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Abstract. The random-accessmemorymodel of computation allowsprogramconstant-
time memory lookup and is more applicable in practice today, covering many important
algorithms. This is in contrast to the classic setting of secure 2-party computation (2PC)
that mostly follows the approach for which the desired functionality must be represented
as a Boolean circuit. In this work, we design the first constant-round maliciously secure
two-party protocol in the RAMmodel. Our starting point is the garbled RAM construc-
tion of Gentry et al. (EUROCRYPT, pp 405–422, 2014) that readily induces a constant
round semi-honest two-party protocol for any RAM program assuming identity-based
encryption schemes. We show how to enhance the security of their construction into
the malicious setting while facing several challenges that stem due to handling the
data memory. Next, we show how to apply our techniques to a more recent garbled
RAM construction by Garg et al. (STOC, pp 449–458, 2015) that is based on one-way
functions.

Keywords. 2PC, ORAM, Garbled RAM, Constant-Round.

1. Introduction

1.1. Background: Secure Computation and the RAM Model

Secure multiparty computation enables a set of parties to mutually run a protocol that
computes some function f on their private inputs, while preserving a number of security
properties. Two of the most important properties are privacy and correctness. The for-
mer implies data confidentiality, namely nothing leaks by the protocol execution but the

∗Supported by the European Research Council under the ERC consolidators Grant Agreement No. 615172
(HIPS) and by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with
the Israel National Cyber Bureau in the Prime Minister’s Office. First author’s research partially supported by
a grant from the Israel Ministry of Science and Technology (Grant No. 3-10883). The paper appeared in TCC
2016, https://doi.org/10.1007/978-3-662-53641-4_20.

© International Association for Cryptologic Research 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-019-09321-3&domain=pdf
https://doi.org/10.1007/978-3-662-53641-4_20


Constant-Round Maliciously Secure Two-Party Computation 1145

computed output. The latter requirement implies that the protocol enforces the integrity
of the computations made by the parties, namely honest parties learn the correct out-
put. More generally, a rigorous security definition requires that distrusting parties with
secret inputs will be able to compute a function of their inputs as if the computation is
executed in an ideal setting, where the parties send their inputs to a incorruptible trusted
party that performs the computation and returns its result (also known by the ideal/real
paradigm). The feasibility of secure computation has been established by a sequence
of works [2,7,21,39,51], proving security under this rigorous definition with respect to
two adversarial models: the semi-honest model (where the adversary follows the instruc-
tions of the protocol but tries to learn more than it should from the protocol transcript)
and the malicious model (where the adversary follows an arbitrary polynomial-time
strategy).
Following these works, a lot of effort has been made into improving the efficiency

of computation with the aim of minimizing the workload of the parties [26–29,32,33,
35,40,42]. These general-purpose protocols are restricted to functions represented by
Boolean/arithmetic circuits. Namely, the function is first translated into a (typically
Boolean) circuit and then the protocol securely evaluates it gate by gate on the parties’
private inputs. This approach, however, falls short when the computation involves access
to a largememory since in the circuit-based approach, dynamicmemory accesses, which
depend on the secret inputs, are translated into a linear scan of the memory. This trans-
lation is required for every memory access and causes a huge blowup in the description
of the circuit.

The RAM Model of Computation We further note that the majority of applications
encountered in practice today aremore efficiently captured using random-access memory
(RAM) programs that allow constant-timememory lookup. This covers graph algorithms,
such as the knownDijkstra’s shortest path algorithm, binary search on sorted data, finding
the kth-ranked element, the Gale–Shapely stable matching algorithm and many more.
This is in contrast to the sequential memory access that is supported by the architecture
of Turing machines. Generic transformations from RAM programs that run in time T
generate circuits of size O(T 3 log T ), which are non-scalable even for cases where the
memory size is relatively small [10,43].
To address these limitations, researchers have recently started to design secure pro-

tocols directly in the RAM model [1,11,24]. The main underlying idea is to rely on
Oblivious RAM (ORAM) [19,22,41], a fundamental tool that supports dynamic mem-
ory access with poly-logarithmic cost while preventing any leakage from the memory.
To be concrete, ORAM is a technique for hiding all the information about the memory
of a RAM program. This includes both the content of the memory and the access pattern
to it.
In more detail, a RAM program P is defined by a function that is executed in the

presence of memory D via a sequence of read-and-write operations, where the memory
is viewed as an array of n entries (or blocks) that are initially set to zero. More formally,
a RAM program is defined by a “next-instruction” function that is executed on an input
x , a current state state and data element bread (that will always be equal to the last
read element from memory D) and outputs the next instruction and an updated state.
We use the notation P D(x) to denote the execution of such a program. To avoid trivial
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solutions, such as fetching the entire memory, it is required that the space used by the
evaluator grows linearly with log n, |x | and the block length (where a block is the atomic
accessible data item in memory). The space complexity of a RAM program on inputs
x, D is the maximum number of entries used by P during the course of the execution.
The time complexity of a RAM program on the same inputs is the number of read/write
accesses issued in the execution as described above.

Secure Computation for RAM Programs An important application of ORAM is in
gaining more efficient protocols for secure computation [1,12,14–18,24,25,30,36,37,
47,48]. This approach is used to securely evaluate RAM programs where the overall
input sizes of the parties are large (for instance, when one of the inputs is a database).
Among these works, only [1] addresses general secure computation for arbitrary RAM
programs with security in the presence of malicious adversaries. The advantage of using
secure protocols directly for RAM programs is that such protocols imply (amortized)
complexity that can be sublinear in the total size of the input. In particular, the overhead
of these protocols grows linearlywith the time complexity of the underlying computation
on the RAM program (which may be sublinear in the input size). This is in contrast to
the overhead induced by evaluating the corresponding Boolean/arithmetic circuit of the
underlying computation (for which its size is linear in the input size).
One significant challenge in handling dynamic memory accesses is to hide the actual

memory locations being read/written from all parties. The general approach in most
of these protocols is of designing protocols that work via a sequence of ORAM in-
structions using traditional circuit-based secure computation phases. More precisely,
these protocols are defined using two phases: (1) initialize and set up the ORAM, a
one-time computation with cost depending on the memory size, and (2) evaluate the
next-instruction circuit which outputs shares of the RAM program’s internal state, the
next memory operations (read/write), the location to access and the data value in case
of a write. This approach leads to protocols with semi-honest security with round com-
plexity that depends on the ORAM running time. In [24], Gordon et al. designed the first
provably secure semi-honest protocol based on this approach, which achieves sublinear
amortized overhead that is asymptotically close to the running time of the underlying
RAM program in an insecure environment.
As observed later by Afshar et al. [1], adapting this approach in the malicious setting

is quite challenging. Specifically, the protocol must ensure that the parties use state and
memory shares that are consistent with prior iterations, while ensuring that the running
time only depends on the ORAM running time rather than on the entire memory. They,
therefore, consider a different approach of garbling the memory first and then propagate
the output labels of these garbling within the CPU-step circuits.
Themain question left open bypriorwork is the feasibility of constant-round malicious

secure computation in the RAM model. In this work, we address this question in the two-
party setting. Since we are interested in concrete efficiency, we rule out practically
inefficient solutions that rely on general zero-knowledge proofs or alternatively require
public-key operations for every gate in the circuit. To be precise, we restrict our attention
to protocols that can be described in the OT hybrid and only rely on one-way functions
with poly-logarithmic amortized communication overhead in the memory size of the
RAM program.
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1.2. Background: Garbled RAM and Circularity

The feasibility of constant-round semi-honest secure two-party computation has es-
tablished by Lu and Ostrovsky in [37] by introducing a new cryptographic primitive,
analogue to garbled circuits [34,51], known as garbled RAM (or GRAM).

The Lu–Ostrovsky construction In order to understand the difficulty in destining
GRAMs, we consider a simplified version in which the memory is read-only. Then,
the garbled data in [37], denoted by ˜D, consists of n secret keys for some symmetric-key
encryption scheme. Namely, for each bit i ∈ [n], ˜D contains a secret key ski such that
ski = Fk(i, D[i]) and F is a pseudorandom function (PRF).
Furthermore, the garbled program ˜P consists of T garbled copies of a CPU-step

circuit that takes as input the current CPU state and the last read bit (state, bread) and
outputs (state′, i read) which contains the updated state and the next read location. The
garbled circuit of the j th CPU-step copy is defined so that the output labels for the
wires corresponding to state′ match the input labels corresponding to the input state
for the garbled circuit of the ( j + 1)th CPU-step copy. This allows the garbled state to
be securely transferred from one garbled CPU-step circuit to another, whereas the read
location i read is output in the clear (assuming that the running program is the product
of an ORAM compiler).
It remains to incorporate the data from the memory into the computation. Let

lbl(read, j+1)
0 , lbl(read, j+1)

1 be the two input labels of the wire corresponding to the bit
bread within the ( j + 1)th CPU-step copy. Note that these labels are created at “compile
time” whenever the garbled program is created and therefore cannot depend on i read

which is only known at “run-time”.
In order to ensure that the evaluator canonly learnoneof these labels, Lu andOstrovsky

devised an “augmenting” circuit where the j th CPU-step circuit outputs a translation
mapping translate, which allows the evaluator to translate a secret key into an input
label. This translation mapping consists of two ciphertexts translate = (ct0, ct1)where
ctb is an encryption of the label lbl

(read, j+1)
b under the secret key Fk(i, b). This requires

that the augmented CPU-step circuits will be hard-coded with the PRF key k.

The Circularity Problem Assume that the evaluator only gets one label per wire for
the first garbled circuit (namely, j = 1) and therefore does not learn anything beyond
i read, translate = (ct0, ct1)) and the garbled value state2 which is used as an input
to the second circuit. Now, assume that D[i read] = 0 and so the evaluator can use
Fk(i read, 0) to recover the label lbl(read,2)

0 for the next CPU-step circuit where j = 2.

Next, we need to argue that the evaluator does not learn anything about label lbl(read,2)
1 .

Intuitively, the above should hold since the evaluator does not know the secret key
generated by Fk(i read, 1) that is needed to decrypt ct1. Unfortunately, attempting to
make this intuition formal uncovers a complex circularity:

1. In order to argue that the evaluator does not learn anything about the “other” label
lbl(read,2)

1 , we need to rely on the privacy of ciphertext ct1.
2. In order to rely on the privacy of ciphertext ct1, we need to argue that the attacker

does not learn the secret key Fk(i read, 1), which implies that the attacker should
not use the PRF key k. However, this key is hard-coded within the second garbled
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circuit as well as within all future circuits. Therefore, to argue that the attacker
does not use k we need to rely on the privacy of the second garbled circuit.

3. In order to rely on the privacy of the second garbled circuit, we need to argue that
the evaluator only learns one label per wire, and in particular, we need to argue that
the evaluator does not learn the “other” label lbl(read,2)

1 , which is what we needed
to prove in the first place.

Applying our Techniques to the Lu–Ostrovsky Construction Unfortunately, our tech-
niques of factoring out the “hard-coded secrets” do not solve the above circularity prob-
lem. To illustrate that, consider the Lu–Ostrovsky constructionwith a smallmodification.
Namely, the PRF k is given as an input to the first garbled circuit ( j = 1) such that k
is transmitted from one CPU-step circuit to another, just like the program state. Then,
it is simple to verify that the above circularity still holds. Specifically, to argue that the
evaluator does not learn lbl(read,2)

1 we need to rely on the privacy of ct1, which implies
that we need to rely on the pseudorandomness of Fk(i read, 1). Nevertheless, k is also
transmitted to the second garbled circuit ( j = 2), which means that security must rely
on the privacy of the second garbled circuit, which again requires to rely on the fact that
the evaluator does not learn lbl(read,2)

1 and so on.

1.3. Our Results

In this work, we design the first constant-round maliciously secure protocol for arbitrary
RAM programs. Our starting point is the garbled RAM construction of Gentry et al. [18]
that is analogous to garbled circuits [4,51] with respect to RAM programs. Namely, a
user can garble an arbitrary RAM program directly without transforming it into a circuit
first. A garbled RAM scheme can be used to garble the data, the program and the input
in a way that reveals only the evaluation outcome and nothing else. In their work, that
is based on identity-based encryption (IBE) schemes, Gentry et al. proposed a way to
remove the circularity assumption that is additionally required in the construction of
Lu and Ostrovsky [37]. We first show how to transform their IBE-based protocol into a
maliciously secure 2PC protocol using the cut-and-choose technique. Following that, we
apply our transformation to the garbled RAM construction of Garg et al. [15] to obtain a
construction under the weaker assumption of one-way functions. As a side remark, we
believe that our techniques are applicable to the GRAM constructions of [37] and [14]
as well. Nevertheless, we chose not to explore these directions in this work due to the
non-standard circularity assumption in [37] and the complicated machinery in [14].
LetCP

CPU be the circuit that computes a singleCPU-step (which involves reading/writing
to the memory), T be the upper bound on the running time of a program P on input of
length |x | and κ, s be the computational and statistical security parameters. Then, our
first main theorem states the following,

Theorem 1.1. (Informal)Assuming oblivious transfer and IBE, there exists a constant-
round two-party protocol that securely realizes any RAM program in the presence of
malicious adversaries, where the size of the garbled database is n ·poly(κ, log n), the size
of the garbled input is |x |·O(κ) and the size of the garbled program is T ·poly(κ, log n)·s,
and its evaluation time is T · poly(κ) · polylog (n) · s.
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We next demonstrate how to apply our approach to the GRAM from [15] that is only
based on one-way functions. This implies the following theorem,

Theorem 1.2. (Informal) Assuming oblivious transfer, there exists a constant-round
two-party protocol that securely realizes any RAM program in the presence of malicious
adversaries where the asymptotic complexities are as implied by Theorem 1.1.

Challenges Faced in the Malicious Setting for RAM Programs

1. Memory management Intuitively speaking, garbled RAM readily induces a two-
party protocol with semi-honest security by exchanging the garbled input using
oblivious transfer (OT). The natural approach for lifting the garbled RAM’s se-
curity from semi-honest to malicious is using the cut-and-choose technique [33].
This means that the basic semi-honest protocol is instantiated s times (for some
statistical parameter s) and then the parties prove that they followed the prescribed
protocol in a subset of the instances. (This subset is chosen uniformly.) Finally,
the parties use the remaining instances to obtain the output (typically by taking the
majority of results). It has been proven that the output of this process leads to the
correct output with overwhelming probability. Applying the cut-and-choose tech-
nique to the RAM model naively leads to handling multiple instances of memory.
That is, since each semi-honest protocol instance is executed independently, the
RAMprogram implementedwithin this instance is associatedwith its own instance
of memory. Recalling that the size of the memory might be huge compared to the
other components in the RAM system, it is undesirable to store multiple copies of
the data in the local memory of the parties. Therefore, the first challenge we had
to handle is how to work with multiple copies of the same protocol while having
access to a single memory data.

2. Handling check/evaluation circuits The second challenge concerns the cut-
and-choose proof technique as well. The original approach to garble the memory
is by using encryptions computed based on PRF keys that are embedded inside
the garbled circuits. These keys are used to generate a mapping which allows
the receiver to translate between the secret keys and the labels of the read bit
in the next circuit. When employing the cut-and-choose technique, all the secret
information embedded within the circuits is exposed during the check process of
that procedure which might violate the privacy of the sender. The same difficulty
arises when hardwiring the randomness used for the encryption algorithm. A naive
solution would be to let the sender choose s sets of keys, such that each set is used
within the appropriate copy of the circuit. While this solution works, it prevents the
evaluator from determining the majority of the (intermediate) results of all copies.

3. Integrity and consistency of memory operations During the evaluation of
program P , the receiver reads and writes back to the memory. In the malicious
setting, these operations must be backed up with a mechanism that enforces cor-
rectness. Moreover, a corrupted evaluator should not be able to roll back the stored
memory to an earlier version. This task is very challenging in a scenario where
the evaluator locally stores the memory and fully controls its accesses without the
sender being able to verify whether the receiver has indeed carried out the required
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instructions (as that would imply that the round complexity grows linearly with
the running time of the RAM program).

