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Abstract. We obtain several lower bounds, exponential in terms of lon the degrees

of polynomials and algebraic functions coinciding with values of the discrete logarithm
modulo a primep at sufficiently many points; the number of points can be as little as
pY/2+¢ We also obtain improved lower bounds on the degree and sensitivity of Boolean
functions on bits ofk deciding whethex is a quadratic residue. Similar bounds are
also proved for the Diffie—Hellman mapping — gxz, whereg is a primitive root of
afinite field ofg elementdFy.

These results can be used to obtain lower bounds on the parallel arithmetic and
Boolean complexity of computing the discrete logarithm and breaking the Diffie—
Hellman cryptosystem.

The method is based on bounds of character sums and numbers of solutions of some
polynomial equations.

Key words. Discrete logarithms, Diffie—Hellman cryptosystem, Polynomial approx-
imations, Boolean functions, Character sums.

1. Introduction

In this paper we consider approximation of the discrete logarithm mogwia poly-
nomials and algebraic functions. Such results lead to lower bounds @athkel and
sequential complexityf computing the discrete logarithm in several different computa-
tional models.

We fix a primitive root g modulo a prime numbep > 3 and, forx such that
gcdx, p) = 1, denote by ind its discrete logarithmalso known as thendexof x,

339



340 D. Coppersmith and I. Shparlinski

that is, the smallest nonnegative integewith g4 = x (mod p). In some settings it
makes sense to define indd p — 1, but in this paper we follow the usual convention
and leave ind O undefined.

Thus the discrete logarithm defines a bijective mapping from the group of units of the
residue ring modul@, fromthe sefl, ..., p—1} essentially, ontothe séd, 1, ..., p—
2}. Hence one can ask about a polynomial representation of this mapping; that is, a
polynomial f (X) € Z[X] of degree at mosp — 1 such that

indx = f(x) (mod p), x=1...,p—-1
Indeed, it has been shown in [21] that the polynomial

p-2
fo)=-1+> (@ -1 (modp) D
pa

is the unique interpolation polynomial of the discrete logarithm modulée note
that this polynomial is of the largest possible degree (any function Byeran be
approximated ap — 1 points by a polynomial of degree at mgst- 2).

Here we show that even for polynomial representations of the discrete logarithm over
quite thin sets (the number of points can be as littlp™), the degree is still required
to be high. We also estimate from below another characteristic of such functions, so-
calledsensitivity which in turn gives a lower bound on their CREW PRAM complexity.

We remind the reader th&@REW PRAMcomplexity is the complexity on parallel

random access machingith an unlimited number of processors. More precisely, we
consider the modification which is known as CREW (concurrent read, exclusive write)
PRAM. Such a machine has an infinite shared memory, each cell of which can hold an
integer number, and such that simultaneous reads of a single cell by several processors
are permitted, but simultaneous writes are not [5], [6], [8], [24], [29].

We remark that several results about the complexity of individual bits of the discrete
logarithm have already been obtained, but all of them are based on some unproven
assumptions. A good outline of such results can be found in [14] and [25]. Then we show
that the same considerations are applicable to studyinDiffie—Hellman mapping

u — undu, uef;,

over a finite field ofj elements, where inxlis defined analogously with respect to some
fixed primitive rootg of IFy. Certainly, this question is associated with the complexity
of breaking theDiffie—Hellman cryptosysteff].

We remark that several lower bounds are also known on the complexity of determin-
istic [22] and probabilistic [26] sequential algorithms to compute discrete logarithms.
However, the results and the approach of those papers are quite different from those of
this work. It could also be relevant to mention the papers [1] and [2] where the complexity
of finding some small portion of bits of the Diffie—Hellman transformation (over a prime
field IFp) is considered and is shown to be expected polynomial time equivalent to the
whole problem of breaking the Diffie—Hellman cryptosystem, see also [20].

We do not present any complexity lower bounds here. Instead we rather concentrate on
estimating some intrinsic characteristics of the functions of interest such as polynomial
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degree (over various algebraic domains) and sensitivity, from which one can derive
various complexity bounds by using standard approaches of complexity theory [5],
[6], [8]-12], [23], [24], [29]. However, we make a general remark that although our
results are quite strong and in many cases are close to the best possible, the currently
known complexity theory methods cannot use their full power and imply quite weak
complexity lower bounds, which nevertheless are of the same strength as any other
known lower bounds. The upshot is that although those lower bounds will be of the
same strength as lower bounds known for other functions, they are all attained for one
special function, the discrete logarithm. It would be extremely interesting to extend our
results to representations via polynomials of given straight line complexity, rather than
via polynomials of given degree.

