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Abstract. We obtain several lower bounds, exponential in terms of lgp, on the degrees
of polynomials and algebraic functions coinciding with values of the discrete logarithm
modulo a primep at sufficiently many points; the number of points can be as little as
p1/2+ε . We also obtain improved lower bounds on the degree and sensitivity of Boolean
functions on bits ofx deciding whetherx is a quadratic residue. Similar bounds are

also proved for the Diffie–Hellman mappinggx → gx2
, whereg is a primitive root of

a finite field ofq elementsFq.
These results can be used to obtain lower bounds on the parallel arithmetic and

Boolean complexity of computing the discrete logarithm and breaking the Diffie–
Hellman cryptosystem.

The method is based on bounds of character sums and numbers of solutions of some
polynomial equations.

Key words. Discrete logarithms, Diffie–Hellman cryptosystem, Polynomial approx-
imations, Boolean functions, Character sums.

1. Introduction

In this paper we consider approximation of the discrete logarithm modulop via poly-
nomials and algebraic functions. Such results lead to lower bounds on theparallel and
sequential complexityof computing the discrete logarithm in several different computa-
tional models.

We fix a primitive root g modulo a prime numberp ≥ 3 and, for x such that
gcd(x, p) = 1, denote by indx its discrete logarithm, also known as theindexof x,
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340 D. Coppersmith and I. Shparlinski

that is, the smallest nonnegative integeru with gu ≡ x (mod p). In some settings it
makes sense to define ind 0= p− 1, but in this paper we follow the usual convention
and leave ind 0 undefined.

Thus the discrete logarithm defines a bijective mapping from the group of units of the
residue ring modulop, from the set{1, . . . , p−1} essentially, onto the set{0,1, . . . , p−
2}. Hence one can ask about a polynomial representation of this mapping; that is, a
polynomial f (X) ∈ Z[X] of degree at mostp− 1 such that

indx ≡ f (x) (mod p), x = 1, . . . , p− 1.

Indeed, it has been shown in [21] that the polynomial

f (x) ≡ −1+
p−2∑
k=1

(g−k − 1)−1xk (mod p) (1)

is the unique interpolation polynomial of the discrete logarithm modulop. We note
that this polynomial is of the largest possible degree (any function overFp can be
approximated atp− 1 points by a polynomial of degree at mostp− 2).

Here we show that even for polynomial representations of the discrete logarithm over
quite thin sets (the number of points can be as little asp1/2+ε), the degree is still required
to be high. We also estimate from below another characteristic of such functions, so-
calledsensitivity, which in turn gives a lower bound on their CREW PRAM complexity.
We remind the reader thatCREW PRAMcomplexity is the complexity on aparallel
random access machinewith an unlimited number of processors. More precisely, we
consider the modification which is known as CREW (concurrent read, exclusive write)
PRAM. Such a machine has an infinite shared memory, each cell of which can hold an
integer number, and such that simultaneous reads of a single cell by several processors
are permitted, but simultaneous writes are not [5], [6], [8], [24], [29].

We remark that several results about the complexity of individual bits of the discrete
logarithm have already been obtained, but all of them are based on some unproven
assumptions. A good outline of such results can be found in [14] and [25]. Then we show
that the same considerations are applicable to studying theDiffie–Hellman mapping

u→ uindu, u ∈ F∗q,
over a finite field ofq elements, where indx is defined analogously with respect to some
fixed primitive rootg of Fq. Certainly, this question is associated with the complexity
of breaking theDiffie–Hellman cryptosystem[7].

We remark that several lower bounds are also known on the complexity of determin-
istic [22] and probabilistic [26] sequential algorithms to compute discrete logarithms.
However, the results and the approach of those papers are quite different from those of
this work. It could also be relevant to mention the papers [1] and [2] where the complexity
of finding some small portion of bits of the Diffie–Hellman transformation (over a prime
field Fp) is considered and is shown to be expected polynomial time equivalent to the
whole problem of breaking the Diffie–Hellman cryptosystem, see also [20].

We do not present any complexity lower bounds here. Instead we rather concentrate on
estimating some intrinsic characteristics of the functions of interest such as polynomial
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degree (over various algebraic domains) and sensitivity, from which one can derive
various complexity bounds by using standard approaches of complexity theory [5],
[6], [8]–[12], [23], [24], [29]. However, we make a general remark that although our
results are quite strong and in many cases are close to the best possible, the currently
known complexity theory methods cannot use their full power and imply quite weak
complexity lower bounds, which nevertheless are of the same strength as any other
known lower bounds. The upshot is that although those lower bounds will be of the
same strength as lower bounds known for other functions, they are all attained for one
special function, the discrete logarithm. It would be extremely interesting to extend our
results to representations via polynomials of given straight line complexity, rather than
via polynomials of given degree.

Our method is based on classical tools of the theory of finite fields, such as bounds for
the number of solutions of equations and congruences and bounds for character sums.
In particular, we use the following known bound of incomplete character sums which
is a direct consequence of the celebratedWeil bound[27], [18], [30]. For any nontrivial
multiplicative characterχ modulop of orderd and anyn ≥ 1 integerse1, . . . ,en which
are not all divisible byd the bound∣∣∣∣∣ N+H∑

x=N+1

χ
(
(a1x + b1)

e1 · · · (anx + bn)
en
)∣∣∣∣∣ ≤ np1/2 lg p (2)

holds for any integersN and H ≤ p and any linear formsai x + bi with ai 6= 0 and
bi /ai 6= bj /aj (mod p), i, j = 1, . . . ,n, i 6= j . It can be derived from the Weil bound
using the standard method of estimating of incomplete sums via complete ones [4], [15],
[28]. Estimates of exponential sums are also used in [13] in a similar way.

