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1 Introduction

Secure two-party computation (2PC), introduced by Yao [Yao82], allows two parties to jointly compute any
function of their inputs in such a way that 1) the output of the computation is correct and 2) the inputs
are kept private. There is a natural generalization to many parties called multi-party computation (MPC)
in what follows. The simplest protocols are secure only if the participants are semi-honest (they follow the
protocol but try to learn more than they should by looking at their transcript of the protocol). A more
realistic security definition considers malicious adversaries, that can arbitrarily deviate from the protocol.
Recently a number of efforts to implement maliciously secure MPC in practice have been reported on.

In the two party case almost all of these are based on Yao’s garbled circuit technique. A main advantage
of Yao’s garbled circuits is that it is primarily based on symmetric primitives and has low round complexity.
It uses one OT per input bit, but then uses only a few calls to a symmetric primitive, for example a hash
function or block cipher evaluation, per gate in the circuit to be evaluated. Malicious security is obtained by
elaborate cut-and-choose protocols which mean the basic semi-honest Yao protocol needs to be run many
times. The other approaches are heavy on public-key primitives which are typically orders of magnitude
slower than symmetric primitives.

For more than two parties the standard technique is to use secret sharing of the computed values. The
resulting protocols have high round complexity, but usually require very little symmetric machinery in their
function evaluation phases. In the variants of MPC which are based on secret sharing the major performance
improvement over the last few years has come from the technique of authenticating the shared data and/or
the shares themselves using information theoretic message authentication codes (MACs). This idea has been
used in a number of works: For n-party dishonest majority MPC for arithmetic circuits over a “largish”
finite field [BDOZ11,DPSZ12], and for n-party dishonest majority MPC over binary circuits [DZ13]. All of
these protocols are in the pre-processing model, in which the parties first engage in a function and input
independent offline phase. The offline phase produces various pieces of data, often Beaver style [Bea95]
“multiplication triples”, which are then consumed in the online phase when the function is determined and
evaluated.

The idea of OT extension dates from the work of Beaver [Bea96] in 1996, however it was not until
2003 until Ishai et al. introduced an efficient manner to extend OTs [IKNP03]. The protocol of Ishai et
al. allows one to turn κ seed OTs based on public-key crypto into any polynomial ` = poly(κ) number of
OTs using only O(`) invocations of a cryptographic hash function. For big enough ` the cost of the κ seed
OTs is amortized away and OT extension essentially turns OT into a symmetric primitive in terms of its
computational complexity. Since the basic approach of basing 2PC on OT in [GMW87] is efficient in terms
of consumption of OTs and communication, this gives the hope that OT-based 2PC too could be practical,
and that it can be extended to the multi-party case.

In [NNOB12] and [LOS14] the first practically efficient protocols in the two and multi-party case for MPC
based on oblivious transfer were given, both of which utilize the secret sharing based, pre-processing and
MAC based authentication of [BDOZ11,DPSZ12,DZ13]. The current paper presents the work in [NNOB12]
and [LOS14] in a unified manner, we present a number of improvements to these protocols (in both exposition
and protocols), as well as correcting a number of errors. In particular in this paper:
– We unify the pre-processing and online phases of both [NNOB12] and [LOS14]. In particular instead

of the various different pre-processed data from [NNOB12] (i.e. aANDs, aOTs etc) and the generalized
OT quadruples from [LOS14], we utilize standard Beaver multiplication triples in both the 2PC and the
MPC cases.

– We unify the authenticating via MACs in the online protocols for 2PC and MPC so as to use SPDZ like
MACs. This enables the efficient MAC check functionality from [DKL+13] to be utilized; thus enabling
efficient reactive functionalities.

– We unify the different secret sharing notations between the two papers; and provide mechanisms to pass
from one sharing type to another.

– We correct a bug in the pre-processing phase of the protocol from [LOS14], which allowed a selective
failure attack. This is done by providing a more elaborate sacrificing and checking step in the pre-
processing; plus a more careful attention to the underlying functionalities.
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– The methodologies and proofs of the extension from a small number of seed OTs to a large number of
OTs presented in [NNOB12], is also extended and improved.

– Overall we provide full proofs and analysis, compared to the shorter “abstracts” provided in [NNOB12]
and [LOS14].

We call both our 2PC and MPC variants Tiny-OT, as they are based on a method of producing a large
number of authenticated bits via oblivious transfer, from a small number of seed OTs.

1.1 Impact

This current paper was originally submitted to Journal of Cryptology in 2015, in the intervening six years
the impact of the protocols in this paper (and by extension the papers [NNOB12] and [LOS14]) has been
transformative in the practical MPC community. We list a number of the applications here.

In the case of MPC based on linear secret sharing the impact has been considerable. For the case of
‘large’ characteristic finite fields the work in this paper forms the basis of the MASCOT protocol [KOS16] for
performing OT-based pre-processing (instead of Somewhat Homomorphic Encryption based pre-processing)
for the SPDZ family of protocols [DPSZ12]. For fields of characteristic two the work in this paper was applied
in the same direction in [FKOS15]. For MPC over rings, such as Z2k , the SPDZ2k protocol [CDE+18] also
utilized Tiny-OT based pre-processing.

The application of the Tiny-OT protocols is not only seen in protocols based on secret sharing, BMR
based protocols have also, in the intervening years, had a major performance improvement using techniques
arising out of the Tiny-OT protocol. For example, at the time of writing (2021), the most efficient, practical,
n-party BMR style protocols are HSS [HSS17] and WRK [WRK17b]; both of which are based on Tiny-OT
for the underlying protocol to produce the shared garbling. Tiny-OT was also applied in the Tiny-Keys
extensions to the above protocols [HOSS18a, HOSS18b]. Tiny-OT also forms the basis of the two party
protocol [WRK17a].

1.2 Overview

Our starting point is the efficient passive-secure OT extension protocol of [IKNP03] and passive-secure 2PC
of [GMW87]. In order to obtain active security and preserve the high practical efficiency of these protocols we
chose to develop substantially different techniques, differentiating from other works that were only interested
in asymptotic efficiency [HIKN08,Nie07, IPS08].

We introduce a new technical idea to the area of extending OTs efficiently, which allows us to dramatically
improve the practical efficiency of active-secure OT extension. Our protocol has the same asymptotic com-
plexity as the previously best protocol in [HIKN08], but it is only a small factor slower than the passive-secure
protocol in [IKNP03].

In addition, we present techniques which allow us to relate the outputs and inputs of OTs in a larger
construction, via the use of information theoretic tags. This can be seen as a new flavor of committed OT that
only requires symmetric cryptography. In combination with our first contribution, our protocols show how
to efficiently extend committed OT. Our protocols assume the existence of OT and are secure in the random
oracle model. The question on the asymptotic computational overhead of cryptography was (essentially)
settled in [IKOS08].

On the other hand, there is a growing interest in understanding the practical overhead of secure com-
putation, and several works have perfected and implemented 2PC protocols based on Yao’s garbled cir-
cuits [MNPS04, BDNP08, LPS08, KS08, NO09, PSSW09, HKS+10, MK10, LP11, asS11, HEK+11], protocols
based on homomorphic encryption [IPS09, DO10, JMN10, BDOZ11] and protocols based on OT [IPS08,
LOP11,CHK+12]. For the MPC variant a number of implementations have been presented based on secret
sharing [DPSZ12,DKL+13,DGKN09,SIM,BLW08].

For the case of MPC protocols, where n > 2, there are three main techniques of using MACs to authen-
ticate the shares in an MPC protocol. In [BDOZ11] each share of a given secret is authenticated by pairwise
MACs, i.e. if party Pi holds a share ai, then it will also hold a MAC Mi,j for every j 6= i, and party Pj will
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hold a key Ki,j . Then, when the value ai is made public, party Pi also reveals the n−1 MAC values, that are
then checked by other parties using their private keys Ki,j . Note that each pair of parties holds a separate
key/MAC for each share value. In [DPSZ12], called the SPDZ protocol hereafter, the authors obtain a more
efficient online protocol by replacing the MACs from [BDOZ11] with global MACs which authenticate the
shared values a, as opposed to the shares themselves. The authentication is also done with respect to a fixed
global MAC key (and not pairwise and data dependent). This method was improved in [DKL+13], where it is
shown how to verify these global MACs without revealing the secret global key. In [DZ13] the authors adapt
the technique from [DPSZ12] for the case of small finite fields, in a way which allows one to authenticate
multiple field elements at the same time, without requiring multiple MACs. This is performed using a novel
application of ideas from coding theory, and results in a reduced overhead for the online phase.

One can think of the 2PC Tiny-OT protocol from [NNOB12] as applying the MAC based authentication
technique of [BDOZ11] to the two party, binary circuit case, with a pre-processing which is based on OT
as opposed to semi-homomorphic encryption. Whilst the authentication in [LOS14] is based on the SPDZ
MAC’ing method. Part of our unification is to utilize the MACs from the SPDZ protocol in both the 2PC
and the MPC variants; and thus also the secret sharing methodology from [LOS14, DPSZ12] to the 2PC
variant.

We start from a classic textbook protocol for 2PC [Gol04, Sec. 7.3]. In this protocol, Alice holds secret
shares xA, yA and Bob holds secret shares xB , yB of some bits x, y s.t. xA ⊕ xB = x and yA ⊕ yB = y. Alice
and Bob want to compute secret shares of z = g(x, y) where g is some Boolean gate, for instance the AND
gate: Alice and Bob need to compute a random sharing zA, zB of

z = x · y = (xA · yA)⊕ (xA · yB)⊕ (xB · yA)⊕ (xB · yB).

The parties can compute the AND of their local shares (xAyA and xByB), while they can use oblivious
transfer (OT) to compute the cross products (xAyB and xByA). Now the parties can iterate for the next
layer of the circuit, up to the end where they will reconstruct the output values by revealing their shares.

This protocol is secure against a semi-honest adversary: assuming the OT protocol to be secure, Alice
and Bob learn nothing about the intermediate values of the computation. It is easy to see that if a large
circuit is evaluated, then the protocol is not secure against a malicious adversary: any of the two parties
could replace values on any of the internal wires, leading to a possibly incorrect output and/or leakage of
information.

Our main contribution is a new way to find a particular committed OT-like primitive which allows both
a very efficient generation and a very efficient use: while previous results based on committed OT require
hundreds of exponentiations per gate, our cost per gate is in the order of hundreds of hash functions. To the
best of our knowledge, we present the first practical approach to extending a few seed OTs into a large number
of committed OT-like primitives. Of more specific technical contributions, the main is that we manage to do
all the proofs efficiently, thanks also to the preprocessing nature of our protocol: We obtain active security
paying only a constant overhead over the passive-secure protocol in [IKNP03].

At the heart of both our 2PC and MPC protocols is a method, called aBit, for authenticating random bits
via pairwise MACs, which itself is based on our efficient protocol for OT-extension. Our aim is to use this
efficient two-party process as a black-box to produce our unified 2PC and MPC variants. In the case of 2PC
a local computation enables us to transform from the authenticated random bits with pairwise MACs to our
globally authenticated secret shared values. Unfortunately, if we extend this procedure naively to the three
party case and beyond, we would obtain (for example) that parties P1 and P2 could execute the protocol so
that P1 obtains a random bit and a MAC, whilst P2 obtains a key for the MAC used to authenticate the
random bit. However, party P3 obtains no authentication on the random bit obtained by P1, nor does it
obtain any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown global random key and
where each party holds a share of this key. Then by executing the pairwise aBit protocol, we are able to
obtain a secret shared value, as well as a shared MAC, by all n-parties. This resulting MAC is identical to
the MAC used in the SPDZ protocol from [DKL+13]. This allows us to obtain authenticated random shares
in the multi-party case.
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The online phase will then follow similarly to [DKL+13], if we can realize a protocol to produce “multi-
plication triples”. Thus we then present protocols to produce such Beaver triples from the aBits. This is done
in the 2PC case by utilizing a complex method to produce authenticated random OTs and authenticated
random ANDs (called aOTs and aANDs). In the MPC case we are able to utilize our basic extended OTs
to produce the multiplication triples; which is less efficient when specialised to the 2PC case than our spe-
cialised protocol. In the generation of aANDs and aOTs, we replace cut-and-choose with efficient, slightly
leaky proofs and then use a combiner to get rid of the leakage: When we preprocess for ` gates and combine
B leaky objects to get each unleaky object, the probability of leaking is (2`)−B = 2− log2(`)(B−1). As an
example, if we preprocess for 220 gates with an overhead of B = 6, then we get leakage probability 2−100.

1.3 Paper Overview

In Section 2 we set up the various authentication methods for the secret sharing schemes used in this paper. In
Section 3 we define some of the basic primitives which we will use throughout the paper. Then in Section 4
we present the general 2PC/MPC protocol, and describe the pre-processing functionality we utilize. We
show that the online 2PC/MPC functionality can be realised assuming a secure implementation of the pre-
processing functionality. Then in Section 5 we present our main technical results on how to extend a number
of seed OTs to a large number of pairwise authenticated random OTs. Utilizing these components we are
then able to discuss our two pre-processing implementations. We first discuss the general MPC variant in
Section 6, and then turn to an optimized variant in the case of two parties in Section 7.

2 Authenticated Secret Sharing

Most of our protocols will be processing binary data, i.e. elements in the finite field F2. However, to ensure
security we will often require additional elements in extensions of F2, which we shall denote F. The exact
degree of F will depend on the precise context, if the degree is not clear from the context we will write Fm2 . To
aid exposition we will freely move between thinking of elements in F as finite field elements or as bit-strings
of a fixed length; thus we identify Fm2 with F2m via some implicit public basis.

2.1 Basic Secret Sharing

We will additively secret share bits and elements in F, among a set of parties P = {P1, . . . , Pn}, and
sometimes abuse notation identifying subsets I ⊆ {1, . . . , n} with the subset of parties indexed by i ∈ I.
We write 〈a〉I if a is shared amongst the set I = {i1, . . . , it} with party Pij holding a value aij , such that⊕

ij∈I aij = a. Also, if an element x ∈ F2 (resp. β ∈ F) is additively shared among all parties we write 〈x〉
(resp. 〈β〉). We adopt the convention that if a ∈ F2 (resp. β ∈ F) then the shares also lie in the same field,
i.e. ai ∈ F2 (resp. βi ∈ F).

Linear arithmetic on the 〈·〉I sharings can be performed as follows. Given two sharings 〈x〉Ix = {xij}ij∈Ix
and 〈y〉Iy = {yij}ij∈Iy we can compute the following linear operations locally

a · 〈x〉Ix = {a · xij}ij∈Ix ,
a⊕ 〈x〉Ix = {a⊕ xi1} ∪ {xij}ij∈Ix\{i1},

〈x〉Ix ⊕ 〈y〉Iy = 〈x⊕ y〉Ix∪Iy

= {xij}ij∈Ix\Iy ∪ {yij}ij∈Iy\Ix ∪ {xij ⊕ yij}ij∈Ix∩Iy .

2.2 Authenticating Secret-Shared Values

Our main technique for authentication of secret shared bits is applied by placing an information theoretic
tag (MAC) on the shared bit x. There are two ways to authenticate a secret globally held by a system of
parties, one is to authenticate the shares of each party, as in [BDOZ11], the other is to authenticate the secret
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itself, as in [DPSZ12]. In addition we can also have authentication in a pairwise manner, as in [BDOZ11], or
in a global manner, as in [DPSZ12]. Both combinations of these variants can be applied, but each implies
important practical differences, e.g., the total amount of data each party needs to store and how checking
of the MACs is performed. In this work we will use a combination of different techniques, indeed the main
technical trick is a method to pass from the technique used in [BDOZ11] to the technique used in [DPSZ12].
The use of SPDZ style MACs in our main protocol, as opposed to BDOZ or NNOB style MACs allows our
protocol to evaluate reactive functionalities without needing to re-run the pre-processing phase.

The authenticating key is a random line in F, and the MAC on x ∈ F2 is its corresponding line point,
thus, the linear equation µδ(x) = νδ(x) ⊕ (x · δ) holds, for some µδ(x), νδ(x), δ ∈ F. We will use these lines
in various operations6, for various values of δ (lying in finite fields of different degrees). In particular, there
will be a special value of δ, which we denote by α and assume to be 〈α〉P shared, which represents the global
key for our online MPC protocol. The degree of the field containing α, and hence the size of the bitstring
representing α, will be equal to the statistical security parameter of our protocol σ.

The key α will be the same key for every bit that needs to be authenticated in the main MPC protocol.
It will turn out that for the key α we always have να(x) = 0. By abuse of notation we will sometimes refer
to a general δ also as a global key, and then the corresponding νδ(x), is called the local key.

Distinguishing between parties, say I, that can reconstruct bits (together with the line point), and those
parties, say J , that can reconstruct the line gives a natural generalization of both ways to authenticate, and
it also allows to move easily from one to another. We write [x]Iδ,J if there exist µδ(x), νδ(x) ∈ F such that:

µδ(x) = νδ(x)⊕ (x · δ),

where we have that x ∈ F2 and µδ(x) are 〈·〉I shared, and νδ(x) and δ are 〈·〉J shared, i.e. there are values
xi, µi, and νj , δj , such that

x =
⊕
i∈I

xi, µδ(x) =
⊕
i∈I

µi, νδ(x) =
⊕
j∈J

νj , δ =
⊕
j∈J

δj .

Notice that µδ(x) and νδ(x) depend on δ and x: we can fix δ and so obtain key-consistent representations
of bits, or we can fix x and obtain different key-dependant representations for the same bit x. To ease the
reading, we drop the sub-index J if J = P, and, also, the dependence on δ and x when it is clear from the
context. We note that in the case of Ix = Jx then we can assume νj = 0.

When we take the fixed global key α and we have Ix = Jx = P, we simplify notation and write
JxK = [x]Pα,P . By our comment above we can, in this situation, set νj = 0 7. This simplification means that a
JxK sharing is given by two sharings

(
〈x〉P , 〈µ〉P

)
. Notice that the J·K-representation of a bit x implies that x

is both authenticated with the global key α and that it is 〈·〉-shared, i.e. its value is actually unknown to the
parties. Looking ahead we say that a bit JxK is partially opened if 〈x〉 is opened, i.e. the parties reveal the
shares of x, but not the shares of the MAC value µα(x). In [DPSZ12] the data is shared via our JxK notation,
except that the MAC key value ν is set equal to ν = ν′/α, where ν′ being a public value, as opposed to
a shared value. Our JxK sharing is however identical to that used in [DKL+13], bar the differences in the
underlying finite fields.

With the above notation the MAC’d secret sharing scheme of [BDOZ11] is one where each data element x
is shared via [xi]iαj ,j sharings. Thus the data is shared via a 〈x〉 sharing, i.e. x =

⊕
xi, and the authentication

is performed via [xi]iαj ,j sharings, i.e. we are using two sharing schemes simultaneously. In [NNOB12], in
the two party setting, the authors create sharings [x1]1∆1,2 of a sharing of a bit x1 held by party P1, and
authenticated to party P2, and a sharing [x2]2∆2,1 of a sharing of a bit x2 held by party P2 and authenticated
to party P1. These are the characteristic two variant of the sharings proposed in the multi-party case
in [BDOZ11]. Their two party protocol then works on a pair of these sharings [x1|x2]. We let *x+ denote a
6 For example, we will also use lines to generate OT-tuples, i.e. quadruples of authenticated bits which satisfy the
algebraic equation for a random OT.

7 Otherwise one can subtract νj from µj , before setting νj to zero.
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sharing of a value x = x1 ⊕ x2 in the form [x1|x2], i.e. where x1 is shared via [x1]1∆1,2 and x2 is shared by
[x2]2∆2,1. The following procedure allows us to locally transform from a *x+ sharing to a JxK sharing for the
key ∆ = ∆1 ⊕∆2:

– Party P1 holds x1, ∆1, µ∆2(x1) and ν∆1(x2); whilst party P2 holds x2, ∆2, µ∆1(x2) and ν∆2(x1), where
we have µ∆2(x1) = ν∆2(x1)⊕ (x1 ·∆2) and µ∆1(x2) = ν∆1(x2)⊕ (x2 ·∆1).

– Party P1 sets µ1 = ν∆1(x2)⊕ µ∆2(x1)⊕ (x1 ·∆1).
– Party P2 sets µ2 = ν∆2(x1)⊕ µ∆1(x2)⊕ (x2 ·∆2).
– Party P1’s sharing is then (x1, µ1), whilst party P2’s sharing is (x2, µ2).

We then have as required

µ1 ⊕ µ2 = (ν∆1(x2)⊕ µ∆2(x1)⊕ (x1 ·∆1))⊕ (ν∆2(x1)⊕ µ∆1(x2)⊕ (x2 ·∆2)) ,
= (ν∆1(x2)⊕ ν∆2(x1)⊕ (x1 ·∆2)⊕ (x1 ·∆1))⊕ (ν∆2(x1)⊕ ν∆1(x2)⊕ (x2 ·∆1)⊕ (x2 ·∆2)) ,
= (x1 · (∆2 ⊕∆1))⊕ (x2 · (∆1 ⊕∆2)) ,
= (x1 ⊕ x2) ·∆ = x ·∆.

Thus we can pass in the two-party case from the sharing methodology used in [BDOZ11], to our more general
method, with no need for interaction. Extending this ability to transform [BDOZ11] style pairwise sharings
to our J·K sharing in the multi-party case will be one of the subjects of Section 6.

2.3 Arithmetic on JxK Shared Values.

Given two representations

[x]Ixδ,Jx =
(
〈x〉Ix , 〈µδ(x)〉Ix , 〈νδ(x)〉Jx

)
and [y]Iyδ,Jy =

(
〈y〉Iy , 〈µδ(y)〉Iy , 〈νδ(y)〉Jy

)
,

under same the δ, the parties can locally compute

[x⊕ y]Ix∪Iyδ,Jx∪Jy =
(
〈x〉Ix ⊕ 〈y〉Iy , 〈µδ(x)〉Ix ⊕ 〈µδ(y)〉Iy , 〈νδ(x)〉Jx ⊕ 〈νδ(y)〉Jy

)
using the arithmetic on 〈·〉I sharings above.

Let JxK =
(
〈x〉, 〈µ(x)〉

)
and JyK =

(
〈y〉, 〈µ(y)〉

)
be two different authenticated bits. Since our sharings are

linear, as well as the MACs, it is easy to see that the parties can locally perform linear operations:

JxK⊕ JyK =
(
〈x〉 ⊕ 〈y〉, 〈µ(x)〉 ⊕ 〈µ(y)〉

)
= Jx⊕ yK

a · JxK =
(
a · 〈x〉, a · 〈µ(x)〉

)
= Ja · xK,

a⊕ JxK =
(
a⊕ 〈x〉, 〈µ(a⊕ x)〉

)
= Ja⊕ xK.

where 〈µ(a⊕ x)〉 is the sharing obtained by each party i ∈ P holding the value (αi · a)⊕ µi(x).
This means that the only remaining question to enable MPC on J·K-shared values is how to perform

multiplication and how to generate the J·K-shared values in the first place. Note, that a party Pi that wishes
to enter a value into the MPC computation is wanting to obtain a [x]iα,P sharing of its input value x, and
that this is a JxK-representation if we set xi = x and xj = 0 for j 6= i.

3 Basic Primitives

Through out this paper we will repeatedly use a common set of simple primitives to implement our protocols.
In this section we present these basic primitives and discuss their computational complexity so that we can
later estimate the complexity of protocols implemented using these primitives.
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3.1 Security Model

We prove our protocols static, active secure in the UC framework [Can01,Can20], and we assume the reader
to be familiar with it. All our ideal functionalities and protocols can be phrased in the simplified version of
the UC framework presented in [CCL15].

Definition 1 (Securely Implements). Let Π be a protocol, let F be an ideal functionality and let G be a list
of ideal functionalities. We say that Π securely implements F in the G-hybrid model if Π securely implements
F in the sense of [CCL15] with static and active security while only using calls to ideal functionalities in G.

To simplify some of the statements of our results we use the following terminology.

Definition 2 (Linear and Local Reduction). We say that an ideal functionality F is reducible to an
ideal functionality G if there exists Π such that Π securely implements F while using only one call to G. We
use equivalent to denote reducibility in both directions. We say that F is locally reducible to G if the parties in
Π do not communicate except via the one call to F . We say that F is linear reducible to G if all parties in Π
have a computing time linear in their inputs and outputs. It is easy to see that these notions are transitive.

3.2 Hash Functions

We use a hash function H : {0, 1}∗ → {0, 1}ψ. We sometimes use H to mask a message, as in H(x)⊕M . If
|M | 6= ψ, we will abuse the notation and use H(x) ⊕M to denote prg(H(x)) ⊕M , where prg is a pseudo-
random generator prg : {0, 1}ψ → {0, 1}|M |. We model the function H as a random oracle (RO). We typically
use H for two tasks: 1) As a prg to extend a string s ∈ {0, 1}ψ to some longer string s′ ∈ {0, 1}` for some
` = poly(ψ). 2) To hash a long string s ∈ {0, 1}` to a short string for some s′ ∈ {0, 1}ψ. When we attempt
to sketch the complexity of these tasks we count both tasks as `/ψ calls to the hash function H. We will
also use a collision-resistant hash function G : {0, 1}2ψ → {0, 1}ψ.

As in other works on MPC protocols whose focus is efficiency [KS08,HEK+11,DKL+13,NNOB12,LOS14,
PSSW09], we are content with a proof in the random oracle model. What is the exact assumption on the
hash function that we need for our protocol to be secure, as well as whether this can be implemented under
standard cryptographic assumptions is an interesting theoretical question, see [AHI11,CKKZ12].

3.3 Oblivious Transfer

We use a two party oblivious transfer (OT) functionality: we denote by FOT the regular
(2

1
)
-OT functionality,

i.e. P1 inputs two messages M0 and M1 to FOT and P2 inputs a choice bit b. Nothing is output to P1 and
Mb output to P2. We use the notation FOT(`, τ) for the OT functionality that provides ` OTs with messages
in {0, 1}τ . When the length of messages and/or amount of OTs are clear from context we may drop these
parameters.

The Functionality FOT(`, τ)

OT:
1. The functionality waits for input (M i

0,M
i
1)i∈[`] ∈ {0, 1}2τ` from P1 and (bi)i∈[`] ∈ {0, 1}` from P2.

2. The functionality outputs (M i
bi

)i∈[`] to P2 and nothing to P1.

Figure 1 The Oblivious Transfer Functionality

We will often make use of a randomized version of this functionality. The randomized version of the FOT
functionality samples M0,M1 and b uniformly at random and then outputs (M0,M1) to P1 and (b,Mb) to
P2. When considering the randomized version of OT we will let corrupted parties choose their own random
values. Say P2 above was corrupted, he then first gets to input Mb and b, the functionality then samples
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Mb⊕1 uniformly at random and outputs M0 and M1 to P1. We denote the randomized version of OT by
ROT and name the corresponding functionality FROT.

We will not consider a concrete implementation of the FOT or FROT functionalities. When estimating
concrete complexity of our protocols we will use FROT(`, ψ) and FOT(`, ψ) as units of computational com-
plexity, i.e., the functionality that does ` (random) OT’s with messages of length ψ, the computational
security parameter.

We note that we can easily implement FROT(`, τ) for any τ = poly(ψ) using a prg and a FROT(`, ψ)
functionality: simply use FROT(`, ψ) to transfer seeds of length ψ and then extend these seeds to length τ
using the hash function H as described above, i.e., the cost of FROT(`, τ) becomes one call to FROT(`, ψ)
and τ/ψ calls to H.

3.4 Commitments

We use a general commitment functionality FComm(τ) for strings of length τ . We use this functionality both
between two parties and between several parties in the case of a multiparty protocol. The functionality is
described in Figure 2 for any number of parties. Note that we allow a corrupt party to refuse to open a
commitment using the NoOpen command.

In the programmable RO model FComm can be implemented very efficiently using a few calls to a hash
function as described formally in the protocol ΠComm in Figure 3. To commit, the committer broadcasts a
hash of the value v to be committed concatenated with a random bit string rv. To open the commitment the
committer broadcasts v, rv to the other parties who check if the hash matches the commitment, i.e., each
party uses H to hash a string of τ + ψ bits to ψ bits, so the total cost of commitment and opening is two
broadcasts and n(τ/ψ + 1) calls H where n is number of parties involved in the protocol.

Below we prove that ΠComm securely implements FComm in the programmable RO model.

The Functionality FComm(τ)

Commit:
On input (comm, v, i, τv) from Pi, where v ∈ {0, 1}τ ∪ {⊥}, and τv is a unique handle independent on v
associated with the commitment, the functionality first stores (v, i, τv) and then outputs (i, τv) to all parties.

Open:
On input (open, i, τv) from Pi, where an entry (v, i, τv) is stored in the functionality, the functionality outputs
(v, i, τv).
If a corrupt Pi inputs (NoOpen, i, τv), where an entry (v, i, τv) is stored in the functionality, the functionality
outputs (⊥, i, τv) to all parties.

Figure 2 The Commitment Functionality

Protocol ΠComm

Commit:
To commit to a value v ∈ {0, 1}τ , Pi samples a uniformly random rv ∈ {0, 1}ψ and then defines the opening
as ov = (i||v||rv) and the commitment as cv = H(ov). Finally, Pi broadcasts (comm, cv, i, τv) to all parties,
where τv is some unique handle chosen independt from v.

Open:
To open the previously committed value v Pi broadcasts (open, ov, i, τv) to all parties. On receiving
(open, ov, i, τv) all parties Pj check if H(ov) = H(i||v||rv) = cv. If so, Pj outputs (v, i, τv), otherwise Pj
outputs (⊥, i, τv).

Figure 3 The Protocol Implementing FComm(τ)
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Theorem 1. The protocol ΠComm described in Figure 3 securely implements FComm(τ) in the programmable
RO model.
Proof. We consider the simulation in the two separate situations where the committer Pi is honest and
corrupt respectively.

