
https://doi.org/10.1007/s00145-021-09385-0
J Cryptol (2021)34:20

Session Resumption Protocols and Efficient Forward
Security for TLS 1.3 0-RTT∗

Nimrod Aviram
Tel Aviv University, Tel Aviv, Israel

nimrodav@mail.tau.ac.il

Kai Gellert · Tibor Jager
Bergische Universität Wuppertal, Wuppertal, Germany

kai.gellert@uni-wuppertal.de
tibor.jager@uni-wuppertal.de

Communicated by Colin Boyd

Received 31 October 2019 / Revised 17 January 2021 / Accepted 17 January 2021
Online publication 18 May 2021

Abstract. The TLS 1.3 0-RTT mode enables a client reconnecting to a server to send
encrypted application-layer data in “0-RTT” (“zero round-trip time”), without the need
for a prior interactive handshake. This fundamentally requires the server to reconstruct
the previous session’s encryption secrets upon receipt of the client’s first message. The
standard techniques to achieve this are session caches or, alternatively, session tickets.
The former provides forward security and resistance against replay attacks, but requires
a large amount of server-side storage. The latter requires negligible storage, but provides
no forward security and is known to be vulnerable to replay attacks. In this paper, we first
formally define session resumption protocols as an abstract perspective on mechanisms
like session caches and session tickets. We give a new generic construction that provably
provides forward security and replay resilience, based on puncturable pseudorandom
functions (PPRFs). We show that our construction can immediately be used in TLS 1.3
0-RTT and deployed unilaterally by servers, without requiring any changes to clients
or the protocol. To this end, we present a generic composition of our new construction
with TLS 1.3 and prove its security. This yields the first construction that achieves
forward security for all messages, including the 0-RTT data. We then describe two new
constructions of PPRFs, which are particularly suitable for use for forward-secure and
replay-resilient session resumption in TLS 1.3. The first construction is based on the
strong RSA assumption. Compared to standard session caches, for “128-bit security”
it reduces the required server storage by a factor of almost 20, when instantiated in a

∗Supported by the German Research Foundation (DFG), project JA 2445/2-1, the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme, grant
agreement 802823, scholarships from The Israeli Ministry of Science and Technology, The Check Point
Institute for Information Security, and The Yitzhak and Chaya Weinstein Research Institute for Signal
Processing. We thank Colin Boyd, Sven Hebrok, Nick Sullivan, and all anonymous reviewers for their valuable
comments. We also thank Felix Günther and Matilda Backendal for spotting an issue in the proof of Theorem 3
and for suggesting a fix

© The Author(s) 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09385-0&domain=pdf

20 Page 2 of 57 N. Aviram et al.

way such that key derivation and puncturing together are cheaper on average than one
full exponentiation in an RSA group. Hence, a 1 GB session cache can be replaced
with only about 51 MBs of storage, which significantly reduces the amount of secure
memory required. For larger security parameters or in exchange for more expensive
computations, even larger storage reductions are achieved. The second construction
combines a standard binary tree PPRF with a new “domain extension” technique. For
a reasonable choice of parameters, this reduces the required storage by a factor of up
to 5 compared to a standard session cache. It employs only symmetric cryptography, is
suitable for high-traffic scenarios, and can serve thousands of tickets per second.

Keywords. TLS 1.3, Session Resumption, 0-RTT, Forward Security, Puncturable
PRF.

1. Introduction

0-RTT Protocols A major innovation of TLS 1.3 [51] is its 0-RTT (zero round-trip
time) mode, which enables the resumption of sessions with minimal latency and without
the need for an interactive handshake. A 0-RTT protocol allows the establishment of
a secure connection in “one-shot”, that is, with a single message sent from a client to
a server, such that cryptographically protected payload data can be sent immediately
(“in 0-RTT”) along with the key establishment message, without the need for a latency-
incurring prior handshake protocol. This significant speedup of connection establishment
yields a smoother Web browsing experience and, more generally, better performance for
applications with low-latency requirements. This is particularly noticeable in networks
with relatively high latency, such as mobile networks.

The huge practical demand for 0-RTT is exemplified by the fact that many large
Internet companies have developed and experimented with such protocols in the recent
past, for example Google’s QUIC [16] and Facebook’s Zero [35] protocols. The content
distribution provider Cloudflare has deployed the 0-RTT mode of TLS 1.3 as early as
March 2017 at large scale, long before the finalization of the standard [57]. Google and
Facebook declared that the cryptography in QUIC and Zero will soon be replaced by
TLS 1.3 0-RTT [5,35].

The TLS 1.3 0-RTT Handshake A full TLS 1.3 handshake (not 0-RTT) is always used
in the very first connection between a client and a server. If the server supports 0-RTT,
then both the client and server can derive a resumption secret from their shared key and
session parameters. The client will simply store this secret. Naturally, the server then
needs to retrieve the resumption secret during a subsequent handshake. There are two
standard approaches for this, session caches and session tickets, which have different
advantages and drawbacks. During the first handshake, the server sends to the client
either a lookup key pointing to an entry in the session cache of the server, or a session
ticket—depending on the configuration of the server. These approaches essentially work
as follows:

Session caches: The server stores all resumption secrets of recent sessions in a local
database and issues each client a unique lookup key. When a client re-
connects, it includes that lookup key in its 0-RTT messages, enabling
the server to retrieve and use the matching resumption secret.

Session Resumption Protocols Page 3 of 57 20

Session tickets: The server uses a long-term symmetric encryption key, called the
session ticket encryption key (STEK). Instead of storing the resump-
tion secret in a local database, the server encrypts it with the STEK
to create a session ticket. The session ticket is stored by the client.
When a client reconnects, it includes that session ticket in its 0-RTT
messages, which enables the server to decrypt it and recover the re-
sumption secret. Note that the same STEK is used for many sessions
and clients.

On a subsequent 0-RTT handshake, the client will include in its first message either the
lookup key or the encrypted session ticket, in addition to a Diffie–Hellman key exchange
message. The client can also send, in the same message, encrypted application-layer data,
termed 0-RTT data. This data will be encrypted with a key derived from the resumption
secret and a public client random value, without any input from the server.

In its reply, the server will typically include a Diffie–Hellman key exchange message,
and further messages (in either direction) will be encrypted with a key derived also from
the DH secret, not only the resumption secret. Hence, the only data protected by the
resumption secret alone is the 0-RTT data. We note that the use of DH is not mandatory,
and it is possible to rely only on the resumption secret for the security of the entire
session; we expect most traffic will use DH as described above.

We stress that the use of session caches or session tickets is opaque to clients. That
is, in either case the server sends a NewSessionTicket message containing an
opaque sequence of bytes, which may be either a lookup key for the session cache, or
an encrypted session ticket, without specifying which is the case. This property ensures
that our proposed techniques are compatible with the final TLS 1.3 standard [51] and
can be implemented on the server-side without requiring modifications to the protocol
or to clients.

Confusingly, the message containing this opaque sequence of bytes is always termed
a “NewSessionTicket message”, for both session caches and encrypted self-con-
tained session tickets. To our knowledge there is no standard nomenclature, in [51] or
elsewhere, for these two different approaches when used in TLS 1.3; see e.g. [51, §8.1].
TLS 1.2 referred to “Session ID Resumption" and “Session Ticket Resumption", but
these terms are not used in TLS 1.3.

Forward Security and Replay Resilience of 0-RTT Protocols Forward security essentially
means that the protocol provides security of sessions, even if an attacker is able to corrupt
one party after the session has terminated (e.g., by breaking into a Web server and learning
the long-term secret key). Resilience to replay attacks is a fundamental, classical design
goal of cryptographic protocols, which prevents an attacker from replaying the same
payload data to a server repeatedly.

Both forward security and replay resilience are standard design goals of modern se-
curity protocols. However, achieving these properties is well-known to be difficult for
0-RTT protocols. This is because classical (“non-0-RTT”) protocols include fresh input
from the server (e.g., a Diffie–Hellman message) generated using ephemeral random-
ness, which provides a leverage to achieve forward security. However, there is no such
interactivity in 0-RTT protocols. Furthermore, an attacker is able to replay the 0-RTT

20 Page 4 of 57 N. Aviram et al.

key establishment message along with the 0-RTT payload data over and over again to a
server, which is not detectable without additional server-side countermeasures.

For a more general treatment of the notion of “forward security” and “forward secrecy”
in non-interactive contexts (such as 0-RTT protocols or instant messaging), we refer to
a work by Boyd and Gellert [13].

Forward Security and Replay Resilience of TLS 1.3 0-RTT With session caches the server
stores a “unique” resumption secret in a local database for each client. In most cases,
it is able to delete the resumption secret immediately after retrieving it. This provides
forward security, as an attacker obtaining the server state cannot decrypt past sessions.
It also provides resilience against replay attacks, as the server is not able to decrypt
replayed messages.

If session tickets are used, then an attacker that obtains access to the server can learn
the STEK, and thus decrypt all tickets encrypted with this key to learn the resumption
keys. Hence, servers using session tickets do not provide forward security. They are also
generally vulnerable to replay attacks, as explained below. Since an attacker learning the
STEK has catastrophic implications for security, large server operators usually rotate
the STEK. Such deployments typically generate a new STEK roughly once per hour,
and limit the STEK lifetime to roughly a day [46]. An attacker that learns one STEK
can therefore decrypt approximately one hour’s worth of traffic. However, most current
TLS implementations do not provide out-of-the-box support for STEK rotation, and this
(welcome) defensive measure is usually limited to large operators who can afford to
modify TLS implementations [43,46]. Long-lived STEKs are unfortunately prevalent,
and even among high-profile websites, some reuse the same STEK for many weeks, or
even for many months [56].

STEK-based deployments are also generally vulnerable to replay attacks. When using
resumption, the client must include in its first message the ticket’s age, i.e. the time
elapsed between receiving the ticket from the server in a previous session. The server
expects this time interval to be precise up to a small window of error allowing for
propagation delay, typically on the order of 10 seconds. An attacker can perform replay
attacks within this time window (unless there is additional server-side logging of tickets
that have already been used, which is rare).

To summarize, session caches are generally forward-secure and replay-resistant, while
session tickets are not. Naïvely, it would therefore appear that session caches are the
superior solution. However, session caches require the server to store the session state
for each (recent) connection. This is often infeasible, in particular for high-traffic server
operators. Such server operators often reluctantly use session tickets, knowingly forgoing
forward secrecy. Additionally, even if forward security is not prioritized by a particular
server operator and thus session tickets are used, the prevention of replay attacks may
still require additional storage at the server, since the only way to prevent replay attacks
in this case is to log used tickets.

In this context it is sometimes claimed that so-called idempotent requests, that is,
requests that have the same effect on the server state whether they are served once
or several times, are safe to use with TLS 1.3 0-RTT. However, it is well-known [48]
and also discussed in the TLS 1.3 specification [51] that even replays of idempotent

Session Resumption Protocols Page 5 of 57 20

requests may give rise to attacks that, e.g., reveal the target URL of HTTP requests. See
Appendix A for an example.

All of these issues are well-known to apply to TLS 1.3 0-RTT and have raised sig-
nificant concerns about its secure deployability in practice [48]. Eric Rescorla, the main
author of the TLS 1.3 RFC draft, acknowledges that this poses a “difficult application
integration issue” [50]. However, due to the huge practical demand, 0-RTT is also con-
sidered “too big a win not to do” [50]. At EUROCRYPT 2017 [33] and 2018 [19,20],
the first 0-RTT protocols that simultaneously achieve forward security and replay re-
silience were proposed, but these require relatively heavy cryptographic machinery, such
as hierarchical or broadcast identity-based encryption, and thus are not yet suitable for
large-scale deployment in TLS 1.3.

Our Contributions We give the first formal definition for secure 0-RTT session resump-
tion protocols, as an abstraction of the constructions currently used in practice in TLS
1.3. We propose new techniques to achieve forward security and replay resilience that
are ready-to-use with TLS 1.3 as it is standardized, without any changes to the protocol.
Our proposal is based on session tickets, and thus requires minimal storage at the server
side, but we extend this approach with efficient puncturable pseudorandom functions
(PPRFs) that enable us to achieve forward security and replay resilience for session
tickets. We provide new constructions of PPRFs with short keys and formal security
proofs based on standard hardness assumptions. We propose two variants:

1. The first variant is based on the strong RSA assumption. It reduces the server
storage by a factor of at least 11 compared to a session cache, increases ticket size
by a negligible length, and requires the server to perform two exponentiations (one
per issuance and one per resumption).

2. The second variant reduces server storage by a factor of up to 5 compared to a
session cache, while using tickets that are roughly 400 bytes longer than standard
tickets. It extends a standard GGM-style [30] binary tree-based PPRF, as described
in [12,14,38], with a new domain extension idea. It employs only symmetric cryp-
tography, is suitable for very-high-traffic scenarios, and can serve thousands of
tickets per second, at the cost of hundreds of megabytes in server storage.

Our Approach At the base of our approach is the concept of puncturing a pseudorandom
function (PRF) to obtain a puncturable symmetric-key encryption scheme. Puncturable
PRFs are a special case of constrained PRFs [12,14,38], which make it possible to derive
constrained keys that allow computation of PRF output only for certain inputs.

In our approach, a server initially maintains a STEK k that allows decryption of any
session ticket; when receiving ticket t , the server uses k to decrypt t in order to recover
the resumption secret. Using the puncturing feature of the PPRF, it then derives from k a
new key, k′, that can decrypt any ticket except for t . The server then discards k and stores
only k′. It repeats this process for every ticket received. This yields forward secrecy and
replay-resistance: an attacker that compromises the server learns a key that is not capable
of decrypting past tickets. Similarly, an attacker cannot successfully replay a message,
since the server is only able to decrypt each ticket once.

The naïve way to employ this approach in TLS 1.3 0-RTT would be to use public-key
puncturable encryption, as in [19,20,33]. However, this approach results in impractically

20 Page 6 of 57 N. Aviram et al.

long puncturing times or very long secret keys. Moreover, the most practical construc-
tions require relatively expensive pairing-based cryptography by both the client and the
server, thereby obviating the efficiency benefit of TLS 1.3 0-RTT. To be precise, since
the puncturing times are in the order of hundreds of milliseconds, they introduce ad-
ditional latency that is larger/comparable to the additional RTT they save. Rather than
using public-key puncturable encryption, we observe that in TLS 1.3 0-RTT, the server
itself generates the tickets it would later need to decrypt. It therefore suffices to use
symmetric cryptography, and to maintain a key that allows decryption of only a limited
set of ciphertexts, generated by the server itself. To achieve this, we use PPRFs to derive
keys for standard TLS 1.3 tickets. Concretely, we describe two new PPRF constructions
that are particularly suitable for our application:

– The first builds a new PPRF from the Strong RSA Assumption. The PPRF has a
polynomially-bounded input size, but this is sufficient for our application (and prob-
ably for certain other PPRF applications as well). Its main distinguishing feature is
that its secret key size is independent of the number of puncturings. It consists of
an RSA modulus N , a number g ∈ ZN , and a bitfield, indicating positions where
the PPRF was punctured. Due to the short secret key, our construction may find
other applications in applied and theoretical cryptography. Since our primary ob-
jective is to provide an as-efficient-as-possible solution for practical protocols such
as TLS 1.3 0-RTT, we describe a construction with security proof in the random
oracle model [7]. It seems likely that our construction can be lifted to the standard
model in a straightforward way, via standard techniques like hardcore predicates
[8,10,31], but this would yield less efficient constructions and is therefore outside
the scope of this paper.

– The second construction is based on a standard tree-based PPRF [12,14,38], in-
stantiated with a cryptographic hash function, such as SHA-3.
The size of punctured keys depends linearly on the depth of the tree, which in
turn depends on the size of the domain of the PPRF. We describe a new domain
extension technique that reduces the size of punctured keys by trading secret key
size for ticket size, while preserving the puncturing functionality. Domain extension
makes it possible to use a PPRF with a smaller domain (and thus smaller punctured
keys). To save a factor of up to n in server-side storage, the ticket size rises roughly
as (n − 1)!. Thus, this is only useful for small values of n, but choosing e.g. n = 5
can yield significant savings with a modest increase in ticket size on the wire.
Concretely, for n = 5 and “128-bit security”, ticket size is increased by 384 bytes.
As discussed in Sect. 7.1, experiments done by Google estimate that this will impose
only a small impact on latency [44].

Integration in TLS 1.3 We show how to generically integrate any 0-RTT session re-
sumption protocol in the TLS 1.3 resumption handshake. In particular, we can show
that the security of the 0-RTT session resumption protocol allows achieving forward se-
crecy for all messages (including the 0-RTT data) of the resumption handshake without
modifications to any client implementations. This yields the first variant of the TLS 1.3
resumption handshake with full forward secrecy, whereas current implementations are
unable to provide this for the client’s first flight of messages.

Session Resumption Protocols Page 7 of 57 20

We note that our protocol is incompatible with ticket re-use. That is, a client reusing
tickets may undesirably fail to resume its session, which is unavoidable if the server
wants to provide forward secrecy for 0-RTT data. As forward secrecy of 0-RTT data
is desirable, we hope that client implementations will not reuse tickets when sending
0-RTT data, minimizing failed session resumption attempts. We note that the TLS 1.3
standard explicitly discourages, but does not outright forbid, ticket reuse by clients [51,
§C.4].

The security of the new TLS 1.3 resumption handshake variant is proven in the multi-
stage key exchange model by Fischlin and Günther [27,28]. Their model was used in
several proofs of key exchange protocols with similar levels of complexity, such as
Google’s QUIC protocol [27], and several drafts and handshake modes of the TLS 1.3
protocol [23,24,28]. We adopt and extend the proof of the TLS 1.3 draft-14 resumption
handshake in [28]. Namely, we model the TLS 1.3 resumption handshake in its finalized
version, which follows a different key derivation schedule as considered in previous
works, and generically integrate a 0-RTT session resumption protocol to immediately
achieve forward secrecy.

Large-Scale Server Clusters and Load Balancing Large TLS server deployments typ-
ically consist of many servers that share the same public key. This complicates any
logic that relies on the server storing some state, since these servers will typically not
share a globally-consistent state. Such discussion is beyond the scope of this paper, and
we will assume a single server with consistent storage throughout. When many servers
share a session cache, the cache is likely to be distributed, and any logic relying on
an atomic retrieve-and-delete operation becomes more complex. Therefore, distributed
session caches are not necessarily replay-resistant nor forward-secure, as this requires
synchronous deletion of resumption secrets at all servers, and thus synchronized state.
When using session tickets, the same holds for mechanisms that store used tickets,
which are likely to be distributed as well. See [51, §2.3, §8, §E.5], [48,49] for more
in-depth discussion. However, in large-scale settings it is highly desirable to minimize
the amount of memory that must be consistently synchronized across different servers.
Our techniques are therefore useful to that end as well.