Our method is based on classical tools of the theory of finite fields, such as bounds for
the number of solutions of equations and congruences and bounds for character sums.
In particular, we use the following known bound of incomplete character sums which
is a direct consequence of the celebratdell bound[27], [18], [30]. For any nontrivial
multiplicative charactex modulop of orderd and anyn > 1 integers,, ..., €, which
are not all divisible byd the bound

N+H
> x ((Aax+b™ - (@x +by)™)| < npY?lg p ©)

Xx=N+1

holds for any integer® andH < p and any linear forms;x + bj with a # 0 and

bi/a # bj/a; (mod p),i,j=1,...,n,i # j.Itcan be derived from the Weil bound
using the standard method of estimating of incomplete sums via complete ones [4], [15],
[28]. Estimates of exponential sums are also used in [13] in a similar way.

The paper [3], providing some results toward the so-cdllgfle—Hellman Indistin-
guishability assumptigrns based on new estimates of exponential sums. The assumption
claims that, for any subgrou; < F; of a prime ordet|q — 1 and any generatat
of this group, the triplegy*, #Y, 9*Y) for x, y selected random and uniformly from the
set{0,...,| — 2} is polynomial time indistinguishable from the uniformly distributed
triples (u, v, w) € G?.

We also use some standard facts and notions of the theory of finite fields which one
can easily find in [18].

Following [29], for a Boolean functioB(U4, . . ., U;) we define theensitivity which
is also known asritical complexityo (B), as the largest integer< r such that there is
a binary vectox = (x, ..., %) € {0, 1}' for which B(x) # B(x1") for s values ofi,

1 <i <r,wherex( is the vector obtained fromby flipping itsi th coordinate. In other
words,o (B) is the maximum, over all binary vectors= (X, ..., X;), of the number

of pointsy € {0, 1}' on the unit Hamming sphere arourdvith B(y) # B(x). This
function gives a lower bound for several other complexity characteristiBsméluding

its CREW PRAM complexity, see [6], Section 20.4.1 of [8], [24], or Chapter 13 of [29].

The relation between the CREW PRAM complexity and the sensitivity of a Boolean
function is given by the inequality

CREW PRAM(B) > 0.51go (B) + O(1), 3

which is essentially Theorem 4.7 of [24].
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Finally, we remark that it would be interesting to extend our results for the dis-
crete logarithm modulo an arbitrary integk. In this situation we immediately lose
our main tools, the Weil bound andeBout's theorem, thus it will require some new
arguments.

Notation. For realx we denote the binary logarithm by}g= log, x.

2. Approximation of the Discrete Logarithm Modulo p

Here we show that polynomials and algebraic functions approximating the discrete
logarithm modulop on sufficiently large setS must be of sufficiently large degree, in
fact, exponentially large (in terms of |g). The result below is applicable to sefof
cardinality|S| > (2p)Y/2.

Theorem 1. Let p> 3 and let f(X) € Z[X] be a polynomial of degree & degf
such that
indx= f(x) (mod p), X €S, 4
foraset SC {1,..., p—1}. Then
. ISI(S| - 1).
2(p—-2
Proof. We consider the following set:

1

D={a=yx™ (modp), 2<a=<p-1 Xx,yeSh

Trivially |[D| < p — 2.

Onthe other hand, obviously therais D such thatthere are atleaSt(|S|—1)/|D|
representationa = yx~! (mod p), X,y € S. Select thisa and letR be the set of
x € {1,..., p— 1} for which both

indx = f(x) (mod p) and indax = f(ax) (mod p).

We see thatR| > [S|(|S| — 1)/(p — 2). Indeed for each representatian= yx~!
(mod p) we get a paiix andy = ax (mod p) of elements ofS. Also, we have either
indax = inda + indx or indax = inda + indx — p 4+ 1. Hence either

f(ax) = indax =inda+ indx =inda+ f(x) (mod p)
or

f(ax) =indax=inda+indx — p+1=1+inda+ f(x) (mod p)

for x € R. Therefore at least one of the polynomihlgX) = f(aX) — f(X) —inda
andhy(X) = f(@aX) — f(X) —inda — 1 has at leastR|/2 zeros modulg. Because
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of our choice ofD neither of these polynomials is identical to zero modpldndeed,
h1(0) = —inda # 0 (mod p) sincea # 1, andh,(0) = —inda—1 # 0 (mod p) since
O <inda < p— 2. Thush > |R|/2 and the desired result follows. O

Certainly, for anySone can satisfy (4) with a unique polynomiabf degree ded <
|S] — 1. Now we show that for a randomly selected Seff sizeo(p) this degree cannot
be smaller. In particular, with probability 2 o(1) we have ded = |S| — 1 for that
polynomial.

Theorem 2. Let S be a set of m random elements picked uniformly fiom ., p—1).
Then the probability R p, m) that there exists a polynomial(X) € Z[ X] of degree

degf <m—Kk
and such that
indx = f(x) (mod p), X €S,
satisfies the bound

k/2
PL(p. m) < (%) .

