If we take discrete logarithms to base γ ∈ G, where γ is an arbitrary generator of G,
and define the degree-one polynomial i, j ∈ Zp[X ] as

i, j := logEval(Iα,LV
i − LV

j ) + X ·
(
LV
i,α − LV

j,α

)
,

then Eq. 3 (and therefore also Eq. 1) is in turn equivalent to

i, j (log Rα) ≡ 0 mod p ∧ i, j (log R
∗
α) �≡ 0 mod p. (4)

Similarly, Eq. 2 is equivalent to

i, j (log Rα) �≡ 0 mod p ∧ i, j (log R
∗
α) ≡ 0 mod p. (5)

Thus, event F occurs ifR computes vectorsLV
i ,LV

j such that either Eqs. 4 or 5 holds.

Failure Event F1 Let F1 denote the event that Eq. 4 holds. Note that this can only
happen if R performs a sequence of computations, such that there exist a pair (i, j) ∈[∣∣LV

∣
∣]× [∣∣LV

∣
∣] such that the polynomial i, j is not the zero-polynomial in Zp[X ], but

it holds that i, j (Rα) ≡ 0 mod p.
At the beginning of the game R receives only a random encoding φ(Rα) of group

element Rα . The only further information that R learns about Rα throughout the game
is through equality or inequality of encodings. Since R runs in time tR, it can issue at
most tR oracle queries. Thus, at the end of the game the list LV contains at most |LV | ≤
tR + q + u entries. Each pair (i, j) ∈ [∣∣LV

∣∣] with i �= j defines a (possibly non-zero)
polynomiali, j . In total there are at most (tR+q+u) ·(tR+q+u−1) ≤ (tR+q+u)2

such polynomials.
Since all polynomials have degree one, and log Rα is uniformly distributed over Zp

(because Rα is uniformly random overG), the probability that log Rα is a root of any of
these polynomials is upper bounded by

Pr [F1 ] ≤ (u + q + tR)2

p
.
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Failure Event F2 Let F2 denote the event that Eq. 5 holds. Since log R∗
α is uniformly

distributed over Zp (because we have defined R∗
α := gypk−c for uniformly y ←$Zp),

with similar arguments as before we have

Pr [F2 ] ≤ (u + q + tR)2

p
.

Bounding Pr[F ] Since F = F1 ∪ F2 we have

Pr [F ] ≤ Pr[F1 ] + Pr[F2 ] ≤ 2(u + q + tR)2

p
.

�

5. Multi-instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequen-
tial executions of the signature forgerA. This is the interesting case, in particular because
the forking lemma-based security proof for Schnorr signatures by Pointcheval and Stern
[25] is of this type.
Again we construct a meta-reduction with simulated adversary. The main difference

to our single-instance adversary is that it does not succeed with probability 1, but tosses
a biased coin that decides if it forges for the message or not. On the first glance this
approach might seem to be of little value, because an adversary with a higher success
probability should improve the success probability of the reduction. However, it was
shown in [31] that, once we consider a reduction that runs multiple sequential executions
of this adversary, this approach allows to derive an optimal tightness bound.
In the following we assume that the reduction R executes n sequential instances

of the same adversary A(φ(pk),m, ω), where the public key φ(pk), the message m,
and the randomness ω of each instance are chosen by R. Observe that the input to the
adversary and the random oracle query/answers completely determine the behavior of
the adversary. Thus, any successive execution of an instance of A may be identical to a
previous execution up to a certain point, where the response c = H(R,m) of the random
oracle differs from a response c′ = H(R,m) received byA in a previous execution. This
point is called the forking point [31].