Further Applications to Devices with Restricted Resources Our techniques may also be
useful for devices with very restricted resources, such as battery-powered IoT devices
with a wireless network connection. For such devices, it is usually extremely expensive
to send data, because each transmitted bit costs energy, which limits the battery lifetime
and thus the range of possible applications. In order to maximize the battery lifetime, it
is useful to avoid expensive interactive handshakes and use a 0-RTT protocol whenever
data is sent to such devices. Note that here the main gain from using 0-RTT is not minimal
latency, but rather that no key exchange messages must be sent by the receiver. Ideally,
transmitted data should be forward-secure, but such devices have low storage capacity
and we cannot use large amounts of storage to achieve forward security.

For such devices, it is reasonable to relax the requirement for very efficient computa-
tion, since adding unnecessary transmissions to even a fraction of connections is likely
more costly than using moderately more expensive computations. By instantiating our
session resumption protocol in a way that puncturing is more expensive (say, five full

20 Page 8 of 57 N. Aviram et al.

RSA exponentiations, which may still be reasonable for most IoT devices), we achieve
reductions in storage by factors close to 100. Thus, our techniques make it possible to
use forward-secure 0-RTT protocols even on such devices. Instead of requiring, say, 1
GB of memory for a session cache, we need only about 10 MBs of memory.

Related Work Puncturable encryption [32] was used to construct forward-secure instant
messaging [32] and 0-RTT protocols [19,20,33,45], for instance. Green and Miers [32]
first proposed puncturable encryption as a practical building block for the case of asyn-
chronous messaging. They used pairing-based puncturable encryption, and as a result
observed impractically long processing times for their construction. Günther et al. [33]
proposed using puncturable encryption for 0-RTT protocols, again proposing concrete
constructions based on pairings that are also impractical for high-traffic scenarios. Der-
ler et al. [19,20] proposed trading off space in exchange for processing time, with the
use of their proposed Bloom filter encryption. Their construction essentially precom-
putes many already-punctured keys, and these keys are used only once, so puncturing
becomes simply key deletion. Bloom Filter Encryption may be considered practical for
low-traffic scenarios, but supporting a large number of puncturings per key requires
precomputation and storage of keys on the order of many gigabytes. A proof-of-concept
0-RTT key exchange based on Bloom filter encryption was implemented and analyzed
by Dallmeier et al. [18]. However, their approach is incompatible with the standardized
TLS protocol, which only allows a 0-RTT mode for session resumption.

Over the past years there have been several papers formally analyzing the security
of TLS 1.2 [9,36,42] and TLS 1.3 [21–23,28]. Particularly noteworthy are the analyses
of the 0-RTT mode of TLS 1.3 [28] and QUIC [27] by Fischlin and Günther, who
analyze both protocols in a multi-stage key exchange model [27]. Lychev et al. [47]
further formally analyzed QUIC in a security model that additionally captures the secure
composition of authenticated encryption and key exchange. A security definition and
construction for QUIC-like 0-RTT protocols were given in [34]. However, all these
publications do not consider forward secrecy for the very first message in their security
models. Hence, we believe that our techniques may also influence the design of protocols
providing a 0-RTT key exchange, such as TLS 1.3 and QUIC, in order to achieve forward
secrecy for all messages.

Differences to theEurocrypt2019 Version This work is the full version of a paper, which
appeared in Advances in Cryptology—Eurocrypt 2019—38th Annual International
Conference on the Theory and Applications of Cryptographic Techniques [1]. The full
version discusses how our construction and its benefits can be composed with the TLS
1.3 protocol, without modifying client side implementations or the TLS 1.3 standard. In
Sect. 4 we provide the composed protocol and prove its security in the multi-stage key
exchange model by Fischlin and Günther [27,28]. In contrast to previous security proofs
of TLS 1.3 resumption handshake drafts [23,24,28], we incorporate the finalized key
derivation schedule of TLS 1.3, and are able to achieve forward secrecy for all messages
by utilizing the techniques described in this work. This contribution resolves an open
problem stated in a previous version of this work.

Outline The rest of this paper is organized as follows. In Sect. 2 we provide formal
definitions for secure 0-RTT Session Resumption Protocols. In Sect. 3 we describe a

Session Resumption Protocols Page 9 of 57 20

generic construction, based on abstract PPRFs, and formally prove forward security and
replay resilience. In Sect. 4 we show how our generic construction can be composed
with TLS 1.3 and prove the composition’s security. Section 5 describes the Strong-RSA-
based PPRF and an analysis of the efficiency when used in the protocol construction
in Sect. 3. Section 6 describes the tree-based PPRF and a novel “domain extension”
technique for standard binary tree PPRFs, along with an efficiency analysis.

Notation We denote the security parameter as λ. For any n ∈ N let 1n be the unary
representation of n and let [n] = {1, . . . , n} be the set of numbers between 1 and n.
Moreover, |x | denotes the length of a bitstring x , while |S| denotes the size of a set S.
We write x $←− S to indicate that we choose element x uniformly at random from set S.
For a probabilistic polynomial-time algorithm A we define y $←− A(a1, . . . , an) as the
execution of A (with fresh random coins) on input a1, . . . , an and assigning the output
to y.

2. 0-RTT Session Resumption Protocols and Their Security

In this section we provide formal definitions for secure 0-RTT session resumption pro-
tocols. These definitions capture both our new techniques and the existing solutions
already standardized in TLS 1.3. We later show that the techniques used to formally an-
alyze and verify TLS 1.3 0-RTT [17,24,28] can be extended to use our abstraction of a
session resumption protocol within TLS 1.3. This leads us to believe that our definitions
capture a reasonable abstraction of the cryptographic core of the TLS 1.3 0-RTT mode
(and likely also of similar protocols that may be devised in the future).

For simplicity, in the following we will refer to pre-shared values as session keys, as
they are either previously established session keys, or a resumption secret derived from
a session key, as e.g. in TLS 1.3. The details of how to establish a shared secret and
potentially derive a session key from it are left to the individual protocol and are outside
the scope of our abstraction. Session keys are elements of a keyspace S.

Definition 1. A 0-RTT session resumption protocol consists of three probabilistic poly-
nomial-time algorithmsResumption = (Setup,TicketGen,ServerRes) with the fol-
lowing properties.

– Setup(1λ) takes as input the security parameter λ and outputs the server’s long-term
key k.

– TicketGen(k, s) takes as input a long-term key k and a session key s, and outputs
a ticket t and a potentially modified long-term key k′.

– ServerRes(k, t) takes as input the server’s long-term key k and the ticket t , and
outputs a session key s and a potentially modified key k′, or a tuple (⊥, k) where
⊥ is a failure symbol.

Using a Session Resumption Protocol A 0-RTT session resumption scheme is used by a
set of clients C and a set of servers S. If a client and a server share a session key s, the
session resumption is executed as follows (cf. Fig. 1).

20 Page 10 of 57 N. Aviram et al.

Fig. 1. Execution of a generic 0-RTT session resumption protocol based on session tickets with early data m,
where client and server initially are in possession of a shared secret s. The procedures Enc and Dec are sym-
metric encryption and decryption procedures respectively. Note that procedures TicketGen and ServerRes
both potentially modify the server’s key k.

1. The server uses its long-term key k and the session key s to generate a ticket t by
running (t, k′) $←− TicketGen(k, s). The ticket is sent to the client. Additionally,
the server replaces its long-term key k by k′ and deletes the session key s and ticket
t , i.e. it is not required to keep any session state.

2. For session resumption at a later point in time, the client sends the ticket t to the
server.

3. Upon receiving the ticket t , the server runs (s, k′) := ServerRes(k, t) to retrieve
the session key s. Additionally, k is deleted and replaced by the updated key k′.

Compatibility with TLS 1.3 As explained in Sect. 1, using either session tickets or session
caches in TLS 1.3 is transparent to clients, i.e. clients are generally unaware of which
is used. In either case, the client stores a sequence of bytes which is opaque from the
client’s point of view. Since all algorithms of a session resumption protocol are executed
on the server, while a client just has to store the ticket t (encoded as a sequence of bytes),
this generic approach of TLS 1.3 is immediately compatible with our notion of session
resumption protocols. Thus, a session resumption protocol can be used immediately in
TLS 1.3, without requiring changes to clients or to the protocol. Furthermore, session
tickets and session caches are specific examples of such protocols.

2.1. Security in the Single-Server Setting

We define the security of a 0-RTT session resumption protocolResumption by a security
game G0-RTT-SR

A,Resumption(λ) between a challenger C and an adversary A. For simplicity, we
will start with a single-server setting and argue below that security in the single-server
setting implies security in a multi-server setting. Let μ be the number of sessions.

1. C runs k $←− Setup(1λ), samples a random bit b $←− {0, 1} and generates session
keys si

$←− S for all sessions i ∈ [μ]. Furthermore, it generates tickets ti and

Session Resumption Protocols Page 11 of 57 20

updates key k by running (ti , k) $←− TicketGen(k, si) for all sessions i ∈ [μ]. The
sequence of tickets (ti)i∈[μ] is sent to A.

2. The adversary gets access to oracles it may query.

(a) ODec(t) takes as input a ticket t . It computes (s, k′) := ServerRes(k, t) and
outputs ⊥ if ServerRes failed. Otherwise, it returns the session key s and
replaces k := k′. Note that ticket t can either be a ticket of the initial sequence
of tickets (ti)i∈[μ] or an arbitrary ticket chosen by the adversary.

(b) OTest(t) takes as input a ticket t . It computes (s, k′) := ServerRes(k, t)
and outputs ⊥ if the output of ServerRes was (⊥, k). Otherwise, it updates
k := k′. If b = 1, then it returns the session key s. Otherwise, a random r $←− S
is returned. Note that ticket t can either be a ticket of the initial sequence of
tickets (ti)i∈[μ] or an arbitrary ticket chosen by the adversary.
The adversary is allowed to query OTest only once.

(c) OCorr returns the current long-term key k of the server. The adversary must
not query OTest after OCorr, as this would lead to a trivial attack.

3. Eventually, adversary A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and
0 otherwise.

Note that this security model reflects both forward secrecy and replay protection.
Forward secrecy is ensured, as an adversary may corrupt the challenger after issuing the
OTest-query. If the protocol did not ensure forward secrecy, an attacker could corrupt its
long-term key and trivially decrypt the challenge ticket. Replay protection is ensured, as
an adversary is allowed to issue ODec(ti) after already testing OTest(ti) and vice versa
(as both queries invoke the ServerRes algorithm). If the protocol did not ensure replay
protection, an attacker could use the decryption oracle to distinguish a real or random
session key of the OTest-query.

Definition 2. We define the advantage of an adversary A in the above security game
G0-RTT-SR
A,Resumption(λ) as

Adv0-RTT-SR
A,Resumption(λ) =

∣
∣
∣
∣
Pr

[

G0-RTT-SR
A,Resumption(λ) = 1

]

− 1

2

∣
∣
∣
∣
.

We say a 0-RTT session resumption protocol is secure in a single-server environment
if the advantage Adv0-RTT-SR

A,Resumption(λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

2.2. Security in the Multi-server Setting

A 0-RTT session resumption protocol that is secure in our model, only guarantees se-
curity in a single-server setting. However, session resumption protocols are meant to
be executed in a multi-server environment. In this section, we provide the respective
security model and a proof that single-server security implies multi-server security with
a standard polynomial loss in the number of servers, provided each server has a different
long-term key.

20 Page 12 of 57 N. Aviram et al.

We define the security of a 0-RTT session resumption protocol Resumption with
multiple servers in the following security game between a challenger C and an adversary
A. Let μ be the number of sessions and d be the number of servers.

1. To simulate the server, C runs k j
$←− Setup(1λ) for j ∈ [d], samples a random

bit b $←− {0, 1} and generates session keys si, j
$←− S for all (i, j) ∈ [μ] × [d].

Furthermore it generates tickets (ti, j , k j)
$←− TicketGen(k j , si, j) for all (i, j) ∈

[μ] × [d]. The sequence of tickets (ti, j)(i, j)∈[μ]×[d] is sent to A.
2. The adversary gets access to oracles it may query.

(a) ODec(t, j) takes as input a ticket t and an identifier j . It computes (s, k′
j) :=

ServerRes(k j , t) and outputs ⊥ if ServerRes failed. Otherwise, it returns
the session key s and replaces k j := k′

j . Note that ticket t can either be a ticket
of the initial sequence of tickets (ti)i∈[μ] or an arbitrary ticket chosen by the
adversary.

(b) OTest(t, j) takes as input a ticket t and a server identifier j . It computes s :=
ServerRes(k j , t) and outputs ⊥ if the output of ServerRes was (⊥, k j).
Otherwise it replaces k j := k′

j and returns either the session key s if b = 1 or
a random r $←− S if b = 0. Note that ticket t can either be a ticket of the initial
sequence of tickets (ti)i∈[μ] or an arbitrary ticket chosen by the adversary.
The adversary is only allowed to query OTest once and only for tickets t which
have not been queried using ODec(t) before.

(c) OCorr(j) takes as input a server identity j ∈ [d]. It returns the server’s long-
term key k j . The adversary is not allowed to query OTest(t, j) after OCorr(j),
as this would lead to trivial attacks.

3. Eventually,A outputs a guess b∗. Challenger C outputs 1 if b = b∗ and 0 otherwise.

Definition 3. We define the advantage of an adversary A in the above security game
GM0-RTT-SR
A,Resumption(λ) as

AdvM0-RTT-SR
A,Resumption(λ) =

∣
∣
∣
∣
Pr

[

GM0-RTT-SR
A,Resumption(λ) = 1

]

− 1

2

∣
∣
∣
∣
.

We say a 0-RTT session resumption protocol is secure in a multi-server environment
if the advantage AdvM0-RTT-SR

A,Resumption(λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

Theorem 1. From each probabilistic polynomial-time adversaryAagainst the security
of a 0-RTT session resumption protocolResumption in a multi-server environment with
advantage AdvM0-RTT-SR

A,Resumption(λ), we can construct an adversary B against the security

of Resumption in the single-server environment with advantage Adv0-RTT-SR
A,Resumption(λ),

such that

AdvM0-RTT-SR
A,Resumption(λ) ≤ d·Adv0-RTT-SR

A,Resumption(λ).

Session Resumption Protocols Page 13 of 57 20

Proof. Let A be an adversary against the M0-RTT-SR security of Resumption. We
will use this adversary to construct an adversary B against the 0-RTT-SR security of
Resumption. The 0-RTT-SR challenger C starts its security game by sending a tuple
of tickets (ti)i∈[μ].

In order to initialize A we need to prepare a tuple of tickets (ti, j)(i, j)∈[μ]×[d]. We
generate μ·(d−1) tickets by ourselves and use tickets (ti)i∈[μ] the0-RTT-SR challenger
sent us for the leftover μ tickets. At first we guess an index ν $←− [d] and hope that A
queries OTest(ti,ν , ν) for some i ∈ [μ]. Let δ = [d] \ {ν}. We generate μ · |δ| tickets
honestly by running k j

$←− Setup(1λ) for j ∈ δ, generating si, j
$←− S and invoking

(ti, j , k j)
$←− TicketGen(k j , si, j) for all (i, j) ∈ [μ] × δ. We embed our challenge as

ti,ν = ti for i ∈ [μ]. We send (ti, j)(i, j)∈[μ]×[d] to A.
We need to distinguish two possible cases. We can simulate all queries A can ask for

server identities j ∈ δ by ourselves, as we know all secret values for those servers. In
the case of j = ν we forward all queries to the challenger C and send the answers back
to A.

If A queries OTest(ti, j , j) we behave in the following way. If j = ν we continue the
security game and forward the final bit output of A as our solution of the challenge to
C. If j �= ν we abort the security game and output a random bit to C.

In the case of j = ν we win the security game with the advantageAdv0-RTT-SR
A,Resumption(λ).

This happens with a probability of 1/d as ν $←− [d] is drawn at random. If j �= ν, we
have no advantage compared to guessing. In conclusion, we have

AdvM0-RTT-SR
A,Resumption(λ) ≤ d·Adv0-RTT-SR

A,Resumption(λ).

�

On Theoretically-Sound Instantiation Tight security in a multi-server setting is a major
issue for classical AKE-like protocols. First tightly-secure protocols were described
by Bader et al. [2], and by Gjøsteen–Jager [29]). Similar to classical AKE protocols,
our extension to the multi-server setting is non-tight as we have a security loss in the
number of protocol participants (which is the “standard security loss” for many AKE-like
protocols). So, if parameters are chosen in a theoretically-sound way (which is currently
rather uncommon in practice, but would be a desirable goal in our opinion), then this
factor needs to be compensated with larger parameters.

3. Constructing Secure Session Resumption Protocols

In this section we will show how session resumption protocols providing full forward se-
curity and replay resilience can be constructed. We will start with a generic construction,
based on authenticated encryption with associated data and any puncturable pseudoran-
dom function that is invariant to puncturing. Later we describe new constructions of
PPRFs, which are particularly suitable for use in session resumption protocols.

20 Page 14 of 57 N. Aviram et al.

3.1. Building Blocks

We briefly recall the basic definition of puncturable pseudorandom functions and au-
thenticated encryption with associated data.

Puncturable PRFs A puncturable pseudorandom function is a special case of a pseu-
dorandom function (PRF), where it is possible to compute punctured keys which do
not allow evaluation on inputs that have been punctured. We recall the definition of
puncturable pseudorandom functions and its security from [54].

Definition 4. A puncturable pseudorandom function (PPRF) with keyspaceK, domain
X and range Y consists of three probabilistic polynomial-time algorithms PPRF =
(Setup,Eval,Punct), which are described as follows.

– Setup(1λ): This algorithm takes as input the security parameter λ and outputs an
evaluation key k ∈ K.

– Eval(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and
outputs a value y ∈ Y , or a failure symbol ⊥.

– Punct(k, x): This algorithm takes as input a key k ∈ K and a value x ∈ X , and
returns a punctured key k′ ∈ K.

Definition 5. A PPRF is correct if for every subset {x1, . . . , xn} = S ⊆ X and all
x ∈ X \ S, we have that

Pr

[

Eval(k0, x) = Eval(kn, x) : k0
$←− Setup(1λ);

ki = Punct(ki−1, xi) for i ∈ [n];
]

= 1.

A new property of PPRFs that we will need is that puncturing be “commutative”, i.e.
the order of puncturing operations does not affect the resulting secret key. That is, for
any x0, x1 ∈ X , x0 �= x1, if we first puncture on input x0 and then on x1, the resulting
key is identical to the key obtained from first puncturing on x1 and then on x0. This
implies that puncturing by any set of inputs always gives the same result, regardless of
the order of puncturing. Formally:

Definition 6. A PPRF is invariant to puncturing if for all keys k ∈ K and all elements
x0, x1 ∈ X , x0 �= x1 it holds that

Punct(Punct(k, x0), x1) = Punct(Punct(k, x1), x0).

