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Abstract. In this work, we study the intrinsic complexity of black-box Universally
Composable (UC) secure computation based on general assumptions. We present a
thorough study in various corruption modelings while focusing on achieving security
in the common reference string (CRS) model. Our results involve the following:

o Static UC secure computation. Designing the first static UC oblivious transfer protocol
based on public-key encryption and stand-alone semi-honest oblivious transfer. As a corol-
lary, we obtain the first black-box constructions of UC secure computation assuming only
two-round semi-honest oblivious transfer.

e One-sided UC secure computation. Designing adaptive UC two-party computation with

single corruptions assuming public-key encryption with oblivious ciphertext generation.

Adaptive UC secure computation. Designing adaptively secure UC commitment scheme

assuming only public-key encryption with oblivious ciphertext generation. As a corollary, we

obtain the first black-box constructions of adaptive UC secure computation assuming only

(trapdoor) simulatable public-key encryption (as well as a variety of concrete assumptions).

We remark that such a result was not known even under non-black-box constructions.

Keywords. UC secure computation, Black-box constructions, Oblivious transfer, UC
commitments.

1. Introduction

Secure multi-party computation enables a set of parties to mutually run a protocol that
computes some function f on their private inputs, while preserving a number of security
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properties. Two of the most important properties are privacy and correctness. The former
implies data confidentiality; namely, nothing leaks by the protocol execution but the
computed output. The later requirement implies that no corrupted party or parties can
cause the output to deviate from the specified function. It is by now well known how to
securely compute any efficient functionality [3,4,25,47,51] in various models and under
the stringent simulation-based definitions (following the ideal/real paradigm). Security
is typically proved with respect to two adversarial models, the semi-honest model (where
the adversary follows the instructions of the protocol but tries to learn more than it should
from the protocol transcript) and the malicious model (where the adversary follows an
arbitrary polynomial-time strategy), and feasibility results are known in the presence
of both types of attacks. The initial model considered for secure computation was of a
static adversary where the adversary controls a fixed subset of the parties (who are called
corrupted) before the protocol begins. In a stronger corruption model, the adversary is
allowed to choose which parties to corrupt throughout the protocol execution and as a
function of its view; such an adversary is called adaptive.

These feasibility results apply in most cases on stand-alone security, where a single
set of parties run a single execution of the protocol. Moreover, the security of most
cryptographic protocols proved in the stand-alone setting does not remain intact if many
instances of the protocol are executed concurrently [39]. The strongest (but also the most
realistic) setting for concurrent security is known by Universally Composable (UC) [4].
This setting considers the execution of an unbounded number of concurrent protocols
in an arbitrary and adversarially controlled network environment. Unfortunately, stand-
alone secure protocols typically fail to remain secure in the UC setting. In fact, without
assuming some trusted setup, UC is impossible to achieve for most tasks [8, 10,39]. Con-
sequently, UC protocols have been constructed under various trusted setup assumptions
in a long series of works; see [1,7,12,13,16,36,43] for few examples.

In this work, we are interested in understanding the intrinsic complexity of UC secure
computation. Identifying the general assumptions required for a particular cryptographic
task provides an abstraction of the functionality and the specific hardness that is exploited
to obtain a secure realization of the task. The expressive nature of general assumptions
allows the use of a large number of concrete assumptions of our choice, even one that
may not have been considered at the time of designing the protocols. Constructions that
are based on general assumptions are proved in two flavors:

Black-box usage A construction is black-box if it refers only to the input/output
behavior of the underlying primitives.
Non-black-box usage A construction is non-black-box if it uses the code computing
the functionality of the underlying primitives.

Typically, non-black-box constructions have been employed to demonstrate feasibility
and derive the minimal assumptions required to achieve cryptographic tasks. Specifi-
cally, Lin et al. [43] provided a unified framework and minimal conditions under which
UC security is feasible in a general setup. Moreover, the work of Damgard et al. [20]
focused on identifying the necessary and sufficient assumptions for UC secure computa-
tion, in terms of both setup and computational assumptions. The former work identified
the weakest assumptions in any setup known thus far, whereas the latter work identified
tight upper and lower bounds on the hardness assumptions for the concrete common ref-
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erence string and key registration models. Nevertheless, since both of these works rely on
non-black-box techniques, an important theoretic question is whether or not non-black-
box usage of the underlying primitives is necessary. Besides its theoretic importance,
obtaining black-box constructions is related to the efficiency of the protocol as an unde-
sirable effect of non-black-box constructions is that they are typically inefficient and
unlikely to be implemented in practice.

Fortunately, in a line of works [24,27,32,49] the gap between what is achievable via
non-black-box and black-box constructions under minimal assumptions has narrowed.
More relevant to our context, the work of Ishai et al. [33] that provided the first black-box
constructions of UC protocols in the static and adaptive settings assuming only one-way
functions, in a model where all parties have access to an ideal oblivious transfer (OT)
functionality. In the adaptive setting, the work of Choi et al. [6] provided a transfor-
mation from adaptively secure semi-honest oblivious transfer to one that is secure in
the stronger UC setting against malicious adaptive adversaries while assuming that all
parties have access to an ideal commitment functionality. These works make progress
toward identifying the necessary minimal general computational assumptions in both
the static and adaptive UC settings. In particular, it follows that, to answer the motivating
question of identifying these minimal assumptions, it suffices to identify the minimal
assumptions to realize the ideal oblivious transfer in the static setting as specified in [33]
and the ideal commitment in the adaptive setting as specified in [6].

Static setting In the stand-alone (i.e., not UC) static setting, assuming only the exis-
tence of semi-honest oblivious transfer it has been shown in [27,28,32] how to construct
secure multi-party computation protocols while relying on the underlying primitives in
a black-box manner. In the UC setting, Canetti et al. [12] presented the first non-black-
box constructions of static UC protocols assuming enhanced trapdoor permutations. In
a later work, Choi et al. [6] (cf. Proposition 1) provided black-box constructions that
are secure against static adversaries, where all parties have access to an ideal commit-
ment functionality. This construction achieves a stronger security notion of straight-line
simulation; however, it falls short of achieving static UC security (see more details in
Sect. 3).

UC OT was studied in the influential paper by Peikert et al. [48], who presented
a black-box framework in the local! common reference string (CRS) model for an
oblivious transfer, based on dual-mode public-key encryption (PKE) schemes. Such
PKE schemes can be concretely instantiated under the discrete Diffie—Hellman (DDH),
quadratic residuosity (QR) and learning with errors (LWE) hardness assumptions. In a
follow-up work, Choi et al. [11] present UC OT constructions in the global CRS model
assuming DDH, N-residuosity and the Decision Linear Assumption (DLIN).

It is worth noting that while the works of Peikert et al. [48] and Choi et al. [11] provide
abstractions of their assumptions, the assumptions themselves are not general enough to
help understand the minimal assumptions required to achieve static UC security.

Adaptive Setting The only work that considered a single general assumption that
implies adaptive UC security using non-black-box techniques is the result due to

lNamely, a distinct common reference string (CRS) per party.
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Dachman-Soled et al. [16] that shows how to obtain adaptive UC commitments assum-
ing simulatable PKE in the global CRS model.> Moreover, the best-known general
assumptions required to achieve black-box UC security are adaptive semi-honest obliv-
ious transfer and UC commitments [6,18]. Known minimal general assumptions that
are required to construct these primitives are (trapdoor) simulatable PKE for adaptive
semi-honest oblivious transfer [5] and mixed commitments for UC commitments [18] in
the local CRS model. Finally, we remark that the commitment scheme of Damgard and
Groth [15] based on Strong RSA is, in fact, an adaptive UC commitment in the global
CRS model.

As such prior works leave the following important question open:

What are the minimal (general) assumptions required to construct UC pro-
tocols, given only black-box access to the underlying primitives?

‘We note that this question is already well understood in the static setting when relaxing
the black-box requirement. Namely, in [20] Damgérd, Nielsen and Orlandi showed
how to construct UC commitments assuming only semi-honest oblivious transfer in the
global CRS model, while additionally assuming a preprocessing phase where the parties
participate in a round-robin manner.> More recently, Lin et al. [44] have improved this
result by removing any restricted preprocessing phase. In the same work, the authors
showed how to achieve UC security in the global CRS model assuming only the existence
of semi-honest oblivious transfer. In particular, this construction shows that static UC
security can be achieved without assuming UC commitments when relying on non-
black-box techniques.

1.1. Our Results

In this paper, we present a thorough study of black-box UC secure computation in the
CRS model for different attack models; details follow. We note that our first and third
results hold for the multi-party case, while the second result is for the two-party setting.

1.1.1. Static UC Secure Computation

Our first result is given in the static setting, where we demonstrate the feasibility of UC
secure computation based on semi-honest oblivious transfer and extractable commit-
ments. More concretely, we prove how to transform any statically semi-honest secure
oblivious transfer into one that is secure in the presence of malicious adversaries, giving
only black-box access to the underlying semi-honest oblivious transfer protocol. Our
approach is inspired by the protocols from [28,42], where we observe that it is not
required to use the full power of static UC commitments. Instead, we employ a weaker
primitive that only requires straight-line input extractability. This weaker notion of secu-
rity, denoted by extractable commitments [46], can be realized based on any CPA secure
PKE. More precisely, we prove the following theorem.

2Here simulatable PKE is a public-key encryption scheme with additional properties that allow oblivious
sampling of public keys and ciphertexts.

3In such a preprocessing phase, it is assumed that at most one party is allowed to transmit messages in
any round.
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Theorem 1.1. (Informal) Assuming the existence of PKE and semi-honest oblivious
transfer, then any functionality can be realized in the CRS model with static UC security,
where the underlying primitives are accessed in a black-box manner.

We remark here that this theorem makes a significant progress toward reducing the
general assumptions required to construct UC protocols. Previously, the only general
assumptions based on which we knew how to construct UC protocols were mixed com-
mitments [17] and dual-mode PKE [48] both of which were tailor-made for the particu-
lar application. Toward understanding the required minimal assumptions, we recall the
work Damgard and Groth in [15] who showed that the existence of UC commitments in
the CRS model implies a stand-alone key agreement protocol. Moreover, under black-
box constructions, the seminal work of Impagliazzo and Rudich [34] implies that key
agreement cannot be based on one-way functions. Thus, there is reasonable evidence to
believe that some public-key primitive is required for UC commitments. In that sense,
our assumption regarding PKE is close to being optimal. Nevertheless, it is unknown
whether plain model (i.e., without setup) semi-honest oblivious transfer assumption is
required.

Our result is shown in two phases. At first, we compile the semi-honest oblivious
transfer protocol into a new protocol with intermediate security properties in the pres-
ence of malicious adversaries. This transformation is an extension of the transformation
from [28] that is only proved for bit oblivious transfer, whereas our proof works for
string oblivious transfer. Next, we use the transformed oblivious transfer protocol in
order to construct a fully secure (malicious) oblivious transfer. By combining our obliv-
ious transfer protocol with the protocol from [33], we obtain a statically generic UC
secure computation.

An important corollary is deduced from the work by Gertner et al. [23], who provided
a black-box construction of PKE based on any two-round semi-honest oblivious transfer
protocol. Specifically, the combination of their result with ours implies the following
corollary, which demonstrates that two-round semi-honest oblivious transfer is sufficient
in the CRS model to achieve black-box constructions of UC protocols. Namely,

Corollary 1.2. (Informal) Assuming the existence of two-round semi-honest oblivious
transfer, then any functionality can be UC realized in the CRS model, where the oblivious
transfer is accessed in a black-box manner.

The work of [6] shows how starting from a semi-honest oblivious transfer it is possible
to obtain a black-box construction of an OT protocol that is secure against stand-alone
static adversaries in the Fcoym-hybrid model. Moreover, F-om can be directly realized
in the Fgxrcom-hybrid using the notion of extractable trapdoor commitments [21,49].4
We do not pursue this approach and instead directly realize OT in the Fgxrcom-hybrid
because the main goal in this work is to identify the minimal assumptions required
to construct UC OT. We remark that although the main result in [6] demonstrates UC

4Here the starting point of the latter work is a statistically hiding and statistically binding straight-line
extractable commitment scheme which requires a physical assumption, and is therefore not applicable in the
CRS model.
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Table 1. Comparison with prior work on UC oblivious transfer in the CRS model against static corruptions.

References Assumption Functionality Setup Black-box
[12] Enhanced TDP UucCc oT Local CRS No
[48] Dual-mode PKE UucC oT Local CRS Yes
[11] DDH/N-resid./DLIN ucC OoT Global CRS Yes
[43,44] SH-OT ucoT Global CRS No
This work PKE + SH-OT ucoT Local CRS Yes
Follow-up [37] PKE + SH-OT uc oT Global CRS Yes

security against adaptive corruptions, the same analysis fails to extend to the static setting.
More concretely, while their protocol might be secure in the static setting (if we replace
the underlying primitives with their analogues in the static setting), its security analysis
is not sufficient. This is because Choi et al. modularly compose a weaker building block
(adaptive semi-honest OT) to construct a UC OT. Furthermore, in the simulation of the
final protocol, the simulator invokes the adaptive simulator of the weaker primitive on
the fly. Such a simulation cannot be used in the static setting when the building blocks
are instantiated with their analogues in the static setting.” We finally remark that the
previous works of [6,28] require a three-step transformation, whereas our transformation
is simpler with a single step transformation.

Implications In what follows, we make a sequence of interesting observations that are
implied by our result in the static UC setting which are summarized in Table 1.

e The important result by Canetti et al. [12], which assumes enhanced trapdoor per-
mutations, can be extended assuming only PKE with oblivious ciphertext genera-
tion (which is PKE with the special property that a ciphertext can be obliviously
sampled without the knowledge of the plaintext, and can be further realized using
enhanced trapdoor permutation). In that sense, our result, assuming PKE with obliv-
ious ciphertext generation, can be viewed as an improvement of Canetti et al. [12]
when relying on this primitive in a black-box manner.

e The pair of works by Damgard et al. [20] and Lin et al. [44] demonstrate that non-
black-box constructions of UC commitments, and more generally static UC secure
computation, can be achieved in the CRS model assuming only semi-honest oblivi-
ous transfer. In comparison, our result shows that two-round semi-honest oblivious
transfer protocols are sufficient for obtaining black-box UC secure computation in
the CRS model. We note here that many semi-honest oblivious transfer protocols
indeed involve only two-round of communication, e.g., [22,29].

e In [43,44], Lin, Pass and Venkitasubramaniam provided a unified framework for
constructing UC protocols in any “trusted setup” model. Their result is achieved by
capturing the minimal requirement that implies UC secure computation in the setup
model. More precisely, they introduced the notion of a UC puzzle and showed that
any setup model that admits a UC puzzle can be used to securely realize any func-
tionality in the UC setting, while additionally assuming the existence of semi-honest

5This fact was confirmed with the authors of [6].
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oblivious transfer. Moreover, they showed how to easily construct such puzzles in
most models. We remark that our approach can be viewed as providing a framework
to construct black-box UC protocols in other UC models. More precisely, we show
that any setup model that admits the extractable commitment functionality can be
used to securely realize any functionality assuming the existence of semi-honest
oblivious transfer. In fact, our result easily extends to the chosen key registration
authority (KRA) model [1], where it is assumed the existence of a trusted authority
that samples public key—secret key pairs for each party and broadcasts the public
key to all parties. We leave it for future work to instantiate our framework in other
setup models.

e The fact that our construction only requires PKE and semi-honest oblivious transfer
allows an easy translation of static UC security to various efficient implementations
under a wide range of concrete assumptions. Specifically, both PKE and (two-round)
semi-honest oblivious transfer can be realized under RSA, factoring Blum integers,
LWE, DDH, N -residuosity, p-subgroup and coding assumptions. This is compared
to prior results that could be based on the later five assumptions [11,14,19,48].

e Recently, Maji et al. [46] initiated the study of the cryptographic complexity of
secure computation tasks, while characterizing the relative complexity of a task in
the UC setting. Specifically, they established a zero—one law that states that any
task is either trivial (i.e., it can be reduced to any other task), or complete (i.e., to
which any task can be reduced to), where a functionality F is said to reduce to
another functionality G, if there is a UC protocol for F using ideal access to G.
More precisely, they showed that assuming the existence of semi-honest oblivious
transfer, every finite two-party functionality is either trivial or complete. While their
main theorem relies on the minimal assumption of semi-honest oblivious transfer,
their use of the assumption is non-black-box and they leave it as an open problem
to achieve the same while relying on oblivious transfer in a black-box manner.
Our result makes progress toward establishing this. In more detail, their high-level
approach is to identify complete functionalities using four categories, namely (1)
Fxor that abstracts a XOR-type functionality, (2) Fcc that abstracts a simple cut-
and-choose functionality, (3) For the oblivious transfer functionality and (4) Fcom
the commitment functionality. They then show that each category can be used to
securely realize any computational task.® Among these reductions, functionalities
Fxor and Fec rely on oblivious transfer in a non-black-box way. In this work, we
improve the reduction in functionality F¢c. That is, we obtain this improvement by
showing that the extractable commitment functionality Fgxrcom and semi-honest
oblivious transfer can be used in a black-box way to realize functionality For and
combine this with a reduction presented in [46] that reduces Fcc to the Fexrcom
functionality in a black-box way.