Proof. We say that a séft is satisfiedoy a polynomialf (X) € Z[ X]if the condition of
the theorem is fulfilled for this paifT, ). We also say that a sétis maximally satisfied
by a polynomialf (X) € Z[X] if it is satisfied by this polynomial but any supersefiof
is not.

Suppose there arl different sets§ < {1,...,p—1},i = 1,..., N, that are
maximally satisfied by polynomial§ of degree at most = m — k — 1. In patrticular,
polynomials fi, i = 1,..., N, are pairwise distinct. Thereforgg N §| < n, 1 <

i < j < N, otherwise we would havé; = f; being the unique polynomial on the
intersection§ N §, and hence on their union. Thus,

i(|8|>=i215 > = () ®)
=1 N+l =1 \T-Enil Tgl‘(rl\;}{i;l) n+1

From Theorem 1 we see th@ | < (2n(p — 2))¥? + 1.

For an(n + 1)-element seT C {1,..., p — 1}, denote byft the unigque polynomial
of degree at most such thatT is satisfied by this polynomial. Also, denote Rt
the set which is maximally satisfied bft. Eachm-element seS is the union of an
(n + 1)-element sef and a set ok elements selected outside Df For eachT there

are precisely
p—n—-2
k
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suchm-element sets. Each such set is satisfiedif and only if S C Ry. Therefore,
3 p—l’lZ p—n—2\"*

n+1 k

IT|=n+1 TESERy

|S|l=m

_ p—1>‘1<p—n—2>_1'\‘ L

(02 ) RS,
G0 =()

for any integeral, v, w > 1 with w < u. Therefore we have
p-n—2\"'§|-n-1\ _ (IS|-n-1\"
k k - p—n-2
k k/2
- 1S|—1 - 2n .
“\p-2) " \p-2

Substituting this in the previous inequality and using (5) we derive the results. O

P(p, m)

We remark that

Selectingk = 1 we obtain that ifn = o(p), for almost all sets of size the smallest
degree of the polynomial which they satisfy is of degmee 1.

In the following theorem we consider a possibility of representation of the discrete
logarithm via algebraic functions. The next result is applicable to quite spars& sets
beginning with|S| > 3Y2p!/?, that is similar to Theorem 1, but the estimate is weaker.

Theorem 3. Let F(X,Y) € Z[X, Y] be a polynomial of total degree a- degF,
nonzero modulo p= 3, such that

F(x,indx) =0 (mod p), X €S,
foraset SC {1,..., p—1}. Then

Lo IS
= 312 p1/2‘

Proof. In the proof it is more convenient to use the language of finite fields rather

than congruences. We consider the complete factorizatiéri¥f Y) over the algebraic

closure ofFF, (thus all factors are absolutely irreducible polynomials). €K, Y) be

an irreducible factor of (X, Y), of total degrea = degW, for whichWw (x, indx) =0

for at least S|d/n values ofx € S. Denote thissetak by T, |T| > |S|d/n.
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As in the proof of Theorem 1 we seleet # 1 such that there are at least
ITI(IT| = 1)/(p — 2) representations ai = yx~* with x,y € T. Let R be the set
ofx € {1,..., p— 1} for which both

Y(x,indx) =0 and WY(ax,indax) =0 @)
hold. We see that
Rl > ISIdZ(ISId —n)
ns(p—2)

For eachx € R we have either

V(ax, indx +inda) =0
or
Y(ax,indx +inda+ 1) = 0.

Therefore at least one of the polynomidiga X, X +inda) andW(aX, X +inda+ 1)
has at leastR|/2 zeros inS. As before, inda ¢ {0, —1}. So there id # 0 such that the
system of equations

U(X,Y)=¥(@X,Y+b)y=0

has at leastR|/2 solutions.
If the polynomials¥ (X, Y) andW¥(aX, Y + b) are relatively prime then it follows
from Bézout’s theorem that this system has at nistolutions and we obtain

2_ 19d(S/d —n)
T 2n%(p-2)

We may assume that< |S|/3, otherwise the bound is trivial. Then

2|S|d
Sd—n> ——,
IS z—3
so that
d2> |S|2d2
~ 3n?p’

and the desired inequality follows.

If U(X,Y)and¥(aX,Y + b) are not relatively prime, then recalling that X, Y) is
absolutely irreducible (thus sods(aX, Y +b)) we seetha® (aX, Y +b) = u¥(X,Y)
for some constant # 0. If

d
(X, Y) =) X fi(Y),
i=0

then, foreach =0, ..., n, fi(Y) divides f; (Y 4+ b). That impliesf; (Y) = u; fi(Y +b)
for some constant; # 0. If n < p (otherwise there is nothing to prove), then this is
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possible only iff; (Y) is a constant polynomial angi = 1. ThusW¥ (X, Y) = ¥(X) is
a polynomial in one variable. Therefore, the system (7) has at dhesiutions. Hence

_ Isid(sid —m
T 2n¥(p-2)
thus
2. 1Si(Sid —n)
> 2p .
If n > |S|/3, then there is nothing to prove. Otherwi&d — n > |S| — n > 2|F|/3,
and the desired result follows. O
By counting coefficients one sees that for & {1, ..., p—1} thereis a polynomial

F(X,Y) e Z[X, Y] of degree at most2|S|)/2 + 1 which satisfies the condition of
Theorem 3. Now we show that for almost all sufficiently small séslower bound of
the same order holds.