We define two notions of PPRF security. The first notion represents the typical pseudo-
randomness security experiment with adaptive evaluation queries by an adversary. The
second notion is a weaker, non-adaptive security experiment. We show that it suffices
to prove security in the non-adaptive experiment if the PPRF is invariant to puncturing
and has a polynomial-size domain.

Session Resumption Protocols Page 15 of 57 20

Fig. 2. Security experiments for PPRFs. The na-rand security experiment for PPRF is left and the rand
security experiment is right .

Definition 7. We define the advantage of an adversary A in the rand (resp. na-rand)
security experiment Grand

A,PPRF(λ) (resp. Gna-rand
A,PPRF(λ)) defined in Fig. 2 as

AdvrandA,PPRF(λ) :=
∣
∣
∣
∣
Pr

[

Grand
A,PPRF(λ) = 1

]

− 1

2

∣
∣
∣
∣
,

Advna-rand
A,PPRF(λ) :=

∣
∣
∣
∣
Pr

[

Gna-rand
A,PPRF(λ) = 1

]

− 1

2

∣
∣
∣
∣
.

We say a puncturable pseudorandom function PPRF is rand -secure (resp. na-rand
-secure), if the advantage AdvrandA,PPRF(λ) (resp. Advna-rand

A,PPRF(λ)) is a negligible function
in λ for all probabilistic polynomial-time adversaries A.

It is relatively easy to prove that na-rand-security and rand-security are equivalent,
up to a linear security loss in the size of the domain of the PPRF if the PPRF is invariant
to puncturing. In particular, if the PPRF has a polynomially-bounded domain size, then
both are polynomially equivalent.

Theorem 2. Let PPRF be a na-rand-secure PPRF with domain X . If PPRF is in-
variant to puncturing, then it is also rand-secure with advantage

AdvrandA,PPRF(λ) ≤ |X |·Advna-rand
A,PPRF(λ).

Proof. The proof is based on a straightforward reduction. We give a sketch. Let A
be an adversary against the rand security of PPRF. We guess A’s challenge value in
advance by sampling ν $←− X uniformly at random. We initialize the na-rand challenger
by sending it ν. In return we receive a challenge y (either computed via Eval or random)
and a punctured key k that cannot be evaluated on input ν.

The punctured key k allows us to correctly answer all of A’s OEval queries, except
for ν. When the adversary outputs its challenge x∗ we will abort if x∗ �= ν. Otherwise,
we forward y and a punctured key k′ that has been punctured on all values of the OEval

20 Page 16 of 57 N. Aviram et al.

queries. Note that the key has a correct distribution, as we require that the PPRF is
invariant to puncturing.

Eventually, A outputs a bit b∗ which we forward to the na-rand challenger.
The simulation is perfect unless we abort it, which happens with polynomially-

bounded probability 1/|X |, due to the fact that |X | is polynomially bounded. �

Authenticated Encryption with Associated Data We will furthermore need authenticated
encryption with associated data (AEAD) [52], along with the standard notions of confi-
dentiality and integrity.

Definition 8. An authenticated encryption scheme with associated data is a tuple
AEAD = (KGen,Enc,Dec) of three probabilistic polynomial-time algorithms:

– KGen(1λ) takes as input a security parameter λ and outputs a secret key k.
– Enc(k, m, ad) takes as input a key k, a message m, associated data ad and outputs

a ciphertext c.
– Dec(k, c, ad) takes as input a key k, a ciphertext c, associated data ad and outputs

a message m or a failure symbol ⊥.

An AEAD scheme is called correct if for any key k $←− KGen(1λ), any message m ∈
{0, 1}∗, any associated data ad ∈ {0, 1}∗ it holds that Dec(k,Enc(k, m, ad), ad) = m.

Definition 9. We define the advantage of an adversary A in the IND-CPA experiment
GIND-CPA
A,AEAD(λ) defined in Fig. 3 as

AdvIND-CPA
A,AEAD(λ) :=

∣
∣
∣
∣
Pr

[

GIND-CPA
A,AEAD(λ) = 1

]

− 1

2

∣
∣
∣
∣
.

We say an AEAD scheme AEAD is indistinguishable under chosen-plaintext attacks
(IND-CPA -secure), if the advantage AdvIND-CPA

A,AEAD(λ) is a negligible function in λ for all
probabilistic polynomial-time adversaries A.

Definition 10. We define the advantage of an adversary A in the INT-CTXT experi-
ment GINT-CTXT

A,AEAD (λ) defined in Fig. 3 as

AdvINT-CTXT
A,AEAD (λ) :=

∣
∣
∣Pr

[

GINT-CTXT
A,AEAD (λ) = 1

]∣
∣
∣ .

We say an AEAD scheme AEAD provides integrity of ciphertexts (INT-CTXT -secure),
if the advantage AdvINT-CTXT

A,AEAD (λ) is a negligible function in λ for all probabilistic
polynomial-time adversaries A.

3.2. Generic Construction

Now we are ready to describe our generic construction of a 0-RTT session resumption
protocol, based on a PPRF and an AEAD scheme, and to prove its security.

Session Resumption Protocols Page 17 of 57 20

Fig. 3. The IND-CPA and INT-CTXT security experiment for AEAD [52].

Construction 1. Let AEAD = (KGen,Enc,Dec) be an authenticated encryption
scheme with associated data and let PPRF = (Setup,Eval,Punct) be a PPRF with
range Y . Then we can construct a 0-RTT session resumption protocol Resumption =
(Setup,TicketGen,ServerRes) in the following way.

– Setup(1λ) runs kPPRF = PPRF.Setup(1λ), and outputs k := (kPPRF, 0), where
“0” is a counter initialized to zero.

– TicketGen(k, s) takes a key k = (kPPRF, n). It computesκ = PPRF.Eval(kPPRF, n).
Then it encrypts the ticket as t ′ $←− AEAD.Enc(κ, s, n). Finally, it defines t = (t ′, n)

and k := (kPPRF, n + 1), and outputs (t, k).
– ServerRes(k, t) takes k = (kPPRF, n) and t = (t ′, n′). It computes a key κ :=
PPRF.Eval(kPPRF, n′). If κ = ⊥, then it returns (⊥, k). Otherwise it computes a
session key s := AEAD.Dec(κ, t ′, n′). If s = ⊥, it returns (⊥, k). Else it punctures
kPPRF := PPRF.Punct(kPPRF, n′), and returns (s, (kPPRF, n)).

Note that the associated data n is sent in plaintext when the client resumes the session,
posing a potential privacy leak: Assume an attacker that observes all communication to
and from the server. When the attacker observes a client resuming using a ticket with
associated data n, the attacker learns that it is the same client that first connected when
the server issued the n-th ticket. Newly-generated tickets are first sent encrypted from
the server to the client, but it is feasible for the attacker to identify sessions where the
server issued tickets by performing traffic analysis (and then identifying the n-th such
session). In essence, using the above construction as-is, sessions are linkable.

This can be circumvented by additionally encrypting n under a dedicated symmetric
key. Compromise of this key would only allow an attacker to link sessions by the same
returning client, not to decrypt past traffic, therefore this symmetric key needs not be
punctured to achieve forward security.

We remark that the natural solution would be to encrypt n using public-key punc-
turable encryption, but this would be costly, and obviate most of the efficiency benefits
described in this work. We are unfortunately unaware of a good solution that achieves
session unlinkability in the event of server compromise. We further note that TLS 1.3

20 Page 18 of 57 N. Aviram et al.

0-RTT includes a mechanism named “obfuscated ticket age” that solves a similar session
linkability concern; that mechanism as well is not applicable here.

Theorem 3. IfPPRF is invariant to puncturing, then from each probabilistic polynomial-
time adversary A against the security of Resumption in a single-server environment
with advantageAdv0-RTT-SR

A,Resumption(λ), we can construct five adversariesBPPRF1,BPPRF2,
BAEAD1, BAEAD2, and BAEAD3 such that

Adv0-RTT-SR
A,Resumption(λ)

≤ (qDec + 1)·
(

AdvrandBPPRF1,PPRF
(λ) + AdvINT-CTXT

BAEAD1,AEAD
(λ)

)

+ μ ·
(

Advna-rand
BPPRF2,PPRF

(λ) + AdvINT-CTXT
BAEAD2,AEAD

(λ)

+ AdvIND-CPA
BAEAD3,AEAD

(λ)
)

,

where qDec is the number of decryption queries and μ is the number of sessions.

Proof. We will conduct this proof in a sequence of games between a challenger C and
an adversary A. We start with an adversary playing the 0-RTT-SR security game. Over
a sequence of hybrid arguments, we will stepwise transform the security game to a game
where the OTest-query is independent of the challenge bit b. The claim then follows
from bounding the probability of distinguishing any two consecutive games. By Advi

we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original 0-RTT-SR security game. By definition
we have

Adv0 = Adv0-RTT-SR
A,Resumption(λ).

Game 1. In this game, we want to bound the probability that an adversary is able to
forge a new ticket with n > μ. Formally, this game is identical to Game 0, but we change
howODec andOTest queries are answered. That is, whenever the adversary queriesODec
or OTest for a ticket t = (t ′, n) with n > μ, we always reply with ⊥. This change is only
detectable by the adversary if it forges a ticket t such thatODec(t) �= ⊥ orOTest(t) �= ⊥.
Let X be the event that the adversary produces such a forgery t = (t ′, n) with n > μ.
Hence, we have

|Adv1 − Adv0| ≤ Pr[X].

We bound the probability of X occurring by using the following lemma:

Lemma 1. Let qDec be the number of decryption queries by the adversary. Then we
have

Pr[X] ≤ (qDec + 1) ·
(

AdvrandBPPRF1,PPRF
(λ) + AdvINT-CTXT

BAEAD1,AEAD
(λ)

)

.

Session Resumption Protocols Page 19 of 57 20

Proof. Intuitively, in order to make even X happen, the adversary would have to break
INT-CTXT security. But the reduction to show this is not completely straightforward,
since we have to use both the security of the PPRF and the INT-CTXT security to show
this. This is done by the short “branch sequence of games” considered in this lemma.

For the sake of clarity, we emphasize that the lemma only claims a bound on the
probability that the event X occurs. Therefore, we bound only the probability of this
event, and not the probability that an adversary wins. That is, as soon as the event X
has happened, the adversary does not require a consistent simulation anymore, as the
occurrence of X cannot be reverted.

We prove the lemma by following a sequence of games. By Pr[Xi] we denote prob-
ability of X occurring in the i-th game. We define Game 0.0 to be Game 0 of the main
proof. By definition we have

Pr[X0.0] = Pr[X].

Game 0.1 This game is identical to Game 0.0 but we guess which ODec or OTest query
the adversary uses for its first forgery t = (t ′, n) with n > μ such that ODec(t) �= ⊥
or OTest(t) �= ⊥. Formally, let j $←− [qDec + 1] where qDec is the number of ODec
queries made by the adversary. Since the choice of j is oblivious to the adversary, we
can bound the probability of guessing correctly by 1/(qDec + 1). Let X0.1 be the event
that X0 occurs and j was guessed correctly. We can then bound

Pr[X0.1] ≥ 1

qDec + 1
· Pr[X0.0]

and subsequently assume that j was guessed correctly.
Game 0.2 The difference between Games 0.1 and 0.2 is whether we use the “real” or
a “random” PPRF key in the j-th query. If this changes the probability of event X0.1
significantly, then we can construct a successful PPRF distinguisher BPPRF1.

Formally, this game is identical to Game 0.1 but we change how the j-th query in
the sequence of ODec and OTest queries is computed. Let ρ $←− Y be a value chosen
by the experiment. Normally, the j-th query would need to compute PPRF.Eval(k, n∗)
for some ticket t∗ = (t ′, n∗). However, we will now replace the result this computation
with the independent and precomputed value ρ.

Everything else works exactly as before. We will show that any adversary that is able
to distinguish Game 0.1 from Game 0.2, can be used to construct an adversary against
the security of the underlying PPRF. Concretely, we have

|Pr[X0.2] − Pr[X0.1]| ≤ AdvrandBPPRF1,PPRF
(λ).

Construction of BPPRF1 BPPRF1 simulates Game 0.1 for A by utilizing the PPRF chal-
lenger. That is, the initial sequence of tickets is computed via theEval query of the PPRF
challenger. Likewise, we can answer all ODec and OTest queries up until the j − 1-th
query with aid of the Eval oracle. However, for every query to ODec or OTest with
t = (t ′, n) with n > μ, we always return ⊥. Note that the change in Game 0.1 ensures

20 Page 20 of 57 N. Aviram et al.

that this is a valid behavior as the correct guess of j ensures that all previous calls to
ODec or OTest with t = (t ′, n) and n > μ are ⊥ by definition.

As soon as the adversary uses its j-th ODec or OTest query with t = (t ′, n∗) and
n∗ > μ, we relay n∗ as challenge to the PPRF challenger. Note that we have never used
n∗ > μ as input to the Eval oracle, making n∗ an admissible challenge. The challenger
responds with a punctured key k′ := PPRF.Punct(k, n∗) and a value γ , where either
γ := ρ $←− Y or γ := PPRF.Eval(k, n∗).

We use γ to check whether the ticket t ′ is a valid AEAD ciphertext. That is, if
AEAD.Dec(γ, t ′, n∗) �= ⊥, the adversary forges for a real key and invokes event X0.1. In
this case, we return 1 to the challenger. If, on the other hand,AEAD.Dec(γ, t ′, n∗) = ⊥,
the adversary forges for a random key and invokes event X0.2. In this case, we return 0
to the challenger. This implies that any adversary that can distinguish Game 0.1 from
Game 0.2, can be transformed into a successful adversary BPPRF1 breaking the security
of the PPRF.
Bounding Pr[X0.2] We conclude the proof of the lemma by showing that any adversary
invoking event X0.2 in Game 0.2 breaks the INT-CTXT security of AEAD. To this end,
consider the following adversary BAEAD1.
Construction of BAEAD1 BAEAD1 proceeds exactly like the challenger in Game 0.2 but
we use the AEAD challenger as the encryption/decryption procedure with respect to
the ticket associated to the j-th query. As soon as the adversary issues the j-th ODec
or OTest query for some ticket t , BAEAD1 outputs t to its AEAD challenger. Note that
t is the first valid forgery with n > μ by A due to our changes in Game 0.1 and note
that t is encrypted under a uniformly random key ρ (which is perfectly hidden from the
adversary) due to our changes in Game 0.2. Hence the AEAD challenger accepts t as a
valid forgery, and we have

Pr[X0.2] ≤ AdvINT-CTXT
BAEAD1,AEAD

(λ).

Summing up all probabilities proves the lemma. �

Continuing with our proof, we now have that

|Adv1 − Adv0| = Pr[X] ≤ (qDec + 1) ·
(

AdvrandBPPRF1,PPRF
(λ) + AdvINT-CTXT

BAEAD1,AEAD
(λ)

)

.

Now, after proving the above lemma, we return to our original sequence of games.
Using Lemma 1, we can now assume that the adversary never forges a ticket t = (t ′, n)

with n > μ such that ODec(t) �= ⊥ or OTest(t) �= ⊥.

Game 2. This game is identical to Game 1, except for the following changes. At the
beginning of the experiment the challenger picks an index ν $←− [μ]. It aborts the security
experiment and outputs a random bit b∗ $←− {0, 1}, if the adversary queries OTest(t) with
t = (t ′, i) such that i �= ν. Since the choice of ν $←− [μ] is oblivious to A until an abort
occurs, we have

Adv2 ≥ 1

μ
· Adv1.

Session Resumption Protocols Page 21 of 57 20

Game 3. This game is identical to Game 2, except that at the beginning of the game
we compute κν = PPRF.Eval(k, ν) and then k := PPRF.Punct(k, ν). Furthermore,
we replace algorithm PPRF.Eval with the following algorithm F3:

F3(k, i) :=
{

PPRF.Eval(k, i) if i �= ν

κν if i = ν

Everything else works exactly as before. Note that we have simply implemented algo-
rithm PPRF.Eval in a slightly different way. Since PPRF is invariant to puncturing, the
fact that κν was computed early, immediately followed by k := PPRF.Punct(k, ν), is
invisible to A. Hence, Game 3 is perfectly indistinguishable from Game 2, and we have

Adv3 = Adv2.

Game 4. This game is identical to Game 3, except that the challenger now additionally
picks a random key ρ $←− Y from the range of the PPRF. Furthermore, we replace
algorithm F4 with the following algorithm F4:

F4(k, i) :=
{

PPRF.Eval(k, i) if i �= ν

ρ if i = ν

Everything else works exactly as before. We will now show that any adversary that is
able to distinguish Game 3 from Game 4 can be used to construct an adversary BPPRF2
against the na-rand-security of the PPRF. Concretely, we have

|Adv4 − Adv3| ≤ Advna-rand
BPPRF2,PPRF

(λ).

Construction of BPPRF2 BPPRF2 initially picks ν $←− [μ] and outputs ν to its PPRF-
challenger, which will respond with a punctured key k := PPRF.Punct(k, ν) and
a value γ , where either γ = PPRF.Eval(k, ν) or γ $←− Y . Now BPPRF2 simulates
Game 4, except that it uses the following function F in place of F4.

F(k, i) :=
{

PPRF.Eval(k, i) if i �= ν

γ if i = ν

Eventually, A will output a guess b∗. BPPRF2 forwards this bit to the PPRF-challenger.
Note that if γ = Eval(k, ν), then function F is identical to F3, while if γ = ρ then it is
identical to F4. This proves the claim.

Game 5. This game is identical to Game 4, except that we raise an event abortAEAD2,
abort the game, and output a random bit b∗ $←− {0, 1}, if the adversary A ever queries
OTest(t) for a ticket t = (t ′, ν) �= tν (i.e., t differs from the ν-th ticket in the first
position), but AEAD.Dec(ρ, t ′, ν) �= ⊥, where ρ = F4(k, ν). We have

|Adv5 − Adv4| ≤ Pr[abortAEAD2]

20 Page 22 of 57 N. Aviram et al.

and we claim that we can construct an adversary BAEAD2 on the INT-CTXT-security of
the AEAD with advantage at least Pr[abortAEAD2].
Construction of BAEAD2 BAEAD2 proceeds exactly like the challenger in Game 5, except
that it uses its challenger from the AEAD security experiment to create ticket tν . To this
end, it outputs the tuple (sν, ν) for some sν

$←− S to the AEAD challenger. The AEAD
challenger responds with t ′ν := AEAD.Enc(ρ, sν, ν), computed with an independent
AEAD key ρ. Finally, BAEAD2 defines the ticket as tν = (t ′ν, ν). Apart from this, BAEAD2
proceeds exactly like the challenger in Game 5.