Constant-Round 2PC in the RAM Model (Sect. 4) Towards achieving malicious se-
curity, we demonstrate how to adapt the garbled RAM construction from [18] into the
two-party setting while achieving malicious security. Our protocol consists of two main
components. First, an initialization circuit is evaluated in order to create all the IBE keys
(or the PRF keys) that are incorporated in the latter RAM computation, based on the
joint randomness of the parties. (This phase is not computed locally since we cannot
rely on the sender properly creating these keys.) Next, the program P is computed via
a sequence of small CPU steps that are implemented using a circuit that takes as input
the current CPU state and a bit that was read from the last read memory location, and
outputs an updated state, the next location to read, a location to write to and a bit to write
into that location. In order to cope with the challenges regarding the cut-and-choose
approach, we must ensure that none of the secret keys nor randomness are incorporated
into the circuits, but instead given as inputs. Moreover, to avoid memory duplication, all
the circuits are given the same sequence of random strings. This ensures that the same
set of secret keys/ciphertexts are created within all CPU circuits.
We note that our protocol is applicable to any garbled scheme that supports wire

labels in the sense of Definition 2.2 and can be optimized using all known optimizations
(e.g. row reduction, free-XOR, etc.). Moreover, in a variant of our construction the
initialization phase can be treated as a preprocessing phase that does not depend on
the input. We further note that our abstraction of garbled circuits takes into account
authenticity [4]. Meaning that, a malicious evaluator should not be able to conclude the
encoding of a string that is different than the actual output. This requirement is crucial
for the security of garbled circuits with reusable labels (namely, where the output labels
are used as input labels in another circuit) and must be addressed even in the semi-honest
setting (and specifically for garbled RAM protocols). This is because authenticity is not
handled by the standard privacy requirement. Yet, all prior garbled RAM constructions
do not consider it. We stress that we do not claim that prior proofs are incorrect, rather
that the underlying garbled circuits must adhere this security requirement in addition to
privacy.

Removing the IBE Assumption (Sect. 5) Our techniques are also applicable with
respect to the GRAM from [15]. Loosely speaking, in order to avoid circularity, Garg
et al. considered a different approach by constructing a tree for which the memory is
associated with its leafs. Moreover, each internal node is associated with a PRF key
that is encrypted under a PRF key associated with this node’s parent. Then, during the
evaluation, each navigation circuit outputs a translation table that allows the evaluator
to learn the input label for the next node based on the path to the read position in the
memory. In addition, the circuit refreshes the PRF key associated with this node and
computes a new set of PRF values based on this new key. This technique incurs an
overhead of log n on the running time of the program since for each memory access
the evaluator has to traverse a tree of depth log n and only then perform the actual
access. Consequently, while our first construction based on IBE (see Sects. 3 and 4)
requires s chains of CPU-step circuits of size T , removing the IBE assumption implies



Constant-Round Maliciously Secure Two-Party Computation 1151

that each CPU-step circuit is now expanded to log n navigation circuits. Moreover, the
initialization circuit now generates log n fresh keys for the log n navigation circuits of
each chain and passes these keys over the input wires, which means that the initialization
circuit is now of size O(T log n). On the other hand, the complexity of the initialization
circuit is much simpler now as it does not need to employ the complex TIBE algorithms
but rather simple XOR operations.

Complexity The overhead of our first protocol (cf. Sect. 4) is dominated by the com-
plexity induced by the garbled RAM construction of [18] times s, where s is the cut-and-
choose statistical parameter. The [18] construction guarantees that the size/evaluation
time of the garbled program is |CP

CPU| × T × poly(κ) × polylog (n) × s. Therefore, the
multiplicative overhead of our protocol is poly(κ)×polylog (n)× s. Our second proto-
col (cf. Sect. 5), which is based on the GRAM from [15], is log n times slower than the
first protocol due to the way the memory is being accessed (i.e. by traversing a tree). This
has an impact on the initialization circuit of each CPU-step circuits chain. As mentioned
above, the initialization circuit in the first protocol needs to realize the IBE algorithms
which contribute T ·poly(log k) to the circuit’s size, whereas the initialization circuit in
the second protocol needs to generates T · log n random PRF keys, each of size k. The
overall complexities are given in Table 1.

Reusable/Persistent Data Reusable/persistent datameans that the garbledmemory data
can be reused across multiple program executions. That is, all memory updates persist
for future program executions and cannot be rolled back by the malicious evaluator. This
feature is very important as it allows to execute a sequence of programswithout requiring
to initialize the data for every execution, implying that the amortized running time is only
proportional to the running time of the program in a unsecured environment. The garbled
RAM in [18] allows to garble any sequence of programs and inputs. Nevertheless, the set
of programs and inputs must be determined in advance and cannot be chosen adaptively
based on prior iterations. This is due to an issue, which arises in the proof, related to
another open problem known as “adaptiveYao”where the evaluator of the garbled circuit
may choose its input based on the garbled circuit. In this work, we prove that our scheme
preserves the weaker property as in [18] in the presence of malicious attacks as well.

Concurrent Work In a concurrent and independent work by Garg, Gupta, Miao and
Pandey [13], the authors demonstrate constant-round multiparty constructions for both

Table 1. A comparison between the constructions presented in [13] and in this paper. Memory refers to the
memory size that is needed to be stored by the parties when the original memory size is |D| = n; Comm/Comp
counts the communication and computation complexities of the constructions when the program’s original
run-time is T ; No. of GC counts the number of garbled circuits that have to be generated in the protocol; finally
Mem. dup. refers to the required number of memory duplications.

Assump. BB Memory Comm/Comp No. of GC Mem. dup.

[13] OWF ✓ O(n logb n + T )poly(κ, p) O(T loga+1 n)poly(κ, p) O(T loga n) p
[Sect. 4] IBE ✗ O(n logb n)poly(κ) O(sT loga n)poly(κ) O(sT loga n) 1
[Sect. 5] OWF ✗ O(n logb+1 n)poly(κ) O(sT loga+1 n)poly(κ) O(sT loga+1 n) 1
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the semi-honest and the malicious settings. Their maliciously secure construction is
based on the black-box garbled RAM [14], the BMR constant-round MPC protocol [3]
and the IPS compiler [27]. Their semi-honest secure protocol achieves persistent data,
whereas their maliciously secure protocol achieves the weaker notion of selectively
choosing the programs and inputs in advance, as we do. The core technique of pulling
the secrets out of the programs is common to both our and their work. In contrast to
[13], in our scheme only one party locally stores the memory throughout the evaluation.
These differences are summarized in Table 1.

The parameters p, κ and s refer to the number of parties and the respective computa-
tional and statistical security parameters. We denote the ORAM’s run-time and memory
overheads by loga n and logb n, respectively, where a, b are constants determined by the
choice of ORAM construction. The memory size in [13] has the term O(n logb n + T )

since this is based on the GRAM of [14] in which a memory entry is represented by a
bucket of garbled circuits and there is a log n-depth tree of such buckets. The number
of garbled circuits that reside within each bucket varies, buckets in lower levels have
less garbled circuits, and the total number of garbled circuits used as memory entries are
O(T ). In addition, it has the term poly(κ, p) since it is based on the BMR protocol in
which each bit is represented by a κp-bits string. The memory size in our first construc-
tion (based on IBE) depends only on the original memory size n, the ORAM’s overhead
logb n and the security parameter κ; hence, it has the simplest expression among the
three constructions. The memory size in our second construction (Sect. 5) has the term
O(n logb+1 n) since it is based on [15] which adds a tree of keys on top of the ORAM
underlying memory size. Note that in both of our constructions the memory size is in-
dependent of s (the cut-and-choose parameter). Both [13] and our second construction
imply communication and computation complexity proportional to O(T loga+1 n), as
they are, respectively, based on [14] and [15], which incur an overhead of O(log n) over
the ORAM’s complexity. Finally, since [14] treats the memory as garbled circuits, it
adds O(T ) garbled circuits over the O(T loga n) ones of the ORAM. In another work
[38], Miao demonstrates how to achieve persistent data for the two-party setting in the
programmable random oracle model, using techniques from [40] and [4], where the
underlying one-way function is used in a black-box manner.

2. Preliminaries

Basic Notations We denote the computational and statistical security parameters by κ

and s, respectively. We say that a function μ : N → N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that μ(κ) < 1

p(κ)
. We use the

abbreviation PPT to denote probabilistic polynomial time. We further denote by a ← A
the random sampling of a from a distribution A, by [d] the set of elements {1, . . . , d}
and by [0, d] the set [d] ∪ {0}.

We now specify the definition of (κ, s)-computational indistinguishability (denoted
κ,s≈ ), while the usual (computational indistinguishability) definition (denoted

c≈) can be
inferred.
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Definition 2.1. Let X = {X (a, κ, s)}a∈{0,1}∗,κ,s∈N and Y = {Y (a, κ, s)}a∈{0,1}∗,κ,s∈N
be two distribution ensembles. We say that X and Y are (κ, s)-computationally indis-

tinguishable, denoted X
κ,s≈ Y , if there exists a constant 0 < c ≤ 1 such that for every

PPTmachine D, every s ∈ N every positive polynomial p(·) and all sufficiently large κ

it holds that for every a ∈ {0, 1}∗ :

∣

∣Pr
[D(X (a, κ), 1κ ) = 1

] − Pr
[D(Y (a, κ), 1κ ) = 1

] ∣

∣ <
1

p(κ)
+ 1

2s
.

2.1. Garbled Circuits

A garbled circuit (Garb,Eval) [50] is a cryptographic non-interactive object that sup-
ports correctness and privacy. In more detail, a sender uses Garb to encode a Boolean
circuit, that computes some polynomial-time function f , in a way that (computation-
ally) hides from the receiver any information about f except for its output, where the
receiver extracts the output using algorithm Eval. In this work, we combine the notions
of garbled circuits and the cut-and-choose technique in order to support a malicious
sender. Specifically, the sender uses the algorithm Garb to generate s garbled versions
{C̃i }i∈[s] of a circuit C and some statistical parameter s, as well as their corresponding
encoded inputs {x̃i }i∈[s]. The evaluator then chooses a subset Z ⊂ [s] and uses Eval to
evaluate the garbled circuits from this set. Upon completing the evaluation, the evaluator
learns |Z | sets of output-wire labels {ỹi }i∈Z from which it outputs the majority.1 In the
following exposition, we use the notation of lbl j,iin,b to denote the j th input label of the

bit value b ∈ {0, 1} for the i th garbled circuit. Analogously, lbl j,iout,b represents the same
notation corresponding to an output wire.
We further abstract two important properties of authenticity and input consistency.

Loosely speaking, authenticity ensures that a malicious evaluator will not be able to
produce a valid encoding of an incorrect output given the encoding of some input and the
garbled circuit. This property is required due to the reusability nature of our construction.
Namely, given the output labels of some iteration, the evaluator uses these as the input
labels for the next circuit. Therefore, it is important to ensure that it cannot input an
encoding of a different input (obtained as the output from the prior iteration). In the
abstraction used in our work, violating authenticity boils down to the ability to generate
a set of output labels that correspond to an incorrect output. Next, a natural property that
a maliciously secure garbling scheme has to provide is input consistency. We formalize
this property via a functionality, denoted by FIC and formally described in Fig. 6. That
is, given a set of garbled circuits {C̃i }i and a set of garbled inputs {x̃i }i along with the
randomness r that was used byGarb, the functionality outputs 1 if the s sets of garbled
inputs {x̃i }s

i=1 (where |x̃i | = j) represent the same input value, and 0 otherwise.
We next proceed with our formal definition of garbled circuits.

1The cut-and-choose analysis ensures that, with overwhelming probability, the majority of these evalua-
tions will correspond to the correct output of C, condition on the remaining garbled circuits from [s]/Z being
correctly formed.
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Definition 2.2. (Garbled circuits.). A circuit garbling scheme with wire labels consists
of the following two polynomial-time algorithms:

– The garbling algorithm Garb:

({C̃i }i , {u, b, lblu,i
in,b}u,i,b

) ← Garb
(

1κ , s,C, {v, b, lblv,i
out,b}v,i,b

)

for every u ∈ [vin], v ∈ [vout], i ∈ [s] and b ∈ {0, 1}. That is, given a circuit C with
input size vin, output size vout and s sets of output labels {v, b, lblv,i

out,b}v,i,b, outputs

s garbled circuits {C̃i }i∈[s] and s sets of input labels {u, b, lblu,i
in,b}u,i,b.

– The evaluation algorithm Eval:

{

lbl1,iout , . . . , lbl
vout,i
out

}

i∈[s] = Eval
(

{

C̃i , (lbl1,iin , . . . , lblvin,iin )
}

i∈[s]

)

.

That is, given s garbled circuits {C̃i }i and s sets of input labels
{

lbl1,iin , . . . , lblvin,iin

}

i ,

outputs s sets of output labels {lbl1,iout , . . . , lbl
vout,i
out }i . Intuitively, if the input labels

(lbl1,iin , . . . , lblvin,iin ) correspond to some input x ∈ {0, 1}vin , then the output labels
(lbl1,iout , . . . , lbl

vout,i
out ) should correspond to y = C(x).

Furthermore, the following properties hold.

CorrectnessFor correctness, we require that for any circuit C and any input x ∈ {0, 1}vin ,
x = (x[1], . . . , x[vin]) such that y = (y[1], . . . , y[vout]) = C(x) and any s sets of output
labels {v, b, lblv,i

b,out}v,i,b (for u ∈ vin, v ∈ vout, i ∈ [s] and b ∈ {0, 1}), we have

Pr

[

Eval
({

C̃i , (lbl1,iin,x[1], . . . , lbl
vin,i
in,x[vin])

}

i

) = {

lbl1,iout,y[1], . . . , lbl
vout,i
out,y[vout]

}

i

]

= 1

where
({C̃i }i , {u, b, lblu,i

in,b}u,i,b
) ← Garb

(

1κ , s,C, {v, b, lblv,i
out,b}v,i,b

)

as described above.
Verifying the correctness of a circuit Note that in a cut-and-choose-based protocols,

the receiver is instructed to check the correctness of a subset of the garbled circuits. This
check can be accomplished by the sender sending to the receiver the randomness used in
Garb. In our protocol, this is accomplished by giving the receiver both input labels for
each input wire of the check circuits, for which it can verify that the circuit computes the
agreed functionality. We note that this check is compatible with all prior known garbling
schemes.

Privacy For privacy, we require that there is a PPT simulator SimGC such that for
any C, x, Z and

{

lbl1,zout , . . . , lbl
vout,z
out

}

z /∈[Z ], {v, b, lblv,z
out,b}v,z∈[Z ],b (i.e. one output label

for wires in circuits indexed by z /∈ Z and a pair of output labels for wires in circuits
indexed by z ∈ Z ), we have
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(

{C̃z, (lbl1,zin,x[1], . . . , lbl
vin,z
in,x[vin])}z

)

c≈ SimGC
(

1κ ,
{

lbl1,zout , . . . , lbl
vout,z
out

}

z∈[Z ], {v, b, lblv,z
out,b}v,i /∈[Z ],b

)

where
({C̃z}z, {u, b, lblu,z

in,b}u,z,b
) ← Garb

(

1κ , s,C, {v, b, lblv,z
out,b}v,z,b

)

and y = C(x).

Authenticity We describe the authenticity game in Fig. 7 (“Appendix A.1”) where the
adversary obtains a set of garbled circuits and garbled inputs for which the adversary
needs to output a valid garbling of an invalid output. Namely, a garbled scheme is said
to have authenticity if for every circuit C, for every PPT adversary A, every s and for
all large enough κ the probability Pr[AuthA(1κ , s,C) = 1] is negligible. Our definition
is inspired by the definition from [4] and also adapted for the cut-and-choose approach.

Input Consistency We abstract out the functionality that checks the validity of the
sender’s input across all garbled circuits. We say that a garbling scheme has input con-
sistency (in the context of cut-and-choose-based protocols) if there exists a protocol that
realizes the FIC functionality described in Fig. 6 in “Appendix A.1”.

Realizations of our garbled circuits’ notion We require the existence of a protocol
�IC that securely realizes the functionality FIC described in “Fig. 6”, in the presence of
malicious adversaries. In “Appendix B”, we exemplify this realization with [35].

2.2. The RAM Model of Computation

We follow the notation from [18] verbatim.We consider a program P that has a random-
access to amemory D of size n, which is initially empty. In addition, the program is given
a “short” input x , which we can alternatively think of as the initial state of the program.
We use the notation P D(x) to denote the execution of such program. The program can
read/write to various locations in the memory throughout the execution. Gentry et al.
also considered the case where several different programs are executed sequentially and
the memory persists between executions. Our protocol follows this extension as well.
Specifically, this process is denoted as (y1, . . . , yc) = (P1(x1), . . . , P�(xc))

D to indicate
that first P D

1 (x1) is executed, resulting in some memory contents D1 and output y1, then

P D1
2 (x2) is executed resulting in some memory contents D2 and output y2, etc.