5.1. An Inefficient Adversary A
In this section, we describe a family of inefficient forgers A breaking the UUF-NMA-
security of the Schnorr signature scheme, as well as a specific sampling procedure to
choose a random forger from this family. The specific sampling procedure guarantees
that we can derive a bound on the success probability of the A, if we sample it in the
described way and then provide it to a reduction.
In the sequel, we write Berμ to denote the Bernoulli distribution of a parameter

μ ∈ [0, 1], i.e., Pr [δ = 1] = μ and Pr [δ = 0] = 1 − μ. Let Q = G × Zp be the set of
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possible random oracle queries and answers. By Si = Qi , we denote the set of random
oracle query sequences of length i and the set of all possible sequences is defined as

S =
q⋃

i=1
Si . We let F be the set of all functions F : {0, 1}k × G × {0, 1}κ × S → G.

1. In order to sample a forger A, we choose a random function F uniformly from F.
Furthermore, we define a list � ⊂ G × {0, 1}, which is generated as follows. For
each (encoding of a) group element Z ∈ G, list � contains a tuple (Z , b), where
b ← Berμ. Thus, � contains |G| entries (Z , b), where each assigns a Berμ-
distributed bit b to Z . For g ∈ G we write �(Z) to denote the bit b ∈ {0, 1} such
that (Z , b) ∈ �.
Note that the list � has exponential size, if G has exponential size. However,
recall that we describe an inefficient adversary here. We will later show how this
adversary can be simulated efficiently. Note furthermore that while F and � have
been generated probabilistically, they are fixed for the given adversary, and thus
can be seen as an additional, fixed “internal randomness tape” of A.

2. The forger A described by F and � sampled as above expects as input a Schnorr
public-key pk, a message m, and random coins ω ∈ {0, 1}κ .

3. A sets σ := ⊥ and performs the following computations. For i = 1, . . . , q it
computes Ri := F(m,pk, ω, (R1, c1), . . . , (Ri−1, ci−1)) and queries the random
oracle H on (Ri ,m), where ci := H(Ri ,m) ∈ Zp is the corresponding answer. If
σ = ⊥, thenA sets Zi := pkci Ri and checks if �(Zi ) = 1. If this is the case, then
it computes yi ∈ Zp satisfying the equation gyi = Ri · pkci by exhaustive search
and sets σ := (Ri , yi ). Otherwise, if �(Zi ) = 0, then it continues with the loop.

4. Finally, the forger A returns σ .

Note that (Ri , yi ) is a valid signature for message m with respect to the public key pk.
Thus, the forger A breaks the UUF-NMA-security of the Schnorr signatures whenever
�(Zi ) = 1 for at least one i ∈ [q]. Hence, if we sample A as described above, then
the probability (over the sampling and execution ofA) that it will output a valid forgery
when executed by a reduction is εA = 1 − (1 − μ)q .

Observe that defining adversaries as above ensures that, while different instances of
the same adversary will behave identically as long as their input and the answers of the
random oracle are the same, as soon as one of the inputs or one of the random oracle
answers differ the behavior of two instances will be independent of one another from that
point onwards. As such, the behavior of these adversaries mimics closely the idea behind
the forking lemma and it allows us to easily simulate the adversary in our meta-reduction
below.

5.2. Main Result for Multi-instance Reductions

In this section, we combine the approach of Seurin [31] with our simulation of signa-
ture forgeries based on re-programming of the group representation, as introduced in
Sect. 4.1.2. This allows to prove a nearly optimal unconditional tightness bound for all
generic reductions and any representation-invariant computational problem �.
Unfortunately, the combination of the elaborate techniques of Seurin [31] with our

approach yields a rather complex meta-reduction. We stress that we follow Seurin’s
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work as closely as possible. The main difference lies in the way signature forgeries
are computed, namely in our case by exploiting the properties of the generic group
representation, instead of using an OMDL-oracle as in [31].
The main difference between the meta-reduction described in this section and the one

presented in Sect. 4.1.2 lies in the simulation of the random oracle queries issued by
the adversary in different sequential executions. In particular, the meta-reduction M
simulates the oracles procedures Encode, GetIdx, and O exactly as before.