Whenever the adversary A makes a query OTest(t) with a ticket t = (t ′, i) with
i �= ν, then we abort, due to the changes introduced in Game 2. If it queries OTest(t)
with t = (t ′, ν) such that t �= tν , then BAEAD1 responds with ⊥ and outputs the tuple
(t ′, ν) to its AEAD challenger. With probability Pr[abortAEAD2] this ticket is valid,
which yields

AdvINT-CTXT
BAEAD2,AEAD

(λ) ≥ Pr[abortAEAD2].

Game 6. This game is identical to Game 5, except that when the adversary queries
OTest(tν), then we will always answer with a random value, independent of the bit b.
More precisely, recall that we abort if the adversary queries OTest(t), t = (t ′, ν) such
that t �= tν , due to the changes introduced in Game 5. If the adversary queries OTest(tν),
then the challenger in Game 5 uses the bit b $←− {0, 1} sampled at the beginning of the
experiment as follows. If b = 1, then it returns the session key sν . Otherwise, a random
rν

$←− S is returned.
In Game 6, the challenger samples another random value s′

ν
$←− S at the beginning

of the game. When the adversary queries OTest(tν), then if b = 1 the challenger returns
s′
ν . Otherwise, it returns a random rν

$←− S. Note that in either case the response of
the OTest(tν)-query is a random value, independent of b. Therefore, the view of A in
Game 6 is independent of b. Obviously, we have

Adv6 = 0.

We will now show that any adversary who is able to distinguish Game 5 from Game 6
can be used to construct an adversary BAEAD3 against the IND-CPA-security of AEAD.
Construction of BAEAD3 Recall that the key used to generate ticket tν is ρ = F4(k, ν).
By definition of F4, ρ is an independent random string chosen at the beginning of the
security experiment. This enables a straightforward reduction to the IND-CPA-security
of the AEAD.
BAEAD3 proceeds exactly like the challenger in Game 6, except for the way the ticket tν

is created. BAEAD3 computes ρν = F4(k, ν). Then it outputs (sν, s′
ν, ν) to its challenger,

which returns

tν :=
{

AEAD.Enc(ρ, sν, ν) if b′ = 0

AEAD.Enc(ρ, s′
ν, ν) if b′ = 1

Session Resumption Protocols Page 23 of 57 20

where ρ is distributed identically to ρν and b′ is the hidden bit used by the challenger
of the AEAD. Apart from this, BAEAD3 proceeds exactly like the challenger in Game 6.
Eventually, A will output a guess b∗. BAEAD3 forwards this bit to its challenger.

Note that if b′ = 0, then the view of A is perfectly indistinguishable from Game 5,
while if b′ = 1 then it is identical to Game 6. Thus, we have

|Adv6 − Adv5| ≤ AdvIND-CPA
BAEAD3,AEAD

(λ).

By summing up probabilities from Game 0 to Game 6, we obtain

Adv0-RTT-SR
A,Resumption(λ) ≤ (qDec + 1)·

(

AdvrandBPPRF1,PPRF
(λ) + AdvINT-CTXT

BAEAD1,AEAD
(λ)

)

+ μ ·
(

Advna-rand
BPPRF2,PPRF

(λ) + AdvINT-CTXT
BAEAD2,AEAD

(λ)

+ AdvIND-CPA
BAEAD3,AEAD

(λ)
)

,

�

4. Composition with the TLS 1.3 Resumption Handshake

In this section we show how to compose a 0-RTT session resumption protocol with
the TLS 1.3 resumption handshake, also called pre-shared key (PSK) mode. We start
with a brief section on building blocks used in TLS. Next we recap the multi-stage key
exchange model, and finally we describe our protocol composition and prove its security.

4.1. Building Blocks and Security Assumptions

Before we can describe our construction, we need to introduce a few more primitives
and their respective security notions. The first two notions cover collision resistant hash
functions and pseudorandom functions.

Unkeyed hash functions H : {0, 1}∗ → {0, 1}λ, as deployed in practice, always
imply the existence of collisions, as the range of H is smaller than the domain. Instead
of assuming that no efficient adversary is able to find collisions, we follow the approach
by Rogaway [53] and assume that it is hard to efficiently construct an adversary that can
efficiently find collisions.

Definition 11. A hash function H : {0, 1}∗ → {0, 1}λ that maps arbitrary finite-length
bit strings to strings of fixed length λ is called collision resistant if we cannot efficiently
construct an efficient adversary A whose advantage

AdvcollisionA,H (λ) := Pr[(m, m′) $←− A(1λ) : m �= m′ ∧ H(m) = H(m′)]

is non-negligible.

20 Page 24 of 57 N. Aviram et al.

Definition 12. Let PRF : {0, 1}∗ × {0, 1}i(λ) → {0, 1}o(λ) be an efficient keyed func-
tion with input length i(λ) and output length o(λ). We call f pseudorandom if for all
probabilistic polynomial-time adversaries A the advantage

AdvrandA,PRF(λ) :=
∣
∣
∣Pr

[

APRF(k,·)(1λ) = 1
]

− Pr
[

A f (·)(1λ) = 1
]∣
∣
∣

is negligible in λ, where k $←− {0, 1}∗ and f is randomly chosen from the set of all
functions mapping {0, 1}i(λ) → {0, 1}o(λ).

TLS 1.3 additionally relies on the hash-based key derivation function (HKDF) [40,41]
which utilizes the HMAC construction [6,39] as a core building block. The HKDF
follows the extract-then-expand paradigm, that is, it employs special functions to extract
and expand keys. The extract function Ext(salt, src) takes a (potentially fixed) salt salt
and a source key material src as input and computes a pseudorandom key as output.
The expand function Exp(key, ctxt) takes a pseudorandom key key and a context ctxt as
input and computes a new pseudorandom key. Formally, the expand function also takes
an additional length parameter, determining the length of the computed key, as input.
We omit this parameter for simplicity and assume that the length is equal to the security
parameter λ unless stated otherwise.

For our security proof in Sect. 4.3, we rely on the assumption that both functions Ext
and Exp are pseudorandom functions [41]. Additionally, we rely on the HMAC(0, $)-$
assumption introduced in [28]. This assumption states that HMAC(0, x) is computa-
tionally indistinguishable from y $←− {0, 1}λ if x $←− {0, 1}λ and was used to prove the
security of draft-14 of TLS 1.3 in [28].

Definition 13. Let HMAC be the function defined in [6]. We say the HMAC(0, $)-$
assumption holds for HMAC if for all probabilistic polynomial-time adversaries A the
advantage

AdvHMAC(0,$)-$
A,HMAC (λ)

:=
∣
∣
∣
∣
∣

Pr
x $←−{0,1}λ

[A(1λ,HMAC(0, x)) = 1
] − Pr

y $←−{0,1}λ
[A(1λ, y) = 1

]

∣
∣
∣
∣
∣

is negligible in λ.

4.2. Multi-stage Key Exchange

The TLS 1.3 protocol establishes multiple keys during execution. Some of these keys are
used to encrypt parts of the communication during protocol execution, while others are
used for external (application layer) purposes only. To formally analyze such a multi-key
protocol, we use an extension [28] of the multi-stage key exchange model introduced
by Fischlin and Günther [27], which has been used to prove security of various drafts
of the TLS 1.3 protocol. Their model allows dividing the key exchange protocols into
so-called stages, where each stage yields a key that supports a certain level of security.

Session Resumption Protocols Page 25 of 57 20

Since we only consider session resumption protocols in this work, we will only briefly
describe the relevant parts of the model. See [28] for a more comprehensive description
of the model.
Changes to the Model The model is taken verbatim from [28], except for the following
minor changes.

– We removed all model features that are unnecessary for proving TLS 1.3 in its pre-
shared key mode, composed with our generic 0-RTT session resumption protocol.
Namely, we removed key dependent aspects (TLS 1.3 supports key independence),
authentication levels other than mutual authentication (our protocol provides mutual
authentication), and replayable stages (our protocol is non-replayable across all
stages).

– We modified the corruption query. Instead of revealing the pre-shared keys of a
server, we equip each server with a long-term key k which is used to issue and open
tickets. Corruption of a server will leak the current state of the server’s secret key
k. Due to the nature of our 0-RTT session resumption protocol introduced earlier,
the server’s secret key will change with each protocol execution.

Protocol-Specific and Session-Specific Properties The multi-stage key exchange model
separates protocol-specific and session-specific properties. Protocol-specific properties
capture, for example, the number of stages and whether established keys are used exter-
nally only, while session-specific properties capture, for example, the state of a running
session. We begin by listing the protocol-specific properties which are represented by a
vector (M,USE) holding the following information:

– M ∈ N: The number of stages, that is, the number of keys derived.
– USE = {internal,external}M: The set of key usage indicators for each stage,

indicating how a stage-i key is used. We call a key internal if it used within (and
possibly outside of) the key exchange protocol, and external if it is only used outside
of the key exchange protocol.

We denote the set of users by U , where each user is associated with a unique identity
U ∈ U . Sessions are identified by a unique label label ∈ U × U × N, where label =
(U, V, d) denotes the d-th local session of user (and owner of the session) U with the
intended communication partner V .

Each session is associated with a key index d for the pre-shared secret pss and its
unique identifier psid. The challenger maintains vectors pssU,V and psidU,V of created
pre-shared secrets, where the d-th entry is the d-th pre-shared secret (resp. d-th identifier)
shared between users U and V . We write pssU,V,d (resp. psidU,V,d) as shorthand for
the d-th entry of pssU,V (resp. psidU,V).

A session is represented by a tuple σ and comprises of the following information:

– label ∈ U × U × N: The unique session label.
– id ∈ U : The identity of the session owner.
– pid ∈ U : The identity of the intended communication partner.
– role ∈ {initiator, responder}: The role of the session owner.

20 Page 26 of 57 N. Aviram et al.

– execstate ∈ {RUNNING∪ACCEPTED∪REJECTED}: The state of execution
where

RUNNING = {runningi | i ∈ N ∪ {0}},
ACCEPTED = {acceptedi | i ∈ N}, and

REJECTED = {rejectedi | i ∈ N}.

The state is set to acceptedi if the session accepts the i-th key. It is set to runningi
if the session proceeds with the protocol after accepting the i-th key. It is set to
rejectedi if the session rejects the i-th key (we assume that a session does not
continue in this case). The default value is running0.

– stage ∈ [M]: The session’s current stage, where the value stage is incremented
to i after the state execstate accepts or rejects the i-th key. The default value is
stage = 0.

– sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi is the session identifier in stage i . It is set once after
the i-th key has been accepted. The default value is sid = (⊥, . . . ,⊥).

– cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi is the contributive identifier in stage i . It may be set
multiple times until the i-th key has been accepted. The default value is cid =
(⊥, . . . ,⊥).

– key ∈ ({0, 1}∗ ∪ {⊥})M: keyi is the established session key in stage i . It set once
after the i-th key has been accepted. The default value is key = (⊥, . . . ,⊥).

– keystate ∈ {fresh, revealed}M: keystatei is the state of the key in stage i .
The state fresh indicates that the key is fresh and the state revealed indicates
that the key has been revealed to the adversary. The default value is keystate =
(fresh, . . . , fresh).

– tested ∈ {true, false}M: testedi is a boolean value indicating whether the session
key of stage i has been tested. The default value is tested = (false, . . . , false).

– d ∈ N: The index of the pre-shared secret used in a protocol execution.
– pss ∈ {0, 1}∗ ∪ {⊥}: The pre-shared secret to be used in the session.
– psid ∈ {0, 1}∗∪{⊥}: The identifier of the pre-shared secret to be used in the session.

Each session is stored and maintained in a session list SList. If an incomplete session
tuple σ is added to the session list SList, we set all empty values to their defined default
values. For a more convenient notation, we write label.sid to denote the entry sid in the
tuple σ with the unique label label in SList.

Following Günther et al. [28], we define two distinct sessions label, label′ to be
partnered if the session’s session identifiers are equal (i.e., label.sid = label′.sid′ �= ⊥).
Additionally, we require for correctness that two sessions are partnered if the sessions
have a non-tampered joint execution and both parties have reached an acceptance state.
This means that a protocol is correct if, in the absence of an adversary, any two sessions
executing the protocol are partnered upon acceptance.

Adversary Model We consider a probabilistic polynomial-time adversaryA that controls
the communication between all parties, and is capable of intercepting, injecting, and
dropping messages. We capture adversarial behavior where the adversary trivially loses

Session Resumption Protocols Page 27 of 57 20

via a flag lost initialized to lost := false. The adversary has access to the following
queries:

– NewSecret(U, V, d,psid): This query generates a new pre-shared secret psswith
identifier psid. The secret pss is the d-th secret shared between users U and V . If
psid is a used identifier for an already registered secret or if the d-th secret between
U and V has already been set, return ⊥. Otherwise, sample the secret pss uniformly
at random from the pre-shared secret space and store pss in pssU,V and pssV,U
(as well as psid in psidU,V and psidV,U) as the d-th entry.

– NewSession(U, V, role, d): Creates a new session with a unique new label label
for session owner identity id = U with role role, having pid = V as intended
partner. The value d indicates the key index of the pre-shared secret pss between
U and V .
If the d-th pre-shared secretpss = pssU,V,d does not exist, return ⊥. Otherwise, set
label.pss := pss and label.psid := psidU,V,d . Add σ = (label, U, V, role, d,

pss,psid) to SList and return label.
– Send(label, m): Sends a message m to the session with label label. If there is

no tuple σ with label label in SList, return ⊥. Otherwise run the protocol as the
session owner of label when receiving message m and return the output and the
updated state of execution label.execstate. If label.role = initiator and m = init,
the protocol is initiated without any input message.
If the state of execution changes to an accepted state for stage i , the protocol
execution is suspended and acceptedi is send to the adversary. The adversary can
later resume execution by issuing a Send(label, continue) query, receiving the
next protocol message and the next state of execution.
If the state of execution changes to acceptedi for some i ∈ [M] and there is a
partnered session label′ �= label in SList with label′.keystatei = revealed, then
label.keystatei is set to revealed as well.
If the state of execution changes to acceptedi for some i ∈ [M] and there is
a partnered session label′ �= label in SList with label′.testedi = true, then
set label.testedi := true and also set set label.keyi := label.keyi if USEi =
internal. If the state of execution changes to acceptedi for some i ∈ [M] and the
intended partner pid is corrupted, then set label.keystatei := revealed.

– Reveal(label, i): Reveals the i-th key of session label. If there is no session with
label label in SList or if label.stage < i (i.e., the session key has not yet been
established), then return⊥. Otherwise, set label.keystatei := revealed and if there
exists a partnered session label′ in SList with label.stage ≥ i , then additionally
set label.keystatei := revealed. Finally, send the session key label.keyi to the
adversary.

– Corrupt(U): This query provides the adversary with the long-term secret k of
participant U ∈ U . For stage- j forward secrecy we additionally set keystatei to
revealed if i < j (i.e., revelation of non-forward-secret keys) or if i > stage (i.e.,
revelation of future keys).

– Test(label, i): Tests the i-th key in the session label. If there is no session with
the label label in SList or label.testedi = true, return ⊥. If label.execstate �=
acceptedi or if there is a partnered session label′ in SList with label.execstate �=

20 Page 28 of 57 N. Aviram et al.

acceptedi , set lost := true (i.e., only allow testing if the key has not been used
yet). Otherwise, set label.testedi := true.
The Test oracle maintains a global bit btest

$←− {0, 1}. If btest = 0, sample a random
session key K $←− D. Else set K := label.keyi to the real session key.
If USEi = internal, set label.keyi := K (i.e., we replace the internally used ses-
sion key with the random and independent test key K). Additionally, if a partnered
session label′ exists, we set label′.tested := true if the i-th key was accepted.
Furthermore, we also set label′.keyi := label.keyi if USEi = internal.
Finally, return K .

Match Security The notion of Match security ensures that session identifiers properly
identify partnered sessions in the following sense:

1. Sessions with the same session identifier for some stage hold the same key at that
stage.

2. Sessions with the same session identifier for some stage share the same contributive
identifier at that stage.

3. Sessions are partnered with the intended participant, and share the same key index.
4. Session identifiers do not match across different stages.
5. At most two sessions have the same session identifier at any stage.

Formally, we define the Match security game GMatch
A,KE (λ) as follows:

Definition 14. Let KE be a multi-stage key exchange protocol with properties (M,

USE) and A a probabilistic polynomial-time adversary interacting with KE in the fol-
lowing game GMatch

A,KE (λ):

1. The challenger generates a long-term k key for each participant U ∈ U .
2. The adversary gets access to the queriesNewSecret,NewSession,Send,Reveal,

Corrupt,Test.
3. Eventually, A stops with no output.

We say that A wins the game, denoted by GMatch
A,KE (λ) = 1, if at least one of the following

events occurs:

1. Different session keys in some stage of partnered sessions. More formally, if there
exist two distinct labels label, label′ such that label = label′ �= ⊥ for some stage
i ∈ [M] and label.execstate �= rejectedi and label′.execstate �= rejectedi , but
label.keyi �= label′.keyi .

2. Different or unset contributive identifiers in some stage of partnered sessions.
More formally, if there exist two distinct labels label, label′ such that label =
label′ �= ⊥ for some stage i ∈ [M], but label.cidi �= label′.cidi or label.cidi =
label′.cidi = ⊥.

3. Different stages share the same session identifier. More formally, if there exist two
(not necessarily distinct) labels label, label′ such that label.sidi = label′.sid j �=
⊥ for some stages i, j ∈ [M] with i �= j .

4. More than two sessions share the same session identifier in any stage. More for-
mally, if there exist three distinct labels label, label′, label′′ such that label.sidi =
label′.sidi = label′′.sidi for some stage i ∈ [M].

Session Resumption Protocols Page 29 of 57 20

We say KE is Match-secure if for all probabilistic polynomial-time adversaries A the
advantage

AdvMatch
A,KE (λ) := Pr

[

GMatch
A,KE (λ) = 1

]

is negligible in λ.

Multi-stage Security The notion ofMultiStage security ensures that, for each stage, keys
are indistinguishable from randomly sampled keys in the multi-stage setting.

Definition 15. Let KE be a multi-stage key exchange protocol with key distribution D
and properties (M,USE) and A a probabilistic polynomial-time adversary interacting
with KE in the following game GMultiStage,D

A,KE (λ):

1. The challenger generates a long-term key k for each participant U ∈ U . Addition-
ally, the challenger samples a random test bit btest

$←− {0, 1} and sets lost := false.
2. The adversary gets access to the queriesNewSecret,NewSession,Send,Reveal,

Corrupt,Test. Note that such queries may set the flag lost to true.
3. Eventually, A stops and outputs a guess b.
4. The challenger C sets the flag lost := true if there exist two (not necessarily

distinct) session labels label, label′ and some stage i ∈ [M] such that label.sidi =
label′.sidi and label.keystatei = revealed and label′.testedi = true (i.e., if the
adversary has tested and revealed the key of some stage in a single session or in
two partnered sessions).