Theorem 4. Let p be sufficiently larged < ¢ < 8 < 1,and m< p'?. Let Sbe a
set of m random elements picked uniformly frdn. .., p — 1}. Then the probability
P..s(p, m) that there exists a polynomial (X, Y) € Z[ X, Y] of degree

degF < I_(Em)l/ZJ -1

and such that
F(x,indx) =0 (mod p), X €S,
satisfies the bound

P.s(p, m) < 2Mp~@-om/2,

Proof. Suppose there ad different sets§ C {1,...,p—1},i = 1,..., N, that
are maximally satisfied by polynomials (X, Y) € Z[X, Y] of degree at mosh =

| (em)Y/2] — 2. In particular, polynomial§;,i = 1,..., N, are pairwise distinct modulo
p, thus

N < p(n+2)(n+l)/2.

From Theorem 3 we derivi§ | < n(3p)¥/2. Therefore, using inequality (6) we derive

P—1\' g (ISI) _ g~ (IS
< m ) ;(m) Sg(p%)
p(M+2(+D/2 (n(3p)1/2)m

p—1
Zmnm p(n+2)(n+1)/2—m/2 < mem/z p(sfl)m/z

Pe.s(p, m)

IA

IAIA

om p—(b‘—a)m/Z

and the result follows. O
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3. Approximation of the Discrete Logarithm by Boolean Functions

Here we consider the bitwise approximation of the discrete logarithm given the bit
representation of the argument. Moreover, we concentrate on the rightmost bitof ind
This question is essentially equivalent to deciding quadratic residuosity of

In [9] (see also [12]) the identity

@-1/2 1, if X is a quadratic residue ify,
X = . . . .
-1, if X is a quadratic nonresidue Ky,

has been used to obtain the lower bouhdg q) on the depth of arithmetic circuits over
IFq deciding whethex € Fj is a quadratic residue (the most important thing is that the
degree(q — 1)/2 is large). Here we consider Boolean circuits. It should be noted that
our bound? (Ig Ig p) (which we prove for prime fieldB,, only) on their depth is weaker.
This actually agrees with the expectation that for this particular question Boolean circuits
are exponentially more powerful than arithmetic ones; see [12] for a discussion of this
phenomenon and a survey of relevant results.

Each Boolean functio®(Uy, ..., U;) we represent as a multilinear polynomial of
degreen over[F; of the form

n

BUL....Un=Y" Y  A.iU,-U, ®

k=0 1<ij<---<ig=<r
where
A i, € Fa, l<ipg<---<ig<r.

We define spB as the number of nonzero coefficie®ts...;, .

We consider Boolean functions producing the rightmost bit ofxirftbm the bit
representation of. We also assume that all numbers contain the same nundjdaits
(adding several leading zeros if necessary) whieee [Ig p]. Thus each such func-
tion is defined on a portion ¥ x < 2" — 1 < p — 1 of the complete residue system
modulo p.

Theorem 5. Let a Boolean function &4, ..., U,) of r = |Ig p] Boolean variables
be such thatforany Xl < x < 2" —1,

B(u u) = 0, if X is a quadratic residue modulo, p
Lo B0 =0, if X is a quadratic nonresidue modulq p

where x= u; - - - Uy is the bit representation of. X hen the bound
sprB > 27%pt(g 2 — 1

holds

Proof. Putt = sprB and definek by the inequalities

X t41> 20
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For eachm = 1, ..., 2 — 1 we consider the function

Bm(vl’ R Vrfk) = B(Vl’ cees Vl‘fkv els e eK)s

wherem = e - - - & is the bit representation afi. Obviously the total number of distinct
monomialsinv, ..., V;_x occurring in all these functions does not exceetherefore,
because of the choice &f one can find a nontrivial linear combination

21
Z Cm Bm(VL B Vrfk)7 017 cee CZk—l € FZ?
m=1

which vanishes identically.
Let x (2) be the quadratic character modyloFrom the condition of the theorem we
see

X(X) — (_1)B(X1,....Xr).
Therefore, for 0< y < 2~k — 1 we have
21 k_
1_[ X(Zky + m)Cm — (_1)Z§1=110m3m(01 ~~~~~ Vr k) — 1’

m=1

wherey = v - - - vy _g IS the bit representation gf Combining this result with inequal-
ity (2) we get

k1 k1
2= x (l_[(zky+ m)°m> <2p"igp.
m=1

y=0
Hence,
2% > 2" p~Y2(Ig p)~! > 0.5p"?(Ig p) .
Finally we derive that 4+ 1 > 2¢-1 > 2-3/2pl/4(Ig p)~1/2. 0

It easy to see that the same result holds for monomials of the fafy, + b,) - - -
(aUn + by) with g, b =0,1,i =1, ...,n, as well. In other words, one can consider
not only positive literaldJ; but their negations-U;,i =1,...,r, as well.