Theorem 17. Let � be a representation-invariant computational problem. Suppose
there exists a generic reductionRO,A that (εR, tR)-solves �, having n-time black-box
access to a random instance of the hypothetical attacker described above. Then there
exists an algorithm M that (ε, t)-solves � with t ≈ tR and

ε ≥ εR − 2n(u + nq + tR)

p
− n ln

(
(1 − εA)−1

)

q
.

InterpretationLet us explainwhy the above theoremyields that any black-box reduction
must have a security loss of L = �(q). First, note that a black-box reduction must work
in particular for the adversaries described in Sect. 5.1 where εA is a constant and strictly
smaller than 1. In this case, the theorem yields

ε ≥ εR − 2n(u + nq + tR)

p
− cn

q
(6)

for some constant c. Note furthermore that the term 2n(u + nq + tR)/p is negligible,
and that the success probability ε of the meta-reduction must be negligible, too, if the
considered representation-invariant computational problem is “hard” (which would be
assumed for any meaningful reduction in a security proof). Applying this to Eq. 6, we
get

εR ≤ c′n
q

(7)

for some constant c′ and a sufficiently large security parameter.
To bound the loss L of any black-box reduction R, we can now compute

L = tR
εR

· εA
tA

≥ n · tA
εR

· εA
tA

= n · εA
εR

≥ q · n · εA
c′ · n = εA

c′ · q

Here, the first equality is by definition of the loss L , the first inequality uses thatR runs
the adversary n times such that we have tR ≥ n · tA, and the second inequality uses
Eq. 7. In conclusion, since εA and c′ are constants, we get L = �(q).

Proof of Theorem 17. Suppose that there exists a generic reduction R := RO,A that
(εR, tR)-solves �, when given access to a generic group oracle O and to n instances
of the same forger A, where the inputs to each instance of the forger are chosen by R.
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Fig. 6. Meta-reduction M0.

As before, the random oracle R.H for A is provided by R. We show how to construct
a meta-reduction M that has black-box access to R and that solves the representation-
invariant problem� directly. Again we proceed in a sequence of games and denote with
Mi the implementation of algorithmM in Game i , and with Xi the event thatR outputs
a valid solution Ŝ to Ĉ in Game i . As in Sect. 4.1.2, we will bound the probability with
which any efficient reduction R can distinguish each implementation Mi from Mi−1
for all i ∈ {1, 2, 3}. We start with an inefficient implementationM0 ofM, and modify
this implementation gradually until we obtain an efficient algorithmM3 that usesR to
solve �.

Game 0. M0 (cf. Fig. 6) takes as input an instance C = (C1, . . . ,Cu,C ′) ∈ G
u ×

{0, 1}∗ of the representation-invariant computational problem� and outputs a candidate
solution S. It also maintains the encoding of the group using two lists LG ⊆ G and
LE ⊆ E . Our first instance M0 perfectly simulates one adversary chosen from the
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family of adversaries described above uniformly at random. The only difference between
the real and the simulated adversary is that the meta-reduction does not fix the functions
F and table of the adversary � at the beginning, but instead defines them on the fly.

Initialization ofM0 At the beginning of the game,M0 chooses �R = (R1,1, . . . , Rn,q)

←$G
nq at random (these are the values the function F will be lazily programmed to

evaluate to), sets I := (C1, . . . ,Cu, R1,1, . . . , Rn,q), and runs Encode(I) to assign
encodings to these group elements. Furthermore, M0 initializes lists T , �, and D as
empty lists. Recall that R executes n sequential instances of the simulated adversary
A and that, depending on the input and the query/answer pairs to R.H, the successive
executions might be identical to a certain point. The list T will be used to store the inputs
and query answer pairs of each adversary to ensure consistency of F across adversary
instances. To keep the list� sufficiently small, it will not be fixed from the beginning, but
it will be defined on-the-fly. Finally,D is used to store known discrete logarithms. Then,
M0 runs a black-box simulation of the reduction R on input Ĉ := (LE

1 , . . . ,LE
u ,C ′).