We say that A wins the game, denoted by GMultiStage,D
A,KE (λ) = 1, if b = btest and

lost = false. We say KE is MultiStage-secure, providing stage- j forward-secrecy,
with key usage USE if KE is Match-secure and for all probabilistic polynomial-time
adversaries A the advantage

AdvMultiStage,D
A,KE (λ) :=

∣
∣
∣
∣
Pr

[

GMultiStage,D
A,KE (λ) = 1

]

− 1

2

∣
∣
∣
∣

is negligible in λ.

4.3. Composition and Security

In this section we show how to generically compose a 0-RTT session resumption protocol
with the TLS 1.3 resumption handshake and prove the composition’s security in the multi-
stage key exchange model, achieving a stage-1-forward-secret resumption handshake.
In contrast, without such a session resumption protocol it is only possible to show that the
TLS 1.3 resumption handshake only achieves stage-3 forward-secrecy via an additional
execution of a Diffie–Hellman key exchange [28].

Integrating a 0-RTT Session Resumption Protocol into TLS 1.3 As explained in the Intro-
duction, the TLS 1.3 standard allows the server to unilaterally choose a mechanism for
issuing tickets and serving resumption handshakes. The only interoperability require-

20 Page 30 of 57 N. Aviram et al.

ment is correctness, i.e. when resuming a session, the server should correctly compute
the relevant resumption secret and use it as prescribed by the key schedule. The client is
generally not aware of the resumption mechanism in use by the server; the client merely
receives an opaque ticket, and sends it to the server when resuming.

In our construction, tickets are computed using a 0-RTT session resumption protocol.
Let Resumption = (Setup,TicketGen,ServerRes) be a 0-RTT session resumption
protocol. The server uses k $←− Setup(1λ) to compute its long-term key k for ticket
encryption. Tickets are computed as ticket = TicketGen(k,RMS||NT) and can be
opened using the ServerRes algorithm.

Note that by computing (RMS||NT , k′) := ServerRes(k, ticket) a modified se-
cret key of the server k′ is produced. Replacing k := k′ guarantees forward secrecy if
Resumption is a 0-RTT-SR-secure protocol. That is, forward secrecy is invoked im-
mediately after the ticket has been processed on the server side. Should k leak at a later
point in time, the resumption master secret RMS (and all keys derived from it) will not
be compromised.
On Sending Multiple PSKs TLS 1.3 allows the client to send multiple pre-shared key
identifiers in its first message if no 0-RTT data is sent. If, however, 0-RTT data is sent, the
standard explicitly states that the handshake will be aborted unless the server picks the
first pre-shared key identifier from the client’s list [51, §4.2.10, §4.2.11]. This restriction
exists to ensure that the early data only has to be encrypted under one pre-shared key
chosen by the client. In this work we only allow the client to send one pre-shared key
identifier, as we are specifically interested in the 0-RTT mode. Should a client choose
not to send 0-RTT data, then previous analyses of the TLS 1.3 handshake protocol apply
[28]. Hence, our change leads to a cleaner protocol and is purely cosmetic.
Protocol Description In the following, we describe our modified version of the TLS
1.3 resumption handshake. We assume that client and server have performed a prior
full handshake, allowing them to agree on a pre-shared secret. The pre-shared secret is
denoted as resumption master secret RMS. The client stores RMS (and an associated
nonce NT) alongside a server-issued ticket ticket. The ticket ticket was computed by
the server using its secret key k and holds RMS and NT as contents.

We provide an illustration of the protocol in Fig. 4. For readability, the figure slightly
deviates from the message format in the TLS 1.3 specification. In the figure we separated
the binder value Fin0 and the ticket message from the ClientHello message, while in
the standard both are included in the ClientHello message. Outside of the figure, we
consider Fin0 and ticket as a part of the ClientHello.

The following messages are exchanged during protocol execution:

ClientHello: TheClientHellomessage is the first message sent by the client. It contains
the protocol version, a random nonce NC chosen by the client, a list of
supported cryptographic primitives and extensions, and a pre-shared key
identifier. Additionally, it contains ticket which is an encryption of the
resumption master secret RMS and the ticket nonce NT .

Fin0: The binder valueFin0 comprises of an HMAC over a (partial)ClientHello
message to ensure integrity.

ServerHello: TheServerHellomessage contains a server nonceNS , a selected protocol
version, extensions, and supported cryptographic primitives.

Session Resumption Protocols Page 31 of 57 20

FinS : The FinS message comprises of an HMAC over the protocol transcript
up to this point and is encrypted under the server handshake traffic key.

FinC : The FinC message comprises of an HMAC over the protocol transcript
up to theFinS message and is encrypted under the client handshake traffic
key.

More information on the computation of the hashed finished messages is given in Ap-
pendix B.
Security Analysis Preliminaries In the following, we will analyze the security of our mod-
ified TLS 1.3 protocol in the multi-stage key exchange model in its pre-shared secret
mode. That is, we will show that our protocol satisfies bothMatch andMultiStage secu-
rity. We start by discussing some preliminaries for both proofs. The vector of protocol-
specific properties (M,USE) looks as follows:

– M = 5: The number of stages is equal to five (cf. Fig. 4), deriving traffic keys tkets,
(tkchts, tkshts), (tkcats, tksats), the exporter master secretEMS, and the resumption
master secret RMS.

– USE = (external, internal, internal,external,external): The handshake traffic
keys (tkchts, tkshts) are used to protect internal protocol messages, while all other
keys are only used outside of the protocol.

We define session matching with the following session identifiers (implicitly) consisting
of all messages sent in each stage:

sid1 = (ClientHello)

sid2 = (sid1,ServerHello)

sid3 = (sid2,FinS)

sid4 = (sid3, “ems”)

sid5 = (sid4, “rms”)

Note that neither “ems,” nor “rms” contributes to the established key and they are instead
included to ensure distinct session identifiers across stages. We set the contributive
identifier of Stage 2 to cid2 = (ClientHello) after the client has sent (resp. after the
server has received) the ClientHello message and set, on sending (resp. receiving) the
ServerHello message the contributive identifier to cid2 = sid2. The other contributive
identifiers are set to cidi = sidi (for stages i ∈ {1, 3, 4, 5}) after the respective stage’s
session identifier was set.

MatchSecurity We start by proving Match security of our construction. Our proof fol-
lows the proof by Fischlin and Günther [28, Theorem 5.1] as the constructions are very
similar.

Theorem 4. The protocol TLS13wRES is Match-secure with the above properties
(M,USE). For any probabilistic polynomial-time adversary we have

AdvMatch
A,TLS13wRES(λ) ≤ ns · 2−λ,

20 Page 32 of 57 N. Aviram et al.

Fig. 4. The TLS13wRES protocol executed between a client and a server. The client possesses a pre-shared
secret RMS and a ticket ticket (encrypted under the server’s secret key k) issued by the server. All values 	i
are publicly known labels and all hash values Hi are computable from the communication’s transcript. We
provide a technical overview of label values and hash values in Appendix B.

Session Resumption Protocols Page 33 of 57 20

where ns is the maximum number of sessions.

Proof. In order to prove the Match security of TLS13wRES we need to show that the
five properties of Match security hold for TLS13wRES.

1. Sessions with the same session identifier for some stage hold the same key at
that stage. This property holds, as all session identifiers contain the ClientHello
message which fixes the ticket and thus the resumption master secret RMS. The
RMS in turn determines all following keys, guaranteeing that sessions with the
same identifier hold the same key at each stage.

2. Sessions with the same session identifier for some stage share the same contributive
identifier at that stage. This property holds trivially for Stage 1 as sid1 = cid1. For
all other stages i ∈ {2, 3, 4, 5}, the contributive identifier is set to its final value
cidi := sid2 as soon as the sender and receiver set the session identifier.

3. Sessions are partnered with the intended participant, and share the same key index.
This property holds as honest senders only use a legitimate ticket ticket (included
in the ClientHello message), which ensures that both parties agree on the same
partner and key index.

4. Session identifiers do not match across different stages. This property holds triv-
ially, as sid1, sid2, sid3 include distinct non-optional messages and sid4, sid5 in-
clude separating identifier strings.

5. At most two sessions have the same session identifier at any stage. Note that each
session identifier includes the ClientHello message and hence the client nonce NC

of bit length λ. The first session identifier is only set after the sever has processed
the ClientHello (and thus the ticket ticket), implying that the server’s secret key
has been replaced before accepting the Stage 1 session key. Hence, replaying the
ClientHello message to the server cannot lead to an accepting stage in a different
session, but will incur protocol abortion. A collision can hence only occur if a
third party picks the same random nonce NC . We can upper-bound the collision
probability by ns · 2−λ, where ns is the maximum number of sessions.

�

MultiStageSecurity We proceed with proving MultiStage security of our construction.
Our proof follows the proof of TLS 1.3 draft-14 by Fischlin and Günther [28, Theo-
rem 5.2] as the constructions are very similar, but is different in two main aspects.

1. The proof by Fischlin and Günther only considers TLS 1.3 resumption handshake
in draft-14. We adopted and extended their proof to the finalized TLS 1.3 key
schedule.

2. The resumption master secret is derived from a 0-RTT session resumption protocol
Resumption, requiring an additional reduction to the security of Resumption.
This way we can achieve forward secrecy for all messages in the very first stage of
the resumption handshake, by only modifying the key management on the server
side and without any changes to clients or the standardized TLS 1.3 protocol flow.

20 Page 34 of 57 N. Aviram et al.

Theorem 5. The protocol TLS13wRES is MultiStage-secure in a key-independent
and stage-1-forward-secret manner with the above properties (M,USE) and key dis-
tribution D if Resumption is invariant to puncturing. That is, for any probabilistic
polynomial-time adversary A against the MultiStage security, we can construct adver-
saries B1, . . . ,B15 such that

AdvMultiStage,D
A,TLS13wRES(λ) ≤ 5ns ·

(

AdvcollisionB1,H (λ) + n p ·
(

Adv0-RTT-SR
B2,Resumption(λ)

+ AdvrandB3,Exp(λ) + AdvHMAC(0,$)-$
B4,Ext (λ) + AdvrandB5,Exp(λ)

+ AdvrandB6,Exp(λ) + AdvrandB7,Exp(λ) + AdvrandB8,Ext(λ) + AdvrandB9,Exp(λ)

+ AdvrandB10,Exp(λ) + AdvrandB11,Exp(λ) + AdvrandB12,Ext(λ) + AdvrandB13,Exp(λ)

+ AdvrandB14,Exp(λ) + AdvrandB15,Exp(λ)
))

,

where ns is the maximum number of sessions.

Proof. We will conduct this proof in a sequence of games between a challenger C and
an adversary A. We start with an adversary playing the MultiStage security game. Over
a sequence of hybrid arguments, we will stepwise transform the security game to a game
where the Test-query is independent of the challenge bit btest. The claim then follows
from bounding the probability of distinguishing any two consecutive games. By Advi

we denote A’s advantage in the i-th game.

Game 0. We define Game 0 to be the original MultiStage security game. By definition
we have

Adv0 = AdvMultiStage,D
A,TLS13wRES(λ).

Game 1. This game is identical to Game 0, except that we restrict the adversary to a
single Test query. We can apply the hybrid argument by Dowling et al. [23, Appendix A]
which reduces the adversary’s advantage in a five stage protocol by a factor of at most
5ns , where ns is the number of sessions. The hybrid argument essentially consists of 5ns

hybrids (ns possible Test queries in each of the five stages) where the first j ∈ [5ns]
tested keys are replaced with random keys. This allows implicitly guessing the session
to be tested by the adversary. This argument also implicitly guesses which session label
(which can be either a client or a server session) will be tested by the adversary, allowing
us to identify it in advance. In conclusion, we now have

Adv1 ≥ 1

5ns
· Adv0.

Game 2. This game is identical to Game 1, except that we abort if during protocol
execution the same hash value is computed for two distinct inputs. Should this happen,
we can construct an adversary B1 that breaks the collision resistance of the hash function
H by outputting the two distinct input values to the challenger of the collision resistance

Session Resumption Protocols Page 35 of 57 20

game. We can thus bound the probability of aborting as

|Adv2 − Adv1| ≤ AdvcollisionB1,H (λ).

Game 3. This game is identical to Game 2, except that we now guess the index of
the pre-shared secret used within the tested session amongst the maximum number of
pre-shared secrets. If the tested session uses a different pre-shared secret, we abort the
game. As the guess is oblivious to the adversary until an abort occurs, we have

Adv3 ≥ 1

n p
· Adv2,

where n p is the maximum number of pre-shared secrets. Note that a correct guess allows
us to identify the pre-shared secret pssU,V,d in the tested session and hence the intended
partner of the tested session. Without loss of generality let us assume that U is the client
session and V is the server session.

Game 4. In this game, we modify the output of theServerRes function. To be precise,
we proceed as in Game 3, but replace the output of ServerRes for both the owner of
the tested session and its intended partner with a random value RMS||NT . We will now
show that any adversary that is able to distinguish Game 3 from Game 4 can be used to
construct an adversary against the 0-RTT-SR security of Resumption. Concretely, we
have

|Adv4 − Adv3| ≤ Adv0-RTT-SR
B2,Resumption(λ).

Construction of B2 against Resumption The adversary behaves like the challenger in
Game 3, except for all interactions involving the server V associated to the tested ses-
sion, which we simulate as follows. At first, the adversary initializes the 0-RTT-SR
challenger and receives a sequence of tickets t1, . . . , tμ. It tests the first ticket by invok-
ing OTest(t1) → γ ∈ {s1, r1} and immediately corrupts the challenger to receive the
challenger’s secret key k. Note that this secret key k has been modified by the challenger
and thus cannot be used to open ticket t1.

As we are now in possession of the secret key k, we are able to simulate all sessions
but the one using ticket t1. We utilize ticket t1 as the ticket sent within the ClientHello
message of the tested session between client U to server V . Note that we can perfectly
simulate all queries of A, since it is not allowed to query Reveal for the tested session or
its partner. Likewise, it can query Corrupt only after the keys have been accepted by U
and V , implying replacement of the server’s secret key k. If the adversary issues a corrupt
query on the tested server, we are able to puncture the server’s secret key in accordance
with all queries issued in other sessions of the server. The invariance to puncturing of
Resumption guarantees us, that this (possibly wrong order of) key replacements cannot
be efficiently detected by the adversary.

Eventually, the adversary will output a guess b′ which we forward to the challenger.
If the challenger bit b = 0, we perfectly simulate Game 3 (i.e., s1 is the actual expected

20 Page 36 of 57 N. Aviram et al.

output) and if b = 1, we perfectly simulate Game 4 (i.e., r1 is a uniformly random
output). This proves the claim.

Note that the security ofResumption ensures that the adversary cannot learn the value
RMS for the tested session or its partner, even when corrupting immediately after the
ClientHello message and the ticket have been processed. This ensures the achievement
of forward secrecy in Stage 1.

The next sequence of games aims to replace all traffic keys with random values. That
is, we will step by step replace the outputs of the functions Ext and Exp with random
values.

Game 5. This game is identical to Game 4, other than replacing Exp(RMS, ·) with
a lazily-sampled random function, such that the pre-shared key PSK is replaced by a
random value PSK in the tested session. Any adversary that is able to distinguish this
replacement can be used to construct an adversary that breaks the pseudorandomness of
the HKDF. We have

|Adv5 − Adv4| ≤ AdvrandB3,Exp(λ).

Construction of B3 against Exp The adversary B3 behaves exactly like in Game 4, but
evaluates Exp(RMS, ·) via the PRF evaluation oracle provided by the PRF challenger.
Since the adversary A is not able to learn the real resumption master secret RMS by
corrupting the tested session (cf. Game 4), it is only known to be a uniformly random
value. Hence, B3 perfectly simulates Game 4 if the PRF oracle computes Exp and
perfectly simulates Game 5 if the PRF oracle is a random function, which proves the
claim.

Game 6. This game is identical to Game 5, other than replacingExt(0,PSK)with a ran-
dom valueES in the tested and partnered session. Recall thatExt(x, y) = HMAC(x, y).
Any adversary that is able to distinguish this replacement can be used to break the
HMAC(0, $)-$ assumption of Ext.
Construction of B4 against Ext The HMAC assumption states that no probabilistic
polynomial-time adversary is able to distinguish HMAC(0, x) from y $←− {0, 1}λ, for
uniformly chosen inputs x $←− {0, 1}λ. B4 behaves exactly like the challenger in Game 5,
but uses the value Ext(0,PSK) as challenge. If Ext(0,PSK) = HMAC(0, x) for x ∈
{0, 1}λ it perfectly simulates Game 5 and ifExt(0,PSK) = y for y ∈ {0, 1}λ, it perfectly
simulates Game 6. In conclusion, we have

|Adv6 − Adv5| ≤ AdvHMAC(0,$)-$
B4,Ext

(λ).

Game 7. This game is identical to Game 6, except that we replace all evaluations
Exp(ES, ·) by a lazily-sampled random function. In particular, this yields a random
early traffic secret ets, a random binder key bk, and a random expanded early secret
dES.

Note that the hash value for deriving the early traffic secret is dependent on the
session identifier. The changes introduced in Game 2 guarantee that the hash value does

Session Resumption Protocols Page 37 of 57 20

not collide across non-partnered users. Furthermore, all three values for the second input
of the Exp function are distinct labels, ensuring distinct outputs.

Any adversary that is able to recognize this change can be used to construct an adver-
sary against the pseudorandomness of the HKDF in the same fashion as done in Game 5,
leading to a bound

|Adv7 − Adv6| ≤ AdvrandB5,Exp(λ).

Game 8. This game is identical to Game 7, other than replacing Exp(ets, ·) with a
lazily-sampled random function, yielding a random value tkets for the early traffic key
in the tested and partnered session. Following the same arguments as in Game 5, we can
bound

|Adv8 − Adv7| ≤ AdvrandB6,Exp(λ).

Game 9. This game is identical to Game 8, other than replacing Exp(bk, ·) with a
lazily-sampled random function, yielding a random value fk0 for the early finished key
in the tested and partnered session. Following the same arguments as in Game 5, we can
bound

|Adv9 − Adv8| ≤ AdvrandB7,Exp(λ).

Game 10. This game is identical to Game 9, other than replacing Ext(ES, 0) with
a lazily-sampled random function, yielding a random HS in the tested and partnered
session. Following the same arguments as in Game 5, we can bound

|Adv10 − Adv9| ≤ AdvrandB8,Ext(λ).

Game 11. This game is identical to Game 10, except that we replace all evaluations
Exp(HS, ·) by a lazily-sampled random function. In particular, this yields a random
client handshake traffic secret chts (resp. server handshake traffic secret shts), and a
random expanded handshake secret dHS.

Note that the hash value for deriving the handshake traffic secrets is dependent on
the session identifier. The changes introduced in Game 2 guarantee that the hash value
does not collide across non-partnered users. Furthermore, all three values for the second
input of the Exp function are distinct labels, ensuring distinct outputs.