CPU-step Circuit We view a RAM program as a sequence of at most T small CPU
steps, such that step 1 ≤ t ≤ T is represented by a circuit that computes the following
functionality:

CP
CPU(statet , breadt ) = (statet+1, i readt , iwritet , bwritet ).

Namely, this circuit takes as input the CPU state statet and a bit breadt that was read
from the last read memory location, and outputs an updated state statet+1, the next
location to read i readt ∈ [n], a location to write to iwritet ∈ [n] ∩ ⊥ (where ⊥ means
“write nothing”) and a bit bwritet to write into that location. The computation P D(x)

starts with an initial state state1 = (x1, x2), corresponding to the parties’ “short input”
where the initial read bit bread1 is set to 0 by convention. In each step t , the computation
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proceeds by running CP
CPU(statet , breadt ) = (statet+1, i readt , iwritet , bwritet ). Namely, we

first read from the requested location i readt by setting breadt+1 := D[i readt ] and if iwritet 
= ⊥
wewrite to the specified location by setting D[iwritet ] := bwritet . The value y = stateT +1
output by the last CPU step serves as the output of the computation. A program P has
a read-only memory access if it never overwrites any values in memory. In particular,
using the above notation, the outputs of CP

CPU always set iwritet = ⊥.

2.2.1. Predictably Timed Writes

The predictably timed writes property (denoted by “ptWrites” in [18]) implies that it
is easy to figure out the time t ′ in which some location was most recently written to
given only the current state of the computation and without reading any other values in
memory. More formally,

Definition 2.3. Aprogramexecution P D(x1, x2)haspredictably timedwrites if there
exists a polynomial size circuit, denoted WriteTime, such that for every t ∈ [T ], t ′ =
WriteTime(t, statet , i readt ) is the largest time (where t ′ < t) in which memory location

i readt has been written, i.e. WriteTime(t, statet , i readt ) = max
{

t ′ | t ′ < t ∧ iwritet ′

= i readt

}

.

In [18, Appendix A.3], the authors describe how to transform a program without
ptWrites into a program with ptWrite, which incurs overhead of O(log n) in memory
access time. The authors further prove the following theorem [18, Theorem D.1]:

Theorem 2.4. If G is a garbled RAM scheme that provides UMA security and supports
programs with ptWrites and O is an ORAM with ptWrites, then there exists a garbled
RAM scheme G ′ with full security supporting arbitrary programs.

Theorem 2.8 extends this theorem to the malicious setting.

2.3. Oblivious RAM (ORAM)

ORAM, initially proposed by Goldreich and Ostrovsky [19,22,41], is an approach for
making the access pattern of a RAM program input-oblivious. More precisely, it allows
a client to store private data on an untrusted server and provides oblivious access to data,
by locally storing only a short local state. A secure ORAM scheme not only hides the
content of the memory from the server, but also the access pattern, i.e. which locations
in memory the client is reading/writing. The work of the client and server in each
such access should be small and bounded by a poly-logarithmic factor in the memory
size, where the goal is to access the data without downloading it from the server in its
entirety. In stronger attack scenarios, the ORAM is also authenticated which means that
the server cannot modify the content of the memory. In particular, the server cannot
even “roll back” to an older version of the data. The efficiency of ORAM constructions
is evaluated by their bandwidth blowup, client storage and server storage. Bandwidth
blowup is the number of data blocks that are needed to be sent between the parties per
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request. Client storage is the amount of trusted local memory required for the client to
manage the ORAM, and server storage is the amount of storage needed at the server to
store all data blocks. Since the seminal work of Goldreich and Ostrovsky [22], ORAM
has been extensively studied [8,23,31,44–46,49,52], optimizing different metrics and
parameters.
We denote the sequence of memory indices and data written to them in the course of

the execution of a program P by MemAccess(P, n, x) = {(i readt , iwritet )}t∈[T ] and the
number of P’s memory accesses by T (P, n, x) (i.e. P’s running time over memory size
n and input x). We define an Oblivious RAM as follows. (The definition is the same as
in [9].)

Definition 2.5. A polynomial-time algorithm C is an Oblivious RAM (ORAM) com-
piler with computational overhead c(·) and memory overhead m(·), if C , when given
n ∈ N and a deterministic RAM program P with memory size n, outputs a program
P∗ with memory size m(n) · n, such that for any input x ∈ {0, 1}∗ it follows that
T (P∗(n, x)) ≤ c(n) · T (P, n, x) and there exists a negligible function μ such that the
following properties hold:

• Correctness For any n ∈ N, any input x ∈ {0, 1}∗ with probability at least 1−μ(κ),
P∗(n, x) = P(n, x).

• Obliviousness For any two programs P1, P2, any n ∈ N and any two inputs x1, x2 ∈
{0, 1}∗ if T (P1(n, x1)) = T (P2(n, x2)) and P∗

1 ← C(n, P1), P∗
2 ← C(n, P2)

then MemAccess(P∗
1 (n, x1)) and MemAccess(P∗

2 (n, x2)) are computationally
indistinguishable.

Note that the above definition (just as the definition from [22]) only requires an
oblivious compilation of deterministic programs P . This is without loss of generality as
we can always view a randomized program as a deterministic one that receives random
coins as part of its input.

2.4. Secure Computation in the RAM Model

We adapt the standard definition for secure two-party computation of [20, Chapter 7]
for the RAM model of computation. In this model of computation, the initial input is
split between two parties and the parties run a protocol that securely realizes a program
P on a pair of “short” inputs x1, x2, which are viewed as the initial state of the program.
In addition, the program P has random-access to an initially empty memory of size
n. The running time of the program, denoted T , is bounded by a polynomial in the
input lengths. Using the notations from Sect. 2.2, we refer to this (potentially random)
process by P D(x1, x2). In this work, we prove the security in the presence of malicious
computationally bounded adversaries.
Wenext formalize the ideal and real executions, considering D as a common resource.2

Our formalization induces two flavours of security definitions. In the first (and stronger)
definition, the memory accesses to D are hidden, that is, the ideal adversary that corrupts
the receiver only obtains (from the trusted party) the running time T of the program P and

2Nevertheless, we note that the memory data D will be kept in the receiver’s local memory.
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Fig. 1. A 2PC secure evaluation functionality in the RAM model for program P.

the output of the computation, y. Given only these inputs, the simulator must be able to
produce an indistinguishablememory access pattern. In theweaker, unprotectedmemory
access model described below, the simulator is further given the content of the memory,
as well as the memory access pattern produced by the trusted party throughout the
computation of P D(x1, x2). We present here both definitions, starting with the definition
of full security.

2.4.1. Full Security

Execution in the ideal model In an ideal execution, the parties submit their inputs to a
trusted party that computes the output; see Fig. 1 for the description of the functionality
computed by the trusted party in the ideal execution. Let P be a two-party program,
let A be a non-uniform PPT machine and let i ∈ {S,R} be the corrupted party. Then,
denote the ideal execution of P on inputs (x1, x2), auxiliary input z to A and security
parameters s, κ , by the random variable IDEALFRAM

A(z),i (s, κ, x1, x2), as the output pair of
the honest party and the adversary A in the above ideal execution.

Execution in the Real Model In the real model, there is no trusted third party and the
parties interact directly. The adversary A sends all messages in place of the corrupted
party andmay follow an arbitrary PPT strategy. The honest party follows the instructions
of the specified protocol π . Let P D be as above and let π be a two-party protocol for
computing P D . Furthermore, letA be a non-uniform PPT machine and let i ∈ {S,R} be
the corrupted party. Then, the real execution of π on inputs (x1, x2), auxiliary input z toA
and security parameters s, κ , denoted by the random variable REALπ

A(z),i (s, κ, x1, x2),
is defined as the output pair of the honest party and the adversary A from the real
execution of π .

Security as Emulation of a Real Execution in the Ideal Model Having defined the
ideal and real models, we can now define security of protocols. Loosely speaking, the
definition asserts that a secure party protocol (in the real model) emulates the ideal model
(in which a trusted party exists). This is formulated by saying that adversaries in the ideal
model are able to simulate executions of the real-model protocol.
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Definition 2.6. (Secure computation). Let FRAM and π be as above. Protocol π is
said to securely compute P D with abort in the presence of malicious adversary if, for
every non-uniform PPT adversaryA for the real model, there exists a non-uniform PPT
adversary S for the ideal model, such that for every i ∈ {S,R},
{

IDEALFRAM
S(z),i (s, κ, x1, x2)

}

s,κ∈N,x1,x2,z∈{0,1}∗
c≈

{

REALπ
A(z),i (s, κ, x1, x2)

}

s,κ∈N,x1,x2,z∈{0,1}∗

where s and κ are the security parameters.

A note on Definition 2.6. Note that in the RAMmodel the input may be very small while
the memory may be very large. Even though we are restrained from allowing n = |D|
be exponential in |x | = |x1| + |x2| since, yet, |x | may be larger than κ + s and thus we
intentionally set n = |D| = poly(κ, s) and explicitly exclude the case.

We next turn to a weaker definition of secure computation in the unprotected memory
access model and then discuss a general transformation from a protocol that is secure in
the UMA model to a protocol that is fully secure.

2.4.2. The UMA Model

In [18], Gentry et al. considered a weaker notion of security, denoted by unprotected
memory access (UMA), in which the receiver may additionally learn the content of the
memory D, as well as the memory access pattern throughout the computation including
the locations being read/written and their contents. Gentry et al. further demonstrated
that this weaker notion of security is useful by providing a transformation from this
setting into the stronger setting for which the simulator does not receive this extra
information. Their proof holds against semi-honest adversaries. A simple observation
shows that their proof can be extended for the malicious 2PC setting by considering
secure protocols that run the oblivious RAM and the garbling computations; see below
our transformation. In the context of two-party computation, when considering the ideal
execution, the trusted party further forwards the adversary the values MemAccess =
{(i readt , iwritet , bwritet )}t∈[T ] where i readt is the address to read from, iwritet is the address
to write to and bwritet is the bit value to be written to location iwritet in time step t . We
denote this functionality, described in Fig. 2, by FUMA. We define security in the UMA
model and then discuss our general transformation from UMA to full security.

Definition 2.7. (Secure computation in the UMA model). Let FUMA be as above. Pro-
tocol π is said to securely compute P D with UMA and abort in the presence of malicious
adversaries if, for every non-uniform PPT adversary A for the real model, there exists
a non-uniform PPT adversary S for the ideal model, such that for every i ∈ {S,R}, for
every s ∈ N, x1, x2, z ∈ {0, 1}∗ and for large enough κ

{

IDEALFUMA
S(z),i (s, κ, x1, x2)

}

s,κ,x1,x2,z

κ,s≈
{

REALπ
A(z),i (s, κ, x1, x2)

}

s,κ,x1,x2,z

where s and κ are the security parameters.
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Fig. 2. A 2PC secure evaluation functionality in the UMA model for program P.

2.4.3. From UMA to Full Security

Given a UMA-secure protocol for RAM programs that support ptWrites (Definition 2.3)
and an ORAM scheme, in [18] the authors presented a way to achieve a fully secure
protocol. Their result, adapted to the malicious setting, follows:

Theorem 2.8. [18, Theorem D.1] Let π be a secure two-party protocol that provides
UMA security against a malicious adversary for RAM programs that support ptWrites
in the presence of malicious adversaries and an ORAM compiler, denoted C, then there
exists a transformation Θ that is given π and C and outputs a fully secure protocol π ′.

Informally, their transformation requires the party tofirst run theORAMalgorithms for
the initialization of thememory D and compiling the program P in a secure computation
to obtain the oblivious memory D∗ and oblivious program P∗ and then run π over P∗
and D∗. The first step provides obliviousness, while the second step provides secure
memory accesses (privacy and authenticity).

2.4.4. On the Capabilities of Semi-honest in a Garbled RAM and ORAM Schemes

When considering ORAM schemes in the context of two-party computation, it must be
ensured that a read operation is carried out correctly. Namely, that the correct element
from the memory is indeed fetched, and that the adversary did not “roll back” to an
earlier version of that memory cell. Importantly, this is not just a concern in the presence
of malicious adversaries, as a semi-honest adversary may try to execute its (partial) view
on inconsistent memory values. Therefore, the scheme must withhold such attacks.
Handling the first attack scenario is relatively simply using message authentications
codes (MACs), so that a MAC tag is stored in addition to the encrypted data. Handling
roll backs is slightly more challenging and is typically done using (variants of) Merkle
trees [14]. In [18], rollbacks are prevented by creating a new secret key for each time
period. This secret key is used to decrypt a corresponding ciphertext in order to extract
the label for the next garbled circuit. By replacing the secret key each time period, the
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adversary is not able decrypt a ciphertext created in some time period with a secret key
that was previously generated.

2.5. Timed IBE [18]

TIBE was introduced by Gentry et al. in [18] in order to handle memory data writings
in their garbled RAM construction. This primitive allows to create “time-period keys”
TSKt for arbitrary time periods t ≥ 0 such that TSKt can be used to create identity
secret keys SK(t,v) for identities of the form (t, v) for arbitrary v but cannot break the
security of any other identities with t ′ 
= t . Gentry et al. demonstrated how to realize this
primitive based on IBE [5,6]. Informally speaking, the security of TIBE is as follows: Let
t∗ be the “current” time period. Given a single secret key SK(t,v) for every identity (t, v)

of the “past” periods t < t∗ and a single period key TSKt for every “future” periods
t∗ < t ≤ T , semantic security should hold for any identity of the form id∗ = (t∗, v∗)
(for which neither a period nor secret key was not given). The formal definition of timed
IBE which is used across our protocol is as follows:3

Definition 2.9. (Timed IBE (TIBE)). A TIBE scheme consists of 5 PPT algorithms
MasterGen,TimeGen,KeyGen,Enc,Dec with the syntax:

• (MPK,MSK) ← MasterGen(1κ): generates master public/secret key pair MPK,

MSK.
• TSKt ← TimeGen(MSK, t): generates a time-period key for time period t ∈ N.
• sk(t,v) ← KeyGen(TSKt , (t, v)): creates a secret key for the identity (t, v).
• ct ← EncMPK((t, v),msg): creates an encryption ofmsg under the identity (t, v).
• msg = Decsk(t,v)

(ct): decrypts a ciphertexts ct for the identity (t, v) using a secret
key sk(t,v).

The scheme should satisfy the following properties:
Correctness For any id = (t, v) and any msg ∈ {0, 1}∗, it holds that:

Pr

[

Decsk(ct) = msg

∣

∣

∣

∣

(MPK,MSK) ← MasterGen(1κ ),TSKt ← TimeGen(MSK, t),
sk ← KeyGen(TSKt , (t, v)), ct ← EncMPK((t, v),msg)

]

= 1.

Security We consider the following game between an attacker A and a challenger.

• The attacker A(1κ) chooses some identity id∗ = (t∗, v∗) with t∗ ∈ N and some
bound T ≥ t∗ (given in unary). The attacker also chooses a set of identities I such
that I contains exactly one identity (t, v) for each period t ∈ 1, . . . t∗−1. Lastly, the
adversary choosesmessagesmsg0,msg1 ∈ {0, 1}∗ of equal size |msg0| = |msg1|.

• The challenger chooses (MPK,MSK) ← MasterGen(1κ), and TSKt ←
TimeGen(MSK, t) for t ∈ [T ]. For each id = (t, v) ∈ I , it chooses skid ←
KeyGen(TSKt , id). Lastly, the challenger chooses a challenge bit b ← {0, 1} and
sets ct ← EncMPK(id∗,msgb). The challenger gives the attacker:

3We omit from the following definition the multiple secret keys that the adversary receives for identities
of the form (0, v) since in our scheme, data initialization is done as part of the computation if required.
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MSK, TSK = {TSKt }t∗<t≤T , sk = {(id, skid)}id∈S, ct.

• The attacker outputs a bit̂b ∈ {0, 1}.
The scheme is secure if, for all PPT A, we have |Pr [b = ̂b] − 1

2 | ≤ μ(κ) in the above
game.