Note that Ĉ is an encoded version of the challenge instance of � received byM0. That
is, we have Ĉ = (φ(C1), . . . , φ(Cu),C ′). Oracle queries of R = RO,A are answered
exactly as described in Sect. 4.1.2, with the difference being the forger that we describe
in the following.

The forgerA(φ(pk),m, ω) The simulation of the forgerA is rather technical, because
M0 has to provide a consistent simulation of the n sequential executions of A. As
already discussed at the beginning of this chapter, M0 has to emulate an identical
behavior ofA up to the forking point, or the reduction might lose its advantage. We split
this algorithm up into several sub-procedures (see Fig. 6). The main sub-procedures are
BeforeFork and AfterFork, with the idea that A runs the code of BeforeFork if
the forking point has not been reached yet and the simulation must be consistent with
a previous execution. The second procedure, AfterFork describes how M0 simulates
A after the forking point.
Nowwe proceedwith the technical description of themain procedure ofA and explain

the sub-procedures in the following.WhenRoutputs (φ(pk),m, ω) to invoke an instance
of A, then M0’s simulation of A initializes the list τ with its input (φ(pk),m, ω) and
the forgery σ with ⊥. These inputs are part of the function F and we need to store them
in order to ensure consistency with previous adversary instances.

The forger’s first stage BEFOREFORK(pk,m) In this stage, the forger first tries to
evaluate the function F on its input using EvalF. If no previous instance with the same
input exists, the instance has already forked and BeforeFork immediately returns. If
the instance has not yet forked from all other instances, i.e., if there exists a previous
instance with the same input, it receives back the index k of the R to which F evaluates.
In this case, it proceeds to ask query ci = R.H(φ(Rk),m) and appends (k, ci ) to τ . If it
has not already forged a signature it then computes Zi := Rkpkci . If the forking point
has been reached, the adversary now forks from the previous instances as described in
Fork. Otherwise, if �(φ(Zi )) is defined and it holds that �(φ(Zi )) = 1, then A forges
a signature by calling Forge(Rk, Zi ). The algorithm will repeat the described process
until the forking point is reached.
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The forger’s second stage AFTERFORK(pk,m) After the current instance has forked
from all previous instances it proceeds as follows. Until exactly q random oracle queries
have been asked, A queries ci := R.H(φ(R j,i ),m) and appends (( j, i), ci ) to τ . If the
adversary has not already forged a signature, it continues to compute Zi := R j,ipkci .
If �(φ(Zi )) is not yet defined, then the adversary determines the bit assigned to φ(Zi )

on-the-fly by invoking Decide. If afterward �(φ(Zi )) = 1, then a signature is forged.
The algorithm continues in this fashion until exactly q random oracle queries have been
asked.

Handling the forking point FORK(Z , k, c) When the simulation of A reaches the
forking point, it checks whether �(φ(Z)) has already been defined. If not, then the
simulation calls Decide. If yes and it holds that �(φ(Z)) = 1, i.e., ifM already knows
the discrete logarithm, the simulation produces a forgery.

Deciding whether to forge DECIDE(Z , k, c) To assign a bit b to Z , the simulation
tosses a biased coin δz ←$Berμ and appends (Z , δz) to �. Furthermore, if δz = 1 then
its discrete logarithm y is computed using DLog and (Z , y) is appended to D.

Computing the discrete logarithm DLOG(Z , k, c) Computation of the discrete loga-
rithm is performed by exhaustively searching for a y ∈ Zp satisfying gy = Z .

Producing a forgery FORGE(R, Z) Actually producing a forgery is trivial, because
forgeries will only be produced for Z with �(Z) = 1. By construction, for each such Z ,
D already contains the discrete logarithm. Accordingly, a forgery is produced by finding
the entry (Z ′, y′) ∈ D such that Z ′ = Z and returning (R, y′)

Finalization of M0 Eventually, R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S′) ∈ Ĝw ×
{0, 1}∗. ThenM0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of
group elements (LG

i1
, . . . ,LG

iw
) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs

(LG

i1
, . . . ,LG

iw
, S′).