When Pi is honest, the simulator, upon receiving (comm, i, τ) from FComm, simulates the commit phase
of the protocol by picking a uniformly random c and broadcasting (comm, c, i, τ) to the corrupted parties.
To simulate the opening phase the simulator first receives (open, v, i, τ) from FComm then samples a random
rv ∈ {0, 1}ψ and programs the RO so that H(i||v||rv) = c. Finally the simulator broadcasts (open, ov, i, τ) =
(open, i||v||rv, i, τ) to the corrupted parties. Note that the simulation is perfect unless the adversary has
queried H on input i||v||rv before the simulator programs the RO. However, since this would require the
adversary to guess the uniformly random string rv ∈ {0, 1}ψ this happens with at most negligible probability.

When Pi is corrupt, the simulator simulates broadcast by simply forwarding Pi’s messages. The simulation
of the commit phase starts by Pi broadcasting some (comm, c∗, i, τ) where c∗ may or may not be obtained by
the adversary querying H on some input o∗ = i||v∗||r∗. In the former case the simulator can extract o∗ from
the call to H, in the latter the simulator picks o∗ = i||v∗||r∗ with uniformly random v∗||r∗ ∈ {0, 1}τ+ψ. In
either cases the simulator inputs (comm, v∗, i, τ) to FComm. In the opening phase the corrupt Pi broadcasts
(open, o′, i, τ) for some o′ = i||v′||r′. Now the simulator checks if H(o′) = c∗, and if so inputs (open, i, τ) to
FComm, and otherwise inputs (NoOpen, i, τ) making the honest parties output (v∗, i, τ) or (⊥, i, τ) respectively.
Since the simulator simply forwards the messages of Pi the only way to distinguish real protocol from the
simulation is the output of the honest parties. Note then that in both real world and simulation the honest
parties only output (⊥, i, τ) if H(o′) 6= c∗. So the only hope to distinguish the real world from the simulation
is if the corrupt party finds o′ so that v′ 6= v∗ and H(o′) = c∗. In this case the honest parties output (v′, i, τ)
in the real world and (v∗, i, τ) in the simulation. However, this would require the adversary to either find a
collision for H (in the case o∗ could be extracted) or to find a preimage of H for the string c∗ (in the case o∗
was picked by the simulator). Either way by the properties of RO’s this can happen with at most negligible
probability, so the simulation is indistinguishable from the real world.

ut

3.5 Equality Check
To simplify the exposition of our protocols we define a functionality FEQ(τ) which allows two parties to
each input a string of length τ and check if the two strings are equal. In our protocols we will use FEQ to
detect cheating. Inequality will indicate that one party must have cheated and the protocol will be aborted,
i.e., in our use of the primitive honest parties will never input unequal strings. For this reason we mainly
need FEQ to guarantee independence of inputs, i.e. we do not require the FEQ functionality to protect the
privacy of its inputs in case of inequality. Therefore, the functionality leaks both strings, which makes secure
implementation easy using the FComm functionality. The FEQ functionality is described formally in Figure 4.

The Functionality FEQ(τ)

Honest Parties
1. The functionality waits for inputs S1, S2 ∈ {0, 1}τ from P1 and P2 respectively.
2. The functionality outputs to both parties (equal, S1, S2) if S1 = S2 and (unequal, S1, S2) otherwise.

Corrupt Parties
If P1 is corrupted the functionality behaves as above, expect before it gives output to P2 it waits for a special
input from P1. On input deliver the functionality outputs to P2 as above. On input abort the functionality
outputs abort to P2 instead of the usual output.

Figure 4 The Equality Functionality

For completeness we give the simple protocol ΠEQ in Figure 5 and prove that it securely implements
FEQ in the FComm hybrid model. In the protocol the two parties essentially just exchange and compare their
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inputs using a single invocation of FComm to ensure input independence, i.e., with this implementation the
cost of FEQ becomes simply 2(τ/ψ) calls to H. Note that in Figure 4 we allow a corrupt P1 to abort the
protocol after she receives her output but before P2 receives his output. In fact, this ability is implied since
we want security with dishonest majority. In Figure 4 we only make this explicit as we will use it in the
simulation of ΠEQ.

Protocol ΠEQ

1. P1 inputs (comm, S1, 1, τS1 ) to FComm.
2. On receiving (1, τS1 ) P2 sends S2 to P1.
3. P1 inputs (open, 1, τS1 ) to FComm and outputs (equal, S1, S2) if S1 = S2 and (unequal, S1, S2) otherwise.
4. If P2 receives (S1, 1, τS1 ) from FComm he outputs (equal, S1, S2) if S1 = S2 and (unequal, S1, S2) otherwise.

If P2 receives (⊥, 1, τs1 ) from FComm he outputs abort.

Figure 5 The Protocol Implementing FEQ(ψ)

Theorem 2. The protocol ΠEQ securely implements FEQ(τ) in the FComm(τ) hybrid model.

Proof. The proof is straight forward for the case of no corrupted parties and both parties being corrupted.
In the case of corrupted P1 the simulator extracts P1’s input S1 from the call to FComm and forwards

it to FEQ. When FEQ leaks (·, S1, S2) the simulator forwards S2 to P1. Finally if P1 refuses to open her
commitment to S1 (by inputting (NoOpen, 1, τS1) to FComm) the simulator inputs abort to FEQ. If P1 opens
her commitment S inputs deliver to FEQ. Since S extracts the input of honest P2 from FEQ the message
send to P1 is identical to the real protocol. By the properties of FComm the output of honest P2 is also
identical to the real world, i.e., the simulation is perfect.

In case of corrupted P2 the simulator simulates FComm by simply sending a handle for S1 to P2. When
P2 sends his input S2 the simulator forwards it to FEQ. Since FEQ leaks S1 the simulator can easily simulate
the opening of FComm. Again the simulation is clearly perfect. ut

The relationship between the functionalitie FEQ and FComm and the protocol ΠEQ are presented in
Figure 6. We use such diagrams throughout this paper to explain how functionalities are related, and how
protocols are used to implement the functionalities.

FComm
Figure 2

FEQ
Figure 4

ΠEQ

Figure 6 How FEQ is Built up From FComm

4 The 2PC and MPC Protocols in the Preprocessing Model

Our aim is to construct a protocol for arithmetic operations over F2. We work in the pre-processing model. In
this model the circuit evaluation is divided in two phases. An offline phase produces correlated randomness
which is almost independent to the circuit at hand8. To this end we use expensive primitives which typically
need computational assumptions. In the online phase the actual evaluation of the circuit takes place. This
8 During the offline phase only the size of the circuit is known
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phase is (essentially) information-theoretic, and hence very efficient, because we have “moved” all heavy
operations into the offline phase. The only non-information theoretic primitives used in this phase are a
small number of symmetric primitives used to perform checks on the MACs; which are amortized over
possibly thousands of the main information theoretic steps. More precisely, we want to implement the ideal
functionality given in Figure 7.

The Functionality FOnline

Initialize: On input (init) the functionality activates and waits for an input from the adversary. Then it does
the following: if it receives abort, it waits for the adversary to input a set of corrupted parties, outputs it to
the parties, and aborts; otherwise it continues.

Input: On input (input, Pi, varid, x) from Pi and (input, Pi, varid, ?) from all other parties, with varid a fresh
identifier, the functionality stores (varid, x).

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory and
varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x⊕ y).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if varid1, varid2 are present in memory
and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores (varid3, x · y).

Output: On input (output, varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid, y) and outputs it to the adversary. The functionality waits for an input from the adversary.
If this input is Deliver then y is output to all parties. Otherwise it outputs ∅ to all parties.

Figure 7 Secure Function Evaluation

It models the arithmetic operations that are needed for the evaluation of the circuit. The relationship
between this functionality (our main goal of the paper) and the sub-functionalities we will use are presented
in Figure 8.

FComm
Figure 2

FPrep
Figure 10

FOnline
Figure 7

ΠOnline

ΠOnline

Figure 8 How FOnline is Built up From FComm and FPrep

4.1 Ensuring Robust Computations

The basic idea to implement FOnline is to use precomputed correlated randomness. In this section we assume
this data to be given by an offline functionality, in a secret-shared and authenticated fashion. Before we go
into more details, we first explain how honest parties cope with dishonest behaviour.

At several points of the implementations of the online and offline functionalities we partially open values;
recall this means that for a JxK sharing we open 〈x〉 but not the shares of µα(x). Consequently, we need
a mechanism to check that we are working with the correct values, or in other words, with (some linear
transformation of) the values that possibly corrupted parties secret-shared in the first place . In [DKL+13]
it was shown how to do this check on the (partially) opened values, and this is the one we also use here; see
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Figure 9 for details. The protocol, named MACCheck, utilizes a pseudorandom function to allow the parties
agree on fresh-sampled random values. To agree on a fair seed for the PRF (i.e. a seed that is not known in
advance) the parties use the ideal functionality FComm for commitments described in Figure 2.

We also emphasize that due to the linearity of the additive secret sharing and MACs, the check can
be postponed to the end of the protocol. Note this protocol enables the checking of multiple sets of values
without revealing the global secret key α, enabling support for reactive functionalities.

Protocol ΠMACCheck

Let F be a binary finite field with log2 |F| = σ.
The parties have a set of JaiK, sharings and public bits bi, for i = 1, . . . , t, and they wish to check that ai = bi,
i.e. they want to check whether the public values are consistent with the shared MACs held by the parties. As
input the system has sharings

(
〈α〉, {bi, 〈ai〉, 〈µ(ai)〉}ti=1

)
, such that if the MAC values are correct then we have

that µ(ai) = bi · α, for all i.

MACCheck({b1, . . . , bt}):
1. Every party Pi samples a seed si and asks FComm to broadcast τi = comm(si).
2. Every party Pi calls FComm with open(τi) and all parties obtain sj for all j.
3. Set s = s1 ⊕ · · · ⊕ sn.
4. Parties sample a random vector χ = PRFF,t

s (0) ∈ Ft; note all parties obtain the same vector as they
have agreed on the seed s.

5. Each party computes the public value b =
⊕t

i=1 χi · bi ∈ F.
6. The parties locally compute the sharings 〈µ(a)〉 = χ1 ·〈µ(a1)〉⊕· · ·⊕χt ·〈µ(at)〉 and 〈σ〉 = 〈µ(a)〉⊕b ·〈α〉.
7. Party i asks FComm to broadcast his share τ ′i = comm(σi).
8. Every party calls FComm with open(τ ′i), and all parties obtain σj for all j.
9. If σ1 ⊕ · · · ⊕ σn 6= 0, the parties output ∅ and abort, otherwise they accept all bi as valid authenticated

bits.

Figure 9 Method to Check MACs on Partially Opened Values

In order to understand the probability of an adversary being able to cheat during the execution of
Figure 9, the authors in [DKL+13] used a security game approach, which in turn was an adaptation of the
one in [DPSZ12]. For completeness, we state here both the protocol and the security game.

Game: Security Game for the MACCheck Protocol from Figure 9, Assuming Pseudorandom Functions
1: The challenger samples random sharing 〈α〉 ∈ F. It sets 〈µ(ai)〉 = ai ·〈α〉 and sends bits a1, . . . , at to the adversary.
2: The adversary sends back bits b1, . . . , bt.
3: The challenger generates random values χ1, . . . , χt ∈ F and sends them to the adversary.
4: The adversary provides an error ∆ ∈ F.
5: Set b =

⊕t

i=1 χi · bi, and sharings 〈µ(a)〉 =
⊕t

i=1 χi · 〈µ(ai)〉, and 〈γ〉 = 〈µ(a)〉 ⊕ b · 〈α〉. The challenger checks
that γ = ∆.

The adversary wins the game if there is an i ∈ {1, . . . , t} for which bi 6= ai, and the check goes through.
The second step in the game, where the adversary sends the bi’s, models the fact that corrupted parties
can choose to lie about their shares of values opened on the execution of the parent protocol. The offset ∆
models the fact that the adversary is allowed to introduce errors on the MACs.

Lemma 1 (See [DKL+13]). The protocol MACCheck is correct, i.e. it accepts if all the public values bi, and
the corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except with probability
2
|F| in case at least one value, or MAC, is not correctly computed.
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4.2 Implementing the Online Phase for Binary Circuits

The Functionality FPrep

Let A be the set of indices of corrupt parties and S the ideal adversary.

Initialize:
On input (Init) from honest parties, the functionality samples random αh for each h 6∈ A. It waits for the
adversary to input corrupt shares {αc}c∈A. If any c ∈ A outputs abort, then the functionality aborts and
returns the set of c ∈ A which returned abort. Otherwise the functionality sets α = α1 ⊕ · · · ⊕ αn, and
outputs αh to honest Ph.

Share-to-Party:
On input (Share, i) from all the parties the functionality samples, at random, ` bits rs. It proceeds as follows:
1. Generate JrsK = (〈rs〉, 〈µs〉, 〈α〉), such that the bit share of Pi is rs, and the bit share of Pj , j 6= i, is set

to zero. The adversary specifies MAC shares of corrupt parties.
2. The adversary specifies bits (esh)h/∈A,s≤`. The functionality then outputs (µ(rs)⊕ (esh ·αh))s≤` to honest

Ph, and (µ(rs))s≤` to corrupt Pc. Additionally, it output bits (rs)s≤` to Pi.
Thus, if we let es =

⊕
h/∈A e

s
h · αh, then it holds that µ(rs) = (rs · α)⊕ es, for each s ≤ `.

MTriple:
On input (MTriple) from all the parties, the functionality waits for the adversary to input abort or
continue . If it is told to abort, it outputs the special symbol ∅ to all parties.
Otherwise, for s = 1, . . . , `, it samples two random bits xs, ys, and sets zs = xs · ys. Then, for every bit
as ∈ {zs, xs, ys} the functionality produces an authentication by calling Authenticate(as).
Authenticate(a):

Given a bit a, this sub-procedure produces an authentication JaK = (〈a〉, 〈µ(a)〉, 〈α〉).
1. Set µ(a) = a · α.
2. Generate input sharing 〈a〉 and MAC sharing 〈µ(a)〉. (The adversary specifies bit shares {bc}c∈A,

and MAC shares {µc(a)}c∈A.)
Output (ah, µh(a)) to Ph, for h = 1, . . . , n.

Figure 10 Ideal Preprocessing

As we said earlier, we assume an ideal functionality that outputs correlated randomness to the parties.
More concretely, the parties are given access to a pre-computed list of bit triples {JxK, JyK, JzK} such that
z = x ·y (called multiplication triples). This data will be produced utilizing the offline functionality described
in Figure 10.

The parties use the data produced by FPrep to evaluate each multiplication gate. To see how this is done,
say we want to multiply two authenticated bits JaK, JbK, the parties take an unused triple {JxK, JyK, JzK} off
the list and do the following. They partially open JxK ⊕ JaK and JyK ⊕ JbK to obtain ε, ρ respectively. Then
the parties locally compute the linear function JcK = JzK⊕ (ε · JyK)⊕ (ρ · JxK)⊕ (ε · ρ). Correctness is given
by observing that c = z⊕ ((x⊕ a) · y)⊕ ((y ⊕ b) · x)⊕ ((x⊕ a) · (y ⊕ b)) = a · b, since z = x · y. Our protocol
to realise the functionality FOnline is then given by protocol ΠOnline in Figure 11. And we then have the
following theorem:

Theorem 3. In the (FComm,FPrep)-hybrid model, the protocol ΠOnline securely implements FOnline against
any static adversary corrupting up to n − 1 parties, assuming protocol MACCheck utilizes a secure pseudo-
random function PRFF,t

s (·).

Proof. We construct a simulator S such that an environment Z corrupting up to n − 1 parties cannot
distinguish whether it is playing with the ΠOnline attached with FPrep and FComm, or with the simulator S
and FOnline. We start describing the behaviour of the simulator S:
– The simulation of the Initialize procedure is performed running a copy of FPrep on query Init. All the

data of the corrupted parties are known to the simulator. If Z inputs abort to the copy of FPrep, then
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Protocol ΠOnline

Initialize: The parties call Init on the FPrep functionality to get the shares αi of the global MAC key α. If
FPrep aborts outputting a set of corrupted parties, then the protocol returns this subset of A. Otherwise the
operations specified below are performed according to the circuit.

Input: To share his input bit b, each party Pi queries command (Share, i) of FPrep. They obtain an authenticated
bit JrK only known to Pi. Party Pi broadcasts ρ = b⊕ r, and everyone sets Jr ⊕ ρK = JbK

Add: On input (JaK, JbK), the parties locally compute Ja⊕ bK = JaK⊕ JbK.
Multiply: On input (JaK, JbK), the parties execute either one of the folowing procedures

1. Call FPrep on input (MTriple), obtaining a random multiplication triple {JxK, JyK, JzK}. The parties then
perform:
(a) The parties locally compute JεK = JxK⊕ JaK and JρK = JyK⊕ JbK.
(b) The shares JεK and JρK are partially opened.
(c) The parties locally compute JcK = JzK⊕ (ε · JyK)⊕ (ρ · JxK)⊕ (ε · ρ).

Output: This procedure is entered once the parties have finished the circuit evaluation, but still the final
output JyK has not been opened.
1. The parties call the protocol ΠMACCheck on input of all the partially opened values so far. If it fails, they

output ∅ and abort. ∅ represents the fact that the corrupted parties remain undetected in this case.
2. The parties partially open JyK and call ΠMACCheck on input y to verify its MAC. If the check fails, they

output ∅ and abort, otherwise they accept y as a valid output.

Figure 11 Secure Function Evaluation in the FComm,FPrep-hybrid Model

the simulator does the same to FOnline and forward the output of FOnline to Z: If FOnline outputs abort,
the simulator waits for input a set of corrupted parties from Z and forward it to FOnline, and aborts;
otherwise it uses the Z’s inputs as preprocessed data.

– In the Input stage the simulator does the following. For the honest parties this step is run correctly with
dummy inputs; it reads the inputs of corrupted parties specified by Z. Then the simulator runs a copy
of Share command of FPrep sending back sharings [x]iα such that i ∈ A, where A is the set of corrupted
parties. When Z writes the outputs corresponding to the corrupted parties, the simulator writes these
values on the influence port of FOnline as inputs.

– The procedure Add, Multiply are performed according to the protocol and the simulator calls the
respective procedure to FOnline.

– In the Output step, the functionality FOnline outputs y to the S. Now the simulator has to provide
shares of honest parties such that they are consistent with y. It knows an output value y′ computed
using the dummy inputs for the honest parties, so it can select a random honest party and modify9 its
share adding y − y′ and modify the MAC adding α(y − y′), which is possible for the simulator, since it
knows α. After that the simulator opens y as in the protocol. If y passes the check, the simulator sends
deliver to FOnline.

All the steps of the protocol are perfectly simulated: during the initialization the simulator acts as FPrep;
addition does not involve communication, while multiplication implies partial opening: in the protocol, as
well as in the simulation, this opening reveals uniform values. Also, MACs have the same distributions in
both the protocol and the simulation.

Finally, in the output stage, Z can see y and the shares from honest parties, which are uniform and
compatible with y and its MAC. Moreover it is a correct evaluation of the function on the inputs provided
by the parties in the input stage. The same happens in the protocol with overwhelming probability, since
the probability that a corrupted party is able to cheat in a MACCheck call is 2/|F| (see Lemma 1). ut

Thus all that remains is to implement the FPrep functionality. It is to this task that the remainder of
this paper is devoted.

9 A little extra bookkeeping is needed at this point if two outputs are linearly related, this minor modification is left
to the reader.
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5 Extending Oblivious Transfer

In this section we show how we can produce a virtually unbounded number of OTs from a small number of
seed OTs. The amortized work per produced OT is linear in ψ, the security parameter, or simply a few calls
to a hash function. One can see this as the “core” of our technique to enable 2PC and MPC protocols. In later
sections we will see how the functionalities created in this section can enable us to build the pre-processing
functionality of the previous section. In fact we will concentrate on extending a few OTs to random OTs
(ROTs), i.e. we will show how to generate a very large number of ROTs from a few OTs. As shown in [Bea95]
one can easily obtain OT from precomputed ROTs, thus this is essentially without loss of generality.

F∆-ROT
Figure 21

FROT
Figure 13

LA-leaky
F∆-ROT
Figure 14

LA-leaky
FΓ -ROT
Figure 16

FOT
Figure 1

FEQ
Figure 4

ΠΓ -ROT

ΠΓ -ROT

LA-leaky Π∆-ROT

Π∆-ROT

ΠROT

Figure 12 Relationship Between the OT Functionalities

The relationship between the various functionalities in this section is described in Figure 12. We note
that all functionalities in this section are two party functionalities. To implement our OT-extension protocol
we go via yet an other variant of OT we call ∆-ROT, inspired by an intermediate step of the highly efficient
semi-honest OT-extender of [IKNP03]. A ∆-ROT is a variant of ROT where the senders messages M0 and
M1 are correlated in such a way that M0⊕M1 = ∆, for some constant ∆ unknown to P2, which we will call
the global key. Given a functionality that provides ∆-ROTs it is very easy to implement ROT, thus the main
work of this section goes into extending a few OTs to many ∆-ROTs efficiently and with malicious security.

Overview:

– As we shall see our construction goes via a number of leaky functionalities, i.e. functionalities where
the adversary might mount an attack to gain some leakage. Therefore, we will start this section by
introducing the idea of a leakage agent to abstract away the concrete attacks of the adversary.

– In Section 5.2 we implement FROT using a functionality providing a variant of ∆-ROT which are leaky.
By leaky we mean that P2 may learn a few bits of the global key ∆. We call this functionality a leaky
F∆-ROT functionality. The implementation simply uses a hash function (modeled as a random oracle) to
break the correlation between messages from F∆-ROT.

– In Section 5.3 we then consider a functionality similar to the F∆-ROT functionality but with reversed
roles, i.e. with P1 as the receiver and P2 as sender. We call this functionality FΓ -ROT. We notice that if
we relax this functionality, by allowing a few of P1’s choice bits to leak to P2 the resulting leaky FΓ -ROT
functionality is essentially equivalent to the leaky F∆-ROT functionality, i.e. the leakage on choice bits in
FΓ -ROT becomes leakage on ∆ in F∆-ROT.
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– In Section 5.4 we implement the leaky FΓ -ROT functionality using a few OT’s in the following way: P1
inputs random choice bits ci in an OT, and P2 is supposed to input random messages (N i

0, N
i
0 ⊕ Γ )

so that P1 receives N i
ci = N i

0 ⊕ ciΓ . To ensure that P2 is being honest and uses the same Γ in most
OTs a check is performed, which restricts P2 to cheat in at most a few OTs. We notice that what P2
gains by using inconsistent Γ ’s in a few OTs is no more than learning a few of P1’s choice bits ci, thus
implementing the FΓ -ROT functionality.

– While the leaky F∆-ROT functionality is all we need for our OT-extension protocol, it is useful to have a
non-leaky version of this functionality. The non-leaky version is used in sections Section 6 and Section 7
to implement the earlier FPrep functionality. Therefore, in Section 5.7, using privacy amplification, we
use the leaky F∆-ROT functionality to implement a F∆-ROT functionality where the ∆ value is shorter
than in the leaky functionality but fully secure.

– Finally in Section 5.8 we sketch a complexity analysis counting the symmetric primitives used in the
protocol.

5.1 The Leakage Agent

As described above, our construction will go via a number of functionalities that are leaky in some way.
The setting is that there is a secret string ∆ ∈R {0, 1}τ and an adversary P1 who tries to guess ∆. Party
P1 can launch an attack which might leak some of the bits of ∆, but with some probability P1’s attack will
be detected. In this section we introduce the idea of a leakage agent, in order to abstract away the concrete
leakage attacks.

A leakage agent LA will be an interactive PPT algorithm that will interact with P1 and then possibly
specify what leakage to give to P1: P1 gets to first interact with LA in some way (specified by the interface of
LA). Following this interaction we input ∆ ∈R {0, 1}τ to LA. Based on the interaction with P1 LA computes
some S ⊆ [τ ] and c ∈ {0, 1} and outputs (S, c). Here S indicates the bits of ∆ to be leaked to P1 if the
attack is undetected, and c whether or not the attack is detected (c = 0 indicating detection). This models
that during P1’s attack, i.e. the interaction with LA, no bits of ∆ leak, but after the attack the set of bits
that does leak may depend on ∆ it self.

We need a measure of how many bits a leakage agent LA leaks. We do this via a game against an
unbounded adversary P1.

LeakageGame(LA, P1, τ)
∆ ∈R {0, 1}τ
P1(τ)↔ LA(τ)
(S, c)← LA(∆)
(gi)i∈S̄ ← P1(S, (∆i)i∈S)

Where S̄ = [τ ] \ S and P1(τ)↔ LA(τ) means P1 and LA interact each given τ as input.
We say that P1 wins if c = 1 and (∆i)i∈S̄ = (gi)i∈S̄ . Furthermore, we say that an adversary P1 is

optimal if she has the highest probability of any adversary of winning LeakageGame(LA, P1, τ). If there
were no leakage, i.e., S = ∅, then it is clear that an optimal P1 wins the game with probability exactly
2−τ . If P1 is always given exactly s bits and is never detected, then it is clear that an optimal P1 can win
the game with probability exactly 2s−τ . This motivates defining the number of bits leaked by LA to be
leakLA

def= log2(successLA) + τ , where successLA is the probability that an optimal P1 wins the leakage game.
We say that LA is κ-secure if τ − leakLA ≥ κ for all large enough τ , and if LA is κ-secure, then no P1 can win
the game with probability better than 2−κ (asymptotically).

We now rewrite the definition of leakLA to make it more workable. We denote by (LA, P1)(τ) the experi-
ment sampling (S, c) as in LeakageGame(LA, P1, τ). It is clear that an optimal P1 can guess all ∆i for i ∈ S̄
with probability exactly 2|S|−τ . This means that an optimal P1 wins with probability

τ∑
s=0

Pr ((S, c)← (LA, P1)(τ) : |S| = s ∧ c = 1) 2s−τ .
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To simplify this expression we define index variables Is, Js ∈ {0, 1} where Is is 1 iff c = 1 and |S| = s and
Js is 1 iff |S| = s when (S, c) ← (LA, P1)(τ). Note that Is = cJs and that

∑
s Js2s = 2|S|. So, if we take

expectation over (S, c)← (LA, P1)(τ), then we get that

τ∑
s=0

Pr ((S, c)← (LA, P1)(τ) : |S| = s ∧ c = 1) 2s =
τ∑
s=0

E [Is] 2s ,

where
τ∑
s=0

E [Is] 2s = E
[

τ∑
s=0

Is2s
]

= E
[

τ∑
s=0

cJs2s
]

= E
[
c ·

τ∑
s=0

Js2s
]

= E
[
c · 2|S|

]
.

Hence successLA = maxP1(2−τ E
[
c2|S|

]
) and

log2(successLA) = −τ + log2 max
P1

(
E
[
c2|S|

])
,

which shows that
leakLA = max

P1
log2

(
E
[
c2|S|

])
.

5.2 FROT from F∆-ROT

In this section we show how we implement the FROT as described in Figure 13. Note that this functionality
will be the result of our OT-extension.

The Functionality FROT(`, ψ)

Honest Parties
On input start from both P1 and P2 the functionality does the following.
1. The functionality samples (Xi

0, X
i
1)i∈[`] ∈R {0, 1}2ψ`, and outputs (Xi

0, X
i
1)i∈[`] to P1.

2. The functionality samples (bi)i∈[`] ∈R {0, 1}` and outputs (Xi
bi
, bi)i∈[`] to P2.

Corrupt Parties
1. If P1 is corrupt the functionality waits for her to input (Xi

0, X
i
1)i∈[`] ∈ {0, 1}2ψ`. The functionality then

outputs as above using these values.
2. If P2 is corrupt the functionality waits for him to input (Xi

bi
, bi)i∈[`] ∈ {0, 1}`(ψ+1). The functionality

then outputs as above using these values.

Figure 13 The Random OT Functionality FROT(`, ψ)

To this end we introduce the notion of a ∆-ROT. In contrast to ROT, in ∆-ROT the sender P1 first
receives random global key ∆ and then for each ∆-ROT P1 receives only one random message M i

0. The other
message is defined to beM i

1 = M i
0⊕∆, i.e. P2 receives random choice bit bi and messageM i

bi
= M i

0⊕bi∆. To
implement ROT it will suffice for us to consider a leaky variant of ∆-ROT. Namely, a variant where P2 may
learn some bits of the global key ∆. We call the functionality that provides such leaky ∆-ROTs a LA-leaky
F∆-ROT functionality and describe it in detail Figure 14, where LA is a leakage agent as described above. As
long as the leakage agent LA is ψ-secure such a functionality turns out to be enough to implement ROT.

To implement FROT using LA-leaky F∆-ROT, we notice that the F∆-ROT functionality resembles an
intermediate step of the passive-secure OT extension protocol of [IKNP03]: F∆-ROT is a random OT, where
all the sender’s messages are correlated, so that the XOR of the messages in any OT is a constant (the global
key of the F∆-ROT). This correlation can be easily broken using the random oracle. This idea leads to the
protocol for FROT described in Figure 15.
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The Functionality LA-leaky F∆-ROT(`, τ)

Honest Parties
On input start from both P1 and P2 the functionality does the following.
1. The functionality samples ∆ ∈R {0, 1}τ and outputs it to P1.
2. For all i ∈ [`] the functionality samples bi ∈R {0, 1} and M i

0 ∈R {0, 1}τ .
3. The functionality outputs (M i

0 ⊕ bi∆, bi)i∈[`] to P2 and (M i
0)i∈[`] to P1.

Corrupt Parties
1. If P2 is corrupt the functionality runs LA to sample (S, c), with P2 playing the role of the adversary and

where the functionality inputs ∆ to LA as its secret string. If c = 0 the functionality outputs fail to P1
and terminates. Otherwise, the functionality outputs (i,∆i)i∈S to P2.

2. Furthermore, if P2 is corrupt, the functionality waits to give output till it receives the message
(M̂ i

b̂i
, b̂i)i∈[`] from P2, where M̂ i

b̂i
∈ {0, 1}τ and b̂i ∈ {0, 1}. The functionality then sets bi = b̂i and

M i
0 = M̂ i

bi
⊕ bi∆ and outputs as described above.

3. If P1 is corrupt, the functionality waits to give output till it receives the message (∆̂, (M̂ i
0)i∈[`]) from

P1, where ∆̂, M̂ i
0 ∈ {0, 1}τ . The functionality then sets ∆ = ∆̂ and M i

0 = M̂ i
0 and outputs as described

above.