To estimatea = degB from below we recall the asymptotic

N
| ~H N,
g(LyNJ) @)

where
Hy)=-ylgy —Q-y)lgl-y)

is the (binary) entropy function, which holds for any fixed0 < y < 1 andN — oc;
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see Section 10.11 of [19]. Then from the inequality

t < ; (f) < <n+1><;>,

which holds fom < r/2, one can easily derive that under the condition of Theorem 5
n=vlgp+odgp), 9
where® = 0.041... is the root of the equation
H®) =3  0<? <3

Certainly the bound is of the correct order because obviaustyr < Ig p.
Now we show that the same method which is used in the proof of Theorem 5 can be
used in studying the sensitivity of the Boolean functions deciding quadratic residuosity.

Theorem 6. Let a Boolean function &4, ..., U,) of r = |Ig p] Boolean variables
be such thatforanyxl < x <2 — 1,

B(u u) = 0, if X is a quadratic residue modulo, p
Lo B0 =0, if X is a quadratic nonresidue modulq p

where x= u; - - - Uy is the bit representation of. X hen the bound
o(B) > 0.5r 4+ o(r)
holds

Proof. Weputm= [r¥?| k=2m+1,1 =|r —r¥?| andR= 2" — k2. One sees

that for any fixed, 0 <i <Il,andanyx =0,..., R— 1, the vect0|(B(x +j2 ));(:1
is defined. Asx ranges, the vector takes on the value of each possible biktrgle
T = (1, ..., ty) with multiplicity

po)

N(T)=2% (x(x+j2)=1% +1).

1

-1 k
j=

x
Il
o

After simple evaluation one finds that the sum on the left-hand side contains one
“main” term R27 and ¥ — 1 terms of the form

R-1
A2 " x (X4 112) - (X + [s2))

x=0

wheres < kand 1< j; < --- < js < k. Applying inequality (2) we see that each term
does not exceed #sp'/?Ig p in absolute value. Thus,

R2K4+0 (2:2: (E)sp”z g p)

R27* + O(kp*?Ig p)
= R27%+ OMr2/?3) = R27% + o(R27%).

N(T)
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It follows from probabilistic arguments that fo 2- 0(2¢) binary k-tuples T =

(t, ..., ty), both of the following statements are true:
o ty; # trj41 for 0.5m+ o(m) values ofj = 1,..., m;
o ty; # trj_1 for 0.5m+ o(m) values ofj = 1,..., m.

That means that, whatever the + 1)th bit of x happens to be, if the vector
(B(x+j2))_, issuch&-tupleT, thenamong thenvaluesB(x+j2*1), j = 1,..., m,
about half differ from their respective

B((x+j2™")=Bx+j2™+£2)=B(x+ (2j £12).

So,

| R-1 m

DIEEED I
i=0 x=0 =1

B(XHZiH)#B((xHZHl)(i))
> (I + 1) (R27% 4+ o(R279)) (2 + 0(2)) (0.5m + o(m))
= 0.5RIm+ o(RIm).

Foreveryi,0<i <I,and everyj, 1 < j <m, we find

R-1 -1

Z 1-— Z 1| < m2* = o(2").
B(x+12i+1>¢B:(<x+jZ‘+1><‘)) B(x)#XB:EX“))
Therefore
| 2—1
Yo ) 1=27M+o@)).
i=0  x=0
B(x)#B(x“))

Thus there existgg, 0 < Xg < 2" — 1, with

|
o(B) > Z 1> 0.5 +o() = 0.5r +o(r)

i=0
B(Xo)#B(X(()I))

and we are done. O
Certainly the bound is of the correct order because obviauéB) < r. Combining

this result with inequality (3) one gets the lower bound on the CREW PRAM complexity
of B.

Corollary 7. The CREW PRAM complexity of any function B satisfying the condition
of Theoren® is at leastiglg p + O(1).
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4. Approximation of the Diffie—Hellman Key

Letg be a primitive root of a finite fielfy of g elements. One of the most popular public-
key cryptosystems, the Diffie—Hellman cryptosystem, is based on the still unproven
assumption that recovering the value of Diffie—Hellman secret key

K, y) =g

from the known values of* andgY is essentially equivalent to the discrete logarithm
problem and therefore is hard. Here we show that even the computa@znfwm g*
cannot be realized by a polynomial of low degree.

The following result is applicable to arbitrary s&®f cardinality|S| > 2H?%3.