The paper [3], providing some results toward the so-calledDiffie–Hellman Indistin-
guishability assumption, is based on new estimates of exponential sums. The assumption
claims that, for any subgroupGl ⊆ F∗q of a prime orderl |q − 1 and any generatorϑ
of this group, the triples(ϑ x, ϑ y, ϑ xy) for x, y selected random and uniformly from the
set{0, . . . , l − 2} is polynomial time indistinguishable from the uniformly distributed
triples(u, v, w) ∈ G3

l .
We also use some standard facts and notions of the theory of finite fields which one

can easily find in [18].
Following [29], for a Boolean functionB(U1, . . . ,Ur )we define thesensitivity, which

is also known ascritical complexityσ(B), as the largest integers ≤ r such that there is
a binary vectorx = (x1, . . . , xr ) ∈ {0,1}r for which B(x) 6= B(x(i )) for s values ofi ,
1≤ i ≤ r , wherex(i ) is the vector obtained fromx by flipping itsi th coordinate. In other
words,σ(B) is the maximum, over all binary vectorsx = (x1, . . . , xr ), of the number
of points y ∈ {0,1}r on the unit Hamming sphere aroundx with B(y) 6= B(x). This
function gives a lower bound for several other complexity characteristics ofB including
its CREW PRAM complexity, see [6], Section 20.4.1 of [8], [24], or Chapter 13 of [29].

The relation between the CREW PRAM complexity and the sensitivity of a Boolean
function is given by the inequality

CREW PRAM(B) ≥ 0.5 lgσ(B)+ O(1), (3)

which is essentially Theorem 4.7 of [24].
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Finally, we remark that it would be interesting to extend our results for the dis-
crete logarithm modulo an arbitrary integerM . In this situation we immediately lose
our main tools, the Weil bound and B´ezout’s theorem, thus it will require some new
arguments.

Notation. For realx we denote the binary logarithm by lgx = log2 x.

2. Approximation of the Discrete Logarithm Modulo p

Here we show that polynomials and algebraic functions approximating the discrete
logarithm modulop on sufficiently large setsS must be of sufficiently large degree, in
fact, exponentially large (in terms of lgp). The result below is applicable to setsS of
cardinality|S| > (2p)1/2.

Theorem 1. Let p ≥ 3 and let f(X) ∈ Z[X] be a polynomial of degree n= deg f
such that

indx ≡ f (x) (mod p), x ∈ S, (4)

for a set S⊆ {1, . . . , p− 1}. Then

n ≥ |S|(|S| − 1)

2(p− 2)
.

Proof. We consider the following set:

D = {a ≡ yx−1 (mod p), 2≤ a ≤ p− 1, x, y ∈ S}.

Trivially |D| ≤ p− 2.
On the other hand, obviously there isa ∈ D such that there are at least|S|(|S|−1)/|D|

representationsa ≡ yx−1 (mod p), x, y ∈ S. Select thisa and let R be the set of
x ∈ {1, . . . , p− 1} for which both

indx ≡ f (x) (mod p) and indax ≡ f (ax) (mod p).

We see that|R| ≥ |S|(|S| − 1)/(p − 2). Indeed for each representationa ≡ yx−1

(mod p) we get a pairx andy ≡ ax (mod p) of elements ofS. Also, we have either
indax = inda+ indx or indax = inda+ indx − p+ 1. Hence either

f (ax) ≡ indax = inda+ indx ≡ inda+ f (x) (mod p)

or

f (ax) ≡ indax = inda+ indx − p+ 1≡ 1+ inda+ f (x) (mod p)

for x ∈ R. Therefore at least one of the polynomialsh1(X) = f (aX) − f (X) − inda
andh2(X) = f (aX) − f (X) − inda − 1 has at least|R|/2 zeros modulop. Because
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of our choice ofD neither of these polynomials is identical to zero modulop. Indeed,
h1(0) ≡ −inda 6≡ 0 (mod p) sincea 6= 1, andh2(0) ≡ −inda−1 6≡ 0 (mod p) since
0≤ inda ≤ p− 2. Thusn ≥ |R|/2 and the desired result follows.

Certainly, for anySone can satisfy (4) with a unique polynomialf of degree degf ≤
|S| − 1. Now we show that for a randomly selected setSof sizeo(p) this degree cannot
be smaller. In particular, with probability 1− o(1) we have degf = |S| − 1 for that
polynomial.

Theorem 2. Let S be a set of m random elements picked uniformly from{1, . . . , p−1}.
Then the probability Pk(p,m) that there exists a polynomial f(X) ∈ Z[X] of degree

deg f < m− k

and such that

indx ≡ f (x) (mod p), x ∈ S,

satisfies the bound

Pk(p,m) ≤
(

2m

p− 2

)k/2

.

Proof. We say that a setT issatisfiedby a polynomialf (X) ∈ Z[X] if the condition of
the theorem is fulfilled for this pair(T, f ). We also say that a setT ismaximally satisfied
by a polynomialf (X) ∈ Z[X] if it is satisfied by this polynomial but any superset ofT
is not.

Suppose there areN different setsSi ⊆ {1, . . . , p − 1}, i = 1, . . . , N, that are
maximally satisfied by polynomialsfi of degree at mostn = m− k − 1. In particular,
polynomials fi , i = 1, . . . , N, are pairwise distinct. Therefore,|Si ∩ Sj | ≤ n, 1 ≤
i < j ≤ N, otherwise we would havefi = f j being the unique polynomial on the
intersectionSi ∩ Sj , and hence on their union. Thus,

N∑
i=1

( |Si |
n+ 1

)
=

N∑
i=1

∑
T⊆Si
|T |=n+1

1≤
∑

T⊆{1,...,p−1}
|T |=n+1

1=
(

p− 1

n+ 1

)
. (5)

From Theorem 1 we see that|Si | ≤ (2n(p− 2))1/2+ 1
2.