Figure 14 The LA-leaky F∆-ROT(`, τ) Functionality

Protocol ΠROT

1. P1 and P2 call a LA-leaky F∆-ROT(`, τ) functionality. The output to P2 is (M i
bi
, bi)i∈[`]. The output to P1 is

(∆, (M i
0)i∈[`]).

2. P2 computes Y i = H(M i
bi

) ∈ {0, 1}ψ and outputs (Y i, bi)i∈[`].
3. P1 computes Xi

0 = H(M i
0) ∈ {0, 1}ψ and Xi

1 = H(M i
0 ⊕∆) ∈ {0, 1}ψ and outputs (Xi

0, X
i
1)i∈[`].

Figure 15 The Protocol for Reducing FROT(`, ψ) to LA-leaky F∆-ROT(`, ψ)

Theorem 4. Let ψ be the security parameter and LA be ψ-secure on τ bits. Then the protocol in Figure 15
securely implements FROT(`, ψ) in the LA-leaky F∆-ROT(`, τ)-hybrid model. The work10. is O(τ`)

Proof. Correctness is simple: we have that M i
bi

= M i
0⊕ bi∆, so Y i = H(M i

bi
) = H(M i

0⊕ bi∆) = Xi
bi
. Clearly

the protocol leaks no information on the bi as there is no communication from P2 to P1. It is therefore
sufficient to look at the case of a corrupt P2. We are not going to give a simulation argument but just show
that Xi

1⊕bi is uniformly random to P2 except with probability poly(ψ)2−ψ.
Since Xi

1⊕bi = H(M i
0 ⊕ (1⊕ bi)∆) and H is a random oracle, it is clear that Xi

1⊕bi is uniformly random
to P2 until P2 queries H on Q = M i

0 ⊕ (1⊕ bi)∆. Since M i
bi

= M i
0 ⊕ bi∆ we have that Q = M i

0 ⊕ (1⊕ bi)∆
would imply that M i

bi
⊕Q = ∆. So, if we let P2 query H, say, on Q⊕M i

bi
each time it queries H on some

Q, which would not change its asymptotic running time, then we have that all Xi
1⊕bi are uniformly random

to P2 until it queries H on ∆. However this happens with probability at most 2−ψ by the ψ-security of LA.
Namely notice that all inputs to P2 are independent of ∆ except for what leakage he may get from LA. Thus,
a P2 that queries H on ∆ with probability better than 2−ψ would contradict the ψ-security of LA. ut

5.3 Leaky F∆-ROT From Leaky FΓ -ROT

We now consider a functionality similar to the leaky F∆-ROT functionality, but reversed in the sense that
P1 plays the role of receiver and P2 the role of sender and that the leakage is on the choice bits instead of
the global key, i.e. P2 receives a random global key Γ and random messages N i

0, while P1 receives random
choice bits ci and messages N i

ci = N i
0 ⊕ ciΓ . If P2 is corrupt he may learn some of the bits ci. We call this

functionality a leaky FΓ -ROT, and formally describe it in Figure 16.
10 counting hashing of τ bits as O(τ) work.
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The Functionality LA-leaky FΓ -ROT(τ, `)

Honest Parties
On input start from both P1 and P2 the functionality does the following.
1. The functionality samples Γ ∈R {0, 1}` and outputs it to P2.
2. For all i ∈ [τ ] the functionality samples ci ∈R {0, 1} and N i

0 ∈R {0, 1}τ .
3. The functionality outputs (N i

0 ⊕ ciΓ, ci)i∈[τ ] to P1 and (N i
0)i∈[τ ] to P2.

Corrupt Parties
1. If P2 is corrupt the functionality runs LA to sample (S, c), with P2 playing the role of the adversary and

where the functionality inputs (ci)i∈[τ ] to LA as its secret string. If c = 0 the functionality outputs fail
to P2 and terminates. Otherwise, the functionality outputs (i, ci)i∈S to P2.

2. As in the Figure 14 any corrupt party is allowed to specify the value of its output.

Figure 16 The LA-leaky FΓ -ROT(τ, `) Functionality

The LA-leaky FΓ -ROT(τ, `) provides τ leaky Γ -ROTs with messages of length `. It turns out that the leaky
FΓ -ROT functionality is actually equivalent to the leaky F∆-ROT functionality, i.e. given one functionality
simply renaming the outputs gives us the other, as demonstrated in Figure 17. We say this more formally in
Theorem 5.

Protocol LA-leaky Π∆-ROT

1. P1 and P2 invoke a LA-leaky FΓ -ROT(τ, `) functionality. P1 learns (N i
ci , ci)i∈[τ ] and P2 learns (Γ, (N i

0)i∈[τ ]).
2. P2 lets bj be the j’th bit of Γ and M j

bj
the string consisting of the j’th bits from all the strings N i

0,
i.e. M j

bj
= N1

0,j ||N2
0,j || . . . ||N `

0,j .
3. P1 lets ∆ be the string consisting of all the bits ci, i.e. ∆ = c1||c2|| . . . ||cτ , and lets M j

0 be the string
consisting of the j-th bits from all the strings N i

ci , i.e. M
j
0 = N1

c1,j ||N
2
c2,j || . . . ||N

τ
cτ ,j .

a

a It may be easier to think of this renaming in terms of bit matrices as in (1)

Figure 17 Protocol Reducing LA-leaky F∆-ROT(`, τ) to LA-leaky FΓ -ROT(τ, `)

Theorem 5. For all `, τ and LA the LA-leaky F∆-ROT(`, τ) and FΓ -ROT(τ, `) functionalities are linear locally
equivalent, i.e., can be implemented given the other in linear time without interaction.

Proof. The first direction (reducing leaky F∆-ROT to FΓ -ROT) is shown in Figure 17. The other direction
(FΓ -ROT to F∆-ROT) will follow by the fact that the renamings are reversible in linear time. One can easily
verify that for all j ∈ [`], M j

bj
is the correct message given choice bit bj and the values M j

0 and ∆, i.e.
M j
bj

= M j
0 ⊕ bj∆. This is perhaps easiest seen by viewing the renaming described in Figure 17 in terms of

bit matrices where the strings N i
c , Γ ∈ {0, 1}` are viewed as column vectors and strings M j

b , ∆ ∈ {0, 1}τ are
viewed as row vectors. Taking this view the following holds

N1
c1
. . . Nτ

cτ

 =

N1
0 . . . N

τ
0

⊕
c1Γ . . . cτΓ


=

 M1
b1
...

M `
b`

⊕
 b1∆

...
b`∆

 (1)
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=

 M1
0
...
M `

0

 ∈ {0, 1}`×τ ,
where the first equality is by definition of FΓ -ROT and the second is by design of the protocol in Figure 17.

It is easy to verify (as the protocol only consists of renamings) that leakage on the choice bits ci is
equivalent to leakage on the global key ∆ under this transformation. Giving a simulation argument is then
straight forward when LA is the same for both functionalities. ut

Note that doing this simple renaming we turn a LA-leaky FΓ -ROT(`, τ) functionality into a LA-leaky
F∆-ROT(τ, `) functionality. If we choose ` = poly(ψ) this means that we can turn τ leaky Γ -ROTs into a very
larger number (`) of leaky ∆-ROTs, i.e. implementing the leaky FΓ -ROT functionality for a ψ-secure leakage
agent LA on τ = O(ψ) bits, using only FOT(τ, `) we have our OT-extension protocol. In the following section
we give such an implementation of the leaky FΓ -ROT functionality.

5.4 A Protocol For leaky FΓ -ROT

In this section we show how to construct leaky FΓ -ROT from FOT. The protocol ensures that most of the
choice bits are kept secret. The main idea of the protocol, described in Figure 18, is the following: P2 and
P1 run many OTs using an FOT functionality. In the i’th OT P2 inputs messages N i

0 and N i
1 and P1 inputs

choice bit ci. An honest P2 sets her messages so that N i
0 ⊕N i

1 = Γ for all i. To test that P2 used the same
value for Γ in every OT the parties randomly partition the OTs into pairs. Say that one such pair consists
of the i’th and j’th OT. P1 then sends d = ci⊕ cj to P2 and computes D = N i

ci ⊕N
i
cj . If P2 is honest he can

also compute D as D = N i
0 ⊕N i

0 ⊕ dΓ . On the other hand if he used different values for Γ in the i’th and
j’th OT he can guess D with at most probability 1

2 , as we shall demonstrate below. Therefore, to test that
P2 behaved honestly the parties can use the FEQ functionality to test that they are both able to compute
D. In case of inequality the protocol is aborted since this will indicate that one party is corrupt. Recall that
the FEQ functionality leaks its inputs in case of inequality. However, as inequality will lead to the protocol
being aborted before output is given and there is no private input, this does not course any insecurity. As
P1 reveals ci ⊕ cj , the parties waste the j’th OT and only use the output of the i’th OT as output from
the protocol—since cj is uniformly random ci ⊕ cj leaks no information on ci. Note that we cannot simply
let P2 reveal the D, as a malicious P1 could send d = 1⊕ ci ⊕ cj : this would allow P1 to learn both D and
D ⊕ Γ , thus leaking Γ . Using FEQ forces an P1 who uses this attack to make the protocol abort unless she
can guess a random message, which she can do only with negligible probability 2−`.

Protocol ΠΓ -ROT

1. P2 samples Γ ∈R {0, 1}` and for i = 1, . . . , 2τ samples N i
0 ∈R {0, 1}`.

2. P1 samples (c1, . . . , c2τ ) ∈R {0, 1}2τ .
3. The parties run a FOT(2τ, `) functionality, where for i = 1, . . . , 2τ P2 inputs messages N i

0 and N i
0 ⊕ Γ . P1

inputs choice bit ci and receives N i
ci = N i

0 ⊕ ciΓ .
4. P1 picks a uniformly random pairing π (a permutation π : [2τ ]→ [2τ ] where ∀i, π(π(i)) = i and ∀i, π(i) 6= i),

and sends π to P2. Given a pairing π, let Lπ = {i|i ≤ π(i)}, i.e., for each pair, add the smallest index to Lπ.
5. For all τ indices i ∈ Lπ:

(a) P1 announces di = ci ⊕ cπ(i).
(b) P1 computes Di = N i

ci ⊕N
j
cj and P2 computes D̂i = N i

0 ⊕N j
0 ⊕ diΓ , where j = π(i).

The parties then compare the strings (Di)i∈Lπ and (D̂i)i∈Lπ using FEQ(τ`) and abort if they are different.
Otherwise the protocol continues.

6. P2 outputs (Γ, (N i
0)i∈Lπ ) and P1 outputs (N i

ci , ci)i∈Lπ .

Figure 18 The Protocol for Reducing FΓ -ROT(τ, `) to FOT(2τ, `) and FEQ(τ`).

20



Theorem 6 tell us that the protocol ΠΓ -ROT described in Figure 18 securely implements the LA-leaky
FΓ -ROT(τ, `) functionality. Proving Theorem 6 will take a lot of work and therefore, we push the proof to
Section 5.6 and immediately present Corollary 1 summing up the results of this section so far.

Theorem 6. Let κ = 0.6τ , and let LA be a κ-secure leakage agent on τ bits defined below in the proof. The
protocol in Figure 18 securely implements LA-leaky FΓ -ROT(τ, `) in the (FOT(2τ, `),FEQ(iτ`))-hybrid model.
The communication is O(τ). The work is O(τ`).

Corollary 1. Let ψ denote the security parameter and let ` = poly(ψ). Let α = 10
6 . The functionality

FROT(`, ψ) can be reduced to (FOT(2αψ,ψ),FEQ(ψ)). The communication is O(`ψ) and the work is O(ψ`).

Proof. Combining Theorem 4, 5 and 6 and setting τ = αψ we have that FROT(`, ψ) can be reduced to
(FOT(2αψ, `),FEQ(αψ`)) with communication O(`ψ) and work O(ψ`). For any polynomial `, we can im-
plement FOT(2αψ, `) given FOT(2αψ,ψ) and a pseudo-random generator prg : {0, 1}ψ → {0, 1}`. Namely,
seeds are sent using the OTs and the prg is used to one-time pad encrypt the messages. The communication
is 2`. If we use the RO to implement the pseudo-random generator and count the hashing of ψ bits as O(ψ)
work, then the work is O(`ψ) (using `/ψ calls to H to expand ψ bit seeds to ` bits). We can implement
FEQ(αψ`) by comparing short hashes produced using the RO. The work is O(ψ`) (using α` calls to H to
hash the αψ`-bit string down to ψ-bits). ut

Since the oracles (FOT(2αψ,ψ),FEQ(ψ)) are independent of `, the cost of essentially any reasonable
implementation of them can be amortized away by picking ` large enough.

Before we prove Theorem 6 we prove a technical lemma used in the proof of Theorem 6. We prefer to
prove it up front as the proof is extensive but carries little intuition on the security of the protocol.

5.5 The Sock Game

Consider the following Sock Game. It is parametrized by an integer τ . It is played by two players called
Color and Sampler, denoted by C and S.

The Moves First C makes a move by picking 2τ socks. The strategy consists of picking the colours of the
socks. The colours of the socks will be non-negative integers. Let ci denote the number of socks of colour i.
We require that c0 ≥ ci for all i. Then Sampler makes a move, which is to pair up the socks into τ pairs.
The pairing is done uniformly at random.

Scoring the Game Now for each pair of socks which do not have matching colours a coin is put on the table.
Also for each pair of socks where both have colour 0 a coin is put on the table. Let c denote the number of
coins on the table. Clearly 0 ≤ c ≤ τ . Now all the coins are tossed. If they all come out heads up, then C
wins. Otherwise S wins, i.e., once the number of coins is fixed the winning probability is 2−c. The goal of C
is therefore to try to make a small number of coins under the restriction that colour 0 must be the majority
colour. We will sometimes refer to colour 0 as white, thus capturing the idea that a pair of matching white
socks is essentially as bad as a pair of mismatched colour.

Winning Probability We are interested in finding an upper bound on the winning probability of the best
strategy for C. It is clear that the best winning probability can be obtained using a deterministic strategy
by C, so we will focus on deterministic strategies. There are some easy cases. For τ = 1 it is optimal to put
two 0-socks. The winning probability is 1

2 . For τ = 2 it is clearly optimal to put two 0-socks and two 1-socks.
There will be two coins unless the 1-socks match up, which happens with probability 1

3 , so the winning
probability is 1

32−1 + (1− 1
3 )2−2 = 1

3 .
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Notation Note that since the pairing is uniformly random, the order in which C colours the socks does
not affect the winning probability. Therefore, we will describe each strategy simply by the number of socks
of each colour, i.e., by the sequence {ci}2τ−1

i=0 and disregard the ordering. In our analysis we will consider
strategies derived from other strategies by changing the color of a single sock, say, from colour j to colour
k. Let σ = {ci}2τ−1

i=0 be an arbitrary strategy with cj > 0, we will denote by σk←j = {c′i}2τ−1
i=0 the strategy

where c′j = cj − 1, c′k = ck + 1 and c′i = ci otherwise. To conviniently extend this notation to the case of
changing the colour of multiple socks we will write σj←k,l←m rather than (σj←k)l←m. Additionally, for a
given strategy σ we will denote by W (σ) the event of C winning the game using σ.

We are going to prove the following theorem.

Theorem 7. For any strategy σ we have Pr[W (σ)] ≤ e1/22−0.64τ .11

We first prove a theorem saying that it is better for a non-white sock to be part of a larger colour than
a smaller colour.

Lemma 2 (Recolour). For any strategy σ = {ci}2τ−1
i=0 where c0 > c1 ≥ c2 > 0 we have

Pr[W (σ1←2)] > Pr[W (σ)] .

Proof. Let σ1 = σ1←2. We want to prove that

Pr[W (σ1)] > Pr[W (σ)] .

Assume without loss of generality that c3 = 0. This can be ensured by recolouring all socks of colour 3 to
some other unused colour without changing the winning probability. Let σ3 = σ3←2. Since c1 ≥ c2 we clearly
have that

Pr[W (σ3
1←3)] > Pr[W (σ3

2←3)] .

Namely, it is better to colour the single sock of colour 3 into one of colour 1 than a sock of colour 2 as there
are more socks of colour 1 than colour 2 in σ3 and the only difference that the recolouring can make is that
the sock previously of colour 3 will match its partner after the recolouring. Now notice that σ3

1←3 = σ1 and
σ3

2←3 = σ. ut

We then prove the Bleaching Lemma which bounds the effect of modifying a strategy by taking one sock
of the majority non-white colour and changing it to a white sock (i.e., bleaching the sock).

Lemma 3 (Bleaching). For any strategy σ = {ci}2τ−1
i=0 where c1 ≥ c2 ≥ · · · and c1 > 0 we have

Pr[W (σ)] ≤ (1 + c1
2τ ) Pr[W (σ0←1)].

Proof. Note that the condition that c1 ≥ c2 ≥ · · · is without loss of generality as we can always rename
colours so that this is true.

Assume first that c1 > c2. In that case we can prove something stronger, namely:

Pr[W (σ)] ≤
(

1 + c1 − 1
2τ − 1

)
Pr[W (σ0←1)] . (2)

This is stronger as a−1
b−1 < a

b when a < b. We first prove this case. Let B be the bleached sock. I.e., the
sock that changes colour going from σ to σ0←1. Let M be the event that B matches up with a 1-sock.
In σ0←1 the event M gives rise a coin as B is in a (0, 1)-pair. In σ the event M does not give rise to a
11 Note that this bound is worse than the bound claimed in Theorem 4 in [NNOB12]. We here get 0.64τ -bit security

instead of 0.75τ -bit security as claimed in [NNOB12]. The bound in [NNOB12] is most likely wrong, and the proof
is certainly wrong. The mistakes occurs in Lemma 11 in the full version of [NNOB12] where Jensen’s inequality
was used in the wrong direction. The below Sock Game basically replaces Lemma 11 and Lemma 12 in the full
version of [NNOB12].
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coin as B is in a (1, 1)-pair. All other pairs have identical colours in the two strategies, and thus we have
Pr[W (σ) |M ] = 2 Pr[W (σ0←1) |M ].

Now let M̄ denote the complement of M , i.e., the event that B does not match up with a 1-sock. If M̄
occurs, the bleaching of B will have no effect, B’s matching gives rise to a coin in both strategies, so we have
Pr[W (σ) | M̄ ] = Pr[W (σ0←1) | M̄ ]. Combining these observations we get that

Pr[W (σ)] = Pr[M ] Pr[W (σ) |M ] + Pr[M̄ ] Pr[W (σ) | M̄ ]
= Pr[M ]2 Pr[W (σ0←1) |M ] + Pr[M̄ ] Pr[W (σ0←1) | M̄ ]
= Pr[M ] Pr[W (σ0←1) |M ] + Pr[M̄ ] Pr[W (σ0←1) | M̄ ] + Pr[M ] Pr[W (σ0←1) |M ]
= Pr[W (σ0←1)] + Pr[W (σ0←1) ∧M ] .

It follows that

Pr[W (σ)]/Pr[W (σ0←1)] = 1 + Pr[W (σ0←1) ∧M ]
Pr[W (σ0←1)]

= 1 + Pr[M |W (σ0←1)] ,

so

Pr[W (σ)] = (1 + Pr[M |W (σ0←1)]) Pr[W (σ0←1)] .

To prove (2) it is therefore sufficient to prove that Pr[M |W (σ0←1)] ≤ Pr[M ], as Pr[M ] ≤ c1−1
2τ−1 . By Bayes’

law we have that Pr[M |W (σ0←1)] ≤ Pr[M ] if and only if Pr[W (σ0←1) |M ] ≤ Pr[W (σ0←1)], which holds if
Pr[W (σ0←1) |M ] ≤ Pr[W (σ0←1)|M̄ ]. For all colours i let Ci denote the event that B pairs with a sock of
colour i. Note that C1 = M . It is therefore clearly enough to prove that

Pr[W (σ0←1) |C1] ≤ Pr[W (σ0←1)|Ci]

for all i. So we have to prove for σ0←1 that if B is paired with a 1-sock, then this is bad for the winning
probability compared to pairing with socks of any other colour. This makes sense as B is white in σ0←1, so
when it is paired with a 1-sock, it is stealing away a 1-sock which could otherwise have been paired with
another 1-sock: recall that 1 is the most common non-white colour. We now give a more detailed proof.

Note that given Ci we can consider the uniformly random pairing of the socks as follows: First pair B
with a random sock of colour i and then pair the 2τ − 2 remaining socks uniformly at random. Thus we can
consider Pr[W (σ0←1) |Ci] in terms of the reduced game with only 2τ−2 socks. We denote by ωi the strategy
induced by σ0←1 on the reduced game given Ci. I.e, ωi is a strategy for the game with 2τ − 2 socks that first
colours 2τ socks according to σ0←1 and then removes B and a random i-sock and proceeds the game with
the remaining socks. We then have Pr[W (σ0←1) |Ci] = 1

2 Pr[W (ωi)] (as we recall that the pairing of B we
will introduce an extra coin in the full game compared to the reduced game).

So now what we want to prove is that for all i

Pr[W (ω1)] ≤ Pr[W (ωi)]

To see this note that for all i we have ω1 = (ωi)i←1. I.e., ω1 and ωi are identical except for one sock D that
has colour i in ω1 and 1 in ωi. We then argue that it is always better to have D be of colour 1 rather than i. If
i is 0, this is trivial. No matter how D pairs up, it is never worse for it to be 1 than 0, and sometimes better.
If i > 1, then recall that we started from the condition on σ that c1 > ci. Therefore, for σ0←1 = {c′i}2τ−1

i=0
we have c′1 ≥ c′i. If c′1 = c′i, trivially it does not matter whether D is has colour 1 or i. If c′1 > c′2, it is
strictly better to have D be a 1-sock. To see this consider the following way of pairing the socks: first we
pair up D. Then we uniformly at random pair the remaining socks. The colours in the remaining pairs will
be independent of the colour of the D. The only probability that changes is that the first pair is more likely
to be a match when D is of colour 1. This proves (2).
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Having proved the lemma for the case of c1 > c2, now assume the case that c1 = c2. Take any such
strategy σ = {ci}2τ−1

i=0 by C and consider the strategy σ1←2 = {c′i}2τ−1
i=0 . This might not be a legal strategy as

we may have c′1 > c′0. But if we relax this condition on the game we can still evaluate the winning probability
of the strategy. We then have that

Pr[W (σ)] ≤ Pr[W (σ1←2)] , (3)

as the recoloured sock is now part of a larger colour than before, which is obviously an advantage, as argued
above.

Notice that the size of the largest non-0 colour in σ1←2 is c′1 = c1 + 1. By applying first (3) and then (2)
we get that

Pr[W (σ)] ≤ Pr[W (σ1←2)] ≤
(

1 + (c1 + 1)− 1
2τ

)
Pr[W (σ1←2,0←1)] .

Since σ1←2,0←1 = σ0←2 and, since Pr[W (σ0←2)] = Pr[W (σ0←1)] by the assumption c1 = c2, this proves the
Bleaching Lemma.

Consider now a strategy σ as above where c1 > 2. By applying the Bleaching Lemma twice we have that

Pr[W (σ)] ≤
(

1 + c1 − 1
2τ

)(
1 + c1

2τ

)
Pr[W (σ0←1,0←1)] ,

by bleaching one sock at a time. 12 Similarly let σc1 be the strategy starting from σ, where we bleach c1 − 1
of the 1-socks into 0-socks, leaving only a single 1-sock. But applying the Bleaching Lemma c1 − 1 times we
get that

Pr[W (σ)] ≤
ci∏
j=2

(
1 + j

2τ

)
Pr[W (σc1)] .

After this transformation we can rename the colours such that again it holds that c1 ≥ c2 ≥ · · · .13 If still
c1 > 1 we can apply the above iterative application of the Bleaching Lemma to bleach all but one of the new
1-socks. Doing this iteratively we will be left with a strategy σ0, where ci < 2 for all i > 0.

By the above argument we have that

Pr[W (σ)] ≤
m∏
i=1

ci∏
j=2

(
1 + j

2τ

)
Pr[W (σ0)] .

We clearly also have that
Pr[W (σ0)] = 2−τ

as there will be τ coins on the table when using σ0.

It follows from log being concave and an application of Jensen’s inequality that
∏N
i=1 ai ≤ ( 1

N

∑N
i=1 ai)N

when all ai ≥ 0. From this we have that
ci∏
j=2

(
1 + j

2τ

)
≤

ci∏
j=0

(
1 + j

2τ

)
≤
(

1 + ci
4τ

)ci+1

=
(

1 + ci
4τ

)(
1 + ci

4τ

)ci
.

12 Note that the second time we apply the Bleaching Lemma we might no longer have the condition c1 ≥ c2 ≥ · · · .
We describe why this is not a problem below.

13 Note that we might have to apply this transformation more often to always have the condition c1 ≥ c2 ≥ · · · . It is
easy to see that keeping track of the original colour names and tallies ci in these transformations we get the exact
same bounds as in the above more sloppy argument.
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All in all we have that

Pr[W (σ)] ≤ 2−τ
m∏
i=1

(
1 + ci

4τ

) m∏
i=1

(
1 + ci

4τ

)ci
.

We have that 1 + x ≤ ex for all real numbers x so if
∑
i xi ≤ x, then

∏
i(1 + xi) ≤ ex. From this we get that

Pr[W (σ)] ≤ e1/22−τ
m∏
i=1

(
1 + ci

4τ

)ci
.

We move around and get that

Pr[W (σ)] ≤ e1/22−τ
(

m∏
i=1

(
1 + ci

4τ

) ci
4τ

)4τ

.

We now use that ci ≤ τ and that when x ∈ [0, 1
4 ], then (1 + x)x ≤ 1 + x2. We get that

Pr[W (σ)] ≤ e1/22−τ
(

m∏
i=1

(
1 + c2i

16τ2

))4τ

.

The remaining proof proceeds in four cases. First we observe that if one uses two colours only then the
winning probability is at most e1/220.64τ . Then we show that if one uses more than five colours, then the
winning probability is also at most e1/220.64τ . Then we prove the significantly more complicated case of
strategies using three colours, showing that also for these the winning probability is also at most e1/220.64τ .
Finally we generalise the proof from three to four colours.

Cases analysis: We now for all values of c0 find the optimal way to set the other colours c1, c2, . . . and then
find the winning probability of the best way to set these values. In all cases it follows that once c0 is fixed
it is optimal to set f as large as possible while allowing that c1 = c2 = · · · = cf−1 = c0 and cf > 0 and
cf+1 = 0. This follows from the recolouring lemma. Note that it might be that cf < c0 if c0 does not divide
2τ . We break the cases up according to what value f has. If f = 1 we say that we use two colours. If f = 2
we use three colours et cetera.

Two colours: If there are only two colours, then clearly c0 = c1 = τ is optimal. In that case

Pr[W (σ)] ≤ e1/22−τ
(

1 + τ2

16τ2

)4τ

= e1/2

(
2−1

(
1 + 1

16

)4
)τ
≤ e1/22−0.64τ .

More than Four Colours: In general, if there arem+1 colours, then it is clearly optimal to use c0 = · · · = cm−1
and then possibly have cm < cm−1. In that case, clearly ci ≤ 2τ

m for all i, so

Pr[W (σ)] ≤ e1/22−τ
(

m∏
i=1

(
1 + c2i

16τ2

))4τ

(4)

= e1/22−τ
(

m∏
i=1

(
1 + 4τ2

16τ2m2

))4τ

(5)

= e1/22−τ
(

1 + 1
4m2

)4τm
(6)

= e1/22−α(m)τ , (7)

where

α(m) = 1− log2

((
1 + 1

4m2

)4m
)
.

One can easily verify that α(m) ≥ 0.64 for m ≥ 4.
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Three Colours: If there are three colours, then it is still optimal to use c1 = c0 and it will then be the case
that c1 ≥ c2 and 0 = c3 = c4 = · · · . From

∑
i ci = 2τ it then follows that c2 = 2τ − 2c1. From the general

bound we get that

Pr[W (σ)] ≤ e1/22−τ
((

1 + c21
16τ2

)(
1 + c22

16τ2

))4τ

,

from which we conclude that

Pr[W (σ)] ≤ e1/22−τ
((

1 + c21
16τ2

)(
1 + (2τ − 2c1)2

16τ2

))4τ

.

If c2 = 0, then c1 = 2τ/2. If c2 = c1, then c1 = 2τ/3. Write c1 = γτ for 2/3 ≤ γ ≤ 1. We get that

Pr[W (σ)] ≤ e1/22−τ
((

1 + γ2τ2

16τ2

)(
1 + (2τ − 2γτ)2

16τ2

))4τ

≤ e1/22−τ
((

1 + γ2

16

)(
1 + (2− 2γ)2

16

))4τ

.

It can be seen analytically that
(

1 + γ2

16

)(
1 + (2−2γ)2

16

)
has a unique maximum in γ ∈ [2/3, 1] at γ = 1

corresponding to using two colours only. To see this, note that the expression is equal to (16+x2)(20−8x+4x2)
up to a constant factor. The derivative of this is 8(2x3−3x2 +21x−16), which has one real root at ≈ 0.80479.
To the right of the root it is positive and to the left of the root it is negative. Therefore (16+x2)(20−8x+4x2)
has two maxima in [2/3, 1], namely in 2/3 and 1. It is larger in x = 1 than in x = 2/3.

Four Colours: If there are 4 colours, then it follows as above that it is optimal with c0 = c1 = c2, that
c3 = 2τ − 3c1 and that

Pr[W (σ)] ≤ e1/22−τ
((

1 + c21
16τ2

)2(
1 + c23

16τ2

))4τ

,

from which we conclude that

Pr[W (σ)] ≤ e1/22−τ
((

1 + c21
16τ2

)2(
1 + (2τ − 3c1)2

16τ2

))4τ

.

If c3 = 0, then c1 = 2τ/3. If c3 = c1, then c1 = 2τ/4. Write c1 = γτ for 2/4 ≤ γ ≤ 2/3. Then

Pr[W (σ)] ≤ e1/22−τ
((

1 + γ2τ2

16τ2

)2(
1 + (2τ − 3γτ)2

16τ2

))4τ

≤ e1/22−τ
((

1 + γ2

16

)2(
1 + (2− 3γ)2

16

))4τ

.