Following the same arguments as in Game 5, we can bound

|Adv11 − Adv10| ≤ AdvrandB9,Exp(λ).

Game 12. This game is identical to Game 11, other than replacing Exp(chts, ·) with
a lazily-sampled random function, yielding a random client handshake traffic key tkchts
and a random client finished key fkC in the tested and partnered session. Following the

20 Page 38 of 57 N. Aviram et al.

same arguments as in Game 5, we can bound

|Adv12 − Adv11| ≤ AdvrandB10,Exp(λ).

Game 13. This game is identical to Game 12, other than replacing Exp(shts, ·) with a
lazily-sampled random function, yielding a random server handshake traffic key tkshts
and a random server finished key fkS in the tested and partnered session. Following the
same arguments as in Game 5, we can bound

|Adv13 − Adv12| ≤ AdvrandB11,Exp(λ).

Game 14. This game is identical to Game 13, other than replacing Ext(MS, 0) with
a lazily-sampled random function, yielding a random MS in the tested and partnered
session. Following the same arguments as in Game 5, we can bound

|Adv14 − Adv13| ≤ AdvrandB12,Ext(λ).

Game 15. This game is identical to Game 14, except that we replace all evaluations
Exp(MS, ·) by a lazily-sampled random function. In particular, this yields a random
client application traffic secretcats (resp. server application traffic secretsats), a random
exporter master secret EMS, and a random new resumption master secret RMS′.

Note that the hash value for deriving the application traffic secrets is dependent on
the session identifier. The changes introduced in Game 2 guarantee that the hash value
does not collide across non-partnered users. Furthermore, all four values for the second
input of the Exp function are distinct labels, ensuring distinct outputs.

Following the same arguments as in Game 5, we can bound

|Adv15 − Adv14| ≤ AdvrandB13,Exp(λ).

Game 16. This game is identical to Game 15, other than replacing Exp(cats, ·) with a
lazily-sampled random function, yielding a random client application traffic key tkcats
in the tested and partnered session. Following the same arguments as in Game 5, we can
bound

|Adv16 − Adv15| ≤ AdvrandB14,Exp(λ).

Game 17. This game is identical to Game 16, other than replacing Exp(sats, ·) with a
lazily-sampled random function, yielding a random server application traffic key tksats
in the tested and partnered session. Following the same arguments as in Game 5, we can
bound

|Adv17 − Adv16| ≤ AdvrandB15,Exp(λ).

In Game 17, all keys tkets, tkchts, tkshts, tkcats, tksats, EMS, and RMS′ derived in the
tested session are chosen uniformly at random. Observe that (contrary to standard TLS

Session Resumption Protocols Page 39 of 57 20

session resumption) the security of the Resumption protocol ensures that replaying the
ClientHello message to multiple server sessions does not cause multiple sessions to be
partnered to the original client session. We hence achieve replay protection across all
stages of the protocol. All sessions that are not partnered with the tested session derive
different traffic keys as explained in Games 7, 11, and 15. Therefore, the view of A in
Game 17 is independent of btest. Obviously, we have

Adv17 = 0.

By summing up probabilities from Game 0 to Game 17, we conclude the proof. �

Remark on the Optional Diffie–Hellman Key Exchange TLS 1.3 allows including an
optional Diffie–Hellman Key Exchange (DHKE) in its resumption handshake. This ad-
ditional key exchange has an important function in the TLS 1.3 Resumption Handshake.
Namely, including the Diffie–Hellman key into the derivation of the handshake key,
will achieve stage-3-forward-secrecy as shown by [28, Theorem 5.4]. We deliberately
excluded this optional key exchange from our analysis, as the multi-stage key exchange
model does not capture any property of the DHKE beyond the forward secrecy aspect,
which we already obtain through other means. Hence, including the DHKE as com-
putational step does not offer any security benefits (within this model). We stress that
the optional DHKE can be added to the resumption handshake (as done in TLS 1.3) if
wanted, without any loss of security.

5. A PPRF with Short Secret Keys from Strong RSA

In order to instantiate our generic construction of forward-secure and replay-resilient ses-
sion resumption protocol with minimal storage requirements, which is the main objective
of this paper, it remains to construct suitable PPRFs with minimal storage requirements
and good computational efficiency. Note that a computationally expensive PPRF may
void all efficiency gains obtained from the 0-RTT protocol.

In this section we describe a PPRF based on the Strong RSA (sRSA) assumption
with secret keys that only consist of three elements, even after an arbitrary number of
puncturings. More precisely, a secret key consists of an RSA modulus N , an element
g ∈ ZN and a bitfield r , indicating positions where the PPRF was punctured. The secret
key size is linear in the size of the PPRF’s domain, since the bitfield needs to be of the
same size as the domain (which is determined at initialization, and does not change over
time). Hence, the PPRF’s secret key size is independent of the number of puncturings.
Moreover, for any reasonable choice of parameters, the bitfield is only several hundred
bits long, yielding a short key in practice. Servers can use many instances in parallel with
the instances sharing a single modulus, so it is only necessary to generate (and store)
the modulus once, at initialization.

Since our primary objective is to provide an efficient practical solution for protocols
such as TLS 1.3 0-RTT, the PPRF construction described below is analyzed in the ran-
dom oracle model [7]. However, we note that we use the random oracle only to turn a
“search problem” (sRSA) into a “decisional problem” (as required for a pseudorandom

20 Page 40 of 57 N. Aviram et al.

function). Therefore, we believe that our construction can be lifted to the standard-model
via standard techniques, such as hardcore predicates [8,10,31]. All of these approaches
would yield less efficient constructions, and therefore are outside the scope of our work.
Alternatively, one could formulate an appropriate “hashed sRSA” assumption, which
would essentially boil down to assuming that our scheme is secure. Therefore, we con-
sider a random oracle analysis based on the standard sRSA problem as the cleanest and
most insightful approach to describe our ideas.
Idea Behind the Construction The construction is inspired by the RSA accumulator of
Camenisch and Lysyanskaya [15]. The main idea is the following. Given a modulus
N = pq, a value g ∈ ZN , and a prime number P , it is easy to compute g �→ gP

mod N , but hard to compute gP �→ g mod N without knowing the factorization of N .
In the following let pi be the i-th odd prime. That is, we have (p1, p2, p3, p4, . . .) =

(3, 5, 7, 11, . . .). Let n be the size of the domain of the PPRF. Our PPRF on input 	

produces an output of the form H(g p1·...·pn/p), where H is a hash function that will be
modeled as a random oracle in the security proof. Note that g is raised to a sequence of
prime numbers except for the 	-th prime number. As long as we have access to g, this
is easy to compute. However, if we only have access to g p	 instead of g, we are unable
to compute the PPRF output without knowledge of the factorization of N . This implies
that by raising the generator to certain powers, we prevent the computation of specific
outputs. We will use this property to puncture values of the PPRF’s domain.

5.1. Formal Description of the Construction

Definition 16. Let p, q be two random safe primes of bitlength λ/2 and let N = pq.
Let y $←− ZN . We define the advantage of algorithmB against the Strong RSA Assumption
[3] as

AdvsRSAB (λ) := Pr
[

(x, e) ← A(N , y) : xe = y mod N
]

.

The following lemma, which is due to Shamir [55], is useful for the security proof of
our construction.

Lemma 2. There exists an efficient algorithm that, on input Y, Z ∈ ZN and integers
e, f ∈ Z such that gcd(e, f) = 1 and Ze ≡ Y f mod N, computes X ∈ ZN satisfying
Xe = Y mod N.

Construction 2. Let H : ZN → {0, 1}λ be a hash function and let pi be the i-th
odd prime number. Then we construct a PPRF PPRF = (Setup,Eval,Punct) with
polynomial-size X = [n] in the following way.

– Setup(1λ) computes an RSA modulus N = pq, where p, q are safe primes. Next,
it samples a value g $←− ZN \{0, 1} and defines r := 0n and k = (N , g, r). The
primes p, q are discarded. Output is k.

– Eval(k, x) parses k = (N , g, (r1, . . . , rn)). If rx = 1, then it outputs ⊥. Otherwise
it computes and returns

Session Resumption Protocols Page 41 of 57 20

y := H
(

gPx mod N
)

.

where pi is the i-th odd prime and

Px :=
∏

i∈[n],i �=x,ri �=1

pi

is the product of the first n odd primes, except for px and previously “punctured
primes” (indicated by ri �= 1).

– Punct(k, x) parses k = (N , g, (r1, . . . , rn)). If rx = 1, then it returns k. If rx = 0,
it computes g′ := g px and r ′ = (r1, . . . , rx−1, 1, rx+1, . . . , rn) and returns k′ =
(N , g′, r ′).

It is straightforward to verify the correctness of Construction 2 and that it is invariant
to puncturing in the sense of Definition 6.

5.2. Security Analysis

In the following we will prove that Construction 2 is pseudorandom at punctured points,
if H is modeled as a random oracle [7] and the Strong RSA assumption holds.

Theorem 6. Let PPRF = (Setup,Eval,Punct) be as above with polynomial-size
input space X = [n]. From each probabilistic polynomial-time adversary A with ad-
vantage Advna-rand

A,PPRF(λ) against the na-rand-security (cf. Definition 7) we can construct

an efficient adversary B with advantage AdvsRSAB (λ) against the Strong RSA problem,
such that

AdvsRSAB (λ) ≥ Advna-rand
A,PPRF(λ).

Proof. B receives as input a Strong RSA challenge (N , y). It starts A, which outputs
a set X ′ = {x1, . . . , x	} ⊆ [n] of values. B responds as follows to A. We write Pj :=
∏

i∈[n],i �= j pi for the product of the first n odd primes except for p j , and

P ′ :=
∏

i∈[n]\X ′
pi

to be the product of the first n odd primes, except for those contained in X ′.
B defines r = (r1, . . . , rn) as

ri :=
{

1, if i ∈ X ′

0, else

for i ∈ [n], and then sets k := (N , y, r).
Let P∗ := ∏

i∈X ′ pi be the product of the first n odd primes contained in X ′. To
show that this is a properly distributed punctured key, we have to show that there exists

20 Page 42 of 57 N. Aviram et al.

g ∈ ZN such that gP∗ = y mod N , and that y is distributed as if g was uniform over
ZN . To this end, note that N = pq is a product of two safe primes p = 2p′ + 1 and
q = 2q ′ + 1 with p′, q ′ prime. Furthermore, we have p′, q ′ � pn , because pn is the
n-th odd prime for polynomially-bounded n, which implies gcd(ϕ(N), gP∗

) = 1, where

ϕ is Euler’s Phi-function. Hence, the map y �→ y1/gP∗
is a permutation over ZN , and

therefore there exists an element g ∈ ZN such that

g = y1/P ′
mod N .

Since y is uniformly random, g is uniformly distributed, too. Hence, k := (N , y, r) is a
properly distributed punctured key.
B picks 	 random strings h1, . . . , h	

$←− {0, 1}λ and outputs (k, (h1, . . . , h)) to A.
A now has to distinguish whether

hi = H(gPxi mod N)

for all xi ∈ X ′, or whether the hi are uniformly random. Since H is a random oracle, this
is perfectly indistinguishable for A, unless at some point it queries the random oracle
on input a ∈ ZN such that there exists i ∈ [] with a = gPxi mod N . Since A has
advantage Advna-rand

A,PPRF(λ), this must happen with probability at least Advna-rand
A,PPRF(λ) at

some point throughout the security experiment.
Whenever A outputs a value a ∈ ZN in order to query for H(a), B checks whether

a = gPxi mod N

holds for any i ∈ 	. Since B does not know g explicitly, it cannot check this directly.
However, it can equivalently check whether

a pxi = y P ′
mod N (1)

holds for any i ∈ []. If (1) indeed holds for some i ∈ [], then B applies Lemma 2
to solve the Strong RSA instance. Concretely, since gcd(pxi , P ′) = 1, it can run the
algorithm on input

(e, f, Z , Y) := (pxi , P ′, a, y).

The algorithm returns X such that Xe = Y mod N . Thus, (X, e) = (X, pxi) is a valid
solution to the Strong RSA instance (N , y). Note that if A is efficient, then so is B, and
that the reduction is tight. �

5.3. Efficiency Analysis

Note that a server is able to create multiple instances of our construction to serve more
tickets than one instance is able to. Using multiple instances allows using smaller expo-
nents, but in return, the storage cost grows linearly in the number of instances.

Session Resumption Protocols Page 43 of 57 20

Serving a ticket requires two exponentiations, one for computing the key and one
for puncturing. Computing the key requires raising the state g to the power of

∏

p∈S p
for some subset of primes S. Puncturing requires exponentiating by a single prime.
Therefore, all exponentiations feature exponents smaller than

∏n
i=1 pi . We start by

comparing to 2048-bit RSA, which according to the NIST key size recommendations
[4] corresponds to “112-bit security”, before comparing to larger RSA key sizes.

Worst-Case Analysis We compare to standard exponentiation in the group, i.e. raising to
the power of d ∈ N, where log d ≈ 2048. For puncturing to be comparable in the worst-
case, we require log

(∏n
i=1 pi

) ≤ 2048. Choosing pi to be the i-th odd prime yields
n ≤ 232. An economic server may store only one 2048-bit group element for the current
state, and a bitfield indicating which of the 232 primes have been punctured, requiring
2280 bits in total. This allows serving 232 tickets, resulting in a storage cost of 1.22 bytes
per ticket. Alternatively, a standard session cache would require 112·232 = 25984 bits to
serve those 232 tickets, assuming symmetric keys of 112 bits. Therefore, our construction
decreases storage size compared to a Session Cache by a factor of 25984/2280 = 11.4.

Averaged Analysis Note that in the above worst-case analysis we consider an upper
bound on the exponentiation cost. That is, we guarantee that a puncturing and key
derivation operation is never more expensive than a full exponentiation. Indeed, the
first key computation raises to the power of p1 · . . . · pn/p	, i.e. to the product of n − 1
primes. However, subsequent key calculations raise to smaller powers, i.e. to the product
of n − 2 primes, then n − 3, and so on. Therefore, serving tickets arriving later is much
cheaper than serving the first. In particular in settings where a server uses many PPRF
instances in parallel, in order to deal with potentially thousands of simultaneously issued
tickets, an alternative and more reasonable efficiency analysis considers the average cost
of serving a ticket to be comparable to exponentiation in the group. In the worst-case,
primes are punctured in order, so pn is included in the exponent in all key derivations,
pn−1 in all derivations except the last, etc. Each prime is also used once for puncturing.
Requiring

∑n
i=1 i · log(pi) ≤ n · 2048 yields a maximum n = 387, and a savings factor

of 112 · 387/(2048 + 387) = 17.8. The required storage is therefore 0.79 bytes per
ticket.

Considering Other Security Parameters and Efficiency Requirements Generalizing the
above calculations, Table 1 gives concrete parameters for various security levels, fol-
lowing the NIST recommendations for key sizes [4]. Larger key sizes result in larger
reductions in storage, especially when requiring average cost similar to exponentiation
in the RSA group. We also show the improvement factor in storage when relaxing the
above heuristic choice that serving a ticket must not cost more than one full RSA-
exponentiation, by considering the case where serving a ticket is cheaper on average
than 5 group exponentiations. This demonstrates that the proposed PPRF can yield very
significant storage savings in general cryptographic settings, while keeping computation
costs on the same order of magnitude as common public key operations. In the context
of TLS, however, we expect most server operators would prefer parameters that keep
processing time comparable to a single exponentiation. We emphasize that the improve-
ment factor in storage is determined at initialization time, and is deterministic rather than
probabilistic. The largest prime used in exponentiations determines how many tickets

20 Page 44 of 57 N. Aviram et al.

Table 1. Savings factors for various key sizes. Symmetric and asymmetric key sizes are matched according
to the NIST recommendations [4]. Both savings factors denote the reduction in server-side storage required
when using Construction 3. Column 3 denotes the reduction in storage achieved under the requirement that
serving a single ticket is always cheaper than an exponentiation in the RSA group of respective key size.
Column 4 denotes the reduction in storage achieved under the requirement that the average cost for serving a
ticket is cheaper than a single exponentiation. Column 5 denotes the reduction in storage achieved under the
requirement that the average cost for serving a ticket is cheaper than 5 group exponentiations.

Storage Savings Factor
Symmetric Modulus W.C. cheaper than Average cheaper Average cheaper than
Key Size Size exponentiation than exponentiation 5 exponentiations

112 2048 11.40 17.80 48.92
128 3072 12.28 19.47 54.49
192 7680 16.37 26.52 77.36
256 15360 20.10 33.05 99.12

are served using a single group element. The worst-case and average-case refer to the
processing time, not to the savings in storage.

Additional Storage for the Primes The server will also need to store the first n primes,
but this requires negligible additional storage. Storing the primes requires on the order
of magnitude of ten kilobytes, where we expect typical caches to use many megabytes.
For the minimal storage requirement, we consider 2048-bit RSA while requiring that the
worst case puncturing time is cheaper than group exponentiation. In this case n = 232
and pn = 1471, therefore all primes fit in 32-bit integers. Storing all the primes would
require at most 4 · 232 = 928 bytes.

The largest value of n for the parameter choices presented in this work is n = 9704, for
the “average cheaper than 5 exponentiations” case with 15360-bit RSA. p9704 = 101341.
The required additional storage is therefore 4 · 9704 = 38,816 bytes. To reiterate, we
expect typical caches to use many megabytes.

Concrete Benchmarks We now give concrete performance estimates for this construc-
tion, using OpenSSL [58]. OpenSSL is a well-known production-grade library that im-
plements the TLS and SSL protocols, as well as low-level cryptographic primitives.
For each key size, we measure the computation time of exponentiating by all primes
∏n

i=1 pi , by calling the OpenSSL “BigNum” exponentiating function. This is analogous
to the computation required to serve the first ticket and then puncture the key: Serving re-
quires exponentiating to the power of all primes except one, pi , and puncturing requires
exponentiating to the power of pi . This is the worst-case, since serving later tickets is
cheaper.

We measure the performance of this calculation for two of the above cases, which
determine the value of n: (1) Worst-case is cheaper than exponentiation, and (2) The
average case is cheaper than exponentiation. We note the latter case is slightly unintuitive:
we measure the worst-case performance, under the requirement that the average case
is comparable to one exponentiation in the group.

Table 2 gives our results. We observe that performance is comparable to, but slower
than, RSA decryption. In typical cases, it requires only a few additional milliseconds

Session Resumption Protocols Page 45 of 57 20

Table 2. Worst-case running time for serving a single ticket using our construction, compared to RSA de-
cryption .