For an(n+ 1)-element setT ⊆ {1, . . . , p− 1}, denote byfT the unique polynomial
of degree at mostn such thatT is satisfied by this polynomial. Also, denote byRT

the set which is maximally satisfied byfT . Eachm-element setS is the union of an
(n + 1)-element setT and a set ofk elements selected outside ofT . For eachT there
are precisely (

p− n− 2

k

)
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suchm-element sets. Each such set is satisfied byfT if and only if S⊆ RT . Therefore,

Pk(p,m) =
∑
|T |=n+1

(
p− 1

n+ 1

)−1 ∑
T⊆S⊆RT
|S|=m

(
p− n− 2

k

)−1

=
(

p− 1

n+ 1

)−1(p− n− 2

k

)−1 N∑
i=1

∑
T⊆Si
|T |=n+1

∑
T⊆S⊆Si
|S|=m

1

=
(

p− 1

n+ 1

)−1(p− n− 2

k

)−1 N∑
i=1

( |Si |
n+ 1

)(|Si | − n− 1

k

)
.

We remark that (
u

v

)−1(
w

v

)
≤
(
w

u

)v
(6)

for any integersu, v, w ≥ 1 withw ≤ u. Therefore we have(
p− n− 2

k

)−1(|Si | − n− 1

k

)
≤
( |Si | − n− 1

p− n− 2

)k

≤
( |Si | − 1

p− 2

)k

≤
(

2n

p− 2

)k/2

.

Substituting this in the previous inequality and using (5) we derive the results.

Selectingk = 1 we obtain that ifm= o(p), for almost all sets of sizem the smallest
degree of the polynomial which they satisfy is of degreem− 1.

In the following theorem we consider a possibility of representation of the discrete
logarithm via algebraic functions. The next result is applicable to quite sparse setsS
beginning with|S| > 31/2 p1/2, that is similar to Theorem 1, but the estimate is weaker.

Theorem 3. Let F(X,Y) ∈ Z[X,Y] be a polynomial of total degree n= degF ,
nonzero modulo p≥ 3, such that

F(x, indx) ≡ 0 (mod p), x ∈ S,

for a set S⊆ {1, . . . , p− 1}. Then

n ≥ |S|
31/2 p1/2

.

Proof. In the proof it is more convenient to use the language of finite fields rather
than congruences. We consider the complete factorization ofF(X,Y) over the algebraic
closure ofFp (thus all factors are absolutely irreducible polynomials). Let9(X,Y) be
an irreducible factor ofF(X,Y), of total degreed = deg9, for which9(x, indx) = 0
for at least|S|d/n values ofx ∈ S. Denote this set ofx by T , |T | ≥ |S|d/n.
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As in the proof of Theorem 1 we selecta 6= 1 such that there are at least
|T |(|T | − 1)/(p − 2) representations ofa = yx−1 with x, y ∈ T . Let R be the set
of x ∈ {1, . . . , p− 1} for which both

9(x, indx) = 0 and 9(ax, indax) = 0 (7)

hold. We see that

|R| ≥ |S|d(|S|d − n)

n2(p− 2)
.

For eachx ∈ R we have either

9(ax, indx + inda) = 0

or

9(ax, indx + inda+ 1) = 0.

Therefore at least one of the polynomials9(aX, X + inda) and9(aX, X + inda+ 1)
has at least|R|/2 zeros inS. As before, inda /∈ {0,−1}. So there isb 6= 0 such that the
system of equations

9(X,Y) = 9(aX,Y + b) = 0

has at least|R|/2 solutions.
If the polynomials9(X,Y) and9(aX,Y + b) are relatively prime then it follows

from Bézout’s theorem that this system has at mostd2 solutions and we obtain

d2 ≥ |S|d(|S|d − n)

2n2(p− 2)
.

We may assume thatn ≤ |S|/3, otherwise the bound is trivial. Then

|S|d − n ≥ 2|S|d
3

,

so that

d2 ≥ |S|
2d2

3n2 p
,

and the desired inequality follows.
If 9(X,Y) and9(aX,Y+ b) are not relatively prime, then recalling that9(X,Y) is

absolutely irreducible (thus so is9(aX,Y+b)) we see that9(aX,Y+b) = µ9(X,Y)
for some constantµ 6= 0. If

9(X,Y) =
d∑

i=0

Xi fi (Y),

then, for eachi = 0, . . . ,n, fi (Y) divides fi (Y+b). That impliesfi (Y) = µi fi (Y+b)
for some constantµi 6= 0. If n < p (otherwise there is nothing to prove), then this is
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possible only if fi (Y) is a constant polynomial andµi = 1. Thus9(X,Y) = 9(X) is
a polynomial in one variable. Therefore, the system (7) has at mostd solutions. Hence

d ≥ |S|d(|S|d − n)

2n2(p− 2)
,

thus

n2 ≥ |S|(|S|d − n)

2p
.

If n > |S|/3, then there is nothing to prove. Otherwise|S|d − n ≥ |S| − n ≥ 2|S|/3,
and the desired result follows.

By counting coefficients one sees that for anyS⊆ {1, . . . , p−1} there is a polynomial
F(X,Y) ∈ Z[X,Y] of degree at most(2|S|)1/2 + 1 which satisfies the condition of
Theorem 3. Now we show that for almost all sufficiently small setsSa lower bound of
the same order holds.

Theorem 4. Let p be sufficiently large, 0 < ε < δ < 1, and m≤ p1−δ. Let S be a
set of m random elements picked uniformly from{1, . . . , p− 1}. Then the probability
Pε,δ(p,m) that there exists a polynomial F(X,Y) ∈ Z[X,Y] of degree

degF <
⌊
(εm)1/2

⌋− 1

and such that

F(x, indx) ≡ 0 (mod p), x ∈ S,

satisfies the bound

Pε,δ(p,m) ≤ 2m p−(δ−ε)m/2.