It is easy to see that on the internal γ ∈ [1/2, 2/3] the expression(
1 + γ2

16

)2(
1 + (2− 3γ)2

16

)
is maximal in γ = 2/3, which corresponds to using only three colours. Since we already know it is better
to use two colours than using three colours, it follows that it is better to use two colours than using four
colours. ut
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5.6 Proof of Theorem 6

In this section we give the full proof of Theorem 6. The cases where no party is corrupt and where P1 is
corrupt is straight forward, so we will focus on the case of corrupt P2. The proof goes via two intermediary
functionalities, each modelling a different aspect of the intuition given in Section 5.4. Between these inter-
mediate functionality we show linear reducibility. We will then construct a specific leakage agent LA so that
the LA-leaky FΓ -ROT is linearly reducible to the intermediate functionalities. Finally the proof concludes by
showing that this leakage agent LA is κ-secure. Before we get into the proof we will present a convenient
way to model the protocol of Figure 18.

Modeling The Protocol: It will be helpful to model the protocol in Figure 18 in terms of socks colored
by P2. More specifically with each pair of messages N i

0 and N i
1 input to FOT by P2 we associate a sock i. If

N i
0⊕N i

1 = Γi, then we associate with Γi a color in [2τ ], say j, and say that P2 colors sock i with the color j.
Since there is 2τ message pair (N i

0, N
i
1) in the protocol there can be at most 2τ socks of 2τ different colors.

We will denote by col the coloring function col : [2τ ]→ [2τ ] that maps each sock to its color. An honest P2
picks a single Γ and for all i ∈ [2τ ] picks messages so that N i

0 ⊕N i
1 = Γi = Γ , i.e. an honest P2 will color all

socks with the same color, so in this case col is a constant function. A corrupt P2, on the other hand, can
use any coloring function col.

Let col0, . . . , col2τ−1 be the possible colors, then for a coloring function col we will let Ci be the set of
socks of color coli, i.e. Ci = {j ∈ [2τ ]| col(j) = coli}. Without loss of generality we will let col0 be most
common color of col, i.e. |C0| ≥ |Ci| for all i ∈ [2τ ]. We will sometimes refer to the value Γ associated with
col0 as the right value and all other Γ ′ 6= Γ as being wrong.

The pairing π used in the protocol defines pairs of socks. That is, each sock j ∈ [2τ ] is paired with π(j).
If we let L = Lπ = {i|i ≤ π(i)} as in Figure 18 we can view each i ∈ L as representing the pair of socks
(i, π(i)). Furthermore, we will define the setM =Mπ,col ⊆ L to be the set representing mismatched pairs,
i.e. M = {i ∈ L| col(i) 6= col(π(i))}. In the protocol i ∈ M corresponds to the situation where for the two
messages pairs (N i

0, N
i
1) and (Nπ(i)

0 , N
π(i)
1 ) we have

N i
0 ⊕N i

1 6= N
π(i)
0 ⊕Nπ(i)

1 .

It will also be useful to define the set N = Nπ,col to be the subset of matched pairs in L \M which are not
of color col0, i.e. N = {i ∈ L \M| col(i) 6= col0}. In the protocol i ∈ N corresponds to the situation where
for the two messages pairs (N i

0, N
i
1) and (Nπ(i)

0 , N
π(i)
1 ) we have

N i
0 ⊕N i

1 = N
π(i)
0 ⊕Nπ(i)

1 = Γ ′ ,

but Γ ′ is not the value associated with col0. In other wordsM and N are the pairs where P2 deviated from
the protocol. For each i ∈ N P2 will not get caught, while for i ∈ M P2 will get caught with probability 1

2
as we shall show below.

Intermediate Functionality 1: We now present our first intermediate functionality FIB1. This function-
ality captures the idea that a corrupt P2 can only get away with using a few different values of Γ . To see
this let i ∈ Sπ and j = π(i) and note that if P2 chose the two message pairs (N i

0, N
i
1) and (N j

0 , N
j
1 ) so that

Γi = N i
0 ⊕N i

1 6= N
π(i)
0 ⊕Nπ(i)

1 = Γj ,

i.e. i ∈M, then P1 computes

Di = N i
ci ⊕N

j
cj = (N i

0 ⊕ ciΓi)⊕ (N j
0 ⊕ cjΓj)

= (N i
0 ⊕N

j
0 )⊕ (ci ⊕ cj)Γj ⊕ ci(Γi ⊕ Γj)

= (N i
0 ⊕N

j
0 )⊕ diΓj ⊕ ci(Γi ⊕ Γj).
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Since (Γi ⊕ Γj) 6= 0` and ci ⊕ cj is fixed by announcing di, guessing this Di is equivalent to guessing ci. As
P2 only knows N i

0, N
j
0 , Γi, Γj and di, all of which are independent of ci, she can guess ci with probability at

most 1
2 . If P2 cheats and uses many different values of Γ , then with high probability the pairing π will be

such that there are many pairs where Γi 6= Γπ(i), and P2 will get caught with high probability. However, if
she uses only few values of Γ she might pass the test.

This corresponds to saying that for P2 to get away with using coloring function col, she must guess ci
for all i ∈M, i.e. P2 gets away with using col with probability at most 2−|M|. Therefore, she is not likely to
get away with using a coloring function that colors the socks many different colors, because such a coloring
will result in |M| being large with high probability.

The Functionality FIB1

Honest Parties
As in the leaky FΓ -ROT functionality.

Corrupt Parties
1. If P1 is corrupt: As in the leaky FΓ -ROT functionality.
2. (a) If P2 is corrupt, the functionality waits to give output till P2 inputs (colors, col, (Λi, Li)i∈[2τ ]),

where Li, Λi ∈ {0, 1}` and col is a coloring function.
(b) Then the functionality samples a uniformly random pairing π : [2τ ] → [2τ ] and outputs (pairs, π)

to P2. Let L = Lπ and letM =Mπ,col.
(c) The functionality then waits for P2 to input (guess, (gi)i∈M).
(d) The functionality samples (ci)i∈[2τ ] ∈R {0, 1}2τ . Then the functionality lets c = 1 if gi = ci for

all i ∈ M, otherwise it lets c = 0. If c = 0 the functionality outputs fail to P1 and terminates.
Otherwise, for i ∈ L it computes N i

ci = Li ⊕ ciΛcol(i) and outputs (N i
ci , ci)i∈L to P1.

Figure 19 The First Intermediate Functionality FIB1

Lemma 4. The protocol in Figure 18 implements FIB1 in the (FOT(2τ, `), FEQ(τ`))-hybrid model, i.e. FIB1
is linear reducible to (FOT(2τ, `),FEQ(τ`)).
Proof. By observing P2’s inputs to the OTs, the simulator learns all (N i

0, N
i
1). Let Li = N i

0 and Γi = N i
0⊕N i

1.
Let f be the number of distinct values in (Γi)2τ

i=1 and pick distinct Λ1, . . . , Λf and col : [2τ ] → [2τ ] so that
Γi = Λcol(i). For i = f + 1, . . . , 2τ pick the remaining Λi ∈ {0, 1}` in any arbitrary way (these will not be
used anyway). By construction

N i
1 = Li ⊕ Γi = Li ⊕ Λcol(i).

Input (colors, col, (Λi, Li)i∈[2τ ]) to FIB1 on behalf of P2 and receive (pairs, π). Send π to P2 as if coming
from P1 along with uniformly random {di}i∈L.

Then observe the inputs D̂i from P2 to the FEQ functionality. The simulator must now pick the guesses
gi for i ∈ M. Note that i ∈ M implies that Λcol(i) 6= Λcol(π(i)), which means that Γi 6= Γπ(i). We use this
to pick gi, as follows: after seeing di, P2 knows that ci = di ⊕ cπ(i). Hence an honest P1 would input to the
comparison the following value for Di depending on ci

Di(ci) = (Li ⊕ Lπ(i))⊕ diΛcol(π(i)) ⊕ ci(Λcol(i) ⊕ Λcol(π(i))) .

As Λcol(i) 6= Λcol(π(i)) we have Di(0) 6= Di(1). Thus if P2’s input to the FEQ functionality D̂i is equal to
Di(0) (resp. Di(1)), the simulator sets gi = 0 (resp. gi = 1). If the simulator is able to set all (gi)i∈[τ ] in
this manner, i.e. all D̂i equal either Di(0) or Di(1), it inputs (guess, (gi)i∈[τ ]) to the FIB1 functionality.
Otherwise, the simulator outputs fail and aborts.

Notice that in the real world protocol, if gi = ci, then Di = Di(gi) = D̂i and P2 passes the test. If gi 6= ci,
then Di = Di(1⊕ gi) 6= D̂i and P2 fails the test. So, the protocol and the simulation fails on the same event.
Note then that when the functionality does not fail, then it outputs

Li ⊕ ciΛcol(i) = N i
0 ⊕ ciΓi = N i

0 ⊕ ci(N i
0 ⊕N i

1) = N i
ci ,
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exactly as the protocol. Hence the simulation is perfect. ut

Intermediate functionality 2: The second intermediate functionality FIB2 in Figure 20 captures the idea
that an adversary that gets away with using multiple values of Γ is equivalent to one that only uses a single
value of Γ but instead learns some of P1’s choice bits ci.

To see this first recall that we above showed that for P2 to get away with using multiple values of Γ she
must guess all ci for i ∈ M. Doing so confirms her guess on ci, so if she passes the test she learns these ci.
Now we can let Γ be the value associated with the most common color col0. Assume then that P2 cheated
and for some i (not necessarily in M) used a message pair (N i

0, N
i
1) where N i

0 ⊕ N i
1 = Γ ′ 6= Γ . We can

explain this as an honest run: If ci = 0, the run is equivalent to P2 having inputted (N i
0, N

i
0⊕Γ ), as P1 gets

no information on the second message when ci = 0 (by privacy of FOT). If ci = 1, then the run is equivalent
to having input message (N i

1 ⊕ Γ,N i
1) as P1 gets no information on the first message when ci = 1. So, any

cheating strategy of P2 can be simulated by letting her honestly use the same Γ in all message pairs and
then let her try to guess the bits ci for i ∈ M. If her guess is incorrect, the deviation is reported to P1. If
her guess is correct, she is told so and the deviation is not reported to P1.

Note that in order to make the simulation work using this idea the simulator must know ci for all i ∈ L
where col(i) 6= col0 even if i 6∈ M, i.e. it must know ci for all i ∈M∪N . Thus to make the simulation work
functionality FIB2 will leak the bits ci i ∈ N “for free”.

The Functionality FIB2

Honest Parties
As in the leaky FΓ -ROT functionality.

Corrupt Parties
1. If P1 is corrupt: As in the leaky FΓ -ROT functionality.
2. If P2 is corrupt:

(a) The functionality waits to give output till P2 inputs (colors, col) where col is a coloring function.
(b) The functionality samples a uniformly random pairing π : [2τ ]→ [2τ ] and outputs (pairs, π) to P2.

Let L = Lπ,M =Mπ,col and N = Nπ,col.
(c) The functionality then waits for P2 to input (guess, (gi)i∈M).
(d) The functionality samples (ci)i∈[2τ ] ∈R {0, 1}2τ . Then the functionality lets c = 1 if gi = ci for

all i ∈ M, otherwise it lets c = 0. If c = 0 the functionality outputs fail to P1 and terminates.
Otherwise, the functionality determines col0 and for i ∈ N , the functionality outputs (i, ci) to P2.

(e) The functionality waits for P2 to input (Γ, (Li)i∈[2τ ]) where Γ,Li ∈ {0, 1}`.
(f) For i ∈ L the functionality computes N i

ci = Li ⊕ ciΓ and outputs (N i
ci , ci)i∈L to P1.

Figure 20 The Second Intermediate Functionality FIB2

Lemma 5. FIB2 is linear locally reducible to FIB1.

Proof. To implement FIB2 simply calls FIB1. Note that the simulator must simulate FIB2 to the environ-
ment, and fully controls the FIB1 towards the corrupt P2. First the simulator observes the input values
(colors, col, (Λi, Li)i∈2τ ) of P2 to FIB1 and inputs (colors, col) to FIB2. FIB2 outputs (pairs, π) and the
simulator inputs (pairs, π) to P2 on behalf of FIB1, and computes M as FIB1 and FIB2 would have done.
Then the simulator observes the input (guess, (gi)i∈M) from P2 to FIB1 and inputs (guess, (gi)i∈M) to
FIB2. If FIB2 outputs fail to P1 the simulation is over, and it is perfect as FIB1 and FIB2 fail based on the
same event. If FIB2 does not fail it determines col0 and for i ∈M, if col(i) 6= col0, the functionality outputs
(i, ci) to the simulator. Note that the simulator can also determine col0 from col.

Now let Γ = Λcol0 and for i ∈M∪N , if col(i) = col0, let L′i = Li. Then for i ∈M∪N , if col(i) 6= col0,
let L′i = (Li ⊕ ciΛcol(i)) ⊕ ciΓ . Finally input (Γ, (L′i)i∈[2τ ]) to FIB2. As a result FIB2 will for i ∈ L where
col(i) = col0, output L′i ⊕ ciΓ = Li ⊕ ciΛcol0 , and for i ∈ L where col(i) 6= col0 it will output L′i ⊕ ciΓ =
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Li ⊕ ciΛcol(i). Hence FIB2 gives exactly the outputs that FIB1 would have given after interacting with P2,
giving a perfect simulation. ut

The Leakage Agent: Finally we now specify a leakage agent LA so that the LA-leaky FΓ -ROT functionality
is equivalent to FIB2. The interaction between LA and the adversary is as follows.

1. LA waits for the adversary to input (colors, col) where col is a function [2τ ]→ [2τ ].
2. Then LA outputs (pairs, π) to the adversary, where π : [2τ ] → [2τ ] is a uniformly random pairing as

defined above.
3. LA waits for the adversary to input (guess, (gi)i∈Mπ,col).

After this interaction and on input (ci)i∈[τ ] ∈ {0, 1}τ the leakage agent LA does the following. Here we let
Π : L → [τ ] be an order preserving function (simply to map L onto [τ ]).

1. LA computesM =Mπ,col and N = Nπ,col. If
∧
i∈M(gΠ(i) = ci) sets c = 1, otherwise it sets c = 0.

2. LA computes S = {j = Π(i)|i ∈M∪N} and outputs (c, S).

Notice that when we define LA in this way FIB2 and LA-leaky FΓ -ROT is exactly the same. Therefore we
trivially get the following.

Lemma 6. For LA as defined above the LA-leaky FΓ -ROT(τ, `) functionality is linear locally equivalent to
the FIB2 functionality.

And this leads us to the following theorem.

Theorem 8. For LA as defined above LA-leaky FΓ -ROT(τ, `) is linear reducible to (FOT(2τ, `),FEQ(τ`)).

Proof. This follows from Lemma 4, 5 and 6 and by the transitivity of linear local reducibility. ut
What remains then to complete the proof of Theorem 6 is to prove that LA defined in this way is

κ = 6
10τ -secure.

Lemma 7. Let P2 be an adversary playing in LeakageGame(LA, P2, τ). Assume that during the interaction
between P2 and LA, P2 inputs (colors, col) and LA outputs (pairs, π). Let L = Lπ, M = Mcol,π and
N = Ncol,π. Then the success probability of P2 is at most 2−0.6τ for all large enough τ .

Proof. Let L′ = Π(L), M′ = Π(M) and N ′ = Π(N ), i.e. L′,M′ and N ′ are essentially the same sets as
L,M and N only mapped to interval [τ ] instead of [2τ ]. In order for P2 to win the game LA must set c = 1.
For this to happen P2 must guess the uniformly random bits (ci)i∈M′ . This happens with probability 2−|M|.
Furthermore, to win P2 must also guess the bits (ci)i∈L′\(M′∪N ′). This happens with probability 2−|L\(M∪N )|.
Since the setsM and N are disjoint, this gives a total success probability of 2−|L\N|. Now notice that this
is exactly the same probability as winning the sock game as |L \N | is exactly the number of matched white
pairs and mismatched colored pairs (since N is the matched colored pairs). So by Theorem 7 we have that
the success probability is upper bounded by e1/22−0.64τ . Then use that e1/22−0.64τ ≤ 2−0.64τ+0.73 and clearly
0.64τ − 0.73 ≥ 0.6τ for large enough τ . ut

Notice that 0.64τ−0.73 ≥ 0.6τ already for τ ≥ 19 so not much is lost to the asymptotic notion of security.
We get 0.6τ -bit security already for τ = 19.

5.7 F∆-ROT From Leaky F∆-ROT

Finally we will give a functionality F∆-ROT which does not leak any bits of the global key, i.e. the LA-leaky
F∆-ROT functionality where LA is the leakage agent that leaks nothing. This functionality will be useful in
both Section 6 and Section 7, when we present the preprocessing needed for our MPC protocols. We present
the non-leaky F∆-ROT functionality in Figure 21.

In Figure 22 we describe a protocol which takes a leaky F∆-ROT functionality, where 40% of the bits of
the global key might leak, and amplifies it to the non-leaky F∆-ROT functionality. We prove the following
theorem.
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The Functionality F∆-ROT(`, τ)

Honest Parties
On input start from both P1 and P2 the functionality does the following.
1. The functionality samples ∆ ∈R {0, 1}τ and outputs it to P1.
2. For all i ∈ [`] the functionality samples bi ∈R {0, 1} and M i

0 ∈R {0, 1}τ .
3. The functionality outputs (M i

0 ⊕ bi∆, bi)i∈[`] to P2 and (M i
0)i∈[`] to P1.

Corrupt Parties
1. If P2 is corrupt, the functionality waits to give output till it receives the message (M̂ i

b̂i
, b̂i)i∈[`] from P2,

where M̂ i
b̂i
∈ {0, 1}τ and b̂i ∈ {0, 1}. The functionality then sets bi = b̂i and M i

0 = M̂ i
bi
⊕ bi∆ and

outputs as described above.
2. If P1 is corrupt, the functionality waits to give output till it receives the message (∆̂, (M̂ i

0)i∈[`]) from
P1, where ∆̂, M̂ i

0 ∈ {0, 1}τ . The functionality then sets ∆ = ∆̂ and M i
0 = M̂ i

0 and outputs as described
above.

Figure 21 The F∆-ROT(`, τ) Functionality

Protocol Π∆-ROT

1. The parties invoke a LA-leaky F∆-ROT(`, τ) with τ = 55
6 ψ. The output to P1 is (M̂ i

bi
, bi)i∈[`]. The output to

P2 is (∆̂, (M̂ i
0)i∈[`]).

2. P2 samples A ∈R {0, 1}ψ×τ , a random binary matrix with ψ rows and τ columns, and sends A to P1.
3. P1 computes M i

bi
= AM̂ i

bi
∈ {0, 1}ψ and outputs (M i

bi
, bi)i∈[`].

4. P2 computes ∆ = A∆̂ and M i
0 = AM̂ i

0 and outputs (∆, (M i
0)i∈[`]).

Figure 22 Protocol for Reducing F∆-ROT(`, ψ) to LA-leaky F∆-ROT(`, τ).

Theorem 9. Let τ = 55
6 ψ and LA be a

( 4
10τ
)
-secure leakage agent on τ bits. The protocol in Figure 22

securely implements F∆-ROT(`, ψ) in the LA-leaky F∆-ROT(`, τ)-hybrid model with security parameter ψ. The
communication is O(ψ2) and the work is O(ψ2`).

Correctness of the protocol is straight forward: We have that M̂ i
bi

= M̂ i
0 ⊕ bi∆̂, so

M i
bi = AM̂ i

bi = AM i
0 ⊕ biA∆̂ = M i

0 ⊕ bi∆.

In addition it is clear that the protocol leaks no information on the bi’s to P2: there is only communication
from P2 to P1. It is therefore sufficient to look at the case where P1 is corrupt. To prove security against
corrupt P1 we will prove that ∆ is uniformly random in the view of P1 except with probability 22−ψ.

When we say that ∆ is uniform to P1 we mean that ∆ is uniformly random in {0, 1}ψ and independent
of the view of P1. When we say except with probability 22−ψ we mean that there exists a failure event F for
which it holds that:

1. F occurs with probability at most 22−ψ.
2. When F does not occur, then ∆ is uniform to P1.

To prove this we consider the following experiment LeakExp. Assuming that LA is a leakage agent on τ bits
which is κ-secure LeakExp corresponds to the leakage on ∆̂ a corrupt P1 receives during the protocol.

LeakExp(LA, P1)
∆ ∈R {0, 1}τ
P1(τ)↔ LA(τ)
(S, c)← LA(∆)
A ∈R {0, 1}ψ×τ
Input A to P1
Output ∆ = A∆̂
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To show that ∆ is uniform to P1, we give the following three technical lemmas on on LeakExp. For a subset
S ⊂ [τ ] of the column indices, let AS be the matrix where column j is equal to the j’th column of A if
j ∈ S, and column j is the 0 vector if j 6∈ S. We say that we blind out column j with 0’s if j 6∈ S. Similarly,
for a column vector v we use the notation vS to mean that we set all indices vi where i 6∈ S to be 0. Note
that AvS = ASv = ASvS .

Lemma 8. Let S and A be the values sampled in LeakExp(LA, P1). If AS̄ spans {0, 1}ψ, then ∆ is uniform
to P1.

Proof. We start by making two simple observations. First of all, if P1 learns ∆̂j for j ∈ S, then it learns
∆̂S ,14 so it knows A∆̂S = AS∆̂. The second observation is that A∆̂ = AS∆̂+AS̄∆̂, as A = AS +AS̄ . The
lemma follows directly from these observations and the premise: We have that AS̄∆̂ is uniformly random
in {0, 1}ψ when the columns of AS̄ span {0, 1}ψ. Since AS̄∆̂ = A∆̂S̄ and ∆̂S̄ is uniformly random and
independent of the view of P1 it follows that AS̄∆̂ is uniformly random and independent of the view of P1.
Since only AS∆̂ is known by P1 it follows that AS∆̂+AS̄∆̂ is uniform to P1. The proof concludes by using
that ∆ = AS∆̂+ AS̄∆̂. ut

Lemma 9. Let n = 9
2ψ, α = τ

n = 55
27 and κ = 6

10τ such that and LA is κ-secure. Let W be the event that
|S| ≥ τ − n and c = 1 (where S and c are sampled as in LeakExp(LA, P1)). Then Pr (W ) ≤ 2−ψ.

Proof. Without loss of generality we can assume that P1 interacts optimally with LA, i.e., log2(E
[
c2|S|

]
) =

leakLA. Since LA is κ secure on τ bits, it follows that leakLA ≤ τ − κ = 4
10τ . This gives that

E
[
c2|S|

]
≤ 2 4

10 τ , (8)

which we use later. Now let W̄ be the event that W does not happen. By the properties of conditional
expected value we have that

E
[
c2|S|

]
= Pr (W ) · E

[
c2|S||W

]
+ Pr

(
W̄
)
· E
[
c2|S||W̄

]
.

When W happens, then |S| ≥ τ − n = αn − n = (α − 1)n and c = 1, so c2|S| = 2|S| ≥ 2(α−1)n. This gives
that

E
[
c2|S||W

]
≥ 2(α−1)n .

Hence
E
[
c2|S|

]
≥ Pr (W ) 2(α−1)n .

Combining with (8) we get that
Pr (W ) ≤ 2 4

10 τ−(α−1)n .

It is, therefore, sufficient to show that 4
10τ−(α−1)n = −ψ, which can be verified to be the case by definition

of τ, α, n and ψ, as follows,

4
10τ − (α− 1)n = 4

10τ − τ + n = n− 6
10τ = 9

2ψ −
6
10

55
6 ψ = −ψ .

ut

Lemma 10. As above let n = 9
2ψ. Furthermore, let x1, . . . , xn ∈R {0, 1}ψ. Then x1, . . . , xn spans {0, 1}ψ

except with probability 21−ψ.
14 Here we are looking at the string ∆̂ as a column vector of bits.

32



Proof. Define random variables Y1, . . . , Yn where Yi = 0 if x1, . . . , xi−1 spans {0, 1}ψ or the span of x1, . . . , xi−1
does not include xi. Let Yi = 1 in all other cases. Note that if x1, . . . , xi−1 spans {0, 1}ψ, then Pr (Yi = 1) =
0 ≤ 1

2 and that if x1, . . . , xi−1 does not span {0, 1}ψ, then they span at most half of the vectors in {0, 1}ψ
and hence again Pr (Yi = 1) ≤ 1

2 . This means that it holds for all Yi that Pr (Yi = 1) ≤ 1
2 independently of

the values of Yj for j 6= i. This implies that if we let Y =
∑n
i=1 Yi, then

Pr (Y ≥ 1
2(a+ n)) ≤ 2e−a

2/2n ,

using the random walk bound. Namely, let Xi = 2Yi − 1. Then Xi ∈ {−1, 1} and it holds for all i
that Pr (Xi = 1) ≤ 1

2 independently of the other Xj . If the Xi had been independent and Pr (Xi = 1) =
Pr (Xi = −1) = 1

2 , and X =
∑n
i=1Xi, then the random walk bound gives that

Pr (X ≥ a) ≤ 2e−a
2/2n .

Since we have that Pr (Xi = 1) ≤ 1
2 independently of the other Xj , the upper bound applies also to our

setting. Then use that X = 2Y − n.
If we let a = 5

2ψ, then
1
2 (a + n) = 7

2ψ = n − ψ, 2e−a2/2n = 2e−( 5
2ψ)2

/2 9
2ψ = 2e− 25

36ψ, and e− 25
36 < 1

2 . It
follows that Pr (Y ≥ n− ψ) ≤ 21−ψ. When Y ≤ n− ψ, then Yi = 0 for at least ψ values of i. This is easily
seen to imply that x1, . . . , xn contains at least ψ linear independent vectors.

ut
Given the lemmas above we are now ready to conclude the proof of Theorem 9 for corrupt P1.

Proof. As mentioned above we will not give a simulation argument but just prove that∆ is uniformly random
in the view of a corrupt P1 except with probability 22−ψ. Turning this argument into a simulation argument
is straight forward.

Recall that W is the event that |S| ≥ τ − n and c = 1. By Lemma 9 we have that Pr (W ) ≤ 2−n ≤ 2−ψ.
For the rest of the analysis we assume that W does not happen, i.e., |S| < τ − n and hence |S̄| ≥ τ = 9

2ψ.
Since A is picked uniformly at random and independent of S it follows that 9

2ψ of the columns in AS̄ are
uniformly random and independent. Hence, by Lemma 10, they span {0, 1}ψ except with probability 21−ψ.
We let D be the event that they do not span. If we assume that D does not happen, then by Lemma 8 ∆ is
uniform to P1, i.e., if the event F = W ∪D does not happen, then ∆ is uniform to P1. Since

Pr (F ) ≤ Pr (W ) + Pr (D) ≤ 2−ψ + 21−ψ ≤ 22−ψ ,

we have that ∆ is uniform to P1 with overwhelming probability. ut
Similar to Corollary 1 we can derive the following corollary for the F∆-ROT functionality.

Corollary 2. Let ψ denote the security parameter and let ` = poly(ψ). The functionality F∆-ROT(`, ψ) can
be reduced to (FOT(2τ, ψ),FEQ(ψ)). The communication is O(ψ`+ ψ2) and the work is O(ψ2`).

Proof. Combining Theorem 9, 5 and 6 we have that F∆-ROT(`, ψ) can be reduced to (FOT( 110
6 ψ, `),FEQ( 55

6 ψ`))
with communication O(ψ2) and work O(ψ2`). For any polynomial `, we can implement FOT( 110

6 ψ, `) given
FOT( 110

6 ψ,ψ) and a pseudo-random generator prg : {0, 1}ψ → {0, 1}`. Namely, seeds are sent using the OTs
and the prg is used to one-time pad encrypt the messages. The communication is 2`. If we use the RO to
implement the pseudo-random generator and count the hashing of ψ bits as O(ψ) work, then the work is
O(`ψ) (using `/ψ calls to H to expand ψ bit seeds to ` bits). We can implement FEQ( 55

6 ψ`) by comparing
short hashes produced using the RO. The work is O(ψ`) (using 55

6 ` calls to H to hash the 55
6 ψ`-bit string

down to ψ-bits). ut

5.8 Complexity Analysis

We sketch a complexity analysis of the protocol in terms of the number of calls to the hash function H. We
will count the number of total calls made by both P1 and P2.
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To implement FROT(`, ψ) from LA-leaky F∆-ROT(`, τ) for ψ-secure LA, in Section 5.2 we hash 3` strings
of length τ = 10

6 ψ, which we count as 3·10
6 ` = 5` calls to H.

In Corollary 1 we show that LA-leaky F∆-ROT(`, 10
6 ψ) for ψ-secure LA, can be reduced to (FOT( 20

6 ψ,ψ),
FEQ(ψ)). The construction in the proof of Corollary 1 involves using H to expand 3 ψ-bits seeds to ` bits
for each OT, once for each of the senders messages and once the recieved message. This gives 3·20

6 ` = 10`
calls to H. We also need to use H to hash a 10

6 ψ`-bit string to ψ-bits in order to perform an equality check.
Both P1 and P2 must do this giving a total of 20

6 ` calls to H. Thus in total we get (5 + 10 + 20
6 )` ≤ 19` calls

to H, apart from the cost of (FOT( 20
6 ψ,ψ),FEQ(ψ)). As FROT(`, ψ) provides ` random OTs this means only

19 calls to H are required per ROT.
To implement the non-leaky version of F∆-ROT as in Section 5.7 we save the 5` calls to H involved in

implementing FROT from F∆-ROT. But on the other hand we will need longer keys in the leaky-F∆-ROT
functionality used in the construction described in the proof of Corollary 2. The construction and therefore
the complexity analysis is identical to the one above for Corollary 1, only now we need 110

6 ψ base OTs and
an equality check for strings of length 55

6 ψ` bit. Thus for the F∆-ROT functionality we use around 74 · ` calls
to H or 74 calls to H per ∆-ROT.

6 Preprocessing: The Multi-Party Case

Let P be a set of n parties. In this section we consider three variants of oblivious transfer suitable for
scenarios with n ≥ 2. The variants generalize standard OT in the sense that the role of sender and receiver
is not played by single entities, but by subsets of P of arbitrary cardinality. The organization of this section
is as follows, see Figure 23 for details.