1.1.2. One-Sided UC Secure Computation

In this stronger attack model, where at most one of the parties is adaptively cor-
rupted [30,38], we prove that one-sided adaptive UC security is implied by PKE with

OHere it suffices to realize the For functionality as it is known to be complete [35].
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oblivious ciphertext generation, which implies semi-honest OT. Here we combine two
observations: (1) In our malicious static oblivious transfer from the previous result, the
actions of the parties depend on their real inputs only in the last phase of the protocol
and (2) we do not need a full fledge NCE, rather only need one-sided non-committing
encryption (NCE), which we know can be designed based on PKE with oblivious cipher-
text generation [9, 17]. In particular, NCE allows secure communication in the presence
of adaptive attacks, which implies that the communication can be equivocated once the
real message is handed to the simulator. Then, by encrypting part of our statically secure
protocol using NCE, we obtain a generic protocol for any two-party functionality under
the assumption specified above.” Namely,

Theorem 1.3. (Informal) Assuming the existence of PKE with oblivious ciphertext
generation, then any two-party functionality can be realized in the CRS model with
one-sided adaptive UC security and black-box access to the PKE.

1.1.3. Adaptive UC Secure Computation

Our last result is in the strongest corruption setting, where any number of parties can be
adaptively corrupted. Here we design a new adaptively secure UC commitment scheme
under the assumption of PKE with oblivious ciphertext generation, which is the first con-
struction that achieves the stronger notion of adaptive security based on this hardness
assumption. Our construction makes a novel usage of such a PKE together with Reed—
Solomon codes, where the polynomial shares are encrypted using the PKE with oblivious
ciphertext generation. Plugging in our UC commitment protocol into the transformation
of [6], that generates adaptive malicious oblivious transfer given adaptive semi-honest
oblivious transfer and UC commitments, implies adaptive UC oblivious transfer with
malicious security based on semi-honest adaptive oblivious transfer and PKE with obliv-
ious ciphertext generation, using only black-box access to these underlying primitives.
That is,

Theorem 1.4. (Informal) Assuming the existence of PKE with oblivious ciphertext
generation and adaptive semi-honest oblivious transfer, then any functionality can be
realized in the CRS model with adaptive UC security, where the underlying primitives
are accessed in a black-box manner.

We further recall the work of Choi et al. [5] that shows that the weakest general known
assumption that is required to construct adaptively secure semi-honest oblivious transfer
is trapdoor simulatable PKE.® Now, since such an encryption scheme admits PKE with
oblivious ciphertext generation, we obtain the following corollary that unifies the two
assumptions required to achieve adaptive UC security.

TWe note that while in the plain model any statically secure protocol can be compiled into one-sided
secure protocol by encrypting its entire communication using one-sided NCE, such a transformation cannot
be applied generically in the UC setting as the trusted setup (e.g., CRS) might depend on the identity of the
corrupted party.

8Trapdoor simulatable PKE is a simulatable PKE that requires a trapdoor to obliviously sample a public
key or a ciphertext.
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Table 2. Comparison with prior work on UC commitments and UC oblivious transfer in the CRS model
against adaptive corruptions.

References Assumption Functionality Setup Black-box
[17] Mixed-Com UC Com Local CRS Yes
[15] Strong RSA UC Com Global CRS Yes
[16] Sim PKE UC Com Global CRS No
[6] Trapdoor Sim. PKE Uuc oT UC Com Yes
This work PKE w/OCG UC Com Local CRS Yes

Corollary 1.5. Assuming the existence of (trapdoor) simulatable PKE, then any func-
tionality can be realized in the CRS model with adaptive UC security and black-box
access to the PKE.

An additional interesting observation that is implied by our work is that our UC commit-
ment scheme implies a construction that is secure in the adaptive setting when erasures
are allowed and under the weaker assumption of PKE. Specifically, instead of oblivi-
ously sampling ciphertexts in the commitment phase, the committer encrypts arbitrary
plaintexts and then erases the plaintexts and randomness used for these computations.
Our proof follows easily for this case as well. Combining our UC commitment scheme
together with the semi-honest with erasures OT from [40] and the transformation of
Choi et al. [6], we obtain the following result.

Theorem 1.6. (Informal) Assuming the existence of PKE and semi-honest oblivious
transfer secure against an adaptive adversary assuming erasures, then any functionality
can be realized in the CRS model with adaptive UC security assuming erasures, where
the underlying primitives are accessed in a black-box manner.

Noting that OT secure against adaptive adversaries assuming erasures can be realized
under assumptions sufficient for achieving the same with respect to the weaker static
adversaries, this theorem shows that achieving UC security against adaptive adversaries
in the presence of erasures does not require any additional assumption beyond what is
required to secure against static adversaries.

Implications Next, we specify a sequence of interesting observations that are implied
by our result in the adaptive UC setting which are summarized in Table 2.

e Previously, Dachman-Soled et al. [16] showed that adaptively secure UC protocols
can be constructed in the CRS model assuming the existence of simulatable PKE.
Our result improves this result in terms of complexity assumptions by showing that
simulatable PKE is sufficient, and provides new constructions based on concrete
assumptions that were not known before. Nevertheless, we should point out that
while the work of Dachman-Soled et al. is constructed in the global CRS model
using a non-black-box construction, our result provides a black-box construction
in a CRS model where the length of the reference string is linear in the number of
parties.
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e Analogous to our result on static UC security, it is possible to extend this result to the
chosen key registration authority (KRA) model, where we assume the existence of a
trusted party that samples public keys and secret keys for each party, and broadcasts
the public key to all parties.

e Itisimportant to note that this result provides the first evidence that adaptively secure
UC commitment is theoretically easier to construct than stand-alone adaptively
secure semi-honest oblivious transfer. Namely, on the one hand, enhanced trapdoor
permutations are sufficient to construct PKE with oblivious ciphertext generation
which in turn are sufficient to realize adaptive UC commitment in the CRS model
by Theorem 1.4. On the other hand, a result due to Lindell and Zarosim [45]
(regarding static versus adaptive oblivious transfer) separates adaptively secure
oblivious transfer from enhanced trapdoor permutation under black-box reductions.

e Regarding concrete assumptions, previously, adaptive UC commitments with-
out erasures were constructed based on N-residuosity and p-subgroup hardness
assumptions [18] and Strong RSA [15]. On the other hand, our result demonstrates
the feasibility of this primitive under DDH, LWE, factoring Blum integers and
RSA assumptions. When considering adaptive corruption with erasures, the work
of Blazy et al. [2], extending the work of Lindell [41], shows how to construct
highly efficient UC commitments based on the DDH assumption. On the other
hand, assuming erasures, we are able to construct an adaptive UC commitment
scheme based on any CPA secure PKE.

1.2. Subsequent Work

In subsequent work, Kiyoshima et al. [37] improve the results in the work for the static
setting in the CRS model where they show that assuming PKE and semi-honest OT, UC
is feasible in the global CRS model where there is a single CRS string chosen for all
sessions.

2. Preliminaries

Basic notations 'We denote the security parameter by n. We say that a function u :
N — Nis negligible if for every positive polynomial p(-) and all sufficiently large n it
holds that u(n) < Ok We use the abbreviation PPT to denote probabilistic polynomial
time. We further denote by a <— A the random sampling of a from a distribution A and
by [n] the set of elements {1, ..., n}. We specify next the definition of computationally
indistinguishable.

Definition 2.1. Let X = {X(a, n)}ac(0,1}*,nen and Y = {Y (a, n)}aefo,1)*,nen be two
distribution ensembles. We say that X and Y are computationally indistinguishable,

denoted X ~ Y, if for every PPT machine D, every a € {0, 1}*, every positive polyno-
mial p(-) and all sufficiently large n:

|Pr[D(X(a,n),1") =1]=Pr[D(Y(a,n),1") =1]| < Tk
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2.1. Public-Key Encryption Schemes

We specify the definitions of public-key encryption, IND-CPA and public-key encryption
with oblivious ciphertext generation.

Definition 2.2. (PKE) We say that [T = (Gen, Enc, Dec) is a public-key encryption
scheme if Gen, Enc, Dec are polynomial-time algorithms specified as follows:

e Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is
a public key and SK is a secret key. We denote this by (PK, SK) < Gen(1").

e Enc, given the public key PK and a plaintext message m, outputs a ciphertext ¢
encrypting m. We denote this by ¢ <— Encpk (m); when emphasizing the random-
ness r used for encryption, we denote this by ¢ <— Encpk (m; r).

e Dec, given the public key PK, secret key SK and a ciphertext ¢, outputs a plaintext
message m s.t. there exists randomness r for which ¢ = Encpk (m; r) (or L if no
such message exists). We denote this by m < Decpk sk ().

For a public-key encryption scheme IT = (Gen, Enc, Dec) and a non-uniform adver-
sary A = (Ay, Az), we consider the following indistinguishability game:

(PK, SK) < Gen(1").

(mg, my, history) < A1(PK), s.t. |mg| = |m].
¢ < Encpg(mp), where b < {0, 1}.

b < As(c, history).

A wins if b’ = b.

Denote by Abvyy, 4(n) the probability that A wins the IND-CPA game.

Definition 2.3. (IND-CPA) A public-key encryption scheme I1 = (Gen, Enc, Dec)
is IND-CPA secure, if for every non-uniform adversary A = (A, Ap) there exists a
negligible function . (-) such that for all sufficiently large n’s, ADvp 4(n) < % + u(n).

A public-key encryption with the property of oblivious ciphertext generation implies
additional two algorithms: (1) oblivious ciphertext generator Enc and (2) a correspond-

—~1
ing ciphertext faking algorithm Enc . Intuitively, the ciphertext faking algorithm is
used to explain a legitimately generated ciphertext as an obliviously generated one.
Formally,

Definition 2.4. (PKE with oblivious ciphertext generation [17]) A PKE IT with oblivi-

e |
ous sampling generation is defined by the tuple (Gen, Enc, Dec, Enc, Enc ) and has
the following additional property,

e Indistinguishability of oblivious and real ciphertexts For any message m in the
appropriate domain, consider the experiment (PK, SK) <« Gen(1"), ¢; <«
— —~1
Encpk(r1), c2 < Encpk(m;r2), r; < EncCpg(cz). Then, (PK,ry, ¢, m) ~
(PK’ ré’ C2’ m)‘
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To this end, we only employ encryption schemes with perfect decryption. This merely
simplifies the analysis and can be relaxed by using PKE with a negligible decryption
error instead.

2.2. Secret Sharing

A secret sharing scheme allows distribution of a secret among a group of n players,
each of whom in a sharing phase receive a share (or piece) of the secret. In its simplest
form, the goal of secret sharing is to allow only subsets of players of size at least ¢ + 1 to
reconstruct the secret. More formally a 7+ 1-out-of-n secret sharing scheme comes with a
sharing algorithm that on input a secret s outputs n shares s, . . . , 5, and a reconstruction
algorithm that takes as input (s;);cs, S where |S| > ¢ and outputs either a secret s’ or
L. In this work, we will use the Shamir’s secret sharing scheme [50] with secrets in
F = GF(2"). We present the sharing and reconstruction algorithms below:

Sharing algorithm For any input s € [, pick a random polynomial f(-) of
degree ¢ in the polynomial field F[x] with the condition
that f(0) = s and output f(1), ..., f(n).

Reconstruction algorithm For any input (slf )ies Where none of the slf are 1 and |S| >
t, compute a polynomial g(x) such that g(i) = s/ for
everyi € S.Thisis possible using Lagrange interpolation
where g is given by

s =Y [] =L

ies  jesyiy b

Finally the reconstruction algorithm outputs g(0).

Reed—Solomon code  For integers ¢, n and field IF, satisfying 0 < t < n < |F|, and a set
of n distinct elements I = {xi, ..., x,} C I, the Reed—Solomon code W, ; is defined
by

{g(x1), ..., q(xy) | q() is a degree ¢ polynomial in F[x]}.

The Reed—Solomon code has minimum distance relative distance 1 — ,Ll where a
corrupted code word with up to |'”T*t'| errors can be corrected using the Berlekamp—
Welch algorithm. It follows easily that Shamir’s secret sharing on F as described above
results in a sequence of shares in the Reed—Solomon code W, ;.

2.3. Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is an important functionality in the context of secure
computation that is engaged between a sender Sen and a receiver Rec; see Fig. 1 for the
description of functionality For. In this paper we are interested in reducing the hardness
assumptions for general UC secure computation when using only black-box access to
the underlying cryptographic primitives, such as the semi-honest OT. We use semi-
honest OT as a building block for designing UC protocols in both static and adaptive
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Functionality F .

Functionality F communicates with with sender Sen and receiver Rec, and adversary S.
1. Upon receiving input (sender, sid, vg, v1) from Sen where v, v1 € {0, 1}¢, record (sid, vy, v1).

2. Upon receiving (receiver, sid, u) from Rec, where a tuple (sid, vo, v1) is recorded and u € {0,1},
send (sid, v,,) to Rec and sid to S. Otherwise, abort.

Fig. 1. Oblivious transfer functionality.

settings. In the static setting, we refer to the two-round protocol of [22] that is based
on PKE with oblivious ciphertext generation (or enhanced trapdoor permutation). In the
adaptive setting, we refer to the two-round protocol of [12] that is based on augmented
non-committing encryption scheme.

We briefly recall that any two-round semi-honest OT implies PKE. This is demon-
strated in two phases, starting with the claim that semi-honest OT implies a key agreement
(KA) protocol. This statement has been proved in [23] in the static setting and holds
for any number of rounds as well as in the presence of adaptive adversaries. Next, a
well-established fact shows that in the static setting a two-round key agreement implies
PKE. (In fact, these primitives are equivalent).

2.3.1. Receiver Private Oblivious Transfer

Receiver privacy is a weaker notion than malicious security and only requires that the
receiver’s input be hidden even against a malicious sender. It is weaker than malicious
security in that it does not require a simulation of the malicious sender that extracts
the sender’s inputs. In particular, we will only require that a malicious sender cannot
distinguish the cases where the receiver’s input is 0 or 1. Formally stated,

Definition 2.5. (Receiver private OT) Let 7 be a two-party protocol that is engaged
between a sender Sen and a receiver Rec. We say that 7 is a receiver private oblivious
transfer protocol, if for every PPT adversary .A that corrupts Sen, the following ensembles
are computationally indistinguishable:

o {View 4 - [A(1"), Rec(1", 0)}nen
o {View 4 ;[A(1"), Rec(1", D]}ren,

where View 4 [ A(1"), Rec(1”, b)] denotes A’s view within 7= whenever the receiver
Rec inputs the bit b.

‘We point out that receiver privacy protects the receiver against a malicious sender and
should be read as privacy against a malicious sender.

2.3.2. Defensible Private Oblivious Transfer

The notion of defensible privacy was introduced by Haitner in [27,28]. A defense in
a two-party protocol # = (P, P;) execution is an input and random tape provided
by the adversary after the execution concludes. A defense for a party controlled by
the adversary is said to be good if whenever this party participated honestly in the
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protocol using this input and random tape, then it would have resulted in the exact same
messages that were sent by the adversary. In essence, this defense serves as a proof of
honest behavior. Defensible privacy ensures that a protocol is private in the presence of
defensible adversaries if the adversary learns nothing more than its prescribed output
when it provides a good defense.

We begin with informally describing the notion of good defense for a protocol 7; we
refer to [28] for the formal definition. Let trans = (g1, ay, . . ., q¢, a¢) be the transcript
of an execution of a protocol 7 that is engaged between P; and P, and let A denote an
adversary that controls Pj, where g; is the ith message from Pj and a; is the ith message
from P, (that is, a; is the response for g;). Then we say that (x, r) constitutes a good
defense of A relative to trans if the transcript generated by running the honest algorithm
for Py with input x and random tape r against P»’s messages aj, . . ., dg results exactly
in trans.

At ahigh level, an OT protocol is defensible private with respect to a corrupted sender
if no adversary interacting with an honest receiver with input b should be able to learn
b, if at the end of the execution the adversary produces any good defense. Similarly, an
OT protocol that is defensible private with respect to a corrupted receiver requires that
any adversary interacting with an honest sender with input (sg, s1) should not be able
to learn s1_p, if at the end of the execution the adversary produces a good defense with
input b. Below we present a variant of the definition presented in [28]. We stress that
while the [28] definition only considers bit OT (i.e., sender’s inputs are bits) we consider
string OT.

Definition 2.6. (Defensible private string OT) Let & be a two-party protocol that is
engaged between a sender Sen and a receiver Rec. We say that  is a defensible private
string oblivious transfer protocol, if for every PPT adversary A the following holds,

1. {C(View4[A(1"), Rec(1",U)], U)} ~ {T(View 4[A(1™), Rec(1", U)], U’)} where
(v, x) is set to (v, %) if following the execution A outputs a good defense for 7,
and L otherwise, and U and U’ are independent random variables uniformly dis-
tributed over {0, 1}. This property is referred to as defensible private with respect
to a corrupted sender.