2.6. Garbled RAM Based on IBE [18]

Our starting point is the garbled RAM construction of [18]. Intuitively speaking, gar-
bled RAM [37] is an analogue object of garbled circuits [4,50] with respect to RAM
programs. The main difference when switching to RAM programs is the requirement of
maintaining a memory data D. In this scenario, the data is garbled once, while many dif-
ferent programs are executed sequentially on this data. As pointed out in the modelling
of [18], the programs can only be executed in the specified order, where each program
obtains a state that depends on prior executions. The [18] garbled RAM proposes a fix to
the aforementioned circularity issue raised in [37] by using an identity-based encryption
(IBE) scheme [5,6] instead of a symmetric-key encryption scheme.
In more detail, the inputs D, P, x to the garbled RAM are garbled into ˜D, ˜P, x̃ such

that the evaluator reveals the output ˜P(˜D, x̃) = P(D, x) and nothing else. A RAM
program P with running time T can be evaluated using T copies of aBoolean circuit CP

CPU

whereCt
CPU computes the functionCP

CPU(statet , breadt ) = (statet+1, i readt , iwritet , bwritet ).
Then secure evaluation of P is possible by having the sender S garble the circuits
{Ct

CPU}t∈[T ] (these are called the garbled program ˜P), whereas the receiver R sequentially
evaluates these circuits. In order for the evaluation to be secure, the state of the program
should remain secret when moving from one circuit to another. To this end, the garbling
is done in a way that assigns the output wires of one circuit with the same labels as
the input wires of the next circuit. The main challenge here is to preserve the ability to
read and write from the memory while preventing the evaluator from learning anything
beyond the program’s output, including any intermediate value.
The original idea from [37] employed a clever usage of a PRF for which the secret

key is embedded inside all the CPU-step circuits, where the PRF’s role is twofold. For
reading from the memory, it is used to produce ciphertexts encrypting the labels of the
input wire of the input bit of the next circuit, whereas for writing it is used to generate
secret keys for particular “identities”. As explained in [18], the proof of [37] does not
follow without assuming an extra circularity assumption. In order to avoid circularity,
Gentry et al. proposed to replace the PRFwith a public-key primitive. As it is insufficient
to use a standard public-key cryptosystem (since the circuit must still produce secret keys
for each memory location i , storing the keys ski,0, ski,1), the alternative is to use IBE.
Below, we briefly describe their scheme.

The Read-Only Solution The initialized garbled data ˜D contains a secret key ski,b in
each memory location i ∈ [n] where D[i] = b, such that i, b serves as an identity secret
key for the “identity” (i, b). Moreover, each garbled circuit GCt

CPU is hard-wired with the
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master public-keyMPK of an IBE scheme.4 This way, the garbled circuit can encrypt the
input labels for the next circuit, which are associated with the bit that has just been read
from the memory. More specifically, the circuit generates two ciphertexts ct0, ct1 that
are viewed as a translation map. Namely, ctb = EncMPK(id = (i, b);msg = lblt+1

b )

and the correct label is extracted by decrypting the right ciphertext using ski,b, such that
lblt+1

0 , lblt+1
1 are the input labels in the next garbled circuit that are associated with the

last input bit read from the memory.

The Read–Write Solution A complete solution that allows both reading and writing is
slightly more involved. We describe how to garble the data and the program next.
Garbling the data The garbled data consists of secret keys sk(t,i,b) for identities of
the form id = (t, i, b)where i is the location in the memory D′, t is the last time step for
which that location was written to and b ∈ {0, 1} is the bit that was written to location
i at time step t . The honest evaluator only needs to keep the most recent secret key for
each location i .
Garbling the program Next, each CPU garbled circuit computes the last time step in
whichmemory location i waswritten to by computing t ′ = WriteTime(t, statet , i readt ).
Namely, if at time step t the garbled circuit GCt

CPU instructs to read from location i readt ,
then the circuit further computes the last time step, u, in which that i readt was written
to, it then computes the translation map translatet = (ct0, ct1) by ctb = EncMPK(id =
(u, i readt , b);msg = lblt+1

b )) and outputs it in the clear.
In order to write at time step t to memory location i = iwritet the value b = bwritet , a

naive solution would hard-wire MSK within each garbled circuit and then generate the
key sk(t,i,b) = KeyGenMSK(id = (t, i, b)), but this idea re-introduces the circularity
problem. Instead, Gentry et al. [18] solve this problem by introducing a new primitive
called timed IBE (TIBE). Informally, this is a two-level IBE scheme in which the first
level includes the master public/secret keys (MPK,MSK), whereas the second level
has T timed secret keys TSK1, . . . ,TSKT . The keys MPK,MSK are generated by
MasterGen(1κ), and the timed keys are generated by TSKt = TimeGen(MSK, t).

Then in the garbling phase, the key TSKt is hard-wired within the t th garbled circuit
GCt

CPU and is used to write the bit bwritet to memory location iwritet . To do that, GCt
CPU

computes the secret key for identity (t, i, b) by sk(t,i,b) ← KeyGen(TSKt , (t, i, b))

which is then stored in memory location i by the evaluator. Note that GCt
CPU outputs a

secret key for only one identity in every time step (for (t, i, b) but not (t, i, 1− b)). This
solution bypasses the circularity problem since the timed secret keys TSKt are hard-
wired only within the garbled circuit computing Ct

CPU and cannot be determined from
either sk(t,i,b) or the garbled circuit, provided that the TIBE scheme and the garbling
schemes are secure.

3. Building Blocks

In this section, we show how to overcome the challenges discussed in the introduction
and design the first maliciously secure 2PC protocol that does not require duplication

4For ease of presentation, Gentry et al. abstract the security properties of the IBE scheme using a new
primitive denoted by timed IBE (TIBE); see Sect. 2.5 for more details.
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of the data and is applicable for every garbling scheme in the sense of Definition 2.2.
Recall first that in [18] Gentry et al. have used a primitive called timed IBE, where
the secret key for every memory location and stored bit (i, b) is enhanced with another
parameter: the last time step t in which it has been written to the memory. The secret key
sk(t,i,b) for identity id = (t, i, b) is then generated using the hard-coded time secret-key
TSKt . Now, since algorithmKeyGen is randomized, running this algorithm s times will
yield s independent secret timed keys. This results in s different values to be written to
memory at the same location, which implies duplication of memory data D. In order
to avoid this, our solution forces the s duplicated garbled circuits for time step t to use
the same random string r , yielding that all garbled circuits output the same key for the
identity (t, i, b). Importantly, this does not mean that we can hard-code r in all those s
circuits, since doing this would reveal r when applying the cut-and-choose technique
on these garbled circuits as half of the circuits are opened. Clearly, we cannot reveal
the randomness to the evaluator since the security definition of IBE (and timed IBE)
does not follow in such a scenario. Instead, we instruct the sender to input the same
randomness in all s copies of the circuits and then run an input consistency check to
these inputs in order to ensure that this is indeed the case. We continue with describing
the components we embed in our protocol. An overview of the circuits involved in our
protocol can be found in Fig. 3, and a high-level overview of our protocol can be found
in Sect. 4.

3.1. Enhanced CPU-Step Function

The enhanced cpustep+ function is essentially the CPU-step functionality specified in
Sect. 2.2 enhanced with more additional inputs and output, and defined as follows

cpustep+(statet , breadt ,MPK,TSKt , rt ) = (statet+1, i readt , iwritet , bwritet , translatet )

where the additional inputs MSK,TSKt and rt are the master public key, a timed se-
cret key for time t and the randomness r used by the KeyGen algorithm. The output
translatet is a pair of ciphertexts ct1, ct2, encrypted underMPK, that allows the evalua-
tor to obtain the appropriate label of the wire that corresponds to the input bit in the next
circuit. We denote the circuit that computes that function by Ct

CPU+ . The functionality
of Ct

CPU+ is described in Fig. 4. We later describe how to securely realize this function
and, in particular, how these new additional inputs are generated and given to the T
CPU circuits. The enhanced CPU-step circuit wraps the WriteTime algorithm defined
in Definition 2.3.

3.2. Initialization Circuit

The initialization circuit generates all required keys and randomness to our solution
and securely transfers them to the CPU-step circuits. As explained before, our solution
requires the parties to input not only their input to the program but also a share to a
randomness that the embedded algorithms would be given (that is, the randomness is
not fixed by one of the parties). The circuit is described in Fig. 5.
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Fig. 3. Garbled chains GCINIT,GC1,i
CPU+ , . . .GCT,i

CPU+ for i ∈ [s]. Dashed lines refer to values that are passed
privately (as one label per wire), whereas solid lines refer to values that are given in the clear .

3.3. Batch Single-Choice Cut-And-Choose OT

As a natural task in a cut-and-choose-based protocol,we need to carry out cut-and-choose
oblivious transfers for allwires in the circuit, forwhich the receiver picks a subset Z ⊂ [s]
and then obtains either both input labels (for circuits indexed with z ∈ Z ), or the input
label that matches the receiver’s input otherwise. It is crucial that the subset of indices
for which the receiver obtains both input labels is the same in all transfers. The goal of
this functionality is to ensure the input consistency of the receiver, and it is named by
“batch single-choice cut-and-choose OT” in [35]. See Fig. 8 (“Appendix A.3”) for its
formal definition.
In addition to the above, our protocol uses the following building blocks: A garbling

scheme πGC = (Garb,Eval) that preserves the security properties from Definition 2.2;
timed IBE scheme (Sect. 2.5) πTIBE = (MasterGen,TimeGen,KeyGen,Enc,Dec)
with security as specified inDefinition 2.9 and a statistically binding commitment scheme
Com.
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Fig. 4. The CPU-step circuit.

4. Constat Round Malicious 2PC for RAM Programs

Given the building blocks detailed in Sect. 3, we are now ready to introduce our complete
protocol. Our description incorporates ideas from both [35] and [18]. Specifically, we
borrow the cut-and-choose technique and the cut-and-choose OT abstraction from [35]
(where the latter tool enables to ensure input consistency for the receiver). Moreover,
we extend the garbled RAM ideas presented in [18] for a maliciously secure two-party
protocol in the sense that we modify their garbled RAM to support the cut-and-choose
approach. This allows us to obtain constant round overhead. Before we delve into the
details of the protocol, let us present an overview of its main steps:
The parties wish to run the program P on inputs x1, x2 with the aid of an external

random-access storage D. In addition to their original inputs, the protocol instructs the
parties to provide random strings R1, R2 that suffice for all the randomness needed in
the execution of the CPU-step circuits.
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Fig. 5. Initialization circuit CINIT.

– Chains Considering a sequence of circuits CINIT,C1
CPU+ , . . . ,CT

CPU+ as a connected
chain of circuits, the sender S first generates s versions of garbled chains
GCi

INIT,GC
1,i
CPU+ , . . . ,GCT,i

CPU+ for every i ∈ [s]. It does so by iteratively feeding
the algorithmGarbwith s sets of pairs of output labels, where the first set of output
labels lblout are chosen uniformly and are fed, together with the circuit CT

CPU+ , to
procedureGarb, which in turn, outputs s sets of input labels. This process is being
repeated until the first circuit in the chain, i.e CINIT, the last s sets of input labels are
denoted lblin.

– Cut-and-choose Then, the parties run the batch single-choice cut-and-choose OT
protocol �SCCOT on the receiver’s input labels, which let the receiver obtain a pair
of labels for each of its input wires for every check chain with an index in Z ⊂ [s]
and a single label for each of its input wires for the evaluation chains with an index
not in Z , where Z is input by the receiver to �SCCOT.

– Sending chains and commitmentsThen S sends R all garbled chains together with
a commitment for every label associated with its input wires in all copies i ∈ [s].
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– Reveal the cut-and-choose parameter The receiver R then notifies S with its
choice of Z and proves that indeed that is the subset it used in �SCCOT (by sending
a pair of labels for some of its input wires in every chain with an index in Z ).

– Checking correctness of check chains When convinced, S sends R a pair of labels
for each input wire associated with the sender’s input; this allows R check all the
check chains, such that if all found to be built correctly than the majority of the
other, evaluation chains are also built correctly with overwhelming probability.

– Input consistency S then supplies R with a single label for each input wire asso-
ciated with the sender’s input, for all evaluation chains; this step requires checking
that those labels are consistent with a single input x2 of the sender. To this end, S
and R run the input consistency protocol that is provided by the garbling scheme
defined in Sect. 2.1.

– Evaluation Upon verifying their consistency, R uses the input labels and evaluates
all evaluation chains, such that in every time step t it discards the chains that their
outputs (i readt , iwritet , skt , translatet ) do not comply to the majority of the outputs
in all evaluation chains. We put a spotlight on the importance of the random strings
R1, R2 that the parties provide to the chains, these allow our protocol to use a single
block of data D for all threads of evaluation, which could not be done in a trivial
plugging of the cut-and-choose technique. As explained in Definition 2.2, verifying
the correctness of the check chains can be done given only (both of the) input labels
for CINIT circuits.

Achieving Full Security In the next step, we apply the general transformation discussed
in Sect. 2.4, from UMA to full security.

4.1. 2PC in the UMA Model

We proceed with the formal detailed description of our protocol.
Protocol �P

UMA executed between sender S and receiver R. Unless stated differently,
in the following parameters z, i, t, j , respectively, iterate over [Z ], [s], [T ], [�].
Inputs S has input x1 and R has input x2 where |x1| = |x2| = �′. R has a blank storage
device D with a capacity of n bits.

Auxiliary inputs

• Security parameters κ and s.
• The description of a program P and a set of circuits CINIT,C1

CPU+ , . . . ,CT
CPU+ (as

described above) that computes its CPU steps, such that the output of the last circuit
stateT +1 equals P D(x1, x2), given that the read/write instructions output by the
circuits are being followed.

• (G, g, q) where G is cyclic group with generator g and prime order q, where q is
of length κ .

• S and R, respectively, choose random strings R1 and R2, where |R1| = |R2| =
(4t +1) ·m. We denote the overall input size of the parties by �, that is, |x1|+|R1| =
|x2| + |R2| = �′ + (4t + 1) · m = �. Also, denote the output size by vout.
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The Protocol

1. Garbled CPU step and initialization circuits.

(a) Garble the last CPU-step circuit (t = T ):

• Choose random labels for the labels corresponding to stateT +1.
• Garble Ct

CPU+ by calling

({GCt,i
CPU}i , {lblu,i,t

in,b }u,i,b
) ← Garb

(

1κ , s,Ct
CPU+ , {lblv,i,t

out,b}v,i,b; r t
g

)

for v ∈ [vout], i ∈ [s], b ∈ {0, 1} and r t
g the randomness used withinGarb.

• Interpret the result labels {lblu,i,t
in,b }u,i,b as the following groups of values:

statet , breadt , MPKt , TSKt and rt , that cover the labels: {lblu,i,t
state,b}u,i,b,

{lblu,i,t
breadt ,b

}u,i,b, {lblu,i,t
MPKt ,b

}u,i,b, {lblu,i,t
TSKt ,b

}u,i,b, {lblu,i,t
rt ,b

}u,i,b resp.

(b) Garble the remaining CPU-step circuits. For t = T − 1, . . . , 1:

• Hard-code the labels {lblu,i
breadt+1 ,b

}u,i,b inside Ct
CPU+ .

• Choose random labels for the output wires that correspond to i readt , iwritet ,

skt,i,b and translatet and unite them with the labels {lblu,i,t+1
state,b }u,i,b corre-

spond to statet+1 obtained from the previous invocation of Garb; denote
the resulting set {lblv,i,t

out,b}v,i,b.
• Garble Ct

CPU+ by calling

({GCt,i
CPU}i , {lblu,i,t

in,b }u,i,b
) ← Garb

(

1κ , s,Ct
CPU+ , {lblv,i,t

out,b}v,i,b; r t
g

)

with {lblv,i,t
out,b}v,i,b the set of labels from above and r t

g the randomness used
within Garb.

• Interpret the result labels {lblu,i,t
in,b }u,i,b as the following groups of values:

statet , breadt , MPKt , TSKt and rt , that cover the labels: {lblu,i,t
state,b}u,i,b,

{lblu,i,t
breadt ,b

}u,i,b, {lblu,i,t
MPKt ,b

}u,i,b, {lblu,i,t
TSKt ,b

}u,i,b, {lblu,i,t
rt ,b

}u,i,b resp.

(c) Garble the initialization circuit CINIT:

• Combine the group of labels {lblu,i,1
state,b}i,b, that is covered by the value

state1 which resulted from the last invocation of Garb, with the groups
of labels {lblu,i,t

MPKt ,b
, lblu,i,t

TSKt,b, lbl
u,i,t
rt ,b

}u,i,b that are covered by the values

{MPKt ,TSKt , rt } for all t ∈ [T ]. That is, set {lblv,i
out,b}v,i,b = {

lblu,i,1
state,b ∪

lblu,i,t
MPKt ,b

∪ lblu,i,t
TSKt,b ∪ lblu,i,t

rt ,b

}

u,i,b for all u, i, t, b.
• Garble the initialization circuit:

({GCi
INIT}i , {lblu,i

in,b}u,i,b
) ← Garb

(

1κ , s,CINIT, {lblv,i
out,b}v,i,b; r0g

)

.
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• Interpret the input labels result from that invocation ofGarb by {lblu,i
S,b}u,i,b

and {lblu,i
R,b}u,i,b which are the input wire labels that are, respectively, as-

sociated with the sender’s and receiver’s input wires.