In Section 6.1 we introduce the first two variants of oblivious transfer, FssCOT and FssOT, and reduce
them to their two-party counterparts, namely F∆-ROT and FROT. For active adversaries, the reductions
are non robust, but this will be enough for our purposes. In Section 6.2 we consider the third variant,
called FauROT, and construct it from the (non-robust) FssCOT and FssOT. The implementation of FauROT
turns out to be robust, even for active adversaries. In Section 6.3 we present the protocol implementing the
preprocessing phase, i.e. the protocol realizing the functionality FPrep of Figure 10. It will be instantiated
in the (FssOT,FssCOT,FComm)-hybrid model. This means that we can preprocess assuming only the two
functionalities FOT and FComm of Figure 1 and Figure 2, respectively. Finally, in Section 6.4 we discuss the
complexity when the construction is instantiated for two or more parties.

6.1 Secret Shared OT

A secret shared oblivious transfer, ssOT(a, b, `, τ) is an n-party primitive defined as follows. For any subset
I ⊆ P of receivers, and any subset J ⊆ P of senders, of size a and b respectively, the parties in J have `
pair of secrets vectors (x(0)

s ,x(1)
s )s≤` in Fτ2 . The parties in I have a decision vector b in F`2, such that:

- The set of receivers obliviously retrieves vector us = x(0)
s ⊕ (bs · x(1)

s ) for each s ≤ `, where the meaning
of oblivious retrieving is the same as in a standard OT15.

- The decision b, and the retrieved vectors us are additively secret shared between the receivers, i.e.,
parties in I have 〈b〉I and 〈us〉I .

- The secret pairs (x(0)
s ,x(1)

s )s≤` are additively secret-shared between the senders, i.e, parties in J have
〈x(c)
s 〉J for s ≤ `, and c = 0, 1.

It is not difficult to see that one can obtain OT from ssOT; if sender P1 wants to obliviously transmit
one of the two secrets (x(0),x(1)) in Fτ2 to receiver P2, the sender simply inputs (x(0),x(0) ⊕ x(1)) to an
15 More concretely, if bs = 0 then x(1)

s is uniformly distributed, over Fτ2 , in the joint view of the receivers I\J , and
if bs = 1, both secrets vectors are uniformly distributed over the set of vectors that add up to us. On the other
hand, decision b is uniformly distributed, over F`2, in the joint view of the senders J \I.
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Figure 23 Relationship Between the Functionalities Implementing FPrep

ssOT(1, 1, 1, τ). The other direction is not straightforward though, and requires communication between the
parties.

First observe that for (some arbitrary and previously fixed subsets I,J ⊆ P of sizes a and b, respectively)
the output of an ssOT(a, b, `, τ) gives ` representations ([xs]IJ ,d)s≤` over Fτ2 , i.e., sharings {〈xs〉I , 〈us〉I , 〈vs〉J ,
〈ds〉J } such that u = v ⊕ (x · d). We are ultimately interested in realizing the case I = J = P; note here
that to ease the description, the indices will be dropped when this is the case.

The idea is that of building ssOT using pairwise executions of FROT (see Figure 13) and seeing the outputs
as the shares that the parties hold. The obvious problem being that pairwise FROTs are not consistent across
the pairs of parties. Thus, we need to give to each ordered pair (Pi, Pj) of senders and receivers, quadruples
(xi,j ,ui,j ,vi,j ,di,j), where bits, or vectors, with superindex (i, j) are obtained by Pi during an interaction
with Pj , such that ⊕

(i,j)

ui,j =
⊕
(i,j)

vi,j ⊕

⊕
(i,j)

xi,j

 ·
⊕

(i,j)

di,j
 .

This is clearly true if the quadruples obtained from FROT are correct, namely ui,j = vj,i ⊕ (xi,j · dj,i), and
each party holds the same share across all the pairs it belongs to, i.e. xi,j = xi,j

′ and di,j = di,j′ . One way
to achieve this is to let the parties choose or “switch” to their own shares, during the pairwise executions.

Toy Example. In the three-party case, n = 3, suppose we want to realize ssOT(1, 3, 1, τ); thus there is one
receiver, say I = {P1}, three senders J = {P1, P2, P3}, and they want to transmit one single vector in Fτ2 .
The parties proceed in three steps.

1. Party Pj inputs a share vector dj in Fτ2 , for j = 1, 2, 3, and P1 inputs a bit x.
2. P1 runs FROT with P2 and with P3. As a result they obtain ROT quadruples (r1,2,u1,2,v2,1

0 ,v2,1
1 ), and

(r1,3,u1,3,v3,1
0 ,v3,1

1 ).
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3. P2 switches to his chosen share d2, setting p2,1 = v2,1
0 ⊕ v2,1

1 and sending to P1

m1,2 = d2 ⊕ p2,1.

Similarly, P3 switches to his chosen share d3, setting p3,1 = v3,1
0 ⊕v3,1

1 , and sending m1,3 = d3⊕p3,1 to
P1. Then P1 sets

u = u1,2 ⊕ u1,3 ⊕
(
r1,2 ·m1,2)⊕ (r1,3 ·m1,3) , and v1 = x · d1.

4. Next, P1 switches to his bit x. He sends the XOR c2,1 = x ⊕ r1,2 to P2 and c3,1 = x ⊕ r1,3 to P3. Now
P2 and P3 can adjust their shares accordingly, namely Pj , sets

vj = vj,10 ⊕
(
cj,1 · dj

)
for j = 2, 3.

By the correctness of FROT, it is not difficult to see that it holds 16

u = v1 ⊕ v2 ⊕ v3 ⊕ x · (d1 ⊕ d2 ⊕ d3) def= v⊕ (x · d),

where P = {P1, P2, P3} has an additive sharing of vectors v, d, and P1 has bit x, and vector u. In other
words, the three parties have representation [x]1d. It is straightforward to apply the same ideas with arbitrary
n, I and J . Namely receivers in I and senders in J exchange their bits cj,i and vectors mi,j .

There is a subtlety in the example above. The first secret v is not chosen by the senders, but rather
drawn from the uniform distribution, for our context this semi-randomized flavour is enough.

Passive Adversaries. For arbitrary n, receivers I, and senders J , the key point to argue security is that the
bits xi and the vectors dj , are one-time-padded with the random values ri,j and pj,i = vj,i0 ⊕ vj,i1 given by
the pairwise FROT. Continuing with the toy example, if P1 is honest, then bit x is uniformly distributed
in the joint view of the senders P2, P3, and if at least one sender is honest, the secrets v, d are uniformly
distributed in the view of the receiver P1. It is not difficult to turn this into a simulation argument to see
that in the FROT hybrid, ssOT is perfectly realized in the presence of semi-honest adversaries.

Non Robust ssOT. The technique we have just described is too strong to implement ssOT with fully
malicious adversaries. We instead realize a relaxed version, where dishonest parties can choose to produce
quadruples where the relation u = v⊕ (x · d) does not necessary holds. In Section 6.2 we will show how to
use a non robust ssOT (together with a non robust ssCOT) to implement an authenticated secret shared
ROT. To this end, as we will see, it is enough to restrict ourselves to ssOT with one receiver and n senders.

In the toy example, a malicious sender, say P2, had no room to cheat, because from any mask vector
m1,2 that he have may sent, a simulator can extract his chosen share d2, namely d2 def= m1,2 ⊕ p2,i, where
p2,1 is given by FROT . Consequently, if there were at least one honest sender (as it certainly was the case
since J = P), the vector d still remained uniform in the joint view of malicious senders, and the parties
would hold [x]1d, where the malicious shares dj are extracted as explained. Also the other secret, vector u
can be proved to be uniformly random using the privacy of FROT.

The situation is different if the malicious party was the receiver P1. If he had sent two mask bits c2,1,
c3,1 to P2 and P3 respectively, such that c2,1 ⊕ r1,2 6= c3,1 ⊕ r1,3 (where r1,2, r1,3 are given by FROT to P1)
then there is no consistent bit x that P1 was committing to via his masks. This effectively means that, a
malicious receiver P1 could have potentially shifted the representation [x]1d that the parties were after, by a
vector living in the space spanned by the shares d2, d3 of honest P2 and P3. 17

Thus, active corruptions produce faulty representations of the form u = v ⊕ (x · d) ⊕
⊕

h/∈A e
h · dh,

where the eh’s are adversarial offsets, and A is the set of corrupted parties. In Figure 24 we present the ideal
functionality that models a non-robust ssOT with one receiver and n senders. (With uniform first secret v.)
16 Namely, FROT guarantees that u1,j = vj,10 ⊕

(
r1,j · pj,1

)
for each j = 2, 3.

17 Roughly, if P1 deviated in the toy example, and we let e.g. x = c2,1 ⊕ r1,2, sending (x⊕ 1)⊕ r1,3 to P3 caused the
parties to obtain quadruple (x,u,v,d), s.t. u = v⊕ (x · d)⊕ d3. Here d = d1 ⊕ d2 ⊕ d3, and dj is known to Pj
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In FssOT (and later in FssCOT), we model this malicious behaviour by allowing the adversary to input
vectors xs = (x1

s, . . . , x
n
s ) ∈ Fn2 , s ≤ `, instead of bits. If x1

s = · · · = xns , it means that Pi inputs consistent
bits to each Pj , j 6= i, and that xs = xjs.

Functionality FssOT(1, n, `, τ)

The functionality is parametrized by the number of transfers `, and the length of the transmitted vectors τ . The
functionality performs ` transfers from one party to n parties. The ideal adversary is denoted by S.

Input On input (ssOT, i,x,di1, . . . ,di`) from party Pi, and (ssOT, i,dj1, . . . ,d
j
`) from party Pj 6= Pi, where

x = (x1, . . .x`) ∈ Fn·`2 , and dis,djs ∈ Fτ2 , for s ≤ `. The functionality sets ds = d1
s ⊕ · · · ⊕ dns , and creates

representations [xs]ids as follows.
Honest Parties

1. Sample random vs ∈ Fτ2 and set us = vs ⊕ (xs · ds).
2. Generate additive sharing 〈vs〉 = (v1

s, . . . ,vns ).
The functionality outputs (us,vis)s≤` to party Pi, and (vjs)s≤` to party Pj for 1 ≤ j 6= i ≤ n.

Corrupt Parties
The functionality waits until S specifies the set of corrupted parties A and their inputs.
Then for each index s it does the following:
- If S specifies (Honest-Pi, deliver) (i.e. the receiver Pi is not corrupt), it generates ` representations [xs]ids
as in the honest case. It then outputs (us,vis)s≤` to Pi, and (vhs )s≤` to each honest sender Ph 6= Pi.

- If S specifies (Corrupt-Pi) (i.e. the receiver Pi is corrupt), and S additionally specifies ` tuples of offset
bits (ehs )h/∈A,s≤`. The functionality generates ` representations [xs]ids as in the honest case, and outputs
(vhs ⊕ (ehs · dhs ))s≤` to honest Ph. Thus, if we let eHs =

⊕
h/∈A e

h
s · dh it holds

us = vs ⊕ (xs · ds)⊕ eHs

Figure 24 Non Robust Secret Shared OT with One Receiver and n Senders

Realizing FssOT. It is not difficult to formalize the ideas sketched in the toy example, to ` transfers of vectors
of length τ . We present the protocol in Figure 25. Here let us recall what are the key points used in the
extension: (1) the set of parties is divided into ordered pairs and each of these calls the FROT functionality;
(2) all parties (i.e. the senders) “switch” from the second secrets given by FROT to their desired share of their
second secrets; (3) the party designated to be the receiver, “switches” from the random bit decisions given
by FROT to his choice bits. To obtain ` representations [xs]id the extension makes n-1 calls to FROT(`, τ).
We obtain the following lemma.

Lemma 11. In the FROT(`, τ)-hybrid model, protocol ΠUShare(1, n, `, τ) of Figure 25 implements FssOT(1, n,
`, τ) of Figure 24, with perfect security against static adversaries corrupting up to n-1 parties.

Proof. Let Z denote the environment and S the ideal world adversary. We assume authenticated communi-
cation between parties, that is, they are given access to a functionality FAT, which on input (m, i, j) from
Pi, it gives message τ to Pj and S.
S starts invoking an internal copy of the real adversary A and setting dummy parties πi for i ∈ 1, . . . , n.

It then runs an internal execution of ΠUShare between A and the πi’s, where every incoming communication
from Z is forwarded to A, and any outgoing communication from A is forwarded to Z. The description of S
is as follows. (Below, index i denotes the party designated as the receiver, and A the indices corresponding
to the subset of corrupted parties).

Simulation for honest receiver Pi
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Protocol ΠUShare(1, n, `, τ)

The protocol is parametrized by the number of transfers `, and the length of the transmitted vectors τ . (Below,
bits, or vectors, with superindex (a, b) indicates that Pa has the bit, or the vector, after an interaction with Pb)

On input (ssOT, i,x,di1, . . .di`) from party Pi, and (ssOT, i,dj1, . . . ,d
j
`) from party Pj , j 6= i, where x ∈ F`2 and

dis,djs ∈ Fτ2 , the parties do the following:

1. Switch Secrets: Each party Pj , such that j 6= i, interacts with Pi as follows.
(a) Call FROT on input (start, i, j). This returns ` ROTs, i.e. (vj,is,0,v

j,i
s,1) to Pj and (ui,js , ri,js ) to Pi, for

each s = 1, . . . , `, such that ui,js = vj,i
s,r

i,j
s

.

(b) Pj computes pads pj,is = vj,i0 ⊕ vj,i1 , and sends masks mi,j
s = djs ⊕ pj,is to Pi, for s ≤ `.

(c) Pj stores vj,is,0 in a list for later use.
2. Pi samples random vectors fs ∈ Fτ2 , for s ≤ `, and then sets

us = fs ⊕

(⊕
j 6=i

ui,js ⊕ (ri,js ·mi,j
s )

)
and vis = fs ⊕ (xs · dis).

3. Switch decision vector: Pi and Pj , j 6= i, interact as follows.
(a) Pi sends mask bits cj,is = xs ⊕ ri,js to Pj , for each s ≤ `.
(b) Pj recovers vj,is,0, and sets vjs = vj,is,0 ⊕ (cj,is · djs), s = 1, . . . , `.

4. Pi outputs (us,vis)s≤`, and Pj outputs (vjs)s≤`.

Figure 25 Bootstrapping from Two-party OT to n-party ssOT with One Receiver and n Senders

- S initializes the inputs of honest dummy parties (πh)h/∈A at random and receives inputs of corrupt parties
from A. S activates copies of FAT and FROT that it uses in the internal execution of ΠUShare with A,
i.e. S has access to all data provided by these two functionalities.

- For each pair of parties (Pi, Pj), it emulates FROT and sends (vc,is,0,v
c,i
s,1)c∈A to A.

- In step 1b, for each c ∈ A, S internally receives masks (mi,c
s )s≤` from A, and sets d̄cs = mi,c

s ⊕pc,is , where
pc,is is specified by FROT, i.e. pc,is = vc,is,0 ⊕ vc,is,1.

- The simulator externally notifies to FssOT that A is corrupt, and gives (d̄cs)c∈A,s≤`, as their inputs. Then
externally sends (Honest-Pi, deliver) to FssOT. It outputs whatever the adversary outputs and halts.

Simulation for corrupt receiver Pi

- S initializes the inputs of honest dummy parties (πh)h/∈A at random, and receives inputs of corrupt
parties from A.

- Emulating FROT and FAT it forwards (ri,js ,ui,js ) and (vi,cs,0,v
i,c
s,1)c∈A to A.

- In step 3a, and for each h /∈ A, S receives mask bits ch,is from A, and extracts the inputs of the corrupt
parties by computing xi,hs = ch,is ⊕ ri,hs . Now the simulator checks that xi,hs = xi,h

′

s , ∀h, h′ 6∈ A. If this is
not the case, it computes the offset bit (ehs )h 6∈A.

- S externally sends (Corrupt-Pi) and (ehs )h/∈A,s≤` to FssOT, outputs what the adversary outputs and halts.

We now argue indistinguishability.

Case none of the parties are corrupted. We start showing that the environment does not distinguish
the real process and the ideal process when no corruption occurs. First, in FssOT(1, n, `, τ), party Pi inputs
decision vector x in F`2, and shares (di1, . . . ,di`) in Fτ2 , any other party Pj inputs shares (dj1, . . . ,d

j
`) in

Fτ2 . They obtain ` representations [xs]ids , with ds = d1
s ⊕ · · · ⊕ dns , i.e. sharings (〈us〉i, 〈vs〉P) such that

us = vs ⊕ (xs · ds), with vs drawn uniformly.
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Expanding out the output of parties in ΠUShare, we see that for each s ≤ ` the following holds.

us =fs ⊕
⊕
j 6=i

ui,js ⊕
⊕
j 6=i

ri,js ·mi,j
s

=fs ⊕
⊕
j 6=i

ui,js ⊕
⊕
j 6=i

ri,js · (djs ⊕ vj,is,0 ⊕ vj,is,1) (9)

where
ui,js =

⊕
j 6=i

vj,is,0 ⊕
⊕
j 6=i

ri,j · (vj,is,0 ⊕ vj,is,1). (10)

So, putting together (9) and (10), we get:

us = fs +
⊕
j 6=i

vj,is,0 ⊕
⊕
j 6=i

ri,js · djs.

Since
vs = vis ⊕

⊕
j 6=i

vjs = fs + xs · dis ⊕
⊕
j 6=i

vj,is,0 ⊕
⊕
j 6=i

djs · (xs ⊕ ri,js ),

we obtain us ⊕ vs = xs · ds. Since the share vis is randomized via vector fs, and the shares vjs , j 6= i, via
FROT, we conclude that the output in both processes are identically distributed. Second, in Z’s view, the
transcript in the real process, is not bind to the real inputs because Z has no access to the pads bits ri,js nor
to the pad vectors pj,is , so the ideal transcript could also have been seen in the real process, with the same
inputs, that Z gives. (We are implicitly reusing the simulator for the case Pi is honest and setting A = ∅.)

Case Pi is corrupted. In this case, step 3a is the only point in the real process (or in the ideal process)
where A could have deviated and send inconsistent bit masks to honest parties. In the ideal process S can
see this bad behaviour because it has access to both ch,is and ri,hs , ∀h 6∈ A and it can correctly reconstruct
vector xs, s ≤ `. Thus, for each h 6∈ A, the simulator computes (ehs )h6∈A,s≤l, such that xhs = xs + ehs , and
forwards values ehs and xs to the functionality. Therefore, the outputs are identically distributed in both
processes. On the other hand, the honest part of the transcript that Z sees in either process, namely honest
masks mh,i, is again not bind to the inputs vector dhs of honest parties, because Z has not access to pads
ph,i, for h /∈ A. This concludes the case Pi is corrupt.

Case Pi is honest. In this case, the only point where the adversary can deviate is in step 1b. Using a
similar argument as in the previous case, in the ideal process S can recover the corrupt share dcs from the
mask mi,c

s sent to πi by πc, and tell FssOT which is the corrupt input that A chooses for Pc. In other words,
the only attack that a real adversary can do when the receiver Pi is not corrupted, is to change the input
of the corrupted parties, and this does not affect correctness. Ths concludes the case Pi is honest and the
proof of the lemma. ut

Secret Shared Correlated OT The second variant that we consider is the counterpart of ∆-ROT. A
Secret Shared Correlated OT (ssCOT(a, b, `, τ)) is like an ssOT(a, b, `, τ), the only difference is that the
second secret in all the pairs are fixed to the same vector. Thus x(1)

s = c for each s ≤ `, where c is the
correlation vector.

One can use F∆-ROT (see Figure 21), to implement FssCOT(1, n, `, τ) where many correlated quadruples
([xs]1d)s≤` are produced, using virtually the same techniques as for ssOT. The difference being that for all the
transfers of the same batch, one defines the pad vector for the chosen share dj of Pj as the correlation vector
cj that is obtained in a pairwise execution with the sender Pi. Observe that it requires less communication,
as now the switch from random to chosen shares only needs to be done once per batch of quadruples.

For the sake of completeness we include the functionality and the protocol realizing it, in Figure 26
and Figure 27. They are very similar to the ones defined previously. (See Figure 26 and Figure 27.) Not
surprisingly, we obtain the following lemma.
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The Functionality FssCOT(1, n, `, τ)

The functionality is parametrized by the number of transfers `, and the length of the transmitted vectors τ . The
ideal adversary is denoted by S.

Input On input (ssCOT, i,x,di) from party Pi, and (ssCOT, i,dj , ) from party Pj 6= Pi, where x =
(x1, . . . ,x`) ∈ Fn·`2 , and di,dj ∈ Fτ2 , The functionality sets d = d1 ⊕ · · · ⊕ dn, and creates ` represen-
tations [xs]id as follows.

Honest Parties
1. Sample random vs ∈ Fτ2 and set us = vs ⊕ (xs · d).
2. Generate additive sharing 〈vs〉 = (v1

s, . . . ,vns ).
The functionality outputs (us,vis)s≤` to party Pi, and (vjs)s≤` to party Pj , for each j 6= i.

Corrupt Parties
The functionality waits until S specifies the set of corrupted parties A and their inputs. Then for each index
s it does the following.
- If S specifies (Honest-Pi, deliver) (i.e. the receiver Pi is not corrupt), it generates ` representations

[xs]id as in the honest case. It then outputs (us,vis)s≤` to Pi, and (vhs )s≤` to honest sender Ph 6= Pi.
- If S specifies (Corrupt-Pi) (i.e. the receiver Pi is corrupt), and S additionally specifies ` tuples of offset
bits (ehs )h/∈A,s≤`. The functionality generates ` representations [xs]id as in the honest case, and outputs
(vhs ⊕ (ehs · dh))s≤` to honest Ph. Thus, if we let eHs =

⊕
h/∈A e

h
s · dh it holds

us = vs ⊕ (xs · d)⊕ eHs

Figure 26 Non Robust SS Correlated OT with One Receiver and n Senders

The Protocol ΠCShare(1, n, `, τ)

The protocol is parametrized by the number of transfers `, and the length of the transmitted vectors τ . (Below,
bits, or vectors, with superindex (a, b) indicates that Pa has the bit, or the vector, after an interaction with
Pb).//
On input (ssOT, i,x,di) from party Pi, and (ssOT, i,dj) from party Pj 6= Pi, where x ∈ F`2, and di,dj ∈ Fτ2 , the
parties do the following:

1. Switch Secrets: Each Pj 6= Pi does the following with Pi
(a) Call F∆-ROT on input (start, i, j). The box returns ` ∆-ROT quadruples (ri,js ,ui,js ,vj,is,0, c

j,i), i.e. it holds
ui,js = vj,is,0 ⊕ (ri,js · cj,i).

(b) Pj sets pad pi,j = cj,i, and sends mask mi,j = dj ⊕ pj,i to Pi.
(c) Pj stores vj,is,0 in a list for later use.

2. Pi samples random vectors fs ∈ Fτ2 , for s ≤ `, and then sets us = fs ⊕
(⊕

j 6=i ui,js ⊕ (ri,js ·mi,j)
)
, and

vis = fs ⊕ (xs · di).
3. Switch decision vector: Pi does the following with each other Pj

(a) For s ≤ `, Pi sends mask bits cj,is = xs ⊕ ri,js to Pj .
(b) For s ≤ `, Pj recovers vj,is,0, and sets vjs = vj,is,0 ⊕ (cj,is · dj).

4. Pi outputs (us,vis)s≤`, and Pj outputs (vjs)s≤`.

Figure 27 Bootstrapping from Two-party OT to n-party ssCOT with One Receiver and n Senders

Lemma 12. In the F∆-ROT(`, τ)-hybrid model, protocol ΠCShare(1, n, `, τ) of Figure 27 implements the func-
tionality FssCOT(1, n, `, τ) of Figure 26, with perfect security against static adversaries corrupting up to n-1
parties.

Proof. The proof is identical as the proof of Lemma 11. Correcntess follows from the correctness of F∆-ROT.
The ideal and the ideal processes are indistinguishable also because the honest pads ch,i are randomly
distributed. (If Pi is honest the same goes for the pads ri,cs used in the sth switch.) ut
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From One to Many Receivers Assuming access to an ssOT(1, n, `, τ) the parties can easily generate
representations [xs] = {〈xs〉, 〈us〉, 〈vs〉, 〈ds〉}s≤` over Fτ2 . Thus, after n executions of ΠUShare(1, n, `, τ) in
the same input, where in the ith execution party Pi act as the receiver, the parties have obtained [xis]ids =
{〈xis〉i, 〈us,i〉, 〈vs,i〉, 〈ds〉}, for s ≤ `, adding up, they obtain:

[x1
s]1ds ⊕ · · · ⊕ [xns ]nds = [x1

s ⊕ · · · ⊕ xns ]ds
def= [xs]ds .

The arithmetic defined in Section 2 ensures that if the parties use the same share dj across the different
executions, then the equality holds. Moreover, the secret shared bit xs is uniform in the view of any n − 1
parties. This is enough if one is considering semi honest adversaries. Observe that the same can be done to
obtain correlated representations [x1]c, . . . , [x`]c. (Using ΠCShare instead.)

Nevertheless the interesting case is when the parties are fully malicious. The effect of active adversaries
in each call was quantified in Lemma 11. Namely, for an error vector eHR =

∑
h/∈A eh · dh, with offsets bits

eh chosen by the adversary, and vector dh only known to honest Ph, in the cth call the corrupted receiver
Pc can force the parties to create faulty representations (xc)cd = {〈xc〉c, 〈u〉c, 〈u ⊕ eHR 〉, 〈d〉}, where it holds
u = v⊕(xc ·d)⊕eH . The other way a malicious adversary can influence the protocol is giving different inputs
to the n calls of ΠUShare (i.e. now are the “senders” who are misbehaving). If we denote by d = d1⊕· · ·⊕dn
the vector obtained in the first call, then in the jth call, 2 ≤ j ≤ n, the adversary, for an offset vector fj
chosen by him, can make the parties output [xj ]jd⊕fj , if Pj is honest, or faulty (xj)jd⊕fj if Pj is corrupt.

Adding both ways of influencing, if we let eHS =
∑
h/∈A x

h · fh, after combining the output of the n calls,
the adversary can force the parties to create (faulty) representations (x)d = {〈x〉, 〈u ⊕ eHS 〉, 〈v ⊕ eHR 〉, 〈d〉},
where it holds

u = v⊕ (x · d)⊕ eHR ⊕ eHS .

The difference between both error vectors is that eHS depends on the value of the honest share bits xh. This
is not the case with eHR , that takes always the same value regardless the values of the honest bits. Thus, in
some respect, influencing as a “sender” is stronger than influencing as a “receiver”.

6.2 Authenticated Multi Random OT

In addition to the above two variants we also consider a third variant of oblivious transfer, which is the
multiparty and authenticated notion of a standard random OT. Recall what we mean by authenticated bit
e: we write JeKα when the parties in P have JeKα = {〈e〉, 〈u〉, 〈α〉} such that u,α are in Fτ2 , and it holds
u = e ·α. (The vector α is the global key, and its length τ will be seen as a security parameter.)

For a vector α uniformly sampled in Fτ2 , an authenticated secret-shared random oblivious transfer is a
quadruple Jx(0)Kα, Jx(1)Kα, JeKα, JzKα held by the set of parties P with the following two properties:

Privacy. The triplet (x(0), x(1), e) is uniformly distributed in F2 in the joint view of any n− 1 parties.
Correctness. It holds that z = x(e).

The ideal functionality FauROT modeling creation of (authenticated) random OT quadruples is in Figure 28.
The rough idea to implement FauROT is to call FssOT for the generation of the secret-shared quadruple and
FssCOT to authenticate it. Hereafter we employ a cut-and-choose technique to check that the quadruples
are indeed correct and make sure they are also private. The protocol implementing these ideas, given in
Figure 29, is broken in three steps that we examine in turn.

Generating additive secret-shared quadruples. (Share) A random OT quadruple (x(0), x(1), e, z) is created
calling n times FssOT. In the ith call the parties obtain a representation [ei]id where bit share ei is known to
Pi. Exploiting the linearity of additive secret-shared values they set [e]d = [e1]1d⊕· · ·⊕ [en]nd. The parties now
have quadruple {〈v〉, 〈d〉, 〈e〉, 〈u〉}, such that u = v⊕e ·d. In other words if we let x(0) = v, x(1) = v⊕d, and
z = u, then it holds z = x(e). The ROT quadruple (〈x(0)〉, 〈x(1)〉, 〈e〉, 〈z〉) is then given by decision bit e and
the first bits of vectors x(0), x(1), z; the quadruple is indeed secret-shared. Recall nothing stop corrupt parties
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The Functionality FauROT(`, τ)

This functionality is parametrized by the number of output authenticated ROT quadruples `, and the length of
the MAC key τ .

Initialize
On input (Init) from all the parties, the functionality samples a random vector α in Fτ2 . When S inputs
the set of corrupted parties A, the functionality computes a sharing 〈α〉 = (α1, . . . ,αn), where the corrupt
shares (αc)c∈A are specified by S, and outputs αh to honest Ph.

Authenticated Secret Shared ROT
On input (auROT) from all the parties, the functionality waits for S to input abort or deliver. If it is told
to abort, it outputs the special symbol ∅ to honest parties. Otherwise for s ≤ ` it samples three random
bits (x(0)

s , x
(1)
s , es), and sets zs = x

(es)
s . Then generates authentications Jx(0)

s Kα, Jx(1)
s Kα, JesKα, JzsKα calling

sub-procedure Authenticate(y) for every bit y ∈ {x(0)
s , x

(1)
s , es, zs}s≤`.

Authenticate(y):
Given a bit y, this sub-procedure produces an authentication JyKα = (〈y〉, 〈m〉, 〈α〉), where α is the
MAC key.
1. Set m = y · α.
2. Generate bit sharing 〈y〉 = (y1, . . . , yn) in F2, and MAC sharing 〈m〉 = (m1, . . . ,mn) in Fτ2 .

Output (yj ,mj) to party Pj , j = 1, . . . , n.
Corrupt Parties:

1. The functionality sets m = y · α.
2. S specifies bit shares {yc}c∈A, and MAC shares {mc}c∈A. Then the functionality creates sharings 〈y〉,
〈m〉 where the portion of honest shares is consistent with adversarial shares.