2. {T'(View 4[Sen(1", (U}, U7)), A(M], Ut} ~ {T'(View 4[Sen(1", (U, UT)),
A(1™)], U™)} where ' (v, %) is set to (v, ) if following the execution .A outputs
a good defense for 7, and L otherwise, b is the Rec’s input in this defense and
U(S’, U 1" U" are independent random variables uniformly distributed over {0, 1}".
This property is referred to as defensible private with respect to a corrupted receiver.

In our construction from Sect. 3, we will rely on an OT protocol that is receiver private
and defensible private with respect to a corrupted receiver. In [28], Haitner et al. showed
how to transform any semi-honest bit OT to one that is defensible private with respect
to a corrupted receiver and malicious secure with respect to a corrupted sender. More
formally, the following lemma is implicit in the work of [28].

Lemma 2.1. (Implicit in Theorem 4.1 and Corollary 5.3 [28]) Assume the existence
of a semi-honest oblivious transfer protocol . Then there exists an oblivious transfer
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protocol 7 that is defensible private with respect to the receiver and receiver private
that relies on the underlying primitive in a black-box manner.

Now, since receiver privacy is implied by malicious security with respect to a corrupted
sender, this transformation yields a bit OT protocol with the required security guarantees.
Nevertheless, our protocol crucially relies on the fact that the underlying OT is a string OT
protocol. We therefore show in “Appendix A” how to transform any bit OT to a string OT
protocol while preserving both defensible private with respect to a maliciously corrupted
receiver and receiver privacy.

2.4. Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself
to a value while keeping it secret from the receiver (this property is called hiding).
Furthermore, in a later stage when the commitment is opened, it is guaranteed that the
“opening” can yield only a single value determined in the committing phase (this property
is called binding). In this work, we consider commitment schemes that are statistically
binding; namely, while the hiding property only holds against computationally bounded
(non-uniform) adversaries, the binding property is required to hold against unbounded
adversaries. More precisely, a pair of PPT machines Com is said to be a commitment
scheme if the following two properties hold.

Computational hiding For every (expected) PPT machine R*, it holds that the
following ensembles are computationally indistinguishable over n € N.

. R*
{Vlewggm(vl s Z)}nEN,Ul,sz{O,l}",ZG{O,l}*
{Viewcom (v2, 2)}nen v, v2€{0, 13, 2€{0,1)*

where viewggm (v, z) denotes the random variable describing the output of R* after
receiving a commitment to v using Com.

Statistical binding Informally, the statistical binding property asserts that, with
overwhelming probability over the coin tosses of the receiver R, the transcript of
the interaction fully determines the value committed to by the sender.

We say that a commitment is valid if there exists a unique committed value that a
(potentially malicious) committer can open to successfully. We refer the reader to [26]
for more details.

2.5. UC Commitment Schemes

The notion of UC commitments was introduced by Canetti and Fischlin in [8]. The
formal description of functionality Fcoy is depicted in Fig. 2.

2.6. Extractable Commitments

Our result in the static setting requires the notion of (static) extractable UC commit-
ments, which is a weaker security property than UC commitments in the sense that it
does not require equivocality. Namely, the simulator is not required to commit to one
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Functionality F o\

Functionality Fcoy communicates with with sender Sen and receiver Rec, and adversary S.

1. Upon receiving input (commit, sid, m) from Sen where m € {0, 1}, internally record (sid, m)
and send message (sid, Sen, Rec) to the adversary. Upon receiving approve from the adversary
send sid, to Rec. Ignore subsequent (commit, ., ., .) messages.

2. Upon receiving (reveal, sid) from Sen, where a tuple (sid, m) is recorded, send message m to
adversary S and Rec. Otherwise, ignore.

Fig. 2. String commitment functionality.

message and then later convince the receiver that it committed to a different value. Itis a
real challenge to define this notion since it is hard to capture the notion of extractability
in the ideal setting. In what follows, we recall the definition for the ideal functionality
Fexrcom from [46]. To the best of our knowledge, this is the only definition that captures
straight-line extractability, statistically binding and computationally (stand-alone) hid-
ing. Toward introducing this definition, Maji et al. introduced some notions first. More
concretely,

Definition 2.7. A protocol is a syntactic commitment protocol if:

e It is a two-phase protocol between a sender and a receiver (using only plain com-
munication channels).

o Atthe end of the first phase (commitment phase), the sender and the receiver output
a transcript trans. Furthermore, the sender receives an output (which will be used
for opening the commitment).

e In the decommitment phase the sender sends a message y to the receiver, who
extracts an output value opening(trans, y) € {0, 1}" U {L}.

Definition 2.8. Two syntactic commitment protocols (wr,, wg) form a pair of comple-
mentary statistically binding commitment protocols if the following hold:

e wp is a statistically binding commitment scheme (with stand-alone security).

e In w;, at the end of the commitment phase the receiver outputs a string z € {0, 1}".
If the receiver is honest, it is only with negligible probability that there exists y
such that opening(trans, y) # L and opening(irans, y) # z.

As noted in [46], wy by itself is not an interesting cryptographic goal, as the sender
can simply send the committed string in the clear during the commitment phase. Never-
theless, in defining Frxrcom below, there exists a single protocol that satisfies both the
security guarantees. We are now ready to introduce the notion of extractable commit-
ments in Fig. 3 that is parameterized by (wr, wg). We additionally include a function
pp that will be used as an initialization phase to set up the public parameters for w;, and
WR.

In “Appendix 2.6.1” we show how to realize Frxrcom based on IND-CPA secure PKE.
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Functionality Fixrcon parameterized by (pp,wr,,wr)

Fexrcom 1S running with parties Pp,...,P, and an adversary S: Upon receiving a
message  (init — commit, sid, ssid, P;, P;) from P;, it first checks if there is a tuple
(public — params, sid, P;, (pp,sp)).  If yes, it sends (init —commit,sid,ssid, P, P;) to Pj. If
not, it runs (pp,sp) <« pp(1™) and sends (init —commit, sid, P;,pp) to P;, P; and S. It stores
(public — params, sid, P;, (pp, sp)). We denote P; by the sender and P; by the receiver in this interaction.
Next, the functionality behaves as follows, depending on which party is corrupted.

e P; IS HONEST AND P; IS HONEST.

Commit Phase: Upon receiving (commit, sid, ssid, P;, Pj, m) from P;, it internally simulates a ses-
sion of wp (simulating both the sender and receiver in wg), with the sender’s input fixed to m.
It gives (transcript, sid, ssid, trans,~) to P; and (receipt, sid, ssid, P;, P;, trans) to P; and S.

Reveal Phase: Upon receiving (decommit, sid, ssid,-) from the sender, it sends
(decommit, sid, ssid, P;, Pj, z) to Pj and S.

e P; IS CORRUPTED AND FPj IS HONEST.

Commit Phase: It runs the commitment wy, with the sender, playing the part of the receiver in wy,,
to obtain (sid, ssid, trans, z). It sends (receipt, sid, ssid, P;, Pj,trans) to Pj and S.

Reveal Phase: Upon receiving (decommit, sid, ssid,~) from the sender, if opening(trans,~) = z,
it sends (decommit, sid, ssid, P;, Pj, z) to Pj and S. Otherwise ignore.

e P; IS HONEST AND Pj IS CORRUPT.

Commit Phase: Upon receiving (commit, sid, ssid, P;, Pj,m) from P;, it runs the commitment
phase of wr with P;, playing the sender’s role in wgr with m as input. It obtains the output
(trans, ) at the end of this phase, and sends (transcript, sid, ssid, trans, ) to P;.

Reveal Phase: Upon  receiving  (decommit, sid, ssid)  from the sender it sends
(decommit, sid, ssid, P;, Pj, (7, 2)) to Pj and S.

The functionality does not do anything when both the sender and the receiver are corrupted.

Fig. 3. Extractable commitment functionality.

2.6.1. Extractable Commitments from PKE in the CRS Model

We briefly discuss how to realize the Frxrcom functionality in the CRS model. At a high
level, we obtain an extractable commitment using a IND-CPA PKE. Loosely speak-
ing, the common reference string contains a public key that is sampled using the key
generation algorithm. Moreover, the trapdoor for the CRS is the corresponding secret
key. In the real world, no adversary knows that secret key, and hence, it does not know
the corresponding CRS trapdoor. In order to implement extractable commitments, our
protocol requires from the commitment sender to simply encrypt its message m using
the public key that is placed in the CRS. Decommitment is carried out by asking the
sender to provide the randomness used to encrypt m.

3. Static UC Secure Computation

In this section, we prove the feasibility of UC secure computation based on semi-honest
OT and extractable commitments, where the latter can be constructed based on two-
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round semi-honest OT (see Sects. 2.3 and 2.6 for more details). More concretely, we
prove how to transform any statically semi-honest secure OT into one that is secure in
the presence of malicious adversaries, giving only black-box access to the underlying
semi-honest OT protocol. Our protocol is a variant of the protocol by Lin and Pass
from [42] (which in turn is a variant of the protocol of [28]). In particular, in [42],
the authors rely on a strong variant of a commitment scheme known as a CCA secure
commitment in order to achieve extraction. We observe that it is not required to use the
full power of such commitments, or for that matter UC commitments. Specifically, using
a weaker primitive that only implies straight-line input extractability enables to solely
rely on semi-honest OT. An important weakening in our commitment scheme compared
to CCA secure commitments from [42] is that we allow invalid commitments to be made
by the adversary. Our construction obtains a statically UC protocol for any well-formed
functionality (see definition in [12]). Namely,

Theorem 3.1. Assume the existence of static semi-honest oblivious transfer. Then for
any multi-party well-formed functionality F, there exists a protocol that UC realizes
F in the presence of static, malicious adversaries in the Fgxrcom-hybrid model using
black-box access to the oblivious transfer protocol.

The proof of Theorem 3.1 follows from combining our UC OT protocol with the [33]
protocol. It seems possible to generalize our theorem to multi-session functionalities.
Analogous to [8], this will allow us to extend our corollaries to the global CRS model
by additionally assuming CCA encryption scheme; we leave this as future work.

3.1. Static UC Oblivious Transfer

In the following, we discuss a secure implementation of the oblivious transfer func-
tionality (see Fig. 1) with static, malicious security in the Fgxrcom-hybrid model (where
Fextcom 18 stated formally in Fig. 3). Our goal in this section is to show that the security of
malicious UC OT can be based on UC semi-honest OT, denoted by 778?, and extractable
commitments. Our result is shown in two phases. At first, we compile the semi-honest
OT protocol 73T into a new protocol with the security properties that are specified in
Sect. 2.3.2, extending the [28] transformation into string OT; denote the compiled OT
protocol by 7or. This transformation in specified “Appendix A.” In what follows, we use
Tor in order to construct a new protocol 7)1 that is secure in the presence of malicious
adversaries.

Our protocol is a variant of first step of the compilation in [6] which in turn is based
on the work of [28]. At a high level, the compilation in [6,28] shows how to amplify the
security of an oblivious transfer protocol against receiver corruption from semi-honest
to malicious. In comparison, our protocol amplifies the security of an OT protocol that
is defensible private against the sender and receiver to full security.

Loosely speaking, the parties first run a coin-tossing protocol in order to generate
the input and randomness for both the receiver and the sender. Using cut-and-choose,
which requires to repeat this process multiple times, we are able to extract these values
in the simulation. The parties then run a sequence of random oblivious transfers using
the values generated in the coin-tossing phase. Finally, the sender applies a combiner on
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the remaining random OT inputs (namely for the positions that were not opened during
the cut-and-choose opening phase), in order to transfer its real inputs. Details follow,

Protocol 1.  (Protocol - with static security)

Input: The sender Sen has input (vg, vi) where vg, v1 € {0, 1}* and the receiver
Rec has input u € {0, 1}.
The protocol:

1. Coin-tossing:

e Receiver’s random tape generation: The parties use a coin-tossing protocol in
order to generate the inputs and random tapes for the receiver.
— The receiver commits to 20n strings of appropriate length, denoted by
1 20, . T A |
ARecs - - - » ARenr DY sending Fexrcom the message (commit, sid, ssid;, ag...)
foralli € [n].
— The sender responds with 20n random strings of appropriate length
20n
o bRec' . . , ,
- Th; receiver computes rp.. = dp.. D bp.. and then interprets rp,. =
CillTgee Where c; determines the receiver’s input for the ith OT protocol,

whereas Ty, determines the receiver’s random tape used for this execution.

1
DRecs - -

e Sender’s random tape generation: The parties use a coin-tossing protocol in
order to generate the inputs and random tapes for the sender.

— The sender commits to 20n strings of appropriate length, denoted by

1 20 , A N i
Ageps - - - » Asen» by sending Fexrcom the message (commit, sid, ssid, ag,,)

foralli € [n].

— The receiver responds with 20n random strings of appropriate length
bl b20n

Sen’ ** > “Sen* X . . .

— The sgnder computes ry,, = dg., ® bg,., and then interprets rg,, =
s?||sl.1||t§en where (;?, sl.l) determine the sender’s input for the ith OT
protocol, whereas tg,, determines the sender’s random tape used for this
execution.

2. Oblivious transfer:

o The parties participate in 20n executions of the OT protocol Tor with the cor-
responding inputs and random tapes obtained from Stage 2. Let the output of
the receiver in the ith execution be ;.

3. Cut-and-choose:

e Sen chooses a random subset qsen = (qslen, e, qgen) e{l,...,20}" andsends
it to Rec. The string qsen is used to define a set of indices I'sen C {1, ..., 20n}
of size n by grouping the indices into blocks of 20 and choosing element qgen
index in the ith block. More formally, T'sen, = {20i — qéen}ie["]‘ The receiver
then opens the commitments from Stage 1 that correspond to the indices within
I'sen; namely, the receiver decommits aﬁec foralli € T'sen. Sen checks that the
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decommitted values are consistent with the inputs and randomness used for the
OTs in Stage 2 by the receiver, and aborts in case of a mismatch.

e Rec chooses a random subset qrec = (qéec, e, qﬁec) e {1,...,20}" and
sends it to Sen. The string qrec is used to define a set of indices I'Rec C
{1,...,20n} of size n in the following way: TRec = {20i — qﬁec}ie[n]. The
sender then opens the commitments from Stage 1 that correspond to the indices
within TRec; namely, the sender decommits aéen foralli € I'rec. Rec checks
that the decommitted values are consistent with the inputs and randomness used
for the OTs in Stage 2 by the sender, and aborts in case of a mismatch.

o Rec commits to another subset ' C [20n] denoted by (1"1, ..., '), by sending
Fexrcom the message (commit, sid, ssidl.’, Fi)for alli € [n]. (The sender will
reveal its inputs and randomness that are used in Stage 2 that correspond to
the indices in T later in Stage 5.)

4. Combiner:

o Let A = [20n] — T'Rec — I'sen. Then for every i € A, the receiver computes
o; = u D c; and sends it to the sender.

o The sender computes a 10n-out-of-18n secret sharing of vo, denote the shares
by {p?}ie A- Analogously, it computes a 10n-out-of-18n secret sharing of vy,

denote the shares by {,oi1 }iea. The sender computes ﬁl.b = pf ® s;’@ai for all
b e {0,1}andi € A, and sends the outcome to the receiver.

o The receiver computes p; = B}’ @ 5; for all i € A. Denote by p these concate-
nated bits.

5. Final cut-and-choose:

o The receiver decommits I" and the sender sends the inputs and randomness it
used in Stage 2 for the coordinates that correspond to A N I'. (Note that the
sender needs only to reveal the indices that were not decommitted in Stage 3.)
Rec checks that the sender’s values are consistent with the inputs and random-
ness used for the OTs in Stage 2 and the combiner computation in Stage 4 made
by the sender, and aborts in case of a mismatch.

o The receiver checks whether (p;)ica agrees with some code word w € Wig, 100
on 17n locations (where the code Wig, 100 is induced by the secret sharing
construction that we use in Stage 4; see Definition 2.2 for more details). Recall
that the minimum distance of the code YWign 10, is at least 18n — 10n > 8n,
which implies that there will be at most one such code word w. Furthermore,
since we can correct up to M = 4n errors, any code that is 17n close to a
code word can be efficiently recovered using the Berlekamp—Welch algorithm.
The receiver outputs that w as its output in the OT protocol. If no such w exists,
the receiver returns a default value.

We next prove the following theorem.

Theorem 3.2. Assume that that the compiled Ty is defensible private (cf. Definition
2.6). Then Protocol 1 UC realizes For in the presence of static malicious adversaries in
the Fexrcom-hybrid model using black-box access to the oblivious transfer protocol.