Analysis of M0 Note that M0 provides a perfect simulation of the oracle O and it
also mimics the inefficient attacker from Sect. 5.1 perfectly, the only difference being
that F is chosen lazily and that � is defined on-the-fly. In particular, (R, y′) is a valid
forgery for message m and thus, RO,A outputs a solution Ŝ = (Ŝ1, . . . , Ŝw, S′) to Ĉ
with probability Pr

[
X0

] = εR. Since � is assumed to be representation-invariant,

S := (S1, . . . , Sw, S′) is therefore a valid solution to C , where Ŝi = φ(Si ) for i ∈ [w].
Thus M0 outputs a valid solution S to C with probability εR.

Game 1. In this game, we introduce an implementationM1 which extendsM0 with
bookkeeping, exactly as in Game 1 from the proof of Theorem 14. See Fig. 7. Briefly
summarized, we introduce an additional list LV ⊆ Z

u+nq
p to record the sequence of

operations performed byA. Let ηi denote the i-th canonical unit vector in Z
u+nq
p . Then

this list is initialized as LV
i = ηi for i ∈ [u + nq]. Whenever R asks to perform a

computation (LE
i ,LE

j , ◦), then M1 proceeds as before, but additionally appends a :=
LV
i + LV

j ∈ Z
u+nq
p (if ◦ = ·) or LV

i − LV
j ∈ Z

u+nq
p (if ◦ = ÷) to LV .
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Fig. 7. Extending M0 with additional bookkeeping yields M1. The elements highlighted in gray show the
difference to M0. All procedures not shown are not changed.

Furthermore, in order to keep list LV consistent with LG (exactly as in the proof
of Theorem 14), we replace the generic group oracle O of M0 with the following
procedure.

Generic group oracleO(e, e′, ◦)Given a query (e, e′, ◦) ∈ E×E×{·,÷}, the oracleO
determines the smallest indices i and j such that e = ei and e′ = e j by calling GetIdx.
It computes a := LV

i � LV
j ∈ Z

u+nq
p , where � := + if ◦ = · and � := − if ◦ = ÷, and

appends a to LV . Finally it returns Encode(LG

i ◦ LG

j ).

Recall that the initial content I of LG is I = (C1, . . . ,Cu, R1,1, . . . , Rn,q), and that
R performs only group operations on I. Now, by construction of M1, it holds that
LG

i = Eval(I,LV
i ) for all i ∈ [∣∣LG

∣∣]. Thus, at any point in time during the execution
ofR, the entire list LG of group elements can be recomputed from LV and I by setting
LG

i := Eval(I,LV
i ) for i ∈ [∣∣LV

∣∣].
Again this change is made to keep list LV consistent with LG, i.e., to ensure that

LG

i = Eval(I,LV
i ) for all i ∈ [∣∣LG

∣∣], where I := (C1, . . . ,Cu, R1,1, . . . , Rn,q).
Clearly R is completely oblivious to this change, thus

Pr
[
X1

] = Pr
[
X0

]

Game 2. In this game, we introduce an implementationM2 (cf. Fig. 8) which works
exactly as M1, except that it aborts when it would have to compute a new forgery at
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Fig. 8. The difference between M1 andM2.

a forking point. That is, M2 aborts when it would have to forge in the case where
it queried an Ri already asked by a previous instance of the adversary but received a
different answer ci . This step is important, because in the final implementationM3 we
will not be able to simulate valid signatures if this happens.

Fork(Z , k, c) : If Fork is called on input φ(Z), such that there exists no b ∈ {0, 1}
such that (Z , b) ∈ �, and Decide chooses a bit b = 1, then M2
aborts.