Proof. Suppose there areN different setsSi ⊆ {1, . . . , p − 1}, i = 1, . . . , N, that
are maximally satisfied by polynomialsFi (X,Y) ∈ Z[X,Y] of degree at mostn =⌊
(εm)1/2

⌋−2. In particular, polynomialsFi , i = 1, . . . , N, are pairwise distinct modulo
p, thus

N ≤ p(n+2)(n+1)/2.

From Theorem 3 we derive|Si | ≤ n(3p)1/2. Therefore, using inequality (6) we derive

Pε,δ(p,m) =
(

p− 1

m

)−1 N∑
i=1

(|Si |
m

)
≤

N∑
i=1

( |Si |
p− 1

)m

≤ p(n+2)(n+1)/2

(
n(3p)1/2

p− 1

)m

≤ 2mnm p(n+2)(n+1)/2−m/2 ≤ 2mmm/2 p(ε−1)m/2

≤ 2m p−(δ−ε)m/2,

and the result follows.
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3. Approximation of the Discrete Logarithm by Boolean Functions

Here we consider the bitwise approximation of the discrete logarithm given the bit
representation of the argument. Moreover, we concentrate on the rightmost bit of indx.
This question is essentially equivalent to deciding quadratic residuosity ofx.

In [9] (see also [12]) the identity

x(q−1)/2 =
{

1, if x is a quadratic residue inFq,

−1, if x is a quadratic nonresidue inFq,

has been used to obtain the lower boundÄ(lg q) on the depth of arithmetic circuits over
Fq deciding whetherx ∈ F∗q is a quadratic residue (the most important thing is that the
degree(q − 1)/2 is large). Here we consider Boolean circuits. It should be noted that
our boundÄ(lg lg p) (which we prove for prime fieldsFp only) on their depth is weaker.
This actually agrees with the expectation that for this particular question Boolean circuits
are exponentially more powerful than arithmetic ones; see [12] for a discussion of this
phenomenon and a survey of relevant results.

Each Boolean functionB(U1, . . . ,Ur ) we represent as a multilinear polynomial of
degreen overF2 of the form

B(U1, . . . ,Ur ) =
n∑

k=0

∑
1≤i1<···<i k≤r

Ai1···i kUi1 · · ·Uik , (8)

where

Ai1···i k ∈ F2, 1≤ i1 < · · · < i k ≤ r.

We define sprB as the number of nonzero coefficientsAi1···i k .
We consider Boolean functions producing the rightmost bit of indx from the bit

representation ofx. We also assume that all numbers contain the same numberr of bits
(adding several leading zeros if necessary) wherer = blg pc. Thus each such func-
tion is defined on a portion 1≤ x ≤ 2r − 1 ≤ p− 1 of the complete residue system
modulo p.

Theorem 5. Let a Boolean function B(U1, . . . ,Ur ) of r = blg pc Boolean variables
be such that for any x, 1≤ x ≤ 2r − 1,

B(u1, . . . ,ur ) =
{

0, if x is a quadratic residue modulo p,
1, if x is a quadratic nonresidue modulo p,

where x= u1 · · ·ur is the bit representation of x. Then the bound

sprB ≥ 2−3/2 p1/4(lg p)−1/2− 1

holds.

Proof. Putt = sprB and definek by the inequalities

2k > t + 1≥ 2k−1.
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For eachm= 1, . . . ,2k − 1 we consider the function

Bm(V1, . . . ,Vr−k) = B(V1, . . . ,Vr−k,e1, . . . ,ek),

wherem= e1 · · ·ek is the bit representation ofm. Obviously the total number of distinct
monomials inV1, . . . ,Vr−k occurring in all these functions does not exceedt . Therefore,
because of the choice ofk, one can find a nontrivial linear combination

2k−1∑
m=1

cmBm(V1, . . . ,Vr−k), c1, . . . , c2k−1 ∈ F2,

which vanishes identically.
Let χ(z) be the quadratic character modulop. From the condition of the theorem we

see

χ(x) = (−1)B(x1,...,xr ).

Therefore, for 0≤ y ≤ 2r−k − 1 we have

2k−1∏
m=1

χ(2ky+m)cm = (−1)
∑2k−1

m=1
cmBm(v1,...,vr−k) = 1,

wherey = v1 · · · vr−k is the bit representation ofy. Combining this result with inequal-
ity (2) we get

2r−k =
2r−k−1∑

y=0

χ

(
2k−1∏
m=1

(2ky+m)cm

)
≤ 2k p1/2 lg p.

Hence,

22k ≥ 2r p−1/2(lg p)−1 ≥ 0.5p1/2(lg p)−1.

Finally we derive thatt + 1≥ 2k−1 ≥ 2−3/2 p1/4(lg p)−1/2.

It easy to see that the same result holds for monomials of the form(a1U1 + b1) · · ·
(anUn + bn) with ai ,bi = 0,1, i = 1, . . . ,n, as well. In other words, one can consider
not only positive literalsUi but their negations¬Ui , i = 1, . . . , r , as well.

To estimatea = degB from below we recall the asymptotic

lg

(
N

bγ Nc
)
∼ H(γ )N,

where

H(γ ) = −γ lg γ − (1− γ ) lg(1− γ )

is the (binary) entropy function, which holds for any fixedγ , 0< γ < 1 andN →∞;
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see Section 10.11 of [19]. Then from the inequality

t ≤
n∑

i=0

(
r

i

)
≤ (n+ 1)

(
r

n

)
,

which holds forn ≤ r/2, one can easily derive that under the condition of Theorem 5

n ≥ ϑ lg p+ o(lg p), (9)

whereϑ = 0.041. . . is the root of the equation

H(ϑ) = 1
4, 0< ϑ < 1

2.