2. Oblivious transfers.
S and R run the batch single-choice cut-and-choose oblivious transfer protocol
�SCCOT.

(a) S defines vectors v1, . . . , v� so that v j contains the s pairs of random labels
associatedwithR’s j th input bit x2[ j] in all garbled circuitsGC1

INIT, . . . ,GC
s
INIT.

(b) R inputs a randomsubset Z ⊂ [s]of size exactly s/2 andbits x2[1], . . . , x2[�].
(c) The result of�SCCOT is that R receives all the labels associated with its input

wires in all circuits GCz
INIT for z ∈ Z and receives a single label for every

wire associated with its input x2 in all other circuits GC
z
INIT for z /∈ Z .

3. Send garbled circuits and commitments.
S sends R the garbled circuits chains GCi

INIT,GC
1,i
CPU+ , . . . ,GCT,i

CPU+ for every i ∈ [s],
and the commitment comu,i

b = Com(lblu,i
S,b,dec

u,i
b ) for every label in {lblu,i

S,b}u,i,b

where lblu,i
S,b is the bth label (b ∈ {0, 1}) for the sender’s uth bit (u ∈ [�]) for the i th

garbled circuit GCINIT.
4. Send cut-and-choose challenge.

R sends S the set Z along with the pair of labels associated with its first input bit
in every circuit GCz

INIT for every z ∈ Z . If the values received by S are incorrect,
it outputs ⊥ and aborts. Chains GCz

INIT,GC
1,z
CPU+ , . . . ,GCt,z

CPU+ for z ∈ Z are called
check circuits, and for z /∈ Z are called evaluation circuits.

5. Send all input garbled values in check circuits.
S sends the pair of labels and decommitments that correspond to its input wires
for every z ∈ Z , whereas R checks that these are consistent with the commitments
received in step 3. If not R aborts, outputting ⊥.

6. Correctness of check circuits.
For every z ∈ Z , R has a pair of labels for every input wire for the circuits GCz

INIT

(from steps 2 and 5). This means that it can check the correctness of the chains
GCz

INIT,GC
1,z
CPU+ , . . . ,GCT,z

CPU+ for every z ∈ Z . If the chain was not built correctly
for some z, then output ⊥.

7. Check garbled inputs consistency for the evaluation circuits.

• S sends the labels
{

(lbl1,zin,x1[1], . . . , lbl
�,z
in,x1[�])

}

z /∈[Z ] for its input x1.
• S and R participate in the input consistency check protocol �IC.

– The common inputs for this protocol are the circuit CINIT, its garbled
versions {GCi

INIT}z /∈Z and the labels
{

(lbl1,zin,x1[1], . . . , lbl
�,z
in,x1[�])

}

z /∈[Z ] that
were sent before.
– S inputs its randomness r0g and the set of output labels {lblv,i

out,b}v,i,b that
were used within Garb on input GCINIT, along with the decommitments
{decu,z

b }u∈[�],z /∈Z ,b∈{0,1}.
8. Evaluation.

Let Z̃ = {z | z /∈ Z} be the indices of the evaluation circuits.
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(a) For every z ∈ Z̃ , R evaluate GCz
INIT using Eval and the input wires it obtained

in step 7 and reveal one label for each of its output wires lblout,zINIT .
(b) For t = 1 to T :

i. For every z ∈ Z̃ , evaluate GCt,z
CPU+ using Eval and obtain one output

label for each of its output wires, namely lblout,t,z
CPU+ . Part of these labels

refer to statet+1,z . In addition,Eval outputs outt,z = (i readt,z , iwritet,z , bwritet,z ,

translatet,z) in the clear5. For t = T , Eval outputs stateT +1 in the clear
and we assign outt,z = stateT +1,z .

ii. Take themajorityoutt = Maj({outt,z}z∈Z̃ ) and remove from Z̃ the indices

z̃ for which outt,z̃ 
= outt . Formally set Z̃ = Z̃ � {z′ | outt,z′ 
= outt }.
This means that R halts the execution thread of the circuit copies that were
found flawed during the evaluation.

iii. Output outT +1.

We prove the following theorem (for further details about the hybrid model see A.2).

Theorem 4.1. Assume πGC is a garbling scheme (cf. Definition 2.2), πTIBE is TIBE
scheme (cf. Definition 2.9) and Com is a statistical binding commitment scheme (cf.
DefinitionA.1). Then, protocol �P

UMA securely realizesFUMA in the presence of malicious
adversaries in the {FSCCOT,FIC}-hybrid for all program executions with ptWrites (cf.
Definition 2.3).

• Let n = |D| be the size of the storage, T be the program’s run-time and |x | =
|x1| + |x2| be the overall input length to FUMA. Then, in protocol �P

UMA the size of
the garbled storage is O(n · κ), the size of the garbled input is |x | · O(κ) and the
size of the garbled program and its evaluation time are O(T · s · κ).

• In addition, there exists a secure protocol that realizes FRAM with garbled storage
of size n · poly(κ, log n), garbled input of size |x | · O(κ) and garbled program and
evaluation time of T · poly(κ, log n, s).

Proof. We begin our proof by analysing the garbled storage, program and input com-
plexities; the security proof is in Sect. 4.2.
Note that the size of the initialization circuit CINIT is O(T · κ) where the bound on the

randomness used by the IBE algorithms is O(κ). This is because the circuit evaluates
the IBE algorithms O(T ) times, each such sub-circuit is of size O(κ). In addition, all
components inside the enhanced CPU-step circuit Ct

CPU+ are of size O(κ). Since the
sender garbles s chains (where s is a statistical security parameter), the overall number
of garbled circuits is O(T · s) and their total size is O(T · s · κ). It is clear that the
communication and computation complexities depend on the number of garbled circuits
and their total size. In particular, our protocol requires O(T · s) oblivious transfers
followed by sending and evaluating O(T · s) garbled circuits of total size O(T · s · κ),
which leads to communication and computation complexities of O(T · s ·κ). Finally, for
each bit in the memory the evaluator stores O(κ) bits. Recalling that using the cut-and-
choose with our technique of factoring out the randomness to the initialization circuit

5Note that if S is honest, then outt,z1 = outt,z2 for every z1, z2 ∈ Z̃ .
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implies that the receiver stores a single copy of the memory. Thus, the memory size is
O(n · κ).
In transformation � (implied by Theorem 2.8), the parties apply an ORAM compiler

to the original program; this means that the run-time of the result program increases by
a factor of polylog n (where n is the memory size). It holds that the overall number of
garbled circuits is T ·poly(s, log n) and their total size is T ·poly(s, κ, log n). Similarly,
since there are polylog n more garbled circuits, the communication and computation
complexities are now T · poly(s, κ, log n) and the memory size is n · poly(κ, log n). �

4.2. Security Proof of Theorem 4.1

We first show the intuition of how our protocol achieves security in the UMA model,
whereas a full proof of Lemma 4.1 is presented at Sect. 4.2.1. With respect to garbled
circuits security, we stress that neither the selective-bit-attack nor the incorrect-circuit-
construction attack can harm the computation here due to the cut-and-choose technique,
which prevents the sender from cheating in more than s−|Z |

2 of the circuits without being
detected. As explained in [35], the selective-bit attack cannot be carried out successfully
sinceR obtains all the input keys associatedwith its input in the cut-and-choose oblivious
transfer, where the labels associated with both the check and evaluation circuits are
obtained together. Thus, if S attempts to run a similar attack for a small number of circuits,
then it will not effect the majority, whereas if it does so for a large number of circuits,
then it will be caught with overwhelming probability. In the protocol, R checks that half
of the chains and their corresponding input garbled values were correctly generated.
It is therefore assured that with high probability the majority of the remaining circuits
and their input garbled values are correct as well. Consequently, the result output by the
majority of the remaining circuits must be correct.
The proof for the case the receiver is corrupted is based on two secure components:

the garbling scheme and the timed IBE scheme, in the proof we reduce the security of
our protocol to the security of each one of them. The intuition here is that R receives |Z |
opened check circuits and |Z̃ | = s−|Z | evaluation circuits. Such that for each evaluation
circuit it only receives a single set of keys for decrypting the circuit. Furthermore, the keys
that it receives for each of the |Z̃ | evaluation circuits are associated with the same pair
of inputs x1, x2. This intuitively implies that R can do nothing but correctly decrypt |Z̃ |
circuits, obtaining the same value Pd(x1, x2). One concern regarding the security proof
stems from the use of a TIBE encryption scheme within each of the CPU-step circuits.
Consequently, we have to argue the secrecy of the input label that is not decrypted by
R. Specifically, we show that this is indeed the case by constructing a simulator that,
for each CPU step, outputs a fake translate table translate that correctly encrypts the
active label (namely, the label observed by the adversary), yet encrypts a fake inactive
label. We then show that the real view in which all labels are correctly encrypted is
indistinguishable from the simulated view in which only the active label is encrypted
correctly.

The Selective-Bit Attack in the Memory In the context of secure computation via
garbled circuit, the “selective-bit attack” means that the garbler may construct an input
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gate6 such that if the evaluator’s input on some input wire is b, the evaluation proceeds
successfully and otherwise, if the input is 1 − b, then the outcome of that gate is some
“gibberish” key that leads to an evaluation failure. This way, the garbler can learn a
single input bit of the evaluator, just by inspecting whether it aborts or not.
In our construction, the selective-bit attack is completely thwarted, both in garbled

circuits and in memory. That is, the cut-and-choose technique assures that the garbler
constructed the garbled circuits correctly (with overwhelming probability). Now, condi-
tioning on the event that all garbled circuits are correct, the only way the garbler affects
memory contents is by providing its part of the data for the one-time initialization phase,
which takes place before the program is being executed, or by providing its input to the
program being executed. Both kinds of behaviour are allowed even in the ideal model;
thus, it holds that the cut-and-choose technique protects the evaluator from selective-bit
attack in memory as well.

4.2.1. A Formal Proof

We prove Theorem 4.1 in a hybrid model where a trusted party is used to compute the
batch single-choice cut-and-choose oblivious transfer functionality FCT and the input
consistency check functionality FIC. We separately prove the case that S is corrupted
and the case that R is corrupted.

The case S is corrupted This case is very similar to the case in which S is corrupted
in a standard cut-and-choose-based protocol (e.g. [35]). Intuitively, S can only cheat
by constructing some of the circuits in an incorrect way. However, in order for this to
influence the outcome of the computation, it has to be that a majority of the evaluation
circuits, or equivalently over one-quarter of them, are incorrect. Furthermore, it must
hold that none of these incorrect circuits are part of the check circuits. The reason this bad
event only occurs with negligible probability is that S is committed to the circuits before
it learns which circuits are the check circuits and which are the evaluation circuits.
Specifically, observe first that in protocol �SCCOT, R receives all the keys associated
with its own input wires for the check circuits in Z (while S knows nothing about Z ).
Furthermore, S sends commitments for all input wire labels for input wires associated
with its input before learning Z . Thus, it can only succeed in cheating if it successfully
guesses over s/4 circuits which all happen to not be in Z . As shown in [35], this event
occurs with probability of approximately 1

2s/4 . The sender S further participates in an
input consistency protocol �IC which proves to R that all its inputs to the evaluation
circuits are consistent.
We now proceed to the formal proof. Let A be an adversary controlling S in an

execution of �P
UMA where a trusted party is used to compute the cut-and-choose OT

functionality FSCCOT and the input consistency check functionality FIC. We construct
a simulator S that runs in the ideal model with a trusted party computing F P D

UMA. The
simulator S internally invokesA and simulates the honest R forA as well as the trusted
party computing FSCCOT and FIC functionalities. In addition, S interacts externally with
the trusted party computing F P D

UMA. S works as follows:

6The attack is not limited to the input gates but it is easier to describe this way.
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1. S invokesA upon its input and receives the inputs thatA sends to the trusted party
computing FSCCOT functionality. These inputs constitute an � × s matrix of label
pairs {(lbl1,1R,0, lbl

1,1
R,1), . . . , (lbl

�,s
R,0, lbl

�,s
R,1)}, where lbl j,iR,b is the label associated with

the j th input wire of the receiver R in the i th garbled version of the circuit CINIT.
Recall that these labels constitute the garbled x1 and R1 for all chains i ∈ [s].

2. S receives fromA s garbled chains GCi
INIT,GC

1,i
CPU+ , . . . ,GCT,i

CPU+ for every i ∈ [s]
and 2�s commitments {comu,i

b } for every label lblu,i
S,b as described in the protocol

(the garbled values associated with the sender’s input wires to {CINIT}i for all
i ∈ [s]).

3. S chooses a subset Z ⊂ [s] of size s/2 uniformly at random. For every z ∈ Z ,
S hands A the values lbl1,zR,0, lbl

1,z
R,1 (i.e. the two labels for the first input wire of

R in every check chain, this proves to A that this chain is indeed a check chain,
otherwise, R could not know both of the labels for that wire).

4. A sends the decommitments to all labels of its input wires for the check chains
(i.e. all chains indexed by z ∈ Z ). Namely, upon receiving the set

{

lblu,i
S,b,dec

u,i
b }

where lblu,i
S,b is the bth label (b ∈ {0, 1}) for the sender’s uth bit (u ∈ [�]) for the i th

garbled circuit GCINIT and dec
u,i
b is its decommitment information. S verifies that

the decommitment information is correct. If not, S sends ⊥ to the trusted party,
simulates R aborting and outputs whatever A outputs.

5. S verifies that all the check chains GCz
INIT,GC

1,z
CPU, . . . ,GCT,z

CPU for z ∈ Z are cor-
rectly constructed (the same way that an honest R would). If not, it sends ⊥ to the
trusted party, simulates R aborting and outputs whatever A outputs.

6. S receives labels
{

( ˆlbl1,zin,x1[1], . . . , ˆlbl�,zin,x1[�])
}

z /∈[Z ]. In addition S, as a trusted party
in the input consistency protocol�IC, receives the randomness r0g , the output labels

{lblv,i
out,b}v,i,b that were used by A to generate the s garbled chains in step 1 of the

protocol, together with the decommitments decu,i
b for every label associated with

the sender’s input wires.
7. Given the values in the previous step, S checks the consistency of the labels it

received from S (as if the trusted party in FIC would). Note that if the check
follows, the simulator S is able to extract the sender’s input x1.

– If FIC returns 0, then S outputs ⊥, simulates R aborting and outputs whatever
A outputs.

– Otherwise, for every u ∈ [�′] (|x1| = �′ as specified above), if ˆlblu,z
in,x1[u] = lblu,z

in,0

set x1[u] = 0 and if ˆlblu,z
in,x1[u] = lblu,z

in,1 set x1[u] = 1. Note that S only extracts
the values associated with x1 and not R1.

8. S sends (InputS, x1) to the trusted party computing F P D

UMA and outputs whatever
A outputs and halts.

We next prove that for every A corrupting S and every s it holds that

{

IDEAL
F P D

UMA
S(z),S(κ, x1, x2)

}

κ∈N,x1,x2,z∈{0,1}∗
κ,s≈

{

REAL
�P

UMA
A(z),S(κ, x1, x2)

}

κ∈N,x1,x2,z∈{0,1}∗
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The sender’s view in our protocol is very limited; the values that it sees during the
execution are (1) the set of indices Z (in step 4 of the protocol), (2) |Z | pairs of labels
that proves that that Z is indeed the one used in �SCCOT, and (3) the output of the
execution. The simulator S chooses Z exactly as the honest receiver would do and sends
S the rest of the values correctly (also, if it caught a cheat, it aborts as a honest receiver
would do). Importantly, as we argue immediately, the adversary could not deviate from
the protocol (and produce sufficient amount of incorrect garbled chains) without being
caught with overwhelming probability.
Note that after step 3 all labels for input wires of S, and all garbled chains are fully

determined, also, one label for every input wire associated with R is fully determined as
well. Therefore, after this step each of the chain of circuits GCi

INIT,GC
1,i
CPU+ , . . . ,GCT,i

CPU+
is either “bad” or “not bad”.
It was previously shown, with regard to cut-and-choose analysis, that the probability

that R does not abort and yet the majority of the evaluation circuits is bad, is at most 1
2s/4 .