Analysis of M2 We claim that R is not able to distinguishM2 fromM1 with proba-
bility greater than n ln

(
(1 − εA)−1

)
/q. To show this, observe that Game 2 and Game 1

are perfectly indistinguishable, as long asM2 does not abort in Fork. We use Lemma 4
of [31] to bound the probability of an abort.

Lemma 18. (Based on Lemmas 1 and 4 of [31]) The probability that M2 aborts in
Fork is at most

nμ ≤ n ln
(
(1 − εA)−1

)

q

Proof. Following [31, Lemma 4], we observe that the probability that M2 aborts in
one execution is at most μ. With a union bound, we thus get an upper bound of nμ

on the abort probability in n executions. Furthermore, by [31, Lemma 1], it holds that
qμ ≤ ln

(
(1 − εA)−1

)
, which yields the claim. �

We thus have

Pr
[
X2

] ≥ Pr
[
X1

] − Pr[F1 ] ≥ Pr
[
X1

] − n ln
(
(1 − εA)−1

)

q
.

Game 3. Note that themeta-reductions described in previous games were not efficient,
because the simulation of the attacker in procedureA needed to compute a discrete log-
arithm by exhaustive search. In this final game, we construct an efficient meta-reduction
M3 that it identical to M2, with the difference that it simulates A efficiently. M3
proceeds exactly likeM2, except for the following (cf. Fig. 9).
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Fig. 9. The difference between M2 andM3.

DLog(Z , k, c) : TheDLog procedure chooses y ←$Zp uniformly randomand com-
putes

R∗
j,i := gy · pk−c (8)

Then it reads the first u + qn entries from LG as

(C1, ...,Cu, R
′
1,1, ..., R

′
q,n) := (LG

1 , . . . ,LG
u+qn),

replaces R j,i with R∗
j,i by setting

I∗ := (C1, . . . ,Cu, R
′
1,1, . . . , R

′
j,i−1, R

∗
i, j , R

′
j,i+1, . . . , R

′
q,n),

and finally re-computes the entire listLG fromLV by settingLG
a :=

Eval(I∗,LV
a ) for all a ∈ [∣∣LV

∣∣]. Note that this implicitly defines
Z as Z := gy , due to Eq. 8.

Note that meta-reduction M3 can be implemented efficiently, as it does not have to
compute discrete logarithms. It remains to show that it is indistinguishable from M2
for R with all but negligible probability.

Analysis of M3 First note that each σ with σ �= ⊥ output by A is a valid signature.
Moreover, we claim that R is not able to distinguish M3 from M2, except for a
negligibly small probability. To this end, we apply a lemma which is very similar to
Lemma 16 from the proof of Theorem 14.

Lemma 19. Let F2 denote the event thatR computes vectors LV
a ,LV

b ∈ LV such that

Eval(I,LV
a ) = Eval(I,LV

b ) ∧ Eval(I∗,LV
a ) �= Eval(I∗,LV

b )

or

Eval(I,LV
a ) �= Eval(I,LV

b ) ∧ Eval(I∗,LV
a ) = Eval(I∗,LV

b ).
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Then

Pr[F2 ] ≤ 2n(u + nq + tR)

p
.

Before we sketch the proof of this lemma (which is very similar to the proof of
Lemma 16), let us finish the proof of Theorem 14. Note that M3 is perfectly indis-
tinguishable from M2, unless Event F occurs. Applying the above lemma, we thus
obtain

Pr
[
X3

] ≥ Pr
[
X2

] − Pr[F2 ] ≥ Pr
[
X2

] − 2n(u + nq + tR)

p
.

Summing up, we thus obtain that

ε ≥ εR − 2n(u + nq + tR)

p
− n ln

(
(1 − εA)−1

)

q
.

Proof Sketch for Lemma 19. The proof of Lemma 19 is almost identical to the proof
of Lemma 16. The main difference is that we need to simulate many (up to n) signatures
in the multi-instance case. This works well, with the same arguments as in the proof of
Lemma 16, as long as we make sure that we do not need to re-assign the same encoding
twice. (In particular because this would invalidate a signature previously computed by
A, and thus be easily noticeable for R.)