On Black-Box Complexity of Universally Composable 655

We recall Lemma 2.1 and “Appendix A” that demonstrate the transformation from semi-
honest OT to defensible private string OT. Specifically, our protocol relies on the exis-
tence of semi-honest OT and extractable commitments, where the later can be constructed
based on any two-round semi-honest OT, e.g., [22], which implies PKE (see Sects. 2.3
and 2.6 for more details). Therefore, an immediate corollary from Theorem 3.2 implies
that

Corollary 3.3. Assume the existence of two-round static semi-honest oblivious trans-
fer. Then there exists a protocol that securely realizes For in the presence of static
malicious adversaries in the CRS model using black-box access to the oblivious transfer
protocol.

A high-level proof We first provide an overview of the security proof; the complete
proof is found in Sect. 3.2. Loosely speaking, in case the receiver is corrupted the
simulator plays the role of the honest sender in Stages 1-3 and extracts the receiver’s
input u. Specifically, the simulator extracts all the committed values of the receiver
within Stage 1 (relying on the fact that the commitment scheme is extractable) and then
uses these values in order to obtain the inputs for the OT executions in Stage 2. Upon
completing Stage 2, the simulator records the coordinates for which the receiver deviates
from the prescribed input and random tape chosen in the coin-tossing phase. Denoting
these set of coordinates by @, we recall that a malicious receiver may obtain both of
the sender’s inputs with respect to the OT executions that correspond to the coordinates
within ® and I'. On the other hand, it obtains only one of the two inputs with respect
to the rest of the OT executions that correspond to the coordinates within A — ® — T,
Consequently, the simulator checks how many shares of vy and v; are obtained by the
receiver and completes Stage 4 accordingly. In more detail,

o If the receiver obtains more than 10x shares of both inputs, then the simulator halts
and outputs fail (we prove in Sect. 3.2 that this event only occurs with negligible
probability).

o If the receiver obtains less than 10n shares of both inputs, then the simulator picks
two random values for vg and v; of the appropriate length and completes the inter-
action, playing the role of the honest sender on these values. Note that in this case
the simulator does not need to call the ideal functionality.

o Finally, if the receiver obtains more than 107 shares for only one input « € {0, 1},
then the simulator sends u to the ideal functionality For and obtains v,,. The simu-
lator then sets vi_, as a random string of the appropriate length and completes the
interaction by playing the role of the honest sender on these values.

Recall that the only difference between the simulation and the real execution is in the way
the messages in Stage 4 are generated. Specifically, in the simulation a value u is extracted
from the malicious receiver and then fed to the For functionality. The simulation is
then completed based on the output returned from the functionality. Intuitively, the
cut-and-choose mechanism ensures that the receiver cannot deviate from the honest
strategy in Stage 2 in more than n OT sessions without getting caught with overwhelming
probability. Moreover, the defensible privacy of the OT protocol implies that the receiver
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can learn at most one of the two inputs of the sender relative to the OT executions in
Stage 2 for which the receiver proceeded honestly.

In case the sender is corrupted, the simulator’s strategy is to play the role of the honest
receiver with a fixed input O until Stage 5 where the simulator extracts the sender’s inputs.
More specifically, the simulator first extracts the sender’s input for the OT executions
in Stage 1 (relying on the fact that the commitment scheme is extractable). Next, the
simulator extracts the shares {,o?},-e A and {,ol.l}i6 A that correspond to inputs vy and vj.
To obtain the actual values the simulator checks whether these shares agree with some
code word relative to 16n locations. That is,

e Let wo and w; denote the corresponding code words. (If there are no such code
words that agree with vg and v; on 16n locations, then the simulator uses a default
code word instead.) Next, the simulator checks wg and w; against the final cut-
and-choose. If any of the shares from wj, are inconsistent with the opened shares
that are opened by the sender in the final cut-and-choose, then vy is set to a default
value; otherwise, vy, is the value corresponding to the shared secret.

Finally, the simulator sends (vg, v1) to the ideal functionality for For. Security in this
case is reduced to the privacy of the OT receiver. In addition, the difference between the
simulation’s strategy and the honest receiver’s strategy is that the simulator extracts the
sender’s both inputs in alli € A — ® and then finds code words that are 16n-close to the
extracted values, whereas the honest receiver finds a code word that is 17n-close based
on the inputs it received in Stages 2 and 5, and returns it. We thus prove that the value u
extracted by the simulator is identical to the reconstructed output of the honest receiver
relying on the properties of the secret sharing scheme.

3.2. Proof of Theorem 3.2

Let .A be a malicious probabilistic polynomial-time real adversary running protocol 1
in the Fexrcom-hybrid model. We construct an ideal model adversary S with access to
For which simulates a real execution of protocol - with .A such that no environment
Z can distinguish the ideal process with S and For from a real execution of 7yt with
A. S starts by invoking a copy of A and running a simulated interaction of A with
environment Z, emulating the honest party. We separately describe the actions of S for
every corruption case.

Simulating the communication with ~ Z Every message that S receives from Z it inter-
nally feeds to .4 and every output written by A is relayed back to Z.

Simulating the corrupted receiver 1In this case, S proceeds as follows:

1. § emulates functionality Fgxrcom in Stage 1 and invokes 20n times the com-
mitment scheme w; with A (that plays the role of the committer), obtaining

((transy, aéec), ..., (transyg,, a%{é’g)). Itinternally records aéec, e, aﬁgg and fur-

ther picks 20n random strings bllzec, cee bﬁ%’;, forwarding them to the adversary.

: i | i : i . i
The simulator also computes rp.. = dpe. D b, and then views rp . = ¢il|Tge,



On Black-Box Complexity of Universally Composable 657

where ¢; is the input an honest receiver must use in the ith OT protocol execution
in Stage 2, together with randomness tl"{ec.
Next, the simulator picks 20n random strings aéen, R aggﬁ‘ and emulates the ideal
functionality Fgxrcom by invoking 20n times the commitment phase of wg with inputs

aéen, ey aggg, against A that plays the role of receiver for the commitment scheme.
At the end of this phase, S obtains the output ((trans/, y1), ..., (trans),,, ¥20,)) and
receives from the adversary 20n random strings béen, R b%gr’l’.

. In Stage 2, the simulator participates with the adversary in 20n executions of the OT
protocol Zor, while playing the role of the honest sender. Note that due to the fact that
the simulator knows the values of the input and randomness that the honest receiver must
use in each of the OT executions, the simulator can identify the coordinates of which
the receiver deviates, in which case the receiver learns both the inputs of the sender. We
denote this set of coordinates by the set ®.

. In Stage 3, the simulator picks n random numbers (qéen, .oy qgey) from {1, ..., 20}"
and sends them to the receiver. Upon receiving the decommitments from the receiver,
the simulator verifies the decommitments as would the honest sender do with respect
to I'sen and halts in case of a mismatch, outputting the simulated transcript thus far.
Next, it receives (qlliec, R ‘Iﬁec) from the receiver and decommits the subset of values
that corresponds to the coordinates in I'rec as determined by (qéec, -+ 1 qRec)» Playing
the role of the sender. Finally, it emulates functionality Fgxrcom and invokes the com-
mitment scheme w; with A (that plays the role of the committer) n times, obtaining
((trans, T'1), ..., (trans),, [2on)). Let A = [20n] — Trec — [sen-

. In Stage 4, the simulator proceeds as follows. Observe first that ® and I'sep, are disjoint,
since otherwise the simulator would have halted in the previous stage. We consider three
cases here:

(a) ® > n: In this case, the simulator halts and outputs fail.

(b) @ < n: This implies that A — ® —I" > 16n where by definition, the malicious
receiver proceeds according to the honest OT receiver’s strategy with respect
to every coordinate in A — @ —I'. Note that in this case the adversary learns at
most A + 2® 4 2I" < 20n distinct shares of both the sender’s inputs and the
simulator knows precisely which share is learned for every coordinate relative
to the set A — ® — I'. We consider two subcases:

i. Thereexistsabitu € {0, 1} for which the adversary learns 10n shares of v,,.
We recall that the adversary might learn both shares for the OT executions
that correspond to the coordinates within the set ® U I' and exactly one
share for every OT execution that corresponds to the coordinates within
A — ® — I'. Now, since the simulator knows which share is learned for
every coordinate within A —® —TI', it can also compute an upper bound on
the number of v, shares that are obtained by the receiver. In this case, the
simulator forwards u to the ideal functionality For and receives back v,,.
The simulator then sets v, as a random string of the appropriate length
and completes the interaction by playing the role of the honest sender on
these inputs.
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ii. There does not exist a bit # € {0, 1} for which the adversary learns 10n
shares of v,. In this case, the simulator picks two random values for vg
and v; of the appropriate length and completes the interaction, playing
the role of the honest sender on these values. Note that in this case the
simulator does not call the ideal functionality For.

. The simulator completes the simulation in Stage 5 similarly to Stage 3.

Note that the only difference between the simulation and the real execution is in the
way the messages in Stage 4 are generated. In the simulation, a value u is extracted
from the malicious receiver and then fed to the For functionality, where the simulation
is completed based on the output returned from the functionality. Furthermore, we recall
that in Stage 5 the receiver learns both of the sender’s inputs in all sessions i € I'; then,
it holds that the receiver learns one such input for every session it behaved honestly
and two inputs for all sessions it deviates or included in I". Proving that the event, for
which the adversary deviates in more than n OT executions, only happens with negligible
probability, implies that it learns less than 20n shares in total. Therefore, at least one of
the shared secrets is completely hidden due to the 10n-out-of-18n secret sharing scheme.
To complete the simulation, the simulator identifies which of the two values vg and v
is learnt by the receiver (by identifying how many shares are obtained by that party)
and fixes that to be the receiver’s input. Finally, indistinguishability follows from the
defensible privacy with respect to the receiver of the OT protocol.

More formally, we begin with a proof that the probability that the simulator returns fail
is negligible and then neglect this event. Namely, we prove that the simulated and real
views are computationally indistinguishable conditioned on the even that the simulator
did not output fail.

Claim 3.1. The probability S return fail is negligible.

Proof. Note first that the only place where the simulator fails is in Step 4a, when
¢ > n. We now show that this event occurs with negligible probability. In other words,
we need to show that the probability that the corrupted receiver deviates from the honest
receiver’s strategy in at least n-out-of-18n OT executions while not getting caught by the
sender is negligible. Formally, let Bad denote the event for which the corrupted receiver
deviates in at least n coordinates. Note first that the simulator can easily identify when
event Bad occurs since it knows the random tapes and the inputs the receiver must
use in all executions, and can therefore identify the coordinates for which the receiver
deviates. Next, we show that conditioned on event Bad occurring, the probability that
["sen does not contain one of the n deviated coordinates is negligible. This implies that
the probability that S returns fail is negligible.

Denote by @ the set of n coordinates in which the receiver deviates and define the
bins A; = {20(j —1)+1,...,20j} forall j € [n]. By the pigeonhole principle it holds
that at least [n#/20] bins intersect with ®. In addition, we recall that I'sey is chosen by
the simulator by picking one element from each bin independently of ® and uniformly
at random. Then the probability that I'sey N & = @ is at most (19/20) 1n/20] which is
negligible in n. This concludes the proof of the claim. O
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Next, we prove that the receiver’s view for both executions is computationally indis-
tinguishable assuming that the simulator did not abort the execution. More formally,
denoting the simulated execution by mpgar, then we prove the following statement,

Claim 3.2. The following two distribution ensembles are computationally indistin-
guishable,

+ o EXTCOM £ [View 0T
{Vlewng,[r]-,A’Z(n) }nEN ~ {VlewHIDEAL,S,Z(n)}neN'

Proof. The security argument proceeds in a sequence of hybrids games starting from
the simulated execution toward the real execution. We denote by myygrip; the receiver’s
view in the ith hybrid game.

Hybrid 1 In this game, we define a simulator S; that is identical to S except for
the way the sender’s message is generated in Stage 4. More precisely, the
simulator modifies the way ,8[.1@” is computed foralli € A —T — ®. Recall
first that S sets

B

1 _ pileau 69Si(IQBu)EBOl,- _ pileau @S'H}c,-.

- i

Instead, S; will choose ﬁil®“ at random, which can be viewed as using

a masking element that is independent of sileaci. Intuitively, we claim that

the simulated view and the view generated in hybrid 1 are computationally
indistinguishable because for every i € A — I' — @ the receiver generates
the OT messages in session i of Stage 2 honestly (i.e., using the input ¢;
and random tape rﬁec), where by the defensible privacy of the receiver it

cannot distinguish the input si1 ® from a random input.

Proof Intuition The goal in this hybrid is to remove the real input from the receiver.
The idea is that in all parallel OT executions where the sender does not cheat, by the
defensible privacy, the sender should not be able to identify the receiver’s input. The
specific executions can be identified by the set A —I" — ®. In order to carry of the security
reduction, we need to reduce a cheating sender to a sender that violates the defensible
privacy of the underlying OT protocol. In the main sequence of hybrids H], H 12, ce WE
change the inputs of the receiver in the executions corresponding to A — I' — & one at
a time. To argue indistinguishability between the ith and i + 1st hybrids, we need to do
two things. First we need to decouple the receiver’s actions in these execution (that are
simulated) from the coin-tossing stage. We can rely on the hiding of the commitment
for this; however, to carry out this reduction we need to guess which is the ith index in
A — T — ®. Toward this, we consider a variant of the hybrid H! and H!*! where we
make a guess and isolate the indistinguishability on the guessed coordinate. Next, we
consider a nested hybrid H 1’ and H {H where we rely on the hiding of the commitment
scheme by setting the receivers commitments to O in the coin-tossing stage. Formally,
we prove this in the following claim.
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Claim 3.3. The following two distribution ensembles are computationally indistin-
guishable,

{VlewanOD]TEAL,S,Z(n)}nGN = {Vlewf}lo;{[BRIDl,S],Z(n)}nEN'
Proof. Toward proving this claim, we introduce a sequence of intermediate hybrid
experiments H{ for e = 0, ..., 18n, where in hybrid H{ we consider a simulator S}
that proceeds identically to S with the exception that it follows S ’s strategy for the first e
indices in A —I" — ® regarding the generation of ,31.1@“ (i.e., for the first e sessions where
the receiver proceeded honestly). By definition, we have that experiment H 10 proceeds
identically to the ideal simulation and H 118" proceeds identically to hybrid 1. Denote the
view output in hybrid H{ by hyb,(n) and assume by contradiction that there exist an
adversary A (controlled by Z), a distinguisher D, a polynomial p(-) and infinitely many
n’s such that

TIDEAL,S, Z THYBRID, ,S, 2

1
| PrD(View ST o o (m) = 1] = Pr[D(View’ " ) =11 5
p(n
Using a standard hybrid argument it follows that there exists an e € [18n] such that

|
‘pr[D(hybe(n)) = 1] — Pr[D(hyb,_, () = ”‘ = Bap()

Next, we plan to exploit the above observation in order to construct a defensible
adversary A’ that violates the receiver’s defensible privacy relative to Tor in the sense
of Definition 2.6. At a high level, A’ picks a random j € [20n] and externally forwards
A’s messages within the jth execution of the OT protocol, where j serves as the guess
for the eth execution in A — ' — ®. A’ then emulates the rest of the OT executions,
playing the role of the sender. In order to simplify the analysis and allow A’ carry out
the reduction properly (where the generated randomness within the coin-tossing phase
is disassociated from the OT executions), we consider the following additional hybrid
executions.

First, we consider a slight variation of Hf_l (resp., Hf) denoted by H,_ (resp.,
H,), and a random variable J that denotes a randomly chosen index from [20n] which
is picked at the onset of the hybrid execution. Moreover, the experiment is aborted if
chosen index does not correspond to the eth execution in A —I" — ®. We say that index J
is Bad if the experiment aborts. Note that experiments H,_ | and H , proceed identically
to H,_1 and H,, respectively, conditioned on J not being Bad. This is due to the fact
that J is chosen independently of the experiments. Moreover, relying on the fact that
the eth execution can take at most 20n values we have that

1
Pr[J i t Bad] = —.
r[J is not Bad] >on

Therefore, if me_l (n) and hy_be (n), respectively, correspond to A’s views in H,_;
and H,, then
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Pr[D(hyb,(n)) = 1] = Pr[D(hyb,(n)) = 1 A J not Bad]
+ Pr[D(hyb,(n)) = 1 A J is Bad]

1 _
= (—) Pr[D(hyb,(n)) = 1| J not Bad]
20n

n

1 — .
+ (1 - W) Pr[D(hyb,(n)) = 1| J is Bad]

= 1PDhb =1 1 1PDJ_—1
_<ﬁ) r[D(hyb,(n)) = ]+< —ﬁ> r[D(L) = 1].

Similarly,

J— 1 1
Pr[D(hyb, () = 1]= <ﬂ> Pr[D(hyb,_ (m)=11+ (1 - m—ﬂ) Pr[D(L) = 1.

Therefore,
| PrLD(yb, (1)) = 11 = PrLD(Ryb,._; (m)) = 1]]

1
= (—20 ) | PrLD(hyb,(m)) = 11 = Pr{D(hyb,_ () = 1]
n

() 5
> (L . ()
20n ) 18np(n)

Before we provide the description of A’, we consider our second modification and
define hybrids H._| and H, as follows. Namely, in these new experiments we slightly
modify the sender’s messages in the coin-tossing phase and ask the sender to commit to

the all zeros string of appropriate length instead of committing to a uniform string aéen.