Theorem 8. Let f(X) € F4[X] be a polynomial of degree # degf such that
g¢=1@) xes (10)

forasetSC{N+1,..., N+ H}withH <q—1.Then

Proof. We defineK = |2H/|S|| and consider th& + 1 shift-sets§ = S—i,i =
0,..., K. Theyallbelongto the interval of length bf+ K, thus denotin@R ; = SN§S,
from the inclusion—exclusion principle we obtain

K K

(K+DISI— > [RjI=>ISI- > IRjI=IJSI=H+K.
O<i<j<K i=0 O<i<j<K i=0

Therefore, there isa pair@i < j < K such that

215 2(H+K) _[S E5

[Roj—il = IR j |_——m2?—1_ﬁ—1

For this pair we puk = j — i and letR = Ry . Then for anyx € R we have both
X — f(gX) and g(X+k)2 — f(gX+k).

Therefore,
f(gx+k) — g(x-&—k)2 g g2kxgk 2kx k f(g ).

Thus the equatiorf (gku) = g<°u® f (u) is satisfied for each = g* with x € R. On
the other hand, it can be reduced to the form

g“uZf(u) — f(gku) =0

and therefore has at mo$t-2 n solutions (becaude> 0the polynomial on the left-hand
side is not identical to zero). Henoe> |R| — 2K. O
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Certainly, for anySone can satisfy (10) with a unique polynomfabf degree ded <
|S| — 1. Now we show that for a sufficiently small randomly selectedSsibiis degree
cannot be smaller. In particular, with probability-1o(1) we have ded = |S| — 1 for
that polynomial.

Theorem 9. Let g be sufficiently large and let S be a set of m random elements picked
uniformly from{0, ..., g — 2}. Then the probability Rqg, m) that there exists a polyno-
mial f(X) e Fq[X] of degree

degf <m—k
and such that
g =1@) xesS

satisfies the bound
am \*? (o, if m—k> 4q)Y3,
Pc(q, m) < (q—_l) + {(3q1/3)m’ it m—k < (4q)"/3,

Proof. Suppose there ard different sets§ C {0,...,q—2},i = 1,..., N, that
are maximally satisfied by polynomiafs of degree at most = m — k. In particular,
polynomialsfi,i =1, ..., N, are pairwise distinct.

As before|S N §| < n. So

N
-1
Y= > =(10y) an
i=1 Tc§ T<(0,....q-2) n+1
|T|=n+1 |T|=n+1

Also assume that only the firs of the § are of size
IS| = 2n*?(q — D2

First we remark thaM = 0if n > (49)Y/3. Indeed, from Theorem 8 (witH = q—1)
we see thatiM # 0, then

G.4@-D)  4Q-1)
T 29-1)  2n¥%(q-DY?

—1=2n—-2n"Y?(q-1nY? -1

It is easy to verify that the last inequality fails far> (49)Y/3. Now we consider the
casen < (4q)Y3. Again from Theorem 8 we see that in this c&§¢ < (o + 0(1)) g%/3,

i=1,...,N,wherea = 2.519... is the unique positive root of the equation
o’ 4 — 413
2 « '

Hence

IS| < 2.60%3, i=1,...,N,



Polynomial Approximation of the Discrete Logarithm and the Diffie—Hellman Mapping 353

for g large enough. We also claim that

M
> ISI < 2. (12)
i=1

Indeed, assuming the inverse inequality, we sdleet M with

L
20 <o =) |S|<2q+2697°%
i—1

We know that the number & is at most

S 2/3
S| 2q + 2.6q . P
: ; 2n1/2(q — 112 = 2n2(q — )2 (3 + o) g*n=Y2,

By the inclusion—exclusion principle we know that

L L(L—1
=Y0ISI- Y Isn§izo - mEP = (o)

i=1 I<i<j<L

which is not possible fog large enough. Therefore (12) holds.
Now we estimate the sum

W Z( S| )m“'

Obviously,W = 0 forn > (49)/3. Forn < (49)/3, from (12) we derive

M M
S| )( S| ) m_—m/3
W = E —_— e <26"q E
i_1<q_1 q-1 i1

< 3mq7m/3

for g large enough.

For the(n 4+ 1)-element seT < {0, ..., g — 2} denote byfy the unique polynomial
of degree at mogt such thafT is satisfied by this polynomial. Also, denote By the
set which is maximally satisfied bfs. Now we see

qg-1 -1 q—n—-2 -1
ram = ¥ (170 2 (09
|T|=2n:+1 n+1 TE;RT k

|S|=m

q—1)‘1(q—n—2> -1 N
< 1
_<n+1 k ;;T;a

[TI=n+1 [Sl=m

= P+ P,
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whereP; is the part of the sum over=1,..., M and P, is the part ovei = M +
1,...,N.Thus

-1y (a-n-2)'
i 1
1 (n—|—1 k ;%1 TCSZSCn?