Certainly the bound is of the correct order because obviouslyn ≤ r ≤ lg p.
Now we show that the same method which is used in the proof of Theorem 5 can be

used in studying the sensitivity of the Boolean functions deciding quadratic residuosity.

Theorem 6. Let a Boolean function B(U1, . . . ,Ur ) of r = blg pc Boolean variables
be such that for any x, 1≤ x ≤ 2r − 1,

B(u1, . . . ,ur ) =
{

0, if x is a quadratic residue modulo p,
1, if x is a quadratic nonresidue modulo p,

where x= u1 · · ·ur is the bit representation of x. Then the bound

σ(B) ≥ 0.5r + o(r )

holds.

Proof. We putm= ⌊r 1/2
⌋
, k = 2m+ 1, l = ⌊r − r 1/2

⌋
, andR= 2r − k2l . One sees

that for any fixedi , 0 ≤ i ≤ l , and anyx = 0, . . . , R− 1, the vector
(
B(x + j 2i )

)k
j=1

is defined. Asx ranges, the vector takes on the value of each possible binaryk-tuple
T = (t1, . . . , tk) with multiplicity

N(T) = 2−k
R−1∑
x=0

k∏
j=1

(
χ(x + j 2i )(−1)tj + 1

)
.

After simple evaluation one finds that the sum on the left-hand side contains one
“main” term R2−k and 2k − 1 terms of the form

±2−k
R−1∑
x=0

χ
(
(x + j12i ) · · · (x + js2

i )
)
,

wheres ≤ k and 1≤ j1 < · · · < js ≤ k. Applying inequality (2) we see that each term
does not exceed 2−ksp1/2 lg p in absolute value. Thus,

N(T) = R2−k + O

(
2−k

k∑
s=1

(
k

s

)
sp1/2 lg p

)
= R2−k + O(kp1/2 lg p)

= R2−k + O(mr2r/2) = R2−k + o(R2−k).
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It follows from probabilistic arguments that for 2k + o(2k) binary k-tuples T =
(t1, . . . , tk), both of the following statements are true:

• t2 j 6= t2 j+1 for 0.5m+ o(m) values of j = 1, . . . ,m;
• t2 j 6= t2 j−1 for 0.5m+ o(m) values of j = 1, . . . ,m.

That means that, whatever the(i + 1)th bit of x happens to be, if the vector
(B(x+ j 2i ))kj=1 is such ak-tupleT , then among themvaluesB(x+ j 2i+1), j = 1, . . . ,m,
about half differ from their respective

B
(
(x + j 2i+1)(i )

) = B(x + j 2i+1± 2i ) = B
(
x + (2 j ± 1)2i

)
.

So,

l∑
i=0

R−1∑
x=0

m∑
j=1

B(x+ j 2i+1)6=B((x+ j 2i+1)(i ))

1

≥ (l + 1)
(
R2−k + o(R2−k)

) (
2k + o(2k)

)
(0.5m+ o(m))

= 0.5Rlm+ o(Rlm).

For everyi , 0≤ i ≤ l , and everyj , 1≤ j ≤ m, we find∣∣∣∣∣∣∣∣
R−1∑
x=0

B(x+ j 2i+1)6=B((x+ j 2i+1)(i ))

1−
2r−1∑

x=0

B(x)6=B(x(i ))

1

∣∣∣∣∣∣∣∣ ≤ m2l+1 = o(2r ).

Therefore
l∑

i=0

2r−1∑
x=0

B(x)6=B(x(i ))

1≥ 2r−1l + o(2r l ).

Thus there existsx0, 0≤ x0 ≤ 2r − 1, with

σ(B) ≥
l∑

i=0

B(x0)6=B
(

x(i )
0

) 1≥ 0.5l + o(l ) = 0.5r + o(r )

and we are done.

Certainly the bound is of the correct order because obviouslyσ(B) ≤ r . Combining
this result with inequality (3) one gets the lower bound on the CREW PRAM complexity
of B.

Corollary 7. The CREW PRAM complexity of any function B satisfying the condition
of Theorem6 is at leastlg lg p+ O(1).
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4. Approximation of the Diffie–Hellman Key

Let g be a primitive root of a finite fieldFq of q elements. One of the most popular public-
key cryptosystems, the Diffie–Hellman cryptosystem, is based on the still unproven
assumption that recovering the value of theDiffie–Hellman secret key

K (x, y) = gxy

from the known values ofgx andgy is essentially equivalent to the discrete logarithm
problem and therefore is hard. Here we show that even the computation ofgx2

from gx

cannot be realized by a polynomial of low degree.
The following result is applicable to arbitrary setsSof cardinality|S| > 2H2/3.

Theorem 8. Let f(X) ∈ Fq[X] be a polynomial of degree n= deg f such that

gx2 = f (gx), x ∈ S, (10)

for a set S⊆ {N + 1, . . . , N + H} with H ≤ q − 1. Then

n ≥ |S|
2

2H
− 4H

|S| − 1.

Proof. We defineK = b2H/|S|c and consider theK + 1 shift-setsSi = S− i , i =
0, . . . , K . They all belong to the interval of length ofH+K , thus denotingRi, j = Si ∩Sj ,
from the inclusion–exclusion principle we obtain

(K + 1)|S| −
∑

0≤i< j≤K

|Ri, j | =
K∑

i=0

|Si | −
∑

0≤i< j≤K

|Ri, j | ≤ |
K⋃

i=0

Si | ≤ H + K .

Therefore, there is a pair 0≤ i < j ≤ K such that

|R0, j−i | = |Ri, j | ≥ 2|S|
K
− 2(H + K )

K (K + 1)
≥ |S|

K
− 1≥ |S|

2

2H
− 1.