Recalling that aéen and béen determine the sender’s input in the jth execution of the OT

protocol, we instruct the sender to commit to 0 so that A’ can forward the jth’s execu~tion
messages to an external OT sender in the reduction described next. More precisely, He—1
(resp., H,) follows exactly as H,_ (resp., H,) with the exception that we modify the
honest sender’s message in the coin-tossing stage, where it commits to the all zeros string
instead of aSJen. Observe that this change does not affect the cut-and-choose phase where
the sender is required to reveal randomness for indices in I'rec because if J € I'rec AT

then the experiment is aborted by definition. Denote by the random variables hyb, (1)
and hyb,_; (n) the views of adversary A in H,_, and H,, respectively. Then from the
computational hiding property of w; the commitment scheme used in the coin-tossing
stage it follows that there exists a negligible function v(-) such that for all sufficiently
large n’s,?

Pr{D(hyb, () = 1] — Pr[D(hyb,(n)) = 11| < v(n) )

9We remark here that we rely on the security of the commitment scheme w;, against receivers with auxiliary
input as in Section 2.4.
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| PrLD(Ryb,_; (1) = 1] = PrID{vyD,_; (1) = 11| < v(n) 3)
Using Eq. 1 we obtain that for all sufficiently large n’s,

1
\Pr[D(hyb (n)) = 11— Pr[D(hyb,_, () = 11| > oo =20 = 2 ( .

“4)

where ¢(-) is the polynomial 2 x 18(20n)np(n). Fix an n such that this happens. We
now show how to define A" and distinguisher D’ that violate the defensible private
with respect to a corrupted receiver in . More specifically, A’ internally emulates
experiment H e by running the 31mulat10n strategy of S}~ ! with the malicious receiver
A. Let (¢, rReC) denote the input and randomness that the honest receiver is supposed
to use in the internal Jth execution. Recall that this is determined by aReC @ bRec and
is known to the simulator, as it extracts the adversary’s commitments. Next A’ plays
the role of the sender in the executions of 7or with the exception that it externally
relays the messages of the adversary (acting as the receiver) in the Jth execution of the
oblivious transfer protocol from Stage 2. Following the oblivious transfer executions, .4
continues the internal emulation until the end of Stage 3. If the experiment aborts in the
internal emulation (where this happens if J is Bad), then A’ aborts. Otherwise, there is a
good defense for the receiver in the J th execution, namely (c;, ‘L'Rec) Let STATE be the
complete view of experiment H,_, whichincludes the input and random tape of A and the
simulator (playing the sender), as well as the partial transcript of the messages exchanged
with A until Stage 3. A’ outputs (¢, r]{ec) as its defense and STATE as its output.
Upon receiving (view, s), where view is A"’s view and s is a string (as specified in
Definition 2.6), distinguisher D’ proceeds as follows. It first extracts state STATE from
the view and then completes the internal emulation of the experiment by playing the
role of the sender in Stages 4 and 5. We note that D’ has all the information it needs as
part of STATE to complete the execution, except for the sender’s inputs (59, s }) that are
required to compute ﬁ9 and ﬂ} in Stage 4. Note also that the distinguisher can use A”’s
valid defense (cy, rl"{ec) to compute one of the two sender’s inputs, namely sj’ . For the
other input, D’ uses s, i.e., it sets s}GB” = s and completes the experiment using these
inputs. Finally, D’ invokes D on A’s view and outputs whatever D outputs. It follows
from the construction that the view on which D is invoked is distributed identically to

A’s view in hyb,_; (n) if s is the sender’s other input, namely S}EBC’ . On the other hand,

if s is a random string then the view is distributed identically to F)?l;e n).
D'( (View 4[Sen(1”, (U, UM, A(IM)], UL_,)) = D(hyb, (1))
and
D/ (I (View 4[Sen(1", (UL, U™), A(1")], U")) = D(hyb, (1)),

where ' (v, %) = (v, *) if v contains a valid defense for A’. From Equation 4, it follows
that the difference is non-negligible and that .4’ and D’ contradict the defensible privacy
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of protocol 7oy with respect to a corrupted receiver. This concludes the proof of the
claim. ]

Hybrid 2 In this hybrid game, there is no trusted party that computes functionality
For. Instead, we define a simulator S; that is given the sender’s real inputs
vo and vy. Furthermore, &> uses these inputs in Stage 5 of the execution.
Then we claim that the receiver’s view in Hybrids 1 and 2 is statistically
close because the probability that the receiver learns more than 10n shares
for both u = 0 and u = 1 is negligible. More formally,

Claim 3.4. The following two distribution ensembles are statistically indistinguish-
able,

S
(View o, 51,20 e ~ {View 200 o 20} e
Proof. This follows from the facts that |[A| = 18n, |[I'| = n and |®| < n with
overwhelming probability (relying on the proof of Claim 3.2), and that the masking
values that are used in Stage 5 are independent of the input to the OT executions in
Stage 4. Specifically, the overall number of shares that the receiver learns is bounded by
|A—T — ®|+2|T'| + 2|P| < 20n, where the rest of the shares are perfectly hidden (as
their masking strings are not used elsewhere in the protocol). (]

Hybrid 3 In this game, we define a simulator S3 that is identical to S, except for the
way the sender’s message is generated in Stage 4. More precisely, for all
i € A =T — ® it modifies the way ﬁ;eau is computed. Recalling that S
sets it to be random, then &3 will instead set

1®u 1du 1®c;
B =0 @5

Indistinguishability of hybrids 2 and 3 follows using the same proof as in
Claim 3.3. Therefore, we have that the following ensembles are computa-
tionally indistinguishable.

s For 2 [View/ EXTCOM
{VlewﬂHYBR1D2 52,2 (l’l) }nEN ~ {V]ewﬂHYBR1D3 83,2 (n) }nEN‘

Observe that hybrid 3 is identical to the real execution. This concludes the proof of

Claim 3.2. (]

Simulating the corrupted sender: In this case, S proceeds as follows:

1. § picks 20n random strings allzec, ceey aéﬂ’c‘ and emulates the ideal func-

tionality Fgxrcom by invoking 20n times the commitment phase of wpg
with inputs af{ec, cee aﬁg’g, against A that plays the role of receiver for

the commitment scheme. At the end of this phase, S obtains the output

((transy, y1), ..., (transyg,, ¥20,)) and receives from the adversary 20n ran-
. 1 20n
dom strings by, - . ., bree-
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Next, S emulates functionality Frxrcom in Stage 1 and invokes 20n times the
commitment scheme w; with A (that plays the role of the committer), obtaining

((trans|, aéen), ..., (trans), . aggﬁ')). It internally records aéen, e aggl’f and fur-

ther picks 20n random strings béen, e bggﬁ forwarding them to the adversary. The

simulator also computes r, = al, @ bL, and then views ri, = s?||s!||zi,;
(sio, sl.l) is the input an honest sender must use in the ith OT protocol execution in
Stage 3, together with randomness ‘L’éen.

2. In Stage 2, the simulator participates with the adversary in 20n executions of the
OT protocol Tor, while playing the role of the honest receiver. Note that due to
the fact that the simulator knows the values of the input and randomness that the
honest sender must use in each of the OT executions, the simulator can identify the
coordinates of which the sender deviates. We denote this set of coordinates by the
set @.

3. In Stage 3, S receives (qéen, .+, q4ge,) from the sender and decommits the subset of
values that corresponds to the coordinates in I"sep as determined by (qéen, e GGen)
playing the role of the receiver. Next, the simulator picks n random numbers
(qllzec, e, ql’{ec) from {1, ..., 20}" and sends them to the sender. Upon receiving
the decommitments from the sender, the simulator verifies the decommitments as
would the honest receiver do with respect to (qllzec, .+ dRee) and halts in case of a
mismatch, outputting the simulated transcript thus far. Finally, it samples a subset I"
from [20n] of size n and emulates functionality Fgxrcom by invoking the commitment
scheme wg with A (that plays the role of the receiver) n times on input I', obtaining
((trans|, y1), ..., (trans),, ¥201)). Let A = [20n] — I'rec — F'sen — P.

4. In Stage 4, the simulator proceeds as the honest receiver would do with input u = 0
and extracts the sender’s inputs vy, v1. Specifically, the simulator knows all the inputs
{(s?, sl.l)},-e A of the sender to the OT executions in Stage 2 and extracts the two sets
of shares (p”)ica and {p!}ica.

5. In Stage 5, the simulator plays the role of the honest receiver and checks whether
the inputs and randomness revealed by the sender are consistent with the OT session
that correspond to A N I'. In case of a mismatch the simulator halts, outputting the
simulated transcript thus far. Next, the simulator checks that pg and p] agree with
some respective code words wg and wi on 167n locations. In case of a non-agreement,
the simulator records a default value; else, it records the code words wo and wy. It
then runs a second consistency check to verify whether these code words agree with

/3;.‘ &) s;@a'i for all coordinates j € I'. If not, it records a default value. Finally, the
simulator sends the recorded values to For.

We next prove the following,
Claim 3.5. The following two distribution ensembles are computationally indistin-

guishable,

+ v/ EXTCOM S [ViewOT
{VlewﬂngL’A’Z(n) }nEN ~ {VleWmDEAL,S,Z (i’l) }nEN'
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Proof. The security argument proceeds in a sequence of hybrid games starting from
the simulated execution toward the real execution. We denote by myygrip; the receiver’s
view in the ith hybrid game.

Hybrid 1: In this hybrid game, there is no trusted party that computes functionality
For- Instead, we define a simulator S that is given the receiver’s real input u
and proceeds identically as S except for the way it generates the receiver’s
message in Stage 4. More precisely, S uses the real input u instead of
0 in order to compute «; for all i € A — ®. Indistinguishability of the
simulation from the view in hybrid 1 follows from the receiver privacy of

the OT protocol.
We follow an approach similar to the proof of Claim 3.3 where we consider
a sequence of hybrids H!, H12, ... where we replace the sender’s input in the

executions in the parallel OT executions where the receiver proceeded honestly.
Then we decouple actions of the sender from the coin-tossing stage by considering
nested hybrids. Finally, we need an additional step where after replacing the
sender’s input from the executions in A — ® we rely on the secret sharing scheme
to conclude that one of the two sender’s inputs has been removed.

More formally, we prove the following claim.

Claim 3.6. The following two distribution ensembles are computationally indistin-
guishable,

+ ) OT 2 [View/OT
{VlemeEAL,S,Z(n) }neN ~ {VleWTrHYBRIDl ,S1 ,Z(n) }neN'

Proof. Recall that the only difference between hybrid 1 and the simulated view is in
the way that the messages in Stage 4 are generated. Specifically, in the simulated view
S uses # = 0 in all sessions to compute «;. On the other hand, in game hybrid 1 the
receiver uses the real u. Clearly, if the real input equals O then the views are identical
and the proof of the claim follows immediately. Therefore, it suffices to consider the
case u = 1. Toward proving this claim, we introduce a sequence of intermediate hybrid
experiments H{ fore =0, ..., 20n. Namely, in hybrid H{ we consider a simulator S°
that proceeds identically to S with the exception that it uses # = 1 in the first e sessions
in A in order to compute ¢;. By construction, we have that the experiment H 10 proceeds
identically to the ideal simulation and HIZO” proceeds identically to hybrid 1. Denote
the view output in hybrid H{ by hyb,(n) and assume by contradiction that there exist a
distinguisher D, a polynomial p(-) and infinitely many n’s such that

. T e 1
|Pr[D(View; * s z(n) = 1] — Pr[D(Vlewm:)gBle,Su,Z(n)) =1]| > ok
Using a standard hybrid argument, it follows that there exists an e € {1, ..., 20n} such
that

| PrLD(hyb, () = 1] = PrID (b, () = 1| = 557
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As in the proof of Claim 3.3, we consider experiments H,_; and H, where the
simulator samples a random J € [3n + 1] and aborts if J is not the eth session in
A. Next, we consider modified hybrids He 1 and He, where we slightly modify the
receiver’s messages in the coin-tossing phase and ask the receiver to commit to the
all zeros string of appropriate length instead of committing to a uniform string ai{’ec.
Recalling that aI{eC and béec determine the receiver’s input in the Jth execution of the
OT protocol, we instruct the receiver to commit to 0 so that in the reduction we explain
next we can forward the Jth’s execution messages to an external OT receiver in the
reduction described next. More precisely, H._1 (resp., H ) follows exactly as H,_
(resp., H,) with the exception that we modify the honest receiver’s message in the coin-

tossing stage, where it commits to the all zeros string instead of a]éec. Denote by the

random variables Ey\/ge (n) andm_l(n) the views of adversary A in I-Nle_ 1 and ﬁg,
respectively. Then following the same proof as in Claim 3.3, we can conclude that there
exists a polynomial g (-) such that

1
Pr[D(hyb,(n)) = 1] — Pr[D(hyb, ;(n)) = 11| > 200 ®)

Without loss of generality, assume that

PHD(hyb, (n)) = 11 — Pr{D(hyb, _, (m)) = 1] > —— .
q(n)

We use the above to construct a malicious sender A’ that violates the privacy of
the receiver relative to the oblivious transfer protocol Zor. Specifically, A’ internally
emulates the experiment ﬁf - by running the simulation strategy of Sf_l with the
malicious sender A, except for the following difference. A’ relays the messages of the
sender in the Jth execution of the oblivious transfer protocol from Stage 2 to an external
receiver with input ¢. Following the oblivious transfer executions, it continues the internal
emulation until Stage 4. If J is not the eth session in A, then A’ follows hybrid Hffl
and sets the view as _L. Otherwise, set oy to be a random bit and continue the internal
emulation to completion. It then invokes the distinguisher D on A’s internally generated
view; denote by b the bit output by D. Then, A’ outputs o; @ b.

We proceed by analyzing the probability that A" correctly guesses c¢. Conditioned on
not outputting fail and &; # c, the experiment emulated internally by A is identical
to H{. Analogously, conditioned on not outputting fail and «; = ¢, the experiment
emulated internally by A4 is identical to I-lefl, where the probability that «; = ¢ (and
aj #c)is % Therefore,

Pr[ A’ guesses c correctly ]
1 —
= EPr[D(hybe(n)) Qaj=cla; #c]
1 —
+ > Pr[D(hyb, |(n))®aj=cla;=c]

1 —— 1 —
= 5 PrD(hyb, (n)) = 11+ 3 PrID(hyb, ; (n)) = 0]
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11 — —
=5+3 (Pr[D(hybe(n)) — 11— Pr[D(hyb,_,(n)) = 1])
11
T2 2\gm/)”
Thus, we arrive at a contradiction. O

Note that the only difference between the real execution and hybrid 1 is in the way that
the receiver outputs v,. Specifically, in hybrid 1 simulator S; extracts v, v; and then
outputs v,,, while in the real execution the receiver outputs the value that corresponds to
its strategy in Stage 5. We now prove that the receiver’s output in both experiments is
statistically close. In more detail, the difference between the simulation’s strategy and
the honest receiver’s strategy is that the simulator extracts the sender’s both inputs in all
i € A — ® and then finds code words that are 16n-close to the extracted values, whereas
the honest receiver finds a code word that is 17n-close based on the inputs it received in
Stages 2 and 5, and returns it.

Observe that the sender’s views in hybrid 1 and the real execution are identical. It is
therefore suffices to show that the value u extracted by the simulator and fed to For is
identical the to the reconstructed output of the honest receiver. Let v denote the value
the honest receiver outputs and v, denote the value extracted by the simulator. These
values are obtained in two steps:

o The honest receiver obtains shares of v by computing o; = B @5; fori € A where

s; are its output from the OT sessions in Stage 2. On the other hand, the simulator
computes p} = ,3; @ s;@a‘j where s7’s are the inputs that the simulator extracted
from Stage 1. (Note that these were the inputs that the sender was supposed to use
in the OT sessions.)

e Next, the closest code word is computed from the shares. The honest receiver picks
that code w that is 17n-close to (p;)ica. The simulator, on the other hand, picks a

code word w" that is 16n-close to (p})iea.

)

We now show that v # v, only with negligible probability because of the final cut-and-
choose stage. We consider two cases:

Case 1: The honest receiver extracts a valid v from (p;)ica: In this case, we know
that there is a code word w thatis 17n-close to (0;)iea . Now, foreveryi € A—®, we
have that p; = p; since the sender proceeded honestly in those sessions. Following
the same proof as in Claim 3.6, we can show that |®| > n only with negligible
probability. Therefore, |A — ®| > 17n and p; and ! agree on at least 17n locations
in A — ®. Now, since w is 17n-close to (0;);ca, this means that w is 16n-close to
(0?)ier20n) (because |A| = 18n). Therefore, the simulator would have recovered
the same code word and extracted the same value.