Output (yh,mh) to honest Ph.

Figure 28 Authenticated ROT Quadruples

to input distinct values in two calls to the functionality. For example, they may give 〈d⊕ 1〉 in the first call
and 〈d〉 in subsequent calls; this means that the parties end up with n representations of the form [e1]1d⊕1 and
[ej ]jd for j ≥ 2. After adding them up they would hold a faulty representation (e)d = {〈v〉, 〈d〉, 〈e〉, 〈u⊕ e1〉},
where now it holds u = v⊕ e ·d. The derived quadruple is correct iff the share of the decision bit e1 is zero,
opening the door to selective-failure attacks that we prevent later.

Putting MACs to the quadruples. (Authenticate) To add a MAC to each bit of the quadruple the parties
now call FssCOT n times. The input share of the correlated vector that the functionality receives from Pj is the
jth share of the MAC key αj . Party Pj authenticates his share bits of the (secret) quadruple (x(0), x(1), e, z)
in the jth call. Using again the linearity of the representations the parties can easily derive Jx(0)Kα, Jx(1)Kα,
JeKα, JzKα. Again observe that the parties can input to the functionality values different to the ones created
in the previous step. This potentially raises more selective-failure attacks (see below).

Testing semi-honest behaviour. (Sacrifice) Here we want to guarantee the correctness and privacy of the
authenticated quadruples. We use a technique also found in [NO09,DKL+13,FJN+13] that works on large
batches of quadruples. We start with γ = `(b3+1) quadruples Qs = (Jx(0)

s Kα, Jx
(1)
s Kα, JesKα, JzsKα)s≤γ created

in the previous steps, where ` is the final number of output quadruples and b is a secondary parameter. The
technique is divided in three phases. We have separated it out from the main protocol of Figure 29 due to
the length of the description, it is detailed in Figure 30 but let us here sketch the ideas behind the scenes.

- First we ensure that not all the quadruples we start with are incorrect. The parties partially open ` of
them and everyone checks that the algebraic relationship that gives correctness holds in the bit shares.
This corresponds to step 4 of Phase-I in Figure 30.

- Next we enter Phase-II to test correctness in the quadruples that have not been discarded. The array
is randomly permuted and divided in buckets B1, . . . ,B` each of size b� σ (step 5). Inside each bucket
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Bs = (Qs,1, . . . , Qs,b) one quadruple is chosen, say the first one Qs,1, and the others b − 1 quadruples
are used to verify that indeed Qs,1 is correct (step 6 of Phase-II). This detects incorrect quadruples with
high probability. 18 Unfortunately while checking correctness we loose the privacy of Qs,1. If dishonest
parties are lucky enough they may be able to learn a certain predicate L(X0, X1, E, Z) of their choosing
in one of the (verified) correct quadruples. (Below we give an explicit attack where dishonest parties
learn the secret decision bit e.)

- In Phase-III we remove any potential leakage as follows. We see again the surviving quadruples of the
previous phase as groups or buckets. For each bucket we combine the quadruples obtaining one new
quadruple. This ensures that a fixed leakage predicate L of the resulting quadruple is not learnt (step 7
of Phase-III) followed by a local change in the syntax of the new quadruples (step 9); the change is such
that if a quadruple Q is leaking predicate L′ the locally swapped quadruple potentially leaks only the
fixed predicate L. Therefore combining once more we are able to remove any potential leakage in the
output quadruples.

- Right before the parties output something they run protocol ΠMACCheck over all partially opened values,
forcing corrupt parties to stick to the inputs chosen in step Authenticate during the three phases.

Protocol ΠauROT(`,m, b)

It is parametrized by the number of output ROT quadruples `, the length of the MAC key τ , and an additional
parameter b, denoting the size of the buckets.

Share OT. This generates γ = ` · (b3 + 1) random quadruples (〈x(0)
s 〉, 〈x(1)

s 〉, 〈es〉, 〈zs〉) such that (x(0)
s , x

(1)
s , es)

are randomly distributed and zs = x
(es)
s for s = 1, . . . , γ.

1. Each party Pj samples a random vector ej , in Fγ2 , and τ random vectors dj1, . . . ,d
j
τ in Fγ2 .

2. The parties call FssOT n times. In the ith call, Pi inputs vectors (ei, (dis)s≤γ), and Pj inputs (djs)s≤γ .
They obtain representations [eis]ids for i ≤ n (eis is the sth bit of ei), that is, Pi gets uis ∈ Fτ2 , and all
the parties get sharings 〈vs,i〉, such that uis = vs,i ⊕ (eis · ds). (Here ds

def= d1
s ⊕ · · · ⊕ dns .)

The parties locally compute [es]d = [e1
s]1ds ⊕ · · · ⊕ [ens ]nds . (Here es

def= e1
s ⊕ · · · ⊕ ens .)

3. At this point the parties have γ sharings (〈es〉, 〈us〉, 〈vs〉, 〈ds〉). They set 〈z̄s〉 = 〈us〉, 〈x̄(0)
s 〉 = 〈vs〉,

and 〈x̄(1)
s 〉 = 〈vs〉 ⊕ 〈ds〉. Note that z̄s = x̄(es)

s , for s ≤ γ.
4. Each party takes the first bits of their shares vectors. Thus, for each secret vector ȳs ∈ {x̄(0)

s , x̄(1)
s , z̄s}

in Fτ2 , party Pi sets yis = LSB(ȳis). Now the parties have four secret shared vectors (x(0),x(1), e, z) in
Fγ2 , such that zs = xess , giving γ ROT quadruples.

Authenticate OT. This step produces authentications of the quadruples previously computed.
For every secret shared vector y ∈ {x(0),x(1), e, z} in Fγ2 , the parties do the following:
5. All the parties call FssCOT n times. In the ith call, party Pi inputs (yi,αi) and Pj inputs his share of

the MAC key αj (in Fτ2). After each call, the functionality gives [yis]iα to the parties.
6. Compute JysKα forming

⊕
i∈P [yis]iα, and then subtract vs from us. (Vectors us and vs are embedded

in [ys]α)
Sacrifice OT. The parties call subprocedure ΠBCC inputting the γ authenticated ROT quadruples (with pos-

sibly faulty quadruples), see Figure 30. Then the parties output what the subprocedure outputs.

Figure 29 Creating Authenticated ROT Quadruples in the (FComm,FssOT,FssCOT) Hybrid Model

Correctness and Privacy of the Output Quadruples As we said, it is not enough to check the
quadruples are correct because in doing so new information may be leaked. For example, the set of corrupt
parties can mount the following selective-failure attack: for a target quadruple Q = (〈x(0)〉, 〈x(1)〉, 〈e〉, 〈z〉),
18 If the first quadruple of some bucket is incorrect the check passes with negligible probability in the size of MAC

key vector σ
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Subrotocol ΠBCC(`,m, b)

It is parametrized by the number of output ROT quadruples `, the length of the MAC key m, and the size of
the buckets b.

Output : ` quadruples Qs = (Jx(0)
s K, Jx(1)

s K, JesK, JzsK)s≤` such that
– zs = x

(es)
s

– (x(0)
s , x

(1)
s , es) is randomly distributed in {0, 1}3

Phase-I: Cut-And-Choose
Input: Quadruples generated in steps Share and Authenticate of ΠauROT. (There are `(b3 +1) quadruples)
1. Party Pi samples a seed ri and asks FComm to broadcast τ i = comm(ri).
2. Party Pi calls FComm with open(τ i) and all parties obtain rj for all j. They set r = r1 ⊕ · · · ⊕ rn.
3. Using a PRFF2,m

r , parties sample a random vector w ∈ Fm2 , with weight `.
For c = 0, 1, let Jc ⊆ [`(b3 + 1)] be the set of indices such that wj = c.

4. For each s ∈ J1, the sth quadruple is partially opened. If zs 6= x
(es)
s the honest parties abort.

Phase-II: Sacrifice
Input: Quadruples indexed with J0. (There are `b3 quadruples.)
5. Permute the quadruples using a random permutation π on `b3 objects. (The permutation is chosen using

again PRFr.) After, split the quadruples into `b2 buckets Bi of size b.
6. For each bucket the parties check the first quadruple in the bucket using the other b − 1 quadruples.

Thus, if Bs = (Qs,1, . . . , Qs,b), they repeat the following for k = 2, . . . , b
– Partially open ps,k = x

(0)
s,1 ⊕ x

(1)
s,1 ⊕ x

(0)
s,k ⊕ x

(1)
s,k, and qs,k = es,1 ⊕ es,k

– Compute

Jcs,kK = Jzs,1K⊕ Jzs,kK⊕ Jx(0)
s,1K⊕ Jx(0)

s,kK⊕ (ps,k · Jes,1K) + qs,k ·
(
Jx(0)
s,kK⊕ Jx(1)

s,kK
)

Then partially open cs,k, if it is not zero the honest parties abort.
Phase-III: Combine

Input: The first quadruples of each bucket of Phase II.(There are ` · b2 quadruples.)
7. Split the quadruples into `b buckets B′i of size b each. (No need to permute again.)
8. For each bucket combine its quadruples. This is done recursively, taking a combined quadruple and

combining it with the next quadruple of the bucket. Combining two quadruples Q1 and Q2 into a third
quadruple Q3 is done as follows:
(a) Partially open f = x

(0)
1 ⊕ x(0)

2 ⊕ x(1)
1 ⊕ x(1)

2
(b) Set Jx(0)

3 K = Jx(0)
1 K ⊕ Jx(0)

2 K, Jx(1)
3 K = Jx(0)

1 K ⊕ Jx(1)
2 K, Je3K = Je1K ⊕ Je2K, Jz3K = Jz1K ⊕ Jz2K ⊕

(f · Je1K)
9. The parties now have `b quadruples Qs = (Jx(0)

s K, Jx(1)
s K, JesK, JzsK)s≤`b. They swap the components of

each Qs. Thus, the swapped quadruple Q̄s is defined as follows:
Jx̄(0)
s K = Jx(0)

s K, Jx̄(1)
s K = Jx(0)

s K⊕ JesK, JēsK = Jx(0)
s K⊕ Jx(1)

s K, Jz̄sK = JzsK
10. Split the swapped quadruples into ` buckets B

′′
i of size b, and repeat step 8.

Output: The parties execute the protocol ΠMACCheck to check all partially opened values. If no abort occurs,
output the ` quadruples obtained after executing step 10.

Figure 30 Bucket Cut-and-Choose Protocol in the FComm-Hybrid Model

generated as specified in step Share of ΠauROT, they authenticate the flipped bit x(1) ⊕ 1 instead of x(1) in
step Authenticate. If they are lucky enough so that Q is not opened in Phase-I and it ends up being the
first of its bucket then Phase-II aborts iff the decision bit e is one; if it is zero the value z corresponds to the
first secret bit x(0) and this what the parties check. Thus, if there is no complain when testing for correctness
corrupt parties learn the value of the decision bit e, since the quadruples are randomly distributed this
happens with probability one half. Combining quadruples after testing correctness prevents honest parties
outputting quadruples that are not private.
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The following two lemmas prove what we are claiming and they are used in the simulation. The first
one shows that the output of Phase-II gives correct quadruples and the second that after combining several
quadruples in Phase-III any potential leakage is removed.
Lemma 13 (Correctness). Let σ the size of the MAC key vector, ` the total number of output quadruples
in ΠauROT, and b the size of the buckets used in step Sacrifice. Then if (b − 1) log2(`) ≥ σ the output of
Phase-II of subprotocol ΠBCC gives an incorrect quadruple with probability p ≤ 2−σ.
Proof. Let ` be the final number of output quadruples of protocolΠauROT and γ = `·(b3+1) be the number of
input quadruples to step Sacrifice. In Phase-II the parties are randomly grouping ` ·b3quadruples in buckets
of size b perform a check and then taking one quadruple per bucket. Let the ith bucket Bi = {Qi,1, . . . , Qi,b}
and denote with (Qi)i≤t the quadruples that Phase-II outputs, where t = ` · b2.

Now, suppose that dishonest parties enter with exactly r incorrect quadruples step Sacrifice, we want
to upper bound the probability that at least one of the quadruples (Qi)i≤t is incorrect. Let p(r, t, b) be this
probability and consider the following events.

Event 1 (Dr): Subprotocol ΠBCC does not abort in Phase-I provided r quadruples are incorrect.
Event 2 (Er,t,b): After randomly bucketing tb quadruples, of which r are incorrect, in buckets of size b

there are no buckets containing both incorrect and correct quadruples (i.e Phase-II does not abort).

The check done in step 6 of Phase-II consists in (partially) open the sums zi ⊕ zi,s ⊕ xeii ⊕ x
ei,s
i,s and see if

they are zero for each 2 ≤ s ≤ b and all buckets Bi. If some Qi is incorrect the test goes through iff all the
other quadruples in the ith bucket are also incorrect. In other words the parties reach the end of Phase-II
starting with r incorrect quadruples if and only if the failure event Fr,t,b = Er ∩Dr,t,b happens. Thus

p(r, t, b) = Pr[Fr,t,b] = Pr[Dr] · Pr[Er,t,b] (11)

where the last equality follows from the fact that aborting in Phase-I is independent of aborting in Phase-II.
We do the following claim

Claim. Pr[Dr] ≤ ( b3

b3+1 )r.
Proof. If Dr is true then in Phase-I the ` quadruples that are partially opened are (randomly) sampled from
the set of γ − r correct ones, so for c = b3 we can write

Pr[Dr] =
(
γ − r
`

)
·
(
γ

`

)−1
=
(

(c+ 1)`− r
c`− r

)
·
(

(c+ 1)`
c`

)−1

= ((c+ 1)`− r) · · · (`+ 1)(c`)!
(c`+ `) · · · (`+ 1)(c`− r)!

= 1
c`+ `

· · · 1
c`+ `− r + 1 ·

c`+ `− r
c`+ `− r

· · · `+ 1
`+ 1 ·

(c`)!
(c`− r)!

= (c`) · · · (c`− r + 1)
(c`+ `) · · · (c`+ `− r + 1) ·

(c`− r)!
(c`− r)!

≤
( c`

c`+ `

)r
=
( b3

b3 + 1

)r
.

ut
Observe that if Et,b,r is true we have that r = kb for some k ∈ N; if not there is at least one mixed

bucket. Thus, the second event happens if the random permutation chosen in Phase-II gives k buckets filled
with incorrect quadruples. The latter happens with probability

Pr[Er,t,b] ≤
(
t

k

)
·
(
tb

kb

)−1
. (12)

On the other hand if Dr is true we may assume that r ≤ tb; otherwise one incorrect quadruple has not
been partially opened properly in Phase-I resulting in abort in the final execution of ΠMACCheck. We make
a second claim:
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Claim. If we see p(r, t, b) as a function in r then p(b, t, b) ≥ p(r, t, b) for r = b, 2b, . . . , tb. Thus the probability
is maximized in r = b.

Intuitively we can see the second claim as follows: for each r = kb, with k ≤ t, using equations 11, 12
we have that p(kb, t, b) ≤ Pr[Dr] ·

(
t
k

)
·
(
tb
kb

)−1. The term
(
t
k

)
·
(
tb
kb

)−1 is symmetric with respect to the value
k = t/2 since (

t

k

)
·
(
tb

kb

)−1
=
(

t

t− k

)
·
(

tb

tb− kb

)−1
,

and it strictly decreases for 1 ≤ k ≤ t/2 with the minimum being in k = t/2; the term
(

b
b+1

)k·b
is less than

1 and it strictly decreases when k grows. So when we multiply the two terms by the probability of the first
event, we have that the final probability p(kb, t, b) for any k ≤ t/2 is bigger than p(kb, t, b) for “symmetric”
values k ≥ t/2. The maximum is therefore for k = 1.

With the two claims we bound the probability of passing Phase-I and Phase-II with r incorrect quadruples:

p(b, t, b) ≤
( b3

b3 + 1

)b
· t ·

(
t · b
b

)−1
≤
( b3

b3 + 1

)b
· t(1−b)

= 2(log2(t))(1−b)+b(log2(b3/(b3+1))

≤ 2(log2(t))(1−b)

where the last inequality follows because log2 b
3/(b3 + 1) is negative. In particular, not aborting in Phase-I

or Phase-II with incorrect quadruples happens with probability upper bounded with 2−σ provided that we
set

(b− 1) log2(`) ≥ σ
This concludes the proof of the lemma. ut

The next result shows that no information is leaked after executing Phase-III of the Sacrifice step.
Lemma 14 (Privacy). Let σ the size of the MAC key vector, ` the total number of output quadruples in
ΠauROT, and b the size of the buckets used in step Sacrifice. Then if (b − 1) · (log2(`) + 1) ≥ σ Phase-III
outputs leaky quadruples with probability q ≤ 2−σ+1.

Proof. In stepAuthenticate of protocolΠauROT dishonest parties can choose to authenticate faulty quadru-
ple of the form Q = Jx(0) ⊕∆0K, Jx(1) ⊕∆1K, Je⊕∆eK, Jz⊕∆zK) where (x(0), x(1), e, z) is private and correct
and the offset (∆0, ∆1, ∆e, ∆z) ∈ {0, 1}4 is adversarial. That they can only influence in this way follows from
the fact that the honest parties are authenticating their own shares, so dishonest behaviour can only expect
to offset the secret-shared bits. Using that triplet (x(0), x(1), e) is randomly distributed, any offset vector will
give a correct quadruple with probability one half (after authenticating). In other words, if subprotocol ΠBCC
is given as input r faulty quadruples, and Dr is the event that all are correct, then we have Pr[Dr] = 2−r.
Without loss of generality we assume that Phase-III starts with exactly r leaky quadruples.

Let q1(r, `b2, b) be the probability that the first combination in step 7 of ΠBCC over `b2 quadruples
contains at least one bucket with only leaky quadruples. Here the bucketing is inherited from the permutation
of Phase-II splitting the surviving quadruples in chunks of size b.

First observe that predicate L(X(0), X(1), E, Z) = E never leaks in the combined quadruples. In Theorem
15 we will show that if log(`b) ≥ σ/(b− 1)− 1 then for any value of r we have that 2−r · q2(r, `b, b) ≤ 2−σ.
Combining quadruples in a given bucket Bi gives a new quadruple with decision bit ei = ei,1⊕ . . .⊕ei,b; since
these bits are never revealed the resulting decision bit is uniformly distributed in the joint view of corrupted
parties, unless all the quadruples of the bucket are leaky, but this happens with probability negligible in σ.

Second, after expanding out step 6 of ΠBCC on quadruples with adversarial offsets 19, one sees that the
predicates that dishonest parties potentially learn are E or X(0)⊕X(1) or E⊕X(0)⊕X(1), and their flipped
19 One expands the product z ⊕ ∆z = x0 ⊕ ((e⊕∆e) · (x0 ⊕ x1 ⊕∆0 ⊕∆1)), and see for fixed ∆ the relation on

(x0, x1, e, z) that gives the equality

46



counterparts. In particular predicate X(0) is never learnt by the corrupt parties, neither is predicate E after
the first combination. Now, the local swap of step 9 is such that maps

x(0) 7→ x̂(0) = x(0)

(x(1), e) 7→ x̂(1) = x(0) ⊕ e

Therefore the two secret bits after the swap are randomized via the old bits x(0), e. This ensures that any
potential leakage in the swapped quadruple must be in the decision bit ê. Applying again the result of
Theorem 15, and assuming that log ` ≥ σ/(b−1)−1 after the second combination we remove all the leakage
unless one of the buckets contains only leaky quadruples, which happens with probability 2−r · q2(r, `b, b) ≤
2−σ for any value of r. Summing up, Phase-III outputs leaky quadruples with probability

q ≤ 2−rq1(r, `b2, b) + 2−rq2(r, `b, b) ≤ 2−σ+1.

ut
We now state the main result of this section.

Theorem 10. Let σ a security parameter, and let additional parameters t, b, ` in N with b ≥ 2, and log ` ≥
σ
b−1 . Define γ = ` · (b3 + 1), then in the (FComm,FssOT(1, n, γ, σ),FssCOT(1, n, 4γ, σ)) model, and assuming
the existence of PRFF,t

s (·), protocol ΠauROT(`, σ, b) of Figure 29 implements FauROT(`, σ) with computational
security in σ, against static adversaries corrupting up to n− 1 parties,

Proof. Let Z denote the environment, the description of the ideal adversary S is as follows. It starts invoking
an internal copy of the real adversary A and setting dummy parties πi for i ∈ 1, . . . , n. It then runs an internal
execution of ΠauROT between A and the πi’s, where every incoming communication from Z is forwarded
to A as if it were coming from A’s environment, and any outgoing communication from A is forwarded to
Z. Then S proceeds as specified now. (Indices corresponding to the subset of corrupted parties are denoted
with A.)

1. S sets shares of the MAC key ᾱh of honest πh at random, and activates internal copies of FssOT and
FssCOT. It runs an internal execution of ΠauROT doing the following:
– In step 2, if A gives inconsistent inputs dcs across the n calls to the internal FssOT, for corrupted πc,

then S sets flag badGen to true.
– In step 5, if A misbehaves in any way during the 4n calls to FssCOT such that dummy {π1, . . . , πn}

hold an incorrect authenticated bit, then S sets flag badAuth to true. Additionally, if A authenticates
something different to what it was created in the Share step, then S sets badGen to true.

– In step Output it runs ΠMACCheck with A using the dummy input ᾱh as the share of the MAC key
corresponding to honest πh.

2. After completing the internal execution, if badGen or badAuth are true, and no abort has occurred S
sends IdealWorld to Z, and halts.
Otherwise, if an abort occurred S externally sends abort to FauROT and halts. Else, S puts in a list
every bit ȳ ∈ {x̄0, x̄1, ē, z̄}, corresponding to the corrupt bit shares of the output quadruples (they where
specified by A as inputs in the call to FssCOT), and the corrupt shares ᾱc given as inputs where, say
dummy π1 was authenticating his shares.
Then it externally sends (init, A, (ᾱc)c∈A) and auROT together with the extracted corrupt bit shares y
to FauROT, outputs what corrupt πc outputs and halts.

We now argue indistinguishability showing that for each action S takes in response to his internal adver-
sary, the environment never manages to distinguish.

Case abort . In this case there is no outputs to which Z can distinguish against, so the simulation is perfect
because if the real process aborts so does the ideal process.
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Case badAuth ∧ ¬abort. Here S acknowledges himself to Z. He does it because Z is going to distinguish
anyways: if S would let FauROT output, then in the real process we have bad authentications, and in the ideal
process correct ones. Now, in the internal execution of ΠauROT, the adversary managed to pass ΠMACCheck
with at least one bad authenticated bit, using Lemma 1 this case happens with probability p = 2−σ, where
σ is the size of the MAC key α.

Case Honest Execution.(¬badGen ∧ ¬badAuth ∧ ¬abort) By the correctness of FssOT and FssCOT and
the arithmetic on [·] representations, the real process never aborts, and the output quadruples distributed as
the quadruples of FauROT. Now, the only difference, between the ideal and the real execution of ΠMACCheck,
is that in the former S uses dummy share ᾱh for πh, and in the latter Ph uses his own share αh (all the other
values corresponding to honest parties are identically distributed); in the real process all the values that
honest parties and A exchange during the check are padded with the MACs of the check quadruples used
in Phase-II of Sacrifice, and these MACs are not part of the public transcript, the ideal transcript could
have also be seen in the real process, (with the appropriate choice of randomness for S); in other words, the
public transcript is not bind to any value of the real honest shares αh, and hence the environment can not
distinguish both processes. The simulation is perfect.

Case badGen ∧ ¬badAuth ∧ ¬abort. The environment distinguishes iff the output quadruples of the real
execution are either incorrect or leaky. Combining Lemma 13 and Lemma 14 this happens with probability
upper bounded with 2−σ+2.

In total the simulation fails if the check on bad partial openings passes or there is one bucket filled
only with incorrect or leaky quadruples, so we have a failure probability upper bounded with 2−σ+3. This
concludes the proof of the theorem. ut

6.3 Implementing the Offline Phase

With all the machinery already developed, implementing FPrep of Figure 10 is a relatively easy task, see
Figure 31. Recall that we have to create authenticated bits to a single party, and authenticated multiplicative
triples.

Authenticated bits to a single party We are not interested in producing robust authentications, since we are
also using ΠMACCheck in the online phase. With this in mind, and observing that an authenticated bit JrKα

held by Pi is easily derived from [r]iα, the parties can obtain authenticated bits simply querying FssCOT.
These bits will be used in the online phase to share the inputs.

Authenticated multiplicative triples As we have seen in Section 4.2, to do online multiplications we only need
precomputed authenticated triples JaK, JbK, JcK, such that: (1) they are correct, i.e. c = a · b, and (2) they
are private, i.e. bits (a, b) are randomly distributed in F2. Recall from Section 6.2 that an authenticated
ROT quadruple Jx(0)Kα, Jx(1)Kα, JeKα, JzKα is such that (x(0), x(1), e) is randomly distributed in F2, and
z = x(e). Given access to FauROT, the parties can (locally) obtain multiplicative triples simply observing
that z = x(0) ⊕

(
e · (x(0) ⊕ x(1))

)
.

Theorem 11. In the (FssCOT(`, σ),FauROT(`, σ) hybrid model, protocol ΠPrep of Figure 31 implements
FPrep of Figure 10 with perfect security against static adversaries corrupting up to n− 1 parties

Proof.
The proof is straightforward because there is no communication between the parties. Correctness of the

multiplicative triples hold, since as · bs = e · (x(0)
s ⊕ x(1)

s )) = zs ⊕ x(0)
s = cs. ut
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Protocol ΠPrep(`, κ)

This protocol is parametrized with the number of (authenticated) bits and multiplicative triples `, and the length
of the MAC key κ.

Initialize The parties call init command of FauROT(`, κ), obtaining their shares αi of the MAC key
α = α1 ⊕ · · · ⊕ αn. (The vector α is randomly distributed in Fκ2 .)

Share-to-Party On input (Share, i) from all the parties, they do the following:
1. Pi samples random bit vector r in F`2.
2. All parties call FssCOT(1, n, `, κ), where Pi inputs (r,αi), and Pj 6= Pi inputs αj . As a result they obtain

` representations [rs]iα = (〈us〉i, 〈vs〉, 〈α〉), such that us = vs ⊕ rs · α. (Here rs is the sth bit of r)
3. Pi sets his bit shares as ris = rs, and his MAC shares as mi

s = us ⊕ vis. Party Pj 6= Pi set his bit shares
rjs = 0, and his MAC shares as mj

s = vjs, thus (〈rs〉, 〈ms〉, 〈α〉) = JrsKα.
MTriples On input (MTriple), the parties call auROT command of FauROT(`, κ) obtaining ` ROT quadruples

Jx(0)
s Kα, Jx(1)

s Kα, JesKα, JzsKα. The quadruples are such that zs = x
(es)
s . Then, for s ≤ ` they set (as, bs, cs) as

follows
1. JasKα = JesKα

2. JbsKα = Jx(0)
s Kα ⊕ Jx(1)

s Kα

3. JcsKα = Jx(0)
s Kα ⊕ JzsKα

The parties output authenticated sharing (JasKα, JbsKα, JcsKα) for s ≤ `.

Figure 31 Bit Authentication and Multiplicative Triples in the (FssCOT,FauROT) Model

6.4 Complexity Analysis

We examine the cost of outputting one ROT quadruple for a total of ` outputs in ΠauROT. The cost (per
party and output) is in terms of the number of calls to FROT and F∆-ROT, say each party makes c(`) calls.
This also gives the computational complexity of doing a multiplication in ΠOnline since from each quadruple
we derive one multiplicative triple.

We let the number of calls to FROT and F∆-ROT needed to generate one authenticated ROT quadruple
in ΠauROT be denoted by cg. The resulting quadruple might be faulty, i.e. either non-private or incorrect;
so we pass it through ΠBCC that “sacrifice” s(`) quadruples, to check that it is really a ROT quadruple.
The sacrificed quadruples per output quadruple depends on the total number of outputs `. The number of
queries per output quadruple and party is then c(`) = cg

n · s(`).

Queries per generation. Creating one quadruple requires n(n− 1) queries to FROT and 4n(n− 1) queries to
F∆-ROT. To see the former, inΠauROT the parties execute step Share OT n times to create (〈x(0)〉, 〈x(1)〉, 〈e〉,
〈z〉); per execution one call to FssOT is done, which in turn queries FssOT n − 1 times; thus n(n − 1)
calls to FROT in step Share OT. For the latter, the above four bits of the quadruple are MAC’ed in
step Authenticate OT; each authentication calls FssCOT once; and the latter calls F∆-ROT n − 1 times.
Assuming the cost of FROT and F∆-ROT are similar, the total number of queries per generated quadruple is
cg = 5n(n− 1).

Checked quadruples. In step Sacrifice OT the parties call ΠBCC with a bucket of size b = b(`). The protocol
receive as input γ quadruples generated in the previous steps, and outputs ` < γ checked ones. We now
analyze how many quadruples are wasted in the process.

– In Phase-I we make sure not all the generated quadruples are faulty opening at random ` of them. Thus
we keep γ1 = γ − ` unopened quadruples.

– In Phase-II from the remaining γ1 quadruples, we waste (1− 1
b )γ1 to check that the others are correct;

so we obtain γ2 = γ1
b correct quadruples.

– In Phase-III from the remaining γ2 we first combine once to remove the leakage in the decision bits of
the quadruples, obtaining γ3 = γ2

b combined ones; a second combination is done to remove the leakage
in the two secret bits of the just combined ones; so we obtain γ4 = γ3

b twice-combined ones.
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– The last γ4 resulting quadruples are the ` outputs of ΠauROT. From the above we have ` = γ−`
b3 ; and

therefore the (amortized) number of sacrificed quadruples is s(`) = 1
` (γ − `) = (b(`))3 + 1.

Summing up, to produce ` quadruples in ΠauROT, the number of queries to FROT and F∆-ROT per party
and output is given by

c(`) = 5 · (n− 1) · ((b(`))3 + 1).

Figure 32 illustrates the overhead for concrete choice of parameters: the size of the buckets and the
number of outputs. It is for a failure event happening in Theorem 10 with probability of 2−37, i.e. MACs of
length σ = 40; recall that for this to hold, outputting ` quadruples need a bucket of size b(`) ≥ σ

log ` + 1;
hence the size of the bucket increases if less outputs are produced.