Our construction: Decryption + Puncturing
Modulus W.C. cheaper than Average cheaper RSA
Size exponentiation than exponentiation Decryption

2048 2.6 4.7 0.5
3072 8.3 15.2 2.5
4096 19.4 35.8 5.6

All times are measured in milliseconds. Measurements were performed on a standard workstation, with a
3.60GHz Intel i7 CPU. All measurements used code from OpenSSL 1.0.2q, released in November 2018. To
benchmark our construction we used a short piece of custom code, based on [11], to repeatedly call the OpenSSL
exponentiating function. For each parameter choice, we generated 100 random moduli, and performed 100
exponentiations of random group elements to the power of

∏n
i=1 pi . To benchmark RSA decryption, we used

a built-in OpenSSL benchmarking command, “openssl speed” (after applying a small patch that adds support
for 3072-bit RSA to the command [37])

compared to RSA decryption. We argue the additional latency and computation re-
quirement are small enough to allow the construction to be deployed as-is, in current
large scale TLS deployments. It is unsurprising that RSA decryption is faster than our
construction, since OpenSSL performs RSA decryption using the Chinese Remainder
Theorem.

6. Tree-Based PPRFs

This section will consider a different approach to instantiating Construction 1 based on
PPRFs using trees. At first we will recap the idea behind tree-based PPRFs and explain
how we utilize tree-based PPRFs as an instantiation of our session resumption proto-
col and highlight implications. Finally, we will describe our new “domain extension”
technique for PPRFs and analyze its efficiency.

6.1. Tree-Based PPRFs

We will briefly recap the main idea behind tree-based PPRFs. It is well known that
the GGM tree-based construction of pseudorandom functions (PRFs) from one-way
functions [30] can be modified to construct a puncturable PRF, as noted in [12,14,38].
It works as follows.

Let G : {0, 1}λ → {0, 1}2λ be a pseudorandom generator (PRG) and let G0(k),
G1(k) be the first and second half of string G(k), where k is a random seed. The GGM
construction defines a binary tree on the PRF’s domain, where each leaf represents an
evaluation of the PRF. We label each edge with 0 if it connects to a left child, and 1
if it connects to a right child. We label each node with the binary string determined
by the path from the root to the node. The PRF value of x = x1 . . . xn ∈ {0, 1}n is
(Gxn ◦ . . . ◦ Gx1)(k) ∈ {0, 1}λ, i.e. we compose G according to the path from root to
leaf x .

20 Page 46 of 57 N. Aviram et al.

We briefly describe how this construction can be transformed into a PPRF. In order
to puncture the PPRF at input x = x1 . . . xn we compute a tuple of n intermediate
node evaluations for prefixes x1, x1x2, . . . , x1x2 . . . xn and discard the initial seed k.
The intermediate evaluations enable us to still compute evaluations on all inputs but x .
Successive puncturing is possible if we apply the above computations to an intermediate
evaluation. Note that we have to compute at most n ·m intermediate values if we puncture
at random, where m is the number of puncturing operations performed.

The PPRF is secure if an adversary is not able to distinguish between a punctured point
and a truly random value, even when given the values of all computed “neighbor nodes”.
This holds as long as the underlying PRG is indistinguishable from random [12,14,38].
Furthermore, note that the PPRF is also invariant to puncturing as puncturing always
deletes all nodes from a leaf up to the root without leaving any trace which leaf is
“responsible” for the deletion. Hence, if an adversary is given a punctured key, it cannot
deduce in which order it has been punctured.

6.2. Combining Tree-Based PPRFs with Tickets

In our session resumption scenario the tree-based PPRF will act as a puncturable STEK.
That is, evaluating the PPRF returns a ticket encryption key. Upon resumption with a
ticket we will retrieve the ticket encryption key from the PPRF by evaluating it and
puncture the PPRF at that very value to ensure the ticket encryption key cannot be
computed twice. Note that each ticket encryption key essentially corresponds to a leaf
of the tree. Thus we will subsequently use the terms leaf and ticket (encryption key)
interchangeably depending on the context.

For simplicity, we consider tickets which consist of a ticket number i and a ticket
lifetime t . Following Construction 1 we will issue the tickets one after another while
incrementing the ticket number for each. Note that the ticket number i corresponds to
the i-th leftmost leaf of the tree. The ticket lifetime t determines how long an issued
ticket is valid for resumption. That is, if t ′ > t time has passed, the server will reject the
ticket.

We assume that the rate at which tickets are issued is roughly the same as the rate
tickets are used for session resumption. This holds as for each session resumption we will
issue a new ticket to again resume the session at a later point in time. Similarly, we argue
that tickets are roughly used in the same order for resumption as we issued them. Again,
if we consider multiple users, repeatedly requesting tickets and resuming sessions, we
are able to average the time a user takes until a session is resumed (Cloudflare have
suggested that these assumptions seem reasonable; unfortunately, they cannot provide
data on returning clients’ behavior yet). This yields an implicit window of tickets in
usage. The window is bounded left by the ticket lifetime and bounded right by the last
ticket the server issued. Within the lifetime of the tree-based PPRF this implicit window
will shift from left to right over the tree’s leaves. It immediately follows that tickets are
also roughly used in that order.

Session Resumption Protocols Page 47 of 57 20

6.3. Efficiency Analysis of the Tree-Based PPRF

We will now discuss how the performance of tree-based PPRFs depends on the ticket
lifetime. We consider a scenario where the ticket lifetime t equals the number of leaves
	. It is also possible to consider a scenario where the ticket lifetime is smaller than the
number of leaves. If both number of leaves 	 and ticket lifetime t are powers of 2, we can
divide the leaves in 	/t windows, which span a subtree each. The subtrees are all linked
with the “upper part” of the tree. A different approach would be to instantiate a new tree
when a tree runs out of tickets. We stress that this does not affect our analysis. As soon
as one subtree runs out of tickets, the next subtree is used. If the rate at which we issue
tickets stays the same, we are able to delete parts of the former tree when issuing tickets
of the next one. Hence, for analysis, it is sufficient to consider a single tree.

If we were to puncture leaves strictly from left to right, we would need to store at most
log() leaves (one leaf per layer). Note that if we puncture leaves at random, we would
need to store at most p · log() nodes, where p is the number of punctures performed.
We can also bound the number of nodes we need to store by p · log() ≤ 	/2. This is due
to the tree being binary. Essentially each node (except for the lowest layer) represents
at least two leaves. To be more precise, in a tree with L layers, storing a node on layer
i allows evaluating its 2L−i children. Thus it is preferable to store those nodes instead
of storing leaves in order to save memory. In the worst-case only every second leaf is
punctured. This results in precomputation of all other leaves without being able to save
memory by only storing an intermediary node. Note that this would actually resemble
a session cache, where all issued tickets are stored. However, note that a session cache
needs to store each ticket when it has been issued, whereas our construction only needs to
increase its storage if a ticket is used for resumption. Thus, our tree-based construction
performs (memory-wise) at least as well as a session cache. In practice, where user
behavior is much more random, our approach is always better than session caches.

The tree-based PPRF performs more computations compared to a session cache. When
issuing tickets we need to compute all nodes from the closest computed node to a leaf. For
puncturing we need to compute the same, plus computation of some additional sibling
nodes. However, when instantiating the construction with a cryptographic hash function,
such as SHA-3, evaluation and puncturing of the PPRF consists only of several hash
function evaluations. This makes our construction especially suitable for high-traffic
scenarios.

Table 3 gives worst-case secret key sizes based on the above analysis. However, we
expect the secret key size to be much smaller in practice. Unfortunately, we are not
able to estimate the average key size as this would depend on the exact distribution of
returning clients’ arrival times.

7. Generic Domain Extension for PPRFs

Most forward-secure and replay-resilient 0-RTT schemes come with large secret keys
(possibly several hundred megabytes) when instantiated in a real-world environment
[19,20,33]. This is especially problematic if the secret key needs to be synchronized

20 Page 48 of 57 N. Aviram et al.

Table 3. Worst-case size of secret key depending on the rate of tickets per second and the ticket lifetime
assuming 128 bit ticket size.

Tickets per second r Ticket lifetime t Worst-case secret key size |k|
16 1 hour 461 kB
16 1 day 11.06 MB
128 1 hour 3.69 MB
128 1 day 88.47 MB
1024 1 hour 29.49 MB
1024 1 day 707.79 MB

The worst-case secret key size is computed as |k| = 128r t/2

across multiple server instances. Therefore, it is often desirable to minimize the secret
key size.

In this section we will describe a generic domain extension. In the context of our
work, the domain extension reduces the size of punctured keys by trading secret key size
for ticket size, while preserving the puncturing functionality.

Idea Behind the Construction Our session resumption protocol uses the output of the
PPRF as a ticket encryption key. Normally, a PPRF only allows one output per input as it
is designed to be a function. Our protocol, however, does not rely on this property. Instead
of only using one ticket encryption key we could generate multiple ticket encryption keys.
Ticket issuing would work as follows. First, we generate an intermediary symmetric key
to encrypt the resumption secret. The intermediary symmetric key is then encrypted
under each of the ticket encryption keys. The ticket will consist of one encryption of the
resumption secret and several (redundant) encryptions of the intermediary symmetric
key. We note that typically a ticket contains not only the resumption secret but also
the chosen cipher suite and other additional session parameters, and is thus larger than
just the resumption secret. It is therefore desirable to encrypt this data only once, while
encrypting the shorter intermediary symmetric key multiple times. This makes the ticket
as short as possible.

As long as the PPRF is able to recompute at least one of those ticket encryption keys,
the server will still be able to resume the session. This allows us to construct a wrapper
around the PPRF that extends the PPRF’s domain by relaxing the requirement that every
input has only a single output.

Before formally describing our construction, we will provide an example to illustrate
the idea. Let X be the PPRF’s domain. We will extend the domain to X × [n] with a
domain extension factor of n. That is, we will allow (x, i), i ∈ [n] for any x ∈ X as
input. Let G : {0, 1}λ → {0, 1}nλ be a pseudorandom generator and let G j (x) be the
j-th bitstring of size λ of G on input x . We define the evaluation of (x, i) as all possible
compositions of G j which end with Gi . That is, for any input (x, i) there will be (n −1)!
different outputs, as there are (n − 1)! ways to compose G j with j �= i . The possible
compositions of PRGs can be illustrated as a tree as shown in Fig. 5.

After puncturing the PPRF’s key for a value (x, i), it must not be possible to evaluate
the value anymore. This requires a mechanism to ensure that composing the PRGs
which end with Gi is no longer possible. We achieve this by forcing an evaluation of

Session Resumption Protocols Page 49 of 57 20

Fig. 5. Possible composition of PRGs for n = 3 illustrated as a tree. Each path from parent to child illustrates
an evaluation of the PRG shown next to the path. Upon puncturing (x, 3), the value y3 is computed and stored
and y is discarded. Thus, only the white nodes are computable, whereas the gray nodes cannot be computed
without inverting G3.

yi := Gi (y), where y is the evaluation of the underlying PPRF on input x . In order to
render recomputation of y impossible, we additionally need to puncture the PPRF’s key
on value x and delete the computed y. Formally, the construction is defined as follows.

Construction 3. Let G : {0, 1}λ → {0, 1}nλ be a PRG and let Gi (k) be the i-th
bitstring of size λ of G. Let PPRF′ = (Setup′,Eval′,Punct′) be a PPRF with domain
X . We construct a domain extended PPRF DE = (Setup,Eval,Punct) with domain
X × [n] for n ∈ N as follows.

– Setup(1λ) computes kPPRF := Setup′(1λ). Next, it defines an empty list L = ∅.
Output is k = (kPPRF,L)

– Eval(k, x) parses x = (xPPRF, xext) ∈ X × [n] and k = (kPPRF,L). It computes
y := Eval′(kPPRF, xPPRF). If y = ⊥, it checks whether there exists a value xPPRF
with

(xPPRF, y′, (r1, . . . , rn)) ∈ L.

If it exists, assign y := y′. Otherwise it outputs ⊥.
Furthermore, it defines a set R = {i ∈ [n] | ri = 1}. If ri are undefined, set R is
empty. Next, it computes

Y = {(Gin−|R|−1 ◦ . . . ◦ Gi1)(y)},

where (i1, . . . , in−|R|−1) are all (n − |R| − 1)! possible permutations of elements
in [n] \ (R ∪ {xext}). Output is Y .

– Punct(k, x) parses k = (kPPRF,L) and x = (xPPRF, xext) ∈ X ×[n]. It computes
y := Eval(kPPRF, xPPRF). If y �= ⊥, it appendsL := L∪{xPPRF, y, (r1, . . . , rn)},
whereri = 0, but rxext = 1. Additionally, it punctures k′

PPRF := Punct′(kPPRF, xPPRF).
If y = ⊥ and no value xext with (xext, y′, r) ∈ L exists, it outputs k.

20 Page 50 of 57 N. Aviram et al.

Otherwise it retrieves 	 = (xPPRF, y′, (r1, . . . , rn)) ∈ L. If ri = 1 for all i ∈
[n] \ {xPPRF}, remove 	 from L. Else it sets

y′′ = Gxext(y′) and r ′
i :=

{

1, if i = xext
ri , else,

and updates 	 ∈ L by computing L := (L \ {	}) ∪ {(xPPRF, y′′, (r ′
1, . . . , r ′

n)}.
Output is k = (k′

PPRF,L).

7.1. Efficiency Analysis of the Generic Domain Extension

Increased Ticket Size Note that a ticket is longer than a standard ticket by (n − 1)!
encrypted blocks. Assuming 128-bit AES, and choosing n = 5, this translates to 4! ·
16 = 384 additional bytes. This is likely to be insignificant on the modern Internet.
For example, Google has pushed for increasing the maximum initial flight from 4 TCP
packets to 10 [25], as most server responses span several packets already (a typical full
packet is about 1500 bytes). A basic experiment performed by Google and Cloudflare in
2018 measured a similar scenario: It added 400 bytes for both the client’s and server’s
first flights [44]. They observed relatively small additional latencies: 2–4 milliseconds
in the median, and less than 20 milliseconds for the 95th percentile. However, choosing
n = 6 or larger is likely to be not cost-effective. This would translate to 5! · 16 = 1920
additional bytes, larger than a standard TCP packet.

Storage Requirements Comparing the storage requirements of the tree-based construc-
tion to standard session caches depends on the specific distribution of returning clients.
In the best case, tickets arrive in large contiguous blocks. In this case, a tree-based
construction uses negligible storage (logarithmic in the number of tickets), making the
savings factor in storage huge. However, this is unrealistic in practice. In the worst-case,
tickets arrive in blocks of n − 1 tickets of the form (xPPRF, i) for i ∈ [n − 1], adversar-
ially rendering the domain extension technique useless as each subtree is reduced to a
single node. As before, this is unrealistic in practice.

We have therefore resorted to simulations in order to assess the improvement in storage
requirements. Our simulation constructs two trees: a standard binary tree with 	 layers,
and a domain-extended tree with n = 4. For the domain-extended tree, the first 	 − 2
layers are constructed as a standard binary tree, and the last log(4) = 2 layers are
represented by the domain extension.

We simulated the storage requirements for trees of 10,000 tickets. We note that results
for trees of 10,000 tickets should closely follow results for larger tree sizes. Trees are
quickly split into smaller sub-trees when puncturing, regardless of the initial tree size.
In the first puncturing operation we delete the root and (implicitly) store smaller sub-
trees with at most half the nodes in each, and so forth. We focused on the relationship
between ticket puncturing rate and savings in storage. The ticket puncturing rate denotes
the percentage of tickets that are punctured, out of the 10,000 outstanding tickets. This
can also be thought of as the percentage of returning clients. After fixing the puncturing
rate to r , we simulate the arrival of r% of clients according to two distributions: Gaussian

Session Resumption Protocols Page 51 of 57 20

and uniform. With the uniform distribution, the next ticket to be punctured is sampled
uniformly out of the outstanding tickets. With the Gaussian distribution, the next ticket
to be punctured is sampled using a discrete Gaussian distribution with mean μ = 5000
and standard deviation σ (for varying values of σ). We then simulate the state of both
trees after puncturing the sampled ticket. We repeatedly sample tickets and puncture
them, until we reach the desired puncturing rate. We then report the ratio between the
storage for the standard binary tree and the storage for the domain-extended tree, in their
final states.

Intuitively, the Gaussian distribution aims to simulate the assumption where tickets
arrive in some periodic manner. For example, assume the tickets most likely to arrive
are the tickets issued roughly one hour ago. Then the distribution of arriving tickets
will exhibit a noticeable mode (“peak”), where tickets close to the mode are much more
likely to arrive than tickets far from it. The Gaussian distribution is a natural fit for this
description. On the other hand, the uniform distribution makes no assumptions on which
ticket is likely to arrive next. In personal communication, Cloudflare have advised us
that it is reasonable to assume tickets are redeemed roughly in order of issuance (they do
not have readily-available data on returning clients’ behavior). This motivated our use
of Gaussian distributions. We hope to see additional research in this area. In particular, it
would be helpful if large server operators could release anonymized datasets that allow
simulating the behavior of returning clients in practice.

Using our domain extension technique with n = 4 results in a typical factor of 1.4
(or more) reduction in storage compared to a tree-based PPRF. Figure 6 plots the results
when using the uniform distribution and a Gaussian distribution with σ = 2000. We
encountered similar results when using other values for σ . We estimate ticket redeeming
rates in large-scale deployments are roughly 50%. We therefore focus on cases where
the puncturing rate is at least 40% and at most 60%. We note that in the worst-case, the
domain extension performs as well as the binary tree.

8. Comparison of Solutions and Conclusion

Comparison of Solutions To summarize this work, Table 4 compares our two construc-
tions with the standard solutions of session tickets and session caches. Note that we
decided to exclude implementation-specific costs (such as database access) from our
“dominant cost” column and only focus on cryptographically expensive factors.

Conclusion In most facets, TLS 1.3 offers significant improvements in security compared
to earlier TLS versions. However, when 0-RTT mode is used, it surprisingly weakens
standard security guarantees, namely forward security and replay resilience. This was
noted as the protocol was standardized, but the latency reduction from 0-RTT was con-
sidered “too big a win not to do” [50].

This paper presented formal definitions for secure 0-RTT session resumption pro-
tocols, and two new constructions that allow achieving the aforementioned security
guarantees at a practical cost. We expect continued research in the coming years in this
area, of achieving secure 0-RTT traffic as cheaply as possible. Currently, many large

20 Page 52 of 57 N. Aviram et al.

Fig. 6. Average storage improvement factor of the domain-extended binary tree (with n = 4) compared to a
standard binary tree, depending on the ticket puncturing rate. All simulations used trees of 10,000 tickets. The
dashed blue line (resp. continuous red line) shows the storage improvement when modeling client’s arrivals
with a uniform distribution (resp. discrete Gaussian distribution with mean μ = 5000 and standard deviation
σ = 2000).

Table 4. Comparison of security guarantees and dominant cost for session tickets, session caches, and our
two constructions.