We denote this above event by badMaj∧noAbort and claim that as long that this event
does not occur, the result of the ideal and hybrid executions (where the oblivious transfers
and input consistency are ideal) is identically distributed. This is due to the fact that if
less than s/4 circuits are bad, then the majority of circuits evaluated by R compute the
correct chain of circuits GCi

INIT,GC
1,i
CPU+ , . . . ,GCT,i

CPU+ which in turn correctly evaluates
the program P D due to the correctness of the garbled scheme. In addition, by the ideal
input consistency, the input x1 extracted by the simulator S and sent to the trusted party
computing P D corresponds exactly to the input x1 in the computation of every not-bad
chain of circuits. Thus, in every not-bad chain R outputs P D(x1, x2), and this is the
majority of the evaluation circuits. We conclude that as long as badMaj ∧ noAbort
does not occur, R outputs P D(x1, x2) in both the real and ideal executions. Finally, we
observe that S sends ⊥ to the trusted party whenever R would abort and output ⊥. This
completes the proof of this corruption case.
The case R is corrupted The intuition of this proof is as follows. For each of the eval-
uation chains, the receiver only receives a single set of input labels. Furthermore, these
labels are associated with the same pair of inputs x1, x2 due to the single-choice cut-and-
choose OTFSCCOT functionality. This implies that R can do nothing but honestly evaluate
the evaluation circuits, where each final circuit outputs the same value P D(x1, x2). That
is, assume that R evaluates the s/2 garbled circuits GCt,z

CPU+ for CPU step t and all z /∈ Z ;
these garbled circuits output a translate translatet tuple which corresponds to the values
ct0 = EncMPK(id0, lbl

t+1
0 ) and ct1 = EncMPK(id1, lbl

t+1
1 ).7 Now, since R only knows

a secret key for the identity idb from a previous write operation, yet it does not know
the secret key that is associated with id1−b it can only decrypt ctb. Below we formalize
this intuition, namely, we show that R cannot learn any significant information about
the plaintext within ct1−b and thus cannot extract the other label lbl1−b for the next
CPU-step circuit.
LetA be an adversary controlling R in an execution of protocol �P

UMA where a trusted
party is used to compute the cut-and-choose OT functionality FSCCOT and the input

7Recall that all the circuits evaluated in time t output the same value for translatet since they all use the
same randomness to compute it.
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consistency functionality FIC. We construct a simulator S for the ideal model with a
trusted party computing F P D

UMA.

1. S invokes A upon its input and receives its inputs to the trusted party computing
FSCCOT. These inputs consist of a subset Z ⊂ [s] of size exactly s/2 and bits
x2[1], . . . , x2[�]. (If Z is not of size exactly s/2, then S simulates S aborting,
sends ⊥ to the trusted party computing F P D

UMA, and halts outputting whatever A
outputs.)

2. S sends (InputR, x2) to the trusted party computing F P D

UMA and receives
the output (OutputR, T, y) and the memory accesses
MemAccess = {(i readt , iwritet , bwritet )}t∈[T ] where i readt is the address to read
from, iwritet is the address to write to and bwritet is the bit value to be written to iwritet
in time step t .

3. S builds s chains of garbled circuits, starting from the last CPU step T towards
the first one, in the following manner. (Note that a single call to SimGC produces
both the evaluation and the check circuits).

(a) Initialize theTIBEscheme: generate thekeys (MPK,MSK) ← MasterGen(1κ)

and TSKt ← TimeGen(MSK, t) for t = 1, . . . , T .
(b) For the last time step t = T , create {GCt,z

CPU+}z by callingSimGC on the circuit
Ct

CPU+ such that for the evaluation circuits (z /∈ Z ) the output labels statet+1
are set to the value y in the clear, whereas for the check circuits (z ∈ Z ) the
simulator chooses random pairs of output labels. This produces the input labels
for the input statet and the bit breadt .

(c) For any other t = T − 1 . . . 1, recall first that the values i readt , iwritet , bwritet are
given in the clear (from MemAccess). Also, note that the labels lblt+1,z

read,b for

the input bit b of circuit GCt+1,z
CPU+ had been produced by the simulator in step

t + 1. The simulator S computes the secret key sk(t,i,b) and the translation
table translatet as follows:

– Let i = iwritet and b = bwritet . If i =⊥, then set sk(t,i,b) :=⊥. Else, set
sk(t,i,b) ← KeyGen(TSKt , id = (t, i, b)).

– Let i = i readt , t ′ < t be the last write time to location i (i.e. the largest value
such that iwritet ′ = i readt ) and let b = bwritet ′ be the bit written to the location
at time t ′. (This can be easily computed by the givenMemAccess.) Then,
set:

ctb ← EncMPK((t ′, i, b), lblt+1,z
read,b), ct1−b ← EncMPK((t ′, i, b), 0)

for all z /∈ Z , and set translatet = (ct0, ct1).

(d) Generate {GCt,z
CPU+}z by calling SimGC on the circuit Ct

CPU+ such that for the
evaluation circuits (z /∈ Z ) it inputs the values iwritet , i readt , sk(t,i,b), translatet

as output labels and for the check circuits (z ∈ Z ) it inputs random pairs of
labels. Note that when t = 1, the input labels produced by SimGC for state1
actually refer to the parties inputs x1, x2.
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(e) At this point, the input labels for all CPU-step circuits {GC1,z
CPU+ , . . . ,GCT,z

CPU+}z

are known to S. (Specifically, these correspond to either a single label per
wire for z /∈ Z , or a pair of labels per wire for z ∈ Z .) These consti-
tute the output labels that are required for SimGC to simulate the initial-
ization circuits {GCz

INIT}z . Namely, we have the output labels for x1, x2 and
{MPKt ,TSKt , rKeyGen

t , rEnct,0 , rEnct,1 }t∈[T ] (again, a single label if z /∈ Z and
pair of labels if z ∈ Z ). The simulator S inputs these labels as the output labels
toSimGCwhich produces the labels for the input wires of the circuits {Cz

INIT}z .

4. Let Z̃ = s\Z be the indices of the evaluation chains. Then in the previous step
the simulator produced s sets of labels. For chains indexed with z ∈ Z (check
chain) the set consists of � pairs of labels corresponding to R’s inputs wires in
GCz

INIT, whereas for chains indexed with z ∈ Z̃ (evaluation chains) the set consists
of � single labels corresponding to R actual input x2. These (2�|Z | + �|Z̃ |) labels
are denoted by lblZ = (lbl1,zR,0, lbl

1,z
R,1, . . . , lbl

�,z
R,0, lbl

�,z
R,1) for all z ∈ Z , and by

lblZ̃ = (lbl1,zR,x2[1], . . . , lbl
�,z
R,x2[�]) for z ∈ Z̃ . Then, S hands A all the above labels,

i.e. the union lblZ ∪ lblZ̃ as its output from the oblivious transfers. (Note that S
knows x2 because it extracted it in the beginning of the simulation.)

5. The simulator S sends A the garbled chains and commitments on the labels of all
input wires of circuits {GCi

INIT}i∈[s].
6. S receives the set Z ′ along with a pair of labels for every z ∈ Z (proving that A

indeed entered Z ).

(a) If Z 
= Z ′ and yet the values received are all correct, then S outputs ⊥ and
halts.

(b) If Z = Z ′ and any of the values received are incorrect, then S sends ⊥ to the
trusted party, simulates S aborting and halts outputting whatever A outputs.

(c) Otherwise, S proceeds as below.

7. S hands A the input labels that correspond to the sender’s input for all z /∈ Z and
u ∈ [�] and sends the value 1 as the output of the trusted party when using the
input consistency check functionality FIC.

8. S outputs whatever A outputs and halts.

We now show that for every A corrupting R and every s it holds that:

{

IDEAL
F P D
UMA

S(z),R(κ, x1, x2)

}

κ∈N,x1,x2,z∈{0,1}∗
κ,s≈

{

REALπ
A(z),R(κ, x1, x2)

}

κ∈N,x1,x2,z∈{0,1}∗

In order to do so, we define a series of hybrid distributions Hybt for t = 1, . . . , T . In
the hybrid t , the garbled CPU-step circuits GCt+1,z

CPU+ , . . . ,GCT,z
CPU+ for z ∈ Z are created

as in the real distribution (that is, both labels lblt+1,z
read,0, lbl

t+1,z
read,1 for the input bit of the

next circuit are encrypted) and the garbled CPU-step circuits GC1,z
CPU+ , . . . ,GCt,z

CPU+ for
z ∈ Z are created as in the simulation. In Hybt , when we simulate the t th circuits
GCt,z

CPU+ , we use the output labels for statet+1, breadt+1 that these wire takes on during the
real computation (i.e. the garbled circuits for time t + 1 were generated as in the real
execution).
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We also define a hybrid distributionHyb′
t which is likeHybt except for the simulation

of the t th CPU-step circuits GCt,z
CPU+ for z ∈ Z . Instead of choosing translatet as in the

simulation described above, we choose translatet = (ct0, ct1) to both be encryptions
of the correct label of the next circuit:

ct0 ← EncMPK((t ′, i readt , 0), lblt+1,z
read,0) , ct1 ← EncMPK((t ′, i readt , 1), lblt+1,z

read,1)

where lblt+1,z
read,0 and lbl

t+1,z
read,1 are the labels corresponding to the bits 0 and 1 for the wire

bwritet+1 in garbled circuit GCt+1,z
CPU+ , which is still created using the real garbling procedure.

(If t = T , we define Hyb′
t to be the same as Hybt ).

Note that in Hyb0 none of the CPU-step circuits are simulated, yet, the initialization
circuits GCz

INIT are still simulated. Therefore, we define the hybrid Hyb(−1) to be the
distribution where all circuits are created as in the real distribution.
Note that Hyb−1 is equal to the real distribution and HybT is equal to the simulated

distribution. Therefore, we prove indistinguishability by showing that for each t , we
have:

Hybt
c≈ Hyb′

t+1
c≈ Hybt+1

and

Hyb(−1)
c≈ Hyb0

We prove this by the following claims:

Claim 4.1. For each t ∈ {0, . . . , T }, it holds that Hybt
c≈ Hyb′

t+1.

Proof. This follows directly from the security of the circuit garbling scheme applied
only to the garbled CPU set of circuits for step t + 1. This is because, in Hybt , all
GC1,z

CPU+ , . . . ,GCt,z
CPU+ are already simulated, and hence, they only rely on a subset of the

input wire labels for the input statet+1, bwritet+1 , in the t +1th set of circuits, corresponding
to the actual values that these wires should take on during the real computation. (This
is true for the wire corresponding to bwritet+1 since the simulated translatet used to create
the t th circuit only encrypts one label and the other ciphertext is “dummy”.)
Formally, the difference between the distributions is that the garbled circuits for the

(t+1)th step inHybt are generated byGarb, whereas inHyb′
t+1 theywere are generated

bySimGC. In both cases, the circuit generates translate according to the real execution.
Therefore, given inputs x1, x2 and a distinguisher D′ between these two distributions,
we can construct a distinguisher D′′ that breaks the privacy of πGC. In particular, the
distinguisher D′′ is given a set of garbled circuits {GCt+1,z

CPU+ }z /∈Z generated either by the
garbling schemeGarb or by its simulator SimGC, where the output wires’ labels equal
the input wires’ labels obtained from garbling {GCt+2,z

CPU+ }z /∈Z (note that by Definition 2.2
the privacy must hold for every choice of such labels). The distinguisher D′′ produces
garbled circuits {GC j,z

CPU+}z /∈Z for j = T, . . . , t +2 exactly as in the real execution; then,
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it plugs in the garbled circuits {GCt+1,z
CPU+ }z /∈Z (received as input) and completes the chain

of garbled circuits as in the simulation and outputs the entire chain. Observe that if the
garbled circuits {GCt+1,z

CPU+ }z /∈Z (given to D′′ as input) are output of Garb, then the chain
output byD′′ is distributed identically to Hybt . Otherwise, it is distributed identically to
Hyb′

t+1. We conclude that the advantage of D′′ equals the advantage of D′, which has
to be negligible. �

Claim 4.2. For each t ∈ {0, . . . , T } it holds that Hyb′
t

c≈ Hybt .

Proof. This follows directly from the security of the TIBE scheme. The only difference
betweenHyb′

t andHybt is the value of translatet = (ct0, ct1)used to simulate the t th set
of circuits. Let b = bwritet+1 be the value of the read bit in location i readt in the computation.
Then, in Hyb′

t we set

ctb ← EncMPK((t ′, i readt , b), lblt+1,z
read,b) , ctb ← EncMPK((t ′, i readt , b), lblt+1,z

read,1−b)

whereas in Hyb j we set

ctb ← EncMPK((t ′, i readt , b), lblt+1,z
read,b) , ctb ← EncMPK((t ′, i readt , b), 0)

where u < t .
Therefore, we reduce this to the TIBE game where the adversary is given the master

public keyMPK, the timed keys TSKt+1, . . . ,TSKT , a single identity secret key for the
identity (t ′, iwritet ′ , bwritet ′ ) for each time step 0 < t ′ < t . (This key is used to simulate the
set of circuits for time step t ′.)
Assume the existence of parties inputs x1, x2 for which there exists a distinguisherD

for the hybridsHyb′
t andHybt . We construct a distinguisherD′ for the TIBE scheme.D′

is given MPK,TSKt+1, . . . ,TSKT from the game along with one secret key for every
time step t ′ < t . D′ works as follows:

1. Build the circuits GCT,z
CPU+ , . . . ,GCt+1,z

CPU+ for all z /∈ Z as in the real distribution.
2. For the t th circuits GCt,z

CPU+ , let b = breadt be the bit that is being read frommemory
at time t in the real execution of the program (D′ knows it since it knows x1, x2
and can infer b from it) and let lblt+1,z

read,b, lbl
t+1,z
read,1−b be the labels of the input bits

for the next CPU-step circuits (D′ knows them as well because it generated these
labels using Garb).

3. D′ hands the TIBE game the identity id∗ = (t, iwritet , b) and the two messages:
msg0 = lblt+1,z

read,1−b and msg0 = 0 and receives the ciphertext ct.

4. Set translatet = (ct0, ct1) where ctb = EncMPK((t ′, i readt , b), lblt+1,z
read,b) where t ′

the last time that location i readt was written to, and ct1−b = ct.
5. ForCPU-step circuitsGCt,z

CPU+ , use the suitable input labelsstatet+1 thatwas output
from the previous invocation ofGarb, and the values iwritet , i readt , bwritet , translatet

that are output “in the clear” and input them toSimGC to get the appropriate input
labels for CPU-step circuits GCt−1,z

CPU+ .
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6. Keep the simulation till the CINIT and hand the result garbled chains together with
the memory accesses to D.

7. If D outputs Hyb′
t , then output 0, otherwise, if D outputs Hybt output 1.

Note that if ct = EncMPK((t ′, i readt , b), lblt+1,z
read,b), then the result hybrid is identically

distributed to Hyb′
t and if ct = EncMPK((t ′, i readt , b), 0), then the result hybrid is

identically distributed to Hybt . Thus, if D distinguishes between the two hybrids Hyb′
t

and Hybt , then the distinguisher D′ distinguishes between the above messages in the
TIBE game. �

Claim 4.3. It holds that Hyb(−1)
c≈ Hyb0.

Proof. Note that the difference between the hybrids is merely whether the first circuits
Cz

INIT are simulated or not. Hence, we rely on the security of the garbling scheme as done
in the proof of Claim 4.2.

5. Removing the IBE Assumption

In this section, we discuss how to apply our ideas to the GRAM by Garg et al. [15] with
the aim of removing the IBE assumption. We begin with briefly describing their scheme
and then present our construction.

5.1. Background: GRAM Based on OWF [15]

In this construction, as in the previous GRAM scheme, the garbler first garbles the data
D, the program P and the input x , and forwards these to the evaluator that runs the
evaluation algorithm to obtain the program output y. More precisely, each internal node
node is associated with a PRF key r that is encrypted under a PRF key associated with
node’s parent, and each memory access is translated into a sequence of d −1 navigation
circuits (where d = log n is the depth of the tree) and a step circuit. During the evaluation,
each navigation circuit outputs a translation map that allows the evaluator to learn the
input labels that encode the input keys associated with the next node on the path to the
required memory location. These keys are then used in the next navigation circuit. In
addition, the circuit refreshes the PRF key associated with node and computes a new
set of PRF values based on this new key to be stored on node. The step circuit finally
performs the read or write operation. In more detail,

5.1.1. Garbling Data

• Split first the data D into n blocks D0, D1, . . . , Dn−1, each of size κ bits. These
blocks will be the leafs of a binary tree of depth d = log n such that its n−1 internal
nodes are determined next.