Output quadruples ` Bucket size b(`) Queries c(`)
220 3 140(n− 1)
214 4 325(n− 1)
210 5 630(n− 1)

Figure 32 ΠauROT Calls to FROT, F∆-ROT per Party and Output

7 Preprocessing: The Two Party Case

As discussed in Section 2 we can easily pass from *x+ sharings to the JxK sharings required in the pre-
processing functionality FPrep from Section 4. The only part of the FPrep functionality now required is
that of producing multiplication triples in the case of two parties. Thus if we can present a protocol which
produces multiple triples in the *x+ sharing, we can trivially produce an implementation of the remaining
part of FPrep. Thus it is to this last part of the jigsaw that we devote this section. Note, that we could in
the two party case use our methods from Section 6, but the following method of producing multiplication
triples is faster both asymptotically and in practice.

We present the protocol in a top-down fashion as follows.

– In Section 7.1 we first show how to create multiplication triples using a dealer functionality that provides
random bit authentications (aBits), authenticated local ANDs (aANDs) and authenticated OTs (aOTs).
The argument for security is that a malicious adversary can never deviate from the protocol without
being detected, as this would correspond to forging a MAC. As forging a MAC involves guessing a
random string ∆ ∈ {0, 1}ψ this can only happen with negligible probability.

– Then in Section 7.2 we start implementing the dealer functionality by giving a way to produce random
aBits. This turns out to be equivalent F∆-ROT functionality we implemented very efficiently in Section 5.

– In Section 7.3 we extend the dealer functionality with a way of giving random aANDs. We do this in
a two step fashion similar inspired by the efficient cut and choose technique used in [NO09]: we first
produce a large amount aANDs in a slightly naive way such that up to σ them may be insecure. Then
we combine these into a slightly smaller amount of fully maliciously secure aANDs.

– In Section 7.4 we finish the implementation of the the dealer functionality by extending it with a way to
give random aOTs. As for aANDs we use an approach similar to the cut an chose technique of [NO09].

– In Section 7.5 we sketch a complexity analysis of the protocol counting the symmetric primitives used in
the protocol.

The relationships between the various functionalities of this section is outlined in Figure 33.
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Figure 4
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Figure 33 Relationship Between the Functionalities
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The Functionality FTriples

Rand On input (rand, vid) from P1 and P2, with vid a fresh identifier, the functionality picks r ∈R {0, 1} and
stores (vid, r).

AND On command (AND, vid1, vid2, vid3) from both parties (if vid1, vid2 are defined and vid3 is fresh), the
functionality retrieves (vid1, x), (vid2, y) and stores (vid3, x ∧ y).

At each command the functionality leaks to the environment which command is being executed, and delivers
messages only when the environment says so.

Figure 34 The Functionality FTriples for Two-party Generation of Multiplication Triples.

7.1 Secure Two-Party Computation in the Dealer Model

We want to implement the functionality FTriples for Boolean two-party secure computation as described
in Figure 34. It is clear that from FTriples we can produce random multiplication triples by calling Rand
and then AND on the functionality. We will implement the FTriples functionality in the FDeal-hybrid model
of Figure 35. The FDeal functionality provides the parties with aBits, aANDs and aOTs, and models the
preprocessing phase of our protocol. The protocol implementing FTriples in the dealer model is described
in Figure 36. The dealer offers random authenticated bits (to P1 or P2), random authenticated local AND
triples and random authenticated OTs. Those are all the ingredients that we need to build the protocol to
generate multiplication triples.

The Functionality FDeal

Initialize
On input (init) from P1 and (init) from P2, the functionality samples ∆1,∆2 ∈ {0, 1}ψ, stores them and
outputs ∆2 to P1 and ∆1 to P2. If P1 (resp. P2) is corrupted, she gets to choose ∆2 (resp. ∆1).

Authenticated Bit
On input (aBIT, Pi) from P1 and P2, the functionality samples a uniformly random (x,Mx,Kx) ∈ {0, 1}1+2ψ

with Mx = Kx ⊕ x∆i where i, j ∈ {1, 2} and i 6= j. The functionality then outputs (x,Mx) to Pi and
Kx to Pj . If Pj is corrupted he gets to choose Kx. If Pi is corrupted she gets to choose (x,Mx), and the
functionality sets Kx = Mx⊕x∆i. In the following we will refer to process of sampling and outputting this
way as simply sampling and outputting [x]i∆i,j .

Authenticated local AND
On input (aAND, Pi) from P1 and P2, the functionality samples and outputs random [x]i∆i,j ,[y]i∆i,j and [z]i∆i,j
with z = xy, where i, j ∈ {1, 2} and j 6= i. As in Authenticated Bit, corrupted parties can choose their
own randomness.

Authenticated OT
On input (aOT, Pi, Pj) from P1 and P2, the functionality samples random [x0]i∆i,j ,[x1]i∆i,j and [c]j∆j ,i and
[z]j∆j ,i with z = xc = c(x0 ⊕ x1)⊕ x0 and outputs them. As in Authenticated Bit, corrupted parties can
choose their own randomness.

Global Key Queries
On input (Pi,∆) from the adversary the functionality outputs correct if ∆ = ∆i and incorrect otherwise.

Figure 35 The Functionality FDeal for Dealing Preprocessed Values.

Theorem 12. The protocol ΠTriples in Figure 36 securely implements the functionality FTriples in the
FDeal-hybrid model with security parameter ψ.

Proof. The simulator can be built in a standard way, incorporating the FDeal functionality and learning all
the shares, keys and MACs that the adversary was supposed to use in the protocol.
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The Protocol ΠTriples

Initialize
When activated the first time, P1 and P2 activate FDeal and receive ∆2 and ∆1 respectively.

Rand
P1 and P2 ask FDeal for random authenticated bits [r1]1∆1,2, [r2]2∆2,1 and stores *r+ = [r1|r2] under vid.

AND
P1 and P2 retrieve *x+, *y+ and compute *z+ = *xy+ as follows:
1. The parties ask FDeal for a random AND triplet [u]1∆1,2, [v]1∆1,2, [w]1∆1,2 with w = uv.

P1 opens [f ]1∆1,2 = [u]1∆1,2 ⊕ [x1]1∆1,2 and [g]1∆1,2 = [v]1∆1,2 ⊕ [y1]1∆1,2.
The parties compute [x1y1]1∆1,2 = f [y1]1∆1,2 ⊕ g[x1]1∆1,2 ⊕ [w]1∆1,2 ⊕ fg.

2. Symmetrically the parties compute [x2y2]2∆2,1.
3. The parties ask FDeal for a random authenticated OT [u0]1∆1,2, [u1]1∆1,2, [c]

2
∆2,1, [w]2∆2,1 with w = uc.

They also ask for an authenticated bit [r1]1∆1,2.
Now P2 opens [d]2∆2,1 = [c]2∆2,1 ⊕ [y2]2∆2,1.
P1 opens [f ]1∆1,2 = [u0]1∆1,2 ⊕ [u1]1∆1,2 ⊕ [x1]1∆1,2 and [g]1∆1,2 = [r1]1∆1,2 ⊕ [u0]1∆1,2 ⊕ d[x1]1∆1,2.
Compute [s2]2∆2,1 = [w]2∆2,1 ⊕ f [c]2∆2,1 ⊕ g. Note that at this point [s2]2∆2,1 = [r1 ⊕ x1y2]2∆2,1.

4. Symmetrically the parties compute [s1]1∆1,2 = [r2 ⊕ x2y1]1∆1,2.
P1 and P2 compute [z1]1∆1,2 = [r1]1∆1,2 ⊕ [s1]1∆1,2 ⊕ [x1y1]1∆1,2 and [z2]2∆2,1 = [r2]2∆2,1 ⊕ [s2]2∆2,1 ⊕ [x2y2]2∆2,1
and let *z+ = [z1|z2].

Figure 36 Protocol for FTriples in the FDeal-hybrid Model

In a little more detail, knowing all outputs from FDeal to the corrupted parties allows the simulator
to extract inputs used by corrupted parties and input these to the functionality FTriples on behalf of the
corrupted parties.

Honest parties are run on uniformly random inputs, and when an honest party (P1 say) is supposed to
help open *x+, the simulator learns from FTriples the value x′ that *x+ should be opened to. The simulator
computes the share x2 that P2 holds, which is possible from the outputs of FDeal to P2. From the outputs
of FDeal to P2 the simulator also learns the key Kx1 that P2 uses to authenticate x1. Finally the simulator
lets x1 = x′ ⊕ x2 and and lets Mx1 = Kx1 ⊕ x1Kx1 and sends (x1,Mx1) to P2.

The simulator aborts if the adversary ever successfully sends some inconsistent bit, i.e., a bit different
from the bit it should send according to the protocol and its outputs from FDeal.

It is easy to see that the protocol is passively secure and that if the adversary never sends such an
inconsistent bit, then he is perfectly following the protocol up to input substitution. So, to prove security
it is enough to prove that, in the real world protocol, the adversary can only get away with using an
inconsistent bit with negligible probability. Note that, to get away with using an inconsistent bit includes
the adversary providing a correct MAC for the inconsistent bit. By Corollary 3 (on page 54) we have that
using an inconsistent bit is equivalent to guessing the global key ∆ of the opposing player. Since all inputs
to the adversary are independent of ∆ the adversary can guess ∆ with at most negligible probability. ut

We now show that an adversary getting away with using an inconsistent bit in the protocol in Figure 36
is equivalent to guessing the global key ∆ of the opposing player.

To formalize this claim we consider the following game GameI,I played by an attacker A:

Global key: A global key ∆← {0, 1}ψ is sampled with some distribution and A might get side information
on ∆.

MAC query I: If A outputs a query (mac, b, l), where b ∈ {0, 1} and l is a label which A did not use before,
sample a fresh local key K ∈R {0, 1}ψ, give M = K ⊕ b∆ to A and store (l,K, b).

Break query I: If A outputs a query (break, a1, l1, . . . , ap, lp,M
′), where p is some positive integer and

values (l1,K1, b1), . . . , (lp,Kp, bp) are stored, then let K = ⊕pi=1aiKi and b = ⊕pi=1aibi. If M ′ = K⊕ (1⊕
b)∆, then A wins the game. This query can be used only once.

We want to prove that if any A can win the game with probability q, then there exist an adversary B
which does not use more resources than A and which guesses ∆ with probability q without doing any MAC
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queries. Informally this argues that breaking the scheme is linear equivalent to guessing ∆ without seeing
any MAC values.

For this purpose, consider the following modified game GameII,II played by an attacker A:

Global key: No change.
MAC query II: If A outputs a query (mac, b, l,M), where b ∈ {0, 1} and l is a label which A did not use

before and M ∈ {0, 1}ψ, let K = M ⊕ b∆ and store (l,K, b).
Break query II: If A outputs a query (break, ∆′) where ∆′ = ∆, then A wins the game. This query can

be used only once.

We let GameII,I be the hybrid game with MAC query II and Break query I.
We say that an adversary A is no stronger than adversary B if A does not perform more queries than B

does and the running time of A is asymptotically linear in the running time of B.

Lemma 15. For any adversary AI,I for GameI,I there exists an adversary AII,I for GameII,I which is no
stronger than AI,I and which wins the game with the same probability as AI,I .

Proof. Given an adversary AI,I for GameI,I , consider the following adversary AII,I for GameII,I . The
adversary AII,I passes all side information on∆ to AI,I . If AI,I gives the output (mac, b, l), then AII,I samples
M ∈R {0, 1}ψ, outputs (mac, b, l,M) to GameII,I and returnsM to AI,I . If AI,I outputs (break, a1, l1, . . . , ap,
lp,M

′), then AII,I outputs (break, a1, l1, . . . , ap, lp,M
′) to GameII,I . It is easy to see that AII,I makes the

same number of queries as AI,I and has a running time which is linear in that of AI,I , and that AII,I wins
with the same probability as AI,I . Namely, in GameI,I the value K is uniform andM = K⊕b∆. In GameII,I
the value M is uniform and K = M ⊕ b∆. This gives the exact same distribution on (K,M). ut

Lemma 16. For any adversary AII,I for GameII,I there exists an adversary AII,II for GameII,II which is
no stronger than AII,I and which wins the game with the same probability as AII,I .

Proof. Given an adversary AII,I for GameII,I , consider the following adversary AII,II for GameII,II . The
adversary AII,II passes any side information on∆ to AII,I . If AII,I outputs (mac, b, l,M), then AII,II outputs
(mac, b, l,M) to GameII,II and stores (l,M, b). If AII,I outputs (break, a1, l1, . . . , ap, lp,M

′), where values
(l1,M1, b1), . . . , (lp,Mp, bp) are stored, then letM = ⊕pi=1aiMi and b = ⊕pi=1aibi and output (break,M⊕M ′).
For each (li,Mi, bi) let Ki be the corresponding key stored by GameII,II . We have that Mi = Ki⊕ bi ·∆, so
if we let K = ⊕pi=1aiKi, thenM = K⊕b∆. Assume that AII,I would win GameII,I , i.e.,M ′ = K⊕(1⊕b)∆.
This implies that M ⊕M ′ = K ⊕ b∆⊕K ⊕ (1⊕ b)∆ = ∆, which means that AII,II wins GameII,II . ut

Consider then the following game GameII played by an attacker A:

Global key: No change.
MAC query: No MAC queries are allowed.
Break query II: No change.

Lemma 17. For any adversary AII,II for GameII,II there exists an adversary AII for GameII which is no
stronger than AII,II and which wins the game with the same probability as AII,II .

Proof. Let AII = AII,II . The game GameII simply ignores the MAC queries, and it can easily be seen that
they have no effect on the winning probability, so the winning probability stays the same. ut

Corollary 3. For any adversary AI,I for GameI,I there exists an adversary AII for GameII which is no
stronger than AI,I and which wins the game with the same probability as AI,I .
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Why the global key queries? The FDeal functionality (Figure 35) allows the adversary to guess the value
of the global key, and it informs it if its guess is correct. This is needed for technical reasons: When FDeal is
proved UC secure, the environment has access to either FDeal or the protocol implementing FDeal. In both
cases the environment learns the global keys ∆1 and ∆2. In particular, the environment learns ∆1 even if
P2 is honest. This requires us to prove the sub-protocol for FDeal secure to an adversary knowing ∆1 even
if P2 is honest: to be able to do this, the simulator needs to recognize ∆1 if it sees it—hence the global key
queries. Note, however, that in the context where we use FDeal (Figure 36), the environment does not learn
the global key ∆1 when P2 is honest: A corrupted P1 only sees MACs on one bit using the same local key,
so all MACs are uniformly random in the view of a corrupted P1, and P2 never makes the local keys public.

Amortized MAC checks In the protocol of Figure 36, there is no need to send MACs and check them
every time we do an opening. Note as we are not dealing with the JxK sharing at this point in the protocol,
we need a special MAC check method for the sharings [a|b]. In fact, it is straightforward to verify that
once all required triples have been produced, or after a fixed number, the protocol is perfectly secure even
if the MACs are not checked. Notice then that a keyholder checks a MAC Mx on a bit x by computing
M ′x = Kx ⊕ x∆ and comparing M ′x to the Mx which was sent along with x. These equality checks can be
deferred and amortized. Initially the MAC holder, e.g. P1, sets N = 0ψ and the key holder, e.g. P2, sets
N ′ = 0ψ. As long as no Output command is executed, when P1 opens x she updates N ← H(N,Mx) for the
MACMx she should have sent along with x, and P2 updates N ′ ← H(N ′,M ′x). Before executing an Output,
P1 sends N to P2 who aborts if N 6= N ′. Security of this check is easily proved in the random oracle model
where the hash function H is modelled as a random oracle. The optimization brings the communication
complexity of the protocol down from O(ψ|C|) to O(|C| + oψ), where o is the number of rounds in which
outputs are opened. For a circuit of depth O(|C|/ψ), the communication is O(|C|).

Implementing FDeal In the following sections we show how to implement FDeal. In Section 7.2 we describe
how to implement a limited version of FDeal that only provides the Initialize andAuthenticated Bit parts
of the functionality. I.e, a functionality that only deals random authenticated bits, aBits. This limited dealer
functionality can then be extended seperately with the remaining parts. In Section 7.4 we show how to
extend the limited FDeal functionality with the Authenticated OT part by showing how to implement
many aOTs using many aBits. In Section 7.3 we then show how to extend with the Authenticated local
AND part, by showing how to implement many aANDs from many aBits.

We describe the extensions separately, and to simplify the description we will describe each extension
as its own functionality. We name the functionalities that provides aBits, aOTs and aANDs FABIT, FAOT
and FAAND respectively. These functionalities will all provide large batches of their respective primitive, i.e.
each of the functionalities take a parameter ` and produces ` aBits, aOTs or aANDs as one batch. To fully
implement FDeal we run each of the underlying functionalities when initialized, and then draw from these
batches to implement each part of FDeal. We note that this imposes a restriction on how many times we can
use each of FDeal’s commands. However, this is not a problem as long as we have an upper bound on the
number of aBits, aANDs and aOTs we will need. Such an upper bound, however, should be easy to compute
if only the circuit to be evaluated is known when setting up FDeal.

7.2 Bit Authentication

We describe how to implement the Initialize andAuthenticated Bit commands of the FDeal functionality,
i.e. we show how to provide oblivious authentication of random bits (aBits). We call the functionality
providing aBits FABIT. As the command is completely symmetric for P1 and P2 we will only describe how
to provide authenticated bits to P1. As described above an aBit outputs to P1 a bit x ∈R {0, 1} and MAC
Mx ∈R {0, 1}ψ and to P2 a key Kx ∈R {0, 1}ψ, so that Mx = Kx ⊕ x∆1. Here ∆1 ∈R {0, 1}ψ output to P2
in the initialization, is the global key used to authenticate P1’s bits in each aBit.

To implement the functionality FABIT providing aBits we simply notice that aBits corresponds exactly
to the ∆-ROTs we implemented in Section 5. Namely a ∆-ROT is a random OT that outputs to P1 a choice
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bit b and a message Nb and to P2 a message N0 so that Nb = N0 ⊕ b∆ for a global value ∆ known by P2.
Thus if we let x = b, Mx = Nb, Kx = N0 and ∆1 = ∆ we have exactly the aBit described above.

The Functionality FABIT(`, ψ)

Honest Parties
On input start from both P1 and P2 the functionality does the following.
1. The functionality samples ∆1 ∈R {0, 1}ψ and outputs it to P2.
2. For all i ∈ [`] the functionality samples xi ∈R {0, 1} and Kxi ∈R {0, 1}ψ and lets Mxi = Kxi ⊕ xi∆1.
3. The functionality outputs ([xi]1 = (xi,Mxi ,Kxi))i∈[`], i.e. for each i ∈ [`] it outputs (Mxi , xi) to P1 and

Kxi to P2.
Corrupt Parties

1. If P1 is corrupted, the functionality waits to give output till it receives the message (M̂x̂i , x̂i)i∈[`] from
P1, where M̂x̂i ∈ {0, 1}ψ and x̂i ∈ {0, 1}. The functionality then sets xi = x̂i, Mxi = M̂x̂i and Kxi =
Mxi ⊕ xi∆1 and outputs as described above (with ∆1 sampled as above).

2. If P2 is corrupted, the functionality waits to give output till it receives the message (∆̂1, (K̂xi)i∈[`]) from
P1, where ∆̂1, K̂xi ∈ {0, 1}ψ. The functionality then sets ∆1 = ∆̂1, Kxi = K̂xi and Mxi = Kxi ⊕ xi∆1
and outputs as described above (with xi sampled as above).

Global Key Queries
If the adversary inputs (guess, ∆̂) to the functionality, the functionality outputs back correct if ∆̂ = ∆1
and incorrect otherwise.

Figure 37 The FABIT(`, ψ) Functionality

To be compatible with notation used in this section in Figure 37 we rephrase F∆-ROT from Section 5,
as the functionality FABIT providing ` aBits with keys of length ψ. There is only one significant difference
between the F∆-ROT and FABIT functionalities, namely the global key queries, which were not present for
the F∆-ROT functionality. However, since we can clearly use the functionality without the global key queries
to implement the functionality with, we can also use the protocol for F∆-ROT from Section 5 to implement
FABIT. We get the following theorem simply restating Corollary 2 of Section 5.

Theorem 13. Let ψ denote the security parameter and let ` = poly(ψ). The functionality FABIT(`, ψ) can
be reduced to (FOT( 110

6 ψ,ψ),FEQ(ψ)). The communication is O(ψ`+ ψ2) and the work is O(ψ2`).

Now given the FABIT functionality, we can implement the limited FDeal functionality that only provides
the Initialize and Authenticated Bit parts using just two FABIT’s. One to provide authenticated bits to
each party.

7.3 Authenticated local AND

In this section we show how to extend the limited FDeal functionality to add the Autenticated local AND
part. Namely, we show how to provide authenticated local AND triples (aAND) of the form [x]i∆i,j ,[y]i∆i,j
and [z]i∆i,j with z = xy. As the functionality for P2 is symmetric, we only present how to provide aANDs to
P1.

More formally we will show how to implement the functionality FAAND in Figure 38. Note that, strictly
speaking, the FAAND functionality should also sample ∆1 to make sense. However, we leave this out as
we view FAAND as part of the FDeal functionality, where ∆1 is sampled in the Initialize part. This is to
emphasize that in FDeal both the aBit’s and aAND’s will be using the same values of ∆1 and ∆2. We achieve
this by using the same underlying FABIT functionality to implement all parts of FDeal.

To construct FAAND we first construct a leaky version we call FL-AAND, described in Figure 39. The
FL-AAND functionality is leaky in the sense that P2 may learn some of the values xi: a corrupted P2 is
allowed to try to guess the xi bits, but if the guess is wrong the functionality aborts revealing that P2
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The Functionality FAAND(`)

Honest Parties
On input start from both parties the functionality samples and outputs uniformly random authenticated
bits ([xi]1∆1,2, [yi]

1
∆1,2, [zi]

1
∆1,2)i∈[`] under the condition that zi = xiyi for all i ∈ [`].

Corrupt Parties
If Pi is corrupt he gets to choose all of his random values (including keys and macs).

Global Key Queries
On input (Pi,∆) from the adversary the functionality outputs correct if ∆ = ∆i and incorrect otherwise.

Figure 38 The Functionality FAAND(`) for ` Authenticated Local ANDs.

The Functionality FL-AAND(`)

Honest Parties
On input start from both parties the functionality samples and outputs uniformly random authenticated
bits ([xi]1∆1,2, [yi]

1
∆1,2, [zi]

1
∆1,2)i∈[`] under the condition that zi = xiyi for all i ∈ [`].

Corrupt Parties
1. If Pi is corrupt he gets to choose all of his random values (including keys and macs).
2. Additionally, on input (i, gi) from corrupt P2, if xi 6= gi or if P1 has already received output, the func-

tionality outputs incorrect and terminates before giving outputs. Otherwise the functionality outputs
correct.

Global Key Queries
On input (Pi,∆) from the adversary the functionality outputs correct if ∆ = ∆i and incorrect otherwise.

Figure 39 The Functionality Leaky FL-AAND(`) for ` Leaky Authenticated Local ANDs.

cheated. This means that if the functionality does not abort, with very high probability P2 only tried to
guess a few bits.

The intuition behind the protocol for FL-AAND, described in Figure 40, is to let P1 compute the AND
locally and then authenticate the result. P1 and P2 then perform some computation on the keys and MACs,
in a way so that P1 will be able to guess P2’s result only if she behaved honestly during the protocol: P1
behaved honestly (sent d = z ⊕ r) iff she knows W0 = (Kx||Kz) or W1 = (Kx ⊕∆1||Ky ⊕Kz). In fact, she
knows Wx. As an example, if x = 0 and P1 is honest, then z = 0, so she knows Mx = Kx and Mz = Kz. Had
she cheated, she would know Mz = Kz ⊕∆1 instead of Kz. P2 checks that P1 knows W0 or W1 by sending
her H(W0)⊕H(W1) and ask her to return H(W0). This, however, allows P2 to send H(W0)⊕H(W1)⊕ E
for an error term E 6= 0ψ. The returned value would be H(W0)⊕xE. To prevent this attack, we use the FEQ
functionality to compare the values instead. If P2 uses E 6= 0ψ, he must now guess x to pass the protocol.
However, P2 still may use this technique to guess a few x bits.

The Protocol ΠL-AAND

The protocol runs ` times in parallel. Here described for a single leaky authenticated local AND:
1. P1 and P2 ask the dealer for [x]1∆1,2, [y]1∆1,2, [r]

1
∆1,2.

2. P1 computes z = xy and sends d = z ⊕ r to P2.
3. The parties compute [z]1∆1,2 = [r]1∆1,2 ⊕ d.
4. P2 sends U = H(Kx||Kz)⊕H(Kx ⊕∆1||Ky ⊕Kz) to P1.
5. If x = 0, then P1 lets V = H(Mx||Mz). If x = 1, then P1 lets V = U ⊕H(Mx||My ⊕Mz).
6. P1 and P2 call the FEQ functionality, with inputs V and H(Kx||Kz) respectively. If FEQ outputs unequal

they abort the protocol, otherwise they proceed. All the ` calls to FEQ are handled using a single call to
FEQ(`ψ).

7. If the strings are equal, the parties output [x]1∆1,2, [y]1∆1,2, [z]
1
∆1,2.

Figure 40 Protocol for Leaky Authenticated Local AND
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The protocol in Figure 40 uses a limited dealer that only gives random authenticated bits, to get 3`
authenticated bits to P1 (3 per provided aAND). As shown above this dealer can be implemented using
FABIT(3`, ψ), and thus we prove the follwing.

Theorem 14. The protocol in Figure 40 securely implements FL-AAND(`) in the (FABIT(3`, ψ),FEQ(`ψ))-
hybrid model.

The simulator answers global key queries to the dealer by doing the identical global key queries on the
FL-AAND(`) functionality and returning the reply. This gives a perfect simulation of these queries, and we
ignore them below.

Notice that for honest P1 and P2 correctness of the protocol follows immediately from correctness of the
FABIT functionality. Thus we prove Theorem 14 by proving security separately against corrupted P1 and P2
respectively. We do this in Lemma 18 and 19.

Lemma 18. The protocol in Figure 40 securely implements the FL-AAND functionality against corrupted P1.

Proof. We first focus on the simulation of the protocol before outputs are given to the environment. Notice
that before outputs are given to the environment, the global key ∆1 is uniformly random to the environment,
as long as P2 is honest.

We consider the case of a corrupt sender P1 running the above protocol against a simulator S for honest
P2.

1. S receives P1’s input (Mx, x), (My, y), (Mr, r) to the dealer, and the bit d ∈R {0, 1}.
2. S samples a random U ∈R {0, 1}2ψ and sends it to P1.
3. S reads P1’s input to the FEQ functionality, V . If

V 6= (1− x)H(Mx,Mz)⊕ x(U ⊕H(Mx,My ⊕Mz))

or
d⊕ r 6= xy ,

S aborts the protocol. Otherwise, it inputs (x, y, z,Mx,My,Mz = Mr) to the FL-AAND functionality.

The first difference between the real protocol and the simulation is that

U = H(Kx,Kz)⊕H(Kx ⊕∆1,Ky ⊕Kz)

in the real protocol and U is uniformly random in the simulation. Since H modeled as a random oracle, this
is perfectly indistinguishable to the adversary until it queries on both (Kx,Kz) and (Kx ⊕ ∆1,Ky ⊕ Kz).
Since ∆1 is uniformly random to the environment and the adversary during the protocol, this will happen
with negligible probability during the protocol. We later return to how we simulate after outputs are given
to the environment.

The other difference between the protocol and the simulation is that the simulation always aborts if
z 6= xy. Assume now that P1 manages, in the real protocol, to make the protocol continue with z = xy ⊕ 1.
If x = 0, this means that P1 queried H on

(Kx,Kz) = (Mx,Mz ⊕∆1).

Since S knows the outputs of P1, which include Mz, and sees the input Mz ⊕ ∆1 to H, if P1 queries the
oracle on (Kx,Kz) = (Mx,Mz ⊕∆1), S can compute ∆1. If x = 1 then P1 must have queried the oracle on

(Kx ⊕∆1,Ky ⊕Kz) = (Mx,My ⊕Mz ⊕∆1) ,

which again would allow S to compute ∆1. Therefore, in both cases we can use such an P1 to compute the
global key ∆1 and, given that all of P1’s inputs are independent of ∆1 during the protocol, this happens
only with negligible probability.
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Consider now the case after the environment is given outputs. These outputs include ∆1. It might seem
that there is nothing more to simulate after outputs are given, but recall that H is a random oracle simulated
by S and that the environment might keep querying H. Our concern is that U is uniformly random in the
simulation and

U = H(Kx,Kz)⊕H(Kx ⊕∆1,Ky ⊕Kz)

in the real protocol. We handle this as follows. Each time the environment queries H on an input of the
form (Q1, Q2) ∈ {0, 1}2ψ, go over all previous queries (Q3, Q4) of this form and let ∆ = Q1 ⊕Q3. Then do
a global key query to the dealer to determine if ∆ = ∆1. If S learns ∆1 this way, she proceeds as follows.
Note that since P1 is corrupted, S knows all outputs to P1, i.e., S knows all MACs M and all bits b. If b = 0,
then S also knows the key, as K = M when b = 0. If b = 1, S computes the key as K = M ⊕∆1. So, when
S learns ∆1, she at the same time learns all keys. Then for each U she simply programs the RO such that

U = H(Kx,Kz)⊕H(Kx ⊕∆1,Ky ⊕Kz) .

This is possible as S learns ∆1 no later than when the environment queries on two pairs of inputs of the
form (Q1, Q2) = (Kx,Kz) and (Q3, Q4) = (Kx ⊕∆1,Ky ⊕Kz). So, when S learns ∆1, either H(Kx,Kz) or
H(Kx ⊕∆1,Ky ⊕Kz) is still undefined. If it is H(Kx,Kz), say, which is undefined, S simply programs the
RO so that

H(Kx,Kz) = U ⊕H(Kx ⊕∆1,Ky ⊕Kz) .

ut

Lemma 19. The protocol described in Figure 40 securely implements the FL-AAND functionality against
corrupted P2.