T )

From inequality (6) we derive

(211)_1(n'i'1> 5 (%)M

and
q-n—2\7/(IS|-n-1\ _(ISI-n-1)* _ /S "
k k “~\g-n-2) " \g-1/°
Therefore
P, <W 0, it n > (4q) /%, (13
1= GBg~Y3H™, i n< 4q)Ys.
For P, we obtain
-1 - N
q q—n-2
P2=(n+> () LT x
=M+ \TT\C:‘H T\CSISCmS‘
-1 -1 N
(49— (q—n—2> (|S|—n—1>
-1
- (q ) ( El )
n+1/ 4. = \a-1
|IT|=n+1
124 _ 1\1/2 N
S(q )(n(q 1))221.
n+1 q-1 i=M+1 T<§
[T|=n+1
From (11) and the previous inequality we derive
124 _ 171727\ K k/2 k/2
PZS(Zn q-12 )=(4n> S<4m) . (14
q-1 q-1 q-1
Combining (13) and (14) we obtain the results. O

We remark that the first term dominatekik 2m/3. Selectingk = 1 we obtain that
if m = o(q), for almost all sets of sizen the smallest degree of the polynomial which
they satisfy ian — 1.

Now we consider representation via algebraic functions. The following result is non-
trivial for sparse sets with at least?3+¢ elements.
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Theorem 10. Let F(U, V) e F4[U, V] be a polynomial of degree &= degF, not
identically zergsuch that

F@,g€)=0, xeS

foraset SC {N +1,..., N + H}. Then there is an absolute effectively computable
constant C> 0 such that the bound
C|S|3/2
n >
- H

holds

Proof. Fora polynomialG(U, V) € Fq[U, V] and integek (not necessarily positive)
we introduce the shift transformation

ok (G(U, V)) = U~'G(g"U, g¥U V),

wherel is chosen so that(F) is a polynomial not divisible byJ. One easily verifies
that

ok (om(G)) = Uk+m(G)
and that

0k(G1G2) = ok (G1)ow(Gy).

In particular, if¥ (U, V) is an absolutely irreducible polynomial which is not a univariate
polynomial (either ilJ or in V), then® = oy (V) is absolutely irreducible as well. We
also note that for an absolutely irreducibleeand fork # 0, we haver (V) # c¥ for
any nonzere < Fq. Indeed, assuming that

\IJ(U,V):ZVi fi (U)
i=0

we would havef; (U) = cgk’U2kH f;(gkU), foreach =0, ..., v. Thisis only possible
if there is only one nonzero polynomial among the polynomigi¥)), ..., f,(U). Thus
WU, V)= V"), whereh < vandf (U) is a nonzero polynomial of degree at most
v, which is not possible because of our assumptions.

We denote by (U) andy (V) two possible univariate factors 6f(U, V). We consider
the complete factorization of the fraction

F(U,V)
pU)y (V)

over the algebraic closure B, (thus all factors are absolutely irreducible polynomials).
Index the absolutely irreducible factors in this fractiondgs(U, V), that is,

FUU, V) =Wy V) J] WU, V),
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in the following way. Two factors share the same firstindex if and only if one is essentially
a shift of the other:

Wij (U, V) = cok(Wim)

for some integek and some nonzero € Fy. It follows from the two aforementioned
properties of the transformatien that this breakup is legitimate.

Among each family¥;; of factors sharing a first indeix assign the index = 0 to
that factor having minimal degree th, and for the other members of the family, et
denote the amount of shift, that is,

¥ij = coj(¥io)

with some nonzero € Fy. Collect all factorsk;; (U, V) sharing the same second index
j into a factorF; (U, V). So we have

FU,V) =Wy [[FU, V),

jed

whereJ is the set of possible shifts among absolutely irreducible factofs afd for
eachF; (U, V), j € J, we have that_jF; is a factor ofF,. For eachj € J we define
the sefT; C Ssuch that

Fg.gH=0  xeT.
As in the proof of Theorem 8 we selecilk; < 2H/|T;| for which both

F(g,g“)=0 and F(@"*", g*™) =0 (15
hold for at leastT;|?/2H — 1 values ofk. Then we see that the system of equations
Fi(U,V) =0y (Fj(U,V)) =0

has at leasfT;|?/2H — 1 solutions.

Let Fj(U,V), j € J, have degrees; andv; in U andV, respectively. Then the
U-degree oby Fj is at most; + 2kjvj (its V-degree is stilbj). Now we claim thatF;
is relatively prime tooy (F;) for any integek andj € J. Indeed, otherwis&; would
have two distinct absolutely irreducible factobsand ® satisfying® = coy (W) with
some nonzera € [y, but thend is a divisor ofF;_« rather than of;. Therefore, from
Bézout's theorem we derive the inequality

T I?