• Choose a set of n − 1 random keys from {0, 1}κ indexed by the tuple i, j where
i ∈ {0, . . . , d−1} is the depth in the tree and j is the index of that nodewithin the i th
tree level,where that the i th level includes 2i keys. For example,when |D| = 8κ then
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n = 8 and the nodes on the tree store the values: r0,0, r1,0, r1,1, r2,0, r2,1, r2,2, r2,3,
D0, D1, D2, D3, D4, D5, D6, D7 where r0,0 is the root. This tree is the plain data,
whereas the encrypted data is described next.

• Denote the qth bit of a key r and the qth bit of a data block D by rq and Dq ,
respectively, where q ∈ {1, . . . , κ}. Encrypt each bit of a key within a node (ex-
pect for the root) using the key that is associated with its parent node, where the
encryption is carried out using a PRF F and the tags left and right. Then, the (i, j)
node contains Fri−1, j/2(side, r1i, j , 1), . . . , Fri−1, j/2(side, rκ

i, j , κ) with side = left if
(i, j) is the left child of (i − 1, j/2) and side = right otherwise. For example,
the garbled memory in node (2, 1) has the bits of key r2,1 encrypted using the key
r1,0 (its parent in the tree) with the tag right (since r2,1 is the right child of r1,0).
Formally, we write

r̂2,1 = Fr1,0(right, r12,1, 1), . . . , Fr1,0(right, rκ
2,1, κ) and

D̃2 = Fr2,1(left, D1
2, 1), . . . , Fr2,1(left, Dκ

2 , κ)

• For each plain key ri, j output its encrypted version r̂i, j and for each plain data block
D j output its encrypted version D̃ j . This tree is the garbled data D̃. Overall we
have that |D̃| = O(κ · |D|).

On a high level, the goal of this data structure is to prevent a “memory rollback” attack
by the evaluator. That is, an attempt to input the CPU-step circuit an outdated value (i.e.
value that was in memory once, but got updated already). Using the above machinery,
the evaluator does not see the actual keys, and so it cannot modify the ciphertexts in a
way that yield a valid evaluation of the next garbled circuit.

5.1.2. Garbling Program

Each step in the original program P is performed using d steps in the new scheme, such
that the first d − 1 steps are used to navigate to the required data block in D j and the
last, dth, step is used to perform the CPU step of the program on this block and to kick
start the next CPU step. Concretely, the first d − 1 navigation steps are carried out by
evaluating d − 1 nav garbled circuits and the last dth step is performed by evaluating a
single garbled circuit step. In the following, we overview the internal design of circuits
nav and step and further stress that all fresh PRF keys that are hard-wired into the
circuits in the [15] construction are given as inputs to the circuits in our construction.
Below we present the modified version of [15] that is consistent with our modifications.

The nav Circuit

We index each nav circuit by the tuple i, j (i ∈ [T ] and j ∈ [d]) such that circuit
navi, j is the j th circuit in the i th group of circuits. navi, j helps to navigate in the
j th level of the tree towards the data item DL that is read in the i th CPU step.
Consider circuit navi, j :
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Inputs

– Two (plain) keys r j+1,�, r j+1,�+1 (where � ∈ [2 j+1]) from level j + 1 of the
tree (this amounts to 2κ input wires). We stress that the circuit can see these
keys but the evaluator sees only wire labels that hide them.
– The key s = r j,�/2. That is, the parent key of r j+1,�, r j+1,�+1. This amounts
to κ input wires.
– A fresh key r̃ that is going to replace either r j+1,� or r j+1,�+1 in mem-
ory. That is, the evaluator is going to store in memory {Fs(left, r̃ q , q)}q∈[κ],
{Fs(right, rq

j+1,�+1, q)}q∈[κ] or {Fs(left, rq
j+1,�, q)}q∈[κ], {Fs(right, r̃ q , q)}q∈[κ]).

This amounts to κ input wires.
– The current state of the program (which travels until the next CPU-step
circuit).
– The index L = L0, . . . , L log |D| of the destination memory entry to access.

Hard-wired values

– The value j , that is, which bit in L the circuit should check in order to decide
what to do (see next).
– A set of 4κ input wire labels of the next circuit (the next circuit is navi, j+1
if j + 1 < d or stepi if j + 1 = d). Those wire labels correspond to two keys
r j+2,m, r j+2,m+1 in the j+2th level of thememory (or Dm, Dm+1 if the next cir-
cuit is stepi ). There are 4κ labels because there are 2 labels (for zero and one) for

each bit of those keys. Denote those labels by labelleft,q0 , labelleft,q1 , labelright,q0 ,

labelright,q1 for all q ∈ [κ].
Procedure

– Let L j = b. (This indicates whether we should keep the navigation to the
left, if b = 0, or to the right, if b = 1.) Assign r j+1,�+b ← r̃ (i.e. replace the
value of r j+1,�+b), the value of r j+1,�+1−b remains the same.
– Perform

r̂ j+1,� = Fs(left, r1j+1,�, 1), . . . , Fs(left, rκ
j+1,�, κ)

̂r j+1,�+1 = Fs(right, r1j+1,�+1, 1), . . . , Fs(right, rκ
j+1,�+1, κ)

– Let r j+2,m and r j+2,m+1 be the keys associated with the children of r j+1,�+b

(i.e. one of these keys is on the path towards data block with index L). Re-
call that (1) the evaluator knows the PRF values Fr j+1,�+b(left, rq

j+2,m, q) and

Fr j+1,�+b (right, rq
j+2,m+1, q) for all q ∈ [κ] in its garbled memory and (2) the

next navigation circuit should receive rq
j+2,m and rq

j+2,m+1 as inputs. Also, re-
call that the input wire labels by which these 2κ bits are transferred to navi, j+1
are hard-wired and known to the current circuit navi, j . The current circuit
navi, j does not know the values of the keys rq

j+2,m and rq
j+2,m+1 but since

they are encrypted bit by bit using the key r j+1,�+1, it is possible to out-
put a translation table to be used by the evaluator, see immediately. Thus, let
labelleft,q0 , labelleft,q1 be the two labels that correspond to the qth input bit rq

j+2,m
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(similarly labelright,q0 , labelright,q1 ) are the labels that correspond to rq
j+2,m+1).

Let k = r j+1,�+1−b; then, if rq
j+2,m = β, then the evaluator should learn

labelleft,qβ and input it to the next circuit; therefore, we give the evaluator the

mapping translateq
left = (ctqleft,0, ct

q
left,1) where

ctqleft,0 = Fk(left, 0, q) ⊕ labelleft,q0 and ctqleft,1 = Fk(left, 1, q) ⊕ labelleft,q1

Note that the evaluator cannot learn labelleft,q1−β without knowing Fk(left, 1− β, q) and
it does not know Fk(left, 1 − β, q) because it does not have k.
Outputs

– r̂ j+1,� and ̂r j+1,�+1. The evaluator writes these ciphertexts to the � and � + 1
locations, respectively, in the ( j + 1)th layer of the garbled memory.
– The values L and state are passed (in wire labels) directly to the next circuit.
The key r̃ is passed (via wire labels) to the next circuit and corresponds as the
input s (see the above description).
– The 2κ translation tables: translateq

left and translateq
right for all q ∈ [κ].

The step Circuit

Recall that a tree with n leafs has d + 1 layers: 0, . . . , d (d = log n) such that the
data items reside on layer d and the keys reside on the rest of the layers. In order to
navigate to the Lth data item on layer d, we skip the 0 layer of the tree (the root)
and navigate through the rest of the d − 1 layers 1, . . . , d − 1. Next, circuit step is
evaluated by choosing one out of the two data items (from level d) that are given
as input.

Inputs

– Two (plain) data items DL , DL+1 (where L ∈ [n]) from level d of the tree
(this amounts to 2κ input wires). We stress that the circuit can see these keys,
but the evaluator sees only wire labels that hide them.
– The key s = rd−1,L/2. That is, the parent key of DL , DL+1. This amounts to
κ input wires.
– The root’s key ρ used in order to compute a translation table so the evaluator
may input r1,0 and r1,1 to the next navigation circuit. This input amounts to κ

input wires.
– The current state of the program (which travels until the next CPU-step
circuit).
– The index L of the destination memory entry to access.

Hard-wired values

– A set of 4κ input wire labels of the next circuit (the next circuit is navi+1,0).
Those wire labels correspond to two keys r1,0, r1,1 in the first level of the mem-
ory. Again, there are 4κ labels because there are 2 labels (for zero and one) for
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each bit of those values. As before, denote those labels by labelleft,q0 , labelleft,q1 ,

labelright,q0 , labelright,q1 for all q ∈ [κ].
Procedure

– Let Ld = b (b = 0 indicates that we should use DL and b = 1 indicates that
we should use DL+1).
– Compute (state′, L ′, D′) = C P

CPU(state, DL+b) and re-assign DL+b ← D′.
– Compute D̃0, D̃1 where

D̃b = Fs(side, D1
L+b, κ), . . . , Fs(side, Dκ

L+b, κ)

where side = left if b = 0 and side = right if b = 1.
– Let r1,0 and r1,1 be the child keys of the root key ρ. Recall that the evaluator
has the encryptions Fρ(left, rq

1,0, q) and Fρ(right, rq
1,1, q) for all q ∈ [κ] in

its garbled memory, and in the next navigation circuit should receive rq
1,0 and

rq
1,1 as inputs. Also recall that the input wire labels by which these 2κ bits are
transferred to navi+1,0 are hard-wired and known to the current circuit. Thus,

let labelleft,q0 , labelleft,q1 be the two labels that correspond to the qth input bit

rq
1,0 (similarly labelright,q0 , labelright,q1 ) are the labels that correspond to rq

1,1).

If rq
1,0 = b, then the evaluator should learn labelleft,q0 and input it to the next

circuit; therefore, we give the evaluator translateq
left = (ctqleft,0, ct

q
left,1) where

ctqleft,0 = Fρ(left, 0, q) ⊕ labelleft,q0 and ctqleft,1 = Fρ(left, 1, q) ⊕ labelleft,q1

Outputs

– D̃0 and D̃1. The evaluatorwrites those encryptions to the L and L+1 locations,
respectively, in the dth layer of the garbled memory.
– The values L ′ and state′ are passed (in wire labels) directly to the next circuit.
– the 2κ translation tables: translateq

left and translateq
right for all q ∈ [κ].

A Chain of Circuits

The overall construction can be seen as a chain of T groups of circuits such that each
group consists of d − 1 nav circuits and one step circuit. Each of the nav circuits is
hard-wired with a new fresh key and the key that was refreshed in the prior circuit. An
evaluation example of a program with two CPU steps and 8 data items is presented in
“Appendix C”.

5.2. 2PC in the Presence of Malicious Adversaries Relying on OWF

On a high level, we compile the GRAM from [15] into a malicious two-party protocol
using the cut-and-choose approach. Similarly to our protocol from Sect. 4.1, we extract
the randomness that is used for the read-and-write operations. We note that following
this path requires carefully understanding the details of the underlying GRAM scheme
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which is not a straightforward extension of our protocol from Sect. 4. Specifically, the
security proof for the case of corrupted receiver does not use the GRAM in a black-box
way as it depends on the mechanism that prevents rollback (e.g. TIBE or a PRF tree).
More specifically, in order to apply the cut-and-choose technique we need to figure out
what randomness affects the data to be written to the memory (because all copies of the
evaluation circuits must output the same values). We note that the above fresh keys that
are hard-wired into the circuits, together with the initial data D and the program input
x , fully determine the values to be written to the memory during the execution of the
program. Specifically, the new PRF keys allow generating the new translation tables to
be written in the garbled memory. We continue with the following high-level description
of the malicious secure protocol.

5.2.1. Protocol �̃P
UMA

Intuitively, the protocol that relies on the existence of one-way functions is the same as
the protocol described in Sect. 4.1 with the modifications that now the random inputs
R1, R2 that the parties enter the computation, aswell as the values that theCINIT generates,
are interpreted differently. We overview these changes in the following description.

• Interpretation of R1 and R2 The circuit CINIT takes R1, R2 as inputs, calculates
R = R1 ⊕ R2 and interprets R as values {ut

0, . . . , ut
d−1}t∈[T ] which correspond to

the fresh PRF keys that are used in the execution of the program, grouped into T
parts.

• Construction of the Chains of CircuitsWenowdescribe how the chains of circuits
are being built in the new construction. To simplify notation, we describe how a
single chain is being built, out of the s chains that are used in the cut-and-choose
process. A chain consists of T · d garbled circuits where the first garbled circuit is
CINIT followed by groups of d garbled circuits, such that the last circuit in each group
evaluating CPU-step t is a step circuit stept , whereas the rest d −1 garbled circuits
are navigation circuits navt,0, . . . ,navt,d−2. The functionalities of these circuits
were described above. For each time step t = T, . . . , 1, the garbling procedure starts
by garbling stept , then garbling navt,d−2 and so on till the garbling of navt,0. Such
that the labels associated with the input wires of navt, j , that represent the current
state, are hard-wired into circuit navt, j−1, and similarly, the labels of the input
wires of stept , that represent the current state, are hard-wired into circuit navt,d−2.
This is done in the same manner as in the protocol described in Sect. 4.1.

• The bootstrapping circuit The bootstrapping circuit (CINIT) inputs the values s =
u1
0 and r̃ = u1

1 to the first navigation circuit nav1,0, the values s = u1
1 and r̃ = u1

2 to
the second navigation circuit nav1,1 and so on, until reaching the first step circuit
step1 which is given the keys u1

d−2, u0
0. Generally speaking, the bootstrapping

circuit transfers the navigation circuit navi, j the inputs s = ui
j and r̃ = ui

j+1, and

the circuit stepi the inputs s = ui
d−2 and r̃ = ui

0. Note that each key is input to
exactly two circuits and after being used to “decrypt” some labels we update it and
it is never used again.

We proceed with a formal description of the protocol:
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Formal Description of Protocol �̃P
UMA

1. Garbled navigation, step and initialization circuits.
For t = T − 1, . . . , 1

(a) Garble the CPU-step stept circuit:

• If t = T , then choose random labels for the labels corresponding to
stateT +1, otherwise, choose random labels for wires associated with out-
puts D̃0, D̃1, translate

q
left and translateq

right for all q ∈ [κ], in addition,

use label for output wires of L ′ and state′ as the labels of the input wires
of navigation circuit navt+1,0.

• Denote all chosen labels by {lblv,i,t
out,b}v,i,b and continue as follows:

• Garble stept by calling

({GCi
step,t }i , {lblu,i,t

in,b }u,i,b
) ← Garb

(

1κ , s, stept , {lblv,i,t
out,b}v,i,b; r

)

for v ∈ [vout], i ∈ [s], b ∈ {0, 1} and r the randomness used within Garb.
• Interpret the result labels {lblu,i,t

in,b }u,i,b as the following groups of values:
DL ,t , DL+1,t , st , ρ, statet and L , that cover the labels:

{lblDL ,t }, {lblDL+1,t }, {lblst }, {lblρ}, {lblstatet } and {lblL}, respectively.
(b) Garble the navigation circuits:

For j = d − 2, . . . , 0:

• If j = d − 2, then hard-wire the labels {lblDL ,t } and {lblDL+1,t } within
navt, j , otherwise, hard-wire the labels {lblkeyleft,t, j+1

} and {lblkeyright,t, j+1
}

within navt, j

• Choose random labels for the output wires that correspond to r̂ j+1,� and
̂r j+1,�+1 and translateq

left and translateq
right for all q ∈ [κ], in addition,

use labels for output wires of L and state as the labels of the input wires
of navigation circuit navt, j+1.

• Denote all chosen labels by {lblv,i,t
out,b}v,i,b and continue as follows:

• Garble navt, j by calling

({GCi
nav,t, j }i , {lblu,i,t

in,b }u,i,b
) ← Garb

(

1κ , s,navt, j , {lblv,i,t
out,b}v,i,b; r

)

with {lblv,i,t
out,b}v,i,b the set of labels from above and r the randomness used

within Garb.
• Interpret the result labels {lblu,i,t

in,b }u,i,b as the following groups of values:
{lblkeyleft,t, j

}, {lblkeyright,t, j
}, {lblst, j }, {lblr̃t, j }, {lblstatet } and {lblL}, respec-

tively.
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(c) Garble the initialization circuit CINIT:

• Combine the group of labels {lblst, j } and {lblr̃t, j } in addition to the input
wire labels from the first navigation circuit nav0,0 that correspond to the
state and denote them by {lblv,i

out,b}v,i,b.
• Garble the initialization circuit:

({GCi
INIT}i , {lblu,i

in,b}u,i,b
) ← Garb

(

1κ , s,CINIT, {lblv,i
out,b}v,i,b; r0g

)

.