Case 2: The honest receiver does not extract a valid v from (p;)iea: This happens
when (0;);ea is not 17n-close to any code word. In this case, the receiver uses a
default value for v. We need to show that in this case, even the simulation sets v,
to a default value. Suppose that there exists w that is 16n-close to (0} );c[20n]- We
will argue that the simulator still sets v, to a default value.
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Let ¢ be the locations where w and (p;);ca differ. By our hypothesis that (0;);ca is not
17n-close to any code word, we have that || > n. Nevertheless, since I" is a randomly
chosen subset of size n and based on the proof of Claim 3.6, we can show that ¢y N\I" % ¢
except with negligible probability. In this case, there exists an index j € ¥ N T such that
the sender must reveal values s?, sjl. that are consistent with the OT protocol in session i

in Stage 2. Therefore, for such a j € ¥ N I it holds that
~ _ pu ~ _ QU uda .
pj_ﬂj@sl_ﬂj@sj #ww

This implies that the simulator would have noted that ,8}4 ® s?@a'/ # wj. In this case, the
sender fails the second consistency check and the simulator should report that v, as the
default value.

This concludes the proof of the claim. O

4. One-Sided Adaptive UC Secure Computation

In the two-party one-sided adaptive setting, at most one of the parties is adaptively
corrupted [30,38]. In this section, we provide a simple transformation of our static UC
protocol from Sect. 3 to a two-party UC protocol that is secure against one-sided adaptive
corruption. Our first observation is that in Protocol 1 the parties use their real inputs to
the OT protocol only in Phase 4. Therefore, simulation of the first three phases can be
easily carried out by simply following the honest strategy. On the other hand, simulating
the messages in Phase 4 requires some form of equivocation since if corruption takes
place after this phase is concluded then the simulator needs to explain this message with
respect to the real input of the corrupted party. It is important to note that while in the plain
model any statically secure protocol can be compiled into one-sided secure protocol by
encrypting its entire communication using non-committing encryption (NCE) [5,9,17],
the same transformation does not hold in the UC setting due to the additional setup,
e.g., a CRS, which may depend on the identity of the corrupted party. Nevertheless, in
Phase 4 the parties only run a combiner for which the computation does not involve
any usage of the CRS (which is induced by the extractable commitment). Therefore, the
proof follows directly.

Our second observation is that in the context of one-sided adaptive security, it is
sufficient to rely on a weaker variant of NCE, namely one that is secure against only
a single adaptive corruption [30,38]. In particular, we take advantage of a construction
presented in [9] and later refined in [17] that achieves equivocation with respect to
only one party under the assumption of semi-honest OT with receiver equivocation
(namely such OT implies that the receiver’s messages can be explained with respect
to both potential inputs # = 0 and ¥ = 1 and some random string). We will briefly
describe it now. Recall that in the fully adaptive case, the high-level idea is for the
sender and receiver to mutually agree on a random bit. This process requires simulatable
PKE schemes which implies the ability to both obliviously sample a public key without
the knowledge of the secret key, as well as the ability to obliviously sample a ciphertext
without the knowledge of the corresponding plaintext. In the simpler one-sided scenario,
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Canetti et al. [9] observed that an oblivious transfer protocol can replace the oblivious
generation of the public key. Specifically, the NCE receiver sends two public keys to the
sender, and then, the parties invoke an OT protocol where the NCE receiver plays the
role of the OT sender and enters the corresponding secret keys. To allow equivocation
for the NCE sender, the OT must enable equivocation with respect to the OT receiver.
The [22] OT protocol is an example for such a protocol. Here the OT receiver can pick
the two ciphertexts so that it knows both plaintexts. Then equivocation is carried out by
declaring that the corresponding ciphertext is obliviously sampled.

The advantage of this approach is that it removes the requirement of generating the
public key obliviously, as now the randomness for its generation is split between the
parties, where anyway only one of them is corrupted. This implies that the simulator can
equivocate the outcome of the protocol execution without letting the adversary the ability
to verify it. To conclude, it is possible to strengthen the security of Protocol 1 into the
one-sided setting by simply encrypting the communication within the combiner phase
using one-sided NCE which in turn can be constructed based on PKE with oblivious
ciphertext generation. This implies the following theorem which further implies black-
box one-sided UC secure computation from enhanced trapdoor permutation.

Theorem 4.1. Assume the existence of PKE with oblivious ciphertext generation. Then
for any two-party well-formed functionality F, there exists a protocol that UC realizes
F in the presence of one-sided adaptive, malicious adversaries in the CRS model using
black-box access to the PKE.

5. Adaptive UC Secure Computation

In this section, we demonstrate the feasibility of UC commitment schemes based on
PKE with oblivious ciphertext generation (namely where it is possible to obliviously
sample the ciphertext without knowing the plaintext). Our construction is secure even
in the presence of adaptive corruptions and is the first to achieve the stronger notion
of adaptive security based on this hardness assumption. As stated in the introduction,
plugging in our UC commitment protocol into the transformation of [6], that generates
adaptive malicious oblivious transfer given adaptive semi-honest oblivious transfer and
UC commitments, implies malicious adaptive UC oblivious transfer based on semi-
honest adaptive oblivious transfer and PKE with oblivious ciphertext generation, using
only black-box access to these underlying primitives. Stating formally,

Theorem 5.1. Assume the existence of adaptive semi-honest oblivious transfer and
PKE with oblivious ciphertext generation. Then for any multi-party well-formed func-
tionality F, there exists a protocol that UC realizes F in the presence of adaptive,
malicious adversaries in the CRS model using black-box access to the oblivious transfer
protocol and the PKE.

Noting that simulatable PKE implies both semi-honest adaptive OT [5, 12] and PKE with
oblivious ciphertext generation, we derive the following corollary (where simulatable
PKE implies oblivious sampling of both public keys and ciphertexts),
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Corollary 5.2. Assume the existence of simulatable PKE. Then for any multi-party
well-formed functionality F, there exists a protocol that UC realizes F in the presence
of adaptive, malicious adversaries in the CRS model using black-box access to the
simulatable PKE.

This in particular improves the result from [16] that relies on simulatable PKE in a
non-black-box manner. Note also that our UC commitment can be constructed using
a weaker notion than simulatable PKE where the inverting algorithms can require a
trapdoor. This notion is denoted by trapdoor simulatable PKE [5] and can be additionally
realized based on the hardness assumption of factoring Blum integers. This assumption,
however, requires that we modify our commitment scheme so that the CRS includes
3n + 1 public keys of the underlying PKE instead of just one, as otherwise the reduction
to the security of the PKE does not follow for multiple ciphertexts. Specifically, at the cost
of linear blowup (in the security parameter) of the CRS, we obtain adaptively secure UC
commitments under a weaker assumption. Now, since trapdoor simulatable PKE implies
adaptive semi-honest OT [5] it holds,

Corollary 5.3. Assume the existence of trapdoor simulatable PKE. Then for any multi-
party well-formed functionality F, there exists a protocol that UC realizes F in the
presence of adaptive, malicious adversaries in the CRS model using black-box access
to the trapdoor simulatable PKE.

Note that, since the best-known general assumptions for realizing adaptive semi-honest
OT is trapdoor simulatable PKE, this corollary gives evidence that the assumptions
for adaptive semi-honest OT are sufficient for adaptive UC security and makes a step
toward identifying the minimal assumptions for achieving UC security in the adaptive
setting. To conclude, we note that enhanced trapdoor permutations, which imply PKE
with oblivious ciphertext generation, imply the following corollary,

Theorem 5.4. Assume the existence of enhanced trapdoor permutation. Then Fcom
(cf. Fig. 2) can be UC realized in the CRS model in the presence of adaptive malicious
adversaries.

5.1. UC Commitments from PKE with Oblivious Ciphertext Generation

In this section, we demonstrate the feasibility of adaptively secure UC commitments
for the message space m € {0, 1} from any public-key encryption scheme Il =

e~ ——1
(Gen, Enc, Dec, Enc, Enc ) with oblivious ciphertext generation (cf. Definition 2.4)
in the common reference string (CRS) model.

Protocol Overview At ahigh level, the CRS contains two public keys of the encryption
scheme, one used by the sender and the other by the receiver, and proceeds in two phases:
an input encoding phase, where the sender encodes its input via a n-out-of-(2n + 1)
Shamir secret sharing scheme and commits to them in a specific way followed by a cutz-
and-choose phase where the receiver asks the sender to reveal n of the shares. In slightly
more detail, in the input encoding phase, the sender encodes its message m via n-degree
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polynomial p(-) such that p(0) = m and commits to p(1), ..., p(2n + 1) as follows:
For each i, it sends two strings: One is a ciphertext containing an encryption of p(i)
under the public key in the CRS meant for the sender and the other is a random string.
Furthermore, the sender randomly decides which one of the two strings is the encryption
of p(7). In the cut-and-choose phase, the parties engage in a coin toss where the receiver
first encrypts its share for the coin-tossing using the receiver public key from the CRS,
followed by the sender providing its share of the coin-tossing. Then the receiver opens
its share and the result of the coin-tossing decided by the XOR of the shares determines
a subset I of [2n + 1] of size n. The sender reveals the p(i) for every i € I' and the
randomness used for generating the ciphertext. In the decommitment phase, the sender
reveals the entire randomness used for the encoding phase.

Straight-line equivocation is achieved by considering encodings of both 0 and 1 and
for each i, via polynomials p(-) and ¢(-), such that they agree on n points randomly
chosen from {1, ...,2n + 1}, call this set I'*. Then the simulator encodes by having
one ciphertext with the value p(i) and the other ¢ (i). Finally, the simulator biases the
coin-tossing outcome so that the outcome results is the set I'*. This can be achieved in
a straight-line manner as the simulator will possess the secret key corresponding to the
receiver public key in the CRS. Since the receiver encrypts its share first in the coin-
tossing, the simulator can extract the value and send the sender’s share accordingly to
the biased outcome. Finally, since p and ¢ agree on this set I'*, in the decommitment
phase, the sender will be able to open either p(-) or g(-), depending on what the message
is. Furthermore, we require one of the two strings in each coordinate to be random and
this can be faked as the encryption scheme has pseudorandom ciphertexts.

Straight-line extraction, on the other hand, requires an information-theoretic lemma
which states that there exists a unique set I'* after the encoding phase that the sender
needs as the outcome of the coin-tossing in the cut-and-choose phases for it to equivocate.
First, using the semantic security of the receiver public key we show that the probability
that the sender can bias the coin-tossing is negligible. Then we show that the simulator
can extract the message of the sender by using the secret key corresponding to the sender
public key used by the sender in the encoding phase. This will accomplish by using the
n values that have been revealed and finding a consistent polynomial for the remaining
shares. (See [31] for more details.)

Finally, we remark that security against adaptive corruptions essentially follows from
the pseudorandomness of the ciphertexts.

Our complete construction is shown in Fig. 4. Next, we prove that

N N |
Theorem 5.5. Assume that T1 = (Gen, Enc, Dec, Enc, Enc ) is a PKE with obliv-
ious ciphertext generation. Then protocol wcoy (cf. Fig. 4) UC realizes Fcom in the CRS
model in the presence of adaptive malicious adversaries.

Proof Overview Intuitively, security requires proving both hiding and binding in the
presence of static and adaptive corruptions. The hiding property follows from the IND-
CPA security of the encryption scheme combined with the fact that the receiver only sees
n shares in a (n + 1)-out-of-(3n + 1) secret sharing of the message in the commit phase.
On the other hand, proving binding is much more challenging and reduces to the fact that
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Protocol moon.
CRS: Two independent keys PK, PK that are in the range of Gen(1™).
Sender’s Input: A message m € {0, 1} and a security parameter 1".

[Commitment phase:]

Encoding phase: The sender chooses a random n-degree polynomial p(-) over a field F[z] such that p(0) = m.
Namely, it randomly chooses a; < F for all ¢ € [n] and sets ap = m, and defines the polynomial p(z) =
ap + a1z + - - - + a,x™. The sender then creates a commitment to m as follows. For every i = [3n + 1], it first
pick b; < {0, 1} at random and then computes the following pairs:

&) = Encpk(p(i);t;) . I T
If b; = 0 then A= else, ifb; =1 then ol Encex (p(i); 1:)
where ¢; < {0,1}" and r; < Enc(-) is obliviously sampled. The sender sends (¢, c}), ..., (Spsi1sChppy) tO

the receiver.
Coin-tossing phase: The sender and receiver interact in a coin-tossing protocol that is carried out as follows.

1. Thereceiver sends ¢ = Encyg (005 70, ) to the sender where op — {0, 1}V is chosen uniformly at random.
2. The sender picks o1 < {0, 1}V at random and sends it in the clear to the receiver

3. The receiver decrypts ¢ by revealing o and 74, .

Both the sender and the receiver compute 0 = ¢ ¢ o1 and use o as the random string to sample a random
subset S C [3n + 1] of size n. (Note that such sampling can be done in a simple way by partitioning the set
of coordinates into n sets of triples (where the last set includes 4 elements) and picking one element per set.
Notably, this technique does not imply that any potential subset of size n will be picked, rather it ensures that a
subset is picked with a negligible probability in n, specifically (1/3)", which suffices for our proof.)

Cut-and-choose phase: The sender decrypts the set {c!},cs by sending the sequence {b;,p(i),t;}ics. The
receiver verifies that all the decryptions are correct and aborts otherwise.

[Decommitment phase:] Let T = [3n + 1] — S. The sender reveals its input m and decrypts all the ciphertexts
in {n:"};gr,v. The receiver checks if all the decryptions are correct and aborts otherwise. Using the n polynomial
evaluations revealed relative to ¢ € S and any additional polynomial evaluation that was revealed relative to T, the
receiver reconstructs the polynomial p(-) (via polynomial interpolation of n + 1 points). Next, the receiver verifies

m;

whether p(0) = m, and that for every i € [3n + 1] the point p(i) is the decrypted value within ¢}

Fig. 4. UC adaptively secure commitment scheme.

a corrupted sender cannot successfully predict exactly the n indices from {1, ..., 3n+1}
that will be chosen in the coin-tossing protocol. In fact, if it can identify these n indices,
then it would be possible for the adversary to break binding. This is because it can create
two different polynomials that intersect on these n points, yet encode two different
messages. An important information-theoretic argument that we prove here is that for
a fixed encoding phase, no adversary can equivocate on two continuations from the
encoding phase with different outcomes of the coin-tossing phase. Saying differently,
for any given encoding phase there is exactly one outcome for the coin-tossing phase
that will allow equivocation. Given this claim, binding now follows from the IND-CPA
security of the encryption scheme used in the coin-tossing phase.

In addition, recall that in the UC setting the scheme must also support a simulation
that allows straight-line extraction and equivocation. At a high level, the simulator sets
the CRS to public keys for which it knows the corresponding secret keys. This will allow
the simulator to extract all the values encrypted by the adversary. We observe that the
simulator can fix the outcome of the coin-tossing phase to any n indices of its choice by
extracting the random string o encrypted by the receiver and choosing a random string
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o1 so that op @ o7 is a particular string. Next, the simulator generates secret sharing for
both 0 and 1 so that they overlap in the particular n shares. To commit, the simulator
encrypts the n common shares within the n indices to be revealed (which it knows in
advance), and for the rest of the indices, it encrypts two shares: one that corresponds
to the sharing of O and the other that corresponds to the sharing of 1. Finally, in the
decommit phase, the simulator reveals that shares that correspond to the real message
m, and exploits the invertible sampling algorithm to prove that the other ciphertexts were
obliviously generated.

5.2. Proof of Theorem 5.5

Let A be a malicious probabilistic polynomial-time real adversary running the above
protocol in the Fcrs-hybrid model. We construct an ideal model adversary S with access
to Fcom Which simulates a real execution of protocol 7oy With A such that no envi-
ronment Z can distinguish the ideal process with S and Fcoy from a real execution of
7com With A. S starts by invoking a copy of A and running a simulated interaction of
A with environment Z, emulating the honest party. We separately describe the actions
of S for every corruption case.

Initialization: The common reference string (CRS) is chosen by S in the following
way. It generates (PK, SK) « Gen(1™) and (PK SK) <« Gen(1™), and places
(PK, PK) in the CRS. The simulator further records (SK, SK)

Simulating the communication with Z: Every message that S receives from Z it
internally feeds to .4 and every output written by A4 is relayed back to Z.
Simulating the commitment phase when the receiver is statically corrupted:
In this case S proceeds as follows:

1. Encoding phase: Upon receiving message (sid, Sen, Rec) from Fcoy, the sim-
ulator picks a random subset S* C [3n 4+ 1] of size n and two random n-degree
polynomials po(-) and pj(-) such that:

poi) = p1(i) Vi e S*
po(0) =0 and p;(0) = 1.

Note that the simulator can define these polynomials via interpolation, where
a unique n-degree polynomial can be constructed given n + 1 points. Let
= [3n + 1] — S*; then, the simulator defines the commitment as follows:

For every i € S*, the simulator proceeds as the honest sender would with
polynomial pg(-). Namely, it first picks b; <— {0, 1} at random and then
sets the following pairs,

Y

If b; = 0 then zl = Encpk (po(i); #;)
G

=T

else,

o

C. =1r1;
if b, = 1then ! .
i ¢} = Encpk (po(i); 1;),
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where b; < {0, 1}, #; < {0, 1}" and r; < Encpk(-) is obliviously sam-
pled (we recall that po(i) = p;(i) forall i € S*).