Solution Forward
security

Replay
protection

Storage
per ticket

Dominant
cost

See sections

session tickets After ≈ 1 day No Negligible Symmetric encryption 1
session caches Yes Yes ≈ 20–30 bytes – 1
sRSA-based PPRF Yes Yes ≈ 0.8–1.2 bytes Group exponentiation 5.3
Tree-based PPRF Yes Yes ≤ 20–30 bytes Symmetric encryption 6.3

For session tickets, we assume a deployment that rotates STEKs, as in [46]. For session caches, we assume
each key is 128 bits (16 bytes) long. The unique ticket identifier, and other storage overhead, will typically
require a few more bytes. We therefore estimate total storage per key as 20–30 bytes. For the Tree-based PPRF,
actual storage per ticket highly depends on returning clients behavior. However, this solution always requires
at most as much storage as a session cache

server operators serve 0-RTT traffic using STEK-encrypted session tickets. As more
Internet traffic becomes 0-RTT traffic, this solution rolls back the security guarantees
offered to everyday secure sessions.

The Eurocrypt 2019 version of this paper does not show if TLS 1.3 can be se-
curely composed with the presented 0-RTT session resumption protocol. In this work
we resolved this open problem and showed that any secure 0-RTT session resumption
protocol can be generically composed with the TLS 1.3 resumption handshake. In par-
ticular, this yields the first variant of the TLS 1.3 resumption handshake that achieves
forward secrecy for all messages (including the 0-RTT data) without modifying client
implementations of TLS 1.3.

Session Resumption Protocols Page 53 of 57 20

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Accepting Replay Attacks and Idempotent Requests

When using session tickets, one option is to simply allow replay attacks, in cases where the server can be
certain they do not harm security. This was proposed primarily in the case of HTTPS, where TLS encapsulates
HTTP requests. Theoretically, HTTP GET requests only retrieve an HTTP resource located on the server,
without changing server state. The argument then goes that an attacker replaying an HTTP GET request can
only cause a resource to be retrieved several times instead of one, and this is harmless [51, §E.5]. It then
follows that it is “safe” to allow replayable HTTP GET requests, and disallow other request types, such as
HTTP POST, to be sent such that they can be replayed. This logic can be generalized to allow replay of any
idempotent [51] request: a request that has the same effect on the server state whether it is served once or
several times.
Furthermore, an attacker is able to cause most modern web browsers to replay any request, idempotent or not
[26]. Therefore, the naïve conclusion is that investing resources defending against replay attacks, either in the
standard or in deployment practices, is futile.
Colm MacCárthaigh [48] describes several convincing counterarguments against this reasoning. As a simple
example, consider the following attack. An HTTP server provides two different medical documents, say
DiseaseA.pdf and DiseaseB.pdf. A user downloads one of these documents with TLS 1.3 0-RTT,
and doesn’t want the attacker to learn which one. An attacker records the encrypted HTTP GET requests, and
wants to learn which file was downloaded.
At some later point in time, document DiseaseA.pdf is deleted from the server (or moved to a different
URL, which is equivalent for this attack). The attacker then replays the encrypted HTTP GET request. If the
user has downloaded DiseaseA.pdf, then an encrypted HTTP 404 error will be returned, resulting in a
relatively “short” response. If the user downloaded DiseaseB.pdf, the server responds with an encrypted
pdf document, which is typically much longer.

B Detailed Description of Protocol Values

In this section we provide additional technical details of our modified protocol, introduced in Sect. 4. The
details include a table of labels and their values (cf. Table 5) and a short description of how the transcript
hashes are computed.

Computation of Transcript Hashes TLS 1.3 includes hash values in the derivation of traffic secrets and the
computation of finished messages. In most cases the hashes are computed over the concatenation of all
previously-sent and -received messages. The only exception is the computation of the binder value Fin0,
which only includes a partial transcript of the client’s first flight of messages, ignoring the “binder value”
(which is technically part of the client’s first messages) [51, §4.2.11.2]. All other hash values are computed
as described in [51, §4.4.1].

http://creativecommons.org/licenses/by/4.0/

20 Page 54 of 57 N. Aviram et al.

Table 5. An overview of labels and their usage (including references) used in the TLS 1.3 protocol.

Label String Used for References

	1 resumption Deriving the pre-shared key [51, §4.6.1]
	2 c e traffic Deriving the early traffic secret [51, §7.1]
	3 key Traffic key calculation [51, §7.2]
	4 ext/rs binder Binder key derivation [51, §7.1]
	5 finished Finish key derivation [51, §4.4.4]
	6 derived Preparation of secret extraction [51, §7.1]
	7 c hs traffic Deriving the client handshake traffic secret [51, §7.1]
	8 s hs traffic Deriving the server handshake traffic secret [51, §7.1]
	9 c ap traffic Deriving the client application traffic secret [51, §7.1]
	10 s ap traffic Deriving the server application traffic secret [51, §7.1]
	11 exp master Deriving the export master secret [51, §7.1]
	12 res master Deriving the resumption master secret [51, §7.1]

References

[1] N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for tls 1.3 0-
rtt. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp. 117–150. Springer
International Publishing, Cham 2019

[2] C. Bader, D. Hofheinz, T. Jager, E. Kiltz, Y. Li, Tightly-secure authenticated key exchange. In: Dodis, Y.,
Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 629–658. Springer, Heidelberg, Germany,
Warsaw, Poland (Mar 23–25, 2015)

[3] N. Bari, B. Pfitzmann, Collision-free accumulators and fail-stop signature schemes without trees. In:
Fumy, W. (ed.) EUROCRYPT’97. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg, Germany,
Konstanz, Germany (May 11–15, 1997)

[4] E. Barker, Recommendation for key management part 1: General (revision 4). NIST special publication
2016

[5] M. Behr, I. Swett, Introducing QUIC support for HTTPS load balancing 2018, https://cloudplatform.
googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html

[6] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authentication. In: Koblitz,
N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 18–22, 1996)

[7] M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols. In:
Ashby, V. (ed.) ACM CCS 93. pp. 62–73. ACM Press, Fairfax, Virginia, USA (Nov 3–5, 1993)

[8] M. Bellare, I. Stepanovs, S. Tessaro, Poly-many hardcore bits for any one-way function and a framework
for differing-inputs obfuscation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol.
8874, pp. 102–121. Springer, Heidelberg, Germany, Kaoshiung, Taiwan, R.O.C. (Dec 7–11, 2014)

[9] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.Y. Strub, Zanella Béguelin, S.: Proving the TLS
handshake secure (as it is). In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617,
pp. 235–255. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014)

[10] L. Blum, M. Blum, M. Shub, A simple unpredictable pseudo-random number generator. SIAM J. Comput.
15(2), 364–383 (1986), https://doi.org/10.1137/0215025

[11] H. Böck, Fuzz-compare the OpenSSL function BN_mod_exp() and the libgcrypt function
gcry_mpi_powm(), https://github.com/hannob/bignum-fuzz/blob/master/openssl-vs-gcrypt-modexp.c

[12] D. Boneh, B. Waters, Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg, Germany,
Bengalore, India (Dec 1–5, 2013)

[13] C. Boyd, K. Gellert, A Modern View on Forward Security. The Computer Journal (08 2020), https://doi.
org/10.1093/comjnl/bxaa104

https://cloudplatform.googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html
https://cloudplatform.googleblog.com/2018/06/Introducing-QUIC-support-for-HTTPS-load-balancing.html
https://doi.org/10.1137/0215025
https://github.com/hannob/bignum-fuzz/blob/master/openssl-vs-gcrypt-modexp.c
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104

Session Resumption Protocols Page 55 of 57 20

[14] E. Boyle, S. Goldwasser, I. Ivan, Functional signatures and pseudorandom functions. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg, Germany, Buenos Aires,
Argentina (Mar 26–28, 2014)

[15] J. Camenisch, A. Lysyanskaya, Dynamic accumulators and application to efficient revocation of anony-
mous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 18–22, 2002)

[16] W.T. Chang, A. Langley, QUIC crypto 2014, https://docs.google.com/document/d/1g5nIXAIkN_Y-
7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g

[17] C. Cremers, M. Horvat, S. Scott, T. van der Merwe, Automated analysis and verification of TLS 1.3:
0-RTT, resumption and delayed authentication. In: 2016 IEEE Symposium on Security and Privacy. pp.
470–485. IEEE Computer Society Press, San Jose, CA, USA (May 22–26, 2016)

[18] F. Dallmeier, J.P. Drees, K. Gellert, T. Handirk, T. Jager, J. Klauke, S. Nachtigall, T. Renzelmann, R.
Wolf, Forward-secure 0-rtt goes live: Implementation and performance analysis in quic. In: S. Krenn,
H. Shulman, S. Vaudenay, (eds.) Cryptology and Network Security. pp. 211–231. Springer International
Publishing, Cham 2020

[19] D. Derler, K. Gellert, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to
efficient forward-secret 0-RTT key exchange. Cryptology ePrint Archive, Report 2018/199 2018, https://
eprint.iacr.org/2018/199

[20] D. Derler, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to efficient
forward-secret 0-RTT key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III.
LNCS, vol. 10822, pp. 425–455. Springer, Heidelberg, Germany, Tel Aviv, Israel (Apr 29 – May 3, 2018)

[21] D. Diemert, T. Jager: On the tight security of tls 1.3: Theoretically-sound cryptographic parameters for
real-world deployments. Cryptology ePrint Archive, Report 2020/726 2020, https://eprint.iacr.org/2020/
726

[22] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the tls 1.3 handshake
protocol. Cryptology ePrint Archive, Report 2020/1044 2020, https://eprint.iacr.org/2020/1044

[23] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 handshake
protocol candidates. In: Ray, I., Li, N., Kruegel:, C. (eds.) ACM CCS 15. pp. 1197–1210. ACM Press,
Denver, CO, USA (Oct 12–16, 2015)

[24] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 draft-10 full
and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081 2016, http://eprint.
iacr.org/2016/081

[25] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain, N. Sutin, An argument for
increasing TCP’s initial congestion window. Computer Communication Review 40(3), 26–33 2010

[26] T. Duong, T. Valverde, Q. Nguyen, Bad life advice - Replay attacks against HTTPS 2015, https://blog.
valverde.me/2015/12/07/bad-life-advice/

[27] M. Fischlin, F. Günther, Multi-stage key exchange and the case of Google’s QUIC protocol. In: Ahn,
G.J., Yung, M., Li, N. (eds.) ACM CCS 14. pp. 1193–1204. ACM Press, Scottsdale, AZ, USA (Nov 3–7,
2014)

[28] M. Fischlin, F. Günther, Replay attacks on zero round-trip time: The case of the TLS 1.3 handshake
candidates. In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France,
April 26-28, 2017. pp. 60–75. IEEE 2017, https://doi.org/10.1109/EuroSP.2017.18

[29] K. Gjøsteen, T. Jager, Practical and tightly-secure digital signatures and authenticated key exchange. In:
Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 95–125. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19–23, 2018)

[30] O. Goldreich, S. Goldwasser, S. Micali, How to construct random functions. J. ACM 33(4), 792–807
(Aug 1986), https://doi.org/10.1145/6490.6503

[31] O. Goldreich, L.A. Levin, A hard-core predicate for all one-way functions. In: 21st ACM STOC. pp.
25–32. ACM Press, Seattle, WA, USA (May 15–17, 1989)

[32] M.D. Green, I. Miers, Forward secure asynchronous messaging from puncturable encryption. In: 2015
IEEE Symposium on Security and Privacy. pp. 305–320. IEEE Computer Society Press, San Jose, CA,
USA (May 17–21, 2015)

[33] F. Günther, B. Hale, T. Jager, S. Lauer, 0-RTT key exchange with full forward secrecy. In: Coron, J.,
Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 519–548. Springer, Heidelberg,
Germany, Paris, France (Apr 30 – May 4, 2017)

https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g
https://eprint.iacr.org/2018/199
https://eprint.iacr.org/2018/199
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/726
https://eprint.iacr.org/2020/1044
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2016/081
https://blog.valverde.me/2015/12/07/bad-life-advice/
https://blog.valverde.me/2015/12/07/bad-life-advice/
https://doi.org/10.1109/EuroSP.2017.18
https://doi.org/10.1145/6490.6503

20 Page 56 of 57 N. Aviram et al.

[34] B. Hale, T. Jager, S. Lauer, J. Schwenk, Simple security definitions for and constructions of 0-RTT key
exchange. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355, pp. 20–38.
Springer, Heidelberg, Germany, Kanazawa, Japan (Jul 10–12, 2017)

[35] S. Iyengar, K. Nekritz, Building zero protocol for fast, secure mobile connections 2017, https://code.fb.
com/android/building-zero-protocol-for-fast-secure-mobile-connections/

[36] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 19–23, 2012)

[37] H. Kario, Add 3072, 7680 and 15360 bit RSA tests to openssl speed, https://groups.google.com/forum/#!
topic/mailing.openssl.dev/bv8t7QcXrqg

[38] A. Kiayias, S. Papadopoulos, N. Triandopoulos, T. Zacharias, Delegatable pseudorandom functions and
applications. In: Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.) ACM CCS 13. pp. 669–684. ACM Press,
Berlin, Germany (Nov 4–8, 2013)

[39] H. Krawczyk, M. Bellare, R. Canetti, Hmac: Keyed-hashing for message authentication (February 1997),
http://tools.ietf.org/rfc/rfc2104.txt, rFC2104

[40] H. Krawczyk, P. Eronen, Hmac-based extract-and-expand key derivation function (hkdf) (May 2010),
http://tools.ietf.org/rfc/rfc5869.txt, rFC5869

[41] H. Krawczyk, Cryptographic extraction and key derivation: The HKDF scheme. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 15–19, 2010)

[42] H. Krawczyk, K.G. Paterson, H. Wee, On the security of the TLS protocol: A systematic analysis.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 429–448. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 2013)

[43] A. Langley, How to botch TLS forward secrecy 2013, https://www.imperialviolet.org/2013/06/27/
botchingpfs.html

[44] A. Langley, Post-quantum confidentiality for TLS 2018, https://www.imperialviolet.org/2018/04/11/
pqconftls.html

[45] S. Lauer, K. Gellert, R. Merget, T. Handirk, J. Schwenk, T0rtt: Non-interactive immediate forward-secret
single-pass circuit construction. Proceedings on Privacy Enhancing Technologies 2020(2), 336 – 357
(01 Apr 2020), https://content.sciendo.com/view/journals/popets/2020/2/article-p336.xml

[46] Z. Lin, TLS Session Resumption: Full-speed and Secure (2015), https://blog.cloudflare.com/tls-session-
resumption-full-speed-and-secure/

[47] R. Lychev, S. Jero, A. Boldyreva, C. Nita-Rotaru, How secure and quick is QUIC? Provable security and
performance analyses. In: 2015 IEEE Symposium on Security and Privacy. pp. 214–231. IEEE Computer
Society Press, San Jose, CA, USA (May 17–21, 2015)

[48] C. MacCarthaigh, Security Review of TLS 1.3 0-RTT. https://github.com/tlswg/tls13-spec/issues/1001,
accessed: 2018-07-29

[49] E. Rescorla, TLS 0-RTT and Anti-Replay 2015, https://www.ietf.org/mail-archive/web/tls/current/
msg15594.html

[50] E. Rescorla, TLS 1.3 2015, http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
[51] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 2018, https://rfc-

editor.org/rfc/rfc8446.txt
[52] P. Rogaway, Authenticated-encryption with associated-data. In: Atluri, V. (ed.) ACM CCS 02. pp. 98–

107. ACM Press, Washington D.C., USA (Nov 18–22, 2002)
[53] P. Rogaway, Formalizing human ignorance. In: P.Q. Nguyen, (ed.) Progress in Cryptology - VIETCRYPT

2006. pp. 211–228. Springer Berlin Heidelberg, Berlin, Heidelberg 2006
[54] A. Sahai, B. Waters, How to use indistinguishability obfuscation: deniable encryption, and more. In:

Shmoys, D.B. (ed.) 46th ACM STOC. pp. 475–484. ACM Press, New York, NY, USA (May 31 – Jun 3,
2014)

[55] A. Shamir, On the generation of cryptographically strong pseudorandom sequences. ACM Trans. Com-
put. Syst. 1(1), 38–44 (Feb 1983), http://doi.acm.org/10.1145/357353.357357

[56] D. Springall, Z. Durumeric, J.A. Halderman, Measuring the security harm of TLS crypto shortcuts. In:
Proceedings of the 2016 Internet Measurement Conference. pp. 33–47. ACM 2016

[57] N. Sullivan, Introducing Zero Round Trip Time Resumption 2017, https://blog.cloudflare.com/
introducing-0-rtt/

https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://code.fb.com/android/building-zero-protocol-for-fast-secure-mobile-connections/
https://groups.google.com/forum/#!topic/mailing.openssl.dev/bv8t7QcXrqg
https://groups.google.com/forum/#!topic/mailing.openssl.dev/bv8t7QcXrqg
http://tools.ietf.org/rfc/rfc2104.txt
http://tools.ietf.org/rfc/rfc5869.txt
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2013/06/27/botchingpfs.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html
https://content.sciendo.com/view/journals/popets/2020/2/article-p336.xml
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://blog.cloudflare.com/tls-session-resumption-full-speed-and-secure/
https://github.com/tlswg/tls13-spec/issues/1001
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
http://web.stanford.edu/class/ee380/Abstracts/151118-slides.pdf
https://rfc-editor.org/rfc/rfc8446.txt
https://rfc-editor.org/rfc/rfc8446.txt
http://doi.acm.org/10.1145/357353.357357
https://blog.cloudflare.com/introducing-0-rtt/
https://blog.cloudflare.com/introducing-0-rtt/

Session Resumption Protocols Page 57 of 57 20

[58] The OpenSSL Project: OpenSSL: The open source toolkit for SSL/TLS, www.openssl.org

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

www.openssl.org

	Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT
	1. Introduction
	2. 0-RTT Session Resumption Protocols and Their Security
	2.1. Security in the Single-Server Setting
	2.2. Security in the Multi-server Setting

	3. Constructing Secure Session Resumption Protocols
	3.1. Building Blocks
	3.2. Generic Construction

	4. Composition with the TLS 1.3 Resumption Handshake
	4.1. Building Blocks and Security Assumptions
	4.2. Multi-stage Key Exchange
	4.3. Composition and Security

	5. A PPRF with Short Secret Keys from Strong RSA
	5.1. Formal Description of the Construction
	5.2. Security Analysis
	5.3. Efficiency Analysis

	6. Tree-Based PPRFs
	6.1. Tree-Based PPRFs
	6.2. Combining Tree-Based PPRFs with Tickets
	6.3. Efficiency Analysis of the Tree-Based PPRF

	7. Generic Domain Extension for PPRFs
	7.1. Efficiency Analysis of the Generic Domain Extension

	8. Comparison of Solutions and Conclusion
	References