H 1 < ujvj + (Uj + 2Kjvj)v; = 2u5v; + 2K; vjz. (16)

Let J; be the set of e J with u; > kjv; and letJ; be the set of e J with u; < kjv;.
Forj € J; we have
ITj|?

b =4y + 1= 50y < 5(degF)?
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Therefore
n= Y degFj > (10H) "2 [Tj|. a7

jeh jed
We turn toJ,. We notice that

ujp > |jlj. (18

Indeed, assume thd4o(U, V) is an absolutely irreducible divisor &(U, V) such that
;i (U, V) is a divisor ofF; (U, V). Assume that

v = deg, Yo = deg, Vjj, w = deg; ¥io(U, V), u =deq, ¥;; (U, V).

One sees that the coefficient 4P in W;q(U, V) is a polynomial inU of some degree
0 <r < w, and the coefficient o¥/" is a polynomial inU of some degree & s < w.

The first polynomial is not 0 because otherwigg would be divisible byV; the
second one is not zero because Yheegree ofF; (U, V) is v. Let| be the power otJ
in the definition ofo;. We have

I <min{r, s+ 2jv}.
On the other hand,
u>maxr —1I, s+2jv—1}.
If j > 0, then we see that
U>s+2jv—I>s4+2jv—r >=2juv—r > 2jv—w.
If j <0,then
u>r—Il>r—-2jv—s>-2jv—s>—-2jv—w.

From our selection oo we also se& > w. Combining these inequalities we derive
u > |j|vand (18) follows.
Then, forj € J, we have

|Tj|2 5 ) 10H vjz

—— < 4dkvS+1 <5k <

2H = Jv] + = Ul = |_I_J|
Hence

v > 202 TPPHTY, je g

From this and (18) we derive

n>Y degFj > Y uj > |jlvyy =20 2H1 Y |jlIT P2

jedk jed jed jed
If 0 € J, we can includély into the sum by

degFop > vo > 20 Y2H Y To|%2,
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thus obtaining

n>20"Y2H"Y “max|jl, 1T *%
j€J2

One verifies that

1/3 2/3
DIl < (Z max|j |, 1}2> (Z max(|j], 1}T; |3/2>

jed jed i€k

and
oo 7_[2
Y maxjl, 32 <1+2) j2=1+2" <5
. L 6
i€ j=1
Therefore

3/2
n> (10H)! (Z IT; |> : (19

jed

The univariate factorg and s are easier to treat. The s of x € S for which
»(g*) = Ois of cardinality

ITul < degy <n. (20)
The sefT, of x € Sfor which I/I(gxz) = 0 satisfies the inequality

IT,| = O(Hg *?degy) = O(nHqg *?), 21

which follows from the general bound of [17] on the number of solutions of polynomial
congruences over an incomplete residue system; see also [16]. Indeed, in our case we
have up to degr congruences of the forx? = indv (mod q — 1) for each solution

of the equation) (v) = 0. Taking into account that

E
max{ [Tul. Tl D ITjl, Dm} >

jed jed

from (17), (19), (20), and (21) we derive the result. O

Itis obvious thatforany C {0, ..., q—2} thereisapolynomidr (U, V) € Fy[U, V]
of degree at mos2|S|)¥/? which satisfies the condition of Theorem 10. Now we show
that for almost all sufficiently small sethis bound is the best possible, to within a
multiplicative constant.

Theorem 11. Letq be sufficiently larg® < ¢ < 25/3,8 < 1and m< g'~?. Let S be
a set of m random elements picked uniformly fi@n . ., g — 2}. Then the probability
P: s(q, m) that there exists a polynomial(®, V) € Fq[U, V] of degree

degF < [(em?] -1
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and such that

F@. g =0, xeS
satisfies the bound

P.s(g,m) < e~ ¢/3-e/2m

where ¢c> 0is an absolute constant

Proof. Suppose there ard different sets§ < {0,...,q9—2},i = 1,..., N, that
are maximally satisfied by polynomials (U, V) e F4[U, V] of degree at mosh =
| em)¥/2] — 2. In particular, polynomial§;,i = 1, ..., N, are pairwise distinct, thus

N S q(n+2)(n+1)/2.
From Theorem 10 we deriv&| = O ((ng)?/3). Therefore using inequality (6)
A NN TR
P.s(p.m) = ( o ) ;(m) s; a-1
q(n+2>(n+1)/2(Cn2/3q—1/3)m

IA

Cmn2m/3q(n-&-Z)(l1-&-1)/2—m/3

IA

Cmmm/3q(s/271/3)m

IA

IA

Cmq—(8/3—5/2)m

with some constart > 0. O

5. Conclusion

We give lower bounds for the degrees of polynomials, or of algebraic functions, which
agree with the discrete logarithm or with the Diffie—Hellman function on a large set.
These lower bounds in turn provide lower bounds on the CREW PRAM complexity of
these functions; however, as is often the case, these lower bounds are too weak to be
useful cryptographically.
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