For every i € T*, the simulator picks b; <— {0, 1} at random and then uses
the points on both polynomials p(-) and p1(-) to calculate the following
pairs,

¢ = Encpk (po(i);: 1;)
| = Encpk(p1(); 1)

C:
0 N7
) ¢; = Encpk(p1(i); 1;)
if b; = 1 then .
i ¢; = Encpk(po(); i),

If b; = 0 then else,

~

where b; < {0, 1} and #;, f; < {0, 1}" are chosen uniformly at random.

Finally, the simulator sends the pairs (cg, c(l)), R (cgn i1 cén +1) to the
receiver.

2. Coin-tossing phase: The simulator biases the coin-tossing result so that the set
S that is chosen in this phase is identical to S*. More precisely, the simulator
extracts o from the receiver’s ciphertext and then sets o7 so that 0 = oy & 0
yields the set S*.

3. Cut-and-choose phase: The simulator decrypts all the ciphertexts within

b;
{Ci Yies*.
Simulating the decommitment phase where the receiver is statically corrupted:
Upon receiving a message (reveal, sid, m) from Fcoy, S generates a simulated
decommitment message as follows. Recall first that the simulator needs to reveal
points on a polynomial p(-) and pairs {(b;, #;)}ic[3n+1] such that p(0) = m and

cfi = Encpk(p(i); ;). Let b = b; @ m for all i € T*, then S reveals p,(-),
~ b —1
bi. /", ri = Encpc(c; "ier.

Next, we prove that Z cannot distinguish an interaction of protocol 7rcoy With A, cor-
rupting the receiver, from an interaction of S with Fcoy. Formally,

Claim 5.1. The following two distribution ensembles are computationally indistin-
guishable,

« o FCRS £ [View” COM
{VlewTECOM».A,Z(n)}HGN ~ {VleWHIDEAL,S,Z(n)}neN’

Proof.  'We prove this claim using a sequence of hybrid games.

Hybrid 0: This is the real interaction of Z with A and Protocol mcoy.

Hybrid 1: In this experiment, we define a simulator S; that proceeds as follows.
S1 uses S’s strategy in the coin-tossing phase when simulating the cor-
rupted receiver. Specifically, S| emulates Fcgs and generates (PK, SK) and
(PK, SK) as in the simulation. Next, it picks at the beginning of the commit
phase a random subset S* for which it wishes to bias the outcome of the
coin-tossing phase. It then extracts the value o encrypted by the receiver
in the coin-tossing phase using SK and sets o} so that o9 @ o1 results in
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S*. 51 next follows the honest’s sender role with input m for the rest of
the execution. We claim that the adversary’s view in this hybrid game is
identically distributed to its view in the prior hybrid. This is because S* is
chosen independently of the hybrid game and uniformly at random. There-
fore, given any particular og extracted from the adversary’s commitment
in the coin-tossing stage, o7 will be uniformly random (which is exactly
how it is distributed in hybrid 0). Therefore, we have that the following
distributions are identical,

{View S _(m)}, o = {View, M o -},

Hybrid 2: In this experiment, we define a simulator S, that is given the sender’s
message m, yet it carries out S’s strategy in the encoding phase instead of
playing the role of the honest sender. More precisely, S, proceeds identically
to S1 with the exception that in the encoding phase, it defines polynomials
Pm () and p1_, (-) exactly as S does in the simulation using the set S*.
Observe first that the outcome of the coin-tossing phase has already been
fixed to $* in hybrid 1. Moreover, S, executes the decommitment phase
exactly as the honest sender does by providing polynomial p,,(-). Then the
differences between the receiver’s view in hybrids 1 and 2 are with respect
to the non-opened ciphertexts, namely the ciphertexts that are in positions
1 — b;’s, and denoted by {cil —bi }ie[3n+1], which encode the polynomial
P1—m(-). These ciphertexts are obliviously picked in hybrid 1, yet computed
using algorithm Enc in hybrid 1. We now prove that the receiver’s views in
these hybrids executions are computational indistinguishability due to the
indistinguishability of ciphertexts using Enc and Enc. More precisely, we
show the following claim:

Claim 5.2. The following distributions are computationally indistinguishable.

s COM £ [View COM
{VleWﬂ'IDEALvSl Z(n) }nEN ~ {VlemeEAL,Sz-,Z (n) }HGN'

Proof.  Assume by contradiction that there exist a PPT adversary .4, distinguisher D
and polynomial p(-) such that D can distinguish the two distributions stated in the claim
for infinitely many n’s with probability ﬁ Fix an n for which this happens. Then

we use A we construct an adversary A’ that violates the indistinguishability of real
and obliviously generated ciphertexts (cf. Definition 2.4). Toward this, we consider a

sequence of intermediate hybrid games H. 0 .., H23”Jrl where in hybrid sz we define
a simulator 8'2’ that proceeds identically to S when generating {cl.l_b" }ie[j1; namely, it
picks a polynomial pj_,,(-) and sets cl.l_bi by Encpk (p1—m (i)). Finally, {cil _bi}i> j are
obliviously generated as in the real sender’s strategy. Note that by our construction, Hz0
and H;’"‘H proceed identically to Hybrids 1 and 2, respectively. Denoting the output of

the execution in hybrid sz by hyb; (n) and using a standard hybrid argument, it follows
that there exists j such that
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Pr[D(hyb;(n)) = 1] — Pr[D(hyb;_, (n)) = 1] (©)

> .
“ Gn+1)pmn)

We now construct an adversary A’ that violates the indistinguishability of obliviously
generated ciphertexts and real ciphertexts. Specifically, recall that A’ needs to distinguish

(PK, 1, c1) from (PK, r{, c2) where ¢; < Encpk(r1) and c; < Encpk (m; r2), 1| <

EHE 1(cz). Upon receiving (PK, r, ¢) A’ proceeds as follows. It first emulates the exe-
cution as in hybrid 1 by setting the CRS to be (PK, PK) for (PK, SK) « Gen(1"). It
then emulates the internal execution by following the strategy of Slj ~! with the excep-
tion that c}ib" is set to c. Later, when A’ needs to reveal c}fbj it returns r as the
randomness used to obliviously generate c. Finally, A’ invokes D on A’s view and
outputs whatever D outputs. We recall that the ciphertexts that correspond to the set
{1 — bi}ie[3n+1] are always revealed as obliviously generated ciphertexts regardless of
the way they were generated. It must also be noted that A" does not need to know SK in

order to complete the simulation of the sender’s messages since it never extracts here.
—1

Nevertheless, A’ does need access to Enc  in order to generate the randomness of
the first j — 1 ciphertexts, which by the definition of the encryption scheme requires
only PK. To conclude, the internal emulation of A’ upon receiving (PK, r{, c1) so that

] <~ EF]EPK(rl) is identically distributed to H, whereas when (PK, r{, ¢2) are gen-

—1
erated so that ¢c; < Encpx(m; r2), r| < Encpg(c2) withm = p1_,(j), A’s view is
distributed identically to H;_;. Therefore, it follows from Equation 6 that

’ — / / = ;
PALAPK, ri er) = 1 = PLAPK, 1y, c2) = 1} = == 0

This implies a contradiction relative to the indistinguishability property of real and
obliviously generated ciphertexts. (]

Hybrid 3: This hybrid is the actual simulation with S. Namely, here S3 does not have
the honest sender’s actual input m and it computes two polynomials pg(-)
and pi (-) as defined above. Furthermore, Sz reveals one of the polynomials
po(+) or pi(-) in the decommitment phase, depending on the value of m.
Observe that the distribution of the messages sent by S, and S3 is identical
in both hybrids. We use the facts that at most n shares are revealed in the
commitment phase and that p(-) is an n-degree polynomial. Therefore,
revealing these n shares keeps pi—_,,(0) completely hidden and we have
that

s’ COM — [View/ COM
{VlewJTIDEAL,Sz,Z(n)}nGN = {VlewﬂlDEAL,S:g,Z(n)}nEN‘

O

Simulating the commit phase when the sender is statically corrupted: Simulat-
ing the sender involves extracting the committed value as follows:
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1. Encoding phase: The simulator proceeds honestly following the honest
receiver’s strategy, receiving pairs (c?, cl.l) for all i € [3n + 1]. The simulator
exploits the fact that it knows the secret key SK and decrypts all ciphertexts.
Let 87 = Decsk (c?).

2. Coin-tossing phase: The simulator proceeds honestly following the honest
receiver’s strategy. Let " be the outcome of the coin-tossing phase.

3. Cut-and-choose phase: The simulator proceeds as the honest receiver and ver-
ifies whether the openings are consistent with the ciphertexts sent in the encod-
ing phase. Note that none of the revealed values should differ from what the
simulator decrypted using SK due to the fact that Pr[Decsk (Encpx (m)) =
m]=1.

4. Input extraction: Finally, the simulator extracts the sender’s input as follows. S
chooses an arbitrary index j € [3n+ 1] — S’ and reconstructs two polynomials
q(-) and g(-) such that

q) = Gi)=p" Vies
q(j)=p] and G(j) =B} and g(0),G(0) € {0, 1}.

Itthen verifies whether foralli € [3n+11,q(i) € {87, B} }andG(i) € {8, B!}.
The following cases arise:

Case 1: Both q(-) and q(-) satisfy the condition and q(0) # q(0). Then
S halts returning fail. Below we prove that the simulator outputs fail with
negligible probability.

Case 2: At most one of q(-) and q(-) satisfies the condition or q(0) =
¢(0). S sends (commit, sid, ¢ (0)) to the Fcoy functionality and stores the
committed bit ¢ (0). Otherwise, S sends a default value.

Case 3: Neither q(-) or q(-) satisfy the condition. S sends a default value
to the ideal functionality and need not store the committed bit since it will
never be decommitted correctly.

Claim 5.3. Conditioned on case 1 not occurring, the sender can decommit to b if and
only if § sends b to Fcoy.

Proof. By the assumption in the claim, either case 2 or 3 occurs. We now show that if
A decommits successfully, then it must be either with polynomial ¢(-) or g(-) if both
satisfy the conditions, or with the single satisfying polynomial. That would imply that
the adversary can only decommit to whatever sent by the simulator to Fcoy. We will
demonstrate our argument for the case that both polynomials satisfy the condition. The
case of a single polynomial follows similarly. More formally, suppose that ¢ (-) and g ()
are as required by the above condition. Then polynomial ¢*(-) that is revealed by .4
in the decommitment phase must take the same value as ¢g(-) and g(-) for all i € S'.
Focusing on the jth index that is specified above, it holds that either g*(j) = ¢(j) or
q*(j) = q(j) (because A can decrypt ciphertexts c? and ¢ jl only to the plaintexts g (j)
and g (j), respectively). This implies that either ¢*(-) and ¢ (-) share n + 1 points or ¢*(-)
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and g (-) share n + 1 points. Consequently, g*(-) becomes identically equal to either g (-)
or g (-) since it is an n-degree polynomial, and A can only decommit to ¢ (0) or g (0). (]

Claim 5.4. The probability that S outputs fail in case 1 is negligible.

Proof.  Assume for contradiction that there exists .A that for infinitely many n’s gen-
erates ciphertexts for the encoding phase such that S obtains valid go(-) and g1 () such
that both satisfy the conditions at the end of the commit phase with probability at least
- (n) Observe that in such a case, the transcript can be equivocated to both 0 and 1 using
qo(-) and g1 (-), respectively. We show how to construct A’ that violates the privacy of
the underlying encryption scheme. At a high level, we prove that A can successfully
equivocate only if it biases the coin-tossing outcome, and this can be achieved only by
breaking the privacy of the encryption scheme.

We consider first an alternative simulator S that proceeds exactly as the real simulator
§ does, with the exception that it receives as input PK* that it internally sets as PK in
the CRS. Observe that S does not use the SK in simulating the corrupted sender. Hence,
the view generated by Sis identical to S. This implies that the transcript that is obtained
in the simulated commit phase of S can be equivocated with probability (n) i.e., there
are valid decommitments to both 0 and 1 relative to polynomials go(-) and g (-). Then,
by applying a standard averaging argument it holds that the transcript from the commit
phase can be equivocated with probability % over a random continuation of some
fixed transcript t, where t is a partial transcript of protocol oy that reaches right
after the encoding phase and the probability is taken over the adversary’s and honest
receiver’s randomness. (Specifically, the probability that 2;(11) portion of the partial

transcripts lead to a successful equivocation is 5>~ p( 5-) Using this observation, we will
construct an adversary B that wins the IND-CPA game for the scheme IT.

Our proof relies heavily of the following claim,

Claim 5.5. Let t be a fixed partial transcript as above. Then there exist no transcripts
transy, trans; that satisfy the following conditions:

1. trans; and trans, are complete and accepting transcripts of mwcom with T being
their prefix.

2. There exists two distinct sets Sy, S» such that S| and Sy are the respective outcomes
of the coin-tossing phase within trans; and trans,.

3. There are valid decommitments to values O and 1 in trans| and trans,.

An important observation that follows from Claim 5.5 is that the sets chosen in the coin-
tossing phase must be identical for any two complete trans, trans; that are defined
relative to a fixed partial transcript 7, on which a transcript can be equivocated. Clearly,
given that the receiver’s random string o in the coin-tossing phase is hidden from the
sender, it must hold that the probability that the same set is chosen in two coin-tossing
executions is exponentially small. On the other hand, with non-negligible probability
over partial transcripts t, there are decommitments to both 0 and 1, and from Claim 5.5,
we know that a successful equivocation implies a fixed joint set S* of size n. This
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intuitively means that the adversary violates the IND-CPA security of the encryption
scheme I1. Formally, we construct an adversary B that internally incorporates A and
proceeds as in the IND-CPA game:

1.

2.

B externally receives a public key PK*. It follows S’s strategy and sets PK in the
CRS as this input. .

BB emulates an execution with A following S’s strategy until the completion of the
encoding phase. Denote the partial transcript obtained so far by .

. B samples M| = np(n) transcripts with prefix t as follows. It invokes 4, M

times, each time with independent randomness for S (which specifically implies
independent randomness in the coin-tossing phase). For each such execution, B
checks whether there are two valid decommitments for O and 1. If there exists
one such transcript, B stores the outcome S* of the coin-tossing phase on that
transcript. If no such transcript is encountered, 3 outputs a random bit and halts.

. B samples two random strings a(? and a(} independently at random from {0, 1}V

and outputs these strings. Upon receiving a ciphertext ¢ from its oracle, B feeds
c internally as the receiver’s message in the coin-tossing phase within the partial
transcript 7. It then invokes A on (7, ¢) and completes the execution as follows.
If A aborts, then B outputs a random bit and halts. Otherwise, let o be the string
revealed by A in the coin-tossing phase. If o @ aé’/ does not result in S* as the
outcome of the coin-tossing for some &’ € {0, 1}, then B outputs a random bit.
Otherwise B outputs b’ and halts. (Note that in any case B aborts the execution
right before it needs to decrypt ¢, since it cannot do that.)

We will now prove that B successfully identifies whether ¢ is an encryption of og or
0(} with probability non-negligibly greater than % Toward proving that we consider the
following events, conditioned on ¢ being an encryption of aé’ :

E1:

E;:

Es:

There are decommitments to 0 and 1 conditioned on transcript t that is generated
in Step 2. We already argued above that the probability that E{ occurs is at least
Here we consider the event that B successfully computes S* in Step 3. Note first
that the probability a transcript, generated in Step 3, fails to reveal S* is at most
1 - %. This is due to the fact that set $* can be efficiently extracted whenever
there are two decommitments. Therefore,

1 np(n)
Pr[E; |E2]=1— (1 - ) =1—¢"2
2p(n)

Finally, we consider the event that the coin-tossing phase results in $*. Note that
by Claim 5.5 whenever the transcript can be equivocated then it must be that the
coin-tossing result is S*, this implies that

Pr[Ez | E; A Ej] > Pr[ transcript with prefix T can be equivocated | E» A Ej]
1

2p(n)’

=
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From the definition of the events it follows that if E; A E» A E3 occurs, then B wins the
IND-CPA game with probability 1. Denote the joint events E; A E» A E3 by Comp and
note that if Comp does not occur then B’s guess is correct with probability % Then from
the calculation above it holds that

Pr[Comp] = Pr[E3 A Es A Ey] = Pr[Es | E> A Eq] - Pr(Es | Ei] - Pr[E]
1 1
x (1 —e™"?) x

> PR
~ 2p(n) 2p(n)
1

= 8pm)

Next, we compute the probability that B succeeds in its guess.
Apvyy g(n) = Pr[B succeeds |Comp] - Pr[Comp]
+ Pr[B succeeds |[~Comp] - Pr[=Comp]

1
= 1-Pr[Comp] + 3 Pr[—Comp]
1
= 1-Pr[Comp] + 5(1 — Pr[Comp])

1 1
= 3 + 3 Pr[Comp]
1 1

=2 6

This concludes the proof of Claim 5.6. It remains to prove Claim 5.5.