By construction ofM3, this can happen only if Fork receives as input a group element
Z such that �(φ(Z)) = 1. Note that this is exactly when event F1 occurs, in which case
the game is aborted anyway, due to the changes introduced in Game 2.
Suppose that event F1 does not occur. In this case, we re-assign each encoding at most

once, by replacing in list LG a uniformly distributed group element Ri, j with another
uniform group element R∗

i, j , and re-computing all group elements contained in LG.
Following Lemma 16, each replacement can be noticed by R with probability at most

2(u + nq + tR)

p
,

where the term u + nq (instead of u + q as before) is due to the fact that in the multi-
instance case LG is now initialized with u + nq group elements. Since in total at most
n encodings are re-assigned throughout the game, a union bound yields

Pr [F2 ] ≤ 2n(u + nq + tR)

p
.

�
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6. On the Existence of Generic Reductions in the NPROM

The non-programmable random oraclemodel (NPROM)was first introduced by Fischlin
et al. [15] as a relaxation of the randomoraclemodel. In this relaxation, the randomoracle
is a uniformly chosen random function that is external to the reduction, meaning that
the reduction can no longer reprogram the oracle’s answers. The model does, however,
preserve the observability property of the ROM, i.e., the reduction can still observe all
the queries made by the adversary. As such, the NPROM remains an idealized model
but a weaker one.
In this section, we apply our meta-reduction technique to investigate the possibility

of finding any generic reduction R (not just tight ones) that reduces a representation-
invariant computational problem � to breaking the UUF-NMA-security of the Schnorr
signature scheme in the, weaker,Non-ProgrammableRandomOracleModel. This ques-
tion orthogonal to the search for tight security proofs in the random oracle model. As
in the sections before, our results here are negative. We prove that it is impossible to
find a generic reduction from any non-interactive representation-invariant computational
problem in the NPROM.

6.1. An Inefficient Adversary A
We once again describe an inefficient adversary A that breaks UUF-NMA-security of
Schnorr signatures. The adversary A for this case is very simple.

1. The input ofA is a Schnorr public key pk ∈ G, a messagem ∈ {0, 1}k , and random
coins ω ∈ {0, 1}κ .

2. The forger A chooses a uniformly random R ←$G, queries the random oracle to
compute c := H(R,m) and computes Z := pkc R.

3. Finally, the forger A uses exhaustive search to find y ∈ Zp such that Z = gy and
outputs (R, y).

Note that (R, y) is by definition of the Schnorr signature scheme always a valid
signature for message m under public key pk. Thus, the forger described above breaks
the UUF-NMA-security of Schnorr signatures with probability 1.

6.2. Main Result for Reductions in the NPROM

We will prove the following Theorem.

Theorem 20. Let � = (G�,V�) be a representation-invariant non-interactive com-
putational problem. Suppose there exists a generic reduction R that (εR, tR)-solves
�, having n-time black-box access to the hypothetical attacker A described above in
the non-programmable random oracle model. Then there exists an algorithm M that
(ε, t)-solves � with t ≈ tR and

ε ≥ εR(1 − 2n(u + tR)/p).

Remark 21. The values n, u, and tR are polynomially bounded while p is exponential.
Therefore, the theorem shows that the existence of a reduction R implies the existence
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of a meta-reduction M, which solves � with essentially the same success probability
and running time. Thus, an efficient (and even non-tight) reduction R can only exist if
there exists an efficient algorithm for �, which means that � cannot be hard.

Proof. Assume that there exists a generic reduction R := RO,A that (εR, tR)-solves
� when given access to a generic group oracle O, and a forger A(φ(pk),m, ω), where
the inputs to the forger are chosen by R. Furthermore, the reduction R can observe
all random oracle queries made by A; however, it cannot influence the responses. We
show how to build a meta-reduction M that has black-box access to R and solves the
representation-invariant problem � directly.
Note thatR cannot influence the random oracle responses, but only the initial inputs

to the adversary. If the reduction runsA twice on the same initial inputs, then all queries
made by A and its output will be identical. Hence, we may assume without loss of
generality thatR will never invokeA on the same input twice. This makes things much
simpler, as we do not have to ensure consistency between different instances of the
adversary.