For this pair we putk = j − i and letR= R0,k. Then for anyx ∈ R we have both

gx2 = f (gx) and g(x+k)2 = f (gx+k).

Therefore,

f (gx+k) = g(x+k)2 = gx2
g2kxgk2 = g2kxgk2

f (gx).

Thus the equationf (gku) = gk2
u2k f (u) is satisfied for eachu = gx with x ∈ R. On

the other hand, it can be reduced to the form

gk2
u2k f (u)− f (gku) = 0

and therefore has at most 2k+n solutions (becausek > 0 the polynomial on the left-hand
side is not identical to zero). Hencen ≥ |R| − 2K .
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Certainly, for anySone can satisfy (10) with a unique polynomialf of degree degf ≤
|S| − 1. Now we show that for a sufficiently small randomly selected setS this degree
cannot be smaller. In particular, with probability 1− o(1) we have degf = |S| − 1 for
that polynomial.

Theorem 9. Let q be sufficiently large and let S be a set of m random elements picked
uniformly from{0, . . . ,q− 2}. Then the probability Pk(q,m) that there exists a polyno-
mial f (X) ∈ Fq[X] of degree

deg f < m− k

and such that

gx2 = f (gx), x ∈ S,

satisfies the bound

Pk(q,m) ≤
(

4m

q − 1

)k/2

+
{

0, if m− k ≥ (4q)1/3,
(3q−1/3)m, if m− k < (4q)1/3.

Proof. Suppose there areN different setsSi ⊆ {0, . . . ,q − 2}, i = 1, . . . , N, that
are maximally satisfied by polynomialsfi of degree at mostn = m− k. In particular,
polynomials fi , i = 1, . . . , N, are pairwise distinct.

As before,|Si ∩ Sj | ≤ n. So

N∑
i=1

∑
T⊆Si
|T |=n+1

1≤
∑

T⊆{0,...,q−2}
|T |=n+1

1=
(

q − 1

n+ 1

)
. (11)

Also assume that only the firstM of theSi are of size

|Si | ≥ 2n1/2(q − 1)1/2.

First we remark thatM = 0 if n ≥ (4q)1/3. Indeed, from Theorem 8 (withH = q−1)
we see that ifM 6= 0, then

n ≥ 4n(q − 1)

2(q − 1)
− 4(q − 1)

2n1/2(q − 1)1/2
− 1= 2n− 2n−1/2(q − 1)1/2− 1.

It is easy to verify that the last inequality fails forn ≥ (4q)1/3. Now we consider the
casen < (4q)1/3. Again from Theorem 8 we see that in this case|Si | ≤ (α + o(1))q2/3,
i = 1, . . . , N, whereα = 2.519. . . is the unique positive root of the equation

α2

2
− 4

α
= 41/3.

Hence

|Si | ≤ 2.6q2/3, i = 1, . . . , N,
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for q large enough. We also claim that

M∑
i=1

|Si | < 2q. (12)

Indeed, assuming the inverse inequality, we selectL ≤ M with

2q ≤ σ =
L∑

i=1

|Si | ≤ 2q + 2.6q2/3.

We know that the number ofSi is at most

L ≤
L∑

i=1

|Si |
2n1/2(q − 1)1/2

≤ 2q + 2.6q2/3

2n1/2(q − 1)1/2
= ( 1

2 + o(1)
)

q1/2n−1/2.

By the inclusion–exclusion principle we know that

q ≥
L∑

i=1

|Si | −
∑

1≤i< j≤L

|Si ∩ Sj | ≥ σ − nL(L − 1)

2
≥ ( 3

2 + o(1)
)

q,

which is not possible forq large enough. Therefore (12) holds.
Now we estimate the sum

W =
M∑

i=1

( |Si |
q − 1

)m+1

.

Obviously,W = 0 for n ≥ (4q)1/3. Forn < (4q)1/3, from (12) we derive

W =
M∑

i=1

( |Si |
q − 1

)( |Si |
q − 1

)m

≤ 2.6mq−m/3
M∑

i=1

|Si |
q − 1

≤ 3mq−m/3

for q large enough.
For the(n+ 1)-element setT ⊆ {0, . . . ,q− 2} denote byfT the unique polynomial

of degree at mostn such thatT is satisfied by this polynomial. Also, denote byRT the
set which is maximally satisfied byfT . Now we see

Pk(q,m) =
∑
|T |=n+1

(
q − 1

n+ 1

)−1 ∑
T⊆S⊆RT
|S|=m

(
q − n− 2

k

)−1

≤
(

q − 1

n+ 1

)−1(q − n− 2

k

)−1 N∑
i=1

∑
T⊆Si
|T |=n+1

∑
T⊆S⊆Si
|S|=m

1

= P1+ P2,
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whereP1 is the part of the sum overi = 1, . . . ,M and P2 is the part overi = M +
1, . . . , N. Thus

P1 =
(

q − 1

n+ 1

)−1(q − n− 2

k

)−1 M∑
i=1

∑
T⊆Si
|T |=n+1

∑
T⊆S⊆Si
|S|=m

1

=
(

q − 1

n+ 1

)−1(q − n− 2

k

)−1 M∑
i=1

( |Si |
n+ 1

)(|Si | − n− 1

k

)
.

From inequality (6) we derive(
q − 1

n+ 1

)−1( |Si |
n+ 1

)
≤
( |Si |

q − 1

)n+1

and (
q − n− 2

k

)−1(|Si | − n− 1

k

)
≤
( |Si | − n− 1

q − n− 2

)k

≤
( |Si |

q − 1

)k

.

Therefore

P1 ≤ W ≤
{

0, if n ≥ (4q)1/3,
(3q−1/3)m, if n < (4q)1/3.