• Interpret the input labels result from that invocation ofGarb by {lblS} and
{lblR}which are the input wire labels that are, respectively, associated with
the sender’s and receiver’s input wires.

2. Oblivious transfers.
This step goes exactly as in protocol �P

UMA.
3. Send garbled circuits.

S sends R the garbled circuits chains GCi
INIT, step

i
t ,nav

i
t, j for every t ∈ [T ], j ∈

[d − 1] and i ∈ [s].
4. Commitments and cut-and-choose challenge.

This step goes exactly as in protocol �P
UMA.

5. Send all input garbled values in check circuits.
This step goes exactly as in protocol �P

UMA.
6. Correctness of check circuits.

This step goes exactly as in protocol �P
UMA.

7. Check garbled inputs consistency for the evaluation circuits.
This step goes exactly as in protocol �P

UMA.
8. Evaluation.

Let Z̃ = {z | z /∈ Z} be the indices of the evaluation circuits.

(a) For every z ∈ Z̃ , R evaluate GCz
INIT using Eval and the input wires it obtained

in step 7 and reveal one label for each of its output wires lblout,zINIT .
These output wires correspond to two keys for every of the next circuits as described
above.
(b) For t = 1 to T :

i. For j = 0, . . . , d − 2 evaluate the circuit GCz
nav,t, j for all z ∈ Z̃ . As in

�P
UMA, take the majority across the results of all circuits and write it to the

appropriate location in the garbled memory tree (i.e. the values written to
the gabled memory).

ii. Evaluate GCz
step,t for all z ∈ Z̃ and again take the majority and use it to

write to the appropriate location in the garbled memory tree. If t = T ,
output stateT in the clear.

We prove the following theorem:

Theorem 5.1. Assume the existence of one-way functions, πGC is a garbling scheme (cf.
Definition 2.2), andCom is a statistical binding commitment scheme (cf. DefinitionA.1).
Then, protocol �̃P

UMA (cf. Sect. 5.2.1) securely realizes FUMA in the presence of malicious
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adversaries in the {FSCCOT,FIC}-hybrid models. In addition, all asymptotic complexities
are as implied by Theorem 4.1.

Proof Sketch Note first that the above nav and step circuits are given two random PRF
keys as inputs from the bootstrapping circuit CINIT where these two PRF keys are used
in the same way as in the original protocol description. Intuitively, the following two
arguments hold: (a) correctness. Namely, applying the cut-and-choose technique does
not require a usage of multiple instances of memory D, i.e. that the same write-data is
being output from all chain copies, and (b) privacy. The evaluator does not learn anything
beyond the program output and the memory access pattern, where the security analysis
and the constructions of the simulators follow similarly to the proof of Theorem 4.1.
The caseS is corruptedNamely, in case the sender is corrupted, then the cut-and-choose
analysis ensures that the majority of the garbled circuits have been correctly constructed,
where the view of the sender can be simulated similarly to the previous section as it is,
where before the functionality within �P

UMA is embedded with the descriptions of the
TIBE algorithms, whereas �̃P

UMA implements PRF evaluations.
The case R is corrupted On the other hand, in case the receiver is corrupted, the
sender’s privacy is ensured by the underlying GRAM construction which prevents from
the receiver to roll back or runmultiple executions on several memory instances. In more
detail, the simulator produces simulated garbled circuits starting from the last circuit. It
proceeds by generating a random-looking output for each of the circuits by setting the
translate tables to be random keys XORed with the corresponding input labels of the
next step or nav circuit (since we are working backwards, these labels have already
been generated), and similarly using random values for emulating the write operations.
The main idea is that we keep track of these random values so that when we simulate

the garbled database, we set D̃ to be uniformly random subject to the stored elements.
Now, since the simulator gets the full access pattern, it knows exactly which locations
in memory it should set entries for, so that they match values that were used to mask the
translation table. This scheme was proven secure in [15] for the case of a semi-honest
adversary, whereas we claim security against a malicious adversary. However, we stress
that since we are working in the FIC-hybrid model, which ensures input consistency,
the adversary’s inputs are extracted and the rest of the simulation goes exactly as theirs
which concludes the proof.

A. Building Blocks

In this section, we discuss the notations and definitions of some of the standard building
blocks employed in our constructions, as well as a formal description of the circuits and
functionalities used in our protocols.

A.1. Garbled Circuits

The definition of garbled circuits with respect to the cut-and-choose technique is pre-
sented in Sect. 2.1. In this section, we present the Input Consistency Functionality
(Fig. 6), which is realized via a secure 2PC protocol when the underlying garbling
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Fig. 6. Input consistency functionality FIC.

scheme is applied using a cut-and-choose-based protocol. We next present the authen-
ticity game (Fig. 7) used in the definition of garbled circuits.

A.2. The Hybrid Model

The F-hybrid model In order to simplify the exposition of our main protocol, we will
use secure two-party protocols as subprotocols. The standardway of doing this is towork
in a “hybrid model” where parties both interact with each other (as in the real model)
and use trusted help (as in the ideal model). Specifically, when constructing a protocol
π that uses a subprotocol for securely computing some functionality F , we consider
the case that the parties run π and use “ideal calls” to a trusted party for computing F .
Upon receiving the inputs from the parties, the trusted party computes F and sends all
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Fig. 7. Authenticity game AuthA(1κ , s,C).

parties their output. Then, after receiving these outputs back from the trusted party the
protocol π continues. Let F be a functionality and let π be a two-party protocol that
uses ideal calls to a trusted party computing F . Furthermore, let A be a non-uniform
probabilistic polynomial-time machine. Then, the F-hybrid execution of π on inputs
(x1, x2), auxiliary input z toA and security parameter κ , denotedHybπF ,A(z)(κ, x1, x2),
is defined as the output of the honest party and the adversaryA from the hybrid execution
of π with a trusted party computing F . By the composition theorem [7], any protocol
that securely implements F can replace the ideal calls to F .

A.3. Batch Single-Choice Cut-and-Choose OT

The batch single-choice cut-and-choose oblivious transfer is presented in Fig. 8.

A.4. Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself
to a value while keeping it secret from the receiver. (This property is called hiding.)
Furthermore, in a later stage when the commitment is opened, it is guaranteed that
the “opening” can yield only a single value determined in the committing phase. (This
property is called binding.) In this work, we consider commitment schemes that are
statistically binding, namely while the hiding property only holds against computation-
ally bounded (non-uniform) adversaries, the binding property is required to hold against
unbounded adversaries.
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Fig. 8. Batch single-choice cut-and-choose OT FSCCOT.

Definition A.1. (Commitment schemes). A pair of PPT machines Com = (R,S) is
said to be a commitment scheme if the following two properties hold.

Computational hiding: For every (expected) PPT machine R∗, it holds that the
following ensembles are computationally indistinguishable.

• {ViewR∗
Com(m1, z)}n∈N,m1,m2∈{0,1}n ,z∈{0,1}∗

• {ViewR∗
Com(m2, z)}n∈N,m1,m2∈{0,1}n ,z∈{0,1}∗

where ViewR∗
Com(m, z) denotes the random variable describing the output of R∗

upon interacting with the sender S which commits to m.

Statistical binding: Informally, the statistical binding property asserts that, with
overwhelming probability over the coin tosses of the receiver R, the transcript of
the interaction fully determines the value committed to by the sender.

Formally, a receiver’s view of an interaction with the sender, denoted (r, m̄), consists
of the random coins used by the receiver (namely, r ) and the sequence of messages
received from the receiver (namely, m̄). Let m1, m2 ∈ Mn . We say that the receiver’s
view (of such interaction), (r, m̄), is a possible m-commitment if there exists a string
s such that m̄ describes the messages received by R when R uses local coins r and
interacts with S which uses local coins s and has input (1n, m).

We say that the receiver’s view (r, m̄) is ambiguous if it is both a possible m1-
commitment and a possible m2-commitment. The binding property asserts that, for
all but a negligible fraction of the coins toss of the receiver, there exists no sequence of
messages (from the sender) which together with these coin toss forms an ambiguous
receiver view. Namely, that for all but a negligible function of the r ∈ {0, 1}poly(n)

there is no m̄ such that (r, m̄) is ambiguous.
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Fig. 9. Procedure GarbYao for a single-circuit garbling.

B. Realizing Definition 2.2

In this section, we argue that our definition of garbled circuit with respect to cut-and-
choose-based protocols (cf. Definition 2.2) can be realized by the garbling scheme de-
scribed in [35]. We first describe the algorithms Garb,Eval and then argue that they
possess the correctness, privacy, authenticity and input consistency properties.

Garbling Recall that in the notion of cut-and-choose-based protocols the garbling
scheme is given s sets of output labels, from which it has to produce s garbled circuits
along with their corresponding garbled inputs. To simplify notation, we first describe in
Fig. 9 the garbling procedure for a single circuit; then, in Fig. 10 we describe the full
garbling procedure Garb that uses GarbYao as a sub-procedure.

Evaluation As modulated in the garbling procedure, we first show how a single garbled
circuit can be evaluated in Fig. 11 and then in Fig. 12 we show how, using EvalYao as
a sub-procedure, we evaluate a set of s garbled circuits.

Correctness and privacy The correctness and privacy properties had been proven in
[33] for a single circuit. It is trivial to show that these properties hold in the cut-and-
choose notion we defined.

Authenticity The authenticity property is missing from [18], while it is indeed required
even in the semi-honest model. We now show that the above scheme has authenticity.
Informally, breaking authenticity means that the evaluator guesses a secret label that is
not in the encoded output. Switching to a simulated garbling the way defined in [33]
produces an indistinguishable view, in that case the probability of guessing an additional
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Fig. 10. Procedure Garb for s circuits garbling.

Fig. 11. Procedure EvalYao for a single garbled circuit.

label is negligible since the inactive labels are not used at all, then it should be that case
for garbled circuits as well.
More formally, given a circuit CCPU and an adversaryA, for which Pr[AuthA(1κ , s,C) =
1] = p, we construct a distinguisher D for the simulator SimGC that succeed in distin-
guishing with the same probability.D is given a view which contains the garbled circuit
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Fig. 12. Procedure Eval to evaluate s garbled circuits.

C̃CPU and a garbled input x̃ for a given input x such that C̃CPU(x̃) = ỹ.D hands C̃CPU, x, x̃
to A, if A outputs a valid â then output 1, otherwise output 0. Note that the probability
that A outputs a valid ŷ when given a simulated view is negligible ε (since the inactive
labels are merely random string); thus, if A outputs a valid ŷ, it means that it got a real
view with probability p − ε. If p is non-negligible, then D succeeds in distinguishing
with non-negligible probability.

Input consistency We now show the protocol that realizes the input consistency func-
tionality FIC from Fig. 6 with respect to the garbling scheme (Garb,Eval) from above.
The common inputs are

– Security parameters s, κ .
– The circuit CCPU and s garbled versions {C̃CPUi }i∈[s]. Note that s here is a subset of
the s which the sender used in the garbling phase.

– Labels (lbli1, . . . , lbl
i
�) = (gax[1]

1 ·ri , . . . , gax[�]
� ·ri ) for all i .

– Commitments to all the sender’s input labels:a0
1 , a1

1, . . . , a0
� , a1

� ∈ Zq and r1, . . . , r� ∈
Zq .

Protocol The sender proves that for every j ∈ [�] the set {gax[ j]
j ·ri }i∈[s] is consistent: For

every j ∈ [�] the sender uses the protocol in Fig. 13 to prove that there exists a value

σ j ∈ {0, 1} such that for every i ∈ [s], lblij = ga
σ j
1 ·ri . Namely, it proves that all garbled

values of a wire are of the same bit. If any of the proofs fail, then P2 aborts and outputs
⊥.
For completeness, we provide the protocol, used in [35], verbatim.

ZK proof for extended Diffie–Hellman tuples A zero-knowledge proof of an extended
Diffie–Hellman tuple is given inFig. 13.The input is a tuple (g, h0, h1, u1, v1, . . . , uη, vη)

such that either all {(g, h0, ui , vi )}ηi=1 areDiffie–Hellman tuples, or all {(g, h1, ui , vi )}ηi=1
are Diffie–Hellman tuples. It is shown in [35] that the protocol in Fig. 13 is a ZK-PoK.
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Fig. 13. ZK Proof of knowledge of extended Diffie–Hellman tuples.

C. Program Execution Example

We start with a memory with 8 items: D0, D1, D2, D3, D4, D5, D6, D7. Thus, the new

plain data would be D =
{

r0,0, r1,0, r1,1, r2,0, r2,1, r2,2, r2,3, D0, D1, D2, D3, D4, D5,

D6, D7

}

and the garbled data would be

D̃ =
{

Fr0,0 (r1,0, left), Fr0,0 (r1,1, right), Fr1,0 (r2,0, left), Fr1,0 (r2,1, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0 (D0, left), Fr2,0 (D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2 (D4, left), Fr2,2 (D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

.

Let the program P consists of the instructions: {i = x · D[3];output i · D[7]; }. That
is, we have 2 memory accesses to locations 3 and 7 and finally the program outputs
x · D[3] · D[7]. Furthermore, L is of length 3 bits starting 000 and till 111 (L = 3 means
L = 011 and L = 7 means L = 111). Note that the program uses an internal variable i
in its state. The circuits of P̃ works as follows (we ignore the hard-wired labels and the
translation table for simplicity):
nav1,0. Inputs: keys = {r1,0, r1,1}, L = 3, state = x .
Hard-wired: v0, v1, i = 0.
Data D̃ upon navigation:

D̃ =
{

Fv0(v1, left),Fv0(r1,1, right),Fr1,0(r2,0, left), Fr1,0(r2,1, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}



1196 C. Hazay, A. Yanai

nav1,1. Inputs: keys = {r2,0, r2,1}, L = 3, state = x .
Hard-wired: v1, v2, i = 1.
Data D̃ upon navigation:

D̃ =
{

Fv0(v1, left), Fv0(r1,1, right), Fv1(r2,0, left),Fv1(v2, right),Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fr2,1(D2, left), Fr2,1(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

step1. Inputs: Items = {D2, D3}, L = 3, state = x .
Hard-wired: v2, v0.
State upon running this step: state = x · D[3].
Data D̃ upon running this step:

D̃ =
{

Fv0(v1, left), Fv0(r1,1, right), Fv1(r2,0, left), Fv1(v2, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left),Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

Note: The above circuit is hard-wired with v0 and thus can decrypt the two values in
level 1 of the tree; currently, these values are v1 and r1,1. This kick starts the evaluation
of the next CPU step, which begins by the circuit nav2,0.
nav2,0. Inputs: keys = {v1, r1,1}, L = 7, state = x · D[3].
Hard-wired: u0, u1, i = 0.
Data D̃ upon navigation:

D̃ =
{

Fu0(v1, left),Fu0(u1, right),Fv1(r2,0, left), Fv1(v2, right), Fr1,1(r2,2, left),

Fr1,1(r2,3, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}

nav2,1. Inputs: keys = {r2,2, r2,3}, L = 7, state = x · D[3].
Hard-wired u1, u2, i = 1.
Data D̃ upon navigation:

D̃ =
{

Fu0(v1, left), Fu0(u1, right), Fv1(r2,0, left), Fv1(v2, right), Fu1(r2,2, left),

Fu1(u2, right),Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fr2,3(D6, left), Fr2,3(D7, right)
}
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step2. Inputs: Items = {D6, D7}, L = 7, state = x · D[3].
Hard-wired u2, u0.
State upon running this step: state = x · D[3] · D[7].
Data D̃ upon running this step:

D̃ =
{

Fu0(v1, left), Fu0(u1, right), Fv1(r2,0, left), Fv1(v2, right), Fu1(r2,2, left),

Fu1(u2, right), Fr2,0(D0, left), Fr2,0(D1, right), Fv2(D2, left), Fv2(D3, right),

Fr2,2(D4, left), Fr2,2(D5, right), Fu2(D6, left),Fu2(D7, right)
}

where the state in the last CPU step is outputted in the clear.
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