Proof. We consider the case of a corrupt P2 running the above protocol against a simulator S. The simulation
runs as follows.

1. The simulation starts by S getting P2’s input to the dealer Kx,Ky,Kr and ∆1.
2. The simulator samples a random d ∈R {0, 1}, sends it to P2 and computes Kz = Kr ⊕ d∆1.
3. S receives U from P2, and reads V , P2’s input to the equality functionality.
4. If

U = H(Kx,Kz)⊕H(Kx ⊕∆1,Ky ⊕Kz)

and
V = H(Kx,Kz) ,

S inputs (Kx,Ky,Kz) to the FL-AAND functionality and completes the protocol (in this case P2 is
behaving honestly).

5. Otherwise, if
U 6= H(Kx,Kz)⊕H(Kx ⊕∆1,Ky ⊕Kz)

and
V = H(Kx,Kz)

or
V = U ⊕H(Kx ⊕∆1,Kz ⊕Kz) ,

S inputs g = 0 or g = 1 resp. to the FL-AAND functionality as a guess for the bit x (i.e., say this is the
i’th aAND, S inputs (g, i)). If the functionality outputs incorrect, S outputs incorrect and aborts,
and otherwise outputs correct and completes the protocol.

The simulation is perfect: the view of P2 consists only of the bit d, and whether or not P1 aborts. Here d
is uniformly distributed both in the real world and in the simulation, and the protocol aborts based on the
same event in the real and in the simulated world. ut

Combining Lemma 18 and 19, we get the proof of Theorem 14.
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The Protocol ΠAAND

The protocol is parametrized by positive integers b and `.
1. P1 and P2 call FL-AAND(`′) with `′ = b`. If the call to FL-AAND aborts, this protocol aborts. Otherwise, let
{[xi]1∆1,2, [yi]

1
∆1,2, [zi]

1
∆1,2}

`′
i=1 be the outputs.

2. P1 picks a b-wise independent permutation π on {1, . . . , `′} and sends it to P2. For j = 0, . . . , ` − 1, the b
triples

{[xπ(i)]1∆1,2, [yπ(i)]1∆1,2, [zπ(i)]1∆1,2}
jb+b
i=jb+1

are defined to be in the j’th bucket.
3. P1 and P2 combine b triples in each bucket. Here we describe how to combine two triples: Let be them

[x1]1∆1,2, [y
1]1∆1,2, [z

1]1∆1,2 and [x2]1∆1,2, [y
2]1∆1,2, [z

2]1∆1,2. Let the result be [x]1∆1,2, [y]1∆1,2, [z]
1
∆1,2.

(a) P1 opens d = y1 ⊕ y2.
(b) P1 and P2 compute

[x]1∆1,2 = [x1]1∆1,2 ⊕ [x2]1∆1,2 , [y]1∆1,2 = [y1]1∆1,2 ,

and
[z]1∆1,2 = [z1]1∆1,2 ⊕ [z2]1∆1,2 ⊕ d[x2]1∆1,2 .

To combine all b triples in a bucket, just iterate by taking the result and combine it with the next element
in the bucket.

Figure 41 From Leaky Authenticated Local ANDs to Authenticated Local ANDs

We now handle a few guessed x bits by random bucketing and a straight-forward combiner. In doing this
efficiently, it is central that the protocol was constructed such that only x could leak. Had P2 been able to
get information on both x and y we would have had to do the amplification twice.

We start by producing b` leaky aANDs. Then we randomly distribute the b` leaky aANDs into ` buckets
of size b. Finally we combine the leaky aANDs in each bucket into one aAND which is non-leaky if at least
one leaky aAND in the bucket was not leaky. The protocol is described in Figure 41. We prove the following
theorem.

Theorem 15. Let FAAND(`) denote the functionality providing ` aANDs as in FDeal. For b ≥ σ
1+log2(`) + 1,

the protocol in Figure 41 securely implements FAAND(`) in the FL-AAND(b`)-hybrid model with statistical
security parameter σ.

Proof. The simulator answers global key queries to leaky FL-AAND(b`) by doing the identical global key
queries on the ideal functionality FAAND(`) and returning the reply. This gives a perfect simulation of these
queries, and we ignore them below.

It is easy to check that the protocol is correct and secure if both parties are honest or if P1 is corrupted.
What remains is to show that, even if P2 is corrupted and tries to guess some x’s from the leaky FL-AAND

functionality, the overall protocol is secure.
We argue this in two steps. We first argue that the probability that P2 learns the x-bit for all triples in

the same bucket is negligible. We then argue that when all buckets contain at least one triple for which x is
unknown to P2, then the protocol can be simulated given leaky FL-AAND(b`).

Call each of the triples a ball and call a ball leaky if P2 learned the x bit of the ball in the call to the
leaky FL-AAND(`′) functionality. Let γ denote the number of leaky balls.

For b of the leaky balls to end up in the same bucket, there must be a subset S of balls with |S| = b
consisting of only leaky balls and a bucket i such that all the balls in S end up in i.

We first fix S and i and compute the probability that all balls in S end up in i. The probability that the
first ball ends up in i is b

b` . The probability that the second balls ends up in i given that the first ball is in i
is b−1

b`−1 , and so on. We get a probability of

b

b`
· b− 1
b`− 1 · · ·

1
b`− b+ 1 =

(
b`

b

)−1
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that S ends up in i.
There are

(
γ
b

)
subsets S of size b consisting of only leaky balls and there are ` buckets, so by a union

bound the probability that any bucket is filled by leaky balls is upper bounded by(
γ

b

)
`

(
b`

b

)−1
.

This is assuming that there are exactly γ leaky balls. Note then that the probability of the protocol not
aborting when there are γ leaky balls is 2−γ . Namely, for each bit x that P2 tries to guess, he is caught with
probability 1

2 . So, the probability that P2 undetected can introduce γ leaky balls and have them end up in
the same bucket is upper bounded by

α(γ, `, b) = 2−γ
(
γ

b

)
`

(
b`

b

)−1
.

It is easy to see that
α(γ + 1, `, b)
α(γ, `, b) = γ + 1

2(γ + 1− b) .

So, α(γ + 1, `, b)/α(γ, `, b) > 1 iff γ < 2b − 1, hence α(γ, `, b) is maximized in γ at γ = 2b − 1. If we let
α′(b, `) = α(2b− 1, `, b) it follows that the success probability of the adversary is at most

α′(b, `) = 2−2b+1`
(2b− 1)!(b`− b)!

(b− 1)!(b`)! .

Writing out the product (2b−1)!(b`−b)!
(b−1)!(b`)! it is fairly easy to see that for 2 ≤ b < ` we have that

(2b− 1)!(b`− b)!
(b− 1)!(b`)! <

(2b)b

(b`)b ,

so
α′(b, `) ≤ 2−2b+1`

(2b)b

(b`)b = (2`)1−b = 2(log2(`)+1)(1−b).

Thus for b ≥ σ
1+log2(`) + 1 we have α′(b, `) ≤ 2−σ is negligible in σ.

We now prove that assuming each bucket has one non-leaky triple the protocol is secure even for a
corrupted P2.

We look only at the case of two triples, [x1]1∆1,2,[y
1]1∆1,2,[z

1]1∆1,2 and [x2]1∆1,2,[y
2]1∆1,2,[z

2]1∆1,2 being com-
bined into [x]1∆1,2, [y]1∆1,2, [z]

1
∆1,2. It is easy to see why this is sufficient: Consider the iterative way we combine

the b triples of a bucket. At each step we combine two triples where one may be the result of previous com-
binations. Thus if a combination of two triples, involving a non-leaky triple, results in a non-leaky triple, the
subsequent combinations involving that result will all result in a non-leaky triple.

In the real world a corrupted P2 will input keys Kx1 , Ky1 , Kz1 and Kx2 , Ky2 , Kz2 and ∆1, and possibly
some guesses at the x-bits to the leaky FL-AAND functionality. Then P2 will see d = y1 ⊕ y2 and Md =
(Ky1 ⊕Ky2)⊕d∆1 and P1 will output x = x1⊕x2, y = y1 , z = z1⊕z2⊕dx2 and Mx = (Kx1 ⊕Kx2)⊕x∆1,
My = Ky1 ⊕ y∆1, Mz = (Kz1 ⊕Kz2 ⊕ dKx2)⊕ z∆1 to the environment.

Consider then a simulator Sim running against P2 and using an FAAND functionality. In the first step
Sim gets all P2’s keys like in the real world. If P2 submits a guess (i, gi) Sim simply outputs incorrect and
terminates with probability 1

2 . To simulate opening d, Sim samples d ∈R {0, 1}, sets Md = Ky1 ⊕Ky2 ⊕ d∆1
and sends d andMd to P2. Sim then forms the keys Kx = Kx1⊕Kx2 , Ky = Ky1 and Kz = Kz1⊕Kz2⊕dKx2

and inputs them to the FAAND functionality on behalf of P2. Finally the FAAND functionality will output
random x, y and z = xy and Mx = Kx ⊕ x∆1, My = Ky ⊕ y∆1, Mz = Kz ⊕ z∆1.

We have already argued that the probability of P2 guessing one of the x-bits is exactly 1
2 , so Sim terminates

the protocol with the exact same probability as the leaky FL-AAND functionality in the real world. Notice
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then that, given the assumption that P2 at most guesses one of the x-bits, all bits d, x and y are uniformly
random to the environment both in the real world and in the simulation. Thus because Sim can form the
keys Kx, Ky and Kz to the FAAND functionality exactly as they would be in the real world the simulation
will be perfect. ut

7.4 Authenticated Oblivious Transfer

In this section we show how to add the Authenticated OT part to the limited FDeal functionality. I.e., we
show how to provide authenticated OT given the part of the FDeal functionality we implemented using the
FABIT functionality in Section 7.2.

The Functionality FAOT(`)

Honest Parties
On input start from both parties the functionality samples and outputs uniformly random authenticated
bits ([xi0]1∆1,2, [x

i
1]1∆1,2, [c

i]2∆2,1, [z
i]2∆2,1)i∈[`] under the condition that zi = ci(xi0 ⊕ xi1) ⊕ xi0 ∈ {0, 1} for all

i ∈ [`].
Corrupt Parties

If Pi is corrupted he gets to choose all his random values (including keys and macs).
Global Key Queries

On input (Pi,∆) from the adversary the functionality outputs correct if ∆ = ∆i and incorrect otherwise.

Figure 42 The Authenticated OT Functionality

More formally, we show how to implement the functionality FAOT described in figure Figure 42, which,
as described above, can be used in concert with the FABIT and FAAND functionalies to implement the FDeal
functionality. As with the other functionalities of this section FAOT is symmetric so we will show only the
construction with P1 as sender and P2 as receiver.

The Functionality FL-AOT(`)

Honest Parties
On input start from both parties the functionality samples and outputs uniformly random authenticated
bits ([xi0]1∆1,2, [x

i
1]1∆1,2, [c

i]2∆2,1, [z
i]2∆2,1)i∈[`] under the condition that zi = ci(xi0 ⊕ xi1) ⊕ xi0 ∈ {0, 1} for all

i ∈ [`].
Corrupt Parties

1. If Pi is corrupted he gets to choose all his random values.
2. Additionally, on input (i, gi) from corrupt P1, if ci 6= gi or if P2 has already received output, the func-

tionality outputs incorrect and terminates before giving outputs. Otherwise the functionality outputs
correct.

Global Key Queries
On input (Pi,∆) from the adversary the functionality outputs correct if ∆ = ∆i and incorrect otherwise.

Figure 43 The Leaky Authenticated OT functionality FL-AOT(`)

As with FAAND we implement FAOT by first implementing a leaky version described in Figure 43. The
leaky FL-AOT functionality is leaky in the sense that choice bits may leak when P1 is corrupted: a corrupted
P1 is allowed to make guesses on choice bits, but if the guess is wrong the functionality aborts revealing that
P1 is cheating. This means that if the functionality does not abort, with very high probability P1 only tried
to guess a few choice bits.

The protocol to construct FL-AOT (described in Figure 44) proceeds as follows: First P1 and P2 get
[x0]1∆1,2, [x1]1∆1,2 (P1’s messages), [c]2∆2,1 (P2’s choice bit) and [r]2∆2,1. Then P1 transfers the message z = xc
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to P2 in the following way: P2 knows the MAC for his choice bit Mc, while P1 knows the two keys Kc and
∆2. This allows P1 to compute the two possible MACs (Kc,Kc ⊕∆2) respectively for the case of c = 0 and
c = 1. Hashing these values leaves P1 with two uncorrelated strings H(Kc) and H(Kc ⊕∆2), one of which
P2 can compute as H(Mc). These values can be used as a one-time pad for P1’s bits x0, x1 (and some other
values as described later), and P2 can retrieve xc and send the difference d = xc ⊕ r to P1, and therefore
compute the output [z]2∆2,1 = [r]2∆2,1 ⊕ d.

The Protocol ΠL-AOT

The protocol runs ` times in parallel, here described for a single leaky authenticated FOT.
1. P1 and P2 get [x0]1∆1,2, [x1]1∆1,2, [c]

2
∆2,1, [r]

2
∆2,1 from the dealer.

2. Let [x0]1∆1,2 = (x0,Mx0 ,Kx0 ), [x1]1∆1,2 = (x1,Mx1 ,Kx1 ), [c]2∆2,1 = (c,Mc,Kc), [r]2∆2,1 = (r,Mr,Kr).
3. P1 chooses random strings T0, T1 ∈ {0, 1}ψ.
4. P1 sends (X0, X1) to P2 where X0 = H(Kc)⊕ (x0||Mx0 ||Tx0 ) and X1 = H(Kc ⊕∆2)⊕ (x1||Mx1 ||Tx1 ).
5. P2 computes (xc||Mxc ||Txc) = Xc ⊕H(Mc). P2 aborts if Mxc 6= Kxc ⊕ xc∆1. Otherwise, let z = xc.
6. P2 sends d = z ⊕ r to P1 and the parties compute [z]2∆2,1 = [r]2∆2,1 ⊕ d. Let [z]2∆2,1 = (z,Mz,Kz).
7. P1 sends (I0, I1) to P2 where I0 = H(Kz)⊕ T1 and I1 = H(Kz ⊕∆2)⊕ T0.
8. P2 computes T1⊕z = Iz ⊕H(Mz). Notice that now P2 knows both (T0, T1).
9. P1 and P2 both input (T0, T1) to FEQ, aborts the protocol if FEQ outputs unequal. All ` parallel comparisons

can be done using a single call to FEQ(2`ψ).
10. If the values are the equal, P1 and P2 output [x0]1∆1,2, [x1]1∆1,2, [c]

2
∆2,1, [z]

2
∆2,1.

Figure 44 The protocol for Authenticated OT with Leaky Choice Bit

In order to check if P1 is transmitting the correct bits x0, x1, she will transfer the respective MACs
together with the bits: as P2 is supposed to learn xc, revealing the MAC on this bit does not introduce any
insecurity. However, P1 can now mount a selective failure attack: P1 can check if P2’s choice bit c is equal
to, e.g., 0 by sending x0 with the correct MAC and x1 together with an incorrect MAC. Now if c = 0 P2
only sees the valid MAC and continues the protocol, while if c = 1 P2 aborts because of the incorrect MAC.
A similar attack can be mounted to check if c = 1.

On the other hand, if P2 is corrupted, he could be sending the wrong value d. In particular, P1 needs
to check that the authenticated bit [z]2∆2,1 is equal to xc without learning c. In order to do this, we have
P1 choosing two random strings T0 and T1, and append them, respectively, to x0 and x1 and the MACs on
those bits, so that P2 learns Tc together with xc. After P2 sends d, we can again use the MAC and the keys
for z to perform a new transfer: P1 uses H(Kz) as a one-time pad for T1 and H(Kz ⊕ ∆2) as a one-time
pad for T0. Using Mz, the MAC on z, P2 can retrieve T1⊕z. This means that an honest P2, that sets z = xc,
will know both T0 and T1, while a dishonest P2 will not be able to know both values except with negligible
probability. Using the FEQ functionality P1 can check that P2 knows both values T0, T1. Note that we cannot
simply have P2 send these values, as this would open the possibility for new attacks on P1’s side. We prove
the following theorem.

Theorem 16. The protocol in Figure 44 securely implements the leaky FL-AOT(`) functionality in the (FABIT
(4`, ψ),FEQ(2`ψ))-hybrid model.

The simulator answers global key queries to the dealer by doing the identical global key queries on the
leaky FL-AOT(`) functionality and returning the reply. This gives a perfect simulation of these queries, and
we ignore them below.

Notice that for honest sender and receiver correctness of the protocol follows immediately from correctness
of the FABIT functionality. Thus we prove Theorem 16 by proving security separately against corrupted P1
and P2 respectively. We do this in Lemma 20 and 21.

Lemma 20. The protocol in Figure 44 securely implements the leaky FL-AOT(`) functionality against cor-
rupted P1.
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Proof. We consider the case of a corrupt sender P1 running the above protocol against a simulator S. We
show how to simulate one instance.

1. First S receives P1’s input (Mx0 , x0), (Mx1 , x1), Kc,Kr and ∆2 to the dealer. Then S samples a bit
y ∈R {0, 1}, sets Kz = Kr ⊕ y∆2 and inputs (Mx0 , x0), (Mx1 , x1), Kc,Kz and ∆2 to the leaky FL-AOT
functionality. The functionality outputs ∆1, (Mc, c), (Mz, z), Kx0 and Kx1 to the honest P2 as described
in the protocol.

2. P1 outputs the message (X0, X1). The simulator knows ∆2 and Kc and can therefore compute

X0 ⊕H(Kc) = (x0||Mx0 ||T ′x0
)

and
X1 ⊕H(Kc ⊕∆2) = (x1||Mx1 ||T ′x1

) .

For all j ∈ {0, 1} S tests if (Mxj , xj) = (Mxj , xj). If, for some j, this is not the case S inputs a guess to
the leaky FL-AOT functionality guessing that c = (1−j). If the functionality outputs incorrect S aborts
the protocol. Otherwise S proceeds by sending y to P1. Notice that if S does not abort but does guess
the choice bit c it can perfectly simulate the remaining protocol. In the following we therefore assume
this is not the case.

3. Similarly S gets (I0, I1) from P1 and computes

I0 ⊕H(Kz) = T ′′1

and
I1 ⊕H(Kz ⊕∆2) = T ′′0 .

4. When S receives P1’s input (T0, T1) for the FEQ functionality it first tests if (T ′j , T ′′1⊕xj ) = (Txj , T1⊕xj )
for all j ∈ {0, 1}. If, for some j, this is not the case S inputs a guess to the leaky FL-AOT functionality
guessing that c = (1 − j). If the functionality outputs incorrect, S aborts the protocol. If not, the
simulation is over.

For analysis of the simulation we denote by F the event that for some j ∈ {0, 1} P1 computes values
M∗xj ∈ {0, 1}

ψ and x∗j ∈ {0, 1} so that (M∗xj , x
∗
j ) 6= (Mxj , xj) and M∗xj = Kxj ⊕ x∗j∆1. In other words, F is

the event that P1 computes a MAC on a message bit it was not supposed to know. We will now show that,
assuming F does not occur, the simulation is perfectly indistinguishable from the real protocol. We then
show that F only occurs with negligible probability and therefore that simulation and the real protocol are
indistinguishable.

From the definition of the leaky FL-AOT functionality we have that (Mxj , xj) = (Mxj , xj) implies Mxj =
Kxj ⊕ xj∆1. Given the assumption that F does not occur clearly we have that (Mxj , xj) 6= (Mxj , xj) also
implies Mxj 6= Kxj ⊕ xj∆1. This means that S aborts in step 2 with exactly the same probability as the
honest receiver would in the real protocol. Also, in the real protocol we have y = z ⊕ r for r ∈R {0, 1} thus
both in the real protocol and the simulation y is distributed uniformly at random in the view of P1.

Next in step 4 of the simulation notice that in the real protocol, if c = j ∈ {0, 1}, an honest P2 would
input T ′j and T ′′1⊕xj to FEQ (sorted in the correct order). The protocol would then continue if and only
if (T ′j , T ′′1⊕xj ) = (Txj , T1⊕xj ) and abort otherwise, i.e., the real protocol would continue if and only if
(T ′j , T ′′1⊕xj ) = (Txj , T1⊕xj ) and c = j, which is exactly what happens in the simulation. Thus we have
that given F does not occur, all input to P1 during the simulation is distributed exactly as in real protocol.
In other words the two are perfectly indistinguishable.

Now assume F does occur, that is for some j ∈ {0, 1} P1 computes valuesM∗xj and x
∗
j as described above.

In that case P1 could compute the global key of the honest receiver as M∗j ⊕Mxj = ∆1. However, since all
inputs to P1 are independent from ∆1 (during the protocol), P1 can only guess ∆1 with negligible probability
(during the protocol) and thus F can only occur with negligible probability (during the protocol). After the
protocol P1, or rather the environment, will receive outputs and learn ∆1, but this does not change the fact
that guessing ∆1 during the protocol can be done only with negligible probability. ut
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Lemma 21. The protocol in Figure 44 securely implements leaky FL-AOT(`) against corrupted P2.

Proof. We consider the case of a corrupt receiver P2 running the above protocol against a simulator S. The
simulation runs as follows.

1. The simulation starts by S getting P2’s input to dealer ∆1, (Mc, c), (Mr, r), Kx0 and Kx1 . Then S simply
inputs ∆1, (Mc, c), Mz = Mr, Kx0 and Kx1 to the leaky FL-AOT functionality. The functionality outputs
z to S and ∆2, (Mx0 , x0), (Mx1 , x1), Kc and Kz to the sender as described above.

2. Like the honest sender S samples random keys T0, T1 ∈R {0, 1}ψ. Since S knows Mc,Kx0 ,Kx1 , ∆1, c and
z = xc it can compute Xc = H(Mc) ⊕ (z||Mz||Tz) exactly as the honest sender would. It then samples
X1⊕c ∈R {0, 1}2ψ+1 and inputs (X0, X1) to P2.

3. The corrupt receiver P2 replies by sending some y ∈ {0, 1}.
4. S sets z = r ⊕ y, computes Iz = H(Mz) ⊕ T1⊕z and samples I1⊕z ∈R {0, 1}ψ. It then inputs (I0, I1) to
P2.

5. P2 outputs some (T 0, T 1) for the FEQ functionality and S continues or aborts as the honest P1 would
in the real protocol, depending on whether or not (T0, T1) = (T 0, T 1).

For the analysis we denote by F the event that P2 queries the RO on Kc ⊕ (1 ⊕ c)∆2 or Kz ⊕ (1 ⊕ z)∆2.
We first show that assuming F does not occur, the simulation is perfect. We then show that F only occurs
with negligible probability (during the protocol) and thus the simulation is indistinguishable from the real
protocol (during the protocol). We then discuss how to simulate the RO after outputs have been delivered.

First in the view of P2 step 1 of the simulation is clearly identical to the real protocol. Thus the first
deviation from the real protocol appears in step 2 of the simulation where the X1⊕c is chosen uniformly at
random. However, assuming F does not occur, P2 has no information on H(Kc ⊕ (1 ⊕ c)∆2) thus in the
view of P2, X1⊕c in the real protocol is a one-time pad encryption of (x1⊕c||Mx1⊕c ||Tx1⊕c). In other words,
assuming F does not occur, to P2, X1⊕c is uniformly random in both the simulation and the real protocol,
and thus all input to P2 up to step 2 is distributed identically in the two cases.

For steps 3 to 5 notice that in the real protocol an honest sender would set Kz = Kr⊕y∆2 and we would
have

(Kr ⊕ y∆2)⊕ z∆2 = Kr ⊕ r∆2 = Mr .

Thus we have that the simulation generates Iz exactly as in the real protocol. An argument similar to the
one above for step 2 then gives us that the simulation is perfect given the assumption that F does not occur.

We now show that P2 can be modified so that if F does occur, then P2 can find ∆2. However, since all
input to P2 are independent of ∆2 (during the protocol), P2 only has negligible probability of guessing ∆2
and thus we can conclude that F only occurs with negligible probability.

The modified P2 keeps a list Q = (Q1, . . . , Qq) of all P2’s queries to H. Since P2 is efficient we have that
q is a polynomial in ψ. To find ∆2 the modified P2 then goes over all Qk ∈R Q and computes Qk ⊕Mz = ∆′

and Qk ⊕Mc = ∆′′. Assuming that F does occur there will be some Qk′ ∈ Q s.t. ∆′ = ∆2 or ∆′′ = ∆2. The
simulator can therefore use global key queries to find ∆2 if F occurs.

We then have the issue that after outputs are delivered to the environment, the environment learns ∆2,
and we have to keep simulating H to the environment after outputs are delivered. This is handled exactly
as in the proof of Theorem 14 using the programability of the RO. ut

To deal with the leakage of the leaky FL-AOT functionality, we let P2 randomly partition and combine
the leaky aOTs in buckets, in a way similar to how we dealt with leakage for FAAND: the leaky AOTs in each
bucket will be combined using an OT combiner (as shown in Figure 45), in so that if at least one choice bit
in every bucket is unknown to P1, then the resulting aOT will not be leaky. We prove the following theorem.

Theorem 17. Let FAOT(`) denote the functionality that provides ` non-leaky aOTs as in FDeal. If b ≥
σ

1+log2(`) + 1, then the protocol in Figure 45 securely implements FAOT(`) in the leaky FL-AOT(b`)-hybrid
model with statistical security parameter σ.
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The Protocol ΠAOT

1. P1 and P2 generate `′ = b` authenticated OTs using the leaky FL-AOT(`′) functionality. If the functionality
does not abort, name the outputs {[xi0]1∆1,2, [x

i
1]1∆1,2, [c

i]2∆2,1, [z
i]2∆2,1}

`′
i=1.

2. P2 sends a b-wise independent permutation π on {1, . . . , `′} to P1. For j = 0, . . . , `− 1, the b quadruples

{[xπ(i)
0 ]1∆1,2, [x

π(i)
1 ]1∆1,2, [c

π(i)]2∆2,1, [z
π(i)]2∆2,1}

jb+b
i=jb+1

are defined to be in the j’th bucket.
3. P1 and P2 combine the b quadruples in each bucket. Here we describe how to combine two quadruples from

in a bucket: let them be [x1
0]1∆1,2, [x

1
1]1∆1,2, [c

1]2∆2,1, [z
1]2∆2,1 and [x2

0]1∆1,2, [x
2
1]1∆1,2, [c

2]2∆2,1, [z
2]2∆2,1. Let the

result be [x0]1∆1,2, [x1]1∆1,2, [c]
2
∆2,1, [z]

2
∆2,1. To combine more than two, just iterate by taking the result and

combine it with the next quadruple in the bucket.
(a) P1 opens d = x1

0 ⊕ x1
1 ⊕ x2

0 ⊕ x2
1.

(b) P1 and P2 compute

[c]2∆2,1 = [c1]2∆2,1 ⊕ [c2]2∆2,1 , [z]
2
∆2,1 = [z1]2∆2,1 ⊕ [z2]2∆2,1 ⊕ d[c1]2∆2,1 ,

and
[x0]1∆1,2 = [x1

0]1∆1,2 ⊕ [x2
0]1∆1,2 , [x1]1∆1,2 = [x1

0]1∆1,2 ⊕ [x2
1]1∆1,2 .

Figure 45 From Leaky Authenticated OTs to Authenticated OTs

Proof. We want to show that the protocol in Figure 45 provides non-leaky aOTs, having access to a func-
tionality that provides leaky aOTs.

In the protocol the receiver randomly partitions `b leaky aOTs in ` buckets of size b. First we want to
argue that the probability that every bucket contains at least one aOT where the choice bit is unknown to
the adversary is overwhelming. Repeating the same calculations as in the proof of Theorem 15 it turns out
that this happens with probability bigger than 1− (2`)(1−b) ≥ 1− 2−σ.

Once we know that (with overwhelming probability) at least one OT in every bucket is secure for the
receiver (i.e., at least one choice bit is uniformly random in the view of the adversary), the security of the
protocol follows from the fact that we use a standard OT combiner [HKN+05]. Turning this into a simulation
proof can be easily done in a way similar to the proof of Theorem 15. ut

This completes the description of our protocol.

7.5 Complexity Analysis

We will now sketch a complexity analysis counting the calls to symmetric primitives used in the TinyOT
protocol.

As is shown in Theorem 13, the protocol requires an initial call to an ideal functionality for (FOT( 110
6 ψ,ψ),

FEQ(ψ)). After this, the cost per gate is only a number of invocations to a cryptographic hash function H.
In this section we give the exact number of hash functions that we use in the construction of the different
primitives. As the final protocol is completely symmetric, we count the total number of calls to H made by
both parties. Below b is the “bucket size” used in protocols for aOT and aAND.

Equality FEQ: The FEQ functionality can be securely implemented with 2 calls to a hash function H, as
described in Section 3 (as each call to FEQ in this section compares strings of length ψ)

Authenticated AND FAAND: Every aAND costs 3b aBits, b calls to FEQ, and 6b calls to H, as described
in Figure 39 and Figure 41. Note, that while Figure 39 only has 3 calls to H they are on strings of size
2ψ which means we count them double, as described in Section 3.

Authenticated OT FAOT: Every aOT costs 4b aBits, 2b calls to FEQ, and 9b calls to H, as described in
Figure 44 and Figure 45. Note, that while Figure 44 only has 6 calls to H, 3 of these expand to strings
of size 2ψ which means we count them double.

MTriple Protocol, AND Gate: AND gates cost 2 aOTs, 2 aANDs and 2 aBits.
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The cost per aBit, requires 74 calls to H as described in Section 5. By plugging in these values we get that
the cost per input gate is 74 calls to H, and the cost per AND gate is 1078b+ 148 calls to H.

As described in Section 7.1 we can greatly reduce communication complexity of our protocol by deferring
the MAC checks. However, this trick comes at cost of two calls to H (one for each player) every time we do
an opening. This adds 2b hashes for each aOT and aAND (as protocols in Figure 44 and Figure 41 involves
one opening each) and in total adds 8b+20 hashes to the cost each AND gate (as the AND gate in Figure 36
uses additional 10 openings).
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