(13)

For P2 we obtain

P2 =
(

q − 1

n+ 1

)−1(q − n− 2

k

)−1 N∑
i=M+1

∑
T⊆Si
|T |=n+1

∑
T⊆S⊆Si
|S|=m

1

=
(

q − 1

n+ 1

)−1(q − n− 2

k

)−1 N∑
i=M+1

∑
T⊆Si
|T |=n+1

(|Si | − n− 1

k

)

≤
(

q − 1

n+ 1

)−1 N∑
i=M+1

∑
T⊆Si
|T |=n+1

( |Si |
q − 1

)k

≤
(

q − 1

n+ 1

)−1(2n1/2(q − 1)1/2

q − 1

)k N∑
i=M+1

∑
T⊆Si
|T |=n+1

1.

From (11) and the previous inequality we derive

P2 ≤
(

2n1/2(q − 1)1/2

q − 1

)k

=
(

4n

q − 1

)k/2

≤
(

4m

q − 1

)k/2

. (14)

Combining (13) and (14) we obtain the results.

We remark that the first term dominates ifk ≤ 2m/3. Selectingk = 1 we obtain that
if m = o(q), for almost all sets of sizem the smallest degree of the polynomial which
they satisfy ism− 1.

Now we consider representation via algebraic functions. The following result is non-
trivial for sparse sets with at leastH2/3+ε elements.
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Theorem 10. Let F(U,V) ∈ Fq[U,V ] be a polynomial of degree n= degF , not
identically zero, such that

F(gx, gx2
) = 0, x ∈ S,

for a set S⊆ {N + 1, . . . , N + H}. Then there is an absolute effectively computable
constant C> 0 such that the bound

n ≥ C|S|3/2
H

holds.

Proof. For a polynomialG(U,V) ∈ Fq[U,V ] and integerk (not necessarily positive)
we introduce the shift transformation

σk (G(U,V)) = U−l G(gkU, gk2
U2kV),

wherel is chosen so thatσk(F) is a polynomial not divisible byU . One easily verifies
that

σk (σm(G)) = σk+m(G)

and that

σk(G1G2) = σk(G1)σk(G2).

In particular, if9(U,V) is an absolutely irreducible polynomial which is not a univariate
polynomial (either inU or in V), then8 = σk(9) is absolutely irreducible as well. We
also note that for an absolutely irreducible9 and fork 6= 0, we haveσk(9) 6= c9 for
any nonzeroc ∈ Fq. Indeed, assuming that

9(U,V) =
v∑

i=0

Vi fi (U )

we would havefi (U ) = cgik2
U2ik+l fi (gkU ), for eachi = 0, . . . , v. This is only possible

if there is only one nonzero polynomial among the polynomialsf0(U ), . . . , fv(U ). Thus
9(U,V) = Vh f (U ), whereh ≤ v and f (U ) is a nonzero polynomial of degree at most
v, which is not possible because of our assumptions.

We denote byϕ(U )andψ(V) two possible univariate factors ofF(U,V). We consider
the complete factorization of the fraction

F(U,V)

ϕ(U )ψ(V)

over the algebraic closure ofFq (thus all factors are absolutely irreducible polynomials).
Index the absolutely irreducible factors in this fraction as9i j (U,V), that is,

F(U,V) = ϕ(U )ψ(V)
∏

9i j (U,V),
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in the following way. Two factors share the same first index if and only if one is essentially
a shift of the other:

9i j (U,V) = cσk(9im)

for some integerk and some nonzeroc ∈ Fq. It follows from the two aforementioned
properties of the transformationσk that this breakup is legitimate.

Among each family9i j of factors sharing a first indexi , assign the indexj = 0 to
that factor having minimal degree inU , and for the other members of the family, letj
denote the amount of shift, that is,

9i j = cσj (9i 0)

with some nonzeroc ∈ Fq. Collect all factors9i j (U,V) sharing the same second index
j into a factorFj (U,V). So we have

F(U,V) = ϕ(U )ψ(V)
∏
j∈J

Fj (U,V),

whereJ is the set of possible shifts among absolutely irreducible factors ofF and for
eachFj (U,V), j ∈ J, we have thatσ− j Fj is a factor ofF0. For eachj ∈ J we define
the setTj ⊂ Ssuch that

Fj (g
x, gx2

) = 0, x ∈ Tj .

As in the proof of Theorem 8 we select 1≤ kj ≤ 2H/|Tj | for which both

Fj (g
x, gx2

) = 0 and Fj (g
(x+k), g(x+k)2) = 0 (15)

hold for at least|Tj |2/2H − 1 values ofx. Then we see that the system of equations

Fj (U,V) = σkj

(
Fj (U,V)

) = 0

has at least|Tj |2/2H − 1 solutions.
Let Fj (U,V), j ∈ J, have degreesuj andvj in U and V , respectively. Then the

U -degree ofσkj Fj is at mostuj + 2kj vj (its V-degree is stillvj ). Now we claim thatFj

is relatively prime toσk(Fj ) for any integerk and j ∈ J. Indeed, otherwiseFj would
have two distinct absolutely irreducible factors9 and8 satisfying8 = cσk(9) with
some nonzeroc ∈ Fq, but then8 is a divisor ofFj+k rather than ofFj . Therefore, from
Bézout’s theorem we derive the inequality

|Tj |2
2H
− 1≤ uj vj + (uj + 2kj vj )vj = 2uj vj + 2kj v

2
j . (16)

Let J1 be the set ofj ∈ J with uj ≥ kj vj and letJ2 be the set ofj ∈ J with uj < kj vj .
For j ∈ J1 we have

|Tj |2
2H
≤ 4uj vj + 1≤ 5uj vj ≤ 5(degFj )

2.
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Therefore

n ≥
∑
j∈J1

degFj ≥ (10H)−1/2
∑
j∈J1

|Tj |. (17)

We turn toJ2. We notice that

uj ≥ | j |vj . (18)

Indeed, assume that9i 0(U,V) is an absolutely irreducible divisor ofF0(U,V) such that
9i j (U,V) is a divisor ofFj (U,V). Assume that

v = degV 9i 0 = degV 9i j , w = degU 9i 0(U,V), u = degU 9i j (U,V).

One sees that the coefficient ofV0 in 9i 0(U,V) is a polynomial inU of some degree
0≤ r ≤ w, and the coefficient ofVv is a polynomial inU of some degree 0≤ s ≤ w.

The first polynomial is not 0 because otherwise9i 0 would be divisible byV ; the
second one is not zero because theV-degree ofFj (U,V) is v. Let l be the power ofU
in the definition ofσj . We have

l ≤ min{r, s+ 2 j v}.
On the other hand,

u ≥ max{r − l , s+ 2 j v − l }.
If j > 0, then we see that

u ≥ s+ 2 j v − l ≥ s+ 2 j v − r ≥ 2 j v − r ≥ 2 j v − w.
If j < 0, then

u ≥ r − l ≥ r − 2 j v − s ≥ −2 j v − s ≥ −2 j v − w.
From our selection of9i 0 we also seeu ≥ w. Combining these inequalities we derive
u ≥ | j |v and (18) follows.

Then, for j ∈ J2 we have

|Tj |2
2H
≤ 4kj v

2
j + 1≤ 5kvv

2
j ≤

10Hv2
j

|Tj | .

Hence

vj ≥ 20−1/2|Tj |3/2H−1, j ∈ J2.

From this and (18) we derive

n ≥
∑
j∈J2

degFj ≥
∑
j∈J2

uj ≥
∑
j∈J2

| j |vj ≥ 20−1/2H−1
∑
j∈J2

| j ||Tj |3/2.

If 0 ∈ J2 we can includeT0 into the sum by

degF0 ≥ v0 ≥ 20−1/2H−1|T0|3/2,
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thus obtaining

n ≥ 20−1/2H−1
∑
j∈J2

max{| j |, 1}|Tj |3/2.

One verifies that

∑
j∈J2

|Tj | ≤
(∑

j∈J2

max{| j |, 1}−2

)1/3(∑
j∈J2

max{| j |, 1}|Tj |3/2
)2/3

and ∑
j∈J2

max{| j |, 1}−2 < 1+ 2
∞∑

j=1

j−2 = 1+ 2
π2

6
< 5.

Therefore

n ≥ (10H)−1

(∑
j∈J2

|Tj |
)3/2

. (19)

The univariate factorsϕ andψ are easier to treat. The setTu of x ∈ S for which
ϕ(gx) = 0 is of cardinality

|Tu| ≤ degϕ ≤ n. (20)

The setTv of x ∈ S for whichψ(gx2
) = 0 satisfies the inequality

|Tv| = O(Hq−1/2 degψ) = O(nHq−1/2), (21)

which follows from the general bound of [17] on the number of solutions of polynomial
congruences over an incomplete residue system; see also [16]. Indeed, in our case we
have up to degψ congruences of the formx2 ≡ indv (mod q − 1) for each solutionv
of the equationψ(v) = 0. Taking into account that

max

{
|Tu|, |Tv|,

∑
j∈J1

|Tj |,
∑
j∈J2

|Tj |
}
≥ |S|

4

from (17), (19), (20), and (21) we derive the result.

It is obvious that for anyS⊆ {0, . . . ,q−2} there is a polynomialF(U,V) ∈ Fq[U,V ]
of degree at most(2|S|)1/2 which satisfies the condition of Theorem 10. Now we show
that for almost all sufficiently small setsS this bound is the best possible, to within a
multiplicative constant.

Theorem 11. Let q be sufficiently large, 0< ε < 2δ/3, δ < 1 and m≤ q1−δ. Let S be
a set of m random elements picked uniformly from{0, . . . ,q − 2}. Then the probability
Pε,δ(q,m) that there exists a polynomial F(U,V) ∈ Fq[U,V ] of degree

degF <
⌊
(εm)1/2

⌋− 1
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and such that

F(gx, gx2
) = 0, x ∈ S,

satisfies the bound

Pε,δ(q,m) ≤ cmq−(δ/3−ε/2)m,

where c> 0 is an absolute constant.

Proof. Suppose there areN different setsSi ⊆ {0, . . . ,q − 2}, i = 1, . . . , N, that
are maximally satisfied by polynomialsFi (U,V) ∈ Fq[U,V ] of degree at mostn =⌊
(εm)1/2

⌋− 2. In particular, polynomialsFi , i = 1, . . . , N, are pairwise distinct, thus

N ≤ q(n+2)(n+1)/2.

From Theorem 10 we derive|Si | = O
(
(nq)2/3

)
. Therefore using inequality (6)

Pε,δ(p,m) =
(

q − 1

m

)−1 N∑
i=1

(|Si |
m

)
≤

N∑
i=1

( |Si |
q − 1

)m

≤ q(n+2)(n+1)/2(cn2/3q−1/3)m

≤ cmn2m/3q(n+2)(n+1)/2−m/3

≤ cmmm/3q(ε/2−1/3)m

≤ cmq−(δ/3−ε/2)m

with some constantc > 0.

5. Conclusion

We give lower bounds for the degrees of polynomials, or of algebraic functions, which
agree with the discrete logarithm or with the Diffie–Hellman function on a large set.
These lower bounds in turn provide lower bounds on the CREW PRAM complexity of
these functions; however, as is often the case, these lower bounds are too weak to be
useful cryptographically.
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