Proof of Claim 5.5. Assume for contradiction there exists a partial transcript t of the
encoding phase, complete transcripts trans; and trans; and sets S # $> asin Claim 5.5.
Let PK be the public key in the CRS and SK be the corresponding secret key. We define

some notations first.
0.0 0
C c e c
N ) 3n+1
. ( 1 i+ )

€1 € Capyg

M #* S
Decommitment to 0 Decommitment to 0
Decommitment to 1 Decommitment to 1

e Wedenoteby 71 =[3n+ 1] — S;and T, = [3n + 1] — S».
e Recall that transcripts trans; and trans, include valid decommitments to both 0
and 1. Moreover, since we assume that the prefix 7 is in common to both transcripts
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and the decryption is prefect, then a ciphertext cf’ that is decrypted in either trans;
or trans; must be correctly revealed into exactly one plaintext, which is determined
by B? = Decsk(c?).

e By the assumption above, transcript trans; induces two valid decommitments
to both 0 and 1. We denote the b; values within the decommitment to O by
(bo, R bgn n 1) and the values within the decommitment to 1 by (bl, R b;n n -

e Similarly, transcript trans, induces two valid such decommitments. Then, let the b;
values within the decommitment to O be denoted by (5?, e, 79\(3),1 +1) and the values
within the decommitment to 1 denoted by (79\}, . ,f%n Jrl).

Consider transcript trans;. Then the shares that correspond to the indices in S and are
revealed during the commitment phase imply that

BY=pl Vies.
This further imply that
b =b! Vies. (7

The rest of the shares are revealed in the decommitment phase. Now, since we use an
(n 4 1)-out-of-(3n + 1) secret sharing scheme, these n shares that correspond to the
indices in S7, together with any additional revealed share i € T7, constitute n + 1 shares
from which a unique polynomial can be reconstructed. Specifically, the reconstructed
polynomials for decommitting to 0 and 1 have to be different (since the secrets are
different), so it must be that the revealed plaintexts are also different for every i € T,
ie.,

BY#£B Vien.

This means that, for i € T, {c?, cil} must contain the plaintexts ﬂ? and ﬂil. Hence,
(c?, c,.l) must either be the encryption of (ﬂ?, ﬂil) or (/3,.1, ,3?). In either case, we have
that

B =1-b VieT. (8)

Next, we consider transcript trans, and recall that it shares the same encoding phase
with trans;. It thus must be the case that for every i € [3n + 1] the revealed shares for
both transcripts must correspond to either /3[9 or ,8[.1. From Equation 8 we know that for
every i € Ty, bl(.) # b}. Hence, for every i € Ti, either 3? = b? or EZO = bl.l. Relying
on the fact that |7T7| = 2n 4 1 and the pigeonhole principle, it must hold that there are
n+ 1 indices in 7 for which eitheri;? = b? for all these indices, orZ? = b,.l for all these
indices. This implies two cases:
E? = b? on n+ 1 locations: In this case, the revealed shares for these n+ 1 locations
must be the same for both trans; and trans, when decommitting to 0. Note that
if n + 1 shares are the identical then the polynomials revealed for both transcripts
must be identical as well, and therefore, the revealed shares for every other index
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must be identical. We additionally know that the plaintext shares ﬂl.o # ﬁl.l for any
index i € Tj. Combining this with the fact that E? must correspond to the same
share as the one corresponding to b?, it follows that Zlo = b? foralli e T7.
75? = bl.1 on n + 1 locations: In this case, we conclude, analogously to the previous
case, that the polynomial revealed when decommitting to O in trans, must be the
same as when decommitting to 1 in trans;. However, such a decommitment on
trans; is invalid because the secret, which is the value of this polynomial evaluated

atOis 1.

Therefore, we can conclude that it must be first case, where the revealed polynomials are
identical so that 3? = b? for all i € T1 (and not just for the n 4 1 locations). Applying
the same argument, we can prove that Z):.l = bi1 foralli € T7. Now, since forevery i € Tj
we have that 5) = 1 — b}, it follows that:

B =1-b VieT.

Next, we observe that 771 NS> is non-empty since S 7# S2. We conclude with a con-
tradiction by considering i* € T1 N Sy. Specifically, for any such i* we have from the
preceding argument that the fact that i* € T} implies that

On the other hand, i* € §; and the values for all the indices in S are already revealed
in the commitment phase of trans;; thus, we have that

i;i)* = bll*
which is a contradiction. O

Simulating the decommit phase when the sender is statically corrupted: S first
checks whether the decommitted value is the value stored during the commit phase
and whether the decommitment is valid. If these two conditions are met, then S
sends (reveal, sid) to Fcoym. Otherwise, S ignores the message. Next, we prove
that Z cannot distinguish an interaction of protocol mcom With A, corrupting the
sender, from an interaction of S with Fqy. Formally,

Claim 5.6. The following two distribution ensembles are computationally indistin-
guishable,

C
{View S 4 20} e ~ {View S0 ¢ 20}, ey
Proof. Here we need to argue that the simulator outputs fail with negligible probability
and that the receiver outputs the same message in both executions. Recall first the event
for which the simulator fails occurs when it computes the polynomials go and ¢; and then
finds out that both of them satisfy the condition in case 1. In this case, A can equivocate
the committed message in the decommit phase. We thus prove that the probability that
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A can generate such polynomials is negligible, which implies that the probability that S
fails is negligible. More precisely, we prove in the following lemma that the probability
that A can break the binding property is negligible probability. A key point in our
proof relies on the fact that a malicious sender cannot bias the coin-tossing outcome (as
opposed to the simulator). Formally, (]

Simulating the commit phase when the sender is corrupted after the encoding
phase: Upon corruption, S receives the sender’s input m. It then reveals the sender’s
randomness just as it would do when simulating a decommitment for an uncorrupted
sender. Computational indistinguishability follows similarly to the case that the
receiver is statically corrupted.

Simulating the commit phase when the receiver is corrupted anywhere during
the commit phase: Recall that S honestly simulates the receiver messages, and
thus, it can simply reveal the randomness of the receiver.

A. From Bit OT to String OT

In this section, we demonstrate how to transform a bit OT protocol to a string OT protocol
in a way that preserves both defensible private with respect to a corrupted receiver and
receiver private. At a high level, in order to obtain an n-bit OT we repeat the bit OT
protocol in parallel n times. Given two n-bit strings (s, s1), the sender enters the ith
bit of so and s; as the bit inputs for the ith OT execution. In addition, the receiver
must use the same index for all executions. We next prove that the receiver privacy of the
transformed protocol follows easily using a simple hybrid argument. Defensible privacy,
on the other hand, holds since the receiver is required to produce a good defense for the
n parallel executions simultaneously and a good defense should show that the receiver
supplied the same index in all the executions. We note that our proof works for random
OT, which is sufficient for our purposes, yet can be extended for the more general case.
The definition of defensible privacy for n-bit OT is provided in Section 2.3. Below we
present an equivalent game-based security formulation for bit OT defensible privacy,
inspired by [28]. More formally, we consider the following experiment for a protocol
and a PPT adversary A:

Experiment Expt, (A) :

1. Choose sg, s1 € {0, 1} uniformly at random.

2. Let psen be a uniformly chosen random tape for the sender Sen, and let trans be
a transcript of an interaction between the adversary A and Sen((sg, 51), OSen)-

3. Let ((r, prec), s*) be the output of A(1") on transcript trans where (r, prec) is a
defense and s™* is a guess for s;_,.

4. Output 1 only if (r, prec) is a good defense for A4 in trans and s* = s;_,.

Definition A.1. An OT protocol is defensible private with respect to a corrupted

receiver if for any PPT adversary A there exists a negligible function w(-) such that
for all sufficiently large n’s,

PHEXPL (AU") = 1] = 5 + (o).
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We now provide our transformation and prove correctness. Let mor be a bit OT protocol.
We construct a string OT protocol . using mor as follows.

Protocol 2.  (Protocol m{y;)

Input: The sender Sen has input (vg, vi) where vq, v € {0, 1} and the receiver Rec has input
u € {0, 1}
The protocol:

The parties participate in n executions of the OT protocol mor where the receiver uses u as its input in
all executions and the sender uses the ith bits of vy and vy as its input in execution i.

Lemma A.1. Assume that wor is a bit OT protocol that is defensible private with respect
to a corrupted receiver and receiver private. Then nly, is a string OT protocol that is
defensible private with respect to a corrupted receiver and receiver private.

Proof. 'We first prove receiver privacy of the string OT protocol.

Receiver privacy: Loosely speaking, receiver privacy requires that no malicious sender
can distinguish the case when the receiver’s input is 0 and 1, with non-negligible proba-
bility. Suppose for contradiction that there exist a PPT adversary A, distinguisher D and
polynomial p(-) such that D distinguishes the following distributions with probability
at least ﬁ for infinitely many »’s,

. {VieWA,ngT [A(1"), Rec(1", 0)]}nen,
o (View 4z [A(1"). Rec(1", 1)]}yen.

Fix an n for which this happens. We construct A’ and distinguisher D’ using A and D
that violates the receiver privacy of wor. We introduce a sequence of intermediate hybrid
experiments Hy, . .., H,, where in hybrid H; we consider a receiver Rec; that follows the
honest receiver’s code in each of the n parallel executions of wor with the exception that
it uses the input 1 in the first i executions and 0 in the remaining executions. Let hyb; (n)
denote the view of the adversary in hybrid H;. Then by construction we have that

hyby(n) = View 4 1 [A(1™), Rec(1", 0)]and
hyb,, (n) = View 4 s [A(1"), Rec(1", D).

Moreover, using a standard hybrid argument there exists i such that D distinguishes
hyb; | (n) and hyb; (n) with probability at least %

Then adversary A’ is defined as follows. It internally emulates the hybrid experiment
hyb; _, (n) by playing the role of the honest receiver against .A, with the exception that it
forwards A’s messages in the ith execution to an external receiver. Consider the function
reconstruct that on input the view of 4" in an interaction using 7o reconstructs the
view of A in the internal emulation of A’. It follows from our construction that if the
receiver uses input 0 in the interaction with A’, this view of A is identically distributed
to hyb; _; (n). If the receiver uses input 1, the view is identically distributed to hyb; (n).
More precisely,
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reconstruct(View 4/ ., [.A(1"), Rec(1", 0)]) = hyb;_; (n)
reconstruct(View 4/ . [A(1"), Rec(1”, 1)]) = hyb; (n).

Next, we construct a distinguisher D’. On input a view of A’, runs the function
reconstruct on the view and runs D on the output of the function. Finally, D’ out-
puts what D outputs. It now follows that

Pr[ D' (View 4/ 1o [A(1"), Rec(1", 0)]) = 1] = Pr[D(hyb;_; (n)) = 1]
Pr[ D' (View 4/ 7o [A(1"), Rec(1", 1)]) = 1] = Pr[D(hyb; (n)) = 1]

which implies that D’ distinguishes .A”’s view when the receiver’s input are 0 and 1
because D distinguishes hyb;_;(n) and hyb; (rn) with probability at least Tl(n)’ which
contradicts the receiver privacy of mor.

Defensible privacy with respect to a corrupted receiver: ~As mentioned before, we
reduce the security of defensible privacy for string OT according to Definition 2.6 to the
game-based formulation of defensible privacy for bit OT (cf. Definition A.1). Assume
by contradiction that there exists an adversary A that violates the defensible privacy
of m/j, with respect to a corrupted receiver. More precisely, suppose there exist a PPT
adversary A, distinguisher D and polynomial p(-) such that for infinitely many n’s, D
distinguishes the following distributions with probability at least 1

W?
o {I'(View 4[Sen(1", (Uy, U)), A(1M)], U_,)} and
o {I'(View 4[Sen(1", (U}, UD)), A(1M)], U™},

where I' (v, %) equals (v, *) if when following the execution .4 outputs a good defense
for 7, and L otherwise, b is Rec’s input in this defense and Uy, U7, U" are indepen-
dent random variables that are uniformly distributed over {0, 1}"*. Fix n for which this
happens. Then we rewrite these distributions more explicitly:

{T'(View 4[Sen(1", (Uy, UT)), A1), UT_p)}
={so < Ul;s1 < U,z < U"sv
< View 4[Sen(1", (s, 51)), A(1")] : T'(v, 51-5)}
{T'(View 4[Sen(1", (U}, U!)), A(1")], U™)}
={so < Ul;s1 < U,z < U"5v
<« View 4[Sen(1", (so, 51)), A(1")] : T (v, 2)}.

Next, we use A to construct A’ that breaks the defensible privacy of mor with respect
to a corrupted receiver. We use the experiment formulation of defensible privacy for the
bit OT protocol. Toward this, we consider the following sequence of distributions:

mi(n) ={so < Uy;s1 < Ul',z < U"; v < View 4[Sen(1", (50, 51)), A(1"M)] :

T, (' ... 2 st st
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where 7z = (z],...,z”) and sg = (s(l),...,s(’)’) and s; = (s},...,s{’).
Observe that

hyby(n) = {I'(View 4[Sen(1", (UY, U), A(1™)], U_,)}
hyb, (n) = {I'(View 4[Sen(1", (U{, UD)), A(1M], U™)}.

Then using a standard hybrid argument we can conclude that there exists an index i
such that D distinguishes hyb,_;(r) and hyb; (n) with probability at least —— . More

. np(n)*
precisely,
Pr[D(hyb; (n)) = 1] — Pr[D(hyb; _;(n)) = 1]| > —.
p(n)
Without loss of generality, we assume that
I — 1
Pr[D(hyb;(n)) = 1] — Pr[D(hyb;_(n)) = 1] > % 9

Now, consider a machine A’ that is interacting externally with a sender on input (so, s1)
in the protocol wor. A’ internally incorporates A and proceeds as follows. It starts by
emulating an execution with A by supplying the sender’s messages in 7. which implies
n parallel OT executions. Specifically, A" supplies random inputs for the sender in all
but the ith execution, for which it forwards externally to the sender that participates in
mor- Denote by (sé, s{ ) the sender’s selected inputs for every j # i. Upon completion,
A’ receives a defense from .A. If the defense is not good A’ aborts. Else, A’ computes
w = (wq, ..., w,) as follows:

o w; = z/ where z/ is sampled at random from {0, 1} for j <= .
o w; = sL{j for j > i, where u; is the receiver’s input in the jth execution which can
be obtained from the defense output by A.

Next, A’ invokes D on input (v, w) where v is A’s internally generated view. Let b be the
output of D on these inputs and (&;,, pg) be the defense of A in the ithinteraction. Then A’
outputs adefense (¢;, pr) and defined its guess for the external sender’s other input by b&®
w; . By construction, we have that (v, w) are sampled in the internal emulation according

to hyb;, (n). This means that A’ succeeds in the experiment Expt, = when it is given

D(hy_bl n) dw;, = S1—u; -

Observe that if w; = 51—, then (v, w) in the internal emulation of A’ is distributed
according to hyb,_ (n). This means that:

Pr[ A’ wins Expt,_|w; = s1_,,] = Pr[D(hyb;_,(n) = 0]. (10)

TTOT

Next, we introduce a new distribution U ]” that is identical to U ]” with the exception that
the (j + 1) bit in 0]’.’ is flipped. More precisely, for j € [n],
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Fy\bj(n) ={so < Uy;s1 < Ul', z < U™; v < View 4[Sen(1", (s0, s1)), A(1™M)] :
i i+1
T, @ tes] st
where z = (zl, oM, 50 = (s(l), ...,8) and 51 :/gsf, ...,sf). Now, since the bits

in the ith position are complement of each other in U/" | and U/" |, and the ith bit is
randomly distributed in Ul.", we have that

Pr[D(hyb; (m)) = 1] = 5 Pr(D(hyb; _; (m)) = 11+ 7 PrID(hyb;_ () = 11. (1)

Moreover, A’ succeeds if D(hy/E_ 1(n)) =1 when w; # s1—,,. More precisely
Pr[.A" wins Expt, . |wi # s1-u;] = Pr[D(hy/E(n) =1]. (12)
Now, since both s5;_, and w; are chosen at random we have that:

Pr[ A" wins Expt, ]
= Pr[A" wins Expt, . |w; # 51—y, ]Pr{w; # s1-4,]

+ Pr[A" wins Expt, _|w; = s1—,]1Prlw; = s1_,]

TOT

= 3 PrD{EYD,_ () = 1]

+ % Pr{D(hyb;_, (1)) = 0] (Using Equations 12 and 10)
- (Pr[D(hybi (1) = 11— 3 PrDEY, () = 1])

+ % Pr[D(hyb;_,(n)) = 0] (Using Equation 11)
- (Pr[D(hyb,- (1) = 11~ 3 PrDEY, () = 1])

1 1 —
n (z - EPr[D(|'1ybi—1(")) = 1])

‘l - R—
3 + (Pr[D(hyb,- (n)) = 1] = Pr[D(hyb,_,(n)) = 1])
> % + ﬁ (Using Equation 9).

This contradicts the defensible privacy against a corrupted receiver in protocol wor. U
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