Meta-reduction M At the beginning of the game, M receives a challenge C =
(C1, . . . ,Cu,C ′). It initializes the lists LG := ∅ and LE := ∅ and determines en-
codings by running (φ(C1), . . . , φ(Cu)) = Encode(C1, . . . ,Cu). Then it invokes
RA,O(φ(C1), . . . , φ(Cu),C ′). The oracleO is simulated exactly as in previous proofs.

Whenever R outputs (φ(pk),m, ω) to invoke an instance of A, M proceeds as fol-
lows. It chooses a random encoding e ←$ E , and raises event F1 and aborts if e ∈ LE .
Then it queries the random oracle provided by R to compute c := R.H(e,m), chooses
y ←$Zp, calls i := GetIdx(φ(pk)), and computes R := gy · (LG

i )−c. It raises event
F2 and aborts if R ∈ LG. Finally M appends e to LE and R to LG and outputs (e, y)
as a forgery.
Eventually, the algorithmR outputs a solution Ŝ := (Ŝ1, . . . , Ŝw, S′) ∈ Ew ×{0, 1}∗.

The algorithmM runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of
group elements (LG

i1
, . . . ,LG

iw
) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs

(LG

i1
, . . . ,LG

iw
, S′) (Fig. 10).

Analysis of M Note that M provides a perfect simulation of the oracle O. Further, it
mimics the attacker from Sect. 6.1 perfectly unless it aborts while attempting to simulate
a forger. In particular, (R, y) is always a valid forgery for messagem and thus,R outputs
a solution Ŝ = (Ŝ1, . . . , Ŝw, S′) to Ĉ with probability εR. Since � is assumed to be
representation-invariant, S := (S1, . . . , Sw, S′) with Ŝi = φ(Si ) for i ∈ [w] is therefore
a valid solution to C . Therefore, the success probability ofM is at least

ε ≥ εR · (1 − Pr[F1 ∪ F2 ]).

Since the n encodings chosen while simulating the forger A are chosen uniformly at
random, and we have

∣∣LE
∣∣ ≤ u + tR at all times, we can bound the probability that

F1 occurs using a union bound as Pr [F1 ] ≤ n · (u + tR)/p. Similarly, since y ←$Zp

is uniformly random and therefore R is a uniformly random group element in each
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Fig. 10. Implementation of M.

simulated forger, we have Pr [F2 ] ≤ n · (u + tR)/p. Therefore, using another union
bound, we get that Pr [F1 ∪ F2 ] ≤ Pr[F1 ] + Pr[F2 ] ≤ 2n(u + tR)/p.
Thus, in conclusion we obtain that

ε ≥ εR
(
1 − 2n(u + tR)

p

)

as claimed. �

Remark 22. Note that in the NPROM the reduction is no longer able to program the
random oracle, which significantly reduces its the power and makes it easier to simulate
the hypothetical adversary. Concretely, in the NPROM we have a leverage to argue
that the probability of event F2 is negligible, which is not possible in the ROM and
significantly simplifies the meta-reduction.
It is interesting to note that the above result does not carry over to the standard model.

The reason is that—as mentioned before—the adversary is not necessarily generic.
In the standard model, however, the hash function must be evaluated locally by both
the reduction and the adversary. Since they are using different encodings of the group
elements, a signature that appears valid for the adversary is invalid from the point of view
of the reduction with overwhelming probability. One might attempt to rectify this by
specifying different hash functions to adversary and reduction, i.e., specifying H(φ(·))
as the hash function for the adversary. However, this fails for the simple reason that φ(·)
is not necessarily efficiently